1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66 
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73 	struct bio *bio;
74 	bio_end_io_t *end_io;
75 	void *private;
76 	struct btrfs_fs_info *info;
77 	blk_status_t status;
78 	enum btrfs_wq_endio_type metadata;
79 	struct btrfs_work work;
80 };
81 
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83 
btrfs_end_io_wq_init(void)84 int __init btrfs_end_io_wq_init(void)
85 {
86 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 					sizeof(struct btrfs_end_io_wq),
88 					0,
89 					SLAB_MEM_SPREAD,
90 					NULL);
91 	if (!btrfs_end_io_wq_cache)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
btrfs_end_io_wq_exit(void)96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100 
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 	if (fs_info->csum_shash)
104 		crypto_free_shash(fs_info->csum_shash);
105 }
106 
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113 	struct inode *inode;
114 	struct bio *bio;
115 	extent_submit_bio_start_t *submit_bio_start;
116 	int mirror_num;
117 
118 	/* Optional parameter for submit_bio_start used by direct io */
119 	u64 dio_file_offset;
120 	struct btrfs_work work;
121 	blk_status_t status;
122 };
123 
124 /*
125  * Compute the csum of a btree block and store the result to provided buffer.
126  */
csum_tree_block(struct extent_buffer * buf,u8 * result)127 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
128 {
129 	struct btrfs_fs_info *fs_info = buf->fs_info;
130 	const int num_pages = num_extent_pages(buf);
131 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
132 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
133 	char *kaddr;
134 	int i;
135 
136 	shash->tfm = fs_info->csum_shash;
137 	crypto_shash_init(shash);
138 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
139 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
140 			    first_page_part - BTRFS_CSUM_SIZE);
141 
142 	for (i = 1; i < num_pages; i++) {
143 		kaddr = page_address(buf->pages[i]);
144 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
145 	}
146 	memset(result, 0, BTRFS_CSUM_SIZE);
147 	crypto_shash_final(shash, result);
148 }
149 
150 /*
151  * we can't consider a given block up to date unless the transid of the
152  * block matches the transid in the parent node's pointer.  This is how we
153  * detect blocks that either didn't get written at all or got written
154  * in the wrong place.
155  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)156 static int verify_parent_transid(struct extent_io_tree *io_tree,
157 				 struct extent_buffer *eb, u64 parent_transid,
158 				 int atomic)
159 {
160 	struct extent_state *cached_state = NULL;
161 	int ret;
162 
163 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
164 		return 0;
165 
166 	if (atomic)
167 		return -EAGAIN;
168 
169 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
170 			 &cached_state);
171 	if (extent_buffer_uptodate(eb) &&
172 	    btrfs_header_generation(eb) == parent_transid) {
173 		ret = 0;
174 		goto out;
175 	}
176 	btrfs_err_rl(eb->fs_info,
177 		"parent transid verify failed on %llu wanted %llu found %llu",
178 			eb->start,
179 			parent_transid, btrfs_header_generation(eb));
180 	ret = 1;
181 	clear_extent_buffer_uptodate(eb);
182 out:
183 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
184 			     &cached_state);
185 	return ret;
186 }
187 
btrfs_supported_super_csum(u16 csum_type)188 static bool btrfs_supported_super_csum(u16 csum_type)
189 {
190 	switch (csum_type) {
191 	case BTRFS_CSUM_TYPE_CRC32:
192 	case BTRFS_CSUM_TYPE_XXHASH:
193 	case BTRFS_CSUM_TYPE_SHA256:
194 	case BTRFS_CSUM_TYPE_BLAKE2:
195 		return true;
196 	default:
197 		return false;
198 	}
199 }
200 
201 /*
202  * Return 0 if the superblock checksum type matches the checksum value of that
203  * algorithm. Pass the raw disk superblock data.
204  */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)205 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
206 				  char *raw_disk_sb)
207 {
208 	struct btrfs_super_block *disk_sb =
209 		(struct btrfs_super_block *)raw_disk_sb;
210 	char result[BTRFS_CSUM_SIZE];
211 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
212 
213 	shash->tfm = fs_info->csum_shash;
214 
215 	/*
216 	 * The super_block structure does not span the whole
217 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
218 	 * filled with zeros and is included in the checksum.
219 	 */
220 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
221 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
222 
223 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
224 		return 1;
225 
226 	return 0;
227 }
228 
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)229 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
230 			   struct btrfs_key *first_key, u64 parent_transid)
231 {
232 	struct btrfs_fs_info *fs_info = eb->fs_info;
233 	int found_level;
234 	struct btrfs_key found_key;
235 	int ret;
236 
237 	found_level = btrfs_header_level(eb);
238 	if (found_level != level) {
239 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
240 		     KERN_ERR "BTRFS: tree level check failed\n");
241 		btrfs_err(fs_info,
242 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
243 			  eb->start, level, found_level);
244 		return -EIO;
245 	}
246 
247 	if (!first_key)
248 		return 0;
249 
250 	/*
251 	 * For live tree block (new tree blocks in current transaction),
252 	 * we need proper lock context to avoid race, which is impossible here.
253 	 * So we only checks tree blocks which is read from disk, whose
254 	 * generation <= fs_info->last_trans_committed.
255 	 */
256 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
257 		return 0;
258 
259 	/* We have @first_key, so this @eb must have at least one item */
260 	if (btrfs_header_nritems(eb) == 0) {
261 		btrfs_err(fs_info,
262 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
263 			  eb->start);
264 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
265 		return -EUCLEAN;
266 	}
267 
268 	if (found_level)
269 		btrfs_node_key_to_cpu(eb, &found_key, 0);
270 	else
271 		btrfs_item_key_to_cpu(eb, &found_key, 0);
272 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
273 
274 	if (ret) {
275 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
276 		     KERN_ERR "BTRFS: tree first key check failed\n");
277 		btrfs_err(fs_info,
278 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
279 			  eb->start, parent_transid, first_key->objectid,
280 			  first_key->type, first_key->offset,
281 			  found_key.objectid, found_key.type,
282 			  found_key.offset);
283 	}
284 	return ret;
285 }
286 
287 /*
288  * helper to read a given tree block, doing retries as required when
289  * the checksums don't match and we have alternate mirrors to try.
290  *
291  * @parent_transid:	expected transid, skip check if 0
292  * @level:		expected level, mandatory check
293  * @first_key:		expected key of first slot, skip check if NULL
294  */
btrfs_read_extent_buffer(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)295 int btrfs_read_extent_buffer(struct extent_buffer *eb,
296 			     u64 parent_transid, int level,
297 			     struct btrfs_key *first_key)
298 {
299 	struct btrfs_fs_info *fs_info = eb->fs_info;
300 	struct extent_io_tree *io_tree;
301 	int failed = 0;
302 	int ret;
303 	int num_copies = 0;
304 	int mirror_num = 0;
305 	int failed_mirror = 0;
306 
307 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
308 	while (1) {
309 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
310 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
311 		if (!ret) {
312 			if (verify_parent_transid(io_tree, eb,
313 						   parent_transid, 0))
314 				ret = -EIO;
315 			else if (btrfs_verify_level_key(eb, level,
316 						first_key, parent_transid))
317 				ret = -EUCLEAN;
318 			else
319 				break;
320 		}
321 
322 		num_copies = btrfs_num_copies(fs_info,
323 					      eb->start, eb->len);
324 		if (num_copies == 1)
325 			break;
326 
327 		if (!failed_mirror) {
328 			failed = 1;
329 			failed_mirror = eb->read_mirror;
330 		}
331 
332 		mirror_num++;
333 		if (mirror_num == failed_mirror)
334 			mirror_num++;
335 
336 		if (mirror_num > num_copies)
337 			break;
338 	}
339 
340 	if (failed && !ret && failed_mirror)
341 		btrfs_repair_eb_io_failure(eb, failed_mirror);
342 
343 	return ret;
344 }
345 
csum_one_extent_buffer(struct extent_buffer * eb)346 static int csum_one_extent_buffer(struct extent_buffer *eb)
347 {
348 	struct btrfs_fs_info *fs_info = eb->fs_info;
349 	u8 result[BTRFS_CSUM_SIZE];
350 	int ret;
351 
352 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
353 				    offsetof(struct btrfs_header, fsid),
354 				    BTRFS_FSID_SIZE) == 0);
355 	csum_tree_block(eb, result);
356 
357 	if (btrfs_header_level(eb))
358 		ret = btrfs_check_node(eb);
359 	else
360 		ret = btrfs_check_leaf_full(eb);
361 
362 	if (ret < 0)
363 		goto error;
364 
365 	/*
366 	 * Also check the generation, the eb reached here must be newer than
367 	 * last committed. Or something seriously wrong happened.
368 	 */
369 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
370 		ret = -EUCLEAN;
371 		btrfs_err(fs_info,
372 			"block=%llu bad generation, have %llu expect > %llu",
373 			  eb->start, btrfs_header_generation(eb),
374 			  fs_info->last_trans_committed);
375 		goto error;
376 	}
377 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
378 
379 	return 0;
380 
381 error:
382 	btrfs_print_tree(eb, 0);
383 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
384 		  eb->start);
385 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
386 	return ret;
387 }
388 
389 /* Checksum all dirty extent buffers in one bio_vec */
csum_dirty_subpage_buffers(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)390 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
391 				      struct bio_vec *bvec)
392 {
393 	struct page *page = bvec->bv_page;
394 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
395 	u64 cur;
396 	int ret = 0;
397 
398 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
399 	     cur += fs_info->nodesize) {
400 		struct extent_buffer *eb;
401 		bool uptodate;
402 
403 		eb = find_extent_buffer(fs_info, cur);
404 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
405 						       fs_info->nodesize);
406 
407 		/* A dirty eb shouldn't disappear from buffer_radix */
408 		if (WARN_ON(!eb))
409 			return -EUCLEAN;
410 
411 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
412 			free_extent_buffer(eb);
413 			return -EUCLEAN;
414 		}
415 		if (WARN_ON(!uptodate)) {
416 			free_extent_buffer(eb);
417 			return -EUCLEAN;
418 		}
419 
420 		ret = csum_one_extent_buffer(eb);
421 		free_extent_buffer(eb);
422 		if (ret < 0)
423 			return ret;
424 	}
425 	return ret;
426 }
427 
428 /*
429  * Checksum a dirty tree block before IO.  This has extra checks to make sure
430  * we only fill in the checksum field in the first page of a multi-page block.
431  * For subpage extent buffers we need bvec to also read the offset in the page.
432  */
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)433 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
434 {
435 	struct page *page = bvec->bv_page;
436 	u64 start = page_offset(page);
437 	u64 found_start;
438 	struct extent_buffer *eb;
439 
440 	if (fs_info->nodesize < PAGE_SIZE)
441 		return csum_dirty_subpage_buffers(fs_info, bvec);
442 
443 	eb = (struct extent_buffer *)page->private;
444 	if (page != eb->pages[0])
445 		return 0;
446 
447 	found_start = btrfs_header_bytenr(eb);
448 
449 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
450 		WARN_ON(found_start != 0);
451 		return 0;
452 	}
453 
454 	/*
455 	 * Please do not consolidate these warnings into a single if.
456 	 * It is useful to know what went wrong.
