1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 
entry_end(struct btrfs_ordered_extent * entry)28 static u64 entry_end(struct btrfs_ordered_extent *entry)
29 {
30 	if (entry->file_offset + entry->len < entry->file_offset)
31 		return (u64)-1;
32 	return entry->file_offset + entry->len;
33 }
34 
35 /* returns NULL if the insertion worked, or it returns the node it did find
36  * in the tree
37  */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 				   struct rb_node *node)
40 {
41 	struct rb_node **p = &root->rb_node;
42 	struct rb_node *parent = NULL;
43 	struct btrfs_ordered_extent *entry;
44 
45 	while (*p) {
46 		parent = *p;
47 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
48 
49 		if (file_offset < entry->file_offset)
50 			p = &(*p)->rb_left;
51 		else if (file_offset >= entry_end(entry))
52 			p = &(*p)->rb_right;
53 		else
54 			return parent;
55 	}
56 
57 	rb_link_node(node, parent, p);
58 	rb_insert_color(node, root);
59 	return NULL;
60 }
61 
62 /*
63  * look for a given offset in the tree, and if it can't be found return the
64  * first lesser offset
65  */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 				     struct rb_node **prev_ret)
68 {
69 	struct rb_node *n = root->rb_node;
70 	struct rb_node *prev = NULL;
71 	struct rb_node *test;
72 	struct btrfs_ordered_extent *entry;
73 	struct btrfs_ordered_extent *prev_entry = NULL;
74 
75 	while (n) {
76 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
77 		prev = n;
78 		prev_entry = entry;
79 
80 		if (file_offset < entry->file_offset)
81 			n = n->rb_left;
82 		else if (file_offset >= entry_end(entry))
83 			n = n->rb_right;
84 		else
85 			return n;
86 	}
87 	if (!prev_ret)
88 		return NULL;
89 
90 	while (prev && file_offset >= entry_end(prev_entry)) {
91 		test = rb_next(prev);
92 		if (!test)
93 			break;
94 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 				      rb_node);
96 		if (file_offset < entry_end(prev_entry))
97 			break;
98 
99 		prev = test;
100 	}
101 	if (prev)
102 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 				      rb_node);
104 	while (prev && file_offset < entry_end(prev_entry)) {
105 		test = rb_prev(prev);
106 		if (!test)
107 			break;
108 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 				      rb_node);
110 		prev = test;
111 	}
112 	*prev_ret = prev;
113 	return NULL;
114 }
115 
116 /*
117  * helper to check if a given offset is inside a given entry
118  */
offset_in_entry(struct btrfs_ordered_extent * entry,u64 file_offset)119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120 {
121 	if (file_offset < entry->file_offset ||
122 	    entry->file_offset + entry->len <= file_offset)
123 		return 0;
124 	return 1;
125 }
126 
range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)127 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
128 			  u64 len)
129 {
130 	if (file_offset + len <= entry->file_offset ||
131 	    entry->file_offset + entry->len <= file_offset)
132 		return 0;
133 	return 1;
134 }
135 
136 /*
137  * look find the first ordered struct that has this offset, otherwise
138  * the first one less than this offset
139  */
tree_search(struct btrfs_ordered_inode_tree * tree,u64 file_offset)140 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
141 					  u64 file_offset)
142 {
143 	struct rb_root *root = &tree->tree;
144 	struct rb_node *prev = NULL;
145 	struct rb_node *ret;
146 	struct btrfs_ordered_extent *entry;
147 
148 	if (tree->last) {
149 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
150 				 rb_node);
151 		if (offset_in_entry(entry, file_offset))
152 			return tree->last;
153 	}
154 	ret = __tree_search(root, file_offset, &prev);
155 	if (!ret)
156 		ret = prev;
157 	if (ret)
158 		tree->last = ret;
159 	return ret;
160 }
161 
162 /* allocate and add a new ordered_extent into the per-inode tree.
