1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "volumes.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58
59 struct btrfs_iget_args {
60 u64 ino;
61 struct btrfs_root *root;
62 };
63
64 struct btrfs_dio_data {
65 ssize_t submitted;
66 struct extent_changeset *data_reserved;
67 bool data_space_reserved;
68 bool nocow_done;
69 };
70
71 struct btrfs_dio_private {
72 struct inode *inode;
73
74 /*
75 * Since DIO can use anonymous page, we cannot use page_offset() to
76 * grab the file offset, thus need a dedicated member for file offset.
77 */
78 u64 file_offset;
79 /* Used for bio::bi_size */
80 u32 bytes;
81
82 /*
83 * References to this structure. There is one reference per in-flight
84 * bio plus one while we're still setting up.
85 */
86 refcount_t refs;
87
88 /* Array of checksums */
89 u8 *csums;
90
91 /* This must be last */
92 struct bio bio;
93 };
94
95 static struct bio_set btrfs_dio_bioset;
96
97 struct btrfs_rename_ctx {
98 /* Output field. Stores the index number of the old directory entry. */
99 u64 index;
100 };
101
102 static const struct inode_operations btrfs_dir_inode_operations;
103 static const struct inode_operations btrfs_symlink_inode_operations;
104 static const struct inode_operations btrfs_special_inode_operations;
105 static const struct inode_operations btrfs_file_inode_operations;
106 static const struct address_space_operations btrfs_aops;
107 static const struct file_operations btrfs_dir_file_operations;
108
109 static struct kmem_cache *btrfs_inode_cachep;
110 struct kmem_cache *btrfs_trans_handle_cachep;
111 struct kmem_cache *btrfs_path_cachep;
112 struct kmem_cache *btrfs_free_space_cachep;
113 struct kmem_cache *btrfs_free_space_bitmap_cachep;
114
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
117 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
118 static noinline int cow_file_range(struct btrfs_inode *inode,
119 struct page *locked_page,
120 u64 start, u64 end, int *page_started,
121 unsigned long *nr_written, int unlock,
122 u64 *done_offset);
123 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
124 u64 len, u64 orig_start, u64 block_start,
125 u64 block_len, u64 orig_block_len,
126 u64 ram_bytes, int compress_type,
127 int type);
128
129 static void __endio_write_update_ordered(struct btrfs_inode *inode,
130 const u64 offset, const u64 bytes,
131 const bool uptodate);
132
133 /*
134 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
135 *
136 * ilock_flags can have the following bit set:
137 *
138 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
139 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
140 * return -EAGAIN
141 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
142 */
btrfs_inode_lock(struct inode * inode,unsigned int ilock_flags)143 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
144 {
145 if (ilock_flags & BTRFS_ILOCK_SHARED) {
146 if (ilock_flags & BTRFS_ILOCK_TRY) {
147 if (!inode_trylock_shared(inode))
148 return -EAGAIN;
149 else
150 return 0;
151 }
152 inode_lock_shared(inode);
153 } else {
154 if (ilock_flags & BTRFS_ILOCK_TRY) {
155 if (!inode_trylock(inode))
156 return -EAGAIN;
157 else
158 return 0;
159 }
160 inode_lock(inode);
161 }
162 if (ilock_flags & BTRFS_ILOCK_MMAP)
163 down_write(&BTRFS_I(inode)->i_mmap_lock);
164 return 0;
165 }
166
167 /*
168 * btrfs_inode_unlock - unock inode i_rwsem
169 *
170 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
171 * to decide whether the lock acquired is shared or exclusive.
172 */
btrfs_inode_unlock(struct inode * inode,unsigned int ilock_flags)173 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
174 {
175 if (ilock_flags & BTRFS_ILOCK_MMAP)
176 up_write(&BTRFS_I(inode)->i_mmap_lock);
177 if (ilock_flags & BTRFS_ILOCK_SHARED)
178 inode_unlock_shared(inode);
179 else
180 inode_unlock(inode);
181 }
182
183 /*
184 * Cleanup all submitted ordered extents in specified range to handle errors
185 * from the btrfs_run_delalloc_range() callback.
186 *
187 * NOTE: caller must ensure that when an error happens, it can not call
188 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
189 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
190 * to be released, which we want to happen only when finishing the ordered
191 * extent (btrfs_finish_ordered_io()).
192 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,struct page * locked_page,u64 offset,u64 bytes)193 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
194 struct page *locked_page,
195 u64 offset, u64 bytes)
196 {
197 unsigned long index = offset >> PAGE_SHIFT;
198 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
199 u64 page_start = page_offset(locked_page);
200 u64 page_end = page_start + PAGE_SIZE - 1;
201
202 struct page *page;
203
204 while (index <= end_index) {
205 /*
206 * For locked page, we will call end_extent_writepage() on it
207 * in run_delalloc_range() for the error handling. That
208 * end_extent_writepage() function will call
209 * btrfs_mark_ordered_io_finished() to clear page Ordered and
210 * run the ordered extent accounting.
211 *
212 * Here we can't just clear the Ordered bit, or
213 * btrfs_mark_ordered_io_finished() would skip the accounting
214 * for the page range, and the ordered extent will never finish.
215 */
216 if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
217 index++;
218 continue;
219 }
220 page = find_get_page(inode->vfs_inode.i_mapping, index);
221 index++;
222 if (!page)
223 continue;
224
225 /*
226 * Here we just clear all Ordered bits for every page in the
227 * range, then __endio_write_update_ordered() will handle
228 * the ordered extent accounting for the range.
229 */
230 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
231 offset, bytes);
232 put_page(page);
233 }
234
235 /* The locked page covers the full range, nothing needs to be done */
236 if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
237 return;
238 /*
239 * In case this page belongs to the delalloc range being instantiated
240 * then skip it, since the first page of a range is going to be
241 * properly cleaned up by the caller of run_delalloc_range
242 */
243 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
244 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
245 offset = page_offset(locked_page) + PAGE_SIZE;
246 }
247
248 return __endio_write_update_ordered(inode, offset, bytes, false);
249 }
250
251 static int btrfs_dirty_inode(struct inode *inode);
252
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)253 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
254 struct btrfs_new_inode_args *args)
255 {
256 int err;
257
258 if (args->default_acl) {
259 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
260 ACL_TYPE_DEFAULT);
261 if (err)
262 return err;
263 }
264 if (args->acl) {
265 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
266 if (err)
267 return err;
268 }
269 if (!args->default_acl && !args->acl)
270 cache_no_acl(args->inode);
271 return btrfs_xattr_security_init(trans, args->inode, args->dir,
272 &args->dentry->d_name);
273 }
274
275 /*
276 * this does all the hard work for inserting an inline extent into
277 * the btree. The caller should have done a btrfs_drop_extents so that
278 * no overlapping inline items exist in the btree
279 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages,bool update_i_size)280 static int insert_inline_extent(struct btrfs_trans_handle *trans,
281 struct btrfs_path *path,
282 struct btrfs_inode *inode, bool extent_inserted,
283 size_t size, size_t compressed_size,
284 int compress_type,
285 struct page **compressed_pages,
286 bool update_i_size)
287 {
288 struct btrfs_root *root = inode->root;
289 struct extent_buffer *leaf;
290 struct page *page = NULL;
291 char *kaddr;
292 unsigned long ptr;
293 struct btrfs_file_extent_item *ei;
294 int ret;
295 size_t cur_size = size;
296 u64 i_size;
297
298 ASSERT((compressed_size > 0 && compressed_pages) ||
299 (compressed_size == 0 && !compressed_pages));
300
301 if (compressed_size && compressed_pages)
302 cur_size = compressed_size;
303
304 if (!extent_inserted) {
305 struct btrfs_key key;
306 size_t datasize;
307
308 key.objectid = btrfs_ino(inode);
309 key.offset = 0;
310 key.type = BTRFS_EXTENT_DATA_KEY;
311
312 datasize = btrfs_file_extent_calc_inline_size(cur_size);
313 ret = btrfs_insert_empty_item(trans, root, path, &key,
314 datasize);
315 if (ret)
316 goto fail;
317 }
318 leaf = path->nodes[0];
319 ei = btrfs_item_ptr(leaf, path->slots[0],
320 struct btrfs_file_extent_item);
321 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
322 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
323 btrfs_set_file_extent_encryption(leaf, ei, 0);
324 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
325 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
326 ptr = btrfs_file_extent_inline_start(ei);
327
328 if (compress_type != BTRFS_COMPRESS_NONE) {
329 struct page *cpage;
330 int i = 0;
331 while (compressed_size > 0) {
332 cpage = compressed_pages[i];
333 cur_size = min_t(unsigned long, compressed_size,
334 PAGE_SIZE);
335
336 kaddr = kmap_atomic(cpage);
337 write_extent_buffer(leaf, kaddr, ptr, cur_size);
338 kunmap_atomic(kaddr);
339
340 i++;
341 ptr += cur_size;
342 compressed_size -= cur_size;
343 }
344 btrfs_set_file_extent_compression(leaf, ei,
345 compress_type);
346 } else {
347 page = find_get_page(inode->vfs_inode.i_mapping, 0);
348 btrfs_set_file_extent_compression(leaf, ei, 0);
349 kaddr = kmap_atomic(page);
350 write_extent_buffer(leaf, kaddr, ptr, size);
351 kunmap_atomic(kaddr);
352 put_page(page);
353 }
354 btrfs_mark_buffer_dirty(leaf);
355 btrfs_release_path(path);
356
357 /*
358 * We align size to sectorsize for inline extents just for simplicity
359 * sake.
360 */
361 ret = btrfs_inode_set_file_extent_range(inode, 0,
362 ALIGN(size, root->fs_info->sectorsize));
363 if (ret)
364 goto fail;
365
366 /*
367 * We're an inline extent, so nobody can extend the file past i_size
368 * without locking a page we already have locked.
369 *
370 * We must do any i_size and inode updates before we unlock the pages.
371 * Otherwise we could end up racing with unlink.
372 */
373 i_size = i_size_read(&inode->vfs_inode);
374 if (update_i_size && size > i_size) {
375 i_size_write(&inode->vfs_inode, size);
376 i_size = size;
377 }
378 inode->disk_i_size = i_size;
379
380 fail:
381 return ret;
382 }
383
384
385 /*
386 * conditionally insert an inline extent into the file. This
387 * does the checks required to make sure the data is small enough
388 * to fit as an inline extent.
389 */
cow_file_range_inline(struct btrfs_inode * inode,u64 size,size_t compressed_size,int compress_type,struct page ** compressed_pages,bool update_i_size)390 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
391 size_t compressed_size,
392 int compress_type,
393 struct page **compressed_pages,
394 bool update_i_size)
395 {
396 struct btrfs_drop_extents_args drop_args = { 0 };
397 struct btrfs_root *root = inode->root;
398 struct btrfs_fs_info *fs_info = root->fs_info;
399 struct btrfs_trans_handle *trans;
400 u64 data_len = (compressed_size ?: size);
401 int ret;
402 struct btrfs_path *path;
403
404 /*
405 * We can create an inline extent if it ends at or beyond the current
406 * i_size, is no larger than a sector (decompressed), and the (possibly
407 * compressed) data fits in a leaf and the configured maximum inline
408 * size.
409 */
410 if (size < i_size_read(&inode->vfs_inode) ||
411 size > fs_info->sectorsize ||
412 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
413 data_len > fs_info->max_inline)
414 return 1;
415
416 path = btrfs_alloc_path();
417 if (!path)
418 return -ENOMEM;
419
420 trans = btrfs_join_transaction(root);
421 if (IS_ERR(trans)) {
422 btrfs_free_path(path);
423 return PTR_ERR(trans);
424 }
425 trans->block_rsv = &inode->block_rsv;
426
427 drop_args.path = path;
428 drop_args.start = 0;
429 drop_args.end = fs_info->sectorsize;
430 drop_args.drop_cache = true;
431 drop_args.replace_extent = true;
432 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
433 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
434 if (ret) {
435 btrfs_abort_transaction(trans, ret);
436 goto out;
437 }
438
439 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
440 size, compressed_size, compress_type,
441 compressed_pages, update_i_size);
442 if (ret && ret != -ENOSPC) {
443 btrfs_abort_transaction(trans, ret);
444 goto out;
445 } else if (ret == -ENOSPC) {
446 ret = 1;
447 goto out;
448 }
449
450 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
451 ret = btrfs_update_inode(trans, root, inode);
452 if (ret && ret != -ENOSPC) {
453 btrfs_abort_transaction(trans, ret);
454 goto out;
455 } else if (ret == -ENOSPC) {
456 ret = 1;
457 goto out;
458 }
459
460 btrfs_set_inode_full_sync(inode);
461 out:
462 /*
463 * Don't forget to free the reserved space, as for inlined extent
464 * it won't count as data extent, free them directly here.
465 * And at reserve time, it's always aligned to page size, so
466 * just free one page here.
467 */
468 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
469 btrfs_free_path(path);
470 btrfs_end_transaction(trans);
471 return ret;
472 }
473
474 struct async_extent {
475 u64 start;
476 u64 ram_size;
477 u64 compressed_size;
478 struct page **pages;
479 unsigned long nr_pages;
480 int compress_type;
481 struct list_head list;
482 };
483
484 struct async_chunk {
485 struct inode *inode;
486 struct page *locked_page;
487 u64 start;
488 u64 end;
489 unsigned int write_flags;
490 struct list_head extents;
491 struct cgroup_subsys_state *blkcg_css;
492 struct btrfs_work work;
493 struct async_cow *async_cow;
494 };
495
496 struct async_cow {
497 atomic_t num_chunks;
498 struct async_chunk chunks[];
499 };
500
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)501 static noinline int add_async_extent(struct async_chunk *cow,
502 u64 start, u64 ram_size,
503 u64 compressed_size,
504 struct page **pages,
505 unsigned long nr_pages,
506 int compress_type)
507 {
508 struct async_extent *async_extent;
509
510 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
511 BUG_ON(!async_extent); /* -ENOMEM */
512 async_extent->start = start;
513 async_extent->ram_size = ram_size;
514 async_extent->compressed_size = compressed_size;
515 async_extent->pages = pages;
516 async_extent->nr_pages = nr_pages;
517 async_extent->compress_type = compress_type;
518 list_add_tail(&async_extent->list, &cow->extents);
519 return 0;
520 }
521
522 /*
523 * Check if the inode needs to be submitted to compression, based on mount
524 * options, defragmentation, properties or heuristics.
525 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)526 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
527 u64 end)
528 {
529 struct btrfs_fs_info *fs_info = inode->root->fs_info;
530
531 if (!btrfs_inode_can_compress(inode)) {
532 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
533 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
534 btrfs_ino(inode));
535 return 0;
536 }
537 /*
538 * Special check for subpage.
539 *
540 * We lock the full page then run each delalloc range in the page, thus
541 * for the following case, we will hit some subpage specific corner case:
542 *
543 * 0 32K 64K
544 * | |///////| |///////|
545 * \- A \- B
546 *
547 * In above case, both range A and range B will try to unlock the full
548 * page [0, 64K), causing the one finished later will have page
549 * unlocked already, triggering various page lock requirement BUG_ON()s.
550 *
551 * So here we add an artificial limit that subpage compression can only
552 * if the range is fully page aligned.
553 *
554 * In theory we only need to ensure the first page is fully covered, but
555 * the tailing partial page will be locked until the full compression
556 * finishes, delaying the write of other range.
557 *
558 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
559 * first to prevent any submitted async extent to unlock the full page.
560 * By this, we can ensure for subpage case that only the last async_cow
561 * will unlock the full page.
562 */
563 if (fs_info->sectorsize < PAGE_SIZE) {
564 if (!IS_ALIGNED(start, PAGE_SIZE) ||
565 !IS_ALIGNED(end + 1, PAGE_SIZE))
566 return 0;
567 }
568
569 /* force compress */
570 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
571 return 1;
572 /* defrag ioctl */
573 if (inode->defrag_compress)
574 return 1;
575 /* bad compression ratios */
576 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
577 return 0;
578 if (btrfs_test_opt(fs_info, COMPRESS) ||
579 inode->flags & BTRFS_INODE_COMPRESS ||
580 inode->prop_compress)
581 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
582 return 0;
583 }
584
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)585 static inline void inode_should_defrag(struct btrfs_inode *inode,
586 u64 start, u64 end, u64 num_bytes, u32 small_write)
587 {
588 /* If this is a small write inside eof, kick off a defrag */
589 if (num_bytes < small_write &&
590 (start > 0 || end + 1 < inode->disk_i_size))
591 btrfs_add_inode_defrag(NULL, inode, small_write);
592 }
593
594 /*
595 * we create compressed extents in two phases. The first
596 * phase compresses a range of pages that have already been
597 * locked (both pages and state bits are locked).
598 *
599 * This is done inside an ordered work queue, and the compression
600 * is spread across many cpus. The actual IO submission is step
601 * two, and the ordered work queue takes care of making sure that
602 * happens in the same order things were put onto the queue by
603 * writepages and friends.
604 *
605 * If this code finds it can't get good compression, it puts an
606 * entry onto the work queue to write the uncompressed bytes. This
607 * makes sure that both compressed inodes and uncompressed inodes
608 * are written in the same order that the flusher thread sent them
609 * down.
610 */
compress_file_range(struct async_chunk * async_chunk)611 static noinline int compress_file_range(struct async_chunk *async_chunk)
612 {
613 struct inode *inode = async_chunk->inode;
614 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
615 u64 blocksize = fs_info->sectorsize;
616 u64 start = async_chunk->start;
617 u64 end = async_chunk->end;
618 u64 actual_end;
619 u64 i_size;
620 int ret = 0;
621 struct page **pages = NULL;
622 unsigned long nr_pages;
623 unsigned long total_compressed = 0;
624 unsigned long total_in = 0;
625 int i;
626 int will_compress;
627 int compress_type = fs_info->compress_type;
628 int compressed_extents = 0;
629 int redirty = 0;
630
631 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
632 SZ_16K);
633
634 /*
635 * We need to save i_size before now because it could change in between
636 * us evaluating the size and assigning it. This is because we lock and
637 * unlock the page in truncate and fallocate, and then modify the i_size
638 * later on.
639 *
640 * The barriers are to emulate READ_ONCE, remove that once i_size_read
641 * does that for us.
642 */
643 barrier();
644 i_size = i_size_read(inode);
645 barrier();
646 actual_end = min_t(u64, i_size, end + 1);
647 again:
648 will_compress = 0;
649 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
650 nr_pages = min_t(unsigned long, nr_pages,
651 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
652
653 /*
654 * we don't want to send crud past the end of i_size through
655 * compression, that's just a waste of CPU time. So, if the
656 * end of the file is before the start of our current
657 * requested range of bytes, we bail out to the uncompressed
658 * cleanup code that can deal with all of this.
659 *
660 * It isn't really the fastest way to fix things, but this is a
661 * very uncommon corner.
662 */
663 if (actual_end <= start)
664 goto cleanup_and_bail_uncompressed;
665
666 total_compressed = actual_end - start;
667
668 /*
669 * Skip compression for a small file range(<=blocksize) that
670 * isn't an inline extent, since it doesn't save disk space at all.
671 */
672 if (total_compressed <= blocksize &&
673 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
674 goto cleanup_and_bail_uncompressed;
675
676 /*
677 * For subpage case, we require full page alignment for the sector
678 * aligned range.
679 * Thus we must also check against @actual_end, not just @end.
680 */
681 if (blocksize < PAGE_SIZE) {
682 if (!IS_ALIGNED(start, PAGE_SIZE) ||
683 !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE))
684 goto cleanup_and_bail_uncompressed;
685 }
686
687 total_compressed = min_t(unsigned long, total_compressed,
688 BTRFS_MAX_UNCOMPRESSED);
689 total_in = 0;
690 ret = 0;
691
692 /*
693 * we do compression for mount -o compress and when the
694 * inode has not been flagged as nocompress. This flag can
695 * change at any time if we discover bad compression ratios.
696 */
697 if (inode_need_compress(BTRFS_I(inode), start, end)) {
698 WARN_ON(pages);
699 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
700 if (!pages) {
701 /* just bail out to the uncompressed code */
702 nr_pages = 0;
703 goto cont;
704 }
705
706 if (BTRFS_I(inode)->defrag_compress)
707 compress_type = BTRFS_I(inode)->defrag_compress;
708 else if (BTRFS_I(inode)->prop_compress)
709 compress_type = BTRFS_I(inode)->prop_compress;
710
711 /*
712 * we need to call clear_page_dirty_for_io on each
713 * page in the range. Otherwise applications with the file
714 * mmap'd can wander in and change the page contents while
715 * we are compressing them.
716 *
717 * If the compression fails for any reason, we set the pages
718 * dirty again later on.
719 *
720 * Note that the remaining part is redirtied, the start pointer
721 * has moved, the end is the original one.
722 */
723 if (!redirty) {
724 extent_range_clear_dirty_for_io(inode, start, end);
725 redirty = 1;
726 }
727
728 /* Compression level is applied here and only here */
729 ret = btrfs_compress_pages(
730 compress_type | (fs_info->compress_level << 4),
731 inode->i_mapping, start,
732 pages,
733 &nr_pages,
734 &total_in,
735 &total_compressed);
736
737 if (!ret) {
738 unsigned long offset = offset_in_page(total_compressed);
739 struct page *page = pages[nr_pages - 1];
740
741 /* zero the tail end of the last page, we might be
742 * sending it down to disk
743 */
744 if (offset)
745 memzero_page(page, offset, PAGE_SIZE - offset);
746 will_compress = 1;
747 }
748 }
749 cont:
750 /*
751 * Check cow_file_range() for why we don't even try to create inline
752 * extent for subpage case.
753 */
754 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
755 /* lets try to make an inline extent */
756 if (ret || total_in < actual_end) {
757 /* we didn't compress the entire range, try
758 * to make an uncompressed inline extent.
759 */
760 ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
761 0, BTRFS_COMPRESS_NONE,
762 NULL, false);
763 } else {
764 /* try making a compressed inline extent */
765 ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
766 total_compressed,
767 compress_type, pages,
768 false);
769 }
770 if (ret <= 0) {
771 unsigned long clear_flags = EXTENT_DELALLOC |
772 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
773 EXTENT_DO_ACCOUNTING;
774 unsigned long page_error_op;
775
776 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
777
778 /*
779 * inline extent creation worked or returned error,
780 * we don't need to create any more async work items.
781 * Unlock and free up our temp pages.
782 *
783 * We use DO_ACCOUNTING here because we need the
784 * delalloc_release_metadata to be done _after_ we drop
785 * our outstanding extent for clearing delalloc for this
786 * range.
787 */
788 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
789 NULL,
790 clear_flags,
791 PAGE_UNLOCK |
792 PAGE_START_WRITEBACK |
793 page_error_op |
794 PAGE_END_WRITEBACK);
795
796 /*
797 * Ensure we only free the compressed pages if we have
798 * them allocated, as we can still reach here with
799 * inode_need_compress() == false.
800 */
801 if (pages) {
802 for (i = 0; i < nr_pages; i++) {
803 WARN_ON(pages[i]->mapping);
804 put_page(pages[i]);
805 }
806 kfree(pages);
807 }
808 return 0;
809 }
810 }
811
812 if (will_compress) {
813 /*
814 * we aren't doing an inline extent round the compressed size
815 * up to a block size boundary so the allocator does sane
816 * things
817 */
818 total_compressed = ALIGN(total_compressed, blocksize);
819
820 /*
821 * one last check to make sure the compression is really a
822 * win, compare the page count read with the blocks on disk,
823 * compression must free at least one sector size
824 */
825 total_in = round_up(total_in, fs_info->sectorsize);
826 if (total_compressed + blocksize <= total_in) {
827 compressed_extents++;
828
829 /*
830 * The async work queues will take care of doing actual
831 * allocation on disk for these compressed pages, and
832 * will submit them to the elevator.
833 */
834 add_async_extent(async_chunk, start, total_in,
835 total_compressed, pages, nr_pages,
836 compress_type);
837
838 if (start + total_in < end) {
839 start += total_in;
840 pages = NULL;
841 cond_resched();
842 goto again;
843 }
844 return compressed_extents;
845 }
846 }
847 if (pages) {
848 /*
849 * the compression code ran but failed to make things smaller,
850 * free any pages it allocated and our page pointer array
851 */
852 for (i = 0; i < nr_pages; i++) {
853 WARN_ON(pages[i]->mapping);
854 put_page(pages[i]);
855 }
856 kfree(pages);
857 pages = NULL;
858 total_compressed = 0;
859 nr_pages = 0;
860
861 /* flag the file so we don't compress in the future */
862 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
863 !(BTRFS_I(inode)->prop_compress)) {
864 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
865 }
866 }
867 cleanup_and_bail_uncompressed:
868 /*
869 * No compression, but we still need to write the pages in the file
870 * we've been given so far. redirty the locked page if it corresponds
871 * to our extent and set things up for the async work queue to run
872 * cow_file_range to do the normal delalloc dance.
873 */
874 if (async_chunk->locked_page &&
875 (page_offset(async_chunk->locked_page) >= start &&
876 page_offset(async_chunk->locked_page)) <= end) {
877 __set_page_dirty_nobuffers(async_chunk->locked_page);
878 /* unlocked later on in the async handlers */
879 }
880
881 if (redirty)
882 extent_range_redirty_for_io(inode, start, end);
883 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
884 BTRFS_COMPRESS_NONE);
885 compressed_extents++;
886
887 return compressed_extents;
888 }
889
free_async_extent_pages(struct async_extent * async_extent)890 static void free_async_extent_pages(struct async_extent *async_extent)
891 {
892 int i;
893
894 if (!async_extent->pages)
895 return;
896
897 for (i = 0; i < async_extent->nr_pages; i++) {
898 WARN_ON(async_extent->pages[i]->mapping);
899 put_page(async_extent->pages[i]);
900 }
901 kfree(async_extent->pages);
902 async_extent->nr_pages = 0;
903 async_extent->pages = NULL;
904 }
905
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct page * locked_page)906 static int submit_uncompressed_range(struct btrfs_inode *inode,
907 struct async_extent *async_extent,
908 struct page *locked_page)
909 {
910 u64 start = async_extent->start;
911 u64 end = async_extent->start + async_extent->ram_size - 1;
912 unsigned long nr_written = 0;
913 int page_started = 0;
914 int ret;
915
916 /*
917 * Call cow_file_range() to run the delalloc range directly, since we
918 * won't go to NOCOW or async path again.
919 *
920 * Also we call cow_file_range() with @unlock_page == 0, so that we
921 * can directly submit them without interruption.
922 */
923 ret = cow_file_range(inode, locked_page, start, end, &page_started,
924 &nr_written, 0, NULL);
925 /* Inline extent inserted, page gets unlocked and everything is done */
926 if (page_started) {
927 ret = 0;
928 goto out;
929 }
930 if (ret < 0) {
931 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
932 if (locked_page) {
933 const u64 page_start = page_offset(locked_page);
934 const u64 page_end = page_start + PAGE_SIZE - 1;
935
936 btrfs_page_set_error(inode->root->fs_info, locked_page,
937 page_start, PAGE_SIZE);
938 set_page_writeback(locked_page);
939 end_page_writeback(locked_page);
940 end_extent_writepage(locked_page, ret, page_start, page_end);
941 unlock_page(locked_page);
942 }
943 goto out;
944 }
945
946 ret = extent_write_locked_range(&inode->vfs_inode, start, end);
947 /* All pages will be unlocked, including @locked_page */
948 out:
949 kfree(async_extent);
950 return ret;
951 }
952
submit_one_async_extent(struct btrfs_inode * inode,struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)953 static int submit_one_async_extent(struct btrfs_inode *inode,
954 struct async_chunk *async_chunk,
955 struct async_extent *async_extent,
956 u64 *alloc_hint)
957 {
958 struct extent_io_tree *io_tree = &inode->io_tree;
959 struct btrfs_root *root = inode->root;
960 struct btrfs_fs_info *fs_info = root->fs_info;
961 struct btrfs_key ins;
962 struct page *locked_page = NULL;
963 struct extent_map *em;
964 int ret = 0;
965 u64 start = async_extent->start;
966 u64 end = async_extent->start + async_extent->ram_size - 1;
967
968 /*
969 * If async_chunk->locked_page is in the async_extent range, we need to
970 * handle it.
971 */
972 if (async_chunk->locked_page) {
973 u64 locked_page_start = page_offset(async_chunk->locked_page);
974 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
975
976 if (!(start >= locked_page_end || end <= locked_page_start))
977 locked_page = async_chunk->locked_page;
978 }
979 lock_extent(io_tree, start, end);
980
981 /* We have fall back to uncompressed write */
982 if (!async_extent->pages)
983 return submit_uncompressed_range(inode, async_extent, locked_page);
984
985 ret = btrfs_reserve_extent(root, async_extent->ram_size,
986 async_extent->compressed_size,
987 async_extent->compressed_size,
988 0, *alloc_hint, &ins, 1, 1);
989 if (ret) {
990 free_async_extent_pages(async_extent);
991 /*
992 * Here we used to try again by going back to non-compressed
993 * path for ENOSPC. But we can't reserve space even for
994 * compressed size, how could it work for uncompressed size
995 * which requires larger size? So here we directly go error
996 * path.
997 */
998 goto out_free;
999 }
1000
1001 /* Here we're doing allocation and writeback of the compressed pages */
1002 em = create_io_em(inode, start,
1003 async_extent->ram_size, /* len */
1004 start, /* orig_start */
1005 ins.objectid, /* block_start */
1006 ins.offset, /* block_len */
1007 ins.offset, /* orig_block_len */
1008 async_extent->ram_size, /* ram_bytes */
1009 async_extent->compress_type,
1010 BTRFS_ORDERED_COMPRESSED);
1011 if (IS_ERR(em)) {
1012 ret = PTR_ERR(em);
1013 goto out_free_reserve;
1014 }
1015 free_extent_map(em);
1016
1017 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */
1018 async_extent->ram_size, /* num_bytes */
1019 async_extent->ram_size, /* ram_bytes */
1020 ins.objectid, /* disk_bytenr */
1021 ins.offset, /* disk_num_bytes */
1022 0, /* offset */
1023 1 << BTRFS_ORDERED_COMPRESSED,
1024 async_extent->compress_type);
1025 if (ret) {
1026 btrfs_drop_extent_cache(inode, start, end, 0);
1027 goto out_free_reserve;
1028 }
1029 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1030
1031 /* Clear dirty, set writeback and unlock the pages. */
1032 extent_clear_unlock_delalloc(inode, start, end,
1033 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1034 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1035 if (btrfs_submit_compressed_write(inode, start, /* file_offset */
1036 async_extent->ram_size, /* num_bytes */
1037 ins.objectid, /* disk_bytenr */
1038 ins.offset, /* compressed_len */
1039 async_extent->pages, /* compressed_pages */
1040 async_extent->nr_pages,
1041 async_chunk->write_flags,
1042 async_chunk->blkcg_css, true)) {
1043 const u64 start = async_extent->start;
1044 const u64 end = start + async_extent->ram_size - 1;
1045
1046 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1047
1048 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1049 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1050 free_async_extent_pages(async_extent);
1051 }
1052 *alloc_hint = ins.objectid + ins.offset;
1053 kfree(async_extent);
1054 return ret;
1055
1056 out_free_reserve:
1057 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1058 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1059 out_free:
1060 extent_clear_unlock_delalloc(inode, start, end,
1061 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1062 EXTENT_DELALLOC_NEW |
1063 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1064 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1065 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1066 free_async_extent_pages(async_extent);
1067 kfree(async_extent);
1068 return ret;
1069 }
1070
1071 /*
1072 * Phase two of compressed writeback. This is the ordered portion of the code,
1073 * which only gets called in the order the work was queued. We walk all the
1074 * async extents created by compress_file_range and send them down to the disk.
1075 */
submit_compressed_extents(struct async_chunk * async_chunk)1076 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1077 {
1078 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1079 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1080 struct async_extent *async_extent;
1081 u64 alloc_hint = 0;
1082 int ret = 0;
1083
1084 while (!list_empty(&async_chunk->extents)) {
1085 u64 extent_start;
1086 u64 ram_size;
1087
1088 async_extent = list_entry(async_chunk->extents.next,
1089 struct async_extent, list);
1090 list_del(&async_extent->list);
1091 extent_start = async_extent->start;
1092 ram_size = async_extent->ram_size;
1093
1094 ret = submit_one_async_extent(inode, async_chunk, async_extent,
1095 &alloc_hint);
1096 btrfs_debug(fs_info,
1097 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1098 inode->root->root_key.objectid,
1099 btrfs_ino(inode), extent_start, ram_size, ret);
1100 }
1101 }
1102
get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1103 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1104 u64 num_bytes)
1105 {
1106 struct extent_map_tree *em_tree = &inode->extent_tree;
1107 struct extent_map *em;
1108 u64 alloc_hint = 0;
1109
1110 read_lock(&em_tree->lock);
1111 em = search_extent_mapping(em_tree, start, num_bytes);
1112 if (em) {
1113 /*
1114 * if block start isn't an actual block number then find the
1115 * first block in this inode and use that as a hint. If that
1116 * block is also bogus then just don't worry about it.
1117 */
1118 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1119 free_extent_map(em);
1120 em = search_extent_mapping(em_tree, 0, 0);
1121 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1122 alloc_hint = em->block_start;
1123 if (em)
1124 free_extent_map(em);
1125 } else {
1126 alloc_hint = em->block_start;
1127 free_extent_map(em);
1128 }
1129 }
1130 read_unlock(&em_tree->lock);
1131
1132 return alloc_hint;
1133 }
1134
1135 /*
1136 * when extent_io.c finds a delayed allocation range in the file,
1137 * the call backs end up in this code. The basic idea is to
1138 * allocate extents on disk for the range, and create ordered data structs
1139 * in ram to track those extents.
1140 *
1141 * locked_page is the page that writepage had locked already. We use
1142 * it to make sure we don't do extra locks or unlocks.
1143 *
1144 * *page_started is set to one if we unlock locked_page and do everything
1145 * required to start IO on it. It may be clean and already done with
1146 * IO when we return.
1147 *
1148 * When unlock == 1, we unlock the pages in successfully allocated regions.
1149 * When unlock == 0, we leave them locked for writing them out.
1150 *
1151 * However, we unlock all the pages except @locked_page in case of failure.
1152 *
1153 * In summary, page locking state will be as follow:
1154 *
1155 * - page_started == 1 (return value)
1156 * - All the pages are unlocked. IO is started.
1157 * - Note that this can happen only on success
1158 * - unlock == 1
1159 * - All the pages except @locked_page are unlocked in any case
1160 * - unlock == 0
1161 * - On success, all the pages are locked for writing out them
1162 * - On failure, all the pages except @locked_page are unlocked
1163 *
1164 * When a failure happens in the second or later iteration of the
1165 * while-loop, the ordered extents created in previous iterations are kept
1166 * intact. So, the caller must clean them up by calling
1167 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1168 * example.
1169 */
cow_file_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock,u64 * done_offset)1170 static noinline int cow_file_range(struct btrfs_inode *inode,
1171 struct page *locked_page,
1172 u64 start, u64 end, int *page_started,
1173 unsigned long *nr_written, int unlock,
1174 u64 *done_offset)
1175 {
1176 struct btrfs_root *root = inode->root;
1177 struct btrfs_fs_info *fs_info = root->fs_info;
1178 u64 alloc_hint = 0;
1179 u64 orig_start = start;
1180 u64 num_bytes;
1181 unsigned long ram_size;
1182 u64 cur_alloc_size = 0;
1183 u64 min_alloc_size;
1184 u64 blocksize = fs_info->sectorsize;
1185 struct btrfs_key ins;
1186 struct extent_map *em;
1187 unsigned clear_bits;
1188 unsigned long page_ops;
1189 bool extent_reserved = false;
1190 int ret = 0;
1191
1192 if (btrfs_is_free_space_inode(inode)) {
1193 ret = -EINVAL;
1194 goto out_unlock;
1195 }
1196
1197 num_bytes = ALIGN(end - start + 1, blocksize);
1198 num_bytes = max(blocksize, num_bytes);
1199 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1200
1201 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1202
1203 /*
1204 * Due to the page size limit, for subpage we can only trigger the
1205 * writeback for the dirty sectors of page, that means data writeback
1206 * is doing more writeback than what we want.
1207 *
1208 * This is especially unexpected for some call sites like fallocate,
1209 * where we only increase i_size after everything is done.
1210 * This means we can trigger inline extent even if we didn't want to.
1211 * So here we skip inline extent creation completely.
1212 */
1213 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1214 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1215 end + 1);
1216
1217 /* lets try to make an inline extent */
1218 ret = cow_file_range_inline(inode, actual_end, 0,
1219 BTRFS_COMPRESS_NONE, NULL, false);
1220 if (ret == 0) {
1221 /*
1222 * We use DO_ACCOUNTING here because we need the
1223 * delalloc_release_metadata to be run _after_ we drop
1224 * our outstanding extent for clearing delalloc for this
1225 * range.
1226 */
1227 extent_clear_unlock_delalloc(inode, start, end,
1228 locked_page,
1229 EXTENT_LOCKED | EXTENT_DELALLOC |
1230 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1231 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1232 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1233 *nr_written = *nr_written +
1234 (end - start + PAGE_SIZE) / PAGE_SIZE;
1235 *page_started = 1;
1236 /*
1237 * locked_page is locked by the caller of
1238 * writepage_delalloc(), not locked by
1239 * __process_pages_contig().
1240 *
1241 * We can't let __process_pages_contig() to unlock it,
1242 * as it doesn't have any subpage::writers recorded.
1243 *
1244 * Here we manually unlock the page, since the caller
1245 * can't use page_started to determine if it's an
1246 * inline extent or a compressed extent.
1247 */
1248 unlock_page(locked_page);
1249 goto out;
1250 } else if (ret < 0) {
1251 goto out_unlock;
1252 }
1253 }
1254
1255 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1256 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1257
1258 /*
1259 * Relocation relies on the relocated extents to have exactly the same
1260 * size as the original extents. Normally writeback for relocation data
1261 * extents follows a NOCOW path because relocation preallocates the
1262 * extents. However, due to an operation such as scrub turning a block
1263 * group to RO mode, it may fallback to COW mode, so we must make sure
1264 * an extent allocated during COW has exactly the requested size and can
1265 * not be split into smaller extents, otherwise relocation breaks and
1266 * fails during the stage where it updates the bytenr of file extent
1267 * items.
1268 */
1269 if (btrfs_is_data_reloc_root(root))
1270 min_alloc_size = num_bytes;
1271 else
1272 min_alloc_size = fs_info->sectorsize;
1273
1274 while (num_bytes > 0) {
1275 cur_alloc_size = num_bytes;
1276 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1277 min_alloc_size, 0, alloc_hint,
1278 &ins, 1, 1);
1279 if (ret < 0)
1280 goto out_unlock;
1281 cur_alloc_size = ins.offset;
1282 extent_reserved = true;
1283
1284 ram_size = ins.offset;
1285 em = create_io_em(inode, start, ins.offset, /* len */
1286 start, /* orig_start */
1287 ins.objectid, /* block_start */
1288 ins.offset, /* block_len */
1289 ins.offset, /* orig_block_len */
1290 ram_size, /* ram_bytes */
1291 BTRFS_COMPRESS_NONE, /* compress_type */
1292 BTRFS_ORDERED_REGULAR /* type */);
1293 if (IS_ERR(em)) {
1294 ret = PTR_ERR(em);
1295 goto out_reserve;
1296 }
1297 free_extent_map(em);
1298
1299 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1300 ins.objectid, cur_alloc_size, 0,
1301 1 << BTRFS_ORDERED_REGULAR,
1302 BTRFS_COMPRESS_NONE);
1303 if (ret)
1304 goto out_drop_extent_cache;
1305
1306 if (btrfs_is_data_reloc_root(root)) {
1307 ret = btrfs_reloc_clone_csums(inode, start,
1308 cur_alloc_size);
1309 /*
1310 * Only drop cache here, and process as normal.
1311 *
1312 * We must not allow extent_clear_unlock_delalloc()
1313 * at out_unlock label to free meta of this ordered
1314 * extent, as its meta should be freed by
1315 * btrfs_finish_ordered_io().
1316 *
1317 * So we must continue until @start is increased to
1318 * skip current ordered extent.
1319 */
1320 if (ret)
1321 btrfs_drop_extent_cache(inode, start,
1322 start + ram_size - 1, 0);
1323 }
1324
1325 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1326
1327 /*
1328 * We're not doing compressed IO, don't unlock the first page
1329 * (which the caller expects to stay locked), don't clear any
1330 * dirty bits and don't set any writeback bits
1331 *
1332 * Do set the Ordered (Private2) bit so we know this page was
1333 * properly setup for writepage.
1334 */
1335 page_ops = unlock ? PAGE_UNLOCK : 0;
1336 page_ops |= PAGE_SET_ORDERED;
1337
1338 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1339 locked_page,
1340 EXTENT_LOCKED | EXTENT_DELALLOC,
1341 page_ops);
1342 if (num_bytes < cur_alloc_size)
1343 num_bytes = 0;
1344 else
1345 num_bytes -= cur_alloc_size;
1346 alloc_hint = ins.objectid + ins.offset;
1347 start += cur_alloc_size;
1348 extent_reserved = false;
1349
1350 /*
1351 * btrfs_reloc_clone_csums() error, since start is increased
1352 * extent_clear_unlock_delalloc() at out_unlock label won't
1353 * free metadata of current ordered extent, we're OK to exit.
1354 */
1355 if (ret)
1356 goto out_unlock;
1357 }
1358 out:
1359 return ret;
1360
1361 out_drop_extent_cache:
1362 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1363 out_reserve:
1364 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1365 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1366 out_unlock:
1367 /*
1368 * If done_offset is non-NULL and ret == -EAGAIN, we expect the
1369 * caller to write out the successfully allocated region and retry.
1370 */
1371 if (done_offset && ret == -EAGAIN) {
1372 if (orig_start < start)
1373 *done_offset = start - 1;
1374 else
1375 *done_offset = start;
1376 return ret;
1377 } else if (ret == -EAGAIN) {
1378 /* Convert to -ENOSPC since the caller cannot retry. */
1379 ret = -ENOSPC;
1380 }
1381
1382 /*
1383 * Now, we have three regions to clean up:
1384 *
1385 * |-------(1)----|---(2)---|-------------(3)----------|
1386 * `- orig_start `- start `- start + cur_alloc_size `- end
1387 *
1388 * We process each region below.
1389 */
1390
1391 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1392 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1393 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1394
1395 /*
1396 * For the range (1). We have already instantiated the ordered extents
1397 * for this region. They are cleaned up by
1398 * btrfs_cleanup_ordered_extents() in e.g,
1399 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1400 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1401 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1402 * function.
1403 *
1404 * However, in case of unlock == 0, we still need to unlock the pages
1405 * (except @locked_page) to ensure all the pages are unlocked.
1406 */
1407 if (!unlock && orig_start < start) {
1408 if (!locked_page)
1409 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1410 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1411 locked_page, 0, page_ops);
1412 }
1413
1414 /*
1415 * For the range (2). If we reserved an extent for our delalloc range
1416 * (or a subrange) and failed to create the respective ordered extent,
1417 * then it means that when we reserved the extent we decremented the
1418 * extent's size from the data space_info's bytes_may_use counter and
1419 * incremented the space_info's bytes_reserved counter by the same
1420 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1421 * to decrement again the data space_info's bytes_may_use counter,
1422 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1423 */
1424 if (extent_reserved) {
1425 extent_clear_unlock_delalloc(inode, start,
1426 start + cur_alloc_size - 1,
1427 locked_page,
1428 clear_bits,
1429 page_ops);
1430 start += cur_alloc_size;
1431 if (start >= end)
1432 goto out;
1433 }
1434
1435 /*
1436 * For the range (3). We never touched the region. In addition to the
1437 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1438 * space_info's bytes_may_use counter, reserved in
1439 * btrfs_check_data_free_space().