457 	 */
458 	if (WARN_ON(found_start != start))
459 		return -EUCLEAN;
460 	if (WARN_ON(!PageUptodate(page)))
461 		return -EUCLEAN;
462 
463 	return csum_one_extent_buffer(eb);
464 }
465 
check_tree_block_fsid(struct extent_buffer * eb)466 static int check_tree_block_fsid(struct extent_buffer *eb)
467 {
468 	struct btrfs_fs_info *fs_info = eb->fs_info;
469 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
470 	u8 fsid[BTRFS_FSID_SIZE];
471 	u8 *metadata_uuid;
472 
473 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
474 			   BTRFS_FSID_SIZE);
475 	/*
476 	 * Checking the incompat flag is only valid for the current fs. For
477 	 * seed devices it's forbidden to have their uuid changed so reading
478 	 * ->fsid in this case is fine
479 	 */
480 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
481 		metadata_uuid = fs_devices->metadata_uuid;
482 	else
483 		metadata_uuid = fs_devices->fsid;
484 
485 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
486 		return 0;
487 
488 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
489 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
490 			return 0;
491 
492 	return 1;
493 }
494 
495 /* Do basic extent buffer checks at read time */
validate_extent_buffer(struct extent_buffer * eb)496 static int validate_extent_buffer(struct extent_buffer *eb)
497 {
498 	struct btrfs_fs_info *fs_info = eb->fs_info;
499 	u64 found_start;
500 	const u32 csum_size = fs_info->csum_size;
501 	u8 found_level;
502 	u8 result[BTRFS_CSUM_SIZE];
503 	const u8 *header_csum;
504 	int ret = 0;
505 
506 	found_start = btrfs_header_bytenr(eb);
507 	if (found_start != eb->start) {
508 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
509 			     eb->start, found_start);
510 		ret = -EIO;
511 		goto out;
512 	}
513 	if (check_tree_block_fsid(eb)) {
514 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
515 			     eb->start);
516 		ret = -EIO;
517 		goto out;
518 	}
519 	found_level = btrfs_header_level(eb);
520 	if (found_level >= BTRFS_MAX_LEVEL) {
521 		btrfs_err(fs_info, "bad tree block level %d on %llu",
522 			  (int)btrfs_header_level(eb), eb->start);
523 		ret = -EIO;
524 		goto out;
525 	}
526 
527 	csum_tree_block(eb, result);
528 	header_csum = page_address(eb->pages[0]) +
529 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
530 
531 	if (memcmp(result, header_csum, csum_size) != 0) {
532 		btrfs_warn_rl(fs_info,
533 	"checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
534 			      eb->start,
535 			      CSUM_FMT_VALUE(csum_size, header_csum),
536 			      CSUM_FMT_VALUE(csum_size, result),
537 			      btrfs_header_level(eb));
538 		ret = -EUCLEAN;
539 		goto out;
540 	}
541 
542 	/*
543 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
544 	 * that we don't try and read the other copies of this block, just
545 	 * return -EIO.
546 	 */
547 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
548 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
549 		ret = -EIO;
550 	}
551 
552 	if (found_level > 0 && btrfs_check_node(eb))
553 		ret = -EIO;
554 
555 	if (!ret)
556 		set_extent_buffer_uptodate(eb);
557 	else
558 		btrfs_err(fs_info,
559 			  "block=%llu read time tree block corruption detected",
560 			  eb->start);
561 out:
562 	return ret;
563 }
564 
validate_subpage_buffer(struct page * page,u64 start,u64 end,int mirror)565 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
566 				   int mirror)
567 {
568 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
569 	struct extent_buffer *eb;
570 	bool reads_done;
571 	int ret = 0;
572 
573 	/*
574 	 * We don't allow bio merge for subpage metadata read, so we should
575 	 * only get one eb for each endio hook.
576 	 */
577 	ASSERT(end == start + fs_info->nodesize - 1);
578 	ASSERT(PagePrivate(page));
579 
580 	eb = find_extent_buffer(fs_info, start);
581 	/*
582 	 * When we are reading one tree block, eb must have been inserted into
583 	 * the radix tree. If not, something is wrong.
584 	 */
585 	ASSERT(eb);
586 
587 	reads_done = atomic_dec_and_test(&eb->io_pages);
588 	/* Subpage read must finish in page read */
589 	ASSERT(reads_done);
590 
591 	eb->read_mirror = mirror;
592 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
593 		ret = -EIO;
594 		goto err;
595 	}
596 	ret = validate_extent_buffer(eb);
597 	if (ret < 0)
598 		goto err;
599 
600 	set_extent_buffer_uptodate(eb);
601 
602 	free_extent_buffer(eb);
603 	return ret;
604 err:
605 	/*
606 	 * end_bio_extent_readpage decrements io_pages in case of error,
607 	 * make sure it has something to decrement.
608 	 */
609 	atomic_inc(&eb->io_pages);
610 	clear_extent_buffer_uptodate(eb);
611 	free_extent_buffer(eb);
612 	return ret;
613 }
614 
btrfs_validate_metadata_buffer(struct btrfs_bio * bbio,struct page * page,u64 start,u64 end,int mirror)615 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
616 				   struct page *page, u64 start, u64 end,
617 				   int mirror)
618 {
619 	struct extent_buffer *eb;
620 	int ret = 0;
621 	int reads_done;
622 
623 	ASSERT(page->private);
624 
625 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
626 		return validate_subpage_buffer(page, start, end, mirror);
627 
628 	eb = (struct extent_buffer *)page->private;
629 
630 	/*
631 	 * The pending IO might have been the only thing that kept this buffer
632 	 * in memory.  Make sure we have a ref for all this other checks
633 	 */
634 	atomic_inc(&eb->refs);
635 
636 	reads_done = atomic_dec_and_test(&eb->io_pages);
637 	if (!reads_done)
638 		goto err;
639 
640 	eb->read_mirror = mirror;
641 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
642 		ret = -EIO;
643 		goto err;
644 	}
645 	ret = validate_extent_buffer(eb);
646 err:
647 	if (ret) {
648 		/*
649 		 * our io error hook is going to dec the io pages
650 		 * again, we have to make sure it has something
651 		 * to decrement
652 		 */
653 		atomic_inc(&eb->io_pages);
654 		clear_extent_buffer_uptodate(eb);
655 	}
656 	free_extent_buffer(eb);
657 
658 	return ret;
659 }
660 
end_workqueue_bio(struct bio * bio)661 static void end_workqueue_bio(struct bio *bio)
662 {
663 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
664 	struct btrfs_fs_info *fs_info;
665 	struct btrfs_workqueue *wq;
666 
667 	fs_info = end_io_wq->info;
668 	end_io_wq->status = bio->bi_status;
669 
670 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
671 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
672 			wq = fs_info->endio_meta_write_workers;
673 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
674 			wq = fs_info->endio_freespace_worker;
675 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
676 			wq = fs_info->endio_raid56_workers;
677 		else
678 			wq = fs_info->endio_write_workers;
679 	} else {
680 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
681 			wq = fs_info->endio_raid56_workers;
682 		else if (end_io_wq->metadata)
683 			wq = fs_info->endio_meta_workers;
684 		else
685 			wq = fs_info->endio_workers;
686 	}
687 
688 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
689 	btrfs_queue_work(wq, &end_io_wq->work);
690 }
691 
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)692 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
693 			enum btrfs_wq_endio_type metadata)
694 {
695 	struct btrfs_end_io_wq *end_io_wq;
696 
697 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
698 	if (!end_io_wq)
699 		return BLK_STS_RESOURCE;
700 
701 	end_io_wq->private = bio->bi_private;
702 	end_io_wq->end_io = bio->bi_end_io;
703 	end_io_wq->info = info;
704 	end_io_wq->status = 0;
705 	end_io_wq->bio = bio;
706 	end_io_wq->metadata = metadata;
707 
708 	bio->bi_private = end_io_wq;
709 	bio->bi_end_io = end_workqueue_bio;
710 	return 0;
711 }
712 
run_one_async_start(struct btrfs_work * work)713 static void run_one_async_start(struct btrfs_work *work)
714 {
715 	struct async_submit_bio *async;
716 	blk_status_t ret;
717 
718 	async = container_of(work, struct  async_submit_bio, work);
719 	ret = async->submit_bio_start(async->inode, async->bio,
720 				      async->dio_file_offset);
721 	if (ret)
722 		async->status = ret;
723 }
724 
725 /*
726  * In order to insert checksums into the metadata in large chunks, we wait
727  * until bio submission time.   All the pages in the bio are checksummed and
728  * sums are attached onto the ordered extent record.
729  *
730  * At IO completion time the csums attached on the ordered extent record are
731  * inserted into the tree.
732  */
run_one_async_done(struct btrfs_work * work)733 static void run_one_async_done(struct btrfs_work *work)
734 {
735 	struct async_submit_bio *async;
736 	struct inode *inode;
737 	blk_status_t ret;
738 
739 	async = container_of(work, struct  async_submit_bio, work);
740 	inode = async->inode;
741 
742 	/* If an error occurred we just want to clean up the bio and move on */
743 	if (async->status) {
744 		async->bio->bi_status = async->status;
745 		bio_endio(async->bio);
746 		return;
747 	}
748 
749 	/*
750 	 * All of the bios that pass through here are from async helpers.
751 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
752 	 * This changes nothing when cgroups aren't in use.
753 	 */
754 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
755 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
756 	if (ret) {
757 		async->bio->bi_status = ret;
758 		bio_endio(async->bio);
759 	}
760 }
761 
run_one_async_free(struct btrfs_work * work)762 static void run_one_async_free(struct btrfs_work *work)
763 {
764 	struct async_submit_bio *async;
765 
766 	async = container_of(work, struct  async_submit_bio, work);
767 	kfree(async);
768 }
769 
btrfs_wq_submit_bio(struct inode * inode,struct bio * bio,int mirror_num,u64 dio_file_offset,extent_submit_bio_start_t * submit_bio_start)770 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
771 				 int mirror_num, u64 dio_file_offset,
772 				 extent_submit_bio_start_t *submit_bio_start)
773 {
774 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
775 	struct async_submit_bio *async;
776 
777 	async = kmalloc(sizeof(*async), GFP_NOFS);
778 	if (!async)
779 		return BLK_STS_RESOURCE;
780 
781 	async->inode = inode;
782 	async->bio = bio;
783 	async->mirror_num = mirror_num;
784 	async->submit_bio_start = submit_bio_start;
785 
786 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
787 			run_one_async_free);
788 
789 	async->dio_file_offset = dio_file_offset;
790 
791 	async->status = 0;
792 
793 	if (op_is_sync(bio->bi_opf))
794 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
795 	else
796 		btrfs_queue_work(fs_info->workers, &async->work);
797 	return 0;
798 }
799 
btree_csum_one_bio(struct bio * bio)800 static blk_status_t btree_csum_one_bio(struct bio *bio)
801 {
802 	struct bio_vec *bvec;
803 	struct btrfs_root *root;
804 	int ret = 0;
805 	struct bvec_iter_all iter_all;
806 
807 	ASSERT(!bio_flagged(bio, BIO_CLONED));
808 	bio_for_each_segment_all(bvec, bio, iter_all) {
809 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
810 		ret = csum_dirty_buffer(root->fs_info, bvec);
811 		if (ret)
812 			break;
813 	}
814 
815 	return errno_to_blk_status(ret);
816 }
817 
btree_submit_bio_start(struct inode * inode,struct bio * bio,u64 dio_file_offset)818 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
819 					   u64 dio_file_offset)
820 {
821 	/*
822 	 * when we're called for a write, we're already in the async
823 	 * submission context.  Just jump into btrfs_map_bio
824 	 */
825 	return btree_csum_one_bio(bio);
826 }
827 
should_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)828 static bool should_async_write(struct btrfs_fs_info *fs_info,
829 			     struct btrfs_inode *bi)
830 {
831 	if (btrfs_is_zoned(fs_info))
832 		return false;
833 	if (atomic_read(&bi->sync_writers))
834 		return false;
835 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
836 		return false;
837 	return true;
838 }
839 
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num)840 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
841 {
842 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
843 	blk_status_t ret;
844 
845 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
846 		/*
847 		 * called for a read, do the setup so that checksum validation
848 		 * can happen in the async kernel threads
849 		 */
850 		ret = btrfs_bio_wq_end_io(fs_info, bio,
851 					  BTRFS_WQ_ENDIO_METADATA);
852 		if (!ret)
853 			ret = btrfs_map_bio(fs_info, bio, mirror_num);
854 	} else if (!should_async_write(fs_info, BTRFS_I(inode))) {
855 		ret = btree_csum_one_bio(bio);
856 		if (!ret)
857 			ret = btrfs_map_bio(fs_info, bio, mirror_num);
858 	} else {
859 		/*
860 		 * kthread helpers are used to submit writes so that
861 		 * checksumming can happen in parallel across all CPUs
862 		 */
863 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
864 					  btree_submit_bio_start);
865 	}
866 
867 	if (ret) {
868 		bio->bi_status = ret;
869 		bio_endio(bio);
870 	}
871 }
872 
873 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)874 static int btree_migratepage(struct address_space *mapping,
875 			struct page *newpage, struct page *page,
876 			enum migrate_mode mode)
877 {
878 	/*
879 	 * we can't safely write a btree page from here,
880 	 * we haven't done the locking hook
881 	 */
882 	if (PageDirty(page))
883 		return -EAGAIN;
884 	/*
885 	 * Buffers may be managed in a filesystem specific way.