163  * file_offset is the logical offset in the file
164  *
165  * start is the disk block number of an extent already reserved in the
166  * extent allocation tree
167  *
168  * len is the length of the extent
169  *
170  * The tree is given a single reference on the ordered extent that was
171  * inserted.
172  */
__btrfs_add_ordered_extent(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type,int dio,int compress_type)173 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
174 				      u64 start, u64 len, u64 disk_len,
175 				      int type, int dio, int compress_type)
176 {
177 	struct btrfs_ordered_inode_tree *tree;
178 	struct rb_node *node;
179 	struct btrfs_ordered_extent *entry;
180 
181 	tree = &BTRFS_I(inode)->ordered_tree;
182 	entry = kzalloc(sizeof(*entry), GFP_NOFS);
183 	if (!entry)
184 		return -ENOMEM;
185 
186 	entry->file_offset = file_offset;
187 	entry->start = start;
188 	entry->len = len;
189 	entry->disk_len = disk_len;
190 	entry->bytes_left = len;
191 	entry->inode = inode;
192 	entry->compress_type = compress_type;
193 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
194 		set_bit(type, &entry->flags);
195 
196 	if (dio)
197 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
198 
199 	/* one ref for the tree */
200 	atomic_set(&entry->refs, 1);
201 	init_waitqueue_head(&entry->wait);
202 	INIT_LIST_HEAD(&entry->list);
203 	INIT_LIST_HEAD(&entry->root_extent_list);
204 
205 	trace_btrfs_ordered_extent_add(inode, entry);
206 
207 	spin_lock(&tree->lock);
208 	node = tree_insert(&tree->tree, file_offset,
209 			   &entry->rb_node);
210 	BUG_ON(node);
211 	spin_unlock(&tree->lock);
212 
213 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
214 	list_add_tail(&entry->root_extent_list,
215 		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
216 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
217 
218 	BUG_ON(node);
219 	return 0;
220 }
221 
btrfs_add_ordered_extent(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type)222 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
223 			     u64 start, u64 len, u64 disk_len, int type)
224 {
225 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
226 					  disk_len, type, 0,
227 					  BTRFS_COMPRESS_NONE);
228 }
229 
btrfs_add_ordered_extent_dio(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type)230 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
231 				 u64 start, u64 len, u64 disk_len, int type)
232 {
233 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
234 					  disk_len, type, 1,
235 					  BTRFS_COMPRESS_NONE);
236 }
237 
btrfs_add_ordered_extent_compress(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type,int compress_type)238 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
239 				      u64 start, u64 len, u64 disk_len,
240 				      int type, int compress_type)
241 {
242 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
243 					  disk_len, type, 0,
244 					  compress_type);
245 }
246 
247 /*
248  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
249  * when an ordered extent is finished.  If the list covers more than one
250  * ordered extent, it is split across multiples.
251  */
btrfs_add_ordered_sum(struct inode * inode,struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)252 int btrfs_add_ordered_sum(struct inode *inode,
253 			  struct btrfs_ordered_extent *entry,
254 			  struct btrfs_ordered_sum *sum)
255 {
256 	struct btrfs_ordered_inode_tree *tree;
257 
258 	tree = &BTRFS_I(inode)->ordered_tree;
259 	spin_lock(&tree->lock);
260 	list_add_tail(&sum->list, &entry->list);
261 	spin_unlock(&tree->lock);
262 	return 0;
263 }
264 
265 /*
266  * this is used to account for finished IO across a given range
267  * of the file.  The IO may span ordered extents.  If
268  * a given ordered_extent is completely done, 1 is returned, otherwise
269  * 0.
270  *
271  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
272  * to make sure this function only returns 1 once for a given ordered extent.
273  *
274  * file_offset is updated to one byte past the range that is recorded as
275  * complete.  This allows you to walk forward in the file.