1440 */
1441 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1442 clear_bits | EXTENT_CLEAR_DATA_RESV,
1443 page_ops);
1444 goto out;
1445 }
1446
1447 /*
1448 * work queue call back to started compression on a file and pages
1449 */
async_cow_start(struct btrfs_work * work)1450 static noinline void async_cow_start(struct btrfs_work *work)
1451 {
1452 struct async_chunk *async_chunk;
1453 int compressed_extents;
1454
1455 async_chunk = container_of(work, struct async_chunk, work);
1456
1457 compressed_extents = compress_file_range(async_chunk);
1458 if (compressed_extents == 0) {
1459 btrfs_add_delayed_iput(async_chunk->inode);
1460 async_chunk->inode = NULL;
1461 }
1462 }
1463
1464 /*
1465 * work queue call back to submit previously compressed pages
1466 */
async_cow_submit(struct btrfs_work * work)1467 static noinline void async_cow_submit(struct btrfs_work *work)
1468 {
1469 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1470 work);
1471 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1472 unsigned long nr_pages;
1473
1474 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1475 PAGE_SHIFT;
1476
1477 /*
1478 * ->inode could be NULL if async_chunk_start has failed to compress,
1479 * in which case we don't have anything to submit, yet we need to
1480 * always adjust ->async_delalloc_pages as its paired with the init
1481 * happening in cow_file_range_async
1482 */
1483 if (async_chunk->inode)
1484 submit_compressed_extents(async_chunk);
1485
1486 /* atomic_sub_return implies a barrier */
1487 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1488 5 * SZ_1M)
1489 cond_wake_up_nomb(&fs_info->async_submit_wait);
1490 }
1491
async_cow_free(struct btrfs_work * work)1492 static noinline void async_cow_free(struct btrfs_work *work)
1493 {
1494 struct async_chunk *async_chunk;
1495 struct async_cow *async_cow;
1496
1497 async_chunk = container_of(work, struct async_chunk, work);
1498 if (async_chunk->inode)
1499 btrfs_add_delayed_iput(async_chunk->inode);
1500 if (async_chunk->blkcg_css)
1501 css_put(async_chunk->blkcg_css);
1502
1503 async_cow = async_chunk->async_cow;
1504 if (atomic_dec_and_test(&async_cow->num_chunks))
1505 kvfree(async_cow);
1506 }
1507
cow_file_range_async(struct btrfs_inode * inode,struct writeback_control * wbc,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1508 static int cow_file_range_async(struct btrfs_inode *inode,
1509 struct writeback_control *wbc,
1510 struct page *locked_page,
1511 u64 start, u64 end, int *page_started,
1512 unsigned long *nr_written)
1513 {
1514 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1515 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1516 struct async_cow *ctx;
1517 struct async_chunk *async_chunk;
1518 unsigned long nr_pages;
1519 u64 cur_end;
1520 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1521 int i;
1522 bool should_compress;
1523 unsigned nofs_flag;
1524 const unsigned int write_flags = wbc_to_write_flags(wbc);
1525
1526 unlock_extent(&inode->io_tree, start, end);
1527
1528 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1529 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1530 num_chunks = 1;
1531 should_compress = false;
1532 } else {
1533 should_compress = true;
1534 }
1535
1536 nofs_flag = memalloc_nofs_save();
1537 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1538 memalloc_nofs_restore(nofs_flag);
1539
1540 if (!ctx) {
1541 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1542 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1543 EXTENT_DO_ACCOUNTING;
1544 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1545 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1546
1547 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1548 clear_bits, page_ops);
1549 return -ENOMEM;
1550 }
1551
1552 async_chunk = ctx->chunks;
1553 atomic_set(&ctx->num_chunks, num_chunks);
1554
1555 for (i = 0; i < num_chunks; i++) {
1556 if (should_compress)
1557 cur_end = min(end, start + SZ_512K - 1);
1558 else
1559 cur_end = end;
1560
1561 /*
1562 * igrab is called higher up in the call chain, take only the
1563 * lightweight reference for the callback lifetime
1564 */
1565 ihold(&inode->vfs_inode);
1566 async_chunk[i].async_cow = ctx;
1567 async_chunk[i].inode = &inode->vfs_inode;
1568 async_chunk[i].start = start;
1569 async_chunk[i].end = cur_end;
1570 async_chunk[i].write_flags = write_flags;
1571 INIT_LIST_HEAD(&async_chunk[i].extents);
1572
1573 /*
1574 * The locked_page comes all the way from writepage and its
1575 * the original page we were actually given. As we spread
1576 * this large delalloc region across multiple async_chunk
1577 * structs, only the first struct needs a pointer to locked_page
1578 *
1579 * This way we don't need racey decisions about who is supposed
1580 * to unlock it.
1581 */
1582 if (locked_page) {
1583 /*
1584 * Depending on the compressibility, the pages might or
1585 * might not go through async. We want all of them to
1586 * be accounted against wbc once. Let's do it here
1587 * before the paths diverge. wbc accounting is used
1588 * only for foreign writeback detection and doesn't
1589 * need full accuracy. Just account the whole thing
1590 * against the first page.
1591 */
1592 wbc_account_cgroup_owner(wbc, locked_page,
1593 cur_end - start);
1594 async_chunk[i].locked_page = locked_page;
1595 locked_page = NULL;
1596 } else {
1597 async_chunk[i].locked_page = NULL;
1598 }
1599
1600 if (blkcg_css != blkcg_root_css) {
1601 css_get(blkcg_css);
1602 async_chunk[i].blkcg_css = blkcg_css;
1603 } else {
1604 async_chunk[i].blkcg_css = NULL;
1605 }
1606
1607 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1608 async_cow_submit, async_cow_free);
1609
1610 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1611 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1612
1613 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1614
1615 *nr_written += nr_pages;
1616 start = cur_end + 1;
1617 }
1618 *page_started = 1;
1619 return 0;
1620 }
1621
run_delalloc_zoned(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1622 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1623 struct page *locked_page, u64 start,
1624 u64 end, int *page_started,
1625 unsigned long *nr_written)
1626 {
1627 u64 done_offset = end;
1628 int ret;
1629 bool locked_page_done = false;
1630
1631 while (start <= end) {
1632 ret = cow_file_range(inode, locked_page, start, end, page_started,
1633 nr_written, 0, &done_offset);
1634 if (ret && ret != -EAGAIN)
1635 return ret;
1636
1637 if (*page_started) {
1638 ASSERT(ret == 0);
1639 return 0;
1640 }
1641
1642 if (ret == 0)
1643 done_offset = end;
1644
1645 if (done_offset == start) {
1646 wait_on_bit_io(&inode->root->fs_info->flags,
1647 BTRFS_FS_NEED_ZONE_FINISH,
1648 TASK_UNINTERRUPTIBLE);
1649 continue;
1650 }
1651
1652 if (!locked_page_done) {
1653 __set_page_dirty_nobuffers(locked_page);
1654 account_page_redirty(locked_page);
1655 }
1656 locked_page_done = true;
1657 extent_write_locked_range(&inode->vfs_inode, start, done_offset);
1658
1659 start = done_offset + 1;
1660 }
1661
1662 *page_started = 1;
1663
1664 return 0;
1665 }
1666
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1667 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1668 u64 bytenr, u64 num_bytes)
1669 {
1670 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1671 struct btrfs_ordered_sum *sums;
1672 int ret;
1673 LIST_HEAD(list);
1674
1675 ret = btrfs_lookup_csums_range(csum_root, bytenr,
1676 bytenr + num_bytes - 1, &list, 0);
1677 if (ret == 0 && list_empty(&list))
1678 return 0;
1679
1680 while (!list_empty(&list)) {
1681 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1682 list_del(&sums->list);
1683 kfree(sums);
1684 }
1685 if (ret < 0)
1686 return ret;
1687 return 1;
1688 }
1689
fallback_to_cow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1690 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1691 const u64 start, const u64 end,
1692 int *page_started, unsigned long *nr_written)
1693 {
1694 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1695 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1696 const u64 range_bytes = end + 1 - start;
1697 struct extent_io_tree *io_tree = &inode->io_tree;
1698 u64 range_start = start;
1699 u64 count;
1700
1701 /*
1702 * If EXTENT_NORESERVE is set it means that when the buffered write was
1703 * made we had not enough available data space and therefore we did not
1704 * reserve data space for it, since we though we could do NOCOW for the
1705 * respective file range (either there is prealloc extent or the inode
1706 * has the NOCOW bit set).
1707 *
1708 * However when we need to fallback to COW mode (because for example the
1709 * block group for the corresponding extent was turned to RO mode by a
1710 * scrub or relocation) we need to do the following:
1711 *
1712 * 1) We increment the bytes_may_use counter of the data space info.
1713 * If COW succeeds, it allocates a new data extent and after doing
1714 * that it decrements the space info's bytes_may_use counter and
1715 * increments its bytes_reserved counter by the same amount (we do
1716 * this at btrfs_add_reserved_bytes()). So we need to increment the
1717 * bytes_may_use counter to compensate (when space is reserved at
1718 * buffered write time, the bytes_may_use counter is incremented);
1719 *
1720 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1721 * that if the COW path fails for any reason, it decrements (through
1722 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1723 * data space info, which we incremented in the step above.
1724 *
1725 * If we need to fallback to cow and the inode corresponds to a free
1726 * space cache inode or an inode of the data relocation tree, we must
1727 * also increment bytes_may_use of the data space_info for the same
1728 * reason. Space caches and relocated data extents always get a prealloc
1729 * extent for them, however scrub or balance may have set the block
1730 * group that contains that extent to RO mode and therefore force COW
1731 * when starting writeback.
1732 */
1733 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1734 EXTENT_NORESERVE, 0);
1735 if (count > 0 || is_space_ino || is_reloc_ino) {
1736 u64 bytes = count;
1737 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1738 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1739
1740 if (is_space_ino || is_reloc_ino)
1741 bytes = range_bytes;
1742
1743 spin_lock(&sinfo->lock);
1744 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1745 spin_unlock(&sinfo->lock);
1746
1747 if (count > 0)
1748 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1749 0, 0, NULL);
1750 }
1751
1752 return cow_file_range(inode, locked_page, start, end, page_started,
1753 nr_written, 1, NULL);
1754 }
1755
1756 struct can_nocow_file_extent_args {
1757 /* Input fields. */
1758
1759 /* Start file offset of the range we want to NOCOW. */
1760 u64 start;
1761 /* End file offset (inclusive) of the range we want to NOCOW. */
1762 u64 end;
1763 bool writeback_path;
1764 bool strict;
1765 /*
1766 * Free the path passed to can_nocow_file_extent() once it's not needed
1767 * anymore.
1768 */
1769 bool free_path;
1770
1771 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1772
1773 u64 disk_bytenr;
1774 u64 disk_num_bytes;
1775 u64 extent_offset;
1776 /* Number of bytes that can be written to in NOCOW mode. */
1777 u64 num_bytes;
1778 };
1779
1780 /*
1781 * Check if we can NOCOW the file extent that the path points to.
1782 * This function may return with the path released, so the caller should check
1783 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1784 *
1785 * Returns: < 0 on error
1786 * 0 if we can not NOCOW
1787 * 1 if we can NOCOW
1788 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1789 static int can_nocow_file_extent(struct btrfs_path *path,
1790 struct btrfs_key *key,
1791 struct btrfs_inode *inode,
1792 struct can_nocow_file_extent_args *args)
1793 {
1794 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1795 struct extent_buffer *leaf = path->nodes[0];
1796 struct btrfs_root *root = inode->root;
1797 struct btrfs_file_extent_item *fi;
1798 u64 extent_end;
1799 u8 extent_type;
1800 int can_nocow = 0;
1801 int ret = 0;
1802
1803 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1804 extent_type = btrfs_file_extent_type(leaf, fi);
1805
1806 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1807 goto out;
1808
1809 /* Can't access these fields unless we know it's not an inline extent. */
1810 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1811 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1812 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1813
1814 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1815 extent_type == BTRFS_FILE_EXTENT_REG)
1816 goto out;
1817
1818 /*
1819 * If the extent was created before the generation where the last snapshot
1820 * for its subvolume was created, then this implies the extent is shared,
1821 * hence we must COW.
1822 */
1823 if (!args->strict &&
1824 btrfs_file_extent_generation(leaf, fi) <=
1825 btrfs_root_last_snapshot(&root->root_item))
1826 goto out;
1827
1828 /* An explicit hole, must COW. */
1829 if (args->disk_bytenr == 0)
1830 goto out;
1831
1832 /* Compressed/encrypted/encoded extents must be COWed. */
1833 if (btrfs_file_extent_compression(leaf, fi) ||
1834 btrfs_file_extent_encryption(leaf, fi) ||
1835 btrfs_file_extent_other_encoding(leaf, fi))
1836 goto out;
1837
1838 extent_end = btrfs_file_extent_end(path);
1839
1840 /*
1841 * The following checks can be expensive, as they need to take other
1842 * locks and do btree or rbtree searches, so release the path to avoid
1843 * blocking other tasks for too long.
1844 */
1845 btrfs_release_path(path);
1846
1847 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1848 key->offset - args->extent_offset,
1849 args->disk_bytenr, false, path);
1850 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1851 if (ret != 0)
1852 goto out;
1853
1854 if (args->free_path) {
1855 /*
1856 * We don't need the path anymore, plus through the
1857 * csum_exist_in_range() call below we will end up allocating
1858 * another path. So free the path to avoid unnecessary extra
1859 * memory usage.
1860 */
1861 btrfs_free_path(path);
1862 path = NULL;
1863 }
1864
1865 /* If there are pending snapshots for this root, we must COW. */
1866 if (args->writeback_path && !is_freespace_inode &&
1867 atomic_read(&root->snapshot_force_cow))
1868 goto out;
1869
1870 args->disk_bytenr += args->extent_offset;
1871 args->disk_bytenr += args->start - key->offset;
1872 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1873
1874 /*
1875 * Force COW if csums exist in the range. This ensures that csums for a
1876 * given extent are either valid or do not exist.
1877 */
1878 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes);
1879 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1880 if (ret != 0)
1881 goto out;
1882
1883 can_nocow = 1;
1884 out:
1885 if (args->free_path && path)
1886 btrfs_free_path(path);
1887
1888 return ret < 0 ? ret : can_nocow;
1889 }
1890
1891 /*
1892 * when nowcow writeback call back. This checks for snapshots or COW copies
1893 * of the extents that exist in the file, and COWs the file as required.
1894 *
1895 * If no cow copies or snapshots exist, we write directly to the existing
1896 * blocks on disk
1897 */
run_delalloc_nocow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1898 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1899 struct page *locked_page,
1900 const u64 start, const u64 end,
1901 int *page_started,
1902 unsigned long *nr_written)
1903 {
1904 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1905 struct btrfs_root *root = inode->root;
1906 struct btrfs_path *path;
1907 u64 cow_start = (u64)-1;
1908 u64 cur_offset = start;
1909 int ret;
1910 bool check_prev = true;
1911 u64 ino = btrfs_ino(inode);
1912 struct btrfs_block_group *bg;
1913 bool nocow = false;
1914 struct can_nocow_file_extent_args nocow_args = { 0 };
1915
1916 path = btrfs_alloc_path();
1917 if (!path) {
1918 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1919 EXTENT_LOCKED | EXTENT_DELALLOC |
1920 EXTENT_DO_ACCOUNTING |
1921 EXTENT_DEFRAG, PAGE_UNLOCK |
1922 PAGE_START_WRITEBACK |
1923 PAGE_END_WRITEBACK);
1924 return -ENOMEM;
1925 }
1926
1927 nocow_args.end = end;
1928 nocow_args.writeback_path = true;
1929
1930 while (1) {
1931 struct btrfs_key found_key;
1932 struct btrfs_file_extent_item *fi;
1933 struct extent_buffer *leaf;
1934 u64 extent_end;
1935 u64 ram_bytes;
1936 u64 nocow_end;
1937 int extent_type;
1938
1939 nocow = false;
1940
1941 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1942 cur_offset, 0);
1943 if (ret < 0)
1944 goto error;
1945
1946 /*
1947 * If there is no extent for our range when doing the initial
1948 * search, then go back to the previous slot as it will be the
1949 * one containing the search offset
1950 */
1951 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1952 leaf = path->nodes[0];
1953 btrfs_item_key_to_cpu(leaf, &found_key,
1954 path->slots[0] - 1);
1955 if (found_key.objectid == ino &&
1956 found_key.type == BTRFS_EXTENT_DATA_KEY)
1957 path->slots[0]--;
1958 }
1959 check_prev = false;
1960 next_slot:
1961 /* Go to next leaf if we have exhausted the current one */
1962 leaf = path->nodes[0];
1963 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1964 ret = btrfs_next_leaf(root, path);
1965 if (ret < 0) {
1966 if (cow_start != (u64)-1)
1967 cur_offset = cow_start;
1968 goto error;
1969 }
1970 if (ret > 0)
1971 break;
1972 leaf = path->nodes[0];
1973 }
1974
1975 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1976
1977 /* Didn't find anything for our INO */
1978 if (found_key.objectid > ino)
1979 break;
1980 /*
1981 * Keep searching until we find an EXTENT_ITEM or there are no
1982 * more extents for this inode
1983 */
1984 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1985 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1986 path->slots[0]++;
1987 goto next_slot;
1988 }
1989
1990 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1991 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1992 found_key.offset > end)
1993 break;
1994
1995 /*
1996 * If the found extent starts after requested offset, then
1997 * adjust extent_end to be right before this extent begins
1998 */
1999 if (found_key.offset > cur_offset) {
2000 extent_end = found_key.offset;
2001 extent_type = 0;
2002 goto out_check;
2003 }
2004
2005 /*
2006 * Found extent which begins before our range and potentially
2007 * intersect it
2008 */
2009 fi = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_file_extent_item);
2011 extent_type = btrfs_file_extent_type(leaf, fi);
2012 /* If this is triggered then we have a memory corruption. */
2013 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2014 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2015 ret = -EUCLEAN;
2016 goto error;
2017 }
2018 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2019 extent_end = btrfs_file_extent_end(path);
2020
2021 /*
2022 * If the extent we got ends before our current offset, skip to
2023 * the next extent.
2024 */
2025 if (extent_end <= cur_offset) {
2026 path->slots[0]++;
2027 goto next_slot;
2028 }
2029
2030 nocow_args.start = cur_offset;
2031 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2032 if (ret < 0) {
2033 if (cow_start != (u64)-1)
2034 cur_offset = cow_start;
2035 goto error;
2036 } else if (ret == 0) {
2037 goto out_check;
2038 }
2039
2040 ret = 0;
2041 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2042 if (bg)
2043 nocow = true;
2044 out_check:
2045 /*
2046 * If nocow is false then record the beginning of the range
2047 * that needs to be COWed
2048 */
2049 if (!nocow) {
2050 if (cow_start == (u64)-1)
2051 cow_start = cur_offset;
2052 cur_offset = extent_end;
2053 if (cur_offset > end)
2054 break;
2055 if (!path->nodes[0])
2056 continue;
2057 path->slots[0]++;
2058 goto next_slot;
2059 }
2060
2061 /*
2062 * COW range from cow_start to found_key.offset - 1. As the key
2063 * will contain the beginning of the first extent that can be
2064 * NOCOW, following one which needs to be COW'ed
2065 */
2066 if (cow_start != (u64)-1) {
2067 ret = fallback_to_cow(inode, locked_page,
2068 cow_start, found_key.offset - 1,
2069 page_started, nr_written);
2070 if (ret)
2071 goto error;
2072 cow_start = (u64)-1;
2073 }
2074
2075 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2076
2077 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2078 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2079 struct extent_map *em;
2080
2081 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2082 orig_start,
2083 nocow_args.disk_bytenr, /* block_start */
2084 nocow_args.num_bytes, /* block_len */
2085 nocow_args.disk_num_bytes, /* orig_block_len */
2086 ram_bytes, BTRFS_COMPRESS_NONE,
2087 BTRFS_ORDERED_PREALLOC);
2088 if (IS_ERR(em)) {
2089 ret = PTR_ERR(em);
2090 goto error;
2091 }
2092 free_extent_map(em);
2093 ret = btrfs_add_ordered_extent(inode,
2094 cur_offset, nocow_args.num_bytes,
2095 nocow_args.num_bytes,
2096 nocow_args.disk_bytenr,
2097 nocow_args.num_bytes, 0,
2098 1 << BTRFS_ORDERED_PREALLOC,
2099 BTRFS_COMPRESS_NONE);
2100 if (ret) {
2101 btrfs_drop_extent_cache(inode, cur_offset,
2102 nocow_end, 0);
2103 goto error;
2104 }
2105 } else {
2106 ret = btrfs_add_ordered_extent(inode, cur_offset,
2107 nocow_args.num_bytes,
2108 nocow_args.num_bytes,
2109 nocow_args.disk_bytenr,
2110 nocow_args.num_bytes,
2111 0,
2112 1 << BTRFS_ORDERED_NOCOW,
2113 BTRFS_COMPRESS_NONE);
2114 if (ret)
2115 goto error;
2116 }
2117
2118 if (nocow) {
2119 btrfs_dec_nocow_writers(bg);
2120 nocow = false;
2121 }
2122
2123 if (btrfs_is_data_reloc_root(root))
2124 /*
2125 * Error handled later, as we must prevent
2126 * extent_clear_unlock_delalloc() in error handler
2127 * from freeing metadata of created ordered extent.
2128 */
2129 ret = btrfs_reloc_clone_csums(inode, cur_offset,
2130 nocow_args.num_bytes);
2131
2132 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2133 locked_page, EXTENT_LOCKED |
2134 EXTENT_DELALLOC |
2135 EXTENT_CLEAR_DATA_RESV,
2136 PAGE_UNLOCK | PAGE_SET_ORDERED);
2137
2138 cur_offset = extent_end;
2139
2140 /*
2141 * btrfs_reloc_clone_csums() error, now we're OK to call error
2142 * handler, as metadata for created ordered extent will only
2143 * be freed by btrfs_finish_ordered_io().
2144 */
2145 if (ret)
2146 goto error;
2147 if (cur_offset > end)
2148 break;
2149 }
2150 btrfs_release_path(path);
2151
2152 if (cur_offset <= end && cow_start == (u64)-1)
2153 cow_start = cur_offset;
2154
2155 if (cow_start != (u64)-1) {
2156 cur_offset = end;
2157 ret = fallback_to_cow(inode, locked_page, cow_start, end,
2158 page_started, nr_written);
2159 if (ret)
2160 goto error;
2161 }
2162
2163 error:
2164 if (nocow)
2165 btrfs_dec_nocow_writers(bg);
2166
2167 if (ret && cur_offset < end)
2168 extent_clear_unlock_delalloc(inode, cur_offset, end,
2169 locked_page, EXTENT_LOCKED |
2170 EXTENT_DELALLOC | EXTENT_DEFRAG |
2171 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2172 PAGE_START_WRITEBACK |
2173 PAGE_END_WRITEBACK);
2174 btrfs_free_path(path);
2175 return ret;
2176 }
2177
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2178 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2179 {
2180 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2181 if (inode->defrag_bytes &&
2182 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2183 0, NULL))
2184 return false;
2185 return true;
2186 }
2187 return false;
2188 }
2189
2190 /*
2191 * Function to process delayed allocation (create CoW) for ranges which are
2192 * being touched for the first time.
2193 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)2194 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2195 u64 start, u64 end, int *page_started, unsigned long *nr_written,
2196 struct writeback_control *wbc)
2197 {
2198 int ret;
2199 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2200
2201 /*
2202 * The range must cover part of the @locked_page, or the returned
2203 * @page_started can confuse the caller.
2204 */
2205 ASSERT(!(end <= page_offset(locked_page) ||
2206 start >= page_offset(locked_page) + PAGE_SIZE));
2207
2208 if (should_nocow(inode, start, end)) {
2209 /*
2210 * Normally on a zoned device we're only doing COW writes, but
2211 * in case of relocation on a zoned filesystem we have taken
2212 * precaution, that we're only writing sequentially. It's safe
2213 * to use run_delalloc_nocow() here, like for regular
2214 * preallocated inodes.
2215 */
2216 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2217 ret = run_delalloc_nocow(inode, locked_page, start, end,
2218 page_started, nr_written);
2219 } else if (!btrfs_inode_can_compress(inode) ||
2220 !inode_need_compress(inode, start, end)) {
2221 if (zoned)
2222 ret = run_delalloc_zoned(inode, locked_page, start, end,
2223 page_started, nr_written);
2224 else
2225 ret = cow_file_range(inode, locked_page, start, end,
2226 page_started, nr_written, 1, NULL);
2227 } else {
2228 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2229 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2230 page_started, nr_written);
2231 }
2232 ASSERT(ret <= 0);
2233 if (ret)
2234 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2235 end - start + 1);
2236 return ret;
2237 }
2238
btrfs_split_delalloc_extent(struct inode * inode,struct extent_state * orig,u64 split)2239 void btrfs_split_delalloc_extent(struct inode *inode,
2240 struct extent_state *orig, u64 split)
2241 {
2242 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2243 u64 size;
2244
2245 /* not delalloc, ignore it */
2246 if (!(orig->state & EXTENT_DELALLOC))
2247 return;
2248
2249 size = orig->end - orig->start + 1;
2250 if (size > fs_info->max_extent_size) {
2251 u32 num_extents;
2252 u64 new_size;
2253
2254 /*
2255 * See the explanation in btrfs_merge_delalloc_extent, the same
2256 * applies here, just in reverse.
2257 */
2258 new_size = orig->end - split + 1;
2259 num_extents = count_max_extents(fs_info, new_size);
2260 new_size = split - orig->start;
2261 num_extents += count_max_extents(fs_info, new_size);
2262 if (count_max_extents(fs_info, size) >= num_extents)
2263 return;
2264 }
2265
2266 spin_lock(&BTRFS_I(inode)->lock);
2267 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2268 spin_unlock(&BTRFS_I(inode)->lock);
2269 }
2270
2271 /*
2272 * Handle merged delayed allocation extents so we can keep track of new extents
2273 * that are just merged onto old extents, such as when we are doing sequential
2274 * writes, so we can properly account for the metadata space we'll need.
2275 */
btrfs_merge_delalloc_extent(struct inode * inode,struct extent_state * new,struct extent_state * other)2276 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2277 struct extent_state *other)
2278 {
2279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2280 u64 new_size, old_size;
2281 u32 num_extents;
2282
2283 /* not delalloc, ignore it */
2284 if (!(other->state & EXTENT_DELALLOC))
2285 return;
2286
2287 if (new->start > other->start)
2288 new_size = new->end - other->start + 1;
2289 else
2290 new_size = other->end - new->start + 1;
2291
2292 /* we're not bigger than the max, unreserve the space and go */
2293 if (new_size <= fs_info->max_extent_size) {
2294 spin_lock(&BTRFS_I(inode)->lock);
2295 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2296 spin_unlock(&BTRFS_I(inode)->lock);
2297 return;
2298 }
2299
2300 /*
2301 * We have to add up either side to figure out how many extents were
2302 * accounted for before we merged into one big extent. If the number of
2303 * extents we accounted for is <= the amount we need for the new range
2304 * then we can return, otherwise drop. Think of it like this
2305 *
2306 * [ 4k][MAX_SIZE]
2307 *
2308 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2309 * need 2 outstanding extents, on one side we have 1 and the other side
2310 * we have 1 so they are == and we can return. But in this case
2311 *
2312 * [MAX_SIZE+4k][MAX_SIZE+4k]
2313 *
2314 * Each range on their own accounts for 2 extents, but merged together
2315 * they are only 3 extents worth of accounting, so we need to drop in
2316 * this case.
2317 */
2318 old_size = other->end - other->start + 1;
2319 num_extents = count_max_extents(fs_info, old_size);
2320 old_size = new->end - new->start + 1;
2321 num_extents += count_max_extents(fs_info, old_size);
2322 if (count_max_extents(fs_info, new_size) >= num_extents)
2323 return;
2324
2325 spin_lock(&BTRFS_I(inode)->lock);
2326 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2327 spin_unlock(&BTRFS_I(inode)->lock);
2328 }
2329
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)2330 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2331 struct inode *inode)
2332 {
2333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2334
2335 spin_lock(&root->delalloc_lock);
2336 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2337 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2338 &root->delalloc_inodes);
2339 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2340 &BTRFS_I(inode)->runtime_flags);
2341 root->nr_delalloc_inodes++;
2342 if (root->nr_delalloc_inodes == 1) {
2343 spin_lock(&fs_info->delalloc_root_lock);
2344 BUG_ON(!list_empty(&root->delalloc_root));
2345 list_add_tail(&root->delalloc_root,
2346 &fs_info->delalloc_roots);
2347 spin_unlock(&fs_info->delalloc_root_lock);
2348 }
2349 }
2350 spin_unlock(&root->delalloc_lock);
2351 }
2352
2353
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)2354 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2355 struct btrfs_inode *inode)
2356 {
2357 struct btrfs_fs_info *fs_info = root->fs_info;
2358
2359 if (!list_empty(&inode->delalloc_inodes)) {
2360 list_del_init(&inode->delalloc_inodes);
2361 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2362 &inode->runtime_flags);
2363 root->nr_delalloc_inodes--;
2364 if (!root->nr_delalloc_inodes) {
2365 ASSERT(list_empty(&root->delalloc_inodes));
2366 spin_lock(&fs_info->delalloc_root_lock);
2367 BUG_ON(list_empty(&root->delalloc_root));
2368 list_del_init(&root->delalloc_root);
2369 spin_unlock(&fs_info->delalloc_root_lock);
2370 }
2371 }
2372 }
2373
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)2374 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2375 struct btrfs_inode *inode)
2376 {
2377 spin_lock(&root->delalloc_lock);
2378 __btrfs_del_delalloc_inode(root, inode);
2379 spin_unlock(&root->delalloc_lock);
2380 }
2381
2382 /*
2383 * Properly track delayed allocation bytes in the inode and to maintain the
2384 * list of inodes that have pending delalloc work to be done.
2385 */
btrfs_set_delalloc_extent(struct inode * inode,struct extent_state * state,unsigned * bits)2386 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2387 unsigned *bits)
2388 {
2389 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2390
2391 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2392 WARN_ON(1);
2393 /*
2394 * set_bit and clear bit hooks normally require _irqsave/restore
2395 * but in this case, we are only testing for the DELALLOC
2396 * bit, which is only set or cleared with irqs on
2397 */
2398 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2399 struct btrfs_root *root = BTRFS_I(inode)->root;
2400 u64 len = state->end + 1 - state->start;
2401 u32 num_extents = count_max_extents(fs_info, len);
2402 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2403
2404 spin_lock(&BTRFS_I(inode)->lock);
2405 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2406 spin_unlock(&BTRFS_I(inode)->lock);
2407
2408 /* For sanity tests */
2409 if (btrfs_is_testing(fs_info))
2410 return;
2411
2412 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2413 fs_info->delalloc_batch);
2414 spin_lock(&BTRFS_I(inode)->lock);
2415 BTRFS_I(inode)->delalloc_bytes += len;
2416 if (*bits & EXTENT_DEFRAG)
2417 BTRFS_I(inode)->defrag_bytes += len;
2418 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2419 &BTRFS_I(inode)->runtime_flags))
2420 btrfs_add_delalloc_inodes(root, inode);
2421 spin_unlock(&BTRFS_I(inode)->lock);
2422 }
2423
2424 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2425 (*bits & EXTENT_DELALLOC_NEW)) {
2426 spin_lock(&BTRFS_I(inode)->lock);
2427 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2428 state->start;
2429 spin_unlock(&BTRFS_I(inode)->lock);
2430 }
2431 }
2432
2433 /*
2434 * Once a range is no longer delalloc this function ensures that proper
2435 * accounting happens.
2436 */
btrfs_clear_delalloc_extent(struct inode * vfs_inode,struct extent_state * state,unsigned * bits)2437 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2438 struct extent_state *state, unsigned *bits)
2439 {
2440 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2441 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2442 u64 len = state->end + 1 - state->start;
2443 u32 num_extents = count_max_extents(fs_info, len);
2444
2445 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2446 spin_lock(&inode->lock);
2447 inode->defrag_bytes -= len;
2448 spin_unlock(&inode->lock);
2449 }
2450
2451 /*
2452 * set_bit and clear bit hooks normally require _irqsave/restore
2453 * but in this case, we are only testing for the DELALLOC
2454 * bit, which is only set or cleared with irqs on
2455 */
2456 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2457 struct btrfs_root *root = inode->root;
2458 bool do_list = !btrfs_is_free_space_inode(inode);
2459
2460 spin_lock(&inode->lock);
2461 btrfs_mod_outstanding_extents(inode, -num_extents);
2462 spin_unlock(&inode->lock);
2463
2464 /*
2465 * We don't reserve metadata space for space cache inodes so we
2466 * don't need to call delalloc_release_metadata if there is an
2467 * error.
2468 */
2469 if (*bits & EXTENT_CLEAR_META_RESV &&
2470 root != fs_info->tree_root)
2471 btrfs_delalloc_release_metadata(inode, len, false);
2472
2473 /* For sanity tests. */
2474 if (btrfs_is_testing(fs_info))
2475 return;
2476
2477 if (!btrfs_is_data_reloc_root(root) &&
2478 do_list && !(state->state & EXTENT_NORESERVE) &&
2479 (*bits & EXTENT_CLEAR_DATA_RESV))
2480 btrfs_free_reserved_data_space_noquota(fs_info, len);
2481
2482 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2483 fs_info->delalloc_batch);
2484 spin_lock(&inode->lock);
2485 inode->delalloc_bytes -= len;
2486 if (do_list && inode->delalloc_bytes == 0 &&
2487 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2488 &inode->runtime_flags))
2489 btrfs_del_delalloc_inode(root, inode);
2490 spin_unlock(&inode->lock);
2491 }
2492
2493 if ((state->state & EXTENT_DELALLOC_NEW) &&
2494 (*bits & EXTENT_DELALLOC_NEW)) {
2495 spin_lock(&inode->lock);
2496 ASSERT(inode->new_delalloc_bytes >= len);
2497 inode->new_delalloc_bytes -= len;
2498 if (*bits & EXTENT_ADD_INODE_BYTES)
2499 inode_add_bytes(&inode->vfs_inode, len);
2500 spin_unlock(&inode->lock);
2501 }
2502 }
2503
2504 /*
2505 * in order to insert checksums into the metadata in large chunks,
2506 * we wait until bio submission time. All the pages in the bio are
2507 * checksummed and sums are attached onto the ordered extent record.
2508 *
2509 * At IO completion time the cums attached on the ordered extent record
2510 * are inserted into the btree
2511 */
btrfs_submit_bio_start(struct inode * inode,struct bio * bio,u64 dio_file_offset)2512 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2513 u64 dio_file_offset)
2514 {
2515 return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2516 }
2517
2518 /*
2519 * Split an extent_map at [start, start + len]
2520 *
2521 * This function is intended to be used only for extract_ordered_extent().
2522 */
split_zoned_em(struct btrfs_inode * inode,u64 start,u64 len,u64 pre,u64 post)2523 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2524 u64 pre, u64 post)
2525 {
2526 struct extent_map_tree *em_tree = &inode->extent_tree;
2527 struct extent_map *em;
2528 struct extent_map *split_pre = NULL;
2529 struct extent_map *split_mid = NULL;
2530 struct extent_map *split_post = NULL;
2531 int ret = 0;
2532 unsigned long flags;
2533
2534 /* Sanity check */
2535 if (pre == 0 && post == 0)
2536 return 0;
2537
2538 split_pre = alloc_extent_map();
2539 if (pre)
2540 split_mid = alloc_extent_map();
2541 if (post)
2542 split_post = alloc_extent_map();
2543 if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2544 ret = -ENOMEM;
2545 goto out;
2546 }
2547
2548 ASSERT(pre + post < len);
2549
2550 lock_extent(&inode->io_tree, start, start + len - 1);
2551 write_lock(&em_tree->lock);
2552 em = lookup_extent_mapping(em_tree, start, len);
2553 if (!em) {
2554 ret = -EIO;
2555 goto out_unlock;
2556 }
2557
2558 ASSERT(em->len == len);
2559 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2560 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2561 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2562 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2563 ASSERT(!list_empty(&em->list));
2564
2565 flags = em->flags;
2566 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2567
2568 /* First, replace the em with a new extent_map starting from * em->start */
2569 split_pre->start = em->start;
2570 split_pre->len = (pre ? pre : em->len - post);
2571 split_pre->orig_start = split_pre->start;
2572 split_pre->block_start = em->block_start;
2573 split_pre->block_len = split_pre->len;
2574 split_pre->orig_block_len = split_pre->block_len;
2575 split_pre->ram_bytes = split_pre->len;
2576 split_pre->flags = flags;
2577 split_pre->compress_type = em->compress_type;
2578 split_pre->generation = em->generation;
2579
2580 replace_extent_mapping(em_tree, em, split_pre, 1);
2581
2582 /*
2583 * Now we only have an extent_map at:
2584 * [em->start, em->start + pre] if pre != 0
2585 * [em->start, em->start + em->len - post] if pre == 0
2586 */
2587
2588 if (pre) {
2589 /* Insert the middle extent_map */
2590 split_mid->start = em->start + pre;
2591 split_mid->len = em->len - pre - post;
2592 split_mid->orig_start = split_mid->start;
2593 split_mid->block_start = em->block_start + pre;
2594 split_mid->block_len = split_mid->len;
2595 split_mid->orig_block_len = split_mid->block_len;
2596 split_mid->ram_bytes = split_mid->len;
2597 split_mid->flags = flags;
2598 split_mid->compress_type = em->compress_type;
2599 split_mid->generation = em->generation;
2600 add_extent_mapping(em_tree, split_mid, 1);
2601 }
2602
2603 if (post) {
2604 split_post->start = em->start + em->len - post;
2605 split_post->len = post;
2606 split_post->orig_start = split_post->start;
2607 split_post->block_start = em->block_start + em->len - post;
2608 split_post->block_len = split_post->len;
2609 split_post->orig_block_len = split_post->block_len;
2610 split_post->ram_bytes = split_post->len;
2611 split_post->flags = flags;
2612 split_post->compress_type = em->compress_type;
2613 split_post->generation = em->generation;
2614 add_extent_mapping(em_tree, split_post, 1);
2615 }
2616
2617 /* Once for us */
2618 free_extent_map(em);
2619 /* Once for the tree */
2620 free_extent_map(em);
2621
2622 out_unlock:
2623 write_unlock(&em_tree->lock);
2624 unlock_extent(&inode->io_tree, start, start + len - 1);
2625 out:
2626 free_extent_map(split_pre);
2627 free_extent_map(split_mid);
2628 free_extent_map(split_post);
2629
2630 return ret;
2631 }
2632
extract_ordered_extent(struct btrfs_inode * inode,struct bio * bio,loff_t file_offset)2633 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2634 struct bio *bio, loff_t file_offset)
2635 {
2636 struct btrfs_ordered_extent *ordered;
2637 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2638 u64 file_len;
2639 u64 len = bio->bi_iter.bi_size;
2640 u64 end = start + len;
2641 u64 ordered_end;
2642 u64 pre, post;
2643 int ret = 0;
2644
2645 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2646 if (WARN_ON_ONCE(!ordered))
2647 return BLK_STS_IOERR;
2648
2649 /* No need to split */
2650 if (ordered->disk_num_bytes == len)
2651 goto out;
2652
2653 /* We cannot split once end_bio'd ordered extent */
2654 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2655 ret = -EINVAL;
2656 goto out;
2657 }
2658
2659 /* We cannot split a compressed ordered extent */
2660 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2661 ret = -EINVAL;
2662 goto out;
2663 }
2664
2665 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2666 /* bio must be in one ordered extent */
2667 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2668 ret = -EINVAL;
2669 goto out;
2670 }
2671
2672 /* Checksum list should be empty */
2673 if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2674 ret = -EINVAL;
2675 goto out;
2676 }
2677
2678 file_len = ordered->num_bytes;
2679 pre = start - ordered->disk_bytenr;
2680 post = ordered_end - end;
2681
2682 ret = btrfs_split_ordered_extent(ordered, pre, post);
2683 if (ret)
2684 goto out;
2685 ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2686
2687 out:
2688 btrfs_put_ordered_extent(ordered);
2689
2690 return errno_to_blk_status(ret);
2691 }
2692
2693 /*
2694 * extent_io.c submission hook. This does the right thing for csum calculation
2695 * on write, or reading the csums from the tree before a read.
2696 *
2697 * Rules about async/sync submit,
2698 * a) read: sync submit
2699 *
2700 * b) write without checksum: sync submit
2701 *
2702 * c) write with checksum:
2703 * c-1) if bio is issued by fsync: sync submit
2704 * (sync_writers != 0)
2705 *
2706 * c-2) if root is reloc root: sync submit
2707 * (only in case of buffered IO)
2708 *
2709 * c-3) otherwise: async submit
2710 */
btrfs_submit_data_bio(struct inode * inode,struct bio * bio,int mirror_num,enum btrfs_compression_type compress_type)2711 void btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2712 int mirror_num, enum btrfs_compression_type compress_type)
2713 {
2714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2715 struct btrfs_root *root = BTRFS_I(inode)->root;
2716 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2717 blk_status_t ret = 0;
2718 int skip_sum;
2719 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2720
2721 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2722 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2723
2724 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2725 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2726
2727 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2728 struct page *page = bio_first_bvec_all(bio)->bv_page;
2729 loff_t file_offset = page_offset(page);
2730
2731 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2732 if (ret)
2733 goto out;
2734 }
2735
2736 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2737 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2738 if (ret)
2739 goto out;
2740
2741 if (compress_type != BTRFS_COMPRESS_NONE) {
2742 /*
2743 * btrfs_submit_compressed_read will handle completing
2744 * the bio if there were any errors, so just return
2745 * here.
2746 */
2747 btrfs_submit_compressed_read(inode, bio, mirror_num);
2748 return;
2749 } else {
2750 /*
2751 * Lookup bio sums does extra checks around whether we
2752 * need to csum or not, which is why we ignore skip_sum
2753 * here.
2754 */
2755 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2756 if (ret)
2757 goto out;
2758 }
2759 goto mapit;
2760 } else if (async && !skip_sum) {
2761 /* csum items have already been cloned */
2762 if (btrfs_is_data_reloc_root(root))
2763 goto mapit;
2764 /* we're doing a write, do the async checksumming */
2765 ret = btrfs_wq_submit_bio(inode, bio, mirror_num,
2766 0, btrfs_submit_bio_start);
2767 goto out;
2768 } else if (!skip_sum) {
2769 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2770 if (ret)
2771 goto out;
2772 }
2773
2774 mapit:
2775 ret = btrfs_map_bio(fs_info, bio, mirror_num);
2776
2777 out:
2778 if (ret) {
2779 bio->bi_status = ret;
2780 bio_endio(bio);
2781 }
2782 }
2783
2784 /*
2785 * given a list of ordered sums record them in the inode. This happens
2786 * at IO completion time based on sums calculated at bio submission time.
2787 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2788 static int add_pending_csums(struct btrfs_trans_handle *trans,
2789 struct list_head *list)
2790 {
2791 struct btrfs_ordered_sum *sum;
2792 struct btrfs_root *csum_root = NULL;
2793 int ret;
2794
2795 list_for_each_entry(sum, list, list) {
2796 trans->adding_csums = true;
2797 if (!csum_root)
2798 csum_root = btrfs_csum_root(trans->fs_info,
2799 sum->bytenr);
2800 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2801 trans->adding_csums = false;
2802 if (ret)
2803 return ret;
2804 }
2805 return 0;
2806 }
2807
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2808 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2809 const u64 start,
2810 const u64 len,
2811 struct extent_state **cached_state)
2812 {
2813 u64 search_start = start;
2814 const u64 end = start + len - 1;
2815
2816 while (search_start < end) {
2817 const u64 search_len = end - search_start + 1;
2818 struct extent_map *em;
2819 u64 em_len;
2820 int ret = 0;
2821
2822 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2823 if (IS_ERR(em))
2824 return PTR_ERR(em);
2825
2826 if (em->block_start != EXTENT_MAP_HOLE)
2827 goto next;
2828
2829 em_len = em->len;
2830 if (em->start < search_start)
2831 em_len -= search_start - em->start;
2832 if (em_len > search_len)
2833 em_len = search_len;
2834
2835 ret = set_extent_bit(&inode->io_tree, search_start,
2836 search_start + em_len - 1,
2837 EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2838 GFP_NOFS, NULL);
2839 next:
2840 search_start = extent_map_end(em);
2841 free_extent_map(em);
2842 if (ret)
2843 return ret;
2844 }
2845 return 0;
2846 }
2847
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2848 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2849 unsigned int extra_bits,
2850 struct extent_state **cached_state)
2851 {
2852 WARN_ON(PAGE_ALIGNED(end));
2853
2854 if (start >= i_size_read(&inode->vfs_inode) &&
2855 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2856 /*
2857 * There can't be any extents following eof in this case so just
2858 * set the delalloc new bit for the range directly.
2859 */
2860 extra_bits |= EXTENT_DELALLOC_NEW;
2861 } else {
2862 int ret;
2863
2864 ret = btrfs_find_new_delalloc_bytes(inode, start,
2865 end + 1 - start,
2866 cached_state);
2867 if (ret)
2868 return ret;
2869 }
2870
2871 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2872 cached_state);
2873 }
2874
2875 /* see btrfs_writepage_start_hook for details on why this is required */
2876 struct btrfs_writepage_fixup {
2877 struct page *page;
2878 struct inode *inode;
2879 struct btrfs_work work;
2880 };
2881
btrfs_writepage_fixup_worker(struct btrfs_work * work)2882 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2883 {
2884 struct btrfs_writepage_fixup *fixup;
2885 struct btrfs_ordered_extent *ordered;
2886 struct extent_state *cached_state = NULL;
2887 struct extent_changeset *data_reserved = NULL;
2888 struct page *page;
2889 struct btrfs_inode *inode;
2890 u64 page_start;
2891 u64 page_end;
2892 int ret = 0;
2893 bool free_delalloc_space = true;
2894
2895 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2896 page = fixup->page;
2897 inode = BTRFS_I(fixup->inode);
2898 page_start = page_offset(page);
2899 page_end = page_offset(page) + PAGE_SIZE - 1;
2900
2901 /*
2902 * This is similar to page_mkwrite, we need to reserve the space before
2903 * we take the page lock.
2904 */
2905 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2906 PAGE_SIZE);
2907 again:
2908 lock_page(page);
2909
2910 /*
2911 * Before we queued this fixup, we took a reference on the page.
2912 * page->mapping may go NULL, but it shouldn't be moved to a different
2913 * address space.
2914 */
2915 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2916 /*
2917 * Unfortunately this is a little tricky, either
2918 *
2919 * 1) We got here and our page had already been dealt with and
2920 * we reserved our space, thus ret == 0, so we need to just
2921 * drop our space reservation and bail. This can happen the
2922 * first time we come into the fixup worker, or could happen
2923 * while waiting for the ordered extent.