886 	 * We must have no buffers or drop them.
887 	 */
888 	if (page_has_private(page) &&
889 	    !try_to_release_page(page, GFP_KERNEL))
890 		return -EAGAIN;
891 	return migrate_page(mapping, newpage, page, mode);
892 }
893 #endif
894 
895 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)896 static int btree_writepages(struct address_space *mapping,
897 			    struct writeback_control *wbc)
898 {
899 	struct btrfs_fs_info *fs_info;
900 	int ret;
901 
902 	if (wbc->sync_mode == WB_SYNC_NONE) {
903 
904 		if (wbc->for_kupdate)
905 			return 0;
906 
907 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
908 		/* this is a bit racy, but that's ok */
909 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
910 					     BTRFS_DIRTY_METADATA_THRESH,
911 					     fs_info->dirty_metadata_batch);
912 		if (ret < 0)
913 			return 0;
914 	}
915 	return btree_write_cache_pages(mapping, wbc);
916 }
917 
btree_release_folio(struct folio * folio,gfp_t gfp_flags)918 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
919 {
920 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
921 		return false;
922 
923 	return try_release_extent_buffer(&folio->page);
924 }
925 
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)926 static void btree_invalidate_folio(struct folio *folio, size_t offset,
927 				 size_t length)
928 {
929 	struct extent_io_tree *tree;
930 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
931 	extent_invalidate_folio(tree, folio, offset);
932 	btree_release_folio(folio, GFP_NOFS);
933 	if (folio_get_private(folio)) {
934 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
935 			   "folio private not zero on folio %llu",
936 			   (unsigned long long)folio_pos(folio));
937 		folio_detach_private(folio);
938 	}
939 }
940 
941 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)942 static bool btree_dirty_folio(struct address_space *mapping,
943 		struct folio *folio)
944 {
945 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
946 	struct btrfs_subpage *subpage;
947 	struct extent_buffer *eb;
948 	int cur_bit = 0;
949 	u64 page_start = folio_pos(folio);
950 
951 	if (fs_info->sectorsize == PAGE_SIZE) {
952 		eb = folio_get_private(folio);
953 		BUG_ON(!eb);
954 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
955 		BUG_ON(!atomic_read(&eb->refs));
956 		btrfs_assert_tree_write_locked(eb);
957 		return filemap_dirty_folio(mapping, folio);
958 	}
959 	subpage = folio_get_private(folio);
960 
961 	ASSERT(subpage->dirty_bitmap);
962 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
963 		unsigned long flags;
964 		u64 cur;
965 		u16 tmp = (1 << cur_bit);
966 
967 		spin_lock_irqsave(&subpage->lock, flags);
968 		if (!(tmp & subpage->dirty_bitmap)) {
969 			spin_unlock_irqrestore(&subpage->lock, flags);
970 			cur_bit++;
971 			continue;
972 		}
973 		spin_unlock_irqrestore(&subpage->lock, flags);
974 		cur = page_start + cur_bit * fs_info->sectorsize;
975 
976 		eb = find_extent_buffer(fs_info, cur);
977 		ASSERT(eb);
978 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
979 		ASSERT(atomic_read(&eb->refs));
980 		btrfs_assert_tree_write_locked(eb);
981 		free_extent_buffer(eb);
982 
983 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
984 	}
985 	return filemap_dirty_folio(mapping, folio);
986 }
987 #else
988 #define btree_dirty_folio filemap_dirty_folio
989 #endif
990 
991 static const struct address_space_operations btree_aops = {
992 	.writepages	= btree_writepages,
993 	.release_folio	= btree_release_folio,
994 	.invalidate_folio = btree_invalidate_folio,
995 #ifdef CONFIG_MIGRATION
996 	.migratepage	= btree_migratepage,
997 #endif
998 	.dirty_folio = btree_dirty_folio,
999 };
1000 
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)1001 struct extent_buffer *btrfs_find_create_tree_block(
1002 						struct btrfs_fs_info *fs_info,
1003 						u64 bytenr, u64 owner_root,
1004 						int level)
1005 {
1006 	if (btrfs_is_testing(fs_info))
1007 		return alloc_test_extent_buffer(fs_info, bytenr);
1008 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1009 }
1010 
1011 /*
1012  * Read tree block at logical address @bytenr and do variant basic but critical
1013  * verification.
1014  *
1015  * @owner_root:		the objectid of the root owner for this block.
1016  * @parent_transid:	expected transid of this tree block, skip check if 0
1017  * @level:		expected level, mandatory check
1018  * @first_key:		expected key in slot 0, skip check if NULL
1019  */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 parent_transid,int level,struct btrfs_key * first_key)1020 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1021 				      u64 owner_root, u64 parent_transid,
1022 				      int level, struct btrfs_key *first_key)
1023 {
1024 	struct extent_buffer *buf = NULL;
1025 	int ret;
1026 
1027 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1028 	if (IS_ERR(buf))
1029 		return buf;
1030 
1031 	ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
1032 	if (ret) {
1033 		free_extent_buffer_stale(buf);
1034 		return ERR_PTR(ret);
1035 	}
1036 	if (btrfs_check_eb_owner(buf, owner_root)) {
1037 		free_extent_buffer_stale(buf);
1038 		return ERR_PTR(-EUCLEAN);
1039 	}
1040 	return buf;
1041 
1042 }
1043 
btrfs_clean_tree_block(struct extent_buffer * buf)1044 void btrfs_clean_tree_block(struct extent_buffer *buf)
1045 {
1046 	struct btrfs_fs_info *fs_info = buf->fs_info;
1047 	if (btrfs_header_generation(buf) ==
1048 	    fs_info->running_transaction->transid) {
1049 		btrfs_assert_tree_write_locked(buf);
1050 
1051 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1052 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1053 						 -buf->len,
1054 						 fs_info->dirty_metadata_batch);
1055 			clear_extent_buffer_dirty(buf);
1056 		}
1057 	}
1058 }
1059 
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1060 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1061 			 u64 objectid)
1062 {
1063 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1064 
1065 	memset(&root->root_key, 0, sizeof(root->root_key));
1066 	memset(&root->root_item, 0, sizeof(root->root_item));
1067 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1068 	root->fs_info = fs_info;
1069 	root->root_key.objectid = objectid;
1070 	root->node = NULL;
1071 	root->commit_root = NULL;
1072 	root->state = 0;
1073 	RB_CLEAR_NODE(&root->rb_node);
1074 
1075 	root->last_trans = 0;
1076 	root->free_objectid = 0;
1077 	root->nr_delalloc_inodes = 0;
1078 	root->nr_ordered_extents = 0;
1079 	root->inode_tree = RB_ROOT;
1080 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1081 
1082 	btrfs_init_root_block_rsv(root);
1083 
1084 	INIT_LIST_HEAD(&root->dirty_list);
1085 	INIT_LIST_HEAD(&root->root_list);
1086 	INIT_LIST_HEAD(&root->delalloc_inodes);
1087 	INIT_LIST_HEAD(&root->delalloc_root);
1088 	INIT_LIST_HEAD(&root->ordered_extents);
1089 	INIT_LIST_HEAD(&root->ordered_root);
1090 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1091 	INIT_LIST_HEAD(&root->logged_list[0]);
1092 	INIT_LIST_HEAD(&root->logged_list[1]);
1093 	spin_lock_init(&root->inode_lock);
1094 	spin_lock_init(&root->delalloc_lock);
1095 	spin_lock_init(&root->ordered_extent_lock);
1096 	spin_lock_init(&root->accounting_lock);
1097 	spin_lock_init(&root->log_extents_lock[0]);
1098 	spin_lock_init(&root->log_extents_lock[1]);
1099 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1100 	mutex_init(&root->objectid_mutex);
1101 	mutex_init(&root->log_mutex);
1102 	mutex_init(&root->ordered_extent_mutex);
1103 	mutex_init(&root->delalloc_mutex);
1104 	init_waitqueue_head(&root->qgroup_flush_wait);
1105 	init_waitqueue_head(&root->log_writer_wait);
1106 	init_waitqueue_head(&root->log_commit_wait[0]);
1107 	init_waitqueue_head(&root->log_commit_wait[1]);
1108 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1109 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1110 	atomic_set(&root->log_commit[0], 0);
1111 	atomic_set(&root->log_commit[1], 0);
1112 	atomic_set(&root->log_writers, 0);
1113 	atomic_set(&root->log_batch, 0);
1114 	refcount_set(&root->refs, 1);
1115 	atomic_set(&root->snapshot_force_cow, 0);
1116 	atomic_set(&root->nr_swapfiles, 0);
1117 	root->log_transid = 0;
1118 	root->log_transid_committed = -1;
1119 	root->last_log_commit = 0;
1120 	root->anon_dev = 0;
1121 	if (!dummy) {
1122 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1123 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1124 		extent_io_tree_init(fs_info, &root->log_csum_range,
1125 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1126 	}
1127 
1128 	spin_lock_init(&root->root_item_lock);
1129 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1130 #ifdef CONFIG_BTRFS_DEBUG
1131 	INIT_LIST_HEAD(&root->leak_list);
1132 	spin_lock(&fs_info->fs_roots_radix_lock);
1133 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1134 	spin_unlock(&fs_info->fs_roots_radix_lock);
1135 #endif
1136 }
1137 
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1138 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1139 					   u64 objectid, gfp_t flags)
1140 {
1141 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1142 	if (root)
1143 		__setup_root(root, fs_info, objectid);
1144 	return root;
1145 }
1146 
1147 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1148 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1149 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1150 {
1151 	struct btrfs_root *root;
1152 
1153 	if (!fs_info)
1154 		return ERR_PTR(-EINVAL);
1155 
1156 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1157 	if (!root)
1158 		return ERR_PTR(-ENOMEM);
1159 
1160 	/* We don't use the stripesize in selftest, set it as sectorsize */
1161 	root->alloc_bytenr = 0;
1162 
1163 	return root;
1164 }
1165 #endif
1166 
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)1167 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1168 {
1169 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1170 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1171 
1172 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1173 }
1174 
global_root_key_cmp(const void * k,const struct rb_node * node)1175 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1176 {
1177 	const struct btrfs_key *key = k;
1178 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1179 
1180 	return btrfs_comp_cpu_keys(key, &root->root_key);
1181 }
1182 
btrfs_global_root_insert(struct btrfs_root * root)1183 int btrfs_global_root_insert(struct btrfs_root *root)
1184 {
1185 	struct btrfs_fs_info *fs_info = root->fs_info;
1186 	struct rb_node *tmp;
1187 
1188 	write_lock(&fs_info->global_root_lock);
1189 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1190 	write_unlock(&fs_info->global_root_lock);
1191 	ASSERT(!tmp);
1192 
1193 	return tmp ? -EEXIST : 0;
1194 }
1195 
btrfs_global_root_delete(struct btrfs_root * root)1196 void btrfs_global_root_delete(struct btrfs_root *root)
1197 {
1198 	struct btrfs_fs_info *fs_info = root->fs_info;
1199 
1200 	write_lock(&fs_info->global_root_lock);
1201 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1202 	write_unlock(&fs_info->global_root_lock);
1203 }
1204 
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)1205 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1206 				     struct btrfs_key *key)
1207 {
1208 	struct rb_node *node;
1209 	struct btrfs_root *root = NULL;
1210 
1211 	read_lock(&fs_info->global_root_lock);
1212 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1213 	if (node)
1214 		root = container_of(node, struct btrfs_root, rb_node);
1215 	read_unlock(&fs_info->global_root_lock);
1216 
1217 	return root;
1218 }
1219 
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)1220 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1221 {
1222 	struct btrfs_block_group *block_group;
1223 	u64 ret;
1224 
1225 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1226 		return 0;
1227 
1228 	if (bytenr)
1229 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
1230 	else
1231 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1232 	ASSERT(block_group);
1233 	if (!block_group)
1234 		return 0;
1235 	ret = block_group->global_root_id;
1236 	btrfs_put_block_group(block_group);
1237 
1238 	return ret;
1239 }
1240 
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)1241 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1242 {
1243 	struct btrfs_key key = {
1244 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1245 		.type = BTRFS_ROOT_ITEM_KEY,
1246 		.offset = btrfs_global_root_id(fs_info, bytenr),
1247 	};
1248 
1249 	return btrfs_global_root(fs_info, &key);
1250 }
1251 
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)1252 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1253 {
1254 	struct btrfs_key key = {
1255 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1256 		.type = BTRFS_ROOT_ITEM_KEY,
1257 		.offset = btrfs_global_root_id(fs_info, bytenr),
1258 	};
1259 
1260 	return btrfs_global_root(fs_info, &key);
1261 }
1262 
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1263 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1264 				     u64 objectid)
1265 {
1266 	struct btrfs_fs_info *fs_info = trans->fs_info;
1267 	struct extent_buffer *leaf;
1268 	struct btrfs_root *tree_root = fs_info->tree_root;
1269 	struct btrfs_root *root;
1270 	struct btrfs_key key;
1271 	unsigned int nofs_flag;
1272 	int ret = 0;
1273 
1274 	/*
1275 	 * We're holding a transaction handle, so use a NOFS memory allocation
1276 	 * context to avoid deadlock if reclaim happens.