276  */
btrfs_dec_test_first_ordered_pending(struct inode * inode,struct btrfs_ordered_extent ** cached,u64 * file_offset,u64 io_size)277 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
278 				   struct btrfs_ordered_extent **cached,
279 				   u64 *file_offset, u64 io_size)
280 {
281 	struct btrfs_ordered_inode_tree *tree;
282 	struct rb_node *node;
283 	struct btrfs_ordered_extent *entry = NULL;
284 	int ret;
285 	u64 dec_end;
286 	u64 dec_start;
287 	u64 to_dec;
288 
289 	tree = &BTRFS_I(inode)->ordered_tree;
290 	spin_lock(&tree->lock);
291 	node = tree_search(tree, *file_offset);
292 	if (!node) {
293 		ret = 1;
294 		goto out;
295 	}
296 
297 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
298 	if (!offset_in_entry(entry, *file_offset)) {
299 		ret = 1;
300 		goto out;
301 	}
302 
303 	dec_start = max(*file_offset, entry->file_offset);
304 	dec_end = min(*file_offset + io_size, entry->file_offset +
305 		      entry->len);
306 	*file_offset = dec_end;
307 	if (dec_start > dec_end) {
308 		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
309 		       (unsigned long long)dec_start,
310 		       (unsigned long long)dec_end);
311 	}
312 	to_dec = dec_end - dec_start;
313 	if (to_dec > entry->bytes_left) {
314 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
315 		       (unsigned long long)entry->bytes_left,
316 		       (unsigned long long)to_dec);
317 	}
318 	entry->bytes_left -= to_dec;
319 	if (entry->bytes_left == 0)
320 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
321 	else
322 		ret = 1;
323 out:
324 	if (!ret && cached && entry) {
325 		*cached = entry;
326 		atomic_inc(&entry->refs);
327 	}
328 	spin_unlock(&tree->lock);
329 	return ret == 0;
330 }
331 
332 /*
333  * this is used to account for finished IO across a given range
334  * of the file.  The IO should not span ordered extents.  If
335  * a given ordered_extent is completely done, 1 is returned, otherwise
336  * 0.
337  *
338  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
339  * to make sure this function only returns 1 once for a given ordered extent.
340  */
btrfs_dec_test_ordered_pending(struct inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size)341 int btrfs_dec_test_ordered_pending(struct inode *inode,
342 				   struct btrfs_ordered_extent **cached,
343 				   u64 file_offset, u64 io_size)
344 {
345 	struct btrfs_ordered_inode_tree *tree;
346 	struct rb_node *node;
347 	struct btrfs_ordered_extent *entry = NULL;
348 	int ret;
349 
350 	tree = &BTRFS_I(inode)->ordered_tree;
351 	spin_lock(&tree->lock);
352 	node = tree_search(tree, file_offset);
353 	if (!node) {
354 		ret = 1;
355 		goto out;
356 	}
357 
358 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
359 	if (!offset_in_entry(entry, file_offset)) {
360 		ret = 1;
361 		goto out;
362 	}
363 
364 	if (io_size > entry->bytes_left) {
365 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
366 		       (unsigned long long)entry->bytes_left,
367 		       (unsigned long long)io_size);
368 	}
369 	entry->bytes_left -= io_size;
370 	if (entry->bytes_left == 0)
371 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
372 	else
373 		ret = 1;
374 out:
375 	if (!ret && cached && entry) {
376 		*cached = entry;
377 		atomic_inc(&entry->refs);
378 	}
379 	spin_unlock(&tree->lock);
380 	return ret == 0;
381 }
382 
383 /*
384  * used to drop a reference on an ordered extent.  This will free
385  * the extent if the last reference is dropped
386  */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)387 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
388 {
389 	struct list_head *cur;
390 	struct btrfs_ordered_sum *sum;
391 
392 	trace_btrfs_ordered_extent_put(entry->inode, entry);
393 
394 	if (atomic_dec_and_test(&entry->refs)) {
395 		while (!list_empty(&entry->list)) {
396 			cur = entry->list.next;
397 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
398 			list_del(&sum->list);
399 			kfree(sum);
400 		}
401 		kfree(entry);
402 	}
403 	return 0;
404 }
405 
406 /*
407  * remove an ordered extent from the tree.  No references are dropped
408  * and you must wake_up entry->wait.  You must hold the tree lock
409  * while you call this function.