2924 * 2) Our page was already dealt with, but we happened to get an
2925 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2926 * this case we obviously don't have anything to release, but
2927 * because the page was already dealt with we don't want to
2928 * mark the page with an error, so make sure we're resetting
2929 * ret to 0. This is why we have this check _before_ the ret
2930 * check, because we do not want to have a surprise ENOSPC
2931 * when the page was already properly dealt with.
2932 */
2933 if (!ret) {
2934 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2935 btrfs_delalloc_release_space(inode, data_reserved,
2936 page_start, PAGE_SIZE,
2937 true);
2938 }
2939 ret = 0;
2940 goto out_page;
2941 }
2942
2943 /*
2944 * We can't mess with the page state unless it is locked, so now that
2945 * it is locked bail if we failed to make our space reservation.
2946 */
2947 if (ret)
2948 goto out_page;
2949
2950 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2951
2952 /* already ordered? We're done */
2953 if (PageOrdered(page))
2954 goto out_reserved;
2955
2956 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2957 if (ordered) {
2958 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2959 &cached_state);
2960 unlock_page(page);
2961 btrfs_start_ordered_extent(ordered, 1);
2962 btrfs_put_ordered_extent(ordered);
2963 goto again;
2964 }
2965
2966 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2967 &cached_state);
2968 if (ret)
2969 goto out_reserved;
2970
2971 /*
2972 * Everything went as planned, we're now the owner of a dirty page with
2973 * delayed allocation bits set and space reserved for our COW
2974 * destination.
2975 *
2976 * The page was dirty when we started, nothing should have cleaned it.
2977 */
2978 BUG_ON(!PageDirty(page));
2979 free_delalloc_space = false;
2980 out_reserved:
2981 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2982 if (free_delalloc_space)
2983 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2984 PAGE_SIZE, true);
2985 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2986 &cached_state);
2987 out_page:
2988 if (ret) {
2989 /*
2990 * We hit ENOSPC or other errors. Update the mapping and page
2991 * to reflect the errors and clean the page.
2992 */
2993 mapping_set_error(page->mapping, ret);
2994 end_extent_writepage(page, ret, page_start, page_end);
2995 clear_page_dirty_for_io(page);
2996 SetPageError(page);
2997 }
2998 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2999 unlock_page(page);
3000 put_page(page);
3001 kfree(fixup);
3002 extent_changeset_free(data_reserved);
3003 /*
3004 * As a precaution, do a delayed iput in case it would be the last iput
3005 * that could need flushing space. Recursing back to fixup worker would
3006 * deadlock.
3007 */
3008 btrfs_add_delayed_iput(&inode->vfs_inode);
3009 }
3010
3011 /*
3012 * There are a few paths in the higher layers of the kernel that directly
3013 * set the page dirty bit without asking the filesystem if it is a
3014 * good idea. This causes problems because we want to make sure COW
3015 * properly happens and the data=ordered rules are followed.
3016 *
3017 * In our case any range that doesn't have the ORDERED bit set
3018 * hasn't been properly setup for IO. We kick off an async process
3019 * to fix it up. The async helper will wait for ordered extents, set
3020 * the delalloc bit and make it safe to write the page.
3021 */
btrfs_writepage_cow_fixup(struct page * page)3022 int btrfs_writepage_cow_fixup(struct page *page)
3023 {
3024 struct inode *inode = page->mapping->host;
3025 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3026 struct btrfs_writepage_fixup *fixup;
3027
3028 /* This page has ordered extent covering it already */
3029 if (PageOrdered(page))
3030 return 0;
3031
3032 /*
3033 * PageChecked is set below when we create a fixup worker for this page,
3034 * don't try to create another one if we're already PageChecked()
3035 *
3036 * The extent_io writepage code will redirty the page if we send back
3037 * EAGAIN.
3038 */
3039 if (PageChecked(page))
3040 return -EAGAIN;
3041
3042 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
3043 if (!fixup)
3044 return -EAGAIN;
3045
3046 /*
3047 * We are already holding a reference to this inode from
3048 * write_cache_pages. We need to hold it because the space reservation
3049 * takes place outside of the page lock, and we can't trust
3050 * page->mapping outside of the page lock.
3051 */
3052 ihold(inode);
3053 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
3054 get_page(page);
3055 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
3056 fixup->page = page;
3057 fixup->inode = inode;
3058 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
3059
3060 return -EAGAIN;
3061 }
3062
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)3063 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
3064 struct btrfs_inode *inode, u64 file_pos,
3065 struct btrfs_file_extent_item *stack_fi,
3066 const bool update_inode_bytes,
3067 u64 qgroup_reserved)
3068 {
3069 struct btrfs_root *root = inode->root;
3070 const u64 sectorsize = root->fs_info->sectorsize;
3071 struct btrfs_path *path;
3072 struct extent_buffer *leaf;
3073 struct btrfs_key ins;
3074 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
3075 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
3076 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
3077 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
3078 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
3079 struct btrfs_drop_extents_args drop_args = { 0 };
3080 int ret;
3081
3082 path = btrfs_alloc_path();
3083 if (!path)
3084 return -ENOMEM;
3085
3086 /*
3087 * we may be replacing one extent in the tree with another.
3088 * The new extent is pinned in the extent map, and we don't want
3089 * to drop it from the cache until it is completely in the btree.
3090 *
3091 * So, tell btrfs_drop_extents to leave this extent in the cache.
3092 * the caller is expected to unpin it and allow it to be merged
3093 * with the others.
3094 */
3095 drop_args.path = path;
3096 drop_args.start = file_pos;
3097 drop_args.end = file_pos + num_bytes;
3098 drop_args.replace_extent = true;
3099 drop_args.extent_item_size = sizeof(*stack_fi);
3100 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
3101 if (ret)
3102 goto out;
3103
3104 if (!drop_args.extent_inserted) {
3105 ins.objectid = btrfs_ino(inode);
3106 ins.offset = file_pos;
3107 ins.type = BTRFS_EXTENT_DATA_KEY;
3108
3109 ret = btrfs_insert_empty_item(trans, root, path, &ins,
3110 sizeof(*stack_fi));
3111 if (ret)
3112 goto out;
3113 }
3114 leaf = path->nodes[0];
3115 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3116 write_extent_buffer(leaf, stack_fi,
3117 btrfs_item_ptr_offset(leaf, path->slots[0]),
3118 sizeof(struct btrfs_file_extent_item));
3119
3120 btrfs_mark_buffer_dirty(leaf);
3121 btrfs_release_path(path);
3122
3123 /*
3124 * If we dropped an inline extent here, we know the range where it is
3125 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3126 * number of bytes only for that range containing the inline extent.
3127 * The remaining of the range will be processed when clearning the
3128 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3129 */
3130 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3131 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3132
3133 inline_size = drop_args.bytes_found - inline_size;
3134 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3135 drop_args.bytes_found -= inline_size;
3136 num_bytes -= sectorsize;
3137 }
3138
3139 if (update_inode_bytes)
3140 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3141
3142 ins.objectid = disk_bytenr;
3143 ins.offset = disk_num_bytes;
3144 ins.type = BTRFS_EXTENT_ITEM_KEY;
3145
3146 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3147 if (ret)
3148 goto out;
3149
3150 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3151 file_pos - offset,
3152 qgroup_reserved, &ins);
3153 out:
3154 btrfs_free_path(path);
3155
3156 return ret;
3157 }
3158
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3159 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3160 u64 start, u64 len)
3161 {
3162 struct btrfs_block_group *cache;
3163
3164 cache = btrfs_lookup_block_group(fs_info, start);
3165 ASSERT(cache);
3166
3167 spin_lock(&cache->lock);
3168 cache->delalloc_bytes -= len;
3169 spin_unlock(&cache->lock);
3170
3171 btrfs_put_block_group(cache);
3172 }
3173
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3174 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3175 struct btrfs_ordered_extent *oe)
3176 {
3177 struct btrfs_file_extent_item stack_fi;
3178 bool update_inode_bytes;
3179 u64 num_bytes = oe->num_bytes;
3180 u64 ram_bytes = oe->ram_bytes;
3181
3182 memset(&stack_fi, 0, sizeof(stack_fi));
3183 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3184 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3185 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3186 oe->disk_num_bytes);
3187 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3188 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3189 num_bytes = ram_bytes = oe->truncated_len;
3190 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3191 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3192 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3193 /* Encryption and other encoding is reserved and all 0 */
3194
3195 /*
3196 * For delalloc, when completing an ordered extent we update the inode's
3197 * bytes when clearing the range in the inode's io tree, so pass false
3198 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3199 * except if the ordered extent was truncated.
3200 */
3201 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3202 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3203 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3204
3205 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3206 oe->file_offset, &stack_fi,
3207 update_inode_bytes, oe->qgroup_rsv);
3208 }
3209
3210 /*
3211 * As ordered data IO finishes, this gets called so we can finish
3212 * an ordered extent if the range of bytes in the file it covers are
3213 * fully written.
3214 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)3215 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3216 {
3217 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3218 struct btrfs_root *root = inode->root;
3219 struct btrfs_fs_info *fs_info = root->fs_info;
3220 struct btrfs_trans_handle *trans = NULL;
3221 struct extent_io_tree *io_tree = &inode->io_tree;
3222 struct extent_state *cached_state = NULL;
3223 u64 start, end;
3224 int compress_type = 0;
3225 int ret = 0;
3226 u64 logical_len = ordered_extent->num_bytes;
3227 bool freespace_inode;
3228 bool truncated = false;
3229 bool clear_reserved_extent = true;
3230 unsigned int clear_bits = EXTENT_DEFRAG;
3231
3232 start = ordered_extent->file_offset;
3233 end = start + ordered_extent->num_bytes - 1;
3234
3235 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3236 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3237 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3238 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3239 clear_bits |= EXTENT_DELALLOC_NEW;
3240
3241 freespace_inode = btrfs_is_free_space_inode(inode);
3242
3243 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3244 ret = -EIO;
3245 goto out;
3246 }
3247
3248 /* A valid bdev implies a write on a sequential zone */
3249 if (ordered_extent->bdev) {
3250 btrfs_rewrite_logical_zoned(ordered_extent);
3251 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3252 ordered_extent->disk_num_bytes);
3253 }
3254
3255 btrfs_free_io_failure_record(inode, start, end);
3256
3257 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3258 truncated = true;
3259 logical_len = ordered_extent->truncated_len;
3260 /* Truncated the entire extent, don't bother adding */
3261 if (!logical_len)
3262 goto out;
3263 }
3264
3265 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3266 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3267
3268 btrfs_inode_safe_disk_i_size_write(inode, 0);
3269 if (freespace_inode)
3270 trans = btrfs_join_transaction_spacecache(root);
3271 else
3272 trans = btrfs_join_transaction(root);
3273 if (IS_ERR(trans)) {
3274 ret = PTR_ERR(trans);
3275 trans = NULL;
3276 goto out;
3277 }
3278 trans->block_rsv = &inode->block_rsv;
3279 ret = btrfs_update_inode_fallback(trans, root, inode);
3280 if (ret) /* -ENOMEM or corruption */
3281 btrfs_abort_transaction(trans, ret);
3282 goto out;
3283 }
3284
3285 clear_bits |= EXTENT_LOCKED;
3286 lock_extent_bits(io_tree, start, end, &cached_state);
3287
3288 if (freespace_inode)
3289 trans = btrfs_join_transaction_spacecache(root);
3290 else
3291 trans = btrfs_join_transaction(root);
3292 if (IS_ERR(trans)) {
3293 ret = PTR_ERR(trans);
3294 trans = NULL;
3295 goto out;
3296 }
3297
3298 trans->block_rsv = &inode->block_rsv;
3299
3300 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3301 compress_type = ordered_extent->compress_type;
3302 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3303 BUG_ON(compress_type);
3304 ret = btrfs_mark_extent_written(trans, inode,
3305 ordered_extent->file_offset,
3306 ordered_extent->file_offset +
3307 logical_len);
3308 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3309 ordered_extent->disk_num_bytes);
3310 } else {
3311 BUG_ON(root == fs_info->tree_root);
3312 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3313 if (!ret) {
3314 clear_reserved_extent = false;
3315 btrfs_release_delalloc_bytes(fs_info,
3316 ordered_extent->disk_bytenr,
3317 ordered_extent->disk_num_bytes);
3318 }
3319 }
3320 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3321 ordered_extent->num_bytes, trans->transid);
3322 if (ret < 0) {
3323 btrfs_abort_transaction(trans, ret);
3324 goto out;
3325 }
3326
3327 ret = add_pending_csums(trans, &ordered_extent->list);
3328 if (ret) {
3329 btrfs_abort_transaction(trans, ret);
3330 goto out;
3331 }
3332
3333 /*
3334 * If this is a new delalloc range, clear its new delalloc flag to
3335 * update the inode's number of bytes. This needs to be done first
3336 * before updating the inode item.
3337 */
3338 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3339 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3340 clear_extent_bit(&inode->io_tree, start, end,
3341 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3342 0, 0, &cached_state);
3343
3344 btrfs_inode_safe_disk_i_size_write(inode, 0);
3345 ret = btrfs_update_inode_fallback(trans, root, inode);
3346 if (ret) { /* -ENOMEM or corruption */
3347 btrfs_abort_transaction(trans, ret);
3348 goto out;
3349 }
3350 ret = 0;
3351 out:
3352 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3353 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3354 &cached_state);
3355
3356 if (trans)
3357 btrfs_end_transaction(trans);
3358
3359 if (ret || truncated) {
3360 u64 unwritten_start = start;
3361
3362 /*
3363 * If we failed to finish this ordered extent for any reason we
3364 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3365 * extent, and mark the inode with the error if it wasn't
3366 * already set. Any error during writeback would have already
3367 * set the mapping error, so we need to set it if we're the ones
3368 * marking this ordered extent as failed.
3369 */
3370 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3371 &ordered_extent->flags))
3372 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3373
3374 if (truncated)
3375 unwritten_start += logical_len;
3376 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3377
3378 /* Drop the cache for the part of the extent we didn't write. */
3379 btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3380
3381 /*
3382 * If the ordered extent had an IOERR or something else went
3383 * wrong we need to return the space for this ordered extent
3384 * back to the allocator. We only free the extent in the
3385 * truncated case if we didn't write out the extent at all.
3386 *
3387 * If we made it past insert_reserved_file_extent before we
3388 * errored out then we don't need to do this as the accounting
3389 * has already been done.
3390 */
3391 if ((ret || !logical_len) &&
3392 clear_reserved_extent &&
3393 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3394 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3395 /*
3396 * Discard the range before returning it back to the
3397 * free space pool
3398 */
3399 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3400 btrfs_discard_extent(fs_info,
3401 ordered_extent->disk_bytenr,
3402 ordered_extent->disk_num_bytes,
3403 NULL);
3404 btrfs_free_reserved_extent(fs_info,
3405 ordered_extent->disk_bytenr,
3406 ordered_extent->disk_num_bytes, 1);
3407 }
3408 }
3409
3410 /*
3411 * This needs to be done to make sure anybody waiting knows we are done
3412 * updating everything for this ordered extent.
3413 */
3414 btrfs_remove_ordered_extent(inode, ordered_extent);
3415
3416 /* once for us */
3417 btrfs_put_ordered_extent(ordered_extent);
3418 /* once for the tree */
3419 btrfs_put_ordered_extent(ordered_extent);
3420
3421 return ret;
3422 }
3423
finish_ordered_fn(struct btrfs_work * work)3424 static void finish_ordered_fn(struct btrfs_work *work)
3425 {
3426 struct btrfs_ordered_extent *ordered_extent;
3427 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3428 btrfs_finish_ordered_io(ordered_extent);
3429 }
3430
btrfs_writepage_endio_finish_ordered(struct btrfs_inode * inode,struct page * page,u64 start,u64 end,bool uptodate)3431 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3432 struct page *page, u64 start,
3433 u64 end, bool uptodate)
3434 {
3435 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3436
3437 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3438 finish_ordered_fn, uptodate);
3439 }
3440
3441 /*
3442 * check_data_csum - verify checksum of one sector of uncompressed data
3443 * @inode: inode
3444 * @io_bio: btrfs_io_bio which contains the csum
3445 * @bio_offset: offset to the beginning of the bio (in bytes)
3446 * @page: page where is the data to be verified
3447 * @pgoff: offset inside the page
3448 * @start: logical offset in the file
3449 *
3450 * The length of such check is always one sector size.
3451 */
check_data_csum(struct inode * inode,struct btrfs_bio * bbio,u32 bio_offset,struct page * page,u32 pgoff,u64 start)3452 static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3453 u32 bio_offset, struct page *page, u32 pgoff,
3454 u64 start)
3455 {
3456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3457 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3458 char *kaddr;
3459 u32 len = fs_info->sectorsize;
3460 const u32 csum_size = fs_info->csum_size;
3461 unsigned int offset_sectors;
3462 u8 *csum_expected;
3463 u8 csum[BTRFS_CSUM_SIZE];
3464
3465 ASSERT(pgoff + len <= PAGE_SIZE);
3466
3467 offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3468 csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size;
3469
3470 kaddr = kmap_atomic(page);
3471 shash->tfm = fs_info->csum_shash;
3472
3473 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3474 kunmap_atomic(kaddr);
3475
3476 if (memcmp(csum, csum_expected, csum_size))
3477 goto zeroit;
3478
3479 return 0;
3480 zeroit:
3481 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3482 bbio->mirror_num);
3483 if (bbio->device)
3484 btrfs_dev_stat_inc_and_print(bbio->device,
3485 BTRFS_DEV_STAT_CORRUPTION_ERRS);
3486 memzero_page(page, pgoff, len);
3487 return -EIO;
3488 }
3489
3490 /*
3491 * When reads are done, we need to check csums to verify the data is correct.
3492 * if there's a match, we allow the bio to finish. If not, the code in
3493 * extent_io.c will try to find good copies for us.
3494 *
3495 * @bio_offset: offset to the beginning of the bio (in bytes)
3496 * @start: file offset of the range start
3497 * @end: file offset of the range end (inclusive)
3498 *
3499 * Return a bitmap where bit set means a csum mismatch, and bit not set means
3500 * csum match.
3501 */
btrfs_verify_data_csum(struct btrfs_bio * bbio,u32 bio_offset,struct page * page,u64 start,u64 end)3502 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3503 u32 bio_offset, struct page *page,
3504 u64 start, u64 end)
3505 {
3506 struct inode *inode = page->mapping->host;
3507 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3508 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3509 struct btrfs_root *root = BTRFS_I(inode)->root;
3510 const u32 sectorsize = root->fs_info->sectorsize;
3511 u32 pg_off;
3512 unsigned int result = 0;
3513
3514 if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) {
3515 btrfs_page_clear_checked(fs_info, page, start, end + 1 - start);
3516 return 0;
3517 }
3518
3519 /*
3520 * This only happens for NODATASUM or compressed read.
3521 * Normally this should be covered by above check for compressed read
3522 * or the next check for NODATASUM. Just do a quicker exit here.
3523 */
3524 if (bbio->csum == NULL)
3525 return 0;
3526
3527 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3528 return 0;
3529
3530 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
3531 return 0;
3532
3533 ASSERT(page_offset(page) <= start &&
3534 end <= page_offset(page) + PAGE_SIZE - 1);
3535 for (pg_off = offset_in_page(start);
3536 pg_off < offset_in_page(end);
3537 pg_off += sectorsize, bio_offset += sectorsize) {
3538 u64 file_offset = pg_off + page_offset(page);
3539 int ret;
3540
3541 if (btrfs_is_data_reloc_root(root) &&
3542 test_range_bit(io_tree, file_offset,
3543 file_offset + sectorsize - 1,
3544 EXTENT_NODATASUM, 1, NULL)) {
3545 /* Skip the range without csum for data reloc inode */
3546 clear_extent_bits(io_tree, file_offset,
3547 file_offset + sectorsize - 1,
3548 EXTENT_NODATASUM);
3549 continue;
3550 }
3551 ret = check_data_csum(inode, bbio, bio_offset, page, pg_off,
3552 page_offset(page) + pg_off);
3553 if (ret < 0) {
3554 const int nr_bit = (pg_off - offset_in_page(start)) >>
3555 root->fs_info->sectorsize_bits;
3556
3557 result |= (1U << nr_bit);
3558 }
3559 }
3560 return result;
3561 }
3562
3563 /*
3564 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3565 *
3566 * @inode: The inode we want to perform iput on
3567 *
3568 * This function uses the generic vfs_inode::i_count to track whether we should
3569 * just decrement it (in case it's > 1) or if this is the last iput then link
3570 * the inode to the delayed iput machinery. Delayed iputs are processed at
3571 * transaction commit time/superblock commit/cleaner kthread.
3572 */
btrfs_add_delayed_iput(struct inode * inode)3573 void btrfs_add_delayed_iput(struct inode *inode)
3574 {
3575 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3576 struct btrfs_inode *binode = BTRFS_I(inode);
3577
3578 if (atomic_add_unless(&inode->i_count, -1, 1))
3579 return;
3580
3581 atomic_inc(&fs_info->nr_delayed_iputs);
3582 spin_lock(&fs_info->delayed_iput_lock);
3583 ASSERT(list_empty(&binode->delayed_iput));
3584 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3585 spin_unlock(&fs_info->delayed_iput_lock);
3586 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3587 wake_up_process(fs_info->cleaner_kthread);
3588 }
3589
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3590 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3591 struct btrfs_inode *inode)
3592 {
3593 list_del_init(&inode->delayed_iput);
3594 spin_unlock(&fs_info->delayed_iput_lock);
3595 iput(&inode->vfs_inode);
3596 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3597 wake_up(&fs_info->delayed_iputs_wait);
3598 spin_lock(&fs_info->delayed_iput_lock);
3599 }
3600
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3601 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3602 struct btrfs_inode *inode)
3603 {
3604 if (!list_empty(&inode->delayed_iput)) {
3605 spin_lock(&fs_info->delayed_iput_lock);
3606 if (!list_empty(&inode->delayed_iput))
3607 run_delayed_iput_locked(fs_info, inode);
3608 spin_unlock(&fs_info->delayed_iput_lock);
3609 }
3610 }
3611
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3612 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3613 {
3614
3615 spin_lock(&fs_info->delayed_iput_lock);
3616 while (!list_empty(&fs_info->delayed_iputs)) {
3617 struct btrfs_inode *inode;
3618
3619 inode = list_first_entry(&fs_info->delayed_iputs,
3620 struct btrfs_inode, delayed_iput);
3621 run_delayed_iput_locked(fs_info, inode);
3622 cond_resched_lock(&fs_info->delayed_iput_lock);
3623 }
3624 spin_unlock(&fs_info->delayed_iput_lock);
3625 }
3626
3627 /**
3628 * Wait for flushing all delayed iputs
3629 *
3630 * @fs_info: the filesystem
3631 *
3632 * This will wait on any delayed iputs that are currently running with KILLABLE
3633 * set. Once they are all done running we will return, unless we are killed in
3634 * which case we return EINTR. This helps in user operations like fallocate etc
3635 * that might get blocked on the iputs.
3636 *
3637 * Return EINTR if we were killed, 0 if nothing's pending
3638 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3639 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3640 {
3641 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3642 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3643 if (ret)
3644 return -EINTR;
3645 return 0;
3646 }
3647
3648 /*
3649 * This creates an orphan entry for the given inode in case something goes wrong
3650 * in the middle of an unlink.
3651 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3652 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3653 struct btrfs_inode *inode)
3654 {
3655 int ret;
3656
3657 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3658 if (ret && ret != -EEXIST) {
3659 btrfs_abort_transaction(trans, ret);
3660 return ret;
3661 }
3662
3663 return 0;
3664 }
3665
3666 /*
3667 * We have done the delete so we can go ahead and remove the orphan item for
3668 * this particular inode.
3669 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3670 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3671 struct btrfs_inode *inode)
3672 {
3673 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3674 }
3675
3676 /*
3677 * this cleans up any orphans that may be left on the list from the last use
3678 * of this root.
3679 */
btrfs_orphan_cleanup(struct btrfs_root * root)3680 int btrfs_orphan_cleanup(struct btrfs_root *root)
3681 {
3682 struct btrfs_fs_info *fs_info = root->fs_info;
3683 struct btrfs_path *path;
3684 struct extent_buffer *leaf;
3685 struct btrfs_key key, found_key;
3686 struct btrfs_trans_handle *trans;
3687 struct inode *inode;
3688 u64 last_objectid = 0;
3689 int ret = 0, nr_unlink = 0;
3690
3691 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3692 return 0;
3693
3694 path = btrfs_alloc_path();
3695 if (!path) {
3696 ret = -ENOMEM;
3697 goto out;
3698 }
3699 path->reada = READA_BACK;
3700
3701 key.objectid = BTRFS_ORPHAN_OBJECTID;
3702 key.type = BTRFS_ORPHAN_ITEM_KEY;
3703 key.offset = (u64)-1;
3704
3705 while (1) {
3706 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3707 if (ret < 0)
3708 goto out;
3709
3710 /*
3711 * if ret == 0 means we found what we were searching for, which
3712 * is weird, but possible, so only screw with path if we didn't
3713 * find the key and see if we have stuff that matches
3714 */
3715 if (ret > 0) {
3716 ret = 0;
3717 if (path->slots[0] == 0)
3718 break;
3719 path->slots[0]--;
3720 }
3721
3722 /* pull out the item */
3723 leaf = path->nodes[0];
3724 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3725
3726 /* make sure the item matches what we want */
3727 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3728 break;
3729 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3730 break;
3731
3732 /* release the path since we're done with it */
3733 btrfs_release_path(path);
3734
3735 /*
3736 * this is where we are basically btrfs_lookup, without the
3737 * crossing root thing. we store the inode number in the
3738 * offset of the orphan item.
3739 */
3740
3741 if (found_key.offset == last_objectid) {
3742 btrfs_err(fs_info,
3743 "Error removing orphan entry, stopping orphan cleanup");
3744 ret = -EINVAL;
3745 goto out;
3746 }
3747
3748 last_objectid = found_key.offset;
3749
3750 found_key.objectid = found_key.offset;
3751 found_key.type = BTRFS_INODE_ITEM_KEY;
3752 found_key.offset = 0;
3753 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3754 ret = PTR_ERR_OR_ZERO(inode);
3755 if (ret && ret != -ENOENT)
3756 goto out;
3757
3758 if (ret == -ENOENT && root == fs_info->tree_root) {
3759 struct btrfs_root *dead_root;
3760 int is_dead_root = 0;
3761
3762 /*
3763 * This is an orphan in the tree root. Currently these
3764 * could come from 2 sources:
3765 * a) a root (snapshot/subvolume) deletion in progress
3766 * b) a free space cache inode
3767 * We need to distinguish those two, as the orphan item
3768 * for a root must not get deleted before the deletion
3769 * of the snapshot/subvolume's tree completes.
3770 *
3771 * btrfs_find_orphan_roots() ran before us, which has
3772 * found all deleted roots and loaded them into
3773 * fs_info->fs_roots_radix. So here we can find if an
3774 * orphan item corresponds to a deleted root by looking
3775 * up the root from that radix tree.
3776 */
3777
3778 spin_lock(&fs_info->fs_roots_radix_lock);
3779 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3780 (unsigned long)found_key.objectid);
3781 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3782 is_dead_root = 1;
3783 spin_unlock(&fs_info->fs_roots_radix_lock);
3784
3785 if (is_dead_root) {
3786 /* prevent this orphan from being found again */
3787 key.offset = found_key.objectid - 1;
3788 continue;
3789 }
3790
3791 }
3792
3793 /*
3794 * If we have an inode with links, there are a couple of
3795 * possibilities:
3796 *
3797 * 1. We were halfway through creating fsverity metadata for the
3798 * file. In that case, the orphan item represents incomplete
3799 * fsverity metadata which must be cleaned up with
3800 * btrfs_drop_verity_items and deleting the orphan item.
3801
3802 * 2. Old kernels (before v3.12) used to create an
3803 * orphan item for truncate indicating that there were possibly
3804 * extent items past i_size that needed to be deleted. In v3.12,
3805 * truncate was changed to update i_size in sync with the extent
3806 * items, but the (useless) orphan item was still created. Since
3807 * v4.18, we don't create the orphan item for truncate at all.
3808 *
3809 * So, this item could mean that we need to do a truncate, but
3810 * only if this filesystem was last used on a pre-v3.12 kernel
3811 * and was not cleanly unmounted. The odds of that are quite
3812 * slim, and it's a pain to do the truncate now, so just delete
3813 * the orphan item.
3814 *
3815 * It's also possible that this orphan item was supposed to be
3816 * deleted but wasn't. The inode number may have been reused,
3817 * but either way, we can delete the orphan item.
3818 */
3819 if (ret == -ENOENT || inode->i_nlink) {
3820 if (!ret) {
3821 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3822 iput(inode);
3823 if (ret)
3824 goto out;
3825 }
3826 trans = btrfs_start_transaction(root, 1);
3827 if (IS_ERR(trans)) {
3828 ret = PTR_ERR(trans);
3829 goto out;
3830 }
3831 btrfs_debug(fs_info, "auto deleting %Lu",
3832 found_key.objectid);
3833 ret = btrfs_del_orphan_item(trans, root,
3834 found_key.objectid);
3835 btrfs_end_transaction(trans);
3836 if (ret)
3837 goto out;
3838 continue;
3839 }
3840
3841 nr_unlink++;
3842
3843 /* this will do delete_inode and everything for us */
3844 iput(inode);
3845 }
3846 /* release the path since we're done with it */
3847 btrfs_release_path(path);
3848
3849 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3850 trans = btrfs_join_transaction(root);
3851 if (!IS_ERR(trans))
3852 btrfs_end_transaction(trans);
3853 }
3854
3855 if (nr_unlink)
3856 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3857
3858 out:
3859 if (ret)
3860 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3861 btrfs_free_path(path);
3862 return ret;
3863 }
3864
3865 /*
3866 * very simple check to peek ahead in the leaf looking for xattrs. If we
3867 * don't find any xattrs, we know there can't be any acls.
3868 *
3869 * slot is the slot the inode is in, objectid is the objectid of the inode
3870 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3871 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3872 int slot, u64 objectid,
3873 int *first_xattr_slot)
3874 {
3875 u32 nritems = btrfs_header_nritems(leaf);
3876 struct btrfs_key found_key;
3877 static u64 xattr_access = 0;
3878 static u64 xattr_default = 0;
3879 int scanned = 0;
3880
3881 if (!xattr_access) {
3882 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3883 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3884 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3885 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3886 }
3887
3888 slot++;
3889 *first_xattr_slot = -1;
3890 while (slot < nritems) {
3891 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3892
3893 /* we found a different objectid, there must not be acls */
3894 if (found_key.objectid != objectid)
3895 return 0;
3896
3897 /* we found an xattr, assume we've got an acl */
3898 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3899 if (*first_xattr_slot == -1)
3900 *first_xattr_slot = slot;
3901 if (found_key.offset == xattr_access ||
3902 found_key.offset == xattr_default)
3903 return 1;
3904 }
3905
3906 /*
3907 * we found a key greater than an xattr key, there can't
3908 * be any acls later on
3909 */
3910 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3911 return 0;
3912
3913 slot++;
3914 scanned++;
3915
3916 /*
3917 * it goes inode, inode backrefs, xattrs, extents,
3918 * so if there are a ton of hard links to an inode there can
3919 * be a lot of backrefs. Don't waste time searching too hard,
3920 * this is just an optimization
3921 */
3922 if (scanned >= 8)
3923 break;
3924 }
3925 /* we hit the end of the leaf before we found an xattr or
3926 * something larger than an xattr. We have to assume the inode
3927 * has acls
3928 */
3929 if (*first_xattr_slot == -1)
3930 *first_xattr_slot = slot;
3931 return 1;
3932 }
3933
3934 /*
3935 * read an inode from the btree into the in-memory inode
3936 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3937 static int btrfs_read_locked_inode(struct inode *inode,
3938 struct btrfs_path *in_path)
3939 {
3940 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3941 struct btrfs_path *path = in_path;
3942 struct extent_buffer *leaf;
3943 struct btrfs_inode_item *inode_item;
3944 struct btrfs_root *root = BTRFS_I(inode)->root;
3945 struct btrfs_key location;
3946 unsigned long ptr;
3947 int maybe_acls;
3948 u32 rdev;
3949 int ret;
3950 bool filled = false;
3951 int first_xattr_slot;
3952
3953 ret = btrfs_fill_inode(inode, &rdev);
3954 if (!ret)
3955 filled = true;
3956
3957 if (!path) {
3958 path = btrfs_alloc_path();
3959 if (!path)
3960 return -ENOMEM;
3961 }
3962
3963 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3964
3965 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3966 if (ret) {
3967 if (path != in_path)
3968 btrfs_free_path(path);
3969 return ret;
3970 }
3971
3972 leaf = path->nodes[0];
3973
3974 if (filled)
3975 goto cache_index;
3976
3977 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3978 struct btrfs_inode_item);
3979 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3980 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3981 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3982 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3983 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3984 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3985 round_up(i_size_read(inode), fs_info->sectorsize));
3986
3987 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3988 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3989
3990 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3991 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3992
3993 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3994 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3995
3996 BTRFS_I(inode)->i_otime.tv_sec =
3997 btrfs_timespec_sec(leaf, &inode_item->otime);
3998 BTRFS_I(inode)->i_otime.tv_nsec =
3999 btrfs_timespec_nsec(leaf, &inode_item->otime);
4000
4001 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
4002 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
4003 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
4004
4005 inode_set_iversion_queried(inode,
4006 btrfs_inode_sequence(leaf, inode_item));
4007 inode->i_generation = BTRFS_I(inode)->generation;
4008 inode->i_rdev = 0;
4009 rdev = btrfs_inode_rdev(leaf, inode_item);
4010
4011 BTRFS_I(inode)->index_cnt = (u64)-1;
4012 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
4013 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
4014
4015 cache_index:
4016 /*
4017 * If we were modified in the current generation and evicted from memory
4018 * and then re-read we need to do a full sync since we don't have any
4019 * idea about which extents were modified before we were evicted from
4020 * cache.
4021 *
4022 * This is required for both inode re-read from disk and delayed inode
4023 * in delayed_nodes_tree.
4024 */
4025 if (BTRFS_I(inode)->last_trans == fs_info->generation)
4026 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4027 &BTRFS_I(inode)->runtime_flags);
4028
4029 /*
4030 * We don't persist the id of the transaction where an unlink operation
4031 * against the inode was last made. So here we assume the inode might
4032 * have been evicted, and therefore the exact value of last_unlink_trans
4033 * lost, and set it to last_trans to avoid metadata inconsistencies
4034 * between the inode and its parent if the inode is fsync'ed and the log
4035 * replayed. For example, in the scenario:
4036 *
4037 * touch mydir/foo
4038 * ln mydir/foo mydir/bar
4039 * sync
4040 * unlink mydir/bar
4041 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
4042 * xfs_io -c fsync mydir/foo
4043 * <power failure>
4044 * mount fs, triggers fsync log replay
4045 *
4046 * We must make sure that when we fsync our inode foo we also log its
4047 * parent inode, otherwise after log replay the parent still has the
4048 * dentry with the "bar" name but our inode foo has a link count of 1
4049 * and doesn't have an inode ref with the name "bar" anymore.
4050 *
4051 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4052 * but it guarantees correctness at the expense of occasional full
4053 * transaction commits on fsync if our inode is a directory, or if our
4054 * inode is not a directory, logging its parent unnecessarily.
4055 */
4056 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
4057
4058 /*
4059 * Same logic as for last_unlink_trans. We don't persist the generation
4060 * of the last transaction where this inode was used for a reflink
4061 * operation, so after eviction and reloading the inode we must be
4062 * pessimistic and assume the last transaction that modified the inode.
4063 */
4064 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
4065
4066 path->slots[0]++;
4067 if (inode->i_nlink != 1 ||
4068 path->slots[0] >= btrfs_header_nritems(leaf))
4069 goto cache_acl;
4070
4071 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4072 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
4073 goto cache_acl;
4074
4075 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4076 if (location.type == BTRFS_INODE_REF_KEY) {
4077 struct btrfs_inode_ref *ref;
4078
4079 ref = (struct btrfs_inode_ref *)ptr;
4080 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
4081 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4082 struct btrfs_inode_extref *extref;
4083
4084 extref = (struct btrfs_inode_extref *)ptr;
4085 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4086 extref);
4087 }
4088 cache_acl:
4089 /*
4090 * try to precache a NULL acl entry for files that don't have
4091 * any xattrs or acls
4092 */
4093 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4094 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
4095 if (first_xattr_slot != -1) {
4096 path->slots[0] = first_xattr_slot;
4097 ret = btrfs_load_inode_props(inode, path);
4098 if (ret)
4099 btrfs_err(fs_info,
4100 "error loading props for ino %llu (root %llu): %d",
4101 btrfs_ino(BTRFS_I(inode)),
4102 root->root_key.objectid, ret);
4103 }
4104 if (path != in_path)
4105 btrfs_free_path(path);
4106
4107 if (!maybe_acls)
4108 cache_no_acl(inode);
4109
4110 switch (inode->i_mode & S_IFMT) {
4111 case S_IFREG:
4112 inode->i_mapping->a_ops = &btrfs_aops;
4113 inode->i_fop = &btrfs_file_operations;
4114 inode->i_op = &btrfs_file_inode_operations;
4115 break;
4116 case S_IFDIR:
4117 inode->i_fop = &btrfs_dir_file_operations;
4118 inode->i_op = &btrfs_dir_inode_operations;
4119 break;
4120 case S_IFLNK:
4121 inode->i_op = &btrfs_symlink_inode_operations;
4122 inode_nohighmem(inode);
4123 inode->i_mapping->a_ops = &btrfs_aops;
4124 break;
4125 default:
4126 inode->i_op = &btrfs_special_inode_operations;
4127 init_special_inode(inode, inode->i_mode, rdev);
4128 break;
4129 }
4130
4131 btrfs_sync_inode_flags_to_i_flags(inode);
4132 return 0;
4133 }
4134
4135 /*
4136 * given a leaf and an inode, copy the inode fields into the leaf
4137 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4138 static void fill_inode_item(struct btrfs_trans_handle *trans,
4139 struct extent_buffer *leaf,
4140 struct btrfs_inode_item *item,
4141 struct inode *inode)
4142 {
4143 struct btrfs_map_token token;
4144 u64 flags;
4145
4146 btrfs_init_map_token(&token, leaf);
4147
4148 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4149 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4150 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4151 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4152 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4153
4154 btrfs_set_token_timespec_sec(&token, &item->atime,
4155 inode->i_atime.tv_sec);
4156 btrfs_set_token_timespec_nsec(&token, &item->atime,
4157 inode->i_atime.tv_nsec);
4158
4159 btrfs_set_token_timespec_sec(&token, &item->mtime,
4160 inode->i_mtime.tv_sec);
4161 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4162 inode->i_mtime.tv_nsec);
4163
4164 btrfs_set_token_timespec_sec(&token, &item->ctime,
4165 inode->i_ctime.tv_sec);
4166 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4167 inode->i_ctime.tv_nsec);
4168
4169 btrfs_set_token_timespec_sec(&token, &item->otime,
4170 BTRFS_I(inode)->i_otime.tv_sec);
4171 btrfs_set_token_timespec_nsec(&token, &item->otime,
4172 BTRFS_I(inode)->i_otime.tv_nsec);
4173
4174 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4175 btrfs_set_token_inode_generation(&token, item,
4176 BTRFS_I(inode)->generation);
4177 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4178 btrfs_set_token_inode_transid(&token, item, trans->transid);
4179 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4180 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4181 BTRFS_I(inode)->ro_flags);
4182 btrfs_set_token_inode_flags(&token, item, flags);
4183 btrfs_set_token_inode_block_group(&token, item, 0);
4184 }
4185
4186 /*
4187 * copy everything in the in-memory inode into the btree.
4188 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)4189 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4190 struct btrfs_root *root,
4191 struct btrfs_inode *inode)
4192 {
4193 struct btrfs_inode_item *inode_item;
4194 struct btrfs_path *path;
4195 struct extent_buffer *leaf;
4196 int ret;
4197
4198 path = btrfs_alloc_path();
4199 if (!path)
4200 return -ENOMEM;
4201
4202 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4203 if (ret) {
4204 if (ret > 0)
4205 ret = -ENOENT;
4206 goto failed;
4207 }
4208
4209 leaf = path->nodes[0];
4210 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4211 struct btrfs_inode_item);
4212
4213 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4214 btrfs_mark_buffer_dirty(leaf);
4215 btrfs_set_inode_last_trans(trans, inode);
4216 ret = 0;
4217 failed:
4218 btrfs_free_path(path);
4219 return ret;
4220 }
4221
4222 /*
4223 * copy everything in the in-memory inode into the btree.
4224 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)4225 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4226 struct btrfs_root *root,
4227 struct btrfs_inode *inode)
4228 {
4229 struct btrfs_fs_info *fs_info = root->fs_info;
4230 int ret;
4231
4232 /*
4233 * If the inode is a free space inode, we can deadlock during commit
4234 * if we put it into the delayed code.
4235 *
4236 * The data relocation inode should also be directly updated
4237 * without delay
4238 */
4239 if (!btrfs_is_free_space_inode(inode)
4240 && !btrfs_is_data_reloc_root(root)
4241 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4242 btrfs_update_root_times(trans, root);
4243
4244 ret = btrfs_delayed_update_inode(trans, root, inode);
4245 if (!ret)
4246 btrfs_set_inode_last_trans(trans, inode);
4247 return ret;
4248 }
4249
4250 return btrfs_update_inode_item(trans, root, inode);
4251 }
4252
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)4253 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4254 struct btrfs_root *root, struct btrfs_inode *inode)
4255 {
4256 int ret;
4257
4258 ret = btrfs_update_inode(trans, root, inode);
4259 if (ret == -ENOSPC)
4260 return btrfs_update_inode_item(trans, root, inode);
4261 return ret;
4262 }
4263
4264 /*
4265 * unlink helper that gets used here in inode.c and in the tree logging
4266 * recovery code. It remove a link in a directory with a given name, and
4267 * also drops the back refs in the inode to the directory
4268 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len,struct btrfs_rename_ctx * rename_ctx)4269 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4270 struct btrfs_inode *dir,
4271 struct btrfs_inode *inode,
4272 const char *name, int name_len,
4273 struct btrfs_rename_ctx *rename_ctx)
4274 {
4275 struct btrfs_root *root = dir->root;
4276 struct btrfs_fs_info *fs_info = root->fs_info;
4277 struct btrfs_path *path;
4278 int ret = 0;
4279 struct btrfs_dir_item *di;
4280 u64 index;
4281 u64 ino = btrfs_ino(inode);
4282 u64 dir_ino = btrfs_ino(dir);
4283
4284 path = btrfs_alloc_path();
4285 if (!path) {
4286 ret = -ENOMEM;
4287 goto out;
4288 }
4289
4290 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4291 name, name_len, -1);
4292 if (IS_ERR_OR_NULL(di)) {
4293 ret = di ? PTR_ERR(di) : -ENOENT;
4294 goto err;
4295 }
4296 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4297 if (ret)
4298 goto err;
4299 btrfs_release_path(path);
4300
4301 /*
4302 * If we don't have dir index, we have to get it by looking up
4303 * the inode ref, since we get the inode ref, remove it directly,
4304 * it is unnecessary to do delayed deletion.
4305 *
4306 * But if we have dir index, needn't search inode ref to get it.
4307 * Since the inode ref is close to the inode item, it is better
4308 * that we delay to delete it, and just do this deletion when
4309 * we update the inode item.
4310 */
4311 if (inode->dir_index) {
4312 ret = btrfs_delayed_delete_inode_ref(inode);
4313 if (!ret) {
4314 index = inode->dir_index;
4315 goto skip_backref;
4316 }
4317 }
4318
4319 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4320 dir_ino, &index);
4321 if (ret) {
4322 btrfs_info(fs_info,
4323 "failed to delete reference to %.*s, inode %llu parent %llu",
4324 name_len, name, ino, dir_ino);
4325 btrfs_abort_transaction(trans, ret);
4326 goto err;
4327 }
4328 skip_backref:
4329 if (rename_ctx)
4330 rename_ctx->index = index;
4331
4332 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4333 if (ret) {
4334 btrfs_abort_transaction(trans, ret);
4335 goto err;
4336 }
4337
4338 /*
4339 * If we are in a rename context, we don't need to update anything in the
4340 * log. That will be done later during the rename by btrfs_log_new_name().
4341 * Besides that, doing it here would only cause extra unncessary btree
4342 * operations on the log tree, increasing latency for applications.
4343 */
4344 if (!rename_ctx) {
4345 btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4346 dir_ino);
4347 btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4348 index);
4349 }
4350
4351 /*
4352 * If we have a pending delayed iput we could end up with the final iput
4353 * being run in btrfs-cleaner context. If we have enough of these built
4354 * up we can end up burning a lot of time in btrfs-cleaner without any
4355 * way to throttle the unlinks. Since we're currently holding a ref on
4356 * the inode we can run the delayed iput here without any issues as the
4357 * final iput won't be done until after we drop the ref we're currently
4358 * holding.