1277 	 */
1278 	nofs_flag = memalloc_nofs_save();
1279 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1280 	memalloc_nofs_restore(nofs_flag);
1281 	if (!root)
1282 		return ERR_PTR(-ENOMEM);
1283 
1284 	root->root_key.objectid = objectid;
1285 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1286 	root->root_key.offset = 0;
1287 
1288 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1289 				      BTRFS_NESTING_NORMAL);
1290 	if (IS_ERR(leaf)) {
1291 		ret = PTR_ERR(leaf);
1292 		leaf = NULL;
1293 		goto fail_unlock;
1294 	}
1295 
1296 	root->node = leaf;
1297 	btrfs_mark_buffer_dirty(leaf);
1298 
1299 	root->commit_root = btrfs_root_node(root);
1300 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1301 
1302 	btrfs_set_root_flags(&root->root_item, 0);
1303 	btrfs_set_root_limit(&root->root_item, 0);
1304 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1305 	btrfs_set_root_generation(&root->root_item, trans->transid);
1306 	btrfs_set_root_level(&root->root_item, 0);
1307 	btrfs_set_root_refs(&root->root_item, 1);
1308 	btrfs_set_root_used(&root->root_item, leaf->len);
1309 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1310 	btrfs_set_root_dirid(&root->root_item, 0);
1311 	if (is_fstree(objectid))
1312 		generate_random_guid(root->root_item.uuid);
1313 	else
1314 		export_guid(root->root_item.uuid, &guid_null);
1315 	btrfs_set_root_drop_level(&root->root_item, 0);
1316 
1317 	btrfs_tree_unlock(leaf);
1318 
1319 	key.objectid = objectid;
1320 	key.type = BTRFS_ROOT_ITEM_KEY;
1321 	key.offset = 0;
1322 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1323 	if (ret)
1324 		goto fail;
1325 
1326 	return root;
1327 
1328 fail_unlock:
1329 	if (leaf)
1330 		btrfs_tree_unlock(leaf);
1331 fail:
1332 	btrfs_put_root(root);
1333 
1334 	return ERR_PTR(ret);
1335 }
1336 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1337 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1338 					 struct btrfs_fs_info *fs_info)
1339 {
1340 	struct btrfs_root *root;
1341 
1342 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1343 	if (!root)
1344 		return ERR_PTR(-ENOMEM);
1345 
1346 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1347 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1348 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1349 
1350 	return root;
1351 }
1352 
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)1353 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1354 			      struct btrfs_root *root)
1355 {
1356 	struct extent_buffer *leaf;
1357 
1358 	/*
1359 	 * DON'T set SHAREABLE bit for log trees.
1360 	 *
1361 	 * Log trees are not exposed to user space thus can't be snapshotted,
1362 	 * and they go away before a real commit is actually done.
1363 	 *
1364 	 * They do store pointers to file data extents, and those reference
1365 	 * counts still get updated (along with back refs to the log tree).
1366 	 */
1367 
1368 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1369 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1370 	if (IS_ERR(leaf))
1371 		return PTR_ERR(leaf);
1372 
1373 	root->node = leaf;
1374 
1375 	btrfs_mark_buffer_dirty(root->node);
1376 	btrfs_tree_unlock(root->node);
1377 
1378 	return 0;
1379 }
1380 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1381 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1382 			     struct btrfs_fs_info *fs_info)
1383 {
1384 	struct btrfs_root *log_root;
1385 
1386 	log_root = alloc_log_tree(trans, fs_info);
1387 	if (IS_ERR(log_root))
1388 		return PTR_ERR(log_root);
1389 
1390 	if (!btrfs_is_zoned(fs_info)) {
1391 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1392 
1393 		if (ret) {
1394 			btrfs_put_root(log_root);
1395 			return ret;
1396 		}
1397 	}
1398 
1399 	WARN_ON(fs_info->log_root_tree);
1400 	fs_info->log_root_tree = log_root;
1401 	return 0;
1402 }
1403 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1404 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1405 		       struct btrfs_root *root)
1406 {
1407 	struct btrfs_fs_info *fs_info = root->fs_info;
1408 	struct btrfs_root *log_root;
1409 	struct btrfs_inode_item *inode_item;
1410 	int ret;
1411 
1412 	log_root = alloc_log_tree(trans, fs_info);
1413 	if (IS_ERR(log_root))
1414 		return PTR_ERR(log_root);
1415 
1416 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1417 	if (ret) {
1418 		btrfs_put_root(log_root);
1419 		return ret;
1420 	}
1421 
1422 	log_root->last_trans = trans->transid;
1423 	log_root->root_key.offset = root->root_key.objectid;
1424 
1425 	inode_item = &log_root->root_item.inode;
1426 	btrfs_set_stack_inode_generation(inode_item, 1);
1427 	btrfs_set_stack_inode_size(inode_item, 3);
1428 	btrfs_set_stack_inode_nlink(inode_item, 1);
1429 	btrfs_set_stack_inode_nbytes(inode_item,
1430 				     fs_info->nodesize);
1431 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1432 
1433 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1434 
1435 	WARN_ON(root->log_root);
1436 	root->log_root = log_root;
1437 	root->log_transid = 0;
1438 	root->log_transid_committed = -1;
1439 	root->last_log_commit = 0;
1440 	return 0;
1441 }
1442 
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1443 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1444 					      struct btrfs_path *path,
1445 					      struct btrfs_key *key)
1446 {
1447 	struct btrfs_root *root;
1448 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1449 	u64 generation;
1450 	int ret;
1451 	int level;
1452 
1453 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1454 	if (!root)
1455 		return ERR_PTR(-ENOMEM);
1456 
1457 	ret = btrfs_find_root(tree_root, key, path,
1458 			      &root->root_item, &root->root_key);
1459 	if (ret) {
1460 		if (ret > 0)
1461 			ret = -ENOENT;
1462 		goto fail;
1463 	}
1464 
1465 	generation = btrfs_root_generation(&root->root_item);
1466 	level = btrfs_root_level(&root->root_item);
1467 	root->node = read_tree_block(fs_info,
1468 				     btrfs_root_bytenr(&root->root_item),
1469 				     key->objectid, generation, level, NULL);
1470 	if (IS_ERR(root->node)) {
1471 		ret = PTR_ERR(root->node);
1472 		root->node = NULL;
1473 		goto fail;
1474 	}
1475 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1476 		ret = -EIO;
1477 		goto fail;
1478 	}
1479 
1480 	/*
1481 	 * For real fs, and not log/reloc trees, root owner must
1482 	 * match its root node owner
1483 	 */
1484 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1485 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1486 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1487 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1488 		btrfs_crit(fs_info,
1489 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1490 			   root->root_key.objectid, root->node->start,
1491 			   btrfs_header_owner(root->node),
1492 			   root->root_key.objectid);
1493 		ret = -EUCLEAN;
1494 		goto fail;
1495 	}
1496 	root->commit_root = btrfs_root_node(root);
1497 	return root;
1498 fail:
1499 	btrfs_put_root(root);
1500 	return ERR_PTR(ret);
1501 }
1502 
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1503 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1504 					struct btrfs_key *key)
1505 {
1506 	struct btrfs_root *root;
1507 	struct btrfs_path *path;
1508 
1509 	path = btrfs_alloc_path();
1510 	if (!path)
1511 		return ERR_PTR(-ENOMEM);
1512 	root = read_tree_root_path(tree_root, path, key);
1513 	btrfs_free_path(path);
1514 
1515 	return root;
1516 }
1517 
1518 /*
1519  * Initialize subvolume root in-memory structure
1520  *
1521  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1522  */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1523 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1524 {
1525 	int ret;
1526 	unsigned int nofs_flag;
1527 
1528 	/*
1529 	 * We might be called under a transaction (e.g. indirect backref
1530 	 * resolution) which could deadlock if it triggers memory reclaim
1531 	 */
1532 	nofs_flag = memalloc_nofs_save();
1533 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1534 	memalloc_nofs_restore(nofs_flag);
1535 	if (ret)
1536 		goto fail;
1537 
1538 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1539 	    !btrfs_is_data_reloc_root(root)) {
1540 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1541 		btrfs_check_and_init_root_item(&root->root_item);
1542 	}
1543 
1544 	/*
1545 	 * Don't assign anonymous block device to roots that are not exposed to
1546 	 * userspace, the id pool is limited to 1M
1547 	 */
1548 	if (is_fstree(root->root_key.objectid) &&
1549 	    btrfs_root_refs(&root->root_item) > 0) {
1550 		if (!anon_dev) {
1551 			ret = get_anon_bdev(&root->anon_dev);
1552 			if (ret)
1553 				goto fail;
1554 		} else {
1555 			root->anon_dev = anon_dev;
1556 		}
1557 	}
1558 
1559 	mutex_lock(&root->objectid_mutex);
1560 	ret = btrfs_init_root_free_objectid(root);
1561 	if (ret) {
1562 		mutex_unlock(&root->objectid_mutex);
1563 		goto fail;
1564 	}
1565 
1566 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1567 
1568 	mutex_unlock(&root->objectid_mutex);
1569 
1570 	return 0;
1571 fail:
1572 	/* The caller is responsible to call btrfs_free_fs_root */
1573 	return ret;
1574 }
1575 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1576 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1577 					       u64 root_id)
1578 {
1579 	struct btrfs_root *root;
1580 
1581 	spin_lock(&fs_info->fs_roots_radix_lock);
1582 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1583 				 (unsigned long)root_id);
1584 	if (root)
1585 		root = btrfs_grab_root(root);
1586 	spin_unlock(&fs_info->fs_roots_radix_lock);
1587 	return root;
1588 }
1589 
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1590 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1591 						u64 objectid)
1592 {
1593 	struct btrfs_key key = {
1594 		.objectid = objectid,
1595 		.type = BTRFS_ROOT_ITEM_KEY,
1596 		.offset = 0,
1597 	};
1598 
1599 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1600 		return btrfs_grab_root(fs_info->tree_root);
1601 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1602 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1603 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1604 		return btrfs_grab_root(fs_info->chunk_root);
1605 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1606 		return btrfs_grab_root(fs_info->dev_root);
1607 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1608 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1609 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1610 		return btrfs_grab_root(fs_info->quota_root) ?