410  */
__btrfs_remove_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry)411 static int __btrfs_remove_ordered_extent(struct inode *inode,
412 				struct btrfs_ordered_extent *entry)
413 {
414 	struct btrfs_ordered_inode_tree *tree;
415 	struct btrfs_root *root = BTRFS_I(inode)->root;
416 	struct rb_node *node;
417 
418 	tree = &BTRFS_I(inode)->ordered_tree;
419 	node = &entry->rb_node;
420 	rb_erase(node, &tree->tree);
421 	tree->last = NULL;
422 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
423 
424 	spin_lock(&root->fs_info->ordered_extent_lock);
425 	list_del_init(&entry->root_extent_list);
426 
427 	trace_btrfs_ordered_extent_remove(inode, entry);
428 
429 	/*
430 	 * we have no more ordered extents for this inode and
431 	 * no dirty pages.  We can safely remove it from the
432 	 * list of ordered extents
433 	 */
434 	if (RB_EMPTY_ROOT(&tree->tree) &&
435 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
436 		list_del_init(&BTRFS_I(inode)->ordered_operations);
437 	}
438 	spin_unlock(&root->fs_info->ordered_extent_lock);
439 
440 	return 0;
441 }
442 
443 /*
444  * remove an ordered extent from the tree.  No references are dropped
445  * but any waiters are woken.
446  */
btrfs_remove_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry)447 int btrfs_remove_ordered_extent(struct inode *inode,
448 				struct btrfs_ordered_extent *entry)
449 {
450 	struct btrfs_ordered_inode_tree *tree;
451 	int ret;
452 
453 	tree = &BTRFS_I(inode)->ordered_tree;
454 	spin_lock(&tree->lock);
455 	ret = __btrfs_remove_ordered_extent(inode, entry);
456 	spin_unlock(&tree->lock);
457 	wake_up(&entry->wait);
458 
459 	return ret;
460 }
461 
462 /*
463  * wait for all the ordered extents in a root.  This is done when balancing
464  * space between drives.
465  */
btrfs_wait_ordered_extents(struct btrfs_root * root,int nocow_only,int delay_iput)466 int btrfs_wait_ordered_extents(struct btrfs_root *root,
467 			       int nocow_only, int delay_iput)
468 {
469 	struct list_head splice;
470 	struct list_head *cur;
471 	struct btrfs_ordered_extent *ordered;
472 	struct inode *inode;
473 
474 	INIT_LIST_HEAD(&splice);
475 
476 	spin_lock(&root->fs_info->ordered_extent_lock);
477 	list_splice_init(&root->fs_info->ordered_extents, &splice);
478 	while (!list_empty(&splice)) {
479 		cur = splice.next;
480 		ordered = list_entry(cur, struct btrfs_ordered_extent,
481 				     root_extent_list);
482 		if (nocow_only &&
483 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
484 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
485 			list_move(&ordered->root_extent_list,
486 				  &root->fs_info->ordered_extents);
487 			cond_resched_lock(&root->fs_info->ordered_extent_lock);
488 			continue;
489 		}
490 
491 		list_del_init(&ordered->root_extent_list);
492 		atomic_inc(&ordered->refs);
493 
494 		/*
495 		 * the inode may be getting freed (in sys_unlink path).