4359 */
4360 btrfs_run_delayed_iput(fs_info, inode);
4361 err:
4362 btrfs_free_path(path);
4363 if (ret)
4364 goto out;
4365
4366 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4367 inode_inc_iversion(&inode->vfs_inode);
4368 inode_inc_iversion(&dir->vfs_inode);
4369 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4370 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4371 ret = btrfs_update_inode(trans, root, dir);
4372 out:
4373 return ret;
4374 }
4375
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4376 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4377 struct btrfs_inode *dir, struct btrfs_inode *inode,
4378 const char *name, int name_len)
4379 {
4380 int ret;
4381 ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL);
4382 if (!ret) {
4383 drop_nlink(&inode->vfs_inode);
4384 ret = btrfs_update_inode(trans, inode->root, inode);
4385 }
4386 return ret;
4387 }
4388
4389 /*
4390 * helper to start transaction for unlink and rmdir.
4391 *
4392 * unlink and rmdir are special in btrfs, they do not always free space, so
4393 * if we cannot make our reservations the normal way try and see if there is
4394 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4395 * allow the unlink to occur.
4396 */
__unlink_start_trans(struct inode * dir)4397 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4398 {
4399 struct btrfs_root *root = BTRFS_I(dir)->root;
4400
4401 /*
4402 * 1 for the possible orphan item
4403 * 1 for the dir item
4404 * 1 for the dir index
4405 * 1 for the inode ref
4406 * 1 for the inode
4407 * 1 for the parent inode
4408 */
4409 return btrfs_start_transaction_fallback_global_rsv(root, 6);
4410 }
4411
btrfs_unlink(struct inode * dir,struct dentry * dentry)4412 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4413 {
4414 struct btrfs_trans_handle *trans;
4415 struct inode *inode = d_inode(dentry);
4416 int ret;
4417
4418 trans = __unlink_start_trans(dir);
4419 if (IS_ERR(trans))
4420 return PTR_ERR(trans);
4421
4422 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4423 0);
4424
4425 ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4426 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4427 dentry->d_name.len);
4428 if (ret)
4429 goto out;
4430
4431 if (inode->i_nlink == 0) {
4432 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4433 if (ret)
4434 goto out;
4435 }
4436
4437 out:
4438 btrfs_end_transaction(trans);
4439 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4440 return ret;
4441 }
4442
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)4443 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4444 struct inode *dir, struct dentry *dentry)
4445 {
4446 struct btrfs_root *root = BTRFS_I(dir)->root;
4447 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4448 struct btrfs_path *path;
4449 struct extent_buffer *leaf;
4450 struct btrfs_dir_item *di;
4451 struct btrfs_key key;
4452 const char *name = dentry->d_name.name;
4453 int name_len = dentry->d_name.len;
4454 u64 index;
4455 int ret;
4456 u64 objectid;
4457 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4458
4459 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4460 objectid = inode->root->root_key.objectid;
4461 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4462 objectid = inode->location.objectid;
4463 } else {
4464 WARN_ON(1);
4465 return -EINVAL;
4466 }
4467
4468 path = btrfs_alloc_path();
4469 if (!path)
4470 return -ENOMEM;
4471
4472 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4473 name, name_len, -1);
4474 if (IS_ERR_OR_NULL(di)) {
4475 ret = di ? PTR_ERR(di) : -ENOENT;
4476 goto out;
4477 }
4478
4479 leaf = path->nodes[0];
4480 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4481 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4482 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4483 if (ret) {
4484 btrfs_abort_transaction(trans, ret);
4485 goto out;
4486 }
4487 btrfs_release_path(path);
4488
4489 /*
4490 * This is a placeholder inode for a subvolume we didn't have a
4491 * reference to at the time of the snapshot creation. In the meantime
4492 * we could have renamed the real subvol link into our snapshot, so
4493 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4494 * Instead simply lookup the dir_index_item for this entry so we can
4495 * remove it. Otherwise we know we have a ref to the root and we can
4496 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4497 */
4498 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4499 di = btrfs_search_dir_index_item(root, path, dir_ino,
4500 name, name_len);
4501 if (IS_ERR_OR_NULL(di)) {
4502 if (!di)
4503 ret = -ENOENT;
4504 else
4505 ret = PTR_ERR(di);
4506 btrfs_abort_transaction(trans, ret);
4507 goto out;
4508 }
4509
4510 leaf = path->nodes[0];
4511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4512 index = key.offset;
4513 btrfs_release_path(path);
4514 } else {
4515 ret = btrfs_del_root_ref(trans, objectid,
4516 root->root_key.objectid, dir_ino,
4517 &index, name, name_len);
4518 if (ret) {
4519 btrfs_abort_transaction(trans, ret);
4520 goto out;
4521 }
4522 }
4523
4524 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4525 if (ret) {
4526 btrfs_abort_transaction(trans, ret);
4527 goto out;
4528 }
4529
4530 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4531 inode_inc_iversion(dir);
4532 dir->i_mtime = dir->i_ctime = current_time(dir);
4533 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4534 if (ret)
4535 btrfs_abort_transaction(trans, ret);
4536 out:
4537 btrfs_free_path(path);
4538 return ret;
4539 }
4540
4541 /*
4542 * Helper to check if the subvolume references other subvolumes or if it's
4543 * default.
4544 */
may_destroy_subvol(struct btrfs_root * root)4545 static noinline int may_destroy_subvol(struct btrfs_root *root)
4546 {
4547 struct btrfs_fs_info *fs_info = root->fs_info;
4548 struct btrfs_path *path;
4549 struct btrfs_dir_item *di;
4550 struct btrfs_key key;
4551 u64 dir_id;
4552 int ret;
4553
4554 path = btrfs_alloc_path();
4555 if (!path)
4556 return -ENOMEM;
4557
4558 /* Make sure this root isn't set as the default subvol */
4559 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4560 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4561 dir_id, "default", 7, 0);
4562 if (di && !IS_ERR(di)) {
4563 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4564 if (key.objectid == root->root_key.objectid) {
4565 ret = -EPERM;
4566 btrfs_err(fs_info,
4567 "deleting default subvolume %llu is not allowed",
4568 key.objectid);
4569 goto out;
4570 }
4571 btrfs_release_path(path);
4572 }
4573
4574 key.objectid = root->root_key.objectid;
4575 key.type = BTRFS_ROOT_REF_KEY;
4576 key.offset = (u64)-1;
4577
4578 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4579 if (ret < 0)
4580 goto out;
4581 BUG_ON(ret == 0);
4582
4583 ret = 0;
4584 if (path->slots[0] > 0) {
4585 path->slots[0]--;
4586 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4587 if (key.objectid == root->root_key.objectid &&
4588 key.type == BTRFS_ROOT_REF_KEY)
4589 ret = -ENOTEMPTY;
4590 }
4591 out:
4592 btrfs_free_path(path);
4593 return ret;
4594 }
4595
4596 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4597 static void btrfs_prune_dentries(struct btrfs_root *root)
4598 {
4599 struct btrfs_fs_info *fs_info = root->fs_info;
4600 struct rb_node *node;
4601 struct rb_node *prev;
4602 struct btrfs_inode *entry;
4603 struct inode *inode;
4604 u64 objectid = 0;
4605
4606 if (!BTRFS_FS_ERROR(fs_info))
4607 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4608
4609 spin_lock(&root->inode_lock);
4610 again:
4611 node = root->inode_tree.rb_node;
4612 prev = NULL;
4613 while (node) {
4614 prev = node;
4615 entry = rb_entry(node, struct btrfs_inode, rb_node);
4616
4617 if (objectid < btrfs_ino(entry))
4618 node = node->rb_left;
4619 else if (objectid > btrfs_ino(entry))
4620 node = node->rb_right;
4621 else
4622 break;
4623 }
4624 if (!node) {
4625 while (prev) {
4626 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4627 if (objectid <= btrfs_ino(entry)) {
4628 node = prev;
4629 break;
4630 }
4631 prev = rb_next(prev);
4632 }
4633 }
4634 while (node) {
4635 entry = rb_entry(node, struct btrfs_inode, rb_node);
4636 objectid = btrfs_ino(entry) + 1;
4637 inode = igrab(&entry->vfs_inode);
4638 if (inode) {
4639 spin_unlock(&root->inode_lock);
4640 if (atomic_read(&inode->i_count) > 1)
4641 d_prune_aliases(inode);
4642 /*
4643 * btrfs_drop_inode will have it removed from the inode
4644 * cache when its usage count hits zero.
4645 */
4646 iput(inode);
4647 cond_resched();
4648 spin_lock(&root->inode_lock);
4649 goto again;
4650 }
4651
4652 if (cond_resched_lock(&root->inode_lock))
4653 goto again;
4654
4655 node = rb_next(node);
4656 }
4657 spin_unlock(&root->inode_lock);
4658 }
4659
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4660 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4661 {
4662 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4663 struct btrfs_root *root = BTRFS_I(dir)->root;
4664 struct inode *inode = d_inode(dentry);
4665 struct btrfs_root *dest = BTRFS_I(inode)->root;
4666 struct btrfs_trans_handle *trans;
4667 struct btrfs_block_rsv block_rsv;
4668 u64 root_flags;
4669 int ret;
4670
4671 /*
4672 * Don't allow to delete a subvolume with send in progress. This is
4673 * inside the inode lock so the error handling that has to drop the bit
4674 * again is not run concurrently.
4675 */
4676 spin_lock(&dest->root_item_lock);
4677 if (dest->send_in_progress) {
4678 spin_unlock(&dest->root_item_lock);
4679 btrfs_warn(fs_info,
4680 "attempt to delete subvolume %llu during send",
4681 dest->root_key.objectid);
4682 return -EPERM;
4683 }
4684 if (atomic_read(&dest->nr_swapfiles)) {
4685 spin_unlock(&dest->root_item_lock);
4686 btrfs_warn(fs_info,
4687 "attempt to delete subvolume %llu with active swapfile",
4688 root->root_key.objectid);
4689 return -EPERM;
4690 }
4691 root_flags = btrfs_root_flags(&dest->root_item);
4692 btrfs_set_root_flags(&dest->root_item,
4693 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4694 spin_unlock(&dest->root_item_lock);
4695
4696 down_write(&fs_info->subvol_sem);
4697
4698 ret = may_destroy_subvol(dest);
4699 if (ret)
4700 goto out_up_write;
4701
4702 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4703 /*
4704 * One for dir inode,
4705 * two for dir entries,
4706 * two for root ref/backref.
4707 */
4708 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4709 if (ret)
4710 goto out_up_write;
4711
4712 trans = btrfs_start_transaction(root, 0);
4713 if (IS_ERR(trans)) {
4714 ret = PTR_ERR(trans);
4715 goto out_release;
4716 }
4717 trans->block_rsv = &block_rsv;
4718 trans->bytes_reserved = block_rsv.size;
4719
4720 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4721
4722 ret = btrfs_unlink_subvol(trans, dir, dentry);
4723 if (ret) {
4724 btrfs_abort_transaction(trans, ret);
4725 goto out_end_trans;
4726 }
4727
4728 ret = btrfs_record_root_in_trans(trans, dest);
4729 if (ret) {
4730 btrfs_abort_transaction(trans, ret);
4731 goto out_end_trans;
4732 }
4733
4734 memset(&dest->root_item.drop_progress, 0,
4735 sizeof(dest->root_item.drop_progress));
4736 btrfs_set_root_drop_level(&dest->root_item, 0);
4737 btrfs_set_root_refs(&dest->root_item, 0);
4738
4739 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4740 ret = btrfs_insert_orphan_item(trans,
4741 fs_info->tree_root,
4742 dest->root_key.objectid);
4743 if (ret) {
4744 btrfs_abort_transaction(trans, ret);
4745 goto out_end_trans;
4746 }
4747 }
4748
4749 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4750 BTRFS_UUID_KEY_SUBVOL,
4751 dest->root_key.objectid);
4752 if (ret && ret != -ENOENT) {
4753 btrfs_abort_transaction(trans, ret);
4754 goto out_end_trans;
4755 }
4756 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4757 ret = btrfs_uuid_tree_remove(trans,
4758 dest->root_item.received_uuid,
4759 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4760 dest->root_key.objectid);
4761 if (ret && ret != -ENOENT) {
4762 btrfs_abort_transaction(trans, ret);
4763 goto out_end_trans;
4764 }
4765 }
4766
4767 free_anon_bdev(dest->anon_dev);
4768 dest->anon_dev = 0;
4769 out_end_trans:
4770 trans->block_rsv = NULL;
4771 trans->bytes_reserved = 0;
4772 ret = btrfs_end_transaction(trans);
4773 inode->i_flags |= S_DEAD;
4774 out_release:
4775 btrfs_subvolume_release_metadata(root, &block_rsv);
4776 out_up_write:
4777 up_write(&fs_info->subvol_sem);
4778 if (ret) {
4779 spin_lock(&dest->root_item_lock);
4780 root_flags = btrfs_root_flags(&dest->root_item);
4781 btrfs_set_root_flags(&dest->root_item,
4782 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4783 spin_unlock(&dest->root_item_lock);
4784 } else {
4785 d_invalidate(dentry);
4786 btrfs_prune_dentries(dest);
4787 ASSERT(dest->send_in_progress == 0);
4788 }
4789
4790 return ret;
4791 }
4792
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4793 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4794 {
4795 struct inode *inode = d_inode(dentry);
4796 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4797 int err = 0;
4798 struct btrfs_trans_handle *trans;
4799 u64 last_unlink_trans;
4800
4801 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4802 return -ENOTEMPTY;
4803 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4804 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4805 btrfs_err(fs_info,
4806 "extent tree v2 doesn't support snapshot deletion yet");
4807 return -EOPNOTSUPP;
4808 }
4809 return btrfs_delete_subvolume(dir, dentry);
4810 }
4811
4812 trans = __unlink_start_trans(dir);
4813 if (IS_ERR(trans))
4814 return PTR_ERR(trans);
4815
4816 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4817 err = btrfs_unlink_subvol(trans, dir, dentry);
4818 goto out;
4819 }
4820
4821 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4822 if (err)
4823 goto out;
4824
4825 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4826
4827 /* now the directory is empty */
4828 err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4829 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4830 dentry->d_name.len);
4831 if (!err) {
4832 btrfs_i_size_write(BTRFS_I(inode), 0);
4833 /*
4834 * Propagate the last_unlink_trans value of the deleted dir to
4835 * its parent directory. This is to prevent an unrecoverable
4836 * log tree in the case we do something like this:
4837 * 1) create dir foo
4838 * 2) create snapshot under dir foo
4839 * 3) delete the snapshot
4840 * 4) rmdir foo
4841 * 5) mkdir foo
4842 * 6) fsync foo or some file inside foo
4843 */
4844 if (last_unlink_trans >= trans->transid)
4845 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4846 }
4847 out:
4848 btrfs_end_transaction(trans);
4849 btrfs_btree_balance_dirty(fs_info);
4850
4851 return err;
4852 }
4853
4854 /*
4855 * btrfs_truncate_block - read, zero a chunk and write a block
4856 * @inode - inode that we're zeroing
4857 * @from - the offset to start zeroing
4858 * @len - the length to zero, 0 to zero the entire range respective to the
4859 * offset
4860 * @front - zero up to the offset instead of from the offset on
4861 *
4862 * This will find the block for the "from" offset and cow the block and zero the
4863 * part we want to zero. This is used with truncate and hole punching.
4864 */
btrfs_truncate_block(struct btrfs_inode * inode,loff_t from,loff_t len,int front)4865 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4866 int front)
4867 {
4868 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4869 struct address_space *mapping = inode->vfs_inode.i_mapping;
4870 struct extent_io_tree *io_tree = &inode->io_tree;
4871 struct btrfs_ordered_extent *ordered;
4872 struct extent_state *cached_state = NULL;
4873 struct extent_changeset *data_reserved = NULL;
4874 bool only_release_metadata = false;
4875 u32 blocksize = fs_info->sectorsize;
4876 pgoff_t index = from >> PAGE_SHIFT;
4877 unsigned offset = from & (blocksize - 1);
4878 struct page *page;
4879 gfp_t mask = btrfs_alloc_write_mask(mapping);
4880 size_t write_bytes = blocksize;
4881 int ret = 0;
4882 u64 block_start;
4883 u64 block_end;
4884
4885 if (IS_ALIGNED(offset, blocksize) &&
4886 (!len || IS_ALIGNED(len, blocksize)))
4887 goto out;
4888
4889 block_start = round_down(from, blocksize);
4890 block_end = block_start + blocksize - 1;
4891
4892 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4893 blocksize);
4894 if (ret < 0) {
4895 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4896 /* For nocow case, no need to reserve data space */
4897 only_release_metadata = true;
4898 } else {
4899 goto out;
4900 }
4901 }
4902 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4903 if (ret < 0) {
4904 if (!only_release_metadata)
4905 btrfs_free_reserved_data_space(inode, data_reserved,
4906 block_start, blocksize);
4907 goto out;
4908 }
4909 again:
4910 page = find_or_create_page(mapping, index, mask);
4911 if (!page) {
4912 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4913 blocksize, true);
4914 btrfs_delalloc_release_extents(inode, blocksize);
4915 ret = -ENOMEM;
4916 goto out;
4917 }
4918 ret = set_page_extent_mapped(page);
4919 if (ret < 0)
4920 goto out_unlock;
4921
4922 if (!PageUptodate(page)) {
4923 ret = btrfs_read_folio(NULL, page_folio(page));
4924 lock_page(page);
4925 if (page->mapping != mapping) {
4926 unlock_page(page);
4927 put_page(page);
4928 goto again;
4929 }
4930 if (!PageUptodate(page)) {
4931 ret = -EIO;
4932 goto out_unlock;
4933 }
4934 }
4935 wait_on_page_writeback(page);
4936
4937 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4938
4939 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4940 if (ordered) {
4941 unlock_extent_cached(io_tree, block_start, block_end,
4942 &cached_state);
4943 unlock_page(page);
4944 put_page(page);
4945 btrfs_start_ordered_extent(ordered, 1);
4946 btrfs_put_ordered_extent(ordered);
4947 goto again;
4948 }
4949
4950 clear_extent_bit(&inode->io_tree, block_start, block_end,
4951 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4952 0, 0, &cached_state);
4953
4954 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4955 &cached_state);
4956 if (ret) {
4957 unlock_extent_cached(io_tree, block_start, block_end,
4958 &cached_state);
4959 goto out_unlock;
4960 }
4961
4962 if (offset != blocksize) {
4963 if (!len)
4964 len = blocksize - offset;
4965 if (front)
4966 memzero_page(page, (block_start - page_offset(page)),
4967 offset);
4968 else
4969 memzero_page(page, (block_start - page_offset(page)) + offset,
4970 len);
4971 flush_dcache_page(page);
4972 }
4973 btrfs_page_clear_checked(fs_info, page, block_start,
4974 block_end + 1 - block_start);
4975 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4976 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4977
4978 if (only_release_metadata)
4979 set_extent_bit(&inode->io_tree, block_start, block_end,
4980 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4981
4982 out_unlock:
4983 if (ret) {
4984 if (only_release_metadata)
4985 btrfs_delalloc_release_metadata(inode, blocksize, true);
4986 else
4987 btrfs_delalloc_release_space(inode, data_reserved,
4988 block_start, blocksize, true);
4989 }
4990 btrfs_delalloc_release_extents(inode, blocksize);
4991 unlock_page(page);
4992 put_page(page);
4993 out:
4994 if (only_release_metadata)
4995 btrfs_check_nocow_unlock(inode);
4996 extent_changeset_free(data_reserved);
4997 return ret;
4998 }
4999
maybe_insert_hole(struct btrfs_root * root,struct btrfs_inode * inode,u64 offset,u64 len)5000 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
5001 u64 offset, u64 len)
5002 {
5003 struct btrfs_fs_info *fs_info = root->fs_info;
5004 struct btrfs_trans_handle *trans;
5005 struct btrfs_drop_extents_args drop_args = { 0 };
5006 int ret;
5007
5008 /*
5009 * If NO_HOLES is enabled, we don't need to do anything.
5010 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5011 * or btrfs_update_inode() will be called, which guarantee that the next
5012 * fsync will know this inode was changed and needs to be logged.
5013 */
5014 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5015 return 0;
5016
5017 /*
5018 * 1 - for the one we're dropping
5019 * 1 - for the one we're adding
5020 * 1 - for updating the inode.
5021 */
5022 trans = btrfs_start_transaction(root, 3);
5023 if (IS_ERR(trans))
5024 return PTR_ERR(trans);
5025
5026 drop_args.start = offset;
5027 drop_args.end = offset + len;
5028 drop_args.drop_cache = true;
5029
5030 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5031 if (ret) {
5032 btrfs_abort_transaction(trans, ret);
5033 btrfs_end_transaction(trans);
5034 return ret;
5035 }
5036
5037 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
5038 offset, 0, 0, len, 0, len, 0, 0, 0);
5039 if (ret) {
5040 btrfs_abort_transaction(trans, ret);
5041 } else {
5042 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5043 btrfs_update_inode(trans, root, inode);
5044 }
5045 btrfs_end_transaction(trans);
5046 return ret;
5047 }
5048
5049 /*
5050 * This function puts in dummy file extents for the area we're creating a hole
5051 * for. So if we are truncating this file to a larger size we need to insert
5052 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5053 * the range between oldsize and size
5054 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5055 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5056 {
5057 struct btrfs_root *root = inode->root;
5058 struct btrfs_fs_info *fs_info = root->fs_info;
5059 struct extent_io_tree *io_tree = &inode->io_tree;
5060 struct extent_map *em = NULL;
5061 struct extent_state *cached_state = NULL;
5062 struct extent_map_tree *em_tree = &inode->extent_tree;
5063 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5064 u64 block_end = ALIGN(size, fs_info->sectorsize);
5065 u64 last_byte;
5066 u64 cur_offset;
5067 u64 hole_size;
5068 int err = 0;
5069
5070 /*
5071 * If our size started in the middle of a block we need to zero out the
5072 * rest of the block before we expand the i_size, otherwise we could
5073 * expose stale data.
5074 */
5075 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5076 if (err)
5077 return err;
5078
5079 if (size <= hole_start)
5080 return 0;
5081
5082 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5083 &cached_state);
5084 cur_offset = hole_start;
5085 while (1) {
5086 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5087 block_end - cur_offset);
5088 if (IS_ERR(em)) {
5089 err = PTR_ERR(em);
5090 em = NULL;
5091 break;
5092 }
5093 last_byte = min(extent_map_end(em), block_end);
5094 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5095 hole_size = last_byte - cur_offset;
5096
5097 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5098 struct extent_map *hole_em;
5099
5100 err = maybe_insert_hole(root, inode, cur_offset,
5101 hole_size);
5102 if (err)
5103 break;
5104
5105 err = btrfs_inode_set_file_extent_range(inode,
5106 cur_offset, hole_size);
5107 if (err)
5108 break;
5109
5110 btrfs_drop_extent_cache(inode, cur_offset,
5111 cur_offset + hole_size - 1, 0);
5112 hole_em = alloc_extent_map();
5113 if (!hole_em) {
5114 btrfs_set_inode_full_sync(inode);
5115 goto next;
5116 }
5117 hole_em->start = cur_offset;
5118 hole_em->len = hole_size;
5119 hole_em->orig_start = cur_offset;
5120
5121 hole_em->block_start = EXTENT_MAP_HOLE;
5122 hole_em->block_len = 0;
5123 hole_em->orig_block_len = 0;
5124 hole_em->ram_bytes = hole_size;
5125 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5126 hole_em->generation = fs_info->generation;
5127
5128 while (1) {
5129 write_lock(&em_tree->lock);
5130 err = add_extent_mapping(em_tree, hole_em, 1);
5131 write_unlock(&em_tree->lock);
5132 if (err != -EEXIST)
5133 break;
5134 btrfs_drop_extent_cache(inode, cur_offset,
5135 cur_offset +
5136 hole_size - 1, 0);
5137 }
5138 free_extent_map(hole_em);
5139 } else {
5140 err = btrfs_inode_set_file_extent_range(inode,
5141 cur_offset, hole_size);
5142 if (err)
5143 break;
5144 }
5145 next:
5146 free_extent_map(em);
5147 em = NULL;
5148 cur_offset = last_byte;
5149 if (cur_offset >= block_end)
5150 break;
5151 }
5152 free_extent_map(em);
5153 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5154 return err;
5155 }
5156
btrfs_setsize(struct inode * inode,struct iattr * attr)5157 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5158 {
5159 struct btrfs_root *root = BTRFS_I(inode)->root;
5160 struct btrfs_trans_handle *trans;
5161 loff_t oldsize = i_size_read(inode);
5162 loff_t newsize = attr->ia_size;
5163 int mask = attr->ia_valid;
5164 int ret;
5165
5166 /*
5167 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5168 * special case where we need to update the times despite not having
5169 * these flags set. For all other operations the VFS set these flags
5170 * explicitly if it wants a timestamp update.
5171 */
5172 if (newsize != oldsize) {
5173 inode_inc_iversion(inode);
5174 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5175 inode->i_ctime = inode->i_mtime =
5176 current_time(inode);
5177 }
5178
5179 if (newsize > oldsize) {
5180 /*
5181 * Don't do an expanding truncate while snapshotting is ongoing.
5182 * This is to ensure the snapshot captures a fully consistent
5183 * state of this file - if the snapshot captures this expanding
5184 * truncation, it must capture all writes that happened before
5185 * this truncation.
5186 */
5187 btrfs_drew_write_lock(&root->snapshot_lock);
5188 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5189 if (ret) {
5190 btrfs_drew_write_unlock(&root->snapshot_lock);
5191 return ret;
5192 }
5193
5194 trans = btrfs_start_transaction(root, 1);
5195 if (IS_ERR(trans)) {
5196 btrfs_drew_write_unlock(&root->snapshot_lock);
5197 return PTR_ERR(trans);
5198 }
5199
5200 i_size_write(inode, newsize);
5201 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5202 pagecache_isize_extended(inode, oldsize, newsize);
5203 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5204 btrfs_drew_write_unlock(&root->snapshot_lock);
5205 btrfs_end_transaction(trans);
5206 } else {
5207 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5208
5209 if (btrfs_is_zoned(fs_info)) {
5210 ret = btrfs_wait_ordered_range(inode,
5211 ALIGN(newsize, fs_info->sectorsize),
5212 (u64)-1);
5213 if (ret)
5214 return ret;
5215 }
5216
5217 /*
5218 * We're truncating a file that used to have good data down to
5219 * zero. Make sure any new writes to the file get on disk
5220 * on close.
5221 */
5222 if (newsize == 0)
5223 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5224 &BTRFS_I(inode)->runtime_flags);
5225
5226 truncate_setsize(inode, newsize);
5227
5228 inode_dio_wait(inode);
5229
5230 ret = btrfs_truncate(inode, newsize == oldsize);
5231 if (ret && inode->i_nlink) {
5232 int err;
5233
5234 /*
5235 * Truncate failed, so fix up the in-memory size. We
5236 * adjusted disk_i_size down as we removed extents, so
5237 * wait for disk_i_size to be stable and then update the
5238 * in-memory size to match.
5239 */
5240 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5241 if (err)
5242 return err;
5243 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5244 }
5245 }
5246
5247 return ret;
5248 }
5249
btrfs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)5250 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5251 struct iattr *attr)
5252 {
5253 struct inode *inode = d_inode(dentry);
5254 struct btrfs_root *root = BTRFS_I(inode)->root;
5255 int err;
5256
5257 if (btrfs_root_readonly(root))
5258 return -EROFS;
5259
5260 err = setattr_prepare(mnt_userns, dentry, attr);
5261 if (err)
5262 return err;
5263
5264 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5265 err = btrfs_setsize(inode, attr);
5266 if (err)
5267 return err;
5268 }
5269
5270 if (attr->ia_valid) {
5271 setattr_copy(mnt_userns, inode, attr);
5272 inode_inc_iversion(inode);
5273 err = btrfs_dirty_inode(inode);
5274
5275 if (!err && attr->ia_valid & ATTR_MODE)
5276 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5277 }
5278
5279 return err;
5280 }
5281
5282 /*
5283 * While truncating the inode pages during eviction, we get the VFS
5284 * calling btrfs_invalidate_folio() against each folio of the inode. This
5285 * is slow because the calls to btrfs_invalidate_folio() result in a
5286 * huge amount of calls to lock_extent_bits() and clear_extent_bit(),
5287 * which keep merging and splitting extent_state structures over and over,
5288 * wasting lots of time.
5289 *
5290 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5291 * skip all those expensive operations on a per folio basis and do only
5292 * the ordered io finishing, while we release here the extent_map and
5293 * extent_state structures, without the excessive merging and splitting.
5294 */
evict_inode_truncate_pages(struct inode * inode)5295 static void evict_inode_truncate_pages(struct inode *inode)
5296 {
5297 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5298 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5299 struct rb_node *node;
5300
5301 ASSERT(inode->i_state & I_FREEING);
5302 truncate_inode_pages_final(&inode->i_data);
5303
5304 write_lock(&map_tree->lock);
5305 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5306 struct extent_map *em;
5307
5308 node = rb_first_cached(&map_tree->map);
5309 em = rb_entry(node, struct extent_map, rb_node);
5310 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5311 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5312 remove_extent_mapping(map_tree, em);
5313 free_extent_map(em);
5314 if (need_resched()) {
5315 write_unlock(&map_tree->lock);
5316 cond_resched();
5317 write_lock(&map_tree->lock);
5318 }
5319 }
5320 write_unlock(&map_tree->lock);
5321
5322 /*
5323 * Keep looping until we have no more ranges in the io tree.
5324 * We can have ongoing bios started by readahead that have
5325 * their endio callback (extent_io.c:end_bio_extent_readpage)
5326 * still in progress (unlocked the pages in the bio but did not yet
5327 * unlocked the ranges in the io tree). Therefore this means some
5328 * ranges can still be locked and eviction started because before
5329 * submitting those bios, which are executed by a separate task (work
5330 * queue kthread), inode references (inode->i_count) were not taken
5331 * (which would be dropped in the end io callback of each bio).
5332 * Therefore here we effectively end up waiting for those bios and
5333 * anyone else holding locked ranges without having bumped the inode's
5334 * reference count - if we don't do it, when they access the inode's
5335 * io_tree to unlock a range it may be too late, leading to an
5336 * use-after-free issue.
5337 */
5338 spin_lock(&io_tree->lock);
5339 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5340 struct extent_state *state;
5341 struct extent_state *cached_state = NULL;
5342 u64 start;
5343 u64 end;
5344 unsigned state_flags;
5345
5346 node = rb_first(&io_tree->state);
5347 state = rb_entry(node, struct extent_state, rb_node);
5348 start = state->start;
5349 end = state->end;
5350 state_flags = state->state;
5351 spin_unlock(&io_tree->lock);
5352
5353 lock_extent_bits(io_tree, start, end, &cached_state);
5354
5355 /*
5356 * If still has DELALLOC flag, the extent didn't reach disk,
5357 * and its reserved space won't be freed by delayed_ref.
5358 * So we need to free its reserved space here.
5359 * (Refer to comment in btrfs_invalidate_folio, case 2)
5360 *
5361 * Note, end is the bytenr of last byte, so we need + 1 here.
5362 */
5363 if (state_flags & EXTENT_DELALLOC)
5364 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5365 end - start + 1);
5366
5367 clear_extent_bit(io_tree, start, end,
5368 EXTENT_LOCKED | EXTENT_DELALLOC |
5369 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5370 &cached_state);
5371
5372 cond_resched();
5373 spin_lock(&io_tree->lock);
5374 }
5375 spin_unlock(&io_tree->lock);
5376 }
5377
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5378 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5379 struct btrfs_block_rsv *rsv)
5380 {
5381 struct btrfs_fs_info *fs_info = root->fs_info;
5382 struct btrfs_trans_handle *trans;
5383 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5384 int ret;
5385
5386 /*
5387 * Eviction should be taking place at some place safe because of our
5388 * delayed iputs. However the normal flushing code will run delayed
5389 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5390 *
5391 * We reserve the delayed_refs_extra here again because we can't use
5392 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5393 * above. We reserve our extra bit here because we generate a ton of
5394 * delayed refs activity by truncating.
5395 *
5396 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5397 * if we fail to make this reservation we can re-try without the
5398 * delayed_refs_extra so we can make some forward progress.
5399 */
5400 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5401 BTRFS_RESERVE_FLUSH_EVICT);
5402 if (ret) {
5403 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5404 BTRFS_RESERVE_FLUSH_EVICT);
5405 if (ret) {
5406 btrfs_warn(fs_info,
5407 "could not allocate space for delete; will truncate on mount");
5408 return ERR_PTR(-ENOSPC);
5409 }
5410 delayed_refs_extra = 0;
5411 }
5412
5413 trans = btrfs_join_transaction(root);
5414 if (IS_ERR(trans))
5415 return trans;
5416
5417 if (delayed_refs_extra) {
5418 trans->block_rsv = &fs_info->trans_block_rsv;
5419 trans->bytes_reserved = delayed_refs_extra;
5420 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5421 delayed_refs_extra, 1);
5422 }
5423 return trans;
5424 }
5425
btrfs_evict_inode(struct inode * inode)5426 void btrfs_evict_inode(struct inode *inode)
5427 {
5428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5429 struct btrfs_trans_handle *trans;
5430 struct btrfs_root *root = BTRFS_I(inode)->root;
5431 struct btrfs_block_rsv *rsv;
5432 int ret;
5433
5434 trace_btrfs_inode_evict(inode);
5435
5436 if (!root) {
5437 fsverity_cleanup_inode(inode);
5438 clear_inode(inode);
5439 return;
5440 }
5441
5442 evict_inode_truncate_pages(inode);
5443
5444 if (inode->i_nlink &&
5445 ((btrfs_root_refs(&root->root_item) != 0 &&
5446 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5447 btrfs_is_free_space_inode(BTRFS_I(inode))))
5448 goto no_delete;
5449
5450 if (is_bad_inode(inode))
5451 goto no_delete;
5452
5453 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5454
5455 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5456 goto no_delete;
5457
5458 if (inode->i_nlink > 0) {
5459 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5460 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5461 goto no_delete;
5462 }
5463
5464 /*
5465 * This makes sure the inode item in tree is uptodate and the space for
5466 * the inode update is released.
5467 */
5468 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5469 if (ret)
5470 goto no_delete;
5471
5472 /*
5473 * This drops any pending insert or delete operations we have for this
5474 * inode. We could have a delayed dir index deletion queued up, but
5475 * we're removing the inode completely so that'll be taken care of in
5476 * the truncate.
5477 */
5478 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5479
5480 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5481 if (!rsv)
5482 goto no_delete;
5483 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5484 rsv->failfast = 1;
5485
5486 btrfs_i_size_write(BTRFS_I(inode), 0);
5487
5488 while (1) {
5489 struct btrfs_truncate_control control = {
5490 .inode = BTRFS_I(inode),
5491 .ino = btrfs_ino(BTRFS_I(inode)),
5492 .new_size = 0,
5493 .min_type = 0,
5494 };
5495
5496 trans = evict_refill_and_join(root, rsv);
5497 if (IS_ERR(trans))
5498 goto free_rsv;
5499
5500 trans->block_rsv = rsv;
5501
5502 ret = btrfs_truncate_inode_items(trans, root, &control);
5503 trans->block_rsv = &fs_info->trans_block_rsv;
5504 btrfs_end_transaction(trans);
5505 btrfs_btree_balance_dirty(fs_info);
5506 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5507 goto free_rsv;
5508 else if (!ret)
5509 break;
5510 }
5511
5512 /*
5513 * Errors here aren't a big deal, it just means we leave orphan items in
5514 * the tree. They will be cleaned up on the next mount. If the inode
5515 * number gets reused, cleanup deletes the orphan item without doing
5516 * anything, and unlink reuses the existing orphan item.
5517 *
5518 * If it turns out that we are dropping too many of these, we might want
5519 * to add a mechanism for retrying these after a commit.
5520 */
5521 trans = evict_refill_and_join(root, rsv);
5522 if (!IS_ERR(trans)) {
5523 trans->block_rsv = rsv;
5524 btrfs_orphan_del(trans, BTRFS_I(inode));
5525 trans->block_rsv = &fs_info->trans_block_rsv;
5526 btrfs_end_transaction(trans);
5527 }
5528
5529 free_rsv:
5530 btrfs_free_block_rsv(fs_info, rsv);
5531 no_delete:
5532 /*
5533 * If we didn't successfully delete, the orphan item will still be in
5534 * the tree and we'll retry on the next mount. Again, we might also want
5535 * to retry these periodically in the future.
5536 */
5537 btrfs_remove_delayed_node(BTRFS_I(inode));
5538 fsverity_cleanup_inode(inode);
5539 clear_inode(inode);
5540 }
5541
5542 /*
5543 * Return the key found in the dir entry in the location pointer, fill @type
5544 * with BTRFS_FT_*, and return 0.
5545 *
5546 * If no dir entries were found, returns -ENOENT.
5547 * If found a corrupted location in dir entry, returns -EUCLEAN.
5548 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5549 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5550 struct btrfs_key *location, u8 *type)
5551 {
5552 const char *name = dentry->d_name.name;
5553 int namelen = dentry->d_name.len;
5554 struct btrfs_dir_item *di;
5555 struct btrfs_path *path;
5556 struct btrfs_root *root = BTRFS_I(dir)->root;
5557 int ret = 0;
5558
5559 path = btrfs_alloc_path();
5560 if (!path)
5561 return -ENOMEM;
5562
5563 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5564 name, namelen, 0);
5565 if (IS_ERR_OR_NULL(di)) {
5566 ret = di ? PTR_ERR(di) : -ENOENT;
5567 goto out;
5568 }
5569
5570 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5571 if (location->type != BTRFS_INODE_ITEM_KEY &&
5572 location->type != BTRFS_ROOT_ITEM_KEY) {
5573 ret = -EUCLEAN;
5574 btrfs_warn(root->fs_info,
5575 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5576 __func__, name, btrfs_ino(BTRFS_I(dir)),
5577 location->objectid, location->type, location->offset);
5578 }
5579 if (!ret)
5580 *type = btrfs_dir_type(path->nodes[0], di);
5581 out:
5582 btrfs_free_path(path);
5583 return ret;
5584 }
5585
5586 /*
5587 * when we hit a tree root in a directory, the btrfs part of the inode
5588 * needs to be changed to reflect the root directory of the tree root. This
5589 * is kind of like crossing a mount point.
5590 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5591 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5592 struct inode *dir,
5593 struct dentry *dentry,
5594 struct btrfs_key *location,
5595 struct btrfs_root **sub_root)
5596 {
5597 struct btrfs_path *path;
5598 struct btrfs_root *new_root;
5599 struct btrfs_root_ref *ref;
5600 struct extent_buffer *leaf;
5601 struct btrfs_key key;
5602 int ret;
5603 int err = 0;
5604
5605 path = btrfs_alloc_path();
5606 if (!path) {
5607 err = -ENOMEM;
5608 goto out;
5609 }
5610
5611 err = -ENOENT;
5612 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5613 key.type = BTRFS_ROOT_REF_KEY;
5614 key.offset = location->objectid;
5615
5616 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5617 if (ret) {
5618 if (ret < 0)
5619 err = ret;
5620 goto out;
5621 }
5622
5623 leaf = path->nodes[0];
5624 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5625 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5626 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5627 goto out;
5628
5629 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5630 (unsigned long)(ref + 1),
5631 dentry->d_name.len);
5632 if (ret)
5633 goto out;
5634
5635 btrfs_release_path(path);
5636
5637 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5638 if (IS_ERR(new_root)) {
5639 err = PTR_ERR(new_root);
5640 goto out;
5641 }
5642
5643 *sub_root = new_root;
5644 location->objectid = btrfs_root_dirid(&new_root->root_item);
5645 location->type = BTRFS_INODE_ITEM_KEY;
5646 location->offset = 0;
5647 err = 0;
5648 out:
5649 btrfs_free_path(path);
5650 return err;
5651 }
5652
inode_tree_add(struct inode * inode)5653 static void inode_tree_add(struct inode *inode)
5654 {
5655 struct btrfs_root *root = BTRFS_I(inode)->root;
5656 struct btrfs_inode *entry;
5657 struct rb_node **p;
5658 struct rb_node *parent;
5659 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5660 u64 ino = btrfs_ino(BTRFS_I(inode));
5661
5662 if (inode_unhashed(inode))
5663 return;
5664 parent = NULL;
5665 spin_lock(&root->inode_lock);
5666 p = &root->inode_tree.rb_node;
5667 while (*p) {
5668 parent = *p;
5669 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5670
5671 if (ino < btrfs_ino(entry))
5672 p = &parent->rb_left;
5673 else if (ino > btrfs_ino(entry))
5674 p = &parent->rb_right;
5675 else {
5676 WARN_ON(!(entry->vfs_inode.i_state &
5677 (I_WILL_FREE | I_FREEING)));
5678 rb_replace_node(parent, new, &root->inode_tree);
5679 RB_CLEAR_NODE(parent);
5680 spin_unlock(&root->inode_lock);
5681 return;
5682 }
5683 }
5684 rb_link_node(new, parent, p);
5685 rb_insert_color(new, &root->inode_tree);
5686 spin_unlock(&root->inode_lock);
5687 }
5688
inode_tree_del(struct btrfs_inode * inode)5689 static void inode_tree_del(struct btrfs_inode *inode)
5690 {
5691 struct btrfs_root *root = inode->root;
5692 int empty = 0;
5693
5694 spin_lock(&root->inode_lock);
5695 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5696 rb_erase(&inode->rb_node, &root->inode_tree);
5697 RB_CLEAR_NODE(&inode->rb_node);
5698 empty = RB_EMPTY_ROOT(&root->inode_tree);
5699 }
5700 spin_unlock(&root->inode_lock);
5701
5702 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5703 spin_lock(&root->inode_lock);
5704 empty = RB_EMPTY_ROOT(&root->inode_tree);
5705 spin_unlock(&root->inode_lock);
5706 if (empty)
5707 btrfs_add_dead_root(root);
5708 }
5709 }
5710
5711
btrfs_init_locked_inode(struct inode * inode,void * p)5712 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5713 {
5714 struct btrfs_iget_args *args = p;
5715
5716 inode->i_ino = args->ino;
5717 BTRFS_I(inode)->location.objectid = args->ino;
5718 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5719 BTRFS_I(inode)->location.offset = 0;
5720 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5721 BUG_ON(args->root && !BTRFS_I(inode)->root);
5722 return 0;
5723 }
5724
btrfs_find_actor(struct inode * inode,void * opaque)5725 static int btrfs_find_actor(struct inode *inode, void *opaque)
5726 {
5727 struct btrfs_iget_args *args = opaque;
5728
5729 return args->ino == BTRFS_I(inode)->location.objectid &&
5730 args->root == BTRFS_I(inode)->root;
5731 }
5732
btrfs_iget_locked(struct super_block * s,u64 ino,struct btrfs_root * root)5733 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5734 struct btrfs_root *root)
5735 {
5736 struct inode *inode;
5737 struct btrfs_iget_args args;
5738 unsigned long hashval = btrfs_inode_hash(ino, root);
5739
5740 args.ino = ino;
5741 args.root = root;
5742
5743 inode = iget5_locked(s, hashval, btrfs_find_actor,
5744 btrfs_init_locked_inode,
5745 (void *)&args);
5746 return inode;
5747 }
5748
5749 /*
5750 * Get an inode object given its inode number and corresponding root.
5751 * Path can be preallocated to prevent recursing back to iget through
5752 * allocator. NULL is also valid but may require an additional allocation
5753 * later.
5754 */
btrfs_iget_path(struct super_block * s,u64 ino,struct btrfs_root * root,struct btrfs_path * path)5755 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5756 struct btrfs_root *root, struct btrfs_path *path)
5757 {
5758 struct inode *inode;
5759
5760 inode = btrfs_iget_locked(s, ino, root);
5761 if (!inode)
5762 return ERR_PTR(-ENOMEM);
5763
5764 if (inode->i_state & I_NEW) {
5765 int ret;
5766
5767 ret = btrfs_read_locked_inode(inode, path);
5768 if (!ret) {
5769 inode_tree_add(inode);
5770 unlock_new_inode(inode);
5771 } else {
5772 iget_failed(inode);
5773 /*
5774 * ret > 0 can come from btrfs_search_slot called by
5775 * btrfs_read_locked_inode, this means the inode item
5776 * was not found.