1611 			fs_info->quota_root : ERR_PTR(-ENOENT);
1612 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1613 		return btrfs_grab_root(fs_info->uuid_root) ?
1614 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1615 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1616 		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1617 
1618 		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1619 	}
1620 	return NULL;
1621 }
1622 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1623 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1624 			 struct btrfs_root *root)
1625 {
1626 	int ret;
1627 
1628 	ret = radix_tree_preload(GFP_NOFS);
1629 	if (ret)
1630 		return ret;
1631 
1632 	spin_lock(&fs_info->fs_roots_radix_lock);
1633 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1634 				(unsigned long)root->root_key.objectid,
1635 				root);
1636 	if (ret == 0) {
1637 		btrfs_grab_root(root);
1638 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1639 	}
1640 	spin_unlock(&fs_info->fs_roots_radix_lock);
1641 	radix_tree_preload_end();
1642 
1643 	return ret;
1644 }
1645 
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1646 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1647 {
1648 #ifdef CONFIG_BTRFS_DEBUG
1649 	struct btrfs_root *root;
1650 
1651 	while (!list_empty(&fs_info->allocated_roots)) {
1652 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1653 
1654 		root = list_first_entry(&fs_info->allocated_roots,
1655 					struct btrfs_root, leak_list);
1656 		btrfs_err(fs_info, "leaked root %s refcount %d",
1657 			  btrfs_root_name(&root->root_key, buf),
1658 			  refcount_read(&root->refs));
1659 		while (refcount_read(&root->refs) > 1)
1660 			btrfs_put_root(root);
1661 		btrfs_put_root(root);
1662 	}
1663 #endif
1664 }
1665 
free_global_roots(struct btrfs_fs_info * fs_info)1666 static void free_global_roots(struct btrfs_fs_info *fs_info)
1667 {
1668 	struct btrfs_root *root;
1669 	struct rb_node *node;
1670 
1671 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1672 		root = rb_entry(node, struct btrfs_root, rb_node);
1673 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1674 		btrfs_put_root(root);
1675 	}
1676 }
1677 
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1678 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1679 {
1680 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1681 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1682 	percpu_counter_destroy(&fs_info->ordered_bytes);
1683 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1684 	btrfs_free_csum_hash(fs_info);
1685 	btrfs_free_stripe_hash_table(fs_info);
1686 	btrfs_free_ref_cache(fs_info);
1687 	kfree(fs_info->balance_ctl);
1688 	kfree(fs_info->delayed_root);
1689 	free_global_roots(fs_info);
1690 	btrfs_put_root(fs_info->tree_root);
1691 	btrfs_put_root(fs_info->chunk_root);
1692 	btrfs_put_root(fs_info->dev_root);
1693 	btrfs_put_root(fs_info->quota_root);
1694 	btrfs_put_root(fs_info->uuid_root);
1695 	btrfs_put_root(fs_info->fs_root);
1696 	btrfs_put_root(fs_info->data_reloc_root);
1697 	btrfs_put_root(fs_info->block_group_root);
1698 	btrfs_check_leaked_roots(fs_info);
1699 	btrfs_extent_buffer_leak_debug_check(fs_info);
1700 	kfree(fs_info->super_copy);
1701 	kfree(fs_info->super_for_commit);
1702 	kfree(fs_info->subpage_info);
1703 	kvfree(fs_info);
1704 }
1705 
1706 
1707 /*
1708  * Get an in-memory reference of a root structure.
1709  *
1710  * For essential trees like root/extent tree, we grab it from fs_info directly.
1711  * For subvolume trees, we check the cached filesystem roots first. If not
1712  * found, then read it from disk and add it to cached fs roots.
1713  *
1714  * Caller should release the root by calling btrfs_put_root() after the usage.
1715  *
1716  * NOTE: Reloc and log trees can't be read by this function as they share the
1717  *	 same root objectid.
1718  *
1719  * @objectid:	root id
1720  * @anon_dev:	preallocated anonymous block device number for new roots,
1721  * 		pass 0 for new allocation.
1722  * @check_ref:	whether to check root item references, If true, return -ENOENT
1723  *		for orphan roots
1724  */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1725 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1726 					     u64 objectid, dev_t anon_dev,
1727 					     bool check_ref)
1728 {
1729 	struct btrfs_root *root;
1730 	struct btrfs_path *path;
1731 	struct btrfs_key key;
1732 	int ret;
1733 
1734 	root = btrfs_get_global_root(fs_info, objectid);
1735 	if (root)
1736 		return root;
1737 again:
1738 	root = btrfs_lookup_fs_root(fs_info, objectid);
1739 	if (root) {
1740 		/* Shouldn't get preallocated anon_dev for cached roots */
1741 		ASSERT(!anon_dev);
1742 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1743 			btrfs_put_root(root);
1744 			return ERR_PTR(-ENOENT);
1745 		}
1746 		return root;
1747 	}
1748 
1749 	key.objectid = objectid;
1750 	key.type = BTRFS_ROOT_ITEM_KEY;
1751 	key.offset = (u64)-1;
1752 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1753 	if (IS_ERR(root))
1754 		return root;
1755 
1756 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1757 		ret = -ENOENT;
1758 		goto fail;
1759 	}
1760 
1761 	ret = btrfs_init_fs_root(root, anon_dev);
1762 	if (ret)
1763 		goto fail;
1764 
1765 	path = btrfs_alloc_path();
1766 	if (!path) {
1767 		ret = -ENOMEM;
1768 		goto fail;
1769 	}
1770 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1771 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1772 	key.offset = objectid;
1773 
1774 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1775 	btrfs_free_path(path);
1776 	if (ret < 0)
1777 		goto fail;
1778 	if (ret == 0)
1779 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1780 
1781 	ret = btrfs_insert_fs_root(fs_info, root);
1782 	if (ret) {
1783 		if (ret == -EEXIST) {
1784 			btrfs_put_root(root);
1785 			goto again;
1786 		}
1787 		goto fail;
1788 	}
1789 	return root;
1790 fail:
1791 	/*
1792 	 * If our caller provided us an anonymous device, then it's his
1793 	 * responsability to free it in case we fail. So we have to set our
1794 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1795 	 * and once again by our caller.
1796 	 */
1797 	if (anon_dev)
1798 		root->anon_dev = 0;
1799 	btrfs_put_root(root);
1800 	return ERR_PTR(ret);
1801 }
1802 
1803 /*
1804  * Get in-memory reference of a root structure
1805  *
1806  * @objectid:	tree objectid
1807  * @check_ref:	if set, verify that the tree exists and the item has at least
1808  *		one reference
1809  */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1810 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1811 				     u64 objectid, bool check_ref)
1812 {
1813 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1814 }
1815 
1816 /*
1817  * Get in-memory reference of a root structure, created as new, optionally pass
1818  * the anonymous block device id
1819  *
1820  * @objectid:	tree objectid
1821  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1822  *		parameter value
1823  */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1824 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1825 					 u64 objectid, dev_t anon_dev)
1826 {
1827 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1828 }
1829 
1830 /*
1831  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1832  * @fs_info:	the fs_info
1833  * @objectid:	the objectid we need to lookup
1834  *
1835  * This is exclusively used for backref walking, and exists specifically because
1836  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1837  * creation time, which means we may have to read the tree_root in order to look
1838  * up a fs root that is not in memory.  If the root is not in memory we will
1839  * read the tree root commit root and look up the fs root from there.  This is a
1840  * temporary root, it will not be inserted into the radix tree as it doesn't
1841  * have the most uptodate information, it'll simply be discarded once the
1842  * backref code is finished using the root.
1843  */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1844 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1845 						 struct btrfs_path *path,
1846 						 u64 objectid)
1847 {
1848 	struct btrfs_root *root;
1849 	struct btrfs_key key;
1850 
1851 	ASSERT(path->search_commit_root && path->skip_locking);
1852 
1853 	/*
1854 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1855 	 * since this is called via the backref walking code we won't be looking
1856 	 * up a root that doesn't exist, unless there's corruption.  So if root
1857 	 * != NULL just return it.
1858 	 */
1859 	root = btrfs_get_global_root(fs_info, objectid);
1860 	if (root)
1861 		return root;
1862 
1863 	root = btrfs_lookup_fs_root(fs_info, objectid);
1864 	if (root)
1865 		return root;
1866 
1867 	key.objectid = objectid;
1868 	key.type = BTRFS_ROOT_ITEM_KEY;
1869 	key.offset = (u64)-1;
1870 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1871 	btrfs_release_path(path);
1872 
1873 	return root;
1874 }
1875 
1876 /*
1877  * called by the kthread helper functions to finally call the bio end_io
1878  * functions.  This is where read checksum verification actually happens
1879  */
end_workqueue_fn(struct btrfs_work * work)1880 static void end_workqueue_fn(struct btrfs_work *work)
1881 {
1882 	struct bio *bio;
1883 	struct btrfs_end_io_wq *end_io_wq;
1884 
1885 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1886 	bio = end_io_wq->bio;
1887 
1888 	bio->bi_status = end_io_wq->status;
1889 	bio->bi_private = end_io_wq->private;
1890 	bio->bi_end_io = end_io_wq->end_io;
1891 	bio_endio(bio);
1892 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1893 }
1894 
cleaner_kthread(void * arg)1895 static int cleaner_kthread(void *arg)
1896 {
1897 	struct btrfs_fs_info *fs_info = arg;
1898 	int again;
1899 
1900 	while (1) {
1901 		again = 0;
1902 
1903 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1904 
1905 		/* Make the cleaner go to sleep early. */
1906 		if (btrfs_need_cleaner_sleep(fs_info))
1907 			goto sleep;
1908 
1909 		/*
1910 		 * Do not do anything if we might cause open_ctree() to block
1911 		 * before we have finished mounting the filesystem.
1912 		 */
1913 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1914 			goto sleep;
1915 
1916 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1917 			goto sleep;
1918 
1919 		/*
1920 		 * Avoid the problem that we change the status of the fs
1921 		 * during the above check and trylock.
1922 		 */
1923 		if (btrfs_need_cleaner_sleep(fs_info)) {
1924 			mutex_unlock(&fs_info->cleaner_mutex);
1925 			goto sleep;
1926 		}
1927 
1928 		btrfs_run_delayed_iputs(fs_info);
1929 
1930 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1931 		mutex_unlock(&fs_info->cleaner_mutex);
1932 
1933 		/*
1934 		 * The defragger has dealt with the R/O remount and umount,
1935 		 * needn't do anything special here.
1936 		 */
1937 		btrfs_run_defrag_inodes(fs_info);
1938 
1939 		/*
1940 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1941 		 * with relocation (btrfs_relocate_chunk) and relocation
1942 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1943 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1944 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1945 		 * unused block groups.
