1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include "extent_map.h"
12 #include "extent_io.h"
13 #include "ordered-data.h"
14 #include "delayed-inode.h"
15
16 /*
17 * Since we search a directory based on f_pos (struct dir_context::pos) we have
18 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so
19 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()).
20 */
21 #define BTRFS_DIR_START_INDEX 2
22
23 /*
24 * ordered_data_close is set by truncate when a file that used
25 * to have good data has been truncated to zero. When it is set
26 * the btrfs file release call will add this inode to the
27 * ordered operations list so that we make sure to flush out any
28 * new data the application may have written before commit.
29 */
30 enum {
31 BTRFS_INODE_FLUSH_ON_CLOSE,
32 BTRFS_INODE_DUMMY,
33 BTRFS_INODE_IN_DEFRAG,
34 BTRFS_INODE_HAS_ASYNC_EXTENT,
35 /*
36 * Always set under the VFS' inode lock, otherwise it can cause races
37 * during fsync (we start as a fast fsync and then end up in a full
38 * fsync racing with ordered extent completion).
39 */
40 BTRFS_INODE_NEEDS_FULL_SYNC,
41 BTRFS_INODE_COPY_EVERYTHING,
42 BTRFS_INODE_IN_DELALLOC_LIST,
43 BTRFS_INODE_HAS_PROPS,
44 BTRFS_INODE_SNAPSHOT_FLUSH,
45 /*
46 * Set and used when logging an inode and it serves to signal that an
47 * inode does not have xattrs, so subsequent fsyncs can avoid searching
48 * for xattrs to log. This bit must be cleared whenever a xattr is added
49 * to an inode.
50 */
51 BTRFS_INODE_NO_XATTRS,
52 /*
53 * Set when we are in a context where we need to start a transaction and
54 * have dirty pages with the respective file range locked. This is to
55 * ensure that when reserving space for the transaction, if we are low
56 * on available space and need to flush delalloc, we will not flush
57 * delalloc for this inode, because that could result in a deadlock (on
58 * the file range, inode's io_tree).
59 */
60 BTRFS_INODE_NO_DELALLOC_FLUSH,
61 /*
62 * Set when we are working on enabling verity for a file. Computing and
63 * writing the whole Merkle tree can take a while so we want to prevent
64 * races where two separate tasks attempt to simultaneously start verity
65 * on the same file.
66 */
67 BTRFS_INODE_VERITY_IN_PROGRESS,
68 /* Set when this inode is a free space inode. */
69 BTRFS_INODE_FREE_SPACE_INODE,
70 };
71
72 /* in memory btrfs inode */
73 struct btrfs_inode {
74 /* which subvolume this inode belongs to */
75 struct btrfs_root *root;
76
77 /* key used to find this inode on disk. This is used by the code
78 * to read in roots of subvolumes
79 */
80 struct btrfs_key location;
81
82 /*
83 * Lock for counters and all fields used to determine if the inode is in
84 * the log or not (last_trans, last_sub_trans, last_log_commit,
85 * logged_trans), to access/update new_delalloc_bytes and to update the
86 * VFS' inode number of bytes used.
87 */
88 spinlock_t lock;
89
90 /* the extent_tree has caches of all the extent mappings to disk */
91 struct extent_map_tree extent_tree;
92
93 /* the io_tree does range state (DIRTY, LOCKED etc) */
94 struct extent_io_tree io_tree;
95
96 /* special utility tree used to record which mirrors have already been
97 * tried when checksums fail for a given block
98 */
99 struct rb_root io_failure_tree;
100 spinlock_t io_failure_lock;
101
102 /*
103 * Keep track of where the inode has extent items mapped in order to
104 * make sure the i_size adjustments are accurate
105 */
106 struct extent_io_tree file_extent_tree;
107
108 /* held while logging the inode in tree-log.c */
109 struct mutex log_mutex;
110
111 /* used to order data wrt metadata */
112 struct btrfs_ordered_inode_tree ordered_tree;
113
114 /* list of all the delalloc inodes in the FS. There are times we need
115 * to write all the delalloc pages to disk, and this list is used
116 * to walk them all.
117 */
118 struct list_head delalloc_inodes;
119
120 /* node for the red-black tree that links inodes in subvolume root */
121 struct rb_node rb_node;
122
123 unsigned long runtime_flags;
124
125 /* Keep track of who's O_SYNC/fsyncing currently */
126 atomic_t sync_writers;
127
128 /* full 64 bit generation number, struct vfs_inode doesn't have a big
129 * enough field for this.
130 */
131 u64 generation;
132
133 /*
134 * transid of the trans_handle that last modified this inode
135 */
136 u64 last_trans;
137
138 /*
139 * transid that last logged this inode
140 */
141 u64 logged_trans;
142
143 /*
144 * log transid when this inode was last modified
145 */
146 int last_sub_trans;
147
148 /* a local copy of root's last_log_commit */
149 int last_log_commit;
150
151 /*
152 * Total number of bytes pending delalloc, used by stat to calculate the
153 * real block usage of the file. This is used only for files.