5777 */
5778 if (ret > 0)
5779 ret = -ENOENT;
5780 inode = ERR_PTR(ret);
5781 }
5782 }
5783
5784 return inode;
5785 }
5786
btrfs_iget(struct super_block * s,u64 ino,struct btrfs_root * root)5787 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5788 {
5789 return btrfs_iget_path(s, ino, root, NULL);
5790 }
5791
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5792 static struct inode *new_simple_dir(struct super_block *s,
5793 struct btrfs_key *key,
5794 struct btrfs_root *root)
5795 {
5796 struct inode *inode = new_inode(s);
5797
5798 if (!inode)
5799 return ERR_PTR(-ENOMEM);
5800
5801 BTRFS_I(inode)->root = btrfs_grab_root(root);
5802 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5803 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5804
5805 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5806 /*
5807 * We only need lookup, the rest is read-only and there's no inode
5808 * associated with the dentry
5809 */
5810 inode->i_op = &simple_dir_inode_operations;
5811 inode->i_opflags &= ~IOP_XATTR;
5812 inode->i_fop = &simple_dir_operations;
5813 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5814 inode->i_mtime = current_time(inode);
5815 inode->i_atime = inode->i_mtime;
5816 inode->i_ctime = inode->i_mtime;
5817 BTRFS_I(inode)->i_otime = inode->i_mtime;
5818
5819 return inode;
5820 }
5821
5822 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5823 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5824 static_assert(BTRFS_FT_DIR == FT_DIR);
5825 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5826 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5827 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5828 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5829 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5830
btrfs_inode_type(struct inode * inode)5831 static inline u8 btrfs_inode_type(struct inode *inode)
5832 {
5833 return fs_umode_to_ftype(inode->i_mode);
5834 }
5835
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5836 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5837 {
5838 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5839 struct inode *inode;
5840 struct btrfs_root *root = BTRFS_I(dir)->root;
5841 struct btrfs_root *sub_root = root;
5842 struct btrfs_key location;
5843 u8 di_type = 0;
5844 int ret = 0;
5845
5846 if (dentry->d_name.len > BTRFS_NAME_LEN)
5847 return ERR_PTR(-ENAMETOOLONG);
5848
5849 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5850 if (ret < 0)
5851 return ERR_PTR(ret);
5852
5853 if (location.type == BTRFS_INODE_ITEM_KEY) {
5854 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5855 if (IS_ERR(inode))
5856 return inode;
5857
5858 /* Do extra check against inode mode with di_type */
5859 if (btrfs_inode_type(inode) != di_type) {
5860 btrfs_crit(fs_info,
5861 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5862 inode->i_mode, btrfs_inode_type(inode),
5863 di_type);
5864 iput(inode);
5865 return ERR_PTR(-EUCLEAN);
5866 }
5867 return inode;
5868 }
5869
5870 ret = fixup_tree_root_location(fs_info, dir, dentry,
5871 &location, &sub_root);
5872 if (ret < 0) {
5873 if (ret != -ENOENT)
5874 inode = ERR_PTR(ret);
5875 else
5876 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5877 } else {
5878 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5879 }
5880 if (root != sub_root)
5881 btrfs_put_root(sub_root);
5882
5883 if (!IS_ERR(inode) && root != sub_root) {
5884 down_read(&fs_info->cleanup_work_sem);
5885 if (!sb_rdonly(inode->i_sb))
5886 ret = btrfs_orphan_cleanup(sub_root);
5887 up_read(&fs_info->cleanup_work_sem);
5888 if (ret) {
5889 iput(inode);
5890 inode = ERR_PTR(ret);
5891 }
5892 }
5893
5894 return inode;
5895 }
5896
btrfs_dentry_delete(const struct dentry * dentry)5897 static int btrfs_dentry_delete(const struct dentry *dentry)
5898 {
5899 struct btrfs_root *root;
5900 struct inode *inode = d_inode(dentry);
5901
5902 if (!inode && !IS_ROOT(dentry))
5903 inode = d_inode(dentry->d_parent);
5904
5905 if (inode) {
5906 root = BTRFS_I(inode)->root;
5907 if (btrfs_root_refs(&root->root_item) == 0)
5908 return 1;
5909
5910 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5911 return 1;
5912 }
5913 return 0;
5914 }
5915
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5916 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5917 unsigned int flags)
5918 {
5919 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5920
5921 if (inode == ERR_PTR(-ENOENT))
5922 inode = NULL;
5923 return d_splice_alias(inode, dentry);
5924 }
5925
5926 /*
5927 * All this infrastructure exists because dir_emit can fault, and we are holding
5928 * the tree lock when doing readdir. For now just allocate a buffer and copy
5929 * our information into that, and then dir_emit from the buffer. This is
5930 * similar to what NFS does, only we don't keep the buffer around in pagecache
5931 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5932 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5933 * tree lock.
5934 */
btrfs_opendir(struct inode * inode,struct file * file)5935 static int btrfs_opendir(struct inode *inode, struct file *file)
5936 {
5937 struct btrfs_file_private *private;
5938
5939 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5940 if (!private)
5941 return -ENOMEM;
5942 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5943 if (!private->filldir_buf) {
5944 kfree(private);
5945 return -ENOMEM;
5946 }
5947 file->private_data = private;
5948 return 0;
5949 }
5950
5951 struct dir_entry {
5952 u64 ino;
5953 u64 offset;
5954 unsigned type;
5955 int name_len;
5956 };
5957
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5958 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5959 {
5960 while (entries--) {
5961 struct dir_entry *entry = addr;
5962 char *name = (char *)(entry + 1);
5963
5964 ctx->pos = get_unaligned(&entry->offset);
5965 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5966 get_unaligned(&entry->ino),
5967 get_unaligned(&entry->type)))
5968 return 1;
5969 addr += sizeof(struct dir_entry) +
5970 get_unaligned(&entry->name_len);
5971 ctx->pos++;
5972 }
5973 return 0;
5974 }
5975
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5976 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5977 {
5978 struct inode *inode = file_inode(file);
5979 struct btrfs_root *root = BTRFS_I(inode)->root;
5980 struct btrfs_file_private *private = file->private_data;
5981 struct btrfs_dir_item *di;
5982 struct btrfs_key key;
5983 struct btrfs_key found_key;
5984 struct btrfs_path *path;
5985 void *addr;
5986 struct list_head ins_list;
5987 struct list_head del_list;
5988 int ret;
5989 char *name_ptr;
5990 int name_len;
5991 int entries = 0;
5992 int total_len = 0;
5993 bool put = false;
5994 struct btrfs_key location;
5995
5996 if (!dir_emit_dots(file, ctx))
5997 return 0;
5998
5999 path = btrfs_alloc_path();
6000 if (!path)
6001 return -ENOMEM;
6002
6003 addr = private->filldir_buf;
6004 path->reada = READA_FORWARD;
6005
6006 INIT_LIST_HEAD(&ins_list);
6007 INIT_LIST_HEAD(&del_list);
6008 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6009
6010 again:
6011 key.type = BTRFS_DIR_INDEX_KEY;
6012 key.offset = ctx->pos;
6013 key.objectid = btrfs_ino(BTRFS_I(inode));
6014
6015 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6016 struct dir_entry *entry;
6017 struct extent_buffer *leaf = path->nodes[0];
6018
6019 if (found_key.objectid != key.objectid)
6020 break;
6021 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6022 break;
6023 if (found_key.offset < ctx->pos)
6024 continue;
6025 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6026 continue;
6027 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6028 name_len = btrfs_dir_name_len(leaf, di);
6029 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6030 PAGE_SIZE) {
6031 btrfs_release_path(path);
6032 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6033 if (ret)
6034 goto nopos;
6035 addr = private->filldir_buf;
6036 entries = 0;
6037 total_len = 0;
6038 goto again;
6039 }
6040
6041 entry = addr;
6042 put_unaligned(name_len, &entry->name_len);
6043 name_ptr = (char *)(entry + 1);
6044 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6045 name_len);
6046 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6047 &entry->type);
6048 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6049 put_unaligned(location.objectid, &entry->ino);
6050 put_unaligned(found_key.offset, &entry->offset);
6051 entries++;
6052 addr += sizeof(struct dir_entry) + name_len;
6053 total_len += sizeof(struct dir_entry) + name_len;
6054 }
6055 /* Catch error encountered during iteration */
6056 if (ret < 0)
6057 goto err;
6058
6059 btrfs_release_path(path);
6060
6061 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6062 if (ret)
6063 goto nopos;
6064
6065 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6066 if (ret)
6067 goto nopos;
6068
6069 /*
6070 * Stop new entries from being returned after we return the last
6071 * entry.
6072 *
6073 * New directory entries are assigned a strictly increasing
6074 * offset. This means that new entries created during readdir
6075 * are *guaranteed* to be seen in the future by that readdir.
6076 * This has broken buggy programs which operate on names as
6077 * they're returned by readdir. Until we re-use freed offsets
6078 * we have this hack to stop new entries from being returned
6079 * under the assumption that they'll never reach this huge
6080 * offset.
6081 *
6082 * This is being careful not to overflow 32bit loff_t unless the
6083 * last entry requires it because doing so has broken 32bit apps
6084 * in the past.
6085 */
6086 if (ctx->pos >= INT_MAX)
6087 ctx->pos = LLONG_MAX;
6088 else
6089 ctx->pos = INT_MAX;
6090 nopos:
6091 ret = 0;
6092 err:
6093 if (put)
6094 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6095 btrfs_free_path(path);
6096 return ret;
6097 }
6098
6099 /*
6100 * This is somewhat expensive, updating the tree every time the
6101 * inode changes. But, it is most likely to find the inode in cache.
6102 * FIXME, needs more benchmarking...there are no reasons other than performance
6103 * to keep or drop this code.
6104 */
btrfs_dirty_inode(struct inode * inode)6105 static int btrfs_dirty_inode(struct inode *inode)
6106 {
6107 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6108 struct btrfs_root *root = BTRFS_I(inode)->root;
6109 struct btrfs_trans_handle *trans;
6110 int ret;
6111
6112 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6113 return 0;
6114
6115 trans = btrfs_join_transaction(root);
6116 if (IS_ERR(trans))
6117 return PTR_ERR(trans);
6118
6119 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6120 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6121 /* whoops, lets try again with the full transaction */
6122 btrfs_end_transaction(trans);
6123 trans = btrfs_start_transaction(root, 1);
6124 if (IS_ERR(trans))
6125 return PTR_ERR(trans);
6126
6127 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6128 }
6129 btrfs_end_transaction(trans);
6130 if (BTRFS_I(inode)->delayed_node)
6131 btrfs_balance_delayed_items(fs_info);
6132
6133 return ret;
6134 }
6135
6136 /*
6137 * This is a copy of file_update_time. We need this so we can return error on
6138 * ENOSPC for updating the inode in the case of file write and mmap writes.
6139 */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)6140 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6141 int flags)
6142 {
6143 struct btrfs_root *root = BTRFS_I(inode)->root;
6144 bool dirty = flags & ~S_VERSION;
6145
6146 if (btrfs_root_readonly(root))
6147 return -EROFS;
6148
6149 if (flags & S_VERSION)
6150 dirty |= inode_maybe_inc_iversion(inode, dirty);
6151 if (flags & S_CTIME)
6152 inode->i_ctime = *now;
6153 if (flags & S_MTIME)
6154 inode->i_mtime = *now;
6155 if (flags & S_ATIME)
6156 inode->i_atime = *now;
6157 return dirty ? btrfs_dirty_inode(inode) : 0;
6158 }
6159
6160 /*
6161 * find the highest existing sequence number in a directory
6162 * and then set the in-memory index_cnt variable to reflect
6163 * free sequence numbers
6164 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6165 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6166 {
6167 struct btrfs_root *root = inode->root;
6168 struct btrfs_key key, found_key;
6169 struct btrfs_path *path;
6170 struct extent_buffer *leaf;
6171 int ret;
6172
6173 key.objectid = btrfs_ino(inode);
6174 key.type = BTRFS_DIR_INDEX_KEY;
6175 key.offset = (u64)-1;
6176
6177 path = btrfs_alloc_path();
6178 if (!path)
6179 return -ENOMEM;
6180
6181 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6182 if (ret < 0)
6183 goto out;
6184 /* FIXME: we should be able to handle this */
6185 if (ret == 0)
6186 goto out;
6187 ret = 0;
6188
6189 if (path->slots[0] == 0) {
6190 inode->index_cnt = BTRFS_DIR_START_INDEX;
6191 goto out;
6192 }
6193
6194 path->slots[0]--;
6195
6196 leaf = path->nodes[0];
6197 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6198
6199 if (found_key.objectid != btrfs_ino(inode) ||
6200 found_key.type != BTRFS_DIR_INDEX_KEY) {
6201 inode->index_cnt = BTRFS_DIR_START_INDEX;
6202 goto out;
6203 }
6204
6205 inode->index_cnt = found_key.offset + 1;
6206 out:
6207 btrfs_free_path(path);
6208 return ret;
6209 }
6210
6211 /*
6212 * helper to find a free sequence number in a given directory. This current
6213 * code is very simple, later versions will do smarter things in the btree
6214 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6215 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6216 {
6217 int ret = 0;
6218
6219 if (dir->index_cnt == (u64)-1) {
6220 ret = btrfs_inode_delayed_dir_index_count(dir);
6221 if (ret) {
6222 ret = btrfs_set_inode_index_count(dir);
6223 if (ret)
6224 return ret;
6225 }
6226 }
6227
6228 *index = dir->index_cnt;
6229 dir->index_cnt++;
6230
6231 return ret;
6232 }
6233
btrfs_insert_inode_locked(struct inode * inode)6234 static int btrfs_insert_inode_locked(struct inode *inode)
6235 {
6236 struct btrfs_iget_args args;
6237
6238 args.ino = BTRFS_I(inode)->location.objectid;
6239 args.root = BTRFS_I(inode)->root;
6240
6241 return insert_inode_locked4(inode,
6242 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6243 btrfs_find_actor, &args);
6244 }
6245
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6246 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6247 unsigned int *trans_num_items)
6248 {
6249 struct inode *dir = args->dir;
6250 struct inode *inode = args->inode;
6251 int ret;
6252
6253 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6254 if (ret)
6255 return ret;
6256
6257 /* 1 to add inode item */
6258 *trans_num_items = 1;
6259 /* 1 to add compression property */
6260 if (BTRFS_I(dir)->prop_compress)
6261 (*trans_num_items)++;
6262 /* 1 to add default ACL xattr */
6263 if (args->default_acl)
6264 (*trans_num_items)++;
6265 /* 1 to add access ACL xattr */
6266 if (args->acl)
6267 (*trans_num_items)++;
6268 #ifdef CONFIG_SECURITY
6269 /* 1 to add LSM xattr */
6270 if (dir->i_security)
6271 (*trans_num_items)++;
6272 #endif
6273 if (args->orphan) {
6274 /* 1 to add orphan item */
6275 (*trans_num_items)++;
6276 } else {
6277 /*
6278 * 1 to add dir item
6279 * 1 to add dir index
6280 * 1 to update parent inode item
6281 *
6282 * No need for 1 unit for the inode ref item because it is
6283 * inserted in a batch together with the inode item at
6284 * btrfs_create_new_inode().
6285 */
6286 *trans_num_items += 3;
6287 }
6288 return 0;
6289 }
6290
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6291 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6292 {
6293 posix_acl_release(args->acl);
6294 posix_acl_release(args->default_acl);
6295 }
6296
6297 /*
6298 * Inherit flags from the parent inode.
6299 *
6300 * Currently only the compression flags and the cow flags are inherited.
6301 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6302 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6303 {
6304 unsigned int flags;
6305
6306 flags = BTRFS_I(dir)->flags;
6307
6308 if (flags & BTRFS_INODE_NOCOMPRESS) {
6309 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6310 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6311 } else if (flags & BTRFS_INODE_COMPRESS) {
6312 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6313 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6314 }
6315
6316 if (flags & BTRFS_INODE_NODATACOW) {
6317 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6318 if (S_ISREG(inode->i_mode))
6319 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6320 }
6321
6322 btrfs_sync_inode_flags_to_i_flags(inode);
6323 }
6324
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6325 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6326 struct btrfs_new_inode_args *args)
6327 {
6328 struct inode *dir = args->dir;
6329 struct inode *inode = args->inode;
6330 const char *name = args->orphan ? NULL : args->dentry->d_name.name;
6331 int name_len = args->orphan ? 0 : args->dentry->d_name.len;
6332 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6333 struct btrfs_root *root;
6334 struct btrfs_inode_item *inode_item;
6335 struct btrfs_key *location;
6336 struct btrfs_path *path;
6337 u64 objectid;
6338 struct btrfs_inode_ref *ref;
6339 struct btrfs_key key[2];
6340 u32 sizes[2];
6341 struct btrfs_item_batch batch;
6342 unsigned long ptr;
6343 int ret;
6344
6345 path = btrfs_alloc_path();
6346 if (!path)
6347 return -ENOMEM;
6348
6349 if (!args->subvol)
6350 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6351 root = BTRFS_I(inode)->root;
6352
6353 ret = btrfs_get_free_objectid(root, &objectid);
6354 if (ret)
6355 goto out;
6356 inode->i_ino = objectid;
6357
6358 if (args->orphan) {
6359 /*
6360 * O_TMPFILE, set link count to 0, so that after this point, we
6361 * fill in an inode item with the correct link count.
6362 */
6363 set_nlink(inode, 0);
6364 } else {
6365 trace_btrfs_inode_request(dir);
6366
6367 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6368 if (ret)
6369 goto out;
6370 }
6371 /* index_cnt is ignored for everything but a dir. */
6372 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6373 BTRFS_I(inode)->generation = trans->transid;
6374 inode->i_generation = BTRFS_I(inode)->generation;
6375
6376 /*
6377 * Subvolumes don't inherit flags from their parent directory.
6378 * Originally this was probably by accident, but we probably can't
6379 * change it now without compatibility issues.
6380 */
6381 if (!args->subvol)
6382 btrfs_inherit_iflags(inode, dir);
6383
6384 if (S_ISREG(inode->i_mode)) {
6385 if (btrfs_test_opt(fs_info, NODATASUM))
6386 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6387 if (btrfs_test_opt(fs_info, NODATACOW))
6388 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6389 BTRFS_INODE_NODATASUM;
6390 }
6391
6392 location = &BTRFS_I(inode)->location;
6393 location->objectid = objectid;
6394 location->offset = 0;
6395 location->type = BTRFS_INODE_ITEM_KEY;
6396
6397 ret = btrfs_insert_inode_locked(inode);
6398 if (ret < 0) {
6399 if (!args->orphan)
6400 BTRFS_I(dir)->index_cnt--;
6401 goto out;
6402 }
6403
6404 /*
6405 * We could have gotten an inode number from somebody who was fsynced
6406 * and then removed in this same transaction, so let's just set full
6407 * sync since it will be a full sync anyway and this will blow away the
6408 * old info in the log.
6409 */
6410 btrfs_set_inode_full_sync(BTRFS_I(inode));
6411
6412 key[0].objectid = objectid;
6413 key[0].type = BTRFS_INODE_ITEM_KEY;
6414 key[0].offset = 0;
6415
6416 sizes[0] = sizeof(struct btrfs_inode_item);
6417
6418 if (!args->orphan) {
6419 /*
6420 * Start new inodes with an inode_ref. This is slightly more
6421 * efficient for small numbers of hard links since they will
6422 * be packed into one item. Extended refs will kick in if we
6423 * add more hard links than can fit in the ref item.
6424 */
6425 key[1].objectid = objectid;
6426 key[1].type = BTRFS_INODE_REF_KEY;
6427 if (args->subvol) {
6428 key[1].offset = objectid;
6429 sizes[1] = 2 + sizeof(*ref);
6430 } else {
6431 key[1].offset = btrfs_ino(BTRFS_I(dir));
6432 sizes[1] = name_len + sizeof(*ref);
6433 }
6434 }
6435
6436 batch.keys = &key[0];
6437 batch.data_sizes = &sizes[0];
6438 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6439 batch.nr = args->orphan ? 1 : 2;
6440 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6441 if (ret != 0) {
6442 btrfs_abort_transaction(trans, ret);
6443 goto discard;
6444 }
6445
6446 inode->i_mtime = current_time(inode);
6447 inode->i_atime = inode->i_mtime;
6448 inode->i_ctime = inode->i_mtime;
6449 BTRFS_I(inode)->i_otime = inode->i_mtime;
6450
6451 /*
6452 * We're going to fill the inode item now, so at this point the inode
6453 * must be fully initialized.
6454 */
6455
6456 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6457 struct btrfs_inode_item);
6458 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6459 sizeof(*inode_item));
6460 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6461
6462 if (!args->orphan) {
6463 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6464 struct btrfs_inode_ref);
6465 ptr = (unsigned long)(ref + 1);
6466 if (args->subvol) {
6467 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6468 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6469 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6470 } else {
6471 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6472 btrfs_set_inode_ref_index(path->nodes[0], ref,
6473 BTRFS_I(inode)->dir_index);
6474 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6475 }
6476 }
6477
6478 btrfs_mark_buffer_dirty(path->nodes[0]);
6479 btrfs_release_path(path);
6480
6481 if (args->subvol) {
6482 struct inode *parent;
6483
6484 /*
6485 * Subvolumes inherit properties from their parent subvolume,
6486 * not the directory they were created in.
6487 */
6488 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6489 BTRFS_I(dir)->root);
6490 if (IS_ERR(parent)) {
6491 ret = PTR_ERR(parent);
6492 } else {
6493 ret = btrfs_inode_inherit_props(trans, inode, parent);
6494 iput(parent);
6495 }
6496 } else {
6497 ret = btrfs_inode_inherit_props(trans, inode, dir);
6498 }
6499 if (ret) {
6500 btrfs_err(fs_info,
6501 "error inheriting props for ino %llu (root %llu): %d",
6502 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6503 ret);
6504 }
6505
6506 /*
6507 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6508 * probably a bug.
6509 */
6510 if (!args->subvol) {
6511 ret = btrfs_init_inode_security(trans, args);
6512 if (ret) {
6513 btrfs_abort_transaction(trans, ret);
6514 goto discard;
6515 }
6516 }
6517
6518 inode_tree_add(inode);
6519
6520 trace_btrfs_inode_new(inode);
6521 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6522
6523 btrfs_update_root_times(trans, root);
6524
6525 if (args->orphan) {
6526 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6527 } else {
6528 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6529 name_len, 0, BTRFS_I(inode)->dir_index);
6530 }
6531 if (ret) {
6532 btrfs_abort_transaction(trans, ret);
6533 goto discard;
6534 }
6535
6536 ret = 0;
6537 goto out;
6538
6539 discard:
6540 /*
6541 * discard_new_inode() calls iput(), but the caller owns the reference
6542 * to the inode.
6543 */
6544 ihold(inode);
6545 discard_new_inode(inode);
6546 out:
6547 btrfs_free_path(path);
6548 return ret;
6549 }
6550
6551 /*
6552 * utility function to add 'inode' into 'parent_inode' with
6553 * a give name and a given sequence number.
6554 * if 'add_backref' is true, also insert a backref from the
6555 * inode to the parent directory.
6556 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6557 int btrfs_add_link(struct btrfs_trans_handle *trans,
6558 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6559 const char *name, int name_len, int add_backref, u64 index)
6560 {
6561 int ret = 0;
6562 struct btrfs_key key;
6563 struct btrfs_root *root = parent_inode->root;
6564 u64 ino = btrfs_ino(inode);
6565 u64 parent_ino = btrfs_ino(parent_inode);
6566
6567 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6568 memcpy(&key, &inode->root->root_key, sizeof(key));
6569 } else {
6570 key.objectid = ino;
6571 key.type = BTRFS_INODE_ITEM_KEY;
6572 key.offset = 0;
6573 }
6574
6575 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6576 ret = btrfs_add_root_ref(trans, key.objectid,
6577 root->root_key.objectid, parent_ino,
6578 index, name, name_len);
6579 } else if (add_backref) {
6580 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6581 parent_ino, index);
6582 }
6583
6584 /* Nothing to clean up yet */
6585 if (ret)
6586 return ret;
6587
6588 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6589 btrfs_inode_type(&inode->vfs_inode), index);
6590 if (ret == -EEXIST || ret == -EOVERFLOW)
6591 goto fail_dir_item;
6592 else if (ret) {
6593 btrfs_abort_transaction(trans, ret);
6594 return ret;
6595 }
6596
6597 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6598 name_len * 2);
6599 inode_inc_iversion(&parent_inode->vfs_inode);
6600 /*
6601 * If we are replaying a log tree, we do not want to update the mtime
6602 * and ctime of the parent directory with the current time, since the
6603 * log replay procedure is responsible for setting them to their correct
6604 * values (the ones it had when the fsync was done).
6605 */
6606 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6607 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6608
6609 parent_inode->vfs_inode.i_mtime = now;
6610 parent_inode->vfs_inode.i_ctime = now;
6611 }
6612 ret = btrfs_update_inode(trans, root, parent_inode);
6613 if (ret)
6614 btrfs_abort_transaction(trans, ret);
6615 return ret;
6616
6617 fail_dir_item:
6618 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6619 u64 local_index;
6620 int err;
6621 err = btrfs_del_root_ref(trans, key.objectid,
6622 root->root_key.objectid, parent_ino,
6623 &local_index, name, name_len);
6624 if (err)
6625 btrfs_abort_transaction(trans, err);
6626 } else if (add_backref) {
6627 u64 local_index;
6628 int err;
6629
6630 err = btrfs_del_inode_ref(trans, root, name, name_len,
6631 ino, parent_ino, &local_index);
6632 if (err)
6633 btrfs_abort_transaction(trans, err);
6634 }
6635
6636 /* Return the original error code */
6637 return ret;
6638 }
6639
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6640 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6641 struct inode *inode)
6642 {
6643 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6644 struct btrfs_root *root = BTRFS_I(dir)->root;
6645 struct btrfs_new_inode_args new_inode_args = {
6646 .dir = dir,
6647 .dentry = dentry,
6648 .inode = inode,
6649 };
6650 unsigned int trans_num_items;
6651 struct btrfs_trans_handle *trans;
6652 int err;
6653
6654 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6655 if (err)
6656 goto out_inode;
6657
6658 trans = btrfs_start_transaction(root, trans_num_items);
6659 if (IS_ERR(trans)) {
6660 err = PTR_ERR(trans);
6661 goto out_new_inode_args;
6662 }
6663
6664 err = btrfs_create_new_inode(trans, &new_inode_args);
6665 if (!err)
6666 d_instantiate_new(dentry, inode);
6667
6668 btrfs_end_transaction(trans);
6669 btrfs_btree_balance_dirty(fs_info);
6670 out_new_inode_args:
6671 btrfs_new_inode_args_destroy(&new_inode_args);
6672 out_inode:
6673 if (err)
6674 iput(inode);
6675 return err;
6676 }
6677
btrfs_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6678 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6679 struct dentry *dentry, umode_t mode, dev_t rdev)
6680 {
6681 struct inode *inode;
6682
6683 inode = new_inode(dir->i_sb);
6684 if (!inode)
6685 return -ENOMEM;
6686 inode_init_owner(mnt_userns, inode, dir, mode);
6687 inode->i_op = &btrfs_special_inode_operations;
6688 init_special_inode(inode, inode->i_mode, rdev);
6689 return btrfs_create_common(dir, dentry, inode);
6690 }
6691
btrfs_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6692 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6693 struct dentry *dentry, umode_t mode, bool excl)
6694 {
6695 struct inode *inode;
6696
6697 inode = new_inode(dir->i_sb);
6698 if (!inode)
6699 return -ENOMEM;
6700 inode_init_owner(mnt_userns, inode, dir, mode);
6701 inode->i_fop = &btrfs_file_operations;
6702 inode->i_op = &btrfs_file_inode_operations;
6703 inode->i_mapping->a_ops = &btrfs_aops;
6704 return btrfs_create_common(dir, dentry, inode);
6705 }
6706
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6707 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6708 struct dentry *dentry)
6709 {
6710 struct btrfs_trans_handle *trans = NULL;
6711 struct btrfs_root *root = BTRFS_I(dir)->root;
6712 struct inode *inode = d_inode(old_dentry);
6713 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6714 u64 index;
6715 int err;
6716 int drop_inode = 0;
6717
6718 /* do not allow sys_link's with other subvols of the same device */
6719 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6720 return -EXDEV;
6721
6722 if (inode->i_nlink >= BTRFS_LINK_MAX)
6723 return -EMLINK;
6724
6725 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6726 if (err)
6727 goto fail;
6728
6729 /*
6730 * 2 items for inode and inode ref
6731 * 2 items for dir items
6732 * 1 item for parent inode
6733 * 1 item for orphan item deletion if O_TMPFILE
6734 */
6735 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6736 if (IS_ERR(trans)) {
6737 err = PTR_ERR(trans);
6738 trans = NULL;
6739 goto fail;
6740 }
6741
6742 /* There are several dir indexes for this inode, clear the cache. */
6743 BTRFS_I(inode)->dir_index = 0ULL;
6744 inc_nlink(inode);
6745 inode_inc_iversion(inode);
6746 inode->i_ctime = current_time(inode);
6747 ihold(inode);
6748 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6749
6750 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6751 dentry->d_name.name, dentry->d_name.len, 1, index);
6752
6753 if (err) {
6754 drop_inode = 1;
6755 } else {
6756 struct dentry *parent = dentry->d_parent;
6757
6758 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6759 if (err)
6760 goto fail;
6761 if (inode->i_nlink == 1) {
6762 /*
6763 * If new hard link count is 1, it's a file created
6764 * with open(2) O_TMPFILE flag.
6765 */
6766 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6767 if (err)
6768 goto fail;
6769 }
6770 d_instantiate(dentry, inode);
6771 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6772 }
6773
6774 fail:
6775 if (trans)
6776 btrfs_end_transaction(trans);
6777 if (drop_inode) {
6778 inode_dec_link_count(inode);
6779 iput(inode);
6780 }
6781 btrfs_btree_balance_dirty(fs_info);
6782 return err;
6783 }
6784
btrfs_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)6785 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6786 struct dentry *dentry, umode_t mode)
6787 {
6788 struct inode *inode;
6789
6790 inode = new_inode(dir->i_sb);
6791 if (!inode)
6792 return -ENOMEM;
6793 inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode);
6794 inode->i_op = &btrfs_dir_inode_operations;
6795 inode->i_fop = &btrfs_dir_file_operations;
6796 return btrfs_create_common(dir, dentry, inode);
6797 }
6798
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6799 static noinline int uncompress_inline(struct btrfs_path *path,
6800 struct page *page,
6801 size_t pg_offset, u64 extent_offset,
6802 struct btrfs_file_extent_item *item)
6803 {
6804 int ret;
6805 struct extent_buffer *leaf = path->nodes[0];
6806 char *tmp;
6807 size_t max_size;
6808 unsigned long inline_size;
6809 unsigned long ptr;
6810 int compress_type;
6811
6812 WARN_ON(pg_offset != 0);
6813 compress_type = btrfs_file_extent_compression(leaf, item);
6814 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6815 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6816 tmp = kmalloc(inline_size, GFP_NOFS);
6817 if (!tmp)
6818 return -ENOMEM;
6819 ptr = btrfs_file_extent_inline_start(item);
6820
6821 read_extent_buffer(leaf, tmp, ptr, inline_size);
6822
6823 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6824 ret = btrfs_decompress(compress_type, tmp, page,
6825 extent_offset, inline_size, max_size);
6826
6827 /*
6828 * decompression code contains a memset to fill in any space between the end
6829 * of the uncompressed data and the end of max_size in case the decompressed
6830 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6831 * the end of an inline extent and the beginning of the next block, so we
6832 * cover that region here.
6833 */
6834
6835 if (max_size + pg_offset < PAGE_SIZE)
6836 memzero_page(page, pg_offset + max_size,
6837 PAGE_SIZE - max_size - pg_offset);
6838 kfree(tmp);
6839 return ret;
6840 }
6841
6842 /**
6843 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6844 * @inode: file to search in
6845 * @page: page to read extent data into if the extent is inline
6846 * @pg_offset: offset into @page to copy to
6847 * @start: file offset
6848 * @len: length of range starting at @start
6849 *
6850 * This returns the first &struct extent_map which overlaps with the given
6851 * range, reading it from the B-tree and caching it if necessary. Note that
6852 * there may be more extents which overlap the given range after the returned
6853 * extent_map.
6854 *
6855 * If @page is not NULL and the extent is inline, this also reads the extent
6856 * data directly into the page and marks the extent up to date in the io_tree.
6857 *
6858 * Return: ERR_PTR on error, non-NULL extent_map on success.
6859 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len)6860 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6861 struct page *page, size_t pg_offset,
6862 u64 start, u64 len)
6863 {
6864 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6865 int ret = 0;
6866 u64 extent_start = 0;
6867 u64 extent_end = 0;
6868 u64 objectid = btrfs_ino(inode);
6869 int extent_type = -1;
6870 struct btrfs_path *path = NULL;
6871 struct btrfs_root *root = inode->root;
6872 struct btrfs_file_extent_item *item;
6873 struct extent_buffer *leaf;
6874 struct btrfs_key found_key;
6875 struct extent_map *em = NULL;
6876 struct extent_map_tree *em_tree = &inode->extent_tree;
6877 struct extent_io_tree *io_tree = &inode->io_tree;
6878
6879 read_lock(&em_tree->lock);
6880 em = lookup_extent_mapping(em_tree, start, len);
6881 read_unlock(&em_tree->lock);
6882
6883 if (em) {
6884 if (em->start > start || em->start + em->len <= start)
6885 free_extent_map(em);
6886 else if (em->block_start == EXTENT_MAP_INLINE && page)
6887 free_extent_map(em);
6888 else
6889 goto out;
6890 }
6891 em = alloc_extent_map();
6892 if (!em) {
6893 ret = -ENOMEM;
6894 goto out;
6895 }
6896 em->start = EXTENT_MAP_HOLE;
6897 em->orig_start = EXTENT_MAP_HOLE;
6898 em->len = (u64)-1;
6899 em->block_len = (u64)-1;
6900
6901 path = btrfs_alloc_path();
6902 if (!path) {
6903 ret = -ENOMEM;
6904 goto out;
6905 }
6906
6907 /* Chances are we'll be called again, so go ahead and do readahead */
6908 path->reada = READA_FORWARD;
6909
6910 /*
6911 * The same explanation in load_free_space_cache applies here as well,
6912 * we only read when we're loading the free space cache, and at that
6913 * point the commit_root has everything we need.
6914 */
6915 if (btrfs_is_free_space_inode(inode)) {
6916 path->search_commit_root = 1;
6917 path->skip_locking = 1;
6918 }
6919
6920 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6921 if (ret < 0) {
6922 goto out;
6923 } else if (ret > 0) {
6924 if (path->slots[0] == 0)
6925 goto not_found;
6926 path->slots[0]--;
6927 ret = 0;
6928 }
6929
6930 leaf = path->nodes[0];
6931 item = btrfs_item_ptr(leaf, path->slots[0],
6932 struct btrfs_file_extent_item);
6933 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6934 if (found_key.objectid != objectid ||
6935 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6936 /*
6937 * If we backup past the first extent we want to move forward
6938 * and see if there is an extent in front of us, otherwise we'll
6939 * say there is a hole for our whole search range which can
6940 * cause problems.
6941 */
6942 extent_end = start;
6943 goto next;
6944 }
6945
6946 extent_type = btrfs_file_extent_type(leaf, item);
6947 extent_start = found_key.offset;
6948 extent_end = btrfs_file_extent_end(path);
6949 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6950 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6951 /* Only regular file could have regular/prealloc extent */
6952 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6953 ret = -EUCLEAN;
6954 btrfs_crit(fs_info,
6955 "regular/prealloc extent found for non-regular inode %llu",
6956 btrfs_ino(inode));
6957 goto out;
6958 }
6959 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6960 extent_start);
6961 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6962 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6963 path->slots[0],
6964 extent_start);
6965 }
6966 next:
6967 if (start >= extent_end) {
6968 path->slots[0]++;
6969 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6970 ret = btrfs_next_leaf(root, path);
6971 if (ret < 0)
6972 goto out;
6973 else if (ret > 0)
6974 goto not_found;
6975
6976 leaf = path->nodes[0];
6977 }
6978 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6979 if (found_key.objectid != objectid ||
6980 found_key.type != BTRFS_EXTENT_DATA_KEY)
6981 goto not_found;
6982 if (start + len <= found_key.offset)
6983 goto not_found;
6984 if (start > found_key.offset)
6985 goto next;
6986
6987 /* New extent overlaps with existing one */
6988 em->start = start;
6989 em->orig_start = start;
6990 em->len = found_key.offset - start;
6991 em->block_start = EXTENT_MAP_HOLE;
6992 goto insert;
6993 }
6994
6995 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6996
6997 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6998 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6999 goto insert;
7000 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7001 unsigned long ptr;
7002 char *map;
7003 size_t size;
7004 size_t extent_offset;
7005 size_t copy_size;
7006
7007 if (!page)
7008 goto out;
7009
7010 size = btrfs_file_extent_ram_bytes(leaf, item);
7011 extent_offset = page_offset(page) + pg_offset - extent_start;
7012 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7013 size - extent_offset);
7014 em->start = extent_start + extent_offset;
7015 em->len = ALIGN(copy_size, fs_info->sectorsize);
7016 em->orig_block_len = em->len;
7017 em->orig_start = em->start;
7018 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7019
7020 if (!PageUptodate(page)) {
7021 if (btrfs_file_extent_compression(leaf, item) !=
7022 BTRFS_COMPRESS_NONE) {
7023 ret = uncompress_inline(path, page, pg_offset,
7024 extent_offset, item);
7025 if (ret)
7026 goto out;
7027 } else {
7028 map = kmap_local_page(page);
7029 read_extent_buffer(leaf, map + pg_offset, ptr,
7030 copy_size);
7031 if (pg_offset + copy_size < PAGE_SIZE) {
7032 memset(map + pg_offset + copy_size, 0,
7033 PAGE_SIZE - pg_offset -
7034 copy_size);
7035 }
7036 kunmap_local(map);
7037 }
7038 flush_dcache_page(page);
7039 }
7040 set_extent_uptodate(io_tree, em->start,
7041 extent_map_end(em) - 1, NULL, GFP_NOFS);
7042 goto insert;
7043 }
7044 not_found:
7045 em->start = start;
7046 em->orig_start = start;
7047 em->len = len;
7048 em->block_start = EXTENT_MAP_HOLE;
7049 insert:
7050 ret = 0;
7051 btrfs_release_path(path);
7052 if (em->start > start || extent_map_end(em) <= start) {
7053 btrfs_err(fs_info,
7054 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7055 em->start, em->len, start, len);
7056 ret = -EIO;
7057 goto out;
7058 }
7059
7060 write_lock(&em_tree->lock);
7061 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7062 write_unlock(&em_tree->lock);
7063 out:
7064 btrfs_free_path(path);
7065
7066 trace_btrfs_get_extent(root, inode, em);
7067
7068 if (ret) {
7069 free_extent_map(em);
7070 return ERR_PTR(ret);
7071 }
7072 return em;
7073 }
7074
btrfs_get_extent_fiemap(struct btrfs_inode * inode,u64 start,u64 len)7075 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7076 u64 start, u64 len)
7077 {
7078 struct extent_map *em;
7079 struct extent_map *hole_em = NULL;
7080 u64 delalloc_start = start;
7081 u64 end;
7082 u64 delalloc_len;
7083 u64 delalloc_end;
7084 int err = 0;
7085
7086 em = btrfs_get_extent(inode, NULL, 0, start, len);
7087 if (IS_ERR(em))
7088 return em;
7089 /*
7090 * If our em maps to:
7091 * - a hole or
7092 * - a pre-alloc extent,
7093 * there might actually be delalloc bytes behind it.
7094 */
7095 if (em->block_start != EXTENT_MAP_HOLE &&
7096 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7097 return em;
7098 else
7099 hole_em = em;
7100
7101 /* check to see if we've wrapped (len == -1 or similar) */
7102 end = start + len;
7103 if (end < start)
7104 end = (u64)-1;
7105 else
7106 end -= 1;
7107
7108 em = NULL;
7109
7110 /* ok, we didn't find anything, lets look for delalloc */
7111 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7112 end, len, EXTENT_DELALLOC, 1);
7113 delalloc_end = delalloc_start + delalloc_len;
7114 if (delalloc_end < delalloc_start)
7115 delalloc_end = (u64)-1;
7116
7117 /*
7118 * We didn't find anything useful, return the original results from
7119 * get_extent()
7120 */
7121 if (delalloc_start > end || delalloc_end <= start) {
7122 em = hole_em;
7123 hole_em = NULL;
7124 goto out;
7125 }
7126
7127 /*
7128 * Adjust the delalloc_start to make sure it doesn't go backwards from
7129 * the start they passed in
7130 */
7131 delalloc_start = max(start, delalloc_start);
7132 delalloc_len = delalloc_end - delalloc_start;
7133
7134 if (delalloc_len > 0) {
7135 u64 hole_start;
7136 u64 hole_len;
7137 const u64 hole_end = extent_map_end(hole_em);
7138
7139 em = alloc_extent_map();
7140 if (!em) {
7141 err = -ENOMEM;
7142 goto out;
7143 }
7144
7145 ASSERT(hole_em);
7146 /*
7147 * When btrfs_get_extent can't find anything it returns one
7148 * huge hole
7149 *
7150 * Make sure what it found really fits our range, and adjust to
7151 * make sure it is based on the start from the caller
7152 */
7153 if (hole_end <= start || hole_em->start > end) {
7154 free_extent_map(hole_em);
7155 hole_em = NULL;
7156 } else {
7157 hole_start = max(hole_em->start, start);
7158 hole_len = hole_end - hole_start;
7159 }
7160
7161 if (hole_em && delalloc_start > hole_start) {
7162 /*
7163 * Our hole starts before our delalloc, so we have to
7164 * return just the parts of the hole that go until the
7165 * delalloc starts
7166 */
7167 em->len = min(hole_len, delalloc_start - hole_start);
7168 em->start = hole_start;
7169 em->orig_start = hole_start;
7170 /*
7171 * Don't adjust block start at all, it is fixed at
7172 * EXTENT_MAP_HOLE
7173 */
7174 em->block_start = hole_em->block_start;
7175 em->block_len = hole_len;
7176 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7177 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7178 } else {
7179 /*
7180 * Hole is out of passed range or it starts after
7181 * delalloc range
7182 */
7183 em->start = delalloc_start;
7184 em->len = delalloc_len;
7185 em->orig_start = delalloc_start;
7186 em->block_start = EXTENT_MAP_DELALLOC;
7187 em->block_len = delalloc_len;
7188 }
7189 } else {
7190 return hole_em;
7191 }
7192 out:
7193
7194 free_extent_map(hole_em);
7195 if (err) {
7196 free_extent_map(em);
7197 return ERR_PTR(err);
7198 }
7199 return em;
7200 }
7201
btrfs_create_dio_extent(struct btrfs_inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7202 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7203 const u64 start,
7204 const u64 len,
7205 const u64 orig_start,
7206 const u64 block_start,
7207 const u64 block_len,
7208 const u64 orig_block_len,
7209 const u64 ram_bytes,
7210 const int type)
7211 {
7212 struct extent_map *em = NULL;
7213 int ret;
7214
7215 if (type != BTRFS_ORDERED_NOCOW) {
7216 em = create_io_em(inode, start, len, orig_start, block_start,
7217 block_len, orig_block_len, ram_bytes,
7218 BTRFS_COMPRESS_NONE, /* compress_type */
7219 type);
7220 if (IS_ERR(em))
7221 goto out;
7222 }
7223 ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
7224 block_len, 0,
7225 (1 << type) |
7226 (1 << BTRFS_ORDERED_DIRECT),
7227 BTRFS_COMPRESS_NONE);
7228 if (ret) {
7229 if (em) {
7230 free_extent_map(em);
7231 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7232 }
7233 em = ERR_PTR(ret);
7234 }
7235 out:
7236
7237 return em;
7238 }
7239
btrfs_new_extent_direct(struct btrfs_inode * inode,u64 start,u64 len)7240 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7241 u64 start, u64 len)
7242 {
7243 struct btrfs_root *root = inode->root;
7244 struct btrfs_fs_info *fs_info = root->fs_info;
7245 struct extent_map *em;
7246 struct btrfs_key ins;
7247 u64 alloc_hint;
7248 int ret;
7249
7250 alloc_hint = get_extent_allocation_hint(inode, start, len);
7251 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7252 0, alloc_hint, &ins, 1, 1);
7253 if (ret)
7254 return ERR_PTR(ret);
7255
7256 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7257 ins.objectid, ins.offset, ins.offset,
7258 ins.offset, BTRFS_ORDERED_REGULAR);
7259 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7260 if (IS_ERR(em))
7261 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7262 1);
7263
7264 return em;
7265 }
7266
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7267 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7268 {
7269 struct btrfs_block_group *block_group;
7270 bool readonly = false;
7271
7272 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7273 if (!block_group || block_group->ro)
7274 readonly = true;
7275 if (block_group)
7276 btrfs_put_block_group(block_group);
7277 return readonly;
7278 }
7279
7280 /*
7281 * Check if we can do nocow write into the range [@offset, @offset + @len)
7282 *
7283 * @offset: File offset
7284 * @len: The length to write, will be updated to the nocow writeable
7285 * range
7286 * @orig_start: (optional) Return the original file offset of the file extent
7287 * @orig_len: (optional) Return the original on-disk length of the file extent
7288 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7289 * @strict: if true, omit optimizations that might force us into unnecessary
7290 * cow. e.g., don't trust generation number.
7291 *
7292 * Return:
7293 * >0 and update @len if we can do nocow write
7294 * 0 if we can't do nocow write
7295 * <0 if error happened
7296 *
7297 * NOTE: This only checks the file extents, caller is responsible to wait for
7298 * any ordered extents.