1946 		 */
1947 		btrfs_delete_unused_bgs(fs_info);
1948 
1949 		/*
1950 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1951 		 * all unused block_groups. This possibly gives us some more free
1952 		 * space.
1953 		 */
1954 		btrfs_reclaim_bgs(fs_info);
1955 sleep:
1956 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1957 		if (kthread_should_park())
1958 			kthread_parkme();
1959 		if (kthread_should_stop())
1960 			return 0;
1961 		if (!again) {
1962 			set_current_state(TASK_INTERRUPTIBLE);
1963 			schedule();
1964 			__set_current_state(TASK_RUNNING);
1965 		}
1966 	}
1967 }
1968 
transaction_kthread(void * arg)1969 static int transaction_kthread(void *arg)
1970 {
1971 	struct btrfs_root *root = arg;
1972 	struct btrfs_fs_info *fs_info = root->fs_info;
1973 	struct btrfs_trans_handle *trans;
1974 	struct btrfs_transaction *cur;
1975 	u64 transid;
1976 	time64_t delta;
1977 	unsigned long delay;
1978 	bool cannot_commit;
1979 
1980 	do {
1981 		cannot_commit = false;
1982 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1983 		mutex_lock(&fs_info->transaction_kthread_mutex);
1984 
1985 		spin_lock(&fs_info->trans_lock);
1986 		cur = fs_info->running_transaction;
1987 		if (!cur) {
1988 			spin_unlock(&fs_info->trans_lock);
1989 			goto sleep;
1990 		}
1991 
1992 		delta = ktime_get_seconds() - cur->start_time;
1993 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1994 		    cur->state < TRANS_STATE_COMMIT_START &&
1995 		    delta < fs_info->commit_interval) {
1996 			spin_unlock(&fs_info->trans_lock);
1997 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1998 			delay = min(delay,
1999 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
2000 			goto sleep;
2001 		}
2002 		transid = cur->transid;
2003 		spin_unlock(&fs_info->trans_lock);
2004 
2005 		/* If the file system is aborted, this will always fail. */
2006 		trans = btrfs_attach_transaction(root);
2007 		if (IS_ERR(trans)) {
2008 			if (PTR_ERR(trans) != -ENOENT)
2009 				cannot_commit = true;
2010 			goto sleep;
2011 		}
2012 		if (transid == trans->transid) {
2013 			btrfs_commit_transaction(trans);
2014 		} else {
2015 			btrfs_end_transaction(trans);
2016 		}
2017 sleep:
2018 		wake_up_process(fs_info->cleaner_kthread);
2019 		mutex_unlock(&fs_info->transaction_kthread_mutex);
2020 
2021 		if (BTRFS_FS_ERROR(fs_info))
2022 			btrfs_cleanup_transaction(fs_info);
2023 		if (!kthread_should_stop() &&
2024 				(!btrfs_transaction_blocked(fs_info) ||
2025 				 cannot_commit))
2026 			schedule_timeout_interruptible(delay);
2027 	} while (!kthread_should_stop());
2028 	return 0;
2029 }
2030 
2031 /*
2032  * This will find the highest generation in the array of root backups.  The
2033  * index of the highest array is returned, or -EINVAL if we can't find
2034  * anything.
2035  *
2036  * We check to make sure the array is valid by comparing the
2037  * generation of the latest  root in the array with the generation
2038  * in the super block.  If they don't match we pitch it.
2039  */
find_newest_super_backup(struct btrfs_fs_info * info)2040 static int find_newest_super_backup(struct btrfs_fs_info *info)
2041 {
2042 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
2043 	u64 cur;
2044 	struct btrfs_root_backup *root_backup;
2045 	int i;
2046 
2047 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2048 		root_backup = info->super_copy->super_roots + i;
2049 		cur = btrfs_backup_tree_root_gen(root_backup);
2050 		if (cur == newest_gen)
2051 			return i;
2052 	}
2053 
2054 	return -EINVAL;
2055 }
2056 
2057 /*
2058  * copy all the root pointers into the super backup array.
2059  * this will bump the backup pointer by one when it is
2060  * done
2061  */
backup_super_roots(struct btrfs_fs_info * info)2062 static void backup_super_roots(struct btrfs_fs_info *info)
2063 {
2064 	const int next_backup = info->backup_root_index;
2065 	struct btrfs_root_backup *root_backup;
2066 
2067 	root_backup = info->super_for_commit->super_roots + next_backup;
2068 
2069 	/*
2070 	 * make sure all of our padding and empty slots get zero filled
2071 	 * regardless of which ones we use today
2072 	 */
2073 	memset(root_backup, 0, sizeof(*root_backup));
2074 
2075 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2076 
2077 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2078 	btrfs_set_backup_tree_root_gen(root_backup,
2079 			       btrfs_header_generation(info->tree_root->node));
2080 
2081 	btrfs_set_backup_tree_root_level(root_backup,
2082 			       btrfs_header_level(info->tree_root->node));
2083 
2084 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2085 	btrfs_set_backup_chunk_root_gen(root_backup,
2086 			       btrfs_header_generation(info->chunk_root->node));
2087 	btrfs_set_backup_chunk_root_level(root_backup,
2088 			       btrfs_header_level(info->chunk_root->node));
2089 
2090 	if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
2091 		btrfs_set_backup_block_group_root(root_backup,
2092 					info->block_group_root->node->start);
2093 		btrfs_set_backup_block_group_root_gen(root_backup,
2094 			btrfs_header_generation(info->block_group_root->node));
2095 		btrfs_set_backup_block_group_root_level(root_backup,
2096 			btrfs_header_level(info->block_group_root->node));
2097 	} else {
2098 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2099 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2100 
2101 		btrfs_set_backup_extent_root(root_backup,
2102 					     extent_root->node->start);
2103 		btrfs_set_backup_extent_root_gen(root_backup,
2104 				btrfs_header_generation(extent_root->node));
2105 		btrfs_set_backup_extent_root_level(root_backup,
2106 					btrfs_header_level(extent_root->node));
2107 
2108 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2109 		btrfs_set_backup_csum_root_gen(root_backup,
2110 					       btrfs_header_generation(csum_root->node));
2111 		btrfs_set_backup_csum_root_level(root_backup,
2112 						 btrfs_header_level(csum_root->node));
2113 	}
2114 
2115 	/*
2116 	 * we might commit during log recovery, which happens before we set
2117 	 * the fs_root.  Make sure it is valid before we fill it in.
2118 	 */
2119 	if (info->fs_root && info->fs_root->node) {
2120 		btrfs_set_backup_fs_root(root_backup,
2121 					 info->fs_root->node->start);
2122 		btrfs_set_backup_fs_root_gen(root_backup,
2123 			       btrfs_header_generation(info->fs_root->node));
2124 		btrfs_set_backup_fs_root_level(root_backup,
2125 			       btrfs_header_level(info->fs_root->node));
2126 	}
2127 
2128 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2129 	btrfs_set_backup_dev_root_gen(root_backup,
2130 			       btrfs_header_generation(info->dev_root->node));
2131 	btrfs_set_backup_dev_root_level(root_backup,
2132 				       btrfs_header_level(info->dev_root->node));
2133 
2134 	btrfs_set_backup_total_bytes(root_backup,
2135 			     btrfs_super_total_bytes(info->super_copy));
2136 	btrfs_set_backup_bytes_used(root_backup,
2137 			     btrfs_super_bytes_used(info->super_copy));
2138 	btrfs_set_backup_num_devices(root_backup,
2139 			     btrfs_super_num_devices(info->super_copy));
2140 
2141 	/*
2142 	 * if we don't copy this out to the super_copy, it won't get remembered
2143 	 * for the next commit
2144 	 */
2145 	memcpy(&info->super_copy->super_roots,
2146 	       &info->super_for_commit->super_roots,
2147 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2148 }
2149 
2150 /*
2151  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2152  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2153  *
2154  * fs_info - filesystem whose backup roots need to be read
2155  * priority - priority of backup root required
2156  *
2157  * Returns backup root index on success and -EINVAL otherwise.
2158  */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)2159 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2160 {
2161 	int backup_index = find_newest_super_backup(fs_info);
2162 	struct btrfs_super_block *super = fs_info->super_copy;
2163 	struct btrfs_root_backup *root_backup;
2164 
2165 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2166 		if (priority == 0)
2167 			return backup_index;
2168 
2169 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2170 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2171 	} else {
2172 		return -EINVAL;
2173 	}
2174 
2175 	root_backup = super->super_roots + backup_index;
2176 
2177 	btrfs_set_super_generation(super,
2178 				   btrfs_backup_tree_root_gen(root_backup));
2179 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2180 	btrfs_set_super_root_level(super,
2181 				   btrfs_backup_tree_root_level(root_backup));
2182 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2183 
2184 	/*
2185 	 * Fixme: the total bytes and num_devices need to match or we should
2186 	 * need a fsck
2187 	 */
2188 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2189 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2190 
2191 	return backup_index;
2192 }
2193 
2194 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2195 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2196 {
2197 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2198 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2199 	btrfs_destroy_workqueue(fs_info->hipri_workers);
2200 	btrfs_destroy_workqueue(fs_info->workers);
2201 	btrfs_destroy_workqueue(fs_info->endio_workers);
2202 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2203 	if (fs_info->rmw_workers)
2204 		destroy_workqueue(fs_info->rmw_workers);
2205 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2206 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2207 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2208 	btrfs_destroy_workqueue(fs_info->caching_workers);
2209 	btrfs_destroy_workqueue(fs_info->flush_workers);
2210 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2211 	if (fs_info->discard_ctl.discard_workers)
2212 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2213 	/*
2214 	 * Now that all other work queues are destroyed, we can safely destroy
2215 	 * the queues used for metadata I/O, since tasks from those other work
2216 	 * queues can do metadata I/O operations.
2217 	 */
2218 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2219 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2220 }
2221 
free_root_extent_buffers(struct btrfs_root * root)2222 static void free_root_extent_buffers(struct btrfs_root *root)
2223 {
2224 	if (root) {
2225 		free_extent_buffer(root->node);
2226 		free_extent_buffer(root->commit_root);
2227 		root->node = NULL;
2228 		root->commit_root = NULL;
2229 	}
2230 }
2231 
free_global_root_pointers(struct btrfs_fs_info * fs_info)2232 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2233 {
2234 	struct btrfs_root *root, *tmp;
2235 
2236 	rbtree_postorder_for_each_entry_safe(root, tmp,
2237 					     &fs_info->global_root_tree,
2238 					     rb_node)
2239 		free_root_extent_buffers(root);
2240 }
2241 
2242 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2243 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2244 {
2245 	free_root_extent_buffers(info->tree_root);
2246 
2247 	free_global_root_pointers(info);
2248 	free_root_extent_buffers(info->dev_root);
2249 	free_root_extent_buffers(info->quota_root);
2250 	free_root_extent_buffers(info->uuid_root);
2251 	free_root_extent_buffers(info->fs_root);
2252 	free_root_extent_buffers(info->data_reloc_root);
2253 	free_root_extent_buffers(info->block_group_root);
2254 	if (free_chunk_root)
2255 		free_root_extent_buffers(info->chunk_root);
2256 }
2257 
btrfs_put_root(struct btrfs_root * root)2258 void btrfs_put_root(struct btrfs_root *root)
2259 {
2260 	if (!root)
2261 		return;
2262 
2263 	if (refcount_dec_and_test(&root->refs)) {
2264 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2265 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2266 		if (root->anon_dev)
2267 			free_anon_bdev(root->anon_dev);
2268 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2269 		free_root_extent_buffers(root);
2270 #ifdef CONFIG_BTRFS_DEBUG
2271 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2272 		list_del_init(&root->leak_list);
2273 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2274 #endif
2275 		kfree(root);
2276 	}
2277 }
2278 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2279 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2280 {
2281 	int ret;
2282 	struct btrfs_root *gang[8];
2283 	int i;
2284 
2285 	while (!list_empty(&fs_info->dead_roots)) {
2286 		gang[0] = list_entry(fs_info->dead_roots.next,
2287 				     struct btrfs_root, root_list);
2288 		list_del(&gang[0]->root_list);
2289 
2290 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2291 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2292 		btrfs_put_root(gang[0]);
2293 	}
2294 
2295 	while (1) {
2296 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2297 					     (void **)gang, 0,
2298 					     ARRAY_SIZE(gang));
2299 		if (!ret)
2300 			break;
2301 		for (i = 0; i < ret; i++)
2302 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2303 	}
2304 }
2305 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2306 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2307 {
2308 	mutex_init(&fs_info->scrub_lock);
2309 	atomic_set(&fs_info->scrubs_running, 0);
2310 	atomic_set(&fs_info->scrub_pause_req, 0);
2311 	atomic_set(&fs_info->scrubs_paused, 0);
2312 	atomic_set(&fs_info->scrub_cancel_req, 0);
2313 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2314 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2315 }
2316 
btrfs_init_balance(struct btrfs_fs_info * fs_info)2317 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2318 {
2319 	spin_lock_init(&fs_info->balance_lock);
2320 	mutex_init(&fs_info->balance_mutex);
2321 	atomic_set(&fs_info->balance_pause_req, 0);
2322 	atomic_set(&fs_info->balance_cancel_req, 0);
2323 	fs_info->balance_ctl = NULL;
2324 	init_waitqueue_head(&fs_info->balance_wait_q);
2325 	atomic_set(&fs_info->reloc_cancel_req, 0);
2326 }
2327 
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2328 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2329 {
2330 	struct inode *inode = fs_info->btree_inode;
2331 
2332 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2333 	set_nlink(inode, 1);
2334 	/*
2335 	 * we set the i_size on the btree inode to the max possible int.