154 */
155 u64 delalloc_bytes;
156
157 union {
158 /*
159 * Total number of bytes pending delalloc that fall within a file
160 * range that is either a hole or beyond EOF (and no prealloc extent
161 * exists in the range). This is always <= delalloc_bytes and this
162 * is used only for files.
163 */
164 u64 new_delalloc_bytes;
165 /*
166 * The offset of the last dir index key that was logged.
167 * This is used only for directories.
168 */
169 u64 last_dir_index_offset;
170 };
171
172 /*
173 * total number of bytes pending defrag, used by stat to check whether
174 * it needs COW.
175 */
176 u64 defrag_bytes;
177
178 /*
179 * the size of the file stored in the metadata on disk. data=ordered
180 * means the in-memory i_size might be larger than the size on disk
181 * because not all the blocks are written yet.
182 */
183 u64 disk_i_size;
184
185 /*
186 * If this is a directory then index_cnt is the counter for the index
187 * number for new files that are created. For an empty directory, this
188 * must be initialized to BTRFS_DIR_START_INDEX.
189 */
190 u64 index_cnt;
191
192 /* Cache the directory index number to speed the dir/file remove */
193 u64 dir_index;
194
195 /* the fsync log has some corner cases that mean we have to check
196 * directories to see if any unlinks have been done before
197 * the directory was logged. See tree-log.c for all the
198 * details
199 */
200 u64 last_unlink_trans;
201
202 /*
203 * The id/generation of the last transaction where this inode was
204 * either the source or the destination of a clone/dedupe operation.
205 * Used when logging an inode to know if there are shared extents that
206 * need special care when logging checksum items, to avoid duplicate
207 * checksum items in a log (which can lead to a corruption where we end
208 * up with missing checksum ranges after log replay).
209 * Protected by the vfs inode lock.
210 */
211 u64 last_reflink_trans;
212
213 /*
214 * Number of bytes outstanding that are going to need csums. This is
215 * used in ENOSPC accounting.
216 */
217 u64 csum_bytes;
218
219 /* Backwards incompatible flags, lower half of inode_item::flags */
220 u32 flags;
221 /* Read-only compatibility flags, upper half of inode_item::flags */
222 u32 ro_flags;
223
224 /*
225 * Counters to keep track of the number of extent item's we may use due
226 * to delalloc and such. outstanding_extents is the number of extent
227 * items we think we'll end up using, and reserved_extents is the number
228 * of extent items we've reserved metadata for.
229 */
230 unsigned outstanding_extents;
231
232 struct btrfs_block_rsv block_rsv;
233
234 /*
235 * Cached values of inode properties
236 */
237 unsigned prop_compress; /* per-file compression algorithm */
238 /*
239 * Force compression on the file using the defrag ioctl, could be
240 * different from prop_compress and takes precedence if set
241 */
242 unsigned defrag_compress;
243
244 struct btrfs_delayed_node *delayed_node;
245
246 /* File creation time. */
247 struct timespec64 i_otime;
248
249 /* Hook into fs_info->delayed_iputs */
250 struct list_head delayed_iput;
251
252 struct rw_semaphore i_mmap_lock;
253 struct inode vfs_inode;
254 };
255
BTRFS_I(const struct inode * inode)256 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
257 {
258 return container_of(inode, struct btrfs_inode, vfs_inode);
259 }
260
btrfs_inode_hash(u64 objectid,const struct btrfs_root * root)261 static inline unsigned long btrfs_inode_hash(u64 objectid,
262 const struct btrfs_root *root)
263 {
264 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
265
266 #if BITS_PER_LONG == 32
267 h = (h >> 32) ^ (h & 0xffffffff);
268 #endif
269
270 return (unsigned long)h;
271 }
272
273 #if BITS_PER_LONG == 32
274
275 /*
276 * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so
277 * we use the inode's location objectid which is a u64 to avoid truncation.
278 */
btrfs_ino(const struct btrfs_inode * inode)279 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
280 {
281 u64 ino = inode->location.objectid;
282
283 /* type == BTRFS_ROOT_ITEM_KEY: subvol dir */
284 if (inode->location.type == BTRFS_ROOT_ITEM_KEY)
285 ino = inode->vfs_inode.i_ino;
286 return ino;
287 }
288
289 #else
290
btrfs_ino(const struct btrfs_inode * inode)291 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
292 {
293 return inode->vfs_inode.i_ino;
294 }
295
296 #endif
297
btrfs_i_size_write(struct btrfs_inode * inode,u64 size)298 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
299 {
300 i_size_write(&inode->vfs_inode, size);
301 inode->disk_i_size = size;
302 }
303
btrfs_is_free_space_inode(struct btrfs_inode * inode)304 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
305 {
306 return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags);
307 }
308
is_data_inode(struct inode * inode)309 static inline bool is_data_inode(struct inode *inode)
310 {
311 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
312 }
313
btrfs_mod_outstanding_extents(struct btrfs_inode * inode,int mod)314 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
315 int mod)
316 {
317 lockdep_assert_held(&inode->lock);
318 inode->outstanding_extents += mod;
319 if (btrfs_is_free_space_inode(inode))
320 return;
321 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
322 mod);
323 }
324
325 /*
326 * Called every time after doing a buffered, direct IO or memory mapped write.