7299 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes,bool strict)7300 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7301 u64 *orig_start, u64 *orig_block_len,
7302 u64 *ram_bytes, bool strict)
7303 {
7304 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7305 struct can_nocow_file_extent_args nocow_args = { 0 };
7306 struct btrfs_path *path;
7307 int ret;
7308 struct extent_buffer *leaf;
7309 struct btrfs_root *root = BTRFS_I(inode)->root;
7310 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7311 struct btrfs_file_extent_item *fi;
7312 struct btrfs_key key;
7313 int found_type;
7314
7315 path = btrfs_alloc_path();
7316 if (!path)
7317 return -ENOMEM;
7318
7319 ret = btrfs_lookup_file_extent(NULL, root, path,
7320 btrfs_ino(BTRFS_I(inode)), offset, 0);
7321 if (ret < 0)
7322 goto out;
7323
7324 if (ret == 1) {
7325 if (path->slots[0] == 0) {
7326 /* can't find the item, must cow */
7327 ret = 0;
7328 goto out;
7329 }
7330 path->slots[0]--;
7331 }
7332 ret = 0;
7333 leaf = path->nodes[0];
7334 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7335 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7336 key.type != BTRFS_EXTENT_DATA_KEY) {
7337 /* not our file or wrong item type, must cow */
7338 goto out;
7339 }
7340
7341 if (key.offset > offset) {
7342 /* Wrong offset, must cow */
7343 goto out;
7344 }
7345
7346 if (btrfs_file_extent_end(path) <= offset)
7347 goto out;
7348
7349 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7350 found_type = btrfs_file_extent_type(leaf, fi);
7351 if (ram_bytes)
7352 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7353
7354 nocow_args.start = offset;
7355 nocow_args.end = offset + *len - 1;
7356 nocow_args.strict = strict;
7357 nocow_args.free_path = true;
7358
7359 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7360 /* can_nocow_file_extent() has freed the path. */
7361 path = NULL;
7362
7363 if (ret != 1) {
7364 /* Treat errors as not being able to NOCOW. */
7365 ret = 0;
7366 goto out;
7367 }
7368
7369 ret = 0;
7370 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7371 goto out;
7372
7373 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7374 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7375 u64 range_end;
7376
7377 range_end = round_up(offset + nocow_args.num_bytes,
7378 root->fs_info->sectorsize) - 1;
7379 ret = test_range_bit(io_tree, offset, range_end,
7380 EXTENT_DELALLOC, 0, NULL);
7381 if (ret) {
7382 ret = -EAGAIN;
7383 goto out;
7384 }
7385 }
7386
7387 if (orig_start)
7388 *orig_start = key.offset - nocow_args.extent_offset;
7389 if (orig_block_len)
7390 *orig_block_len = nocow_args.disk_num_bytes;
7391
7392 *len = nocow_args.num_bytes;
7393 ret = 1;
7394 out:
7395 btrfs_free_path(path);
7396 return ret;
7397 }
7398
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,unsigned int iomap_flags)7399 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7400 struct extent_state **cached_state,
7401 unsigned int iomap_flags)
7402 {
7403 const bool writing = (iomap_flags & IOMAP_WRITE);
7404 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7405 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7406 struct btrfs_ordered_extent *ordered;
7407 int ret = 0;
7408
7409 while (1) {
7410 if (nowait) {
7411 if (!try_lock_extent(io_tree, lockstart, lockend))
7412 return -EAGAIN;
7413 } else {
7414 lock_extent_bits(io_tree, lockstart, lockend, cached_state);
7415 }
7416 /*
7417 * We're concerned with the entire range that we're going to be
7418 * doing DIO to, so we need to make sure there's no ordered
7419 * extents in this range.
7420 */
7421 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7422 lockend - lockstart + 1);
7423
7424 /*
7425 * We need to make sure there are no buffered pages in this
7426 * range either, we could have raced between the invalidate in
7427 * generic_file_direct_write and locking the extent. The
7428 * invalidate needs to happen so that reads after a write do not
7429 * get stale data.
7430 */
7431 if (!ordered &&
7432 (!writing || !filemap_range_has_page(inode->i_mapping,
7433 lockstart, lockend)))
7434 break;
7435
7436 unlock_extent_cached(io_tree, lockstart, lockend, cached_state);
7437
7438 if (ordered) {
7439 if (nowait) {
7440 btrfs_put_ordered_extent(ordered);
7441 ret = -EAGAIN;
7442 break;
7443 }
7444 /*
7445 * If we are doing a DIO read and the ordered extent we
7446 * found is for a buffered write, we can not wait for it
7447 * to complete and retry, because if we do so we can
7448 * deadlock with concurrent buffered writes on page
7449 * locks. This happens only if our DIO read covers more
7450 * than one extent map, if at this point has already
7451 * created an ordered extent for a previous extent map
7452 * and locked its range in the inode's io tree, and a
7453 * concurrent write against that previous extent map's
7454 * range and this range started (we unlock the ranges
7455 * in the io tree only when the bios complete and
7456 * buffered writes always lock pages before attempting
7457 * to lock range in the io tree).
7458 */
7459 if (writing ||
7460 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7461 btrfs_start_ordered_extent(ordered, 1);
7462 else
7463 ret = nowait ? -EAGAIN : -ENOTBLK;
7464 btrfs_put_ordered_extent(ordered);
7465 } else {
7466 /*
7467 * We could trigger writeback for this range (and wait
7468 * for it to complete) and then invalidate the pages for
7469 * this range (through invalidate_inode_pages2_range()),
7470 * but that can lead us to a deadlock with a concurrent
7471 * call to readahead (a buffered read or a defrag call
7472 * triggered a readahead) on a page lock due to an
7473 * ordered dio extent we created before but did not have
7474 * yet a corresponding bio submitted (whence it can not
7475 * complete), which makes readahead wait for that
7476 * ordered extent to complete while holding a lock on
7477 * that page.
7478 */
7479 ret = nowait ? -EAGAIN : -ENOTBLK;
7480 }
7481
7482 if (ret)
7483 break;
7484
7485 cond_resched();
7486 }
7487
7488 return ret;
7489 }
7490
7491 /* The callers of this must take lock_extent() */
create_io_em(struct btrfs_inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7492 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7493 u64 len, u64 orig_start, u64 block_start,
7494 u64 block_len, u64 orig_block_len,
7495 u64 ram_bytes, int compress_type,
7496 int type)
7497 {
7498 struct extent_map_tree *em_tree;
7499 struct extent_map *em;
7500 int ret;
7501
7502 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7503 type == BTRFS_ORDERED_COMPRESSED ||
7504 type == BTRFS_ORDERED_NOCOW ||
7505 type == BTRFS_ORDERED_REGULAR);
7506
7507 em_tree = &inode->extent_tree;
7508 em = alloc_extent_map();
7509 if (!em)
7510 return ERR_PTR(-ENOMEM);
7511
7512 em->start = start;
7513 em->orig_start = orig_start;
7514 em->len = len;
7515 em->block_len = block_len;
7516 em->block_start = block_start;
7517 em->orig_block_len = orig_block_len;
7518 em->ram_bytes = ram_bytes;
7519 em->generation = -1;
7520 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7521 if (type == BTRFS_ORDERED_PREALLOC) {
7522 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7523 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7524 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7525 em->compress_type = compress_type;
7526 }
7527
7528 do {
7529 btrfs_drop_extent_cache(inode, em->start,
7530 em->start + em->len - 1, 0);
7531 write_lock(&em_tree->lock);
7532 ret = add_extent_mapping(em_tree, em, 1);
7533 write_unlock(&em_tree->lock);
7534 /*
7535 * The caller has taken lock_extent(), who could race with us
7536 * to add em?
7537 */
7538 } while (ret == -EEXIST);
7539
7540 if (ret) {
7541 free_extent_map(em);
7542 return ERR_PTR(ret);
7543 }
7544
7545 /* em got 2 refs now, callers needs to do free_extent_map once. */
7546 return em;
7547 }
7548
7549
btrfs_get_blocks_direct_write(struct extent_map ** map,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len,unsigned int iomap_flags)7550 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7551 struct inode *inode,
7552 struct btrfs_dio_data *dio_data,
7553 u64 start, u64 len,
7554 unsigned int iomap_flags)
7555 {
7556 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7557 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7558 struct extent_map *em = *map;
7559 int type;
7560 u64 block_start, orig_start, orig_block_len, ram_bytes;
7561 struct btrfs_block_group *bg;
7562 bool can_nocow = false;
7563 bool space_reserved = false;
7564 u64 prev_len;
7565 int ret = 0;
7566
7567 /*
7568 * We don't allocate a new extent in the following cases
7569 *
7570 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7571 * existing extent.
7572 * 2) The extent is marked as PREALLOC. We're good to go here and can
7573 * just use the extent.
7574 *
7575 */
7576 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7577 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7578 em->block_start != EXTENT_MAP_HOLE)) {
7579 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7580 type = BTRFS_ORDERED_PREALLOC;
7581 else
7582 type = BTRFS_ORDERED_NOCOW;
7583 len = min(len, em->len - (start - em->start));
7584 block_start = em->block_start + (start - em->start);
7585
7586 if (can_nocow_extent(inode, start, &len, &orig_start,
7587 &orig_block_len, &ram_bytes, false) == 1) {
7588 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7589 if (bg)
7590 can_nocow = true;
7591 }
7592 }
7593
7594 prev_len = len;
7595 if (can_nocow) {
7596 struct extent_map *em2;
7597
7598 /* We can NOCOW, so only need to reserve metadata space. */
7599 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7600 nowait);
7601 if (ret < 0) {
7602 /* Our caller expects us to free the input extent map. */
7603 free_extent_map(em);
7604 *map = NULL;
7605 btrfs_dec_nocow_writers(bg);
7606 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7607 ret = -EAGAIN;
7608 goto out;
7609 }
7610 space_reserved = true;
7611
7612 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7613 orig_start, block_start,
7614 len, orig_block_len,
7615 ram_bytes, type);
7616 btrfs_dec_nocow_writers(bg);
7617 if (type == BTRFS_ORDERED_PREALLOC) {
7618 free_extent_map(em);
7619 *map = em = em2;
7620 }
7621
7622 if (IS_ERR(em2)) {
7623 ret = PTR_ERR(em2);
7624 goto out;
7625 }
7626
7627 dio_data->nocow_done = true;
7628 } else {
7629 /* Our caller expects us to free the input extent map. */
7630 free_extent_map(em);
7631 *map = NULL;
7632
7633 if (nowait)
7634 return -EAGAIN;
7635
7636 /*
7637 * If we could not allocate data space before locking the file
7638 * range and we can't do a NOCOW write, then we have to fail.
7639 */
7640 if (!dio_data->data_space_reserved)
7641 return -ENOSPC;
7642
7643 /*
7644 * We have to COW and we have already reserved data space before,
7645 * so now we reserve only metadata.
7646 */
7647 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7648 false);
7649 if (ret < 0)
7650 goto out;
7651 space_reserved = true;
7652
7653 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7654 if (IS_ERR(em)) {
7655 ret = PTR_ERR(em);
7656 goto out;
7657 }
7658 *map = em;
7659 len = min(len, em->len - (start - em->start));
7660 if (len < prev_len)
7661 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7662 prev_len - len, true);
7663 }
7664
7665 /*
7666 * We have created our ordered extent, so we can now release our reservation
7667 * for an outstanding extent.
7668 */
7669 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7670
7671 /*
7672 * Need to update the i_size under the extent lock so buffered
7673 * readers will get the updated i_size when we unlock.
7674 */
7675 if (start + len > i_size_read(inode))
7676 i_size_write(inode, start + len);
7677 out:
7678 if (ret && space_reserved) {
7679 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7680 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7681 }
7682 return ret;
7683 }
7684
btrfs_dio_iomap_begin(struct inode * inode,loff_t start,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)7685 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7686 loff_t length, unsigned int flags, struct iomap *iomap,
7687 struct iomap *srcmap)
7688 {
7689 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7690 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7691 struct extent_map *em;
7692 struct extent_state *cached_state = NULL;
7693 struct btrfs_dio_data *dio_data = iter->private;
7694 u64 lockstart, lockend;
7695 const bool write = !!(flags & IOMAP_WRITE);
7696 int ret = 0;
7697 u64 len = length;
7698 const u64 data_alloc_len = length;
7699 bool unlock_extents = false;
7700
7701 if (!write)
7702 len = min_t(u64, len, fs_info->sectorsize);
7703
7704 lockstart = start;
7705 lockend = start + len - 1;
7706
7707 /*
7708 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7709 * enough if we've written compressed pages to this area, so we need to
7710 * flush the dirty pages again to make absolutely sure that any
7711 * outstanding dirty pages are on disk - the first flush only starts
7712 * compression on the data, while keeping the pages locked, so by the
7713 * time the second flush returns we know bios for the compressed pages
7714 * were submitted and finished, and the pages no longer under writeback.
7715 *
7716 * If we have a NOWAIT request and we have any pages in the range that
7717 * are locked, likely due to compression still in progress, we don't want
7718 * to block on page locks. We also don't want to block on pages marked as
7719 * dirty or under writeback (same as for the non-compression case).
7720 * iomap_dio_rw() did the same check, but after that and before we got
7721 * here, mmap'ed writes may have happened or buffered reads started
7722 * (readpage() and readahead(), which lock pages), as we haven't locked
7723 * the file range yet.
7724 */
7725 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7726 &BTRFS_I(inode)->runtime_flags)) {
7727 if (flags & IOMAP_NOWAIT) {
7728 if (filemap_range_needs_writeback(inode->i_mapping,
7729 lockstart, lockend))
7730 return -EAGAIN;
7731 } else {
7732 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7733 start + length - 1);
7734 if (ret)
7735 return ret;
7736 }
7737 }
7738
7739 memset(dio_data, 0, sizeof(*dio_data));
7740
7741 /*
7742 * We always try to allocate data space and must do it before locking
7743 * the file range, to avoid deadlocks with concurrent writes to the same
7744 * range if the range has several extents and the writes don't expand the
7745 * current i_size (the inode lock is taken in shared mode). If we fail to
7746 * allocate data space here we continue and later, after locking the
7747 * file range, we fail with ENOSPC only if we figure out we can not do a
7748 * NOCOW write.
7749 */
7750 if (write && !(flags & IOMAP_NOWAIT)) {
7751 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7752 &dio_data->data_reserved,
7753 start, data_alloc_len);
7754 if (!ret)
7755 dio_data->data_space_reserved = true;
7756 else if (ret && !(BTRFS_I(inode)->flags &
7757 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7758 goto err;
7759 }
7760
7761 /*
7762 * If this errors out it's because we couldn't invalidate pagecache for
7763 * this range and we need to fallback to buffered IO, or we are doing a
7764 * NOWAIT read/write and we need to block.
7765 */
7766 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7767 if (ret < 0)
7768 goto err;
7769
7770 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7771 if (IS_ERR(em)) {
7772 ret = PTR_ERR(em);
7773 goto unlock_err;
7774 }
7775
7776 /*
7777 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7778 * io. INLINE is special, and we could probably kludge it in here, but
7779 * it's still buffered so for safety lets just fall back to the generic
7780 * buffered path.
7781 *
7782 * For COMPRESSED we _have_ to read the entire extent in so we can
7783 * decompress it, so there will be buffering required no matter what we
7784 * do, so go ahead and fallback to buffered.
7785 *
7786 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7787 * to buffered IO. Don't blame me, this is the price we pay for using
7788 * the generic code.
7789 */
7790 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7791 em->block_start == EXTENT_MAP_INLINE) {
7792 free_extent_map(em);
7793 /*
7794 * If we are in a NOWAIT context, return -EAGAIN in order to
7795 * fallback to buffered IO. This is not only because we can
7796 * block with buffered IO (no support for NOWAIT semantics at
7797 * the moment) but also to avoid returning short reads to user
7798 * space - this happens if we were able to read some data from
7799 * previous non-compressed extents and then when we fallback to
7800 * buffered IO, at btrfs_file_read_iter() by calling
7801 * filemap_read(), we fail to fault in pages for the read buffer,
7802 * in which case filemap_read() returns a short read (the number
7803 * of bytes previously read is > 0, so it does not return -EFAULT).
7804 */
7805 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7806 goto unlock_err;
7807 }
7808
7809 len = min(len, em->len - (start - em->start));
7810
7811 /*
7812 * If we have a NOWAIT request and the range contains multiple extents
7813 * (or a mix of extents and holes), then we return -EAGAIN to make the
7814 * caller fallback to a context where it can do a blocking (without
7815 * NOWAIT) request. This way we avoid doing partial IO and returning
7816 * success to the caller, which is not optimal for writes and for reads
7817 * it can result in unexpected behaviour for an application.
7818 *
7819 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7820 * iomap_dio_rw(), we can end up returning less data then what the caller
7821 * asked for, resulting in an unexpected, and incorrect, short read.
7822 * That is, the caller asked to read N bytes and we return less than that,
7823 * which is wrong unless we are crossing EOF. This happens if we get a
7824 * page fault error when trying to fault in pages for the buffer that is
7825 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7826 * have previously submitted bios for other extents in the range, in
7827 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7828 * those bios have completed by the time we get the page fault error,
7829 * which we return back to our caller - we should only return EIOCBQUEUED
7830 * after we have submitted bios for all the extents in the range.
7831 */
7832 if ((flags & IOMAP_NOWAIT) && len < length) {
7833 free_extent_map(em);
7834 ret = -EAGAIN;
7835 goto unlock_err;
7836 }
7837
7838 if (write) {
7839 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7840 start, len, flags);
7841 if (ret < 0)
7842 goto unlock_err;
7843 unlock_extents = true;
7844 /* Recalc len in case the new em is smaller than requested */
7845 len = min(len, em->len - (start - em->start));
7846 if (dio_data->data_space_reserved) {
7847 u64 release_offset;
7848 u64 release_len = 0;
7849
7850 if (dio_data->nocow_done) {
7851 release_offset = start;
7852 release_len = data_alloc_len;
7853 } else if (len < data_alloc_len) {
7854 release_offset = start + len;
7855 release_len = data_alloc_len - len;
7856 }
7857
7858 if (release_len > 0)
7859 btrfs_free_reserved_data_space(BTRFS_I(inode),
7860 dio_data->data_reserved,
7861 release_offset,
7862 release_len);
7863 }
7864 } else {
7865 /*
7866 * We need to unlock only the end area that we aren't using.
7867 * The rest is going to be unlocked by the endio routine.
7868 */
7869 lockstart = start + len;
7870 if (lockstart < lockend)
7871 unlock_extents = true;
7872 }
7873
7874 if (unlock_extents)
7875 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7876 lockstart, lockend, &cached_state);
7877 else
7878 free_extent_state(cached_state);
7879
7880 /*
7881 * Translate extent map information to iomap.
7882 * We trim the extents (and move the addr) even though iomap code does
7883 * that, since we have locked only the parts we are performing I/O in.
7884 */
7885 if ((em->block_start == EXTENT_MAP_HOLE) ||
7886 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7887 iomap->addr = IOMAP_NULL_ADDR;
7888 iomap->type = IOMAP_HOLE;
7889 } else {
7890 iomap->addr = em->block_start + (start - em->start);
7891 iomap->type = IOMAP_MAPPED;
7892 }
7893 iomap->offset = start;
7894 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7895 iomap->length = len;
7896
7897 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7898 iomap->flags |= IOMAP_F_ZONE_APPEND;
7899
7900 free_extent_map(em);
7901
7902 return 0;
7903
7904 unlock_err:
7905 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7906 &cached_state);
7907 err:
7908 if (dio_data->data_space_reserved) {
7909 btrfs_free_reserved_data_space(BTRFS_I(inode),
7910 dio_data->data_reserved,
7911 start, data_alloc_len);
7912 extent_changeset_free(dio_data->data_reserved);
7913 }
7914
7915 return ret;
7916 }
7917
btrfs_dio_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned int flags,struct iomap * iomap)7918 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7919 ssize_t written, unsigned int flags, struct iomap *iomap)
7920 {
7921 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7922 struct btrfs_dio_data *dio_data = iter->private;
7923 size_t submitted = dio_data->submitted;
7924 const bool write = !!(flags & IOMAP_WRITE);
7925 int ret = 0;
7926
7927 if (!write && (iomap->type == IOMAP_HOLE)) {
7928 /* If reading from a hole, unlock and return */
7929 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7930 return 0;
7931 }
7932
7933 if (submitted < length) {
7934 pos += submitted;
7935 length -= submitted;
7936 if (write)
7937 __endio_write_update_ordered(BTRFS_I(inode), pos,
7938 length, false);
7939 else
7940 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7941 pos + length - 1);
7942 ret = -ENOTBLK;
7943 }
7944
7945 if (write)
7946 extent_changeset_free(dio_data->data_reserved);
7947 return ret;
7948 }
7949
btrfs_dio_private_put(struct btrfs_dio_private * dip)7950 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7951 {
7952 /*
7953 * This implies a barrier so that stores to dio_bio->bi_status before
7954 * this and loads of dio_bio->bi_status after this are fully ordered.
7955 */
7956 if (!refcount_dec_and_test(&dip->refs))
7957 return;
7958
7959 if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) {
7960 __endio_write_update_ordered(BTRFS_I(dip->inode),
7961 dip->file_offset,
7962 dip->bytes,
7963 !dip->bio.bi_status);
7964 } else {
7965 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7966 dip->file_offset,
7967 dip->file_offset + dip->bytes - 1);
7968 }
7969
7970 kfree(dip->csums);
7971 bio_endio(&dip->bio);
7972 }
7973
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num,enum btrfs_compression_type compress_type)7974 static void submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7975 int mirror_num,
7976 enum btrfs_compression_type compress_type)
7977 {
7978 struct btrfs_dio_private *dip = bio->bi_private;
7979 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7980
7981 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7982
7983 if (btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA))
7984 return;
7985
7986 refcount_inc(&dip->refs);
7987 if (btrfs_map_bio(fs_info, bio, mirror_num))
7988 refcount_dec(&dip->refs);
7989 }
7990
btrfs_check_read_dio_bio(struct btrfs_dio_private * dip,struct btrfs_bio * bbio,const bool uptodate)7991 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
7992 struct btrfs_bio *bbio,
7993 const bool uptodate)
7994 {
7995 struct inode *inode = dip->inode;
7996 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7997 const u32 sectorsize = fs_info->sectorsize;
7998 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7999 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8000 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8001 struct bio_vec bvec;
8002 struct bvec_iter iter;
8003 u32 bio_offset = 0;
8004 blk_status_t err = BLK_STS_OK;
8005
8006 __bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) {
8007 unsigned int i, nr_sectors, pgoff;
8008
8009 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8010 pgoff = bvec.bv_offset;
8011 for (i = 0; i < nr_sectors; i++) {
8012 u64 start = bbio->file_offset + bio_offset;
8013
8014 ASSERT(pgoff < PAGE_SIZE);
8015 if (uptodate &&
8016 (!csum || !check_data_csum(inode, bbio,
8017 bio_offset, bvec.bv_page,
8018 pgoff, start))) {
8019 clean_io_failure(fs_info, failure_tree, io_tree,
8020 start, bvec.bv_page,
8021 btrfs_ino(BTRFS_I(inode)),
8022 pgoff);
8023 } else {
8024 int ret;
8025
8026 ret = btrfs_repair_one_sector(inode, &bbio->bio,
8027 bio_offset, bvec.bv_page, pgoff,
8028 start, bbio->mirror_num,
8029 submit_dio_repair_bio);
8030 if (ret)
8031 err = errno_to_blk_status(ret);
8032 }
8033 ASSERT(bio_offset + sectorsize > bio_offset);
8034 bio_offset += sectorsize;
8035 pgoff += sectorsize;
8036 }
8037 }
8038 return err;
8039 }
8040
__endio_write_update_ordered(struct btrfs_inode * inode,const u64 offset,const u64 bytes,const bool uptodate)8041 static void __endio_write_update_ordered(struct btrfs_inode *inode,
8042 const u64 offset, const u64 bytes,
8043 const bool uptodate)
8044 {
8045 btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
8046 finish_ordered_fn, uptodate);
8047 }
8048
btrfs_submit_bio_start_direct_io(struct inode * inode,struct bio * bio,u64 dio_file_offset)8049 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
8050 struct bio *bio,
8051 u64 dio_file_offset)
8052 {
8053 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false);
8054 }
8055
btrfs_end_dio_bio(struct bio * bio)8056 static void btrfs_end_dio_bio(struct bio *bio)
8057 {
8058 struct btrfs_dio_private *dip = bio->bi_private;
8059 struct btrfs_bio *bbio = btrfs_bio(bio);
8060 blk_status_t err = bio->bi_status;
8061
8062 if (err)
8063 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8064 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8065 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8066 bio->bi_opf, bio->bi_iter.bi_sector,
8067 bio->bi_iter.bi_size, err);
8068
8069 if (bio_op(bio) == REQ_OP_READ)
8070 err = btrfs_check_read_dio_bio(dip, bbio, !err);
8071
8072 if (err)
8073 dip->bio.bi_status = err;
8074
8075 btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio);
8076
8077 bio_put(bio);
8078 btrfs_dio_private_put(dip);
8079 }
8080
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)8081 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8082 struct inode *inode, u64 file_offset, int async_submit)
8083 {
8084 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8085 struct btrfs_dio_private *dip = bio->bi_private;
8086 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
8087 blk_status_t ret;
8088
8089 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8090 if (async_submit)
8091 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8092
8093 if (!write) {
8094 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8095 if (ret)
8096 goto err;
8097 }
8098
8099 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8100 goto map;
8101
8102 if (write && async_submit) {
8103 ret = btrfs_wq_submit_bio(inode, bio, 0, file_offset,
8104 btrfs_submit_bio_start_direct_io);
8105 goto err;
8106 } else if (write) {
8107 /*
8108 * If we aren't doing async submit, calculate the csum of the
8109 * bio now.
8110 */
8111 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false);
8112 if (ret)
8113 goto err;
8114 } else {
8115 u64 csum_offset;
8116
8117 csum_offset = file_offset - dip->file_offset;
8118 csum_offset >>= fs_info->sectorsize_bits;
8119 csum_offset *= fs_info->csum_size;
8120 btrfs_bio(bio)->csum = dip->csums + csum_offset;
8121 }
8122 map:
8123 ret = btrfs_map_bio(fs_info, bio, 0);
8124 err:
8125 return ret;
8126 }
8127
btrfs_submit_direct(const struct iomap_iter * iter,struct bio * dio_bio,loff_t file_offset)8128 static void btrfs_submit_direct(const struct iomap_iter *iter,
8129 struct bio *dio_bio, loff_t file_offset)
8130 {
8131 struct btrfs_dio_private *dip =
8132 container_of(dio_bio, struct btrfs_dio_private, bio);
8133 struct inode *inode = iter->inode;
8134 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8135 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8136 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8137 BTRFS_BLOCK_GROUP_RAID56_MASK);
8138 struct bio *bio;
8139 u64 start_sector;
8140 int async_submit = 0;
8141 u64 submit_len;
8142 u64 clone_offset = 0;
8143 u64 clone_len;
8144 u64 logical;
8145 int ret;
8146 blk_status_t status;
8147 struct btrfs_io_geometry geom;
8148 struct btrfs_dio_data *dio_data = iter->private;
8149 struct extent_map *em = NULL;
8150
8151 dip->inode = inode;
8152 dip->file_offset = file_offset;
8153 dip->bytes = dio_bio->bi_iter.bi_size;
8154 refcount_set(&dip->refs, 1);
8155 dip->csums = NULL;
8156
8157 if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
8158 unsigned int nr_sectors =
8159 (dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
8160
8161 /*
8162 * Load the csums up front to reduce csum tree searches and
8163 * contention when submitting bios.
8164 */
8165 status = BLK_STS_RESOURCE;
8166 dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS);
8167 if (!dip)
8168 goto out_err;
8169
8170 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8171 if (status != BLK_STS_OK)
8172 goto out_err;
8173 }
8174
8175 start_sector = dio_bio->bi_iter.bi_sector;
8176 submit_len = dio_bio->bi_iter.bi_size;
8177
8178 do {
8179 logical = start_sector << 9;
8180 em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8181 if (IS_ERR(em)) {
8182 status = errno_to_blk_status(PTR_ERR(em));
8183 em = NULL;
8184 goto out_err_em;
8185 }
8186 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8187 logical, &geom);
8188 if (ret) {
8189 status = errno_to_blk_status(ret);
8190 goto out_err_em;
8191 }
8192
8193 clone_len = min(submit_len, geom.len);
8194 ASSERT(clone_len <= UINT_MAX);
8195
8196 /*
8197 * This will never fail as it's passing GPF_NOFS and
8198 * the allocation is backed by btrfs_bioset.
8199 */
8200 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8201 bio->bi_private = dip;
8202 bio->bi_end_io = btrfs_end_dio_bio;
8203 btrfs_bio(bio)->file_offset = file_offset;
8204
8205 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8206 status = extract_ordered_extent(BTRFS_I(inode), bio,
8207 file_offset);
8208 if (status) {
8209 bio_put(bio);
8210 goto out_err;
8211 }
8212 }
8213
8214 ASSERT(submit_len >= clone_len);
8215 submit_len -= clone_len;
8216
8217 /*
8218 * Increase the count before we submit the bio so we know
8219 * the end IO handler won't happen before we increase the
8220 * count. Otherwise, the dip might get freed before we're
8221 * done setting it up.
8222 *
8223 * We transfer the initial reference to the last bio, so we
8224 * don't need to increment the reference count for the last one.
8225 */
8226 if (submit_len > 0) {
8227 refcount_inc(&dip->refs);
8228 /*
8229 * If we are submitting more than one bio, submit them
8230 * all asynchronously. The exception is RAID 5 or 6, as
8231 * asynchronous checksums make it difficult to collect
8232 * full stripe writes.
8233 */
8234 if (!raid56)
8235 async_submit = 1;
8236 }
8237
8238 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8239 async_submit);
8240 if (status) {
8241 bio_put(bio);
8242 if (submit_len > 0)
8243 refcount_dec(&dip->refs);
8244 goto out_err_em;
8245 }
8246
8247 dio_data->submitted += clone_len;
8248 clone_offset += clone_len;
8249 start_sector += clone_len >> 9;
8250 file_offset += clone_len;
8251
8252 free_extent_map(em);
8253 } while (submit_len > 0);
8254 return;
8255
8256 out_err_em:
8257 free_extent_map(em);
8258 out_err:
8259 dio_bio->bi_status = status;
8260 btrfs_dio_private_put(dip);
8261 }
8262
8263 static const struct iomap_ops btrfs_dio_iomap_ops = {
8264 .iomap_begin = btrfs_dio_iomap_begin,
8265 .iomap_end = btrfs_dio_iomap_end,
8266 };
8267
8268 static const struct iomap_dio_ops btrfs_dio_ops = {
8269 .submit_io = btrfs_submit_direct,
8270 .bio_set = &btrfs_dio_bioset,
8271 };
8272
btrfs_dio_rw(struct kiocb * iocb,struct iov_iter * iter,size_t done_before)8273 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
8274 {
8275 struct btrfs_dio_data data;
8276
8277 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8278 IOMAP_DIO_PARTIAL, &data, done_before);
8279 }
8280
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)8281 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8282 u64 start, u64 len)
8283 {
8284 int ret;
8285
8286 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8287 if (ret)
8288 return ret;
8289
8290 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8291 }
8292
btrfs_writepage(struct page * page,struct writeback_control * wbc)8293 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8294 {
8295 struct inode *inode = page->mapping->host;
8296 int ret;
8297
8298 if (current->flags & PF_MEMALLOC) {
8299 redirty_page_for_writepage(wbc, page);
8300 unlock_page(page);
8301 return 0;
8302 }
8303
8304 /*
8305 * If we are under memory pressure we will call this directly from the
8306 * VM, we need to make sure we have the inode referenced for the ordered
8307 * extent. If not just return like we didn't do anything.
8308 */
8309 if (!igrab(inode)) {
8310 redirty_page_for_writepage(wbc, page);
8311 return AOP_WRITEPAGE_ACTIVATE;
8312 }
8313 ret = extent_write_full_page(page, wbc);
8314 btrfs_add_delayed_iput(inode);
8315 return ret;
8316 }
8317
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8318 static int btrfs_writepages(struct address_space *mapping,
8319 struct writeback_control *wbc)
8320 {
8321 return extent_writepages(mapping, wbc);
8322 }
8323
btrfs_readahead(struct readahead_control * rac)8324 static void btrfs_readahead(struct readahead_control *rac)
8325 {
8326 extent_readahead(rac);
8327 }
8328
8329 /*
8330 * For release_folio() and invalidate_folio() we have a race window where
8331 * folio_end_writeback() is called but the subpage spinlock is not yet released.
8332 * If we continue to release/invalidate the page, we could cause use-after-free
8333 * for subpage spinlock. So this function is to spin and wait for subpage
8334 * spinlock.
8335 */
wait_subpage_spinlock(struct page * page)8336 static void wait_subpage_spinlock(struct page *page)
8337 {
8338 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8339 struct btrfs_subpage *subpage;
8340
8341 if (!btrfs_is_subpage(fs_info, page))
8342 return;
8343
8344 ASSERT(PagePrivate(page) && page->private);
8345 subpage = (struct btrfs_subpage *)page->private;
8346
8347 /*
8348 * This may look insane as we just acquire the spinlock and release it,
8349 * without doing anything. But we just want to make sure no one is
8350 * still holding the subpage spinlock.
8351 * And since the page is not dirty nor writeback, and we have page
8352 * locked, the only possible way to hold a spinlock is from the endio
8353 * function to clear page writeback.
8354 *
8355 * Here we just acquire the spinlock so that all existing callers
8356 * should exit and we're safe to release/invalidate the page.
8357 */
8358 spin_lock_irq(&subpage->lock);
8359 spin_unlock_irq(&subpage->lock);
8360 }
8361
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)8362 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8363 {
8364 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
8365
8366 if (ret == 1) {
8367 wait_subpage_spinlock(&folio->page);
8368 clear_page_extent_mapped(&folio->page);
8369 }
8370 return ret;
8371 }
8372
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)8373 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8374 {
8375 if (folio_test_writeback(folio) || folio_test_dirty(folio))
8376 return false;
8377 return __btrfs_release_folio(folio, gfp_flags);
8378 }
8379
8380 #ifdef CONFIG_MIGRATION
btrfs_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)8381 static int btrfs_migratepage(struct address_space *mapping,
8382 struct page *newpage, struct page *page,
8383 enum migrate_mode mode)
8384 {
8385 int ret;
8386
8387 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8388 if (ret != MIGRATEPAGE_SUCCESS)
8389 return ret;
8390
8391 if (page_has_private(page))
8392 attach_page_private(newpage, detach_page_private(page));
8393
8394 if (PageOrdered(page)) {
8395 ClearPageOrdered(page);
8396 SetPageOrdered(newpage);
8397 }
8398
8399 if (mode != MIGRATE_SYNC_NO_COPY)
8400 migrate_page_copy(newpage, page);
8401 else
8402 migrate_page_states(newpage, page);
8403 return MIGRATEPAGE_SUCCESS;
8404 }
8405 #endif
8406
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)8407 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8408 size_t length)
8409 {
8410 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8411 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8412 struct extent_io_tree *tree = &inode->io_tree;
8413 struct extent_state *cached_state = NULL;
8414 u64 page_start = folio_pos(folio);
8415 u64 page_end = page_start + folio_size(folio) - 1;
8416 u64 cur;
8417 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8418
8419 /*
8420 * We have folio locked so no new ordered extent can be created on this
8421 * page, nor bio can be submitted for this folio.
8422 *
8423 * But already submitted bio can still be finished on this folio.
8424 * Furthermore, endio function won't skip folio which has Ordered
8425 * (Private2) already cleared, so it's possible for endio and
8426 * invalidate_folio to do the same ordered extent accounting twice
8427 * on one folio.
8428 *
8429 * So here we wait for any submitted bios to finish, so that we won't
8430 * do double ordered extent accounting on the same folio.
8431 */
8432 folio_wait_writeback(folio);
8433 wait_subpage_spinlock(&folio->page);
8434
8435 /*
8436 * For subpage case, we have call sites like
8437 * btrfs_punch_hole_lock_range() which passes range not aligned to
8438 * sectorsize.
8439 * If the range doesn't cover the full folio, we don't need to and
8440 * shouldn't clear page extent mapped, as folio->private can still
8441 * record subpage dirty bits for other part of the range.
8442 *
8443 * For cases that invalidate the full folio even the range doesn't
8444 * cover the full folio, like invalidating the last folio, we're
8445 * still safe to wait for ordered extent to finish.
8446 */
8447 if (!(offset == 0 && length == folio_size(folio))) {
8448 btrfs_release_folio(folio, GFP_NOFS);
8449 return;
8450 }
8451
8452 if (!inode_evicting)
8453 lock_extent_bits(tree, page_start, page_end, &cached_state);
8454
8455 cur = page_start;
8456 while (cur < page_end) {
8457 struct btrfs_ordered_extent *ordered;
8458 bool delete_states;
8459 u64 range_end;
8460 u32 range_len;
8461
8462 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8463 page_end + 1 - cur);
8464 if (!ordered) {
8465 range_end = page_end;
8466 /*
8467 * No ordered extent covering this range, we are safe
8468 * to delete all extent states in the range.
8469 */
8470 delete_states = true;
8471 goto next;
8472 }
8473 if (ordered->file_offset > cur) {
8474 /*
8475 * There is a range between [cur, oe->file_offset) not
8476 * covered by any ordered extent.
8477 * We are safe to delete all extent states, and handle
8478 * the ordered extent in the next iteration.
8479 */
8480 range_end = ordered->file_offset - 1;
8481 delete_states = true;
8482 goto next;
8483 }
8484
8485 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8486 page_end);
8487 ASSERT(range_end + 1 - cur < U32_MAX);
8488 range_len = range_end + 1 - cur;
8489 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8490 /*
8491 * If Ordered (Private2) is cleared, it means endio has
8492 * already been executed for the range.
8493 * We can't delete the extent states as
8494 * btrfs_finish_ordered_io() may still use some of them.
8495 */
8496 delete_states = false;
8497 goto next;
8498 }
8499 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8500
8501 /*
8502 * IO on this page will never be started, so we need to account
8503 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8504 * here, must leave that up for the ordered extent completion.
8505 *
8506 * This will also unlock the range for incoming
8507 * btrfs_finish_ordered_io().
8508 */
8509 if (!inode_evicting)
8510 clear_extent_bit(tree, cur, range_end,
8511 EXTENT_DELALLOC |
8512 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8513 EXTENT_DEFRAG, 1, 0, &cached_state);
8514
8515 spin_lock_irq(&inode->ordered_tree.lock);
8516 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8517 ordered->truncated_len = min(ordered->truncated_len,
8518 cur - ordered->file_offset);
8519 spin_unlock_irq(&inode->ordered_tree.lock);
8520
8521 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8522 cur, range_end + 1 - cur)) {
8523 btrfs_finish_ordered_io(ordered);
8524 /*
8525 * The ordered extent has finished, now we're again
8526 * safe to delete all extent states of the range.
8527 */
8528 delete_states = true;
8529 } else {
8530 /*
8531 * btrfs_finish_ordered_io() will get executed by endio
8532 * of other pages, thus we can't delete extent states
8533 * anymore
8534 */
8535 delete_states = false;
8536 }
8537 next:
8538 if (ordered)
8539 btrfs_put_ordered_extent(ordered);
8540 /*
8541 * Qgroup reserved space handler
8542 * Sector(s) here will be either:
8543 *
8544 * 1) Already written to disk or bio already finished
8545 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8546 * Qgroup will be handled by its qgroup_record then.
8547 * btrfs_qgroup_free_data() call will do nothing here.
8548 *
8549 * 2) Not written to disk yet
8550 * Then btrfs_qgroup_free_data() call will clear the
8551 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8552 * reserved data space.
8553 * Since the IO will never happen for this page.
8554 */
8555 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8556 if (!inode_evicting) {
8557 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8558 EXTENT_DELALLOC | EXTENT_UPTODATE |
8559 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8560 delete_states, &cached_state);
8561 }
8562 cur = range_end + 1;
8563 }
8564 /*
8565 * We have iterated through all ordered extents of the page, the page
8566 * should not have Ordered (Private2) anymore, or the above iteration
8567 * did something wrong.
8568 */
8569 ASSERT(!folio_test_ordered(folio));
8570 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8571 if (!inode_evicting)
8572 __btrfs_release_folio(folio, GFP_NOFS);
8573 clear_page_extent_mapped(&folio->page);
8574 }
8575
8576 /*
8577 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8578 * called from a page fault handler when a page is first dirtied. Hence we must
8579 * be careful to check for EOF conditions here. We set the page up correctly
8580 * for a written page which means we get ENOSPC checking when writing into
8581 * holes and correct delalloc and unwritten extent mapping on filesystems that
8582 * support these features.
8583 *
8584 * We are not allowed to take the i_mutex here so we have to play games to
8585 * protect against truncate races as the page could now be beyond EOF. Because
8586 * truncate_setsize() writes the inode size before removing pages, once we have
8587 * the page lock we can determine safely if the page is beyond EOF. If it is not
8588 * beyond EOF, then the page is guaranteed safe against truncation until we
8589 * unlock the page.
8590 */
btrfs_page_mkwrite(struct vm_fault * vmf)8591 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8592 {
8593 struct page *page = vmf->page;
8594 struct inode *inode = file_inode(vmf->vma->vm_file);
8595 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8596 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8597 struct btrfs_ordered_extent *ordered;
8598 struct extent_state *cached_state = NULL;
8599 struct extent_changeset *data_reserved = NULL;
8600 unsigned long zero_start;
8601 loff_t size;
8602 vm_fault_t ret;
8603 int ret2;
8604 int reserved = 0;
8605 u64 reserved_space;
8606 u64 page_start;
8607 u64 page_end;
8608 u64 end;
8609
8610 reserved_space = PAGE_SIZE;
8611
8612 sb_start_pagefault(inode->i_sb);
8613 page_start = page_offset(page);
8614 page_end = page_start + PAGE_SIZE - 1;
8615 end = page_end;
8616
8617 /*
8618 * Reserving delalloc space after obtaining the page lock can lead to
8619 * deadlock. For example, if a dirty page is locked by this function
8620 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8621 * dirty page write out, then the btrfs_writepage() function could
8622 * end up waiting indefinitely to get a lock on the page currently
8623 * being processed by btrfs_page_mkwrite() function.
8624 */
8625 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8626 page_start, reserved_space);
8627 if (!ret2) {
8628 ret2 = file_update_time(vmf->vma->vm_file);
8629 reserved = 1;
8630 }
8631 if (ret2) {
8632 ret = vmf_error(ret2);
8633 if (reserved)
8634 goto out;
8635 goto out_noreserve;
8636 }
8637
8638 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8639 again:
8640 down_read(&BTRFS_I(inode)->i_mmap_lock);
8641 lock_page(page);
8642 size = i_size_read(inode);
8643
8644 if ((page->mapping != inode->i_mapping) ||
8645 (page_start >= size)) {
8646 /* page got truncated out from underneath us */
8647 goto out_unlock;
8648 }
8649 wait_on_page_writeback(page);
8650
8651 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8652 ret2 = set_page_extent_mapped(page);
8653 if (ret2 < 0) {
8654 ret = vmf_error(ret2);
8655 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8656 goto out_unlock;
8657 }
8658
8659 /*
8660 * we can't set the delalloc bits if there are pending ordered
8661 * extents. Drop our locks and wait for them to finish
8662 */
8663 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8664 PAGE_SIZE);
8665 if (ordered) {
8666 unlock_extent_cached(io_tree, page_start, page_end,
8667 &cached_state);
8668 unlock_page(page);
8669 up_read(&BTRFS_I(inode)->i_mmap_lock);
8670 btrfs_start_ordered_extent(ordered, 1);
8671 btrfs_put_ordered_extent(ordered);
8672 goto again;
8673 }
8674
8675 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8676 reserved_space = round_up(size - page_start,
8677 fs_info->sectorsize);
8678 if (reserved_space < PAGE_SIZE) {
8679 end = page_start + reserved_space - 1;
8680 btrfs_delalloc_release_space(BTRFS_I(inode),
8681 data_reserved, page_start,
8682 PAGE_SIZE - reserved_space, true);
8683 }
8684 }
8685
8686 /*
8687 * page_mkwrite gets called when the page is firstly dirtied after it's
8688 * faulted in, but write(2) could also dirty a page and set delalloc
8689 * bits, thus in this case for space account reason, we still need to
8690 * clear any delalloc bits within this page range since we have to
8691 * reserve data&meta space before lock_page() (see above comments).
8692 */
8693 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8694 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8695 EXTENT_DEFRAG, 0, 0, &cached_state);
8696
8697 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8698 &cached_state);
8699 if (ret2) {
8700 unlock_extent_cached(io_tree, page_start, page_end,
8701 &cached_state);
8702 ret = VM_FAULT_SIGBUS;
8703 goto out_unlock;
8704 }
8705
8706 /* page is wholly or partially inside EOF */
8707 if (page_start + PAGE_SIZE > size)
8708 zero_start = offset_in_page(size);
8709 else
8710 zero_start = PAGE_SIZE;
8711
8712 if (zero_start != PAGE_SIZE) {
8713 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8714 flush_dcache_page(page);
8715 }
8716 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8717 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8718 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8719
8720 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8721
8722 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8723 up_read(&BTRFS_I(inode)->i_mmap_lock);
8724
8725 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8726 sb_end_pagefault(inode->i_sb);
8727 extent_changeset_free(data_reserved);
8728 return VM_FAULT_LOCKED;
8729
8730 out_unlock:
8731 unlock_page(page);
8732 up_read(&BTRFS_I(inode)->i_mmap_lock);
8733 out:
8734 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8735 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8736 reserved_space, (ret != 0));
8737 out_noreserve:
8738 sb_end_pagefault(inode->i_sb);
8739 extent_changeset_free(data_reserved);
8740 return ret;
8741 }
8742
btrfs_truncate(struct inode * inode,bool skip_writeback)8743 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8744 {
8745 struct btrfs_truncate_control control = {
8746 .inode = BTRFS_I(inode),
8747 .ino = btrfs_ino(BTRFS_I(inode)),
8748 .min_type = BTRFS_EXTENT_DATA_KEY,
8749 .clear_extent_range = true,
8750 };
8751 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8752 struct btrfs_root *root = BTRFS_I(inode)->root;
8753 struct btrfs_block_rsv *rsv;
8754 int ret;
8755 struct btrfs_trans_handle *trans;
8756 u64 mask = fs_info->sectorsize - 1;
8757 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8758
8759 if (!skip_writeback) {
8760 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8761 (u64)-1);
8762 if (ret)
8763 return ret;
8764 }
8765
8766 /*
8767 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8768 * things going on here:
8769 *
8770 * 1) We need to reserve space to update our inode.