2336 	 * the real end of the address space is determined by all of
2337 	 * the devices in the system
2338 	 */
2339 	inode->i_size = OFFSET_MAX;
2340 	inode->i_mapping->a_ops = &btree_aops;
2341 
2342 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2343 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2344 			    IO_TREE_BTREE_INODE_IO, inode);
2345 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2346 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2347 
2348 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2349 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2350 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2351 	btrfs_insert_inode_hash(inode);
2352 }
2353 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2354 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2355 {
2356 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2357 	init_rwsem(&fs_info->dev_replace.rwsem);
2358 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2359 }
2360 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2361 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2362 {
2363 	spin_lock_init(&fs_info->qgroup_lock);
2364 	mutex_init(&fs_info->qgroup_ioctl_lock);
2365 	fs_info->qgroup_tree = RB_ROOT;
2366 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2367 	fs_info->qgroup_seq = 1;
2368 	fs_info->qgroup_ulist = NULL;
2369 	fs_info->qgroup_rescan_running = false;
2370 	mutex_init(&fs_info->qgroup_rescan_lock);
2371 }
2372 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)2373 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2374 {
2375 	u32 max_active = fs_info->thread_pool_size;
2376 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2377 
2378 	fs_info->workers =
2379 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2380 	fs_info->hipri_workers =
2381 		btrfs_alloc_workqueue(fs_info, "worker-high",
2382 				      flags | WQ_HIGHPRI, max_active, 16);
2383 
2384 	fs_info->delalloc_workers =
2385 		btrfs_alloc_workqueue(fs_info, "delalloc",
2386 				      flags, max_active, 2);
2387 
2388 	fs_info->flush_workers =
2389 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2390 				      flags, max_active, 0);
2391 
2392 	fs_info->caching_workers =
2393 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2394 
2395 	fs_info->fixup_workers =
2396 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2397 
2398 	/*
2399 	 * endios are largely parallel and should have a very
2400 	 * low idle thresh
2401 	 */
2402 	fs_info->endio_workers =
2403 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2404 	fs_info->endio_meta_workers =
2405 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2406 				      max_active, 4);
2407 	fs_info->endio_meta_write_workers =
2408 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2409 				      max_active, 2);
2410 	fs_info->endio_raid56_workers =
2411 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2412 				      max_active, 4);
2413 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2414 	fs_info->endio_write_workers =
2415 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2416 				      max_active, 2);
2417 	fs_info->endio_freespace_worker =
2418 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2419 				      max_active, 0);
2420 	fs_info->delayed_workers =
2421 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2422 				      max_active, 0);
2423 	fs_info->qgroup_rescan_workers =
2424 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2425 	fs_info->discard_ctl.discard_workers =
2426 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2427 
2428 	if (!(fs_info->workers && fs_info->hipri_workers &&
2429 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2430 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2431 	      fs_info->endio_meta_write_workers &&
2432 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2433 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2434 	      fs_info->caching_workers && fs_info->fixup_workers &&
2435 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2436 	      fs_info->discard_ctl.discard_workers)) {
2437 		return -ENOMEM;
2438 	}
2439 
2440 	return 0;
2441 }
2442 
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2443 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2444 {
2445 	struct crypto_shash *csum_shash;
2446 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2447 
2448 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2449 
2450 	if (IS_ERR(csum_shash)) {
2451 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2452 			  csum_driver);
2453 		return PTR_ERR(csum_shash);
2454 	}
2455 
2456 	fs_info->csum_shash = csum_shash;
2457 
2458 	return 0;
2459 }
2460 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2461 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2462 			    struct btrfs_fs_devices *fs_devices)
2463 {
2464 	int ret;
2465 	struct btrfs_root *log_tree_root;
2466 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2467 	u64 bytenr = btrfs_super_log_root(disk_super);
2468 	int level = btrfs_super_log_root_level(disk_super);
2469 
2470 	if (fs_devices->rw_devices == 0) {
2471 		btrfs_warn(fs_info, "log replay required on RO media");
2472 		return -EIO;
2473 	}
2474 
2475 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2476 					 GFP_KERNEL);
2477 	if (!log_tree_root)
2478 		return -ENOMEM;
2479 
2480 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2481 					      BTRFS_TREE_LOG_OBJECTID,
2482 					      fs_info->generation + 1, level,
2483 					      NULL);
2484 	if (IS_ERR(log_tree_root->node)) {
2485 		btrfs_warn(fs_info, "failed to read log tree");
2486 		ret = PTR_ERR(log_tree_root->node);
2487 		log_tree_root->node = NULL;
2488 		btrfs_put_root(log_tree_root);
2489 		return ret;
2490 	}
2491 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2492 		btrfs_err(fs_info, "failed to read log tree");
2493 		btrfs_put_root(log_tree_root);
2494 		return -EIO;
2495 	}
2496 
2497 	/* returns with log_tree_root freed on success */
2498 	ret = btrfs_recover_log_trees(log_tree_root);
2499 	if (ret) {
2500 		btrfs_handle_fs_error(fs_info, ret,
2501 				      "Failed to recover log tree");
2502 		btrfs_put_root(log_tree_root);
2503 		return ret;
2504 	}
2505 
2506 	if (sb_rdonly(fs_info->sb)) {
2507 		ret = btrfs_commit_super(fs_info);
2508 		if (ret)
2509 			return ret;
2510 	}
2511 
2512 	return 0;
2513 }
2514 
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2515 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2516 				      struct btrfs_path *path, u64 objectid,
2517 				      const char *name)
2518 {
2519 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2520 	struct btrfs_root *root;
2521 	u64 max_global_id = 0;
2522 	int ret;
2523 	struct btrfs_key key = {
2524 		.objectid = objectid,
2525 		.type = BTRFS_ROOT_ITEM_KEY,
2526 		.offset = 0,
2527 	};
2528 	bool found = false;
2529 
2530 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2531 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2532 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2533 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2534 		return 0;
2535 	}
2536 
2537 	while (1) {
2538 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2539 		if (ret < 0)
2540 			break;
2541 
2542 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2543 			ret = btrfs_next_leaf(tree_root, path);
2544 			if (ret) {
2545 				if (ret > 0)
2546 					ret = 0;
2547 				break;
2548 			}
2549 		}
2550 		ret = 0;
2551 
2552 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2553 		if (key.objectid != objectid)
2554 			break;
2555 		btrfs_release_path(path);
2556 
2557 		/*
2558 		 * Just worry about this for extent tree, it'll be the same for
2559 		 * everybody.
2560 		 */
2561 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2562 			max_global_id = max(max_global_id, key.offset);
2563 
2564 		found = true;
2565 		root = read_tree_root_path(tree_root, path, &key);
2566 		if (IS_ERR(root)) {
2567 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2568 				ret = PTR_ERR(root);
2569 			break;
2570 		}
2571 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2572 		ret = btrfs_global_root_insert(root);
2573 		if (ret) {
2574 			btrfs_put_root(root);
2575 			break;
2576 		}
2577 		key.offset++;
2578 	}
2579 	btrfs_release_path(path);
2580 
2581 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2582 		fs_info->nr_global_roots = max_global_id + 1;
2583 
2584 	if (!found || ret) {
2585 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2586 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2587 
2588 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2589 			ret = ret ? ret : -ENOENT;
2590 		else
2591 			ret = 0;
2592 		btrfs_err(fs_info, "failed to load root %s", name);
2593 	}
2594 	return ret;
2595 }
2596 
load_global_roots(struct btrfs_root * tree_root)2597 static int load_global_roots(struct btrfs_root *tree_root)
2598 {
2599 	struct btrfs_path *path;
2600 	int ret = 0;
2601 
2602 	path = btrfs_alloc_path();
2603 	if (!path)
2604 		return -ENOMEM;
2605 
2606 	ret = load_global_roots_objectid(tree_root, path,
2607 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2608 	if (ret)
2609 		goto out;
2610 	ret = load_global_roots_objectid(tree_root, path,
2611 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2612 	if (ret)
2613 		goto out;
2614 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2615 		goto out;
2616 	ret = load_global_roots_objectid(tree_root, path,
2617 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2618 					 "free space");
2619 out:
2620 	btrfs_free_path(path);
2621 	return ret;
2622 }
2623 
btrfs_read_roots(struct btrfs_fs_info * fs_info)2624 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2625 {
2626 	struct btrfs_root *tree_root = fs_info->tree_root;
2627 	struct btrfs_root *root;
2628 	struct btrfs_key location;
2629 	int ret;
2630 
2631 	BUG_ON(!fs_info->tree_root);
2632 
2633 	ret = load_global_roots(tree_root);
2634 	if (ret)
2635 		return ret;
2636 
2637 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2638 	location.type = BTRFS_ROOT_ITEM_KEY;
2639 	location.offset = 0;
2640 
2641 	root = btrfs_read_tree_root(tree_root, &location);
2642 	if (IS_ERR(root)) {
2643 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2644 			ret = PTR_ERR(root);
2645 			goto out;
2646 		}
2647 	} else {
2648 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2649 		fs_info->dev_root = root;
2650 	}
2651 	/* Initialize fs_info for all devices in any case */
2652 	btrfs_init_devices_late(fs_info);
2653 
2654 	/*
2655 	 * This tree can share blocks with some other fs tree during relocation
2656 	 * and we need a proper setup by btrfs_get_fs_root
2657 	 */
2658 	root = btrfs_get_fs_root(tree_root->fs_info,
2659 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2660 	if (IS_ERR(root)) {
2661 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2662 			ret = PTR_ERR(root);
2663 			goto out;
2664 		}
2665 	} else {
2666 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2667 		fs_info->data_reloc_root = root;
2668 	}
2669 
2670 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2671 	root = btrfs_read_tree_root(tree_root, &location);
2672 	if (!IS_ERR(root)) {
2673 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2674 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2675 		fs_info->quota_root = root;
2676 	}
2677 
2678 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2679 	root = btrfs_read_tree_root(tree_root, &location);
2680 	if (IS_ERR(root)) {
2681 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2682 			ret = PTR_ERR(root);
2683 			if (ret != -ENOENT)
2684 				goto out;
2685 		}
2686 	} else {
2687 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2688 		fs_info->uuid_root = root;
2689 	}
2690 
2691 	return 0;
2692 out:
2693 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2694 		   location.objectid, ret);
2695 	return ret;
2696 }
2697 
2698 /*
2699  * Real super block validation
2700  * NOTE: super csum type and incompat features will not be checked here.