496 		 */
497 		inode = igrab(ordered->inode);
498 
499 		spin_unlock(&root->fs_info->ordered_extent_lock);
500 
501 		if (inode) {
502 			btrfs_start_ordered_extent(inode, ordered, 1);
503 			btrfs_put_ordered_extent(ordered);
504 			if (delay_iput)
505 				btrfs_add_delayed_iput(inode);
506 			else
507 				iput(inode);
508 		} else {
509 			btrfs_put_ordered_extent(ordered);
510 		}
511 
512 		spin_lock(&root->fs_info->ordered_extent_lock);
513 	}
514 	spin_unlock(&root->fs_info->ordered_extent_lock);
515 	return 0;
516 }
517 
518 /*
519  * this is used during transaction commit to write all the inodes
520  * added to the ordered operation list.  These files must be fully on
521  * disk before the transaction commits.
522  *
523  * we have two modes here, one is to just start the IO via filemap_flush
524  * and the other is to wait for all the io.  When we wait, we have an
525  * extra check to make sure the ordered operation list really is empty
526  * before we return
527  */
btrfs_run_ordered_operations(struct btrfs_root * root,int wait)528 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
529 {
530 	struct btrfs_inode *btrfs_inode;
531 	struct inode *inode;
532 	struct list_head splice;
533 
534 	INIT_LIST_HEAD(&splice);
535 
536 	mutex_lock(&root->fs_info->ordered_operations_mutex);
537 	spin_lock(&root->fs_info->ordered_extent_lock);
538 again:
539 	list_splice_init(&root->fs_info->ordered_operations, &splice);
540 
541 	while (!list_empty(&splice)) {
542 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
543 				   ordered_operations);
544 
545 		inode = &btrfs_inode->vfs_inode;
546 
547 		list_del_init(&btrfs_inode->ordered_operations);
548 
549 		/*
550 		 * the inode may be getting freed (in sys_unlink path).
551 		 */
552 		inode = igrab(inode);
553 
554 		if (!wait && inode) {
555 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
556 			      &root->fs_info->ordered_operations);
557 		}
558 		spin_unlock(&root->fs_info->ordered_extent_lock);
559 
560 		if (inode) {
561 			if (wait)
562 				btrfs_wait_ordered_range(inode, 0, (u64)-1);
563 			else
564 				filemap_flush(inode->i_mapping);
565 			btrfs_add_delayed_iput(inode);
566 		}
567 
568 		cond_resched();
569 		spin_lock(&root->fs_info->ordered_extent_lock);
570 	}
571 	if (wait && !list_empty(&root->fs_info->ordered_operations))
572 		goto again;
573 
574 	spin_unlock(&root->fs_info->ordered_extent_lock);
575 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
576 
577 	return 0;
578 }
579 
580 /*
581  * Used to start IO or wait for a given ordered extent to finish.
582  *
583  * If wait is one, this effectively waits on page writeback for all the pages
584  * in the extent, and it waits on the io completion code to insert
585  * metadata into the btree corresponding to the extent
586  */
btrfs_start_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry,int wait)587 void btrfs_start_ordered_extent(struct inode *inode,
588 				       struct btrfs_ordered_extent *entry,
589 				       int wait)
590 {
591 	u64 start = entry->file_offset;
592 	u64 end = start + entry->len - 1;
593 
594 	trace_btrfs_ordered_extent_start(inode, entry);
595 
596 	/*
597 	 * pages in the range can be dirty, clean or writeback.  We
598 	 * start IO on any dirty ones so the wait doesn't stall waiting
599 	 * for pdflush to find them
600 	 */
601 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602 		filemap_fdatawrite_range(inode->i_mapping, start, end);
603 	if (wait) {
604 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
605 						 &entry->flags));
606 	}
607 }
608 
609 /*
610  * Used to wait on ordered extents across a large range of bytes.