8771 *
8772 * 2) We need to have something to cache all the space that is going to
8773 * be free'd up by the truncate operation, but also have some slack
8774 * space reserved in case it uses space during the truncate (thank you
8775 * very much snapshotting).
8776 *
8777 * And we need these to be separate. The fact is we can use a lot of
8778 * space doing the truncate, and we have no earthly idea how much space
8779 * we will use, so we need the truncate reservation to be separate so it
8780 * doesn't end up using space reserved for updating the inode. We also
8781 * need to be able to stop the transaction and start a new one, which
8782 * means we need to be able to update the inode several times, and we
8783 * have no idea of knowing how many times that will be, so we can't just
8784 * reserve 1 item for the entirety of the operation, so that has to be
8785 * done separately as well.
8786 *
8787 * So that leaves us with
8788 *
8789 * 1) rsv - for the truncate reservation, which we will steal from the
8790 * transaction reservation.
8791 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8792 * updating the inode.
8793 */
8794 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8795 if (!rsv)
8796 return -ENOMEM;
8797 rsv->size = min_size;
8798 rsv->failfast = 1;
8799
8800 /*
8801 * 1 for the truncate slack space
8802 * 1 for updating the inode.
8803 */
8804 trans = btrfs_start_transaction(root, 2);
8805 if (IS_ERR(trans)) {
8806 ret = PTR_ERR(trans);
8807 goto out;
8808 }
8809
8810 /* Migrate the slack space for the truncate to our reserve */
8811 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8812 min_size, false);
8813 BUG_ON(ret);
8814
8815 trans->block_rsv = rsv;
8816
8817 while (1) {
8818 struct extent_state *cached_state = NULL;
8819 const u64 new_size = inode->i_size;
8820 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8821
8822 control.new_size = new_size;
8823 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8824 &cached_state);
8825 /*
8826 * We want to drop from the next block forward in case this new
8827 * size is not block aligned since we will be keeping the last
8828 * block of the extent just the way it is.
8829 */
8830 btrfs_drop_extent_cache(BTRFS_I(inode),
8831 ALIGN(new_size, fs_info->sectorsize),
8832 (u64)-1, 0);
8833
8834 ret = btrfs_truncate_inode_items(trans, root, &control);
8835
8836 inode_sub_bytes(inode, control.sub_bytes);
8837 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
8838
8839 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
8840 (u64)-1, &cached_state);
8841
8842 trans->block_rsv = &fs_info->trans_block_rsv;
8843 if (ret != -ENOSPC && ret != -EAGAIN)
8844 break;
8845
8846 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8847 if (ret)
8848 break;
8849
8850 btrfs_end_transaction(trans);
8851 btrfs_btree_balance_dirty(fs_info);
8852
8853 trans = btrfs_start_transaction(root, 2);
8854 if (IS_ERR(trans)) {
8855 ret = PTR_ERR(trans);
8856 trans = NULL;
8857 break;
8858 }
8859
8860 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8861 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8862 rsv, min_size, false);
8863 BUG_ON(ret); /* shouldn't happen */
8864 trans->block_rsv = rsv;
8865 }
8866
8867 /*
8868 * We can't call btrfs_truncate_block inside a trans handle as we could
8869 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8870 * know we've truncated everything except the last little bit, and can
8871 * do btrfs_truncate_block and then update the disk_i_size.
8872 */
8873 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8874 btrfs_end_transaction(trans);
8875 btrfs_btree_balance_dirty(fs_info);
8876
8877 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8878 if (ret)
8879 goto out;
8880 trans = btrfs_start_transaction(root, 1);
8881 if (IS_ERR(trans)) {
8882 ret = PTR_ERR(trans);
8883 goto out;
8884 }
8885 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8886 }
8887
8888 if (trans) {
8889 int ret2;
8890
8891 trans->block_rsv = &fs_info->trans_block_rsv;
8892 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8893 if (ret2 && !ret)
8894 ret = ret2;
8895
8896 ret2 = btrfs_end_transaction(trans);
8897 if (ret2 && !ret)
8898 ret = ret2;
8899 btrfs_btree_balance_dirty(fs_info);
8900 }
8901 out:
8902 btrfs_free_block_rsv(fs_info, rsv);
8903 /*
8904 * So if we truncate and then write and fsync we normally would just
8905 * write the extents that changed, which is a problem if we need to
8906 * first truncate that entire inode. So set this flag so we write out
8907 * all of the extents in the inode to the sync log so we're completely
8908 * safe.
8909 *
8910 * If no extents were dropped or trimmed we don't need to force the next
8911 * fsync to truncate all the inode's items from the log and re-log them
8912 * all. This means the truncate operation did not change the file size,
8913 * or changed it to a smaller size but there was only an implicit hole
8914 * between the old i_size and the new i_size, and there were no prealloc
8915 * extents beyond i_size to drop.
8916 */
8917 if (control.extents_found > 0)
8918 btrfs_set_inode_full_sync(BTRFS_I(inode));
8919
8920 return ret;
8921 }
8922
btrfs_new_subvol_inode(struct user_namespace * mnt_userns,struct inode * dir)8923 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
8924 struct inode *dir)
8925 {
8926 struct inode *inode;
8927
8928 inode = new_inode(dir->i_sb);
8929 if (inode) {
8930 /*
8931 * Subvolumes don't inherit the sgid bit or the parent's gid if
8932 * the parent's sgid bit is set. This is probably a bug.
8933 */
8934 inode_init_owner(mnt_userns, inode, NULL,
8935 S_IFDIR | (~current_umask() & S_IRWXUGO));
8936 inode->i_op = &btrfs_dir_inode_operations;
8937 inode->i_fop = &btrfs_dir_file_operations;
8938 }
8939 return inode;
8940 }
8941
btrfs_alloc_inode(struct super_block * sb)8942 struct inode *btrfs_alloc_inode(struct super_block *sb)
8943 {
8944 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8945 struct btrfs_inode *ei;
8946 struct inode *inode;
8947
8948 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8949 if (!ei)
8950 return NULL;
8951
8952 ei->root = NULL;
8953 ei->generation = 0;
8954 ei->last_trans = 0;
8955 ei->last_sub_trans = 0;
8956 ei->logged_trans = 0;
8957 ei->delalloc_bytes = 0;
8958 ei->new_delalloc_bytes = 0;
8959 ei->defrag_bytes = 0;
8960 ei->disk_i_size = 0;
8961 ei->flags = 0;
8962 ei->ro_flags = 0;
8963 ei->csum_bytes = 0;
8964 ei->index_cnt = (u64)-1;
8965 ei->dir_index = 0;
8966 ei->last_unlink_trans = 0;
8967 ei->last_reflink_trans = 0;
8968 ei->last_log_commit = 0;
8969
8970 spin_lock_init(&ei->lock);
8971 ei->outstanding_extents = 0;
8972 if (sb->s_magic != BTRFS_TEST_MAGIC)
8973 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8974 BTRFS_BLOCK_RSV_DELALLOC);
8975 ei->runtime_flags = 0;
8976 ei->prop_compress = BTRFS_COMPRESS_NONE;
8977 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8978
8979 ei->delayed_node = NULL;
8980
8981 ei->i_otime.tv_sec = 0;
8982 ei->i_otime.tv_nsec = 0;
8983
8984 inode = &ei->vfs_inode;
8985 extent_map_tree_init(&ei->extent_tree);
8986 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8987 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8988 IO_TREE_INODE_IO_FAILURE, inode);
8989 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8990 IO_TREE_INODE_FILE_EXTENT, inode);
8991 ei->io_tree.track_uptodate = true;
8992 ei->io_failure_tree.track_uptodate = true;
8993 atomic_set(&ei->sync_writers, 0);
8994 mutex_init(&ei->log_mutex);
8995 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8996 INIT_LIST_HEAD(&ei->delalloc_inodes);
8997 INIT_LIST_HEAD(&ei->delayed_iput);
8998 RB_CLEAR_NODE(&ei->rb_node);
8999 init_rwsem(&ei->i_mmap_lock);
9000
9001 return inode;
9002 }
9003
9004 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9005 void btrfs_test_destroy_inode(struct inode *inode)
9006 {
9007 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9008 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9009 }
9010 #endif
9011
btrfs_free_inode(struct inode * inode)9012 void btrfs_free_inode(struct inode *inode)
9013 {
9014 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9015 }
9016
btrfs_destroy_inode(struct inode * vfs_inode)9017 void btrfs_destroy_inode(struct inode *vfs_inode)
9018 {
9019 struct btrfs_ordered_extent *ordered;
9020 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
9021 struct btrfs_root *root = inode->root;
9022
9023 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
9024 WARN_ON(vfs_inode->i_data.nrpages);
9025 WARN_ON(inode->block_rsv.reserved);
9026 WARN_ON(inode->block_rsv.size);
9027 WARN_ON(inode->outstanding_extents);
9028 if (!S_ISDIR(vfs_inode->i_mode)) {
9029 WARN_ON(inode->delalloc_bytes);
9030 WARN_ON(inode->new_delalloc_bytes);
9031 }
9032 WARN_ON(inode->csum_bytes);
9033 WARN_ON(inode->defrag_bytes);
9034
9035 /*
9036 * This can happen where we create an inode, but somebody else also
9037 * created the same inode and we need to destroy the one we already
9038 * created.
9039 */
9040 if (!root)
9041 return;
9042
9043 while (1) {
9044 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9045 if (!ordered)
9046 break;
9047 else {
9048 btrfs_err(root->fs_info,
9049 "found ordered extent %llu %llu on inode cleanup",
9050 ordered->file_offset, ordered->num_bytes);
9051 btrfs_remove_ordered_extent(inode, ordered);
9052 btrfs_put_ordered_extent(ordered);
9053 btrfs_put_ordered_extent(ordered);
9054 }
9055 }
9056 btrfs_qgroup_check_reserved_leak(inode);
9057 inode_tree_del(inode);
9058 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9059 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
9060 btrfs_put_root(inode->root);
9061 }
9062
btrfs_drop_inode(struct inode * inode)9063 int btrfs_drop_inode(struct inode *inode)
9064 {
9065 struct btrfs_root *root = BTRFS_I(inode)->root;
9066
9067 if (root == NULL)
9068 return 1;
9069
9070 /* the snap/subvol tree is on deleting */
9071 if (btrfs_root_refs(&root->root_item) == 0)
9072 return 1;
9073 else
9074 return generic_drop_inode(inode);
9075 }
9076
init_once(void * foo)9077 static void init_once(void *foo)
9078 {
9079 struct btrfs_inode *ei = foo;
9080
9081 inode_init_once(&ei->vfs_inode);
9082 }
9083
btrfs_destroy_cachep(void)9084 void __cold btrfs_destroy_cachep(void)
9085 {
9086 /*
9087 * Make sure all delayed rcu free inodes are flushed before we
9088 * destroy cache.
9089 */
9090 rcu_barrier();
9091 bioset_exit(&btrfs_dio_bioset);
9092 kmem_cache_destroy(btrfs_inode_cachep);
9093 kmem_cache_destroy(btrfs_trans_handle_cachep);
9094 kmem_cache_destroy(btrfs_path_cachep);
9095 kmem_cache_destroy(btrfs_free_space_cachep);
9096 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9097 }
9098
btrfs_init_cachep(void)9099 int __init btrfs_init_cachep(void)
9100 {
9101 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9102 sizeof(struct btrfs_inode), 0,
9103 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9104 init_once);
9105 if (!btrfs_inode_cachep)
9106 goto fail;
9107
9108 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9109 sizeof(struct btrfs_trans_handle), 0,
9110 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9111 if (!btrfs_trans_handle_cachep)
9112 goto fail;
9113
9114 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9115 sizeof(struct btrfs_path), 0,
9116 SLAB_MEM_SPREAD, NULL);
9117 if (!btrfs_path_cachep)
9118 goto fail;
9119
9120 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9121 sizeof(struct btrfs_free_space), 0,
9122 SLAB_MEM_SPREAD, NULL);
9123 if (!btrfs_free_space_cachep)
9124 goto fail;
9125
9126 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9127 PAGE_SIZE, PAGE_SIZE,
9128 SLAB_MEM_SPREAD, NULL);
9129 if (!btrfs_free_space_bitmap_cachep)
9130 goto fail;
9131
9132 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
9133 offsetof(struct btrfs_dio_private, bio),
9134 BIOSET_NEED_BVECS))
9135 goto fail;
9136
9137 return 0;
9138 fail:
9139 btrfs_destroy_cachep();
9140 return -ENOMEM;
9141 }
9142
btrfs_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)9143 static int btrfs_getattr(struct user_namespace *mnt_userns,
9144 const struct path *path, struct kstat *stat,
9145 u32 request_mask, unsigned int flags)
9146 {
9147 u64 delalloc_bytes;
9148 u64 inode_bytes;
9149 struct inode *inode = d_inode(path->dentry);
9150 u32 blocksize = inode->i_sb->s_blocksize;
9151 u32 bi_flags = BTRFS_I(inode)->flags;
9152 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9153
9154 stat->result_mask |= STATX_BTIME;
9155 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9156 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9157 if (bi_flags & BTRFS_INODE_APPEND)
9158 stat->attributes |= STATX_ATTR_APPEND;
9159 if (bi_flags & BTRFS_INODE_COMPRESS)
9160 stat->attributes |= STATX_ATTR_COMPRESSED;
9161 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9162 stat->attributes |= STATX_ATTR_IMMUTABLE;
9163 if (bi_flags & BTRFS_INODE_NODUMP)
9164 stat->attributes |= STATX_ATTR_NODUMP;
9165 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9166 stat->attributes |= STATX_ATTR_VERITY;
9167
9168 stat->attributes_mask |= (STATX_ATTR_APPEND |
9169 STATX_ATTR_COMPRESSED |
9170 STATX_ATTR_IMMUTABLE |
9171 STATX_ATTR_NODUMP);
9172
9173 generic_fillattr(mnt_userns, inode, stat);
9174 stat->dev = BTRFS_I(inode)->root->anon_dev;
9175
9176 spin_lock(&BTRFS_I(inode)->lock);
9177 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9178 inode_bytes = inode_get_bytes(inode);
9179 spin_unlock(&BTRFS_I(inode)->lock);
9180 stat->blocks = (ALIGN(inode_bytes, blocksize) +
9181 ALIGN(delalloc_bytes, blocksize)) >> 9;
9182 return 0;
9183 }
9184
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9185 static int btrfs_rename_exchange(struct inode *old_dir,
9186 struct dentry *old_dentry,
9187 struct inode *new_dir,
9188 struct dentry *new_dentry)
9189 {
9190 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9191 struct btrfs_trans_handle *trans;
9192 unsigned int trans_num_items;
9193 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9194 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9195 struct inode *new_inode = new_dentry->d_inode;
9196 struct inode *old_inode = old_dentry->d_inode;
9197 struct timespec64 ctime = current_time(old_inode);
9198 struct btrfs_rename_ctx old_rename_ctx;
9199 struct btrfs_rename_ctx new_rename_ctx;
9200 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9201 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9202 u64 old_idx = 0;
9203 u64 new_idx = 0;
9204 int ret;
9205 int ret2;
9206 bool need_abort = false;
9207
9208 /*
9209 * For non-subvolumes allow exchange only within one subvolume, in the
9210 * same inode namespace. Two subvolumes (represented as directory) can
9211 * be exchanged as they're a logical link and have a fixed inode number.
9212 */
9213 if (root != dest &&
9214 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9215 new_ino != BTRFS_FIRST_FREE_OBJECTID))
9216 return -EXDEV;
9217
9218 /* close the race window with snapshot create/destroy ioctl */
9219 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9220 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9221 down_read(&fs_info->subvol_sem);
9222
9223 /*
9224 * For each inode:
9225 * 1 to remove old dir item
9226 * 1 to remove old dir index
9227 * 1 to add new dir item
9228 * 1 to add new dir index
9229 * 1 to update parent inode
9230 *
9231 * If the parents are the same, we only need to account for one
9232 */
9233 trans_num_items = (old_dir == new_dir ? 9 : 10);
9234 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9235 /*
9236 * 1 to remove old root ref
9237 * 1 to remove old root backref
9238 * 1 to add new root ref
9239 * 1 to add new root backref
9240 */
9241 trans_num_items += 4;
9242 } else {
9243 /*
9244 * 1 to update inode item
9245 * 1 to remove old inode ref
9246 * 1 to add new inode ref
9247 */
9248 trans_num_items += 3;
9249 }
9250 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9251 trans_num_items += 4;
9252 else
9253 trans_num_items += 3;
9254 trans = btrfs_start_transaction(root, trans_num_items);
9255 if (IS_ERR(trans)) {
9256 ret = PTR_ERR(trans);
9257 goto out_notrans;
9258 }
9259
9260 if (dest != root) {
9261 ret = btrfs_record_root_in_trans(trans, dest);
9262 if (ret)
9263 goto out_fail;
9264 }
9265
9266 /*
9267 * We need to find a free sequence number both in the source and
9268 * in the destination directory for the exchange.
9269 */
9270 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9271 if (ret)
9272 goto out_fail;
9273 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9274 if (ret)
9275 goto out_fail;
9276
9277 BTRFS_I(old_inode)->dir_index = 0ULL;
9278 BTRFS_I(new_inode)->dir_index = 0ULL;
9279
9280 /* Reference for the source. */
9281 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9282 /* force full log commit if subvolume involved. */
9283 btrfs_set_log_full_commit(trans);
9284 } else {
9285 ret = btrfs_insert_inode_ref(trans, dest,
9286 new_dentry->d_name.name,
9287 new_dentry->d_name.len,
9288 old_ino,
9289 btrfs_ino(BTRFS_I(new_dir)),
9290 old_idx);
9291 if (ret)
9292 goto out_fail;
9293 need_abort = true;
9294 }
9295
9296 /* And now for the dest. */
9297 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9298 /* force full log commit if subvolume involved. */
9299 btrfs_set_log_full_commit(trans);
9300 } else {
9301 ret = btrfs_insert_inode_ref(trans, root,
9302 old_dentry->d_name.name,
9303 old_dentry->d_name.len,
9304 new_ino,
9305 btrfs_ino(BTRFS_I(old_dir)),
9306 new_idx);
9307 if (ret) {
9308 if (need_abort)
9309 btrfs_abort_transaction(trans, ret);
9310 goto out_fail;
9311 }
9312 }
9313
9314 /* Update inode version and ctime/mtime. */
9315 inode_inc_iversion(old_dir);
9316 inode_inc_iversion(new_dir);
9317 inode_inc_iversion(old_inode);
9318 inode_inc_iversion(new_inode);
9319 old_dir->i_ctime = old_dir->i_mtime = ctime;
9320 new_dir->i_ctime = new_dir->i_mtime = ctime;
9321 old_inode->i_ctime = ctime;
9322 new_inode->i_ctime = ctime;
9323
9324 if (old_dentry->d_parent != new_dentry->d_parent) {
9325 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9326 BTRFS_I(old_inode), 1);
9327 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9328 BTRFS_I(new_inode), 1);
9329 }
9330
9331 /* src is a subvolume */
9332 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9333 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9334 } else { /* src is an inode */
9335 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9336 BTRFS_I(old_dentry->d_inode),
9337 old_dentry->d_name.name,
9338 old_dentry->d_name.len,
9339 &old_rename_ctx);
9340 if (!ret)
9341 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9342 }
9343 if (ret) {
9344 btrfs_abort_transaction(trans, ret);
9345 goto out_fail;
9346 }
9347
9348 /* dest is a subvolume */
9349 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9350 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9351 } else { /* dest is an inode */
9352 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9353 BTRFS_I(new_dentry->d_inode),
9354 new_dentry->d_name.name,
9355 new_dentry->d_name.len,
9356 &new_rename_ctx);
9357 if (!ret)
9358 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9359 }
9360 if (ret) {
9361 btrfs_abort_transaction(trans, ret);
9362 goto out_fail;
9363 }
9364
9365 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9366 new_dentry->d_name.name,
9367 new_dentry->d_name.len, 0, old_idx);
9368 if (ret) {
9369 btrfs_abort_transaction(trans, ret);
9370 goto out_fail;
9371 }
9372
9373 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9374 old_dentry->d_name.name,
9375 old_dentry->d_name.len, 0, new_idx);
9376 if (ret) {
9377 btrfs_abort_transaction(trans, ret);
9378 goto out_fail;
9379 }
9380
9381 if (old_inode->i_nlink == 1)
9382 BTRFS_I(old_inode)->dir_index = old_idx;
9383 if (new_inode->i_nlink == 1)
9384 BTRFS_I(new_inode)->dir_index = new_idx;
9385
9386 /*
9387 * Now pin the logs of the roots. We do it to ensure that no other task
9388 * can sync the logs while we are in progress with the rename, because
9389 * that could result in an inconsistency in case any of the inodes that
9390 * are part of this rename operation were logged before.
9391 */
9392 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9393 btrfs_pin_log_trans(root);
9394 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9395 btrfs_pin_log_trans(dest);
9396
9397 /* Do the log updates for all inodes. */
9398 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9399 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9400 old_rename_ctx.index, new_dentry->d_parent);
9401 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9402 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9403 new_rename_ctx.index, old_dentry->d_parent);
9404
9405 /* Now unpin the logs. */
9406 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9407 btrfs_end_log_trans(root);
9408 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9409 btrfs_end_log_trans(dest);
9410 out_fail:
9411 ret2 = btrfs_end_transaction(trans);
9412 ret = ret ? ret : ret2;
9413 out_notrans:
9414 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9415 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9416 up_read(&fs_info->subvol_sem);
9417
9418 return ret;
9419 }
9420
new_whiteout_inode(struct user_namespace * mnt_userns,struct inode * dir)9421 static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns,
9422 struct inode *dir)
9423 {
9424 struct inode *inode;
9425
9426 inode = new_inode(dir->i_sb);
9427 if (inode) {
9428 inode_init_owner(mnt_userns, inode, dir,
9429 S_IFCHR | WHITEOUT_MODE);
9430 inode->i_op = &btrfs_special_inode_operations;
9431 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9432 }
9433 return inode;
9434 }
9435
btrfs_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9436 static int btrfs_rename(struct user_namespace *mnt_userns,
9437 struct inode *old_dir, struct dentry *old_dentry,
9438 struct inode *new_dir, struct dentry *new_dentry,
9439 unsigned int flags)
9440 {
9441 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9442 struct btrfs_new_inode_args whiteout_args = {
9443 .dir = old_dir,
9444 .dentry = old_dentry,
9445 };
9446 struct btrfs_trans_handle *trans;
9447 unsigned int trans_num_items;
9448 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9449 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9450 struct inode *new_inode = d_inode(new_dentry);
9451 struct inode *old_inode = d_inode(old_dentry);
9452 struct btrfs_rename_ctx rename_ctx;
9453 u64 index = 0;
9454 int ret;
9455 int ret2;
9456 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9457
9458 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9459 return -EPERM;
9460
9461 /* we only allow rename subvolume link between subvolumes */
9462 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9463 return -EXDEV;
9464
9465 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9466 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9467 return -ENOTEMPTY;
9468
9469 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9470 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9471 return -ENOTEMPTY;
9472
9473
9474 /* check for collisions, even if the name isn't there */
9475 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9476 new_dentry->d_name.name,
9477 new_dentry->d_name.len);
9478
9479 if (ret) {
9480 if (ret == -EEXIST) {
9481 /* we shouldn't get
9482 * eexist without a new_inode */
9483 if (WARN_ON(!new_inode)) {
9484 return ret;
9485 }
9486 } else {
9487 /* maybe -EOVERFLOW */
9488 return ret;
9489 }
9490 }
9491 ret = 0;
9492
9493 /*
9494 * we're using rename to replace one file with another. Start IO on it
9495 * now so we don't add too much work to the end of the transaction
9496 */
9497 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9498 filemap_flush(old_inode->i_mapping);
9499
9500 if (flags & RENAME_WHITEOUT) {
9501 whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir);
9502 if (!whiteout_args.inode)
9503 return -ENOMEM;
9504 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9505 if (ret)
9506 goto out_whiteout_inode;
9507 } else {
9508 /* 1 to update the old parent inode. */
9509 trans_num_items = 1;
9510 }
9511
9512 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9513 /* Close the race window with snapshot create/destroy ioctl */
9514 down_read(&fs_info->subvol_sem);
9515 /*
9516 * 1 to remove old root ref
9517 * 1 to remove old root backref
9518 * 1 to add new root ref
9519 * 1 to add new root backref
9520 */
9521 trans_num_items += 4;
9522 } else {
9523 /*
9524 * 1 to update inode
9525 * 1 to remove old inode ref
9526 * 1 to add new inode ref
9527 */
9528 trans_num_items += 3;
9529 }
9530 /*
9531 * 1 to remove old dir item
9532 * 1 to remove old dir index
9533 * 1 to add new dir item
9534 * 1 to add new dir index
9535 */
9536 trans_num_items += 4;
9537 /* 1 to update new parent inode if it's not the same as the old parent */
9538 if (new_dir != old_dir)
9539 trans_num_items++;
9540 if (new_inode) {
9541 /*
9542 * 1 to update inode
9543 * 1 to remove inode ref
9544 * 1 to remove dir item
9545 * 1 to remove dir index
9546 * 1 to possibly add orphan item
9547 */
9548 trans_num_items += 5;
9549 }
9550 trans = btrfs_start_transaction(root, trans_num_items);
9551 if (IS_ERR(trans)) {
9552 ret = PTR_ERR(trans);
9553 goto out_notrans;
9554 }
9555
9556 if (dest != root) {
9557 ret = btrfs_record_root_in_trans(trans, dest);
9558 if (ret)
9559 goto out_fail;
9560 }
9561
9562 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9563 if (ret)
9564 goto out_fail;
9565
9566 BTRFS_I(old_inode)->dir_index = 0ULL;
9567 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9568 /* force full log commit if subvolume involved. */
9569 btrfs_set_log_full_commit(trans);
9570 } else {
9571 ret = btrfs_insert_inode_ref(trans, dest,
9572 new_dentry->d_name.name,
9573 new_dentry->d_name.len,
9574 old_ino,
9575 btrfs_ino(BTRFS_I(new_dir)), index);
9576 if (ret)
9577 goto out_fail;
9578 }
9579
9580 inode_inc_iversion(old_dir);
9581 inode_inc_iversion(new_dir);
9582 inode_inc_iversion(old_inode);
9583 old_dir->i_ctime = old_dir->i_mtime =
9584 new_dir->i_ctime = new_dir->i_mtime =
9585 old_inode->i_ctime = current_time(old_dir);
9586
9587 if (old_dentry->d_parent != new_dentry->d_parent)
9588 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9589 BTRFS_I(old_inode), 1);
9590
9591 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9592 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9593 } else {
9594 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9595 BTRFS_I(d_inode(old_dentry)),
9596 old_dentry->d_name.name,
9597 old_dentry->d_name.len,
9598 &rename_ctx);
9599 if (!ret)
9600 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9601 }
9602 if (ret) {
9603 btrfs_abort_transaction(trans, ret);
9604 goto out_fail;
9605 }
9606
9607 if (new_inode) {
9608 inode_inc_iversion(new_inode);
9609 new_inode->i_ctime = current_time(new_inode);
9610 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9611 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9612 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9613 BUG_ON(new_inode->i_nlink == 0);
9614 } else {
9615 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9616 BTRFS_I(d_inode(new_dentry)),
9617 new_dentry->d_name.name,
9618 new_dentry->d_name.len);
9619 }
9620 if (!ret && new_inode->i_nlink == 0)
9621 ret = btrfs_orphan_add(trans,
9622 BTRFS_I(d_inode(new_dentry)));
9623 if (ret) {
9624 btrfs_abort_transaction(trans, ret);
9625 goto out_fail;
9626 }
9627 }
9628
9629 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9630 new_dentry->d_name.name,
9631 new_dentry->d_name.len, 0, index);
9632 if (ret) {
9633 btrfs_abort_transaction(trans, ret);
9634 goto out_fail;
9635 }
9636
9637 if (old_inode->i_nlink == 1)
9638 BTRFS_I(old_inode)->dir_index = index;
9639
9640 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9641 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9642 rename_ctx.index, new_dentry->d_parent);
9643
9644 if (flags & RENAME_WHITEOUT) {
9645 ret = btrfs_create_new_inode(trans, &whiteout_args);
9646 if (ret) {
9647 btrfs_abort_transaction(trans, ret);
9648 goto out_fail;
9649 } else {
9650 unlock_new_inode(whiteout_args.inode);
9651 iput(whiteout_args.inode);
9652 whiteout_args.inode = NULL;
9653 }
9654 }
9655 out_fail:
9656 ret2 = btrfs_end_transaction(trans);
9657 ret = ret ? ret : ret2;
9658 out_notrans:
9659 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9660 up_read(&fs_info->subvol_sem);
9661 if (flags & RENAME_WHITEOUT)
9662 btrfs_new_inode_args_destroy(&whiteout_args);
9663 out_whiteout_inode:
9664 if (flags & RENAME_WHITEOUT)
9665 iput(whiteout_args.inode);
9666 return ret;
9667 }
9668
btrfs_rename2(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9669 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9670 struct dentry *old_dentry, struct inode *new_dir,
9671 struct dentry *new_dentry, unsigned int flags)
9672 {
9673 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9674 return -EINVAL;
9675
9676 if (flags & RENAME_EXCHANGE)
9677 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9678 new_dentry);
9679
9680 return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9681 new_dentry, flags);
9682 }
9683
9684 struct btrfs_delalloc_work {
9685 struct inode *inode;
9686 struct completion completion;
9687 struct list_head list;
9688 struct btrfs_work work;
9689 };
9690
btrfs_run_delalloc_work(struct btrfs_work * work)9691 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9692 {
9693 struct btrfs_delalloc_work *delalloc_work;
9694 struct inode *inode;
9695
9696 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9697 work);
9698 inode = delalloc_work->inode;
9699 filemap_flush(inode->i_mapping);
9700 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9701 &BTRFS_I(inode)->runtime_flags))
9702 filemap_flush(inode->i_mapping);
9703
9704 iput(inode);
9705 complete(&delalloc_work->completion);
9706 }
9707
btrfs_alloc_delalloc_work(struct inode * inode)9708 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9709 {
9710 struct btrfs_delalloc_work *work;
9711
9712 work = kmalloc(sizeof(*work), GFP_NOFS);
9713 if (!work)
9714 return NULL;
9715
9716 init_completion(&work->completion);
9717 INIT_LIST_HEAD(&work->list);
9718 work->inode = inode;
9719 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9720
9721 return work;
9722 }
9723
9724 /*
9725 * some fairly slow code that needs optimization. This walks the list
9726 * of all the inodes with pending delalloc and forces them to disk.
9727 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)9728 static int start_delalloc_inodes(struct btrfs_root *root,
9729 struct writeback_control *wbc, bool snapshot,
9730 bool in_reclaim_context)
9731 {
9732 struct btrfs_inode *binode;
9733 struct inode *inode;
9734 struct btrfs_delalloc_work *work, *next;
9735 struct list_head works;
9736 struct list_head splice;
9737 int ret = 0;
9738 bool full_flush = wbc->nr_to_write == LONG_MAX;
9739
9740 INIT_LIST_HEAD(&works);
9741 INIT_LIST_HEAD(&splice);
9742
9743 mutex_lock(&root->delalloc_mutex);
9744 spin_lock(&root->delalloc_lock);
9745 list_splice_init(&root->delalloc_inodes, &splice);
9746 while (!list_empty(&splice)) {
9747 binode = list_entry(splice.next, struct btrfs_inode,
9748 delalloc_inodes);
9749
9750 list_move_tail(&binode->delalloc_inodes,
9751 &root->delalloc_inodes);
9752
9753 if (in_reclaim_context &&
9754 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9755 continue;
9756
9757 inode = igrab(&binode->vfs_inode);
9758 if (!inode) {
9759 cond_resched_lock(&root->delalloc_lock);
9760 continue;
9761 }
9762 spin_unlock(&root->delalloc_lock);
9763
9764 if (snapshot)
9765 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9766 &binode->runtime_flags);
9767 if (full_flush) {
9768 work = btrfs_alloc_delalloc_work(inode);
9769 if (!work) {
9770 iput(inode);
9771 ret = -ENOMEM;
9772 goto out;
9773 }
9774 list_add_tail(&work->list, &works);
9775 btrfs_queue_work(root->fs_info->flush_workers,
9776 &work->work);
9777 } else {
9778 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9779 btrfs_add_delayed_iput(inode);
9780 if (ret || wbc->nr_to_write <= 0)
9781 goto out;
9782 }
9783 cond_resched();
9784 spin_lock(&root->delalloc_lock);
9785 }
9786 spin_unlock(&root->delalloc_lock);
9787
9788 out:
9789 list_for_each_entry_safe(work, next, &works, list) {
9790 list_del_init(&work->list);
9791 wait_for_completion(&work->completion);
9792 kfree(work);
9793 }
9794
9795 if (!list_empty(&splice)) {
9796 spin_lock(&root->delalloc_lock);
9797 list_splice_tail(&splice, &root->delalloc_inodes);
9798 spin_unlock(&root->delalloc_lock);
9799 }
9800 mutex_unlock(&root->delalloc_mutex);
9801 return ret;
9802 }
9803
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)9804 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9805 {
9806 struct writeback_control wbc = {
9807 .nr_to_write = LONG_MAX,
9808 .sync_mode = WB_SYNC_NONE,
9809 .range_start = 0,
9810 .range_end = LLONG_MAX,
9811 };
9812 struct btrfs_fs_info *fs_info = root->fs_info;
9813
9814 if (BTRFS_FS_ERROR(fs_info))
9815 return -EROFS;
9816
9817 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9818 }
9819
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)9820 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9821 bool in_reclaim_context)
9822 {
9823 struct writeback_control wbc = {
9824 .nr_to_write = nr,
9825 .sync_mode = WB_SYNC_NONE,
9826 .range_start = 0,
9827 .range_end = LLONG_MAX,
9828 };
9829 struct btrfs_root *root;
9830 struct list_head splice;
9831 int ret;
9832
9833 if (BTRFS_FS_ERROR(fs_info))
9834 return -EROFS;
9835
9836 INIT_LIST_HEAD(&splice);
9837
9838 mutex_lock(&fs_info->delalloc_root_mutex);
9839 spin_lock(&fs_info->delalloc_root_lock);
9840 list_splice_init(&fs_info->delalloc_roots, &splice);
9841 while (!list_empty(&splice)) {
9842 /*
9843 * Reset nr_to_write here so we know that we're doing a full
9844 * flush.
9845 */
9846 if (nr == LONG_MAX)
9847 wbc.nr_to_write = LONG_MAX;
9848
9849 root = list_first_entry(&splice, struct btrfs_root,
9850 delalloc_root);
9851 root = btrfs_grab_root(root);
9852 BUG_ON(!root);
9853 list_move_tail(&root->delalloc_root,
9854 &fs_info->delalloc_roots);
9855 spin_unlock(&fs_info->delalloc_root_lock);
9856
9857 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9858 btrfs_put_root(root);
9859 if (ret < 0 || wbc.nr_to_write <= 0)
9860 goto out;
9861 spin_lock(&fs_info->delalloc_root_lock);
9862 }
9863 spin_unlock(&fs_info->delalloc_root_lock);
9864
9865 ret = 0;
9866 out:
9867 if (!list_empty(&splice)) {
9868 spin_lock(&fs_info->delalloc_root_lock);
9869 list_splice_tail(&splice, &fs_info->delalloc_roots);
9870 spin_unlock(&fs_info->delalloc_root_lock);
9871 }
9872 mutex_unlock(&fs_info->delalloc_root_mutex);
9873 return ret;
9874 }
9875
btrfs_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)9876 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9877 struct dentry *dentry, const char *symname)
9878 {
9879 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9880 struct btrfs_trans_handle *trans;
9881 struct btrfs_root *root = BTRFS_I(dir)->root;
9882 struct btrfs_path *path;
9883 struct btrfs_key key;
9884 struct inode *inode;
9885 struct btrfs_new_inode_args new_inode_args = {
9886 .dir = dir,
9887 .dentry = dentry,
9888 };
9889 unsigned int trans_num_items;
9890 int err;
9891 int name_len;
9892 int datasize;
9893 unsigned long ptr;
9894 struct btrfs_file_extent_item *ei;
9895 struct extent_buffer *leaf;
9896
9897 name_len = strlen(symname);
9898 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9899 return -ENAMETOOLONG;
9900
9901 inode = new_inode(dir->i_sb);
9902 if (!inode)
9903 return -ENOMEM;
9904 inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO);
9905 inode->i_op = &btrfs_symlink_inode_operations;
9906 inode_nohighmem(inode);
9907 inode->i_mapping->a_ops = &btrfs_aops;
9908 btrfs_i_size_write(BTRFS_I(inode), name_len);
9909 inode_set_bytes(inode, name_len);
9910
9911 new_inode_args.inode = inode;
9912 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9913 if (err)
9914 goto out_inode;
9915 /* 1 additional item for the inline extent */
9916 trans_num_items++;
9917
9918 trans = btrfs_start_transaction(root, trans_num_items);
9919 if (IS_ERR(trans)) {
9920 err = PTR_ERR(trans);
9921 goto out_new_inode_args;
9922 }
9923
9924 err = btrfs_create_new_inode(trans, &new_inode_args);
9925 if (err)
9926 goto out;
9927
9928 path = btrfs_alloc_path();
9929 if (!path) {
9930 err = -ENOMEM;
9931 btrfs_abort_transaction(trans, err);
9932 discard_new_inode(inode);
9933 inode = NULL;
9934 goto out;
9935 }
9936 key.objectid = btrfs_ino(BTRFS_I(inode));
9937 key.offset = 0;
9938 key.type = BTRFS_EXTENT_DATA_KEY;
9939 datasize = btrfs_file_extent_calc_inline_size(name_len);
9940 err = btrfs_insert_empty_item(trans, root, path, &key,
9941 datasize);
9942 if (err) {
9943 btrfs_abort_transaction(trans, err);
9944 btrfs_free_path(path);
9945 discard_new_inode(inode);
9946 inode = NULL;
9947 goto out;
9948 }
9949 leaf = path->nodes[0];
9950 ei = btrfs_item_ptr(leaf, path->slots[0],
9951 struct btrfs_file_extent_item);
9952 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9953 btrfs_set_file_extent_type(leaf, ei,
9954 BTRFS_FILE_EXTENT_INLINE);
9955 btrfs_set_file_extent_encryption(leaf, ei, 0);
9956 btrfs_set_file_extent_compression(leaf, ei, 0);
9957 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9958 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9959
9960 ptr = btrfs_file_extent_inline_start(ei);
9961 write_extent_buffer(leaf, symname, ptr, name_len);
9962 btrfs_mark_buffer_dirty(leaf);
9963 btrfs_free_path(path);
9964
9965 d_instantiate_new(dentry, inode);
9966 err = 0;
9967 out:
9968 btrfs_end_transaction(trans);
9969 btrfs_btree_balance_dirty(fs_info);
9970 out_new_inode_args:
9971 btrfs_new_inode_args_destroy(&new_inode_args);
9972 out_inode:
9973 if (err)
9974 iput(inode);
9975 return err;
9976 }
9977
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)9978 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9979 struct btrfs_trans_handle *trans_in,
9980 struct btrfs_inode *inode,
9981 struct btrfs_key *ins,
9982 u64 file_offset)
9983 {
9984 struct btrfs_file_extent_item stack_fi;
9985 struct btrfs_replace_extent_info extent_info;
9986 struct btrfs_trans_handle *trans = trans_in;
9987 struct btrfs_path *path;
9988 u64 start = ins->objectid;
9989 u64 len = ins->offset;
9990 int qgroup_released;
9991 int ret;
9992
9993 memset(&stack_fi, 0, sizeof(stack_fi));
9994
9995 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9996 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9997 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9998 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9999 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
10000 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
10001 /* Encryption and other encoding is reserved and all 0 */
10002
10003 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
10004 if (qgroup_released < 0)
10005 return ERR_PTR(qgroup_released);
10006
10007 if (trans) {
10008 ret = insert_reserved_file_extent(trans, inode,
10009 file_offset, &stack_fi,
10010 true, qgroup_released);
10011 if (ret)
10012 goto free_qgroup;
10013 return trans;
10014 }
10015
10016 extent_info.disk_offset = start;
10017 extent_info.disk_len = len;
10018 extent_info.data_offset = 0;
10019 extent_info.data_len = len;
10020 extent_info.file_offset = file_offset;
10021 extent_info.extent_buf = (char *)&stack_fi;
10022 extent_info.is_new_extent = true;
10023 extent_info.update_times = true;
10024 extent_info.qgroup_reserved = qgroup_released;
10025 extent_info.insertions = 0;
10026
10027 path = btrfs_alloc_path();
10028 if (!path) {
10029 ret = -ENOMEM;
10030 goto free_qgroup;
10031 }
10032
10033 ret = btrfs_replace_file_extents(inode, path, file_offset,
10034 file_offset + len - 1, &extent_info,
10035 &trans);
10036 btrfs_free_path(path);
10037 if (ret)
10038 goto free_qgroup;
10039 return trans;
10040
10041 free_qgroup:
10042 /*
10043 * We have released qgroup data range at the beginning of the function,
10044 * and normally qgroup_released bytes will be freed when committing
10045 * transaction.
10046 * But if we error out early, we have to free what we have released
10047 * or we leak qgroup data reservation.
10048 */
10049 btrfs_qgroup_free_refroot(inode->root->fs_info,
10050 inode->root->root_key.objectid, qgroup_released,
10051 BTRFS_QGROUP_RSV_DATA);
10052 return ERR_PTR(ret);
10053 }
10054
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10055 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10056 u64 start, u64 num_bytes, u64 min_size,
10057 loff_t actual_len, u64 *alloc_hint,
10058 struct btrfs_trans_handle *trans)
10059 {
10060 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10061 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10062 struct extent_map *em;
10063 struct btrfs_root *root = BTRFS_I(inode)->root;
10064 struct btrfs_key ins;
10065 u64 cur_offset = start;
10066 u64 clear_offset = start;
10067 u64 i_size;
10068 u64 cur_bytes;
10069 u64 last_alloc = (u64)-1;
10070 int ret = 0;
10071 bool own_trans = true;
10072 u64 end = start + num_bytes - 1;
10073
10074 if (trans)
10075 own_trans = false;
10076 while (num_bytes > 0) {
10077 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10078 cur_bytes = max(cur_bytes, min_size);
10079 /*
10080 * If we are severely fragmented we could end up with really
10081 * small allocations, so if the allocator is returning small
10082 * chunks lets make its job easier by only searching for those
10083 * sized chunks.
10084 */
10085 cur_bytes = min(cur_bytes, last_alloc);
10086 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10087 min_size, 0, *alloc_hint, &ins, 1, 0);
10088 if (ret)
10089 break;
10090
10091 /*
10092 * We've reserved this space, and thus converted it from
10093 * ->bytes_may_use to ->bytes_reserved. Any error that happens
10094 * from here on out we will only need to clear our reservation
10095 * for the remaining unreserved area, so advance our
10096 * clear_offset by our extent size.
10097 */
10098 clear_offset += ins.offset;
10099
10100 last_alloc = ins.offset;
10101 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
10102 &ins, cur_offset);
10103 /*
10104 * Now that we inserted the prealloc extent we can finally
10105 * decrement the number of reservations in the block group.
10106 * If we did it before, we could race with relocation and have
10107 * relocation miss the reserved extent, making it fail later.