327 *
328 * This is to ensure that if we write to a file that was previously fsynced in
329 * the current transaction, then try to fsync it again in the same transaction,
330 * we will know that there were changes in the file and that it needs to be
331 * logged.
332 */
btrfs_set_inode_last_sub_trans(struct btrfs_inode * inode)333 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
334 {
335 spin_lock(&inode->lock);
336 inode->last_sub_trans = inode->root->log_transid;
337 spin_unlock(&inode->lock);
338 }
339
340 /*
341 * Should be called while holding the inode's VFS lock in exclusive mode or in a
342 * context where no one else can access the inode concurrently (during inode
343 * creation or when loading an inode from disk).
344 */
btrfs_set_inode_full_sync(struct btrfs_inode * inode)345 static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode)
346 {
347 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
348 /*
349 * The inode may have been part of a reflink operation in the last
350 * transaction that modified it, and then a fsync has reset the
351 * last_reflink_trans to avoid subsequent fsyncs in the same
352 * transaction to do unnecessary work. So update last_reflink_trans
353 * to the last_trans value (we have to be pessimistic and assume a
354 * reflink happened).
355 *
356 * The ->last_trans is protected by the inode's spinlock and we can
357 * have a concurrent ordered extent completion update it. Also set
358 * last_reflink_trans to ->last_trans only if the former is less than
359 * the later, because we can be called in a context where
360 * last_reflink_trans was set to the current transaction generation
361 * while ->last_trans was not yet updated in the current transaction,
362 * and therefore has a lower value.
363 */
364 spin_lock(&inode->lock);
365 if (inode->last_reflink_trans < inode->last_trans)
366 inode->last_reflink_trans = inode->last_trans;
367 spin_unlock(&inode->lock);
368 }
369
btrfs_inode_in_log(struct btrfs_inode * inode,u64 generation)370 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
371 {
372 bool ret = false;
373
374 spin_lock(&inode->lock);
375 if (inode->logged_trans == generation &&
376 inode->last_sub_trans <= inode->last_log_commit &&
377 inode->last_sub_trans <= inode->root->last_log_commit)
378 ret = true;
379 spin_unlock(&inode->lock);
380 return ret;
381 }
382
383 /*
384 * Check if the inode has flags compatible with compression
385 */
btrfs_inode_can_compress(const struct btrfs_inode * inode)386 static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode)
387 {
388 if (inode->flags & BTRFS_INODE_NODATACOW ||
389 inode->flags & BTRFS_INODE_NODATASUM)
390 return false;
391 return true;
392 }
393
394 /*
395 * btrfs_inode_item stores flags in a u64, btrfs_inode stores them in two
396 * separate u32s. These two functions convert between the two representations.
397 */
btrfs_inode_combine_flags(u32 flags,u32 ro_flags)398 static inline u64 btrfs_inode_combine_flags(u32 flags, u32 ro_flags)
399 {
400 return (flags | ((u64)ro_flags << 32));
401 }
402
btrfs_inode_split_flags(u64 inode_item_flags,u32 * flags,u32 * ro_flags)403 static inline void btrfs_inode_split_flags(u64 inode_item_flags,
404 u32 *flags, u32 *ro_flags)
405 {
406 *flags = (u32)inode_item_flags;
407 *ro_flags = (u32)(inode_item_flags >> 32);
408 }
409
410 /* Array of bytes with variable length, hexadecimal format 0x1234 */
411 #define CSUM_FMT "0x%*phN"
412 #define CSUM_FMT_VALUE(size, bytes) size, bytes
413
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)414 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
415 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
416 {
417 struct btrfs_root *root = inode->root;
418 const u32 csum_size = root->fs_info->csum_size;
419
420 /* Output minus objectid, which is more meaningful */
421 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
422 btrfs_warn_rl(root->fs_info,
423 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
424 root->root_key.objectid, btrfs_ino(inode),
425 logical_start,
426 CSUM_FMT_VALUE(csum_size, csum),
427 CSUM_FMT_VALUE(csum_size, csum_expected),
428 mirror_num);
429 else
430 btrfs_warn_rl(root->fs_info,
431 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
432 root->root_key.objectid, btrfs_ino(inode),
433 logical_start,
434 CSUM_FMT_VALUE(csum_size, csum),
435 CSUM_FMT_VALUE(csum_size, csum_expected),
436 mirror_num);
437 }
438
439 #endif
440