611  */
btrfs_wait_ordered_range(struct inode * inode,u64 start,u64 len)612 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
613 {
614 	u64 end;
615 	u64 orig_end;
616 	struct btrfs_ordered_extent *ordered;
617 	int found;
618 
619 	if (start + len < start) {
620 		orig_end = INT_LIMIT(loff_t);
621 	} else {
622 		orig_end = start + len - 1;
623 		if (orig_end > INT_LIMIT(loff_t))
624 			orig_end = INT_LIMIT(loff_t);
625 	}
626 again:
627 	/* start IO across the range first to instantiate any delalloc
628 	 * extents
629 	 */
630 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
631 
632 	/* The compression code will leave pages locked but return from
633 	 * writepage without setting the page writeback.  Starting again
634 	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
635 	 */
636 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
637 
638 	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
639 
640 	end = orig_end;
641 	found = 0;
642 	while (1) {
643 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
644 		if (!ordered)
645 			break;
646 		if (ordered->file_offset > orig_end) {
647 			btrfs_put_ordered_extent(ordered);
648 			break;
649 		}
650 		if (ordered->file_offset + ordered->len < start) {
651 			btrfs_put_ordered_extent(ordered);
652 			break;
653 		}
654 		found++;
655 		btrfs_start_ordered_extent(inode, ordered, 1);
656 		end = ordered->file_offset;
657 		btrfs_put_ordered_extent(ordered);
658 		if (end == 0 || end == start)
659 			break;
660 		end--;
661 	}
662 	if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
663 			   EXTENT_DELALLOC, 0, NULL)) {
664 		schedule_timeout(1);
665 		goto again;
666 	}
667 	return 0;
668 }
669 
670 /*
671  * find an ordered extent corresponding to file_offset.  return NULL if
672  * nothing is found, otherwise take a reference on the extent and return it
673  */
btrfs_lookup_ordered_extent(struct inode * inode,u64 file_offset)674 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
675 							 u64 file_offset)
676 {
677 	struct btrfs_ordered_inode_tree *tree;
678 	struct rb_node *node;
679 	struct btrfs_ordered_extent *entry = NULL;
680 
681 	tree = &BTRFS_I(inode)->ordered_tree;
682 	spin_lock(&tree->lock);
683 	node = tree_search(tree, file_offset);
684 	if (!node)
685 		goto out;
686 
687 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
688 	if (!offset_in_entry(entry, file_offset))
689 		entry = NULL;
690 	if (entry)
691 		atomic_inc(&entry->refs);
692 out:
693 	spin_unlock(&tree->lock);
694 	return entry;
695 }
696 
697 /* Since the DIO code tries to lock a wide area we need to look for any ordered
698  * extents that exist in the range, rather than just the start of the range.
699  */
btrfs_lookup_ordered_range(struct inode * inode,u64 file_offset,u64 len)700 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
701 							u64 file_offset,
702 							u64 len)
703 {
704 	struct btrfs_ordered_inode_tree *tree;
705 	struct rb_node *node;
706 	struct btrfs_ordered_extent *entry = NULL;
707 
708 	tree = &BTRFS_I(inode)->ordered_tree;
709 	spin_lock(&tree->lock);
710 	node = tree_search(tree, file_offset);
711 	if (!node) {
712 		node = tree_search(tree, file_offset + len);
713 		if (!node)
714 			goto out;
715 	}
716 
717 	while (1) {
718 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
719 		if (range_overlaps(entry, file_offset, len))
720 			break;
721 
722 		if (entry->file_offset >= file_offset + len) {
723 			entry = NULL;
724 			break;
725 		}
726 		entry = NULL;
727 		node = rb_next(node);
728 		if (!node)
729 			break;
730 	}
731 out:
732 	if (entry)
733 		atomic_inc(&entry->refs);
734 	spin_unlock(&tree->lock);
735 	return entry;
736 }
737 
738 /*
739  * lookup and return any extent before 'file_offset'.  NULL is returned
740  * if none is found
741  */
742 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct inode * inode,u64 file_offset)743 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
744 {
745 	struct btrfs_ordered_inode_tree *tree;
746 	struct rb_node *node;
747 	struct btrfs_ordered_extent *entry = NULL;
748 
749 	tree = &BTRFS_I(inode)->ordered_tree;
750 	spin_lock(&tree->lock);
751 	node = tree_search(tree, file_offset);
752 	if (!node)
753 		goto out;
754 
755 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
756 	atomic_inc(&entry->refs);
757 out:
758 	spin_unlock(&tree->lock);
759 	return entry;
760 }
761 
762 /*
763  * After an extent is done, call this to conditionally update the on disk
764  * i_size.  i_size is updated to cover any fully written part of the file.