10108 */
10109 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10110 if (IS_ERR(trans)) {
10111 ret = PTR_ERR(trans);
10112 btrfs_free_reserved_extent(fs_info, ins.objectid,
10113 ins.offset, 0);
10114 break;
10115 }
10116
10117 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10118 cur_offset + ins.offset -1, 0);
10119
10120 em = alloc_extent_map();
10121 if (!em) {
10122 btrfs_set_inode_full_sync(BTRFS_I(inode));
10123 goto next;
10124 }
10125
10126 em->start = cur_offset;
10127 em->orig_start = cur_offset;
10128 em->len = ins.offset;
10129 em->block_start = ins.objectid;
10130 em->block_len = ins.offset;
10131 em->orig_block_len = ins.offset;
10132 em->ram_bytes = ins.offset;
10133 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10134 em->generation = trans->transid;
10135
10136 while (1) {
10137 write_lock(&em_tree->lock);
10138 ret = add_extent_mapping(em_tree, em, 1);
10139 write_unlock(&em_tree->lock);
10140 if (ret != -EEXIST)
10141 break;
10142 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10143 cur_offset + ins.offset - 1,
10144 0);
10145 }
10146 free_extent_map(em);
10147 next:
10148 num_bytes -= ins.offset;
10149 cur_offset += ins.offset;
10150 *alloc_hint = ins.objectid + ins.offset;
10151
10152 inode_inc_iversion(inode);
10153 inode->i_ctime = current_time(inode);
10154 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10155 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10156 (actual_len > inode->i_size) &&
10157 (cur_offset > inode->i_size)) {
10158 if (cur_offset > actual_len)
10159 i_size = actual_len;
10160 else
10161 i_size = cur_offset;
10162 i_size_write(inode, i_size);
10163 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10164 }
10165
10166 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10167
10168 if (ret) {
10169 btrfs_abort_transaction(trans, ret);
10170 if (own_trans)
10171 btrfs_end_transaction(trans);
10172 break;
10173 }
10174
10175 if (own_trans) {
10176 btrfs_end_transaction(trans);
10177 trans = NULL;
10178 }
10179 }
10180 if (clear_offset < end)
10181 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10182 end - clear_offset + 1);
10183 return ret;
10184 }
10185
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10186 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10187 u64 start, u64 num_bytes, u64 min_size,
10188 loff_t actual_len, u64 *alloc_hint)
10189 {
10190 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10191 min_size, actual_len, alloc_hint,
10192 NULL);
10193 }
10194
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10195 int btrfs_prealloc_file_range_trans(struct inode *inode,
10196 struct btrfs_trans_handle *trans, int mode,
10197 u64 start, u64 num_bytes, u64 min_size,
10198 loff_t actual_len, u64 *alloc_hint)
10199 {
10200 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10201 min_size, actual_len, alloc_hint, trans);
10202 }
10203
btrfs_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)10204 static int btrfs_permission(struct user_namespace *mnt_userns,
10205 struct inode *inode, int mask)
10206 {
10207 struct btrfs_root *root = BTRFS_I(inode)->root;
10208 umode_t mode = inode->i_mode;
10209
10210 if (mask & MAY_WRITE &&
10211 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10212 if (btrfs_root_readonly(root))
10213 return -EROFS;
10214 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10215 return -EACCES;
10216 }
10217 return generic_permission(mnt_userns, inode, mask);
10218 }
10219
btrfs_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)10220 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10221 struct dentry *dentry, umode_t mode)
10222 {
10223 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10224 struct btrfs_trans_handle *trans;
10225 struct btrfs_root *root = BTRFS_I(dir)->root;
10226 struct inode *inode;
10227 struct btrfs_new_inode_args new_inode_args = {
10228 .dir = dir,
10229 .dentry = dentry,
10230 .orphan = true,
10231 };
10232 unsigned int trans_num_items;
10233 int ret;
10234
10235 inode = new_inode(dir->i_sb);
10236 if (!inode)
10237 return -ENOMEM;
10238 inode_init_owner(mnt_userns, inode, dir, mode);
10239 inode->i_fop = &btrfs_file_operations;
10240 inode->i_op = &btrfs_file_inode_operations;
10241 inode->i_mapping->a_ops = &btrfs_aops;
10242
10243 new_inode_args.inode = inode;
10244 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
10245 if (ret)
10246 goto out_inode;
10247
10248 trans = btrfs_start_transaction(root, trans_num_items);
10249 if (IS_ERR(trans)) {
10250 ret = PTR_ERR(trans);
10251 goto out_new_inode_args;
10252 }
10253
10254 ret = btrfs_create_new_inode(trans, &new_inode_args);
10255
10256 /*
10257 * We set number of links to 0 in btrfs_create_new_inode(), and here we
10258 * set it to 1 because d_tmpfile() will issue a warning if the count is
10259 * 0, through:
10260 *
10261 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10262 */
10263 set_nlink(inode, 1);
10264
10265 if (!ret) {
10266 d_tmpfile(dentry, inode);
10267 unlock_new_inode(inode);
10268 mark_inode_dirty(inode);
10269 }
10270
10271 btrfs_end_transaction(trans);
10272 btrfs_btree_balance_dirty(fs_info);
10273 out_new_inode_args:
10274 btrfs_new_inode_args_destroy(&new_inode_args);
10275 out_inode:
10276 if (ret)
10277 iput(inode);
10278 return ret;
10279 }
10280
btrfs_set_range_writeback(struct btrfs_inode * inode,u64 start,u64 end)10281 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10282 {
10283 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10284 unsigned long index = start >> PAGE_SHIFT;
10285 unsigned long end_index = end >> PAGE_SHIFT;
10286 struct page *page;
10287 u32 len;
10288
10289 ASSERT(end + 1 - start <= U32_MAX);
10290 len = end + 1 - start;
10291 while (index <= end_index) {
10292 page = find_get_page(inode->vfs_inode.i_mapping, index);
10293 ASSERT(page); /* Pages should be in the extent_io_tree */
10294
10295 btrfs_page_set_writeback(fs_info, page, start, len);
10296 put_page(page);
10297 index++;
10298 }
10299 }
10300
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)10301 static int btrfs_encoded_io_compression_from_extent(
10302 struct btrfs_fs_info *fs_info,
10303 int compress_type)
10304 {
10305 switch (compress_type) {
10306 case BTRFS_COMPRESS_NONE:
10307 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
10308 case BTRFS_COMPRESS_ZLIB:
10309 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
10310 case BTRFS_COMPRESS_LZO:
10311 /*
10312 * The LZO format depends on the sector size. 64K is the maximum
10313 * sector size that we support.
10314 */
10315 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
10316 return -EINVAL;
10317 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
10318 (fs_info->sectorsize_bits - 12);
10319 case BTRFS_COMPRESS_ZSTD:
10320 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
10321 default:
10322 return -EUCLEAN;
10323 }
10324 }
10325
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)10326 static ssize_t btrfs_encoded_read_inline(
10327 struct kiocb *iocb,
10328 struct iov_iter *iter, u64 start,
10329 u64 lockend,
10330 struct extent_state **cached_state,
10331 u64 extent_start, size_t count,
10332 struct btrfs_ioctl_encoded_io_args *encoded,
10333 bool *unlocked)
10334 {
10335 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10336 struct btrfs_root *root = inode->root;
10337 struct btrfs_fs_info *fs_info = root->fs_info;
10338 struct extent_io_tree *io_tree = &inode->io_tree;
10339 struct btrfs_path *path;
10340 struct extent_buffer *leaf;
10341 struct btrfs_file_extent_item *item;
10342 u64 ram_bytes;
10343 unsigned long ptr;
10344 void *tmp;
10345 ssize_t ret;
10346
10347 path = btrfs_alloc_path();
10348 if (!path) {
10349 ret = -ENOMEM;
10350 goto out;
10351 }
10352 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
10353 extent_start, 0);
10354 if (ret) {
10355 if (ret > 0) {
10356 /* The extent item disappeared? */
10357 ret = -EIO;
10358 }
10359 goto out;
10360 }
10361 leaf = path->nodes[0];
10362 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10363
10364 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10365 ptr = btrfs_file_extent_inline_start(item);
10366
10367 encoded->len = min_t(u64, extent_start + ram_bytes,
10368 inode->vfs_inode.i_size) - iocb->ki_pos;
10369 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10370 btrfs_file_extent_compression(leaf, item));
10371 if (ret < 0)
10372 goto out;
10373 encoded->compression = ret;
10374 if (encoded->compression) {
10375 size_t inline_size;
10376
10377 inline_size = btrfs_file_extent_inline_item_len(leaf,
10378 path->slots[0]);
10379 if (inline_size > count) {
10380 ret = -ENOBUFS;
10381 goto out;
10382 }
10383 count = inline_size;
10384 encoded->unencoded_len = ram_bytes;
10385 encoded->unencoded_offset = iocb->ki_pos - extent_start;
10386 } else {
10387 count = min_t(u64, count, encoded->len);
10388 encoded->len = count;
10389 encoded->unencoded_len = count;
10390 ptr += iocb->ki_pos - extent_start;
10391 }
10392
10393 tmp = kmalloc(count, GFP_NOFS);
10394 if (!tmp) {
10395 ret = -ENOMEM;
10396 goto out;
10397 }
10398 read_extent_buffer(leaf, tmp, ptr, count);
10399 btrfs_release_path(path);
10400 unlock_extent_cached(io_tree, start, lockend, cached_state);
10401 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10402 *unlocked = true;
10403
10404 ret = copy_to_iter(tmp, count, iter);
10405 if (ret != count)
10406 ret = -EFAULT;
10407 kfree(tmp);
10408 out:
10409 btrfs_free_path(path);
10410 return ret;
10411 }
10412
10413 struct btrfs_encoded_read_private {
10414 struct btrfs_inode *inode;
10415 u64 file_offset;
10416 wait_queue_head_t wait;
10417 atomic_t pending;
10418 blk_status_t status;
10419 bool skip_csum;
10420 };
10421
submit_encoded_read_bio(struct btrfs_inode * inode,struct bio * bio,int mirror_num)10422 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
10423 struct bio *bio, int mirror_num)
10424 {
10425 struct btrfs_encoded_read_private *priv = bio->bi_private;
10426 struct btrfs_bio *bbio = btrfs_bio(bio);
10427 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10428 blk_status_t ret;
10429
10430 if (!priv->skip_csum) {
10431 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
10432 if (ret)
10433 return ret;
10434 }
10435
10436 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
10437 if (ret) {
10438 btrfs_bio_free_csum(bbio);
10439 return ret;
10440 }
10441
10442 atomic_inc(&priv->pending);
10443 ret = btrfs_map_bio(fs_info, bio, mirror_num);
10444 if (ret) {
10445 atomic_dec(&priv->pending);
10446 btrfs_bio_free_csum(bbio);
10447 }
10448 return ret;
10449 }
10450
btrfs_encoded_read_verify_csum(struct btrfs_bio * bbio)10451 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
10452 {
10453 const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
10454 struct btrfs_encoded_read_private *priv = bbio->bio.bi_private;
10455 struct btrfs_inode *inode = priv->inode;
10456 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10457 u32 sectorsize = fs_info->sectorsize;
10458 struct bio_vec *bvec;
10459 struct bvec_iter_all iter_all;
10460 u64 start = priv->file_offset;
10461 u32 bio_offset = 0;
10462
10463 if (priv->skip_csum || !uptodate)
10464 return bbio->bio.bi_status;
10465
10466 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
10467 unsigned int i, nr_sectors, pgoff;
10468
10469 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
10470 pgoff = bvec->bv_offset;
10471 for (i = 0; i < nr_sectors; i++) {
10472 ASSERT(pgoff < PAGE_SIZE);
10473 if (check_data_csum(&inode->vfs_inode, bbio, bio_offset,
10474 bvec->bv_page, pgoff, start))
10475 return BLK_STS_IOERR;
10476 start += sectorsize;
10477 bio_offset += sectorsize;
10478 pgoff += sectorsize;
10479 }
10480 }
10481 return BLK_STS_OK;
10482 }
10483
btrfs_encoded_read_endio(struct bio * bio)10484 static void btrfs_encoded_read_endio(struct bio *bio)
10485 {
10486 struct btrfs_encoded_read_private *priv = bio->bi_private;
10487 struct btrfs_bio *bbio = btrfs_bio(bio);
10488 blk_status_t status;
10489
10490 status = btrfs_encoded_read_verify_csum(bbio);
10491 if (status) {
10492 /*
10493 * The memory barrier implied by the atomic_dec_return() here
10494 * pairs with the memory barrier implied by the
10495 * atomic_dec_return() or io_wait_event() in
10496 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10497 * write is observed before the load of status in
10498 * btrfs_encoded_read_regular_fill_pages().
10499 */
10500 WRITE_ONCE(priv->status, status);
10501 }
10502 if (!atomic_dec_return(&priv->pending))
10503 wake_up(&priv->wait);
10504 btrfs_bio_free_csum(bbio);
10505 bio_put(bio);
10506 }
10507
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 file_offset,u64 disk_bytenr,u64 disk_io_size,struct page ** pages)10508 static int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10509 u64 file_offset,
10510 u64 disk_bytenr,
10511 u64 disk_io_size,
10512 struct page **pages)
10513 {
10514 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10515 struct btrfs_encoded_read_private priv = {
10516 .inode = inode,
10517 .file_offset = file_offset,
10518 .pending = ATOMIC_INIT(1),
10519 .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
10520 };
10521 unsigned long i = 0;
10522 u64 cur = 0;
10523 int ret;
10524
10525 init_waitqueue_head(&priv.wait);
10526 /*
10527 * Submit bios for the extent, splitting due to bio or stripe limits as
10528 * necessary.
10529 */
10530 while (cur < disk_io_size) {
10531 struct extent_map *em;
10532 struct btrfs_io_geometry geom;
10533 struct bio *bio = NULL;
10534 u64 remaining;
10535
10536 em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
10537 disk_io_size - cur);
10538 if (IS_ERR(em)) {
10539 ret = PTR_ERR(em);
10540 } else {
10541 ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
10542 disk_bytenr + cur, &geom);
10543 free_extent_map(em);
10544 }
10545 if (ret) {
10546 WRITE_ONCE(priv.status, errno_to_blk_status(ret));
10547 break;
10548 }
10549 remaining = min(geom.len, disk_io_size - cur);
10550 while (bio || remaining) {
10551 size_t bytes = min_t(u64, remaining, PAGE_SIZE);
10552
10553 if (!bio) {
10554 bio = btrfs_bio_alloc(BIO_MAX_VECS);
10555 bio->bi_iter.bi_sector =
10556 (disk_bytenr + cur) >> SECTOR_SHIFT;
10557 bio->bi_end_io = btrfs_encoded_read_endio;
10558 bio->bi_private = &priv;
10559 bio->bi_opf = REQ_OP_READ;
10560 }
10561
10562 if (!bytes ||
10563 bio_add_page(bio, pages[i], bytes, 0) < bytes) {
10564 blk_status_t status;
10565
10566 status = submit_encoded_read_bio(inode, bio, 0);
10567 if (status) {
10568 WRITE_ONCE(priv.status, status);
10569 bio_put(bio);
10570 goto out;
10571 }
10572 bio = NULL;
10573 continue;
10574 }
10575
10576 i++;
10577 cur += bytes;
10578 remaining -= bytes;
10579 }
10580 }
10581
10582 out:
10583 if (atomic_dec_return(&priv.pending))
10584 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10585 /* See btrfs_encoded_read_endio() for ordering. */
10586 return blk_status_to_errno(READ_ONCE(priv.status));
10587 }
10588
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)10589 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10590 struct iov_iter *iter,
10591 u64 start, u64 lockend,
10592 struct extent_state **cached_state,
10593 u64 disk_bytenr, u64 disk_io_size,
10594 size_t count, bool compressed,
10595 bool *unlocked)
10596 {
10597 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10598 struct extent_io_tree *io_tree = &inode->io_tree;
10599 struct page **pages;
10600 unsigned long nr_pages, i;
10601 u64 cur;
10602 size_t page_offset;
10603 ssize_t ret;
10604
10605 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10606 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10607 if (!pages)
10608 return -ENOMEM;
10609 ret = btrfs_alloc_page_array(nr_pages, pages);
10610 if (ret) {
10611 ret = -ENOMEM;
10612 goto out;
10613 }
10614
10615 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10616 disk_io_size, pages);
10617 if (ret)
10618 goto out;
10619
10620 unlock_extent_cached(io_tree, start, lockend, cached_state);
10621 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10622 *unlocked = true;
10623
10624 if (compressed) {
10625 i = 0;
10626 page_offset = 0;
10627 } else {
10628 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10629 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10630 }
10631 cur = 0;
10632 while (cur < count) {
10633 size_t bytes = min_t(size_t, count - cur,
10634 PAGE_SIZE - page_offset);
10635
10636 if (copy_page_to_iter(pages[i], page_offset, bytes,
10637 iter) != bytes) {
10638 ret = -EFAULT;
10639 goto out;
10640 }
10641 i++;
10642 cur += bytes;
10643 page_offset = 0;
10644 }
10645 ret = count;
10646 out:
10647 for (i = 0; i < nr_pages; i++) {
10648 if (pages[i])
10649 __free_page(pages[i]);
10650 }
10651 kfree(pages);
10652 return ret;
10653 }
10654
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded)10655 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10656 struct btrfs_ioctl_encoded_io_args *encoded)
10657 {
10658 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10659 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10660 struct extent_io_tree *io_tree = &inode->io_tree;
10661 ssize_t ret;
10662 size_t count = iov_iter_count(iter);
10663 u64 start, lockend, disk_bytenr, disk_io_size;
10664 struct extent_state *cached_state = NULL;
10665 struct extent_map *em;
10666 bool unlocked = false;
10667
10668 file_accessed(iocb->ki_filp);
10669
10670 btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10671
10672 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10673 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10674 return 0;
10675 }
10676 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10677 /*
10678 * We don't know how long the extent containing iocb->ki_pos is, but if
10679 * it's compressed we know that it won't be longer than this.
10680 */
10681 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10682
10683 for (;;) {
10684 struct btrfs_ordered_extent *ordered;
10685
10686 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10687 lockend - start + 1);
10688 if (ret)
10689 goto out_unlock_inode;
10690 lock_extent_bits(io_tree, start, lockend, &cached_state);
10691 ordered = btrfs_lookup_ordered_range(inode, start,
10692 lockend - start + 1);
10693 if (!ordered)
10694 break;
10695 btrfs_put_ordered_extent(ordered);
10696 unlock_extent_cached(io_tree, start, lockend, &cached_state);
10697 cond_resched();
10698 }
10699
10700 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10701 if (IS_ERR(em)) {
10702 ret = PTR_ERR(em);
10703 goto out_unlock_extent;
10704 }
10705
10706 if (em->block_start == EXTENT_MAP_INLINE) {
10707 u64 extent_start = em->start;
10708
10709 /*
10710 * For inline extents we get everything we need out of the
10711 * extent item.
10712 */
10713 free_extent_map(em);
10714 em = NULL;
10715 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10716 &cached_state, extent_start,
10717 count, encoded, &unlocked);
10718 goto out;
10719 }
10720
10721 /*
10722 * We only want to return up to EOF even if the extent extends beyond
10723 * that.
10724 */
10725 encoded->len = min_t(u64, extent_map_end(em),
10726 inode->vfs_inode.i_size) - iocb->ki_pos;
10727 if (em->block_start == EXTENT_MAP_HOLE ||
10728 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10729 disk_bytenr = EXTENT_MAP_HOLE;
10730 count = min_t(u64, count, encoded->len);
10731 encoded->len = count;
10732 encoded->unencoded_len = count;
10733 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10734 disk_bytenr = em->block_start;
10735 /*
10736 * Bail if the buffer isn't large enough to return the whole
10737 * compressed extent.
10738 */
10739 if (em->block_len > count) {
10740 ret = -ENOBUFS;
10741 goto out_em;
10742 }
10743 disk_io_size = count = em->block_len;
10744 encoded->unencoded_len = em->ram_bytes;
10745 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10746 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10747 em->compress_type);
10748 if (ret < 0)
10749 goto out_em;
10750 encoded->compression = ret;
10751 } else {
10752 disk_bytenr = em->block_start + (start - em->start);
10753 if (encoded->len > count)
10754 encoded->len = count;
10755 /*
10756 * Don't read beyond what we locked. This also limits the page
10757 * allocations that we'll do.
10758 */
10759 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10760 count = start + disk_io_size - iocb->ki_pos;
10761 encoded->len = count;
10762 encoded->unencoded_len = count;
10763 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10764 }
10765 free_extent_map(em);
10766 em = NULL;
10767
10768 if (disk_bytenr == EXTENT_MAP_HOLE) {
10769 unlock_extent_cached(io_tree, start, lockend, &cached_state);
10770 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10771 unlocked = true;
10772 ret = iov_iter_zero(count, iter);
10773 if (ret != count)
10774 ret = -EFAULT;
10775 } else {
10776 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10777 &cached_state, disk_bytenr,
10778 disk_io_size, count,
10779 encoded->compression,
10780 &unlocked);
10781 }
10782
10783 out:
10784 if (ret >= 0)
10785 iocb->ki_pos += encoded->len;
10786 out_em:
10787 free_extent_map(em);
10788 out_unlock_extent:
10789 if (!unlocked)
10790 unlock_extent_cached(io_tree, start, lockend, &cached_state);
10791 out_unlock_inode:
10792 if (!unlocked)
10793 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10794 return ret;
10795 }
10796
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)10797 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10798 const struct btrfs_ioctl_encoded_io_args *encoded)
10799 {
10800 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10801 struct btrfs_root *root = inode->root;
10802 struct btrfs_fs_info *fs_info = root->fs_info;
10803 struct extent_io_tree *io_tree = &inode->io_tree;
10804 struct extent_changeset *data_reserved = NULL;
10805 struct extent_state *cached_state = NULL;
10806 int compression;
10807 size_t orig_count;
10808 u64 start, end;
10809 u64 num_bytes, ram_bytes, disk_num_bytes;
10810 unsigned long nr_pages, i;
10811 struct page **pages;
10812 struct btrfs_key ins;
10813 bool extent_reserved = false;
10814 struct extent_map *em;
10815 ssize_t ret;
10816
10817 switch (encoded->compression) {
10818 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10819 compression = BTRFS_COMPRESS_ZLIB;
10820 break;
10821 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10822 compression = BTRFS_COMPRESS_ZSTD;
10823 break;
10824 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10825 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10826 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10827 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10828 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10829 /* The sector size must match for LZO. */
10830 if (encoded->compression -
10831 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10832 fs_info->sectorsize_bits)
10833 return -EINVAL;
10834 compression = BTRFS_COMPRESS_LZO;
10835 break;
10836 default:
10837 return -EINVAL;
10838 }
10839 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10840 return -EINVAL;
10841
10842 orig_count = iov_iter_count(from);
10843
10844 /* The extent size must be sane. */
10845 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10846 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10847 return -EINVAL;
10848
10849 /*
10850 * The compressed data must be smaller than the decompressed data.
10851 *
10852 * It's of course possible for data to compress to larger or the same
10853 * size, but the buffered I/O path falls back to no compression for such
10854 * data, and we don't want to break any assumptions by creating these
10855 * extents.
10856 *
10857 * Note that this is less strict than the current check we have that the
10858 * compressed data must be at least one sector smaller than the
10859 * decompressed data. We only want to enforce the weaker requirement
10860 * from old kernels that it is at least one byte smaller.
10861 */
10862 if (orig_count >= encoded->unencoded_len)
10863 return -EINVAL;
10864
10865 /* The extent must start on a sector boundary. */
10866 start = iocb->ki_pos;
10867 if (!IS_ALIGNED(start, fs_info->sectorsize))
10868 return -EINVAL;
10869
10870 /*
10871 * The extent must end on a sector boundary. However, we allow a write
10872 * which ends at or extends i_size to have an unaligned length; we round
10873 * up the extent size and set i_size to the unaligned end.
10874 */
10875 if (start + encoded->len < inode->vfs_inode.i_size &&
10876 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10877 return -EINVAL;
10878
10879 /* Finally, the offset in the unencoded data must be sector-aligned. */
10880 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10881 return -EINVAL;
10882
10883 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10884 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10885 end = start + num_bytes - 1;
10886
10887 /*
10888 * If the extent cannot be inline, the compressed data on disk must be
10889 * sector-aligned. For convenience, we extend it with zeroes if it
10890 * isn't.
10891 */
10892 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10893 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10894 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10895 if (!pages)
10896 return -ENOMEM;
10897 for (i = 0; i < nr_pages; i++) {
10898 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10899 char *kaddr;
10900
10901 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10902 if (!pages[i]) {
10903 ret = -ENOMEM;
10904 goto out_pages;
10905 }
10906 kaddr = kmap(pages[i]);
10907 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10908 kunmap(pages[i]);
10909 ret = -EFAULT;
10910 goto out_pages;
10911 }
10912 if (bytes < PAGE_SIZE)
10913 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10914 kunmap(pages[i]);
10915 }
10916
10917 for (;;) {
10918 struct btrfs_ordered_extent *ordered;
10919
10920 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10921 if (ret)
10922 goto out_pages;
10923 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10924 start >> PAGE_SHIFT,
10925 end >> PAGE_SHIFT);
10926 if (ret)
10927 goto out_pages;
10928 lock_extent_bits(io_tree, start, end, &cached_state);
10929 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10930 if (!ordered &&
10931 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10932 break;
10933 if (ordered)
10934 btrfs_put_ordered_extent(ordered);
10935 unlock_extent_cached(io_tree, start, end, &cached_state);
10936 cond_resched();
10937 }
10938
10939 /*
10940 * We don't use the higher-level delalloc space functions because our
10941 * num_bytes and disk_num_bytes are different.
10942 */
10943 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10944 if (ret)
10945 goto out_unlock;
10946 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10947 if (ret)
10948 goto out_free_data_space;
10949 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10950 false);
10951 if (ret)
10952 goto out_qgroup_free_data;
10953
10954 /* Try an inline extent first. */
10955 if (start == 0 && encoded->unencoded_len == encoded->len &&
10956 encoded->unencoded_offset == 0) {
10957 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10958 compression, pages, true);
10959 if (ret <= 0) {
10960 if (ret == 0)
10961 ret = orig_count;
10962 goto out_delalloc_release;
10963 }
10964 }
10965
10966 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10967 disk_num_bytes, 0, 0, &ins, 1, 1);
10968 if (ret)
10969 goto out_delalloc_release;
10970 extent_reserved = true;
10971
10972 em = create_io_em(inode, start, num_bytes,
10973 start - encoded->unencoded_offset, ins.objectid,
10974 ins.offset, ins.offset, ram_bytes, compression,
10975 BTRFS_ORDERED_COMPRESSED);
10976 if (IS_ERR(em)) {
10977 ret = PTR_ERR(em);
10978 goto out_free_reserved;
10979 }
10980 free_extent_map(em);
10981
10982 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10983 ins.objectid, ins.offset,
10984 encoded->unencoded_offset,
10985 (1 << BTRFS_ORDERED_ENCODED) |
10986 (1 << BTRFS_ORDERED_COMPRESSED),
10987 compression);
10988 if (ret) {
10989 btrfs_drop_extent_cache(inode, start, end, 0);
10990 goto out_free_reserved;
10991 }
10992 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10993
10994 if (start + encoded->len > inode->vfs_inode.i_size)
10995 i_size_write(&inode->vfs_inode, start + encoded->len);
10996
10997 unlock_extent_cached(io_tree, start, end, &cached_state);
10998
10999 btrfs_delalloc_release_extents(inode, num_bytes);
11000
11001 if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
11002 ins.offset, pages, nr_pages, 0, NULL,
11003 false)) {
11004 btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
11005 ret = -EIO;
11006 goto out_pages;
11007 }
11008 ret = orig_count;
11009 goto out;
11010
11011 out_free_reserved:
11012 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
11013 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
11014 out_delalloc_release:
11015 btrfs_delalloc_release_extents(inode, num_bytes);
11016 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
11017 out_qgroup_free_data:
11018 if (ret < 0)
11019 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
11020 out_free_data_space:
11021 /*
11022 * If btrfs_reserve_extent() succeeded, then we already decremented
11023 * bytes_may_use.
11024 */
11025 if (!extent_reserved)
11026 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
11027 out_unlock:
11028 unlock_extent_cached(io_tree, start, end, &cached_state);
11029 out_pages:
11030 for (i = 0; i < nr_pages; i++) {
11031 if (pages[i])
11032 __free_page(pages[i]);
11033 }
11034 kvfree(pages);
11035 out:
11036 if (ret >= 0)
11037 iocb->ki_pos += encoded->len;
11038 return ret;
11039 }
11040
11041 #ifdef CONFIG_SWAP
11042 /*
11043 * Add an entry indicating a block group or device which is pinned by a
11044 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
11045 * negative errno on failure.
11046 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)11047 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
11048 bool is_block_group)
11049 {
11050 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
11051 struct btrfs_swapfile_pin *sp, *entry;
11052 struct rb_node **p;
11053 struct rb_node *parent = NULL;
11054
11055 sp = kmalloc(sizeof(*sp), GFP_NOFS);
11056 if (!sp)
11057 return -ENOMEM;
11058 sp->ptr = ptr;
11059 sp->inode = inode;
11060 sp->is_block_group = is_block_group;
11061 sp->bg_extent_count = 1;
11062
11063 spin_lock(&fs_info->swapfile_pins_lock);
11064 p = &fs_info->swapfile_pins.rb_node;
11065 while (*p) {
11066 parent = *p;
11067 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
11068 if (sp->ptr < entry->ptr ||
11069 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
11070 p = &(*p)->rb_left;
11071 } else if (sp->ptr > entry->ptr ||
11072 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
11073 p = &(*p)->rb_right;
11074 } else {
11075 if (is_block_group)
11076 entry->bg_extent_count++;
11077 spin_unlock(&fs_info->swapfile_pins_lock);
11078 kfree(sp);
11079 return 1;
11080 }
11081 }
11082 rb_link_node(&sp->node, parent, p);
11083 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
11084 spin_unlock(&fs_info->swapfile_pins_lock);
11085 return 0;
11086 }
11087
11088 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)11089 static void btrfs_free_swapfile_pins(struct inode *inode)
11090 {
11091 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
11092 struct btrfs_swapfile_pin *sp;
11093 struct rb_node *node, *next;
11094
11095 spin_lock(&fs_info->swapfile_pins_lock);
11096 node = rb_first(&fs_info->swapfile_pins);
11097 while (node) {
11098 next = rb_next(node);
11099 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
11100 if (sp->inode == inode) {
11101 rb_erase(&sp->node, &fs_info->swapfile_pins);
11102 if (sp->is_block_group) {
11103 btrfs_dec_block_group_swap_extents(sp->ptr,
11104 sp->bg_extent_count);
11105 btrfs_put_block_group(sp->ptr);
11106 }
11107 kfree(sp);
11108 }
11109 node = next;
11110 }
11111 spin_unlock(&fs_info->swapfile_pins_lock);
11112 }
11113
11114 struct btrfs_swap_info {
11115 u64 start;
11116 u64 block_start;
11117 u64 block_len;
11118 u64 lowest_ppage;
11119 u64 highest_ppage;
11120 unsigned long nr_pages;
11121 int nr_extents;
11122 };
11123
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)11124 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
11125 struct btrfs_swap_info *bsi)
11126 {
11127 unsigned long nr_pages;
11128 unsigned long max_pages;
11129 u64 first_ppage, first_ppage_reported, next_ppage;
11130 int ret;
11131
11132 /*
11133 * Our swapfile may have had its size extended after the swap header was
11134 * written. In that case activating the swapfile should not go beyond
11135 * the max size set in the swap header.
11136 */
11137 if (bsi->nr_pages >= sis->max)
11138 return 0;
11139
11140 max_pages = sis->max - bsi->nr_pages;
11141 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
11142 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
11143 PAGE_SIZE) >> PAGE_SHIFT;
11144
11145 if (first_ppage >= next_ppage)
11146 return 0;
11147 nr_pages = next_ppage - first_ppage;
11148 nr_pages = min(nr_pages, max_pages);
11149
11150 first_ppage_reported = first_ppage;
11151 if (bsi->start == 0)
11152 first_ppage_reported++;
11153 if (bsi->lowest_ppage > first_ppage_reported)
11154 bsi->lowest_ppage = first_ppage_reported;
11155 if (bsi->highest_ppage < (next_ppage - 1))
11156 bsi->highest_ppage = next_ppage - 1;
11157
11158 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
11159 if (ret < 0)
11160 return ret;
11161 bsi->nr_extents += ret;
11162 bsi->nr_pages += nr_pages;
11163 return 0;
11164 }
11165
btrfs_swap_deactivate(struct file * file)11166 static void btrfs_swap_deactivate(struct file *file)
11167 {
11168 struct inode *inode = file_inode(file);
11169
11170 btrfs_free_swapfile_pins(inode);
11171 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
11172 }
11173
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)11174 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11175 sector_t *span)
11176 {
11177 struct inode *inode = file_inode(file);
11178 struct btrfs_root *root = BTRFS_I(inode)->root;
11179 struct btrfs_fs_info *fs_info = root->fs_info;
11180 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
11181 struct extent_state *cached_state = NULL;
11182 struct extent_map *em = NULL;
11183 struct btrfs_device *device = NULL;
11184 struct btrfs_swap_info bsi = {
11185 .lowest_ppage = (sector_t)-1ULL,
11186 };
11187 int ret = 0;
11188 u64 isize;
11189 u64 start;
11190
11191 /*
11192 * If the swap file was just created, make sure delalloc is done. If the
11193 * file changes again after this, the user is doing something stupid and
11194 * we don't really care.
11195 */
11196 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
11197 if (ret)
11198 return ret;
11199
11200 /*
11201 * The inode is locked, so these flags won't change after we check them.
11202 */
11203 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
11204 btrfs_warn(fs_info, "swapfile must not be compressed");
11205 return -EINVAL;
11206 }
11207 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
11208 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
11209 return -EINVAL;
11210 }
11211 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
11212 btrfs_warn(fs_info, "swapfile must not be checksummed");
11213 return -EINVAL;
11214 }
11215
11216 /*
11217 * Balance or device remove/replace/resize can move stuff around from
11218 * under us. The exclop protection makes sure they aren't running/won't
11219 * run concurrently while we are mapping the swap extents, and
11220 * fs_info->swapfile_pins prevents them from running while the swap
11221 * file is active and moving the extents. Note that this also prevents
11222 * a concurrent device add which isn't actually necessary, but it's not
11223 * really worth the trouble to allow it.
11224 */
11225 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
11226 btrfs_warn(fs_info,
11227 "cannot activate swapfile while exclusive operation is running");
11228 return -EBUSY;
11229 }
11230
11231 /*
11232 * Prevent snapshot creation while we are activating the swap file.
11233 * We do not want to race with snapshot creation. If snapshot creation
11234 * already started before we bumped nr_swapfiles from 0 to 1 and
11235 * completes before the first write into the swap file after it is
11236 * activated, than that write would fallback to COW.
11237 */
11238 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
11239 btrfs_exclop_finish(fs_info);
11240 btrfs_warn(fs_info,
11241 "cannot activate swapfile because snapshot creation is in progress");
11242 return -EINVAL;
11243 }
11244 /*
11245 * Snapshots can create extents which require COW even if NODATACOW is
11246 * set. We use this counter to prevent snapshots. We must increment it
11247 * before walking the extents because we don't want a concurrent
11248 * snapshot to run after we've already checked the extents.
11249 *
11250 * It is possible that subvolume is marked for deletion but still not
11251 * removed yet. To prevent this race, we check the root status before
11252 * activating the swapfile.
11253 */
11254 spin_lock(&root->root_item_lock);
11255 if (btrfs_root_dead(root)) {
11256 spin_unlock(&root->root_item_lock);
11257
11258 btrfs_exclop_finish(fs_info);
11259 btrfs_warn(fs_info,
11260 "cannot activate swapfile because subvolume %llu is being deleted",
11261 root->root_key.objectid);
11262 return -EPERM;
11263 }
11264 atomic_inc(&root->nr_swapfiles);
11265 spin_unlock(&root->root_item_lock);
11266
11267 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
11268
11269 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
11270 start = 0;
11271 while (start < isize) {
11272 u64 logical_block_start, physical_block_start;
11273 struct btrfs_block_group *bg;
11274 u64 len = isize - start;
11275
11276 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
11277 if (IS_ERR(em)) {
11278 ret = PTR_ERR(em);
11279 goto out;
11280 }
11281
11282 if (em->block_start == EXTENT_MAP_HOLE) {
11283 btrfs_warn(fs_info, "swapfile must not have holes");
11284 ret = -EINVAL;
11285 goto out;
11286 }
11287 if (em->block_start == EXTENT_MAP_INLINE) {
11288 /*
11289 * It's unlikely we'll ever actually find ourselves
11290 * here, as a file small enough to fit inline won't be
11291 * big enough to store more than the swap header, but in
11292 * case something changes in the future, let's catch it
11293 * here rather than later.
11294 */
11295 btrfs_warn(fs_info, "swapfile must not be inline");
11296 ret = -EINVAL;
11297 goto out;
11298 }
11299 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
11300 btrfs_warn(fs_info, "swapfile must not be compressed");
11301 ret = -EINVAL;
11302 goto out;
11303 }
11304
11305 logical_block_start = em->block_start + (start - em->start);
11306 len = min(len, em->len - (start - em->start));
11307 free_extent_map(em);
11308 em = NULL;
11309
11310 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
11311 if (ret < 0) {
11312 goto out;
11313 } else if (ret) {
11314 ret = 0;
11315 } else {
11316 btrfs_warn(fs_info,
11317 "swapfile must not be copy-on-write");
11318 ret = -EINVAL;
11319 goto out;
11320 }
11321
11322 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11323 if (IS_ERR(em)) {
11324 ret = PTR_ERR(em);
11325 goto out;
11326 }
11327
11328 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11329 btrfs_warn(fs_info,
11330 "swapfile must have single data profile");
11331 ret = -EINVAL;
11332 goto out;
11333 }
11334
11335 if (device == NULL) {
11336 device = em->map_lookup->stripes[0].dev;
11337 ret = btrfs_add_swapfile_pin(inode, device, false);
11338 if (ret == 1)
11339 ret = 0;
11340 else if (ret)
11341 goto out;
11342 } else if (device != em->map_lookup->stripes[0].dev) {
11343 btrfs_warn(fs_info, "swapfile must be on one device");
11344 ret = -EINVAL;
11345 goto out;
11346 }
11347
11348 physical_block_start = (em->map_lookup->stripes[0].physical +
11349 (logical_block_start - em->start));
11350 len = min(len, em->len - (logical_block_start - em->start));
11351 free_extent_map(em);
11352 em = NULL;
11353
11354 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11355 if (!bg) {
11356 btrfs_warn(fs_info,
11357 "could not find block group containing swapfile");
11358 ret = -EINVAL;
11359 goto out;
11360 }
11361
11362 if (!btrfs_inc_block_group_swap_extents(bg)) {
11363 btrfs_warn(fs_info,
11364 "block group for swapfile at %llu is read-only%s",
11365 bg->start,
11366 atomic_read(&fs_info->scrubs_running) ?
11367 " (scrub running)" : "");
11368 btrfs_put_block_group(bg);
11369 ret = -EINVAL;
11370 goto out;
11371 }
11372
11373 ret = btrfs_add_swapfile_pin(inode, bg, true);
11374 if (ret) {
11375 btrfs_put_block_group(bg);
11376 if (ret == 1)
11377 ret = 0;
11378 else
11379 goto out;
11380 }
11381
11382 if (bsi.block_len &&
11383 bsi.block_start + bsi.block_len == physical_block_start) {
11384 bsi.block_len += len;
11385 } else {
11386 if (bsi.block_len) {
11387 ret = btrfs_add_swap_extent(sis, &bsi);
11388 if (ret)
11389 goto out;
11390 }
11391 bsi.start = start;
11392 bsi.block_start = physical_block_start;
11393 bsi.block_len = len;
11394 }
11395
11396 start += len;
11397 }
11398
11399 if (bsi.block_len)
11400 ret = btrfs_add_swap_extent(sis, &bsi);
11401
11402 out:
11403 if (!IS_ERR_OR_NULL(em))
11404 free_extent_map(em);
11405
11406 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
11407
11408 if (ret)
11409 btrfs_swap_deactivate(file);
11410
11411 btrfs_drew_write_unlock(&root->snapshot_lock);
11412
11413 btrfs_exclop_finish(fs_info);
11414
11415 if (ret)
11416 return ret;
11417
11418 if (device)
11419 sis->bdev = device->bdev;
11420 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11421 sis->max = bsi.nr_pages;
11422 sis->pages = bsi.nr_pages - 1;
11423 sis->highest_bit = bsi.nr_pages - 1;
11424 return bsi.nr_extents;
11425 }
11426 #else
btrfs_swap_deactivate(struct file * file)11427 static void btrfs_swap_deactivate(struct file *file)
11428 {
11429 }
11430
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)11431 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11432 sector_t *span)
11433 {
11434 return -EOPNOTSUPP;
11435 }
11436 #endif
11437
11438 /*
11439 * Update the number of bytes used in the VFS' inode. When we replace extents in
11440 * a range (clone, dedupe, fallocate's zero range), we must update the number of
11441 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11442 * always get a correct value.
11443 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)11444 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11445 const u64 add_bytes,
11446 const u64 del_bytes)
11447 {
11448 if (add_bytes == del_bytes)
11449 return;
11450
11451 spin_lock(&inode->lock);
11452 if (del_bytes > 0)
11453 inode_sub_bytes(&inode->vfs_inode, del_bytes);
11454 if (add_bytes > 0)
11455 inode_add_bytes(&inode->vfs_inode, add_bytes);
11456 spin_unlock(&inode->lock);
11457 }
11458
11459 /**
11460 * Verify that there are no ordered extents for a given file range.
11461 *
11462 * @inode: The target inode.
11463 * @start: Start offset of the file range, should be sector size aligned.
11464 * @end: End offset (inclusive) of the file range, its value +1 should be
11465 * sector size aligned.
11466 *
11467 * This should typically be used for cases where we locked an inode's VFS lock in
11468 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
11469 * we have flushed all delalloc in the range, we have waited for all ordered
11470 * extents in the range to complete and finally we have locked the file range in
11471 * the inode's io_tree.
11472 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)11473 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
11474 {
11475 struct btrfs_root *root = inode->root;
11476 struct btrfs_ordered_extent *ordered;
11477
11478 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
11479 return;
11480
11481 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
11482 if (ordered) {
11483 btrfs_err(root->fs_info,
11484 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
11485 start, end, btrfs_ino(inode), root->root_key.objectid,
11486 ordered->file_offset,
11487 ordered->file_offset + ordered->num_bytes - 1);
11488 btrfs_put_ordered_extent(ordered);
11489 }
11490
11491 ASSERT(ordered == NULL);
11492 }
11493
11494 static const struct inode_operations btrfs_dir_inode_operations = {
11495 .getattr = btrfs_getattr,
11496 .lookup = btrfs_lookup,
11497 .create = btrfs_create,
11498 .unlink = btrfs_unlink,
11499 .link = btrfs_link,
11500 .mkdir = btrfs_mkdir,
11501 .rmdir = btrfs_rmdir,
11502 .rename = btrfs_rename2,
11503 .symlink = btrfs_symlink,
11504 .setattr = btrfs_setattr,
11505 .mknod = btrfs_mknod,
11506 .listxattr = btrfs_listxattr,
11507 .permission = btrfs_permission,
11508 .get_acl = btrfs_get_acl,
11509 .set_acl = btrfs_set_acl,
11510 .update_time = btrfs_update_time,
11511 .tmpfile = btrfs_tmpfile,
11512 .fileattr_get = btrfs_fileattr_get,
11513 .fileattr_set = btrfs_fileattr_set,
11514 };
11515
11516 static const struct file_operations btrfs_dir_file_operations = {
11517 .llseek = generic_file_llseek,
11518 .read = generic_read_dir,
11519 .iterate_shared = btrfs_real_readdir,
11520 .open = btrfs_opendir,
11521 .unlocked_ioctl = btrfs_ioctl,
11522 #ifdef CONFIG_COMPAT
11523 .compat_ioctl = btrfs_compat_ioctl,
11524 #endif
11525 .release = btrfs_release_file,
11526 .fsync = btrfs_sync_file,
11527 };
11528
11529 /*
11530 * btrfs doesn't support the bmap operation because swapfiles
11531 * use bmap to make a mapping of extents in the file. They assume
11532 * these extents won't change over the life of the file and they
11533 * use the bmap result to do IO directly to the drive.
11534 *
11535 * the btrfs bmap call would return logical addresses that aren't
11536 * suitable for IO and they also will change frequently as COW
11537 * operations happen. So, swapfile + btrfs == corruption.
11538 *
11539 * For now we're avoiding this by dropping bmap.
11540 */
11541 static const struct address_space_operations btrfs_aops = {
11542 .read_folio = btrfs_read_folio,
11543 .writepage = btrfs_writepage,
11544 .writepages = btrfs_writepages,
11545 .readahead = btrfs_readahead,
11546 .direct_IO = noop_direct_IO,
11547 .invalidate_folio = btrfs_invalidate_folio,
11548 .release_folio = btrfs_release_folio,
11549 #ifdef CONFIG_MIGRATION
11550 .migratepage = btrfs_migratepage,
11551 #endif
11552 .dirty_folio = filemap_dirty_folio,
11553 .error_remove_page = generic_error_remove_page,
11554 .swap_activate = btrfs_swap_activate,
11555 .swap_deactivate = btrfs_swap_deactivate,
11556 };
11557
11558 static const struct inode_operations btrfs_file_inode_operations = {
11559 .getattr = btrfs_getattr,
11560 .setattr = btrfs_setattr,
11561 .listxattr = btrfs_listxattr,
11562 .permission = btrfs_permission,
11563 .fiemap = btrfs_fiemap,
11564 .get_acl = btrfs_get_acl,
11565 .set_acl = btrfs_set_acl,
11566 .update_time = btrfs_update_time,
11567 .fileattr_get = btrfs_fileattr_get,
11568 .fileattr_set = btrfs_fileattr_set,
11569 };
11570 static const struct inode_operations btrfs_special_inode_operations = {
11571 .getattr = btrfs_getattr,
11572 .setattr = btrfs_setattr,
11573 .permission = btrfs_permission,
11574 .listxattr = btrfs_listxattr,
11575 .get_acl = btrfs_get_acl,
11576 .set_acl = btrfs_set_acl,
11577 .update_time = btrfs_update_time,
11578 };
11579 static const struct inode_operations btrfs_symlink_inode_operations = {
11580 .get_link = page_get_link,
11581 .getattr = btrfs_getattr,
11582 .setattr = btrfs_setattr,
11583 .permission = btrfs_permission,
11584 .listxattr = btrfs_listxattr,
11585 .update_time = btrfs_update_time,
11586 };
11587
11588 const struct dentry_operations btrfs_dentry_operations = {
11589 .d_delete = btrfs_dentry_delete,
11590 };
11591