2701  *
2702  * @sb:		super block to check
2703  * @mirror_num:	the super block number to check its bytenr:
2704  * 		0	the primary (1st) sb
2705  * 		1, 2	2nd and 3rd backup copy
2706  * 	       -1	skip bytenr check
2707  */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2708 static int validate_super(struct btrfs_fs_info *fs_info,
2709 			    struct btrfs_super_block *sb, int mirror_num)
2710 {
2711 	u64 nodesize = btrfs_super_nodesize(sb);
2712 	u64 sectorsize = btrfs_super_sectorsize(sb);
2713 	int ret = 0;
2714 
2715 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2716 		btrfs_err(fs_info, "no valid FS found");
2717 		ret = -EINVAL;
2718 	}
2719 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2720 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2721 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2722 		ret = -EINVAL;
2723 	}
2724 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2725 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2726 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2727 		ret = -EINVAL;
2728 	}
2729 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2730 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2731 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2732 		ret = -EINVAL;
2733 	}
2734 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2735 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2736 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2737 		ret = -EINVAL;
2738 	}
2739 
2740 	/*
2741 	 * Check sectorsize and nodesize first, other check will need it.
2742 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2743 	 */
2744 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2745 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2746 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2747 		ret = -EINVAL;
2748 	}
2749 
2750 	/*
2751 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2752 	 *
2753 	 * We can support 16K sectorsize with 64K page size without problem,
2754 	 * but such sectorsize/pagesize combination doesn't make much sense.
2755 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2756 	 * beginning.
2757 	 */
2758 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2759 		btrfs_err(fs_info,
2760 			"sectorsize %llu not yet supported for page size %lu",
2761 			sectorsize, PAGE_SIZE);
2762 		ret = -EINVAL;
2763 	}
2764 
2765 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2766 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2767 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2768 		ret = -EINVAL;
2769 	}
2770 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2771 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2772 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2773 		ret = -EINVAL;
2774 	}
2775 
2776 	/* Root alignment check */
2777 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2778 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2779 			   btrfs_super_root(sb));
2780 		ret = -EINVAL;
2781 	}
2782 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2783 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2784 			   btrfs_super_chunk_root(sb));
2785 		ret = -EINVAL;
2786 	}
2787 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2788 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2789 			   btrfs_super_log_root(sb));
2790 		ret = -EINVAL;
2791 	}
2792 
2793 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2794 		   BTRFS_FSID_SIZE)) {
2795 		btrfs_err(fs_info,
2796 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2797 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2798 		ret = -EINVAL;
2799 	}
2800 
2801 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2802 	    memcmp(fs_info->fs_devices->metadata_uuid,
2803 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2804 		btrfs_err(fs_info,
2805 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2806 			fs_info->super_copy->metadata_uuid,
2807 			fs_info->fs_devices->metadata_uuid);
2808 		ret = -EINVAL;
2809 	}
2810 
2811 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2812 		   BTRFS_FSID_SIZE) != 0) {
2813 		btrfs_err(fs_info,
2814 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2815 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2816 		ret = -EINVAL;
2817 	}
2818 
2819 	/*
2820 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2821 	 * done later
2822 	 */
2823 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2824 		btrfs_err(fs_info, "bytes_used is too small %llu",
2825 			  btrfs_super_bytes_used(sb));
2826 		ret = -EINVAL;
2827 	}
2828 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2829 		btrfs_err(fs_info, "invalid stripesize %u",
2830 			  btrfs_super_stripesize(sb));
2831 		ret = -EINVAL;
2832 	}
2833 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2834 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2835 			   btrfs_super_num_devices(sb));
2836 	if (btrfs_super_num_devices(sb) == 0) {
2837 		btrfs_err(fs_info, "number of devices is 0");
2838 		ret = -EINVAL;
2839 	}
2840 
2841 	if (mirror_num >= 0 &&
2842 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2843 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2844 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2845 		ret = -EINVAL;
2846 	}
2847 
2848 	/*
2849 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2850 	 * and one chunk
2851 	 */
2852 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2853 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2854 			  btrfs_super_sys_array_size(sb),
2855 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2856 		ret = -EINVAL;
2857 	}
2858 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2859 			+ sizeof(struct btrfs_chunk)) {
2860 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2861 			  btrfs_super_sys_array_size(sb),
2862 			  sizeof(struct btrfs_disk_key)
2863 			  + sizeof(struct btrfs_chunk));
2864 		ret = -EINVAL;
2865 	}
2866 
2867 	/*
2868 	 * The generation is a global counter, we'll trust it more than the others
2869 	 * but it's still possible that it's the one that's wrong.
2870 	 */
2871 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2872 		btrfs_warn(fs_info,
2873 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2874 			btrfs_super_generation(sb),
2875 			btrfs_super_chunk_root_generation(sb));
2876 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2877 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2878 		btrfs_warn(fs_info,
2879 			"suspicious: generation < cache_generation: %llu < %llu",
2880 			btrfs_super_generation(sb),
2881 			btrfs_super_cache_generation(sb));
2882 
2883 	return ret;
2884 }
2885 
2886 /*
2887  * Validation of super block at mount time.
2888  * Some checks already done early at mount time, like csum type and incompat
2889  * flags will be skipped.
2890  */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2891 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2892 {
2893 	return validate_super(fs_info, fs_info->super_copy, 0);
2894 }
2895 
2896 /*
2897  * Validation of super block at write time.
2898  * Some checks like bytenr check will be skipped as their values will be
2899  * overwritten soon.
2900  * Extra checks like csum type and incompat flags will be done here.
2901  */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2902 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2903 				      struct btrfs_super_block *sb)
2904 {
2905 	int ret;
2906 
2907 	ret = validate_super(fs_info, sb, -1);
2908 	if (ret < 0)
2909 		goto out;
2910 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2911 		ret = -EUCLEAN;
2912 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2913 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2914 		goto out;
2915 	}
2916 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2917 		ret = -EUCLEAN;
2918 		btrfs_err(fs_info,
2919 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2920 			  btrfs_super_incompat_flags(sb),
2921 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2922 		goto out;
2923 	}
2924 out:
2925 	if (ret < 0)
2926 		btrfs_err(fs_info,
2927 		"super block corruption detected before writing it to disk");
2928 	return ret;
2929 }
2930 
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2931 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2932 {
2933 	int ret = 0;
2934 
2935 	root->node = read_tree_block(root->fs_info, bytenr,
2936 				     root->root_key.objectid, gen, level, NULL);
2937 	if (IS_ERR(root->node)) {
2938 		ret = PTR_ERR(root->node);
2939 		root->node = NULL;
2940 		return ret;
2941 	}
2942 	if (!extent_buffer_uptodate(root->node)) {
2943 		free_extent_buffer(root->node);
2944 		root->node = NULL;
2945 		return -EIO;
2946 	}
2947 
2948 	btrfs_set_root_node(&root->root_item, root->node);
2949 	root->commit_root = btrfs_root_node(root);
2950 	btrfs_set_root_refs(&root->root_item, 1);
2951 	return ret;
2952 }
2953 
load_important_roots(struct btrfs_fs_info * fs_info)2954 static int load_important_roots(struct btrfs_fs_info *fs_info)
2955 {
2956 	struct btrfs_super_block *sb = fs_info->super_copy;
2957 	u64 gen, bytenr;
2958 	int level, ret;
2959 
2960 	bytenr = btrfs_super_root(sb);
2961 	gen = btrfs_super_generation(sb);
2962 	level = btrfs_super_root_level(sb);
2963 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2964 	if (ret) {
2965 		btrfs_warn(fs_info, "couldn't read tree root");
2966 		return ret;
2967 	}
2968 
2969 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2970 		return 0;
2971 
2972 	bytenr = btrfs_super_block_group_root(sb);
2973 	gen = btrfs_super_block_group_root_generation(sb);
2974 	level = btrfs_super_block_group_root_level(sb);
2975 	ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
2976 	if (ret)
2977 		btrfs_warn(fs_info, "couldn't read block group root");
2978 	return ret;
2979 }
2980 
init_tree_roots(struct btrfs_fs_info * fs_info)2981 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2982 {
2983 	int backup_index = find_newest_super_backup(fs_info);
2984 	struct btrfs_super_block *sb = fs_info->super_copy;
2985 	struct btrfs_root *tree_root = fs_info->tree_root;
2986 	bool handle_error = false;
2987 	int ret = 0;
2988 	int i;
2989 
2990 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2991 		struct btrfs_root *root;
2992 
2993 		root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
2994 					GFP_KERNEL);
2995 		if (!root)
2996 			return -ENOMEM;
2997 		fs_info->block_group_root = root;
2998 	}
2999 
3000 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
3001 		if (handle_error) {
3002 			if (!IS_ERR(tree_root->node))
3003 				free_extent_buffer(tree_root->node);
3004 			tree_root->node = NULL;
3005 
3006 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3007 				break;
3008 
3009 			free_root_pointers(fs_info, 0);
3010 
3011 			/*
3012 			 * Don't use the log in recovery mode, it won't be
3013 			 * valid
3014 			 */
3015 			btrfs_set_super_log_root(sb, 0);
3016 
3017 			/* We can't trust the free space cache either */
3018 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3019 
3020 			ret = read_backup_root(fs_info, i);
3021 			backup_index = ret;
3022 			if (ret < 0)
3023 				return ret;
3024 		}
3025 
3026 		ret = load_important_roots(fs_info);
3027 		if (ret) {
3028 			handle_error = true;
3029 			continue;
3030 		}
3031 
3032 		/*
3033 		 * No need to hold btrfs_root::objectid_mutex since the fs
3034 		 * hasn't been fully initialised and we are the only user
3035 		 */
3036 		ret = btrfs_init_root_free_objectid(tree_root);
3037 		if (ret < 0) {
3038 			handle_error = true;
3039 			continue;
3040 		}
3041 
3042 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
3043 
3044 		ret = btrfs_read_roots(fs_info);
3045 		if (ret < 0) {
3046 			handle_error = true;
3047 			continue;
3048 		}
3049 
3050 		/* All successful */
3051 		fs_info->generation = btrfs_header_generation(tree_root->node);
3052 		fs_info->last_trans_committed = fs_info->generation;
3053 		fs_info->last_reloc_trans = 0;
3054 
3055 		/* Always begin writing backup roots after the one being used */
3056 		if (backup_index < 0) {
3057 			fs_info->backup_root_index = 0;
3058 		} else {
3059 			fs_info->backup_root_index = backup_index + 1;
3060 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3061 		}
3062 		break;
3063 	}
3064 
3065 	return ret;
3066 }
3067 
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)3068 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3069 {
3070 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3071 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
3072 	INIT_LIST_HEAD(&fs_info->trans_list);
3073 	INIT_LIST_HEAD(&fs_info->dead_roots);
3074 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
3075 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
3076 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
3077 	spin_lock_init(&fs_info->delalloc_root_lock);
3078 	spin_lock_init(&fs_info->trans_lock);
3079 	spin_lock_init(&fs_info->fs_roots_radix_lock);
3080 	spin_lock_init(&fs_info->delayed_iput_lock);
3081 	spin_lock_init(&fs_info->defrag_inodes_lock);
3082 	spin_lock_init(&fs_info->super_lock);
3083 	spin_lock_init(&fs_info->buffer_lock);
3084 	spin_lock_init(&fs_info