765  */
btrfs_ordered_update_i_size(struct inode * inode,u64 offset,struct btrfs_ordered_extent * ordered)766 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
767 				struct btrfs_ordered_extent *ordered)
768 {
769 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
770 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
771 	u64 disk_i_size;
772 	u64 new_i_size;
773 	u64 i_size_test;
774 	u64 i_size = i_size_read(inode);
775 	struct rb_node *node;
776 	struct rb_node *prev = NULL;
777 	struct btrfs_ordered_extent *test;
778 	int ret = 1;
779 
780 	if (ordered)
781 		offset = entry_end(ordered);
782 	else
783 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
784 
785 	spin_lock(&tree->lock);
786 	disk_i_size = BTRFS_I(inode)->disk_i_size;
787 
788 	/* truncate file */
789 	if (disk_i_size > i_size) {
790 		BTRFS_I(inode)->disk_i_size = i_size;
791 		ret = 0;
792 		goto out;
793 	}
794 
795 	/*
796 	 * if the disk i_size is already at the inode->i_size, or
797 	 * this ordered extent is inside the disk i_size, we're done
798 	 */
799 	if (disk_i_size == i_size || offset <= disk_i_size) {
800 		goto out;
801 	}
802 
803 	/*
804 	 * we can't update the disk_isize if there are delalloc bytes
805 	 * between disk_i_size and  this ordered extent
806 	 */
807 	if (test_range_bit(io_tree, disk_i_size, offset - 1,
808 			   EXTENT_DELALLOC, 0, NULL)) {
809 		goto out;
810 	}
811 	/*
812 	 * walk backward from this ordered extent to disk_i_size.
813 	 * if we find an ordered extent then we can't update disk i_size
814 	 * yet
815 	 */
816 	if (ordered) {
817 		node = rb_prev(&ordered->rb_node);
818 	} else {
819 		prev = tree_search(tree, offset);
820 		/*
821 		 * we insert file extents without involving ordered struct,
822 		 * so there should be no ordered struct cover this offset
823 		 */
824 		if (prev) {
825 			test = rb_entry(prev, struct btrfs_ordered_extent,
826 					rb_node);
827 			BUG_ON(offset_in_entry(test, offset));
828 		}
829 		node = prev;
830 	}
831 	while (node) {
832 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
833 		if (test->file_offset + test->len <= disk_i_size)
834 			break;
835 		if (test->file_offset >= i_size)
836 			break;
837 		if (test->file_offset >= disk_i_size)
838 			goto out;
839 		node = rb_prev(node);
840 	}
841 	new_i_size = min_t(u64, offset, i_size);
842 
843 	/*
844 	 * at this point, we know we can safely update i_size to at least
845 	 * the offset from this ordered extent.  But, we need to
846 	 * walk forward and see if ios from higher up in the file have
847 	 * finished.
848 	 */
849 	if (ordered) {
850 		node = rb_next(&ordered->rb_node);
851 	} else {
852 		if (prev)
853 			node = rb_next(prev);
854 		else
855 			node = rb_first(&tree->tree);
856 	}
857 	i_size_test = 0;
858 	if (node) {
859 		/*
860 		 * do we have an area where IO might have finished
861 		 * between our ordered extent and the next one.
862 		 */
863 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
864 		if (test->file_offset > offset)
865 			i_size_test = test->file_offset;
866 	} else {
867 		i_size_test = i_size;
868 	}
869 
870 	/*
871 	 * i_size_test is the end of a region after this ordered
872 	 * extent where there are no ordered extents.  As long as there
873 	 * are no delalloc bytes in this area, it is safe to update
874 	 * disk_i_size to the end of the region.
875 	 */
876 	if (i_size_test > offset &&
877 	    !test_range_bit(io_tree, offset, i_size_test - 1,
878 			    EXTENT_DELALLOC, 0, NULL)) {
879 		new_i_size = min_t(u64, i_size_test, i_size);
880 	}
881 	BTRFS_I(inode)->disk_i_size = new_i_size;
882 	ret = 0;
883 out:
884 	/*
885 	 * we need to remove the ordered extent with the tree lock held
886 	 * so that other people calling this function don't find our fully
887 	 * processed ordered entry and skip updating the i_size
888 	 */
889 	if (ordered)
890 		__btrfs_remove_ordered_extent(inode, ordered);
891 	spin_unlock(&tree->lock);
892 	if (ordered)
893 		wake_up(&ordered->wait);
894 	return ret;
895 }
896 
897 /*
898  * search the ordered extents for one corresponding to 'offset' and
899  * try to find a checksum.  This is used because we allow pages to
900  * be reclaimed before their checksum is actually put into the btree
901  */
btrfs_find_ordered_sum(struct inode * inode,u64 offset,u64 disk_bytenr,u32 * sum)902 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
903 			   u32 *sum)
904 {
905 	struct btrfs_ordered_sum *ordered_sum;
906 	struct btrfs_sector_sum *sector_sums;
907 	struct btrfs_ordered_extent *ordered;
908 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
909 	unsigned long num_sectors;
910 	unsigned long i;
911 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
912 	int ret = 1;
913 
914 	ordered = btrfs_lookup_ordered_extent(inode, offset);
915 	if (!ordered)
916 		return 1;
917 
918 	spin_lock(&tree->lock);
919 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
920 		if (disk_bytenr >= ordered_sum->bytenr) {
921 			num_sectors = ordered_sum->len / sectorsize;
922 			sector_sums = ordered_sum->sums;
923 			for (i = 0; i < num_sectors; i++) {
924 				if (sector_sums[i].bytenr == disk_bytenr) {
925 					*sum = sector_sums[i].sum;
926 					ret = 0;
927 					goto out;
928 				}
929 			}
930 		}
931 	}
932 out:
933 	spin_unlock(&tree->lock);
934 	btrfs_put_ordered_extent(ordered);
935 	return ret;
936 }
937 
938 
939 /*
940  * add a given inode to the list of inodes that must be fully on
941  * disk before a transaction commit finishes.
942  *
943  * This basically gives us the ext3 style data=ordered mode, and it is mostly
944  * used to make sure renamed files are fully on disk.
945  *
946  * It is a noop if the inode is already fully on disk.
947  *
948  * If trans is not null, we'll do a friendly check for a transaction that
949  * is already flushing things and force the IO down ourselves.
950  */
btrfs_add_ordered_operation(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)951 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
952 				struct btrfs_root *root,
953 				struct inode *inode)
954 {
955 	u64 last_mod;
956 
957 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
958 
959 	/*
960 	 * if this file hasn't been changed since the last transaction
961 	 * commit, we can safely return without doing anything
962 	 */
963 	if (last_mod < root->fs_info->last_trans_committed)
964 		return 0;
965 
966 	/*
967 	 * the transaction is already committing.  Just start the IO and
968 	 * don't bother with all of this list nonsense
969 	 */
970 	if (trans && root->fs_info->running_transaction->blocked) {
971 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
972 		return 0;
973 	}
974 
975 	spin_lock(&root->fs_info->ordered_extent_lock);
976 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
977 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
978 			      &root->fs_info->ordered_operations);
979 	}
980 	spin_unlock(&root->fs_info->ordered_extent_lock);
981 
982 	return 0;
983 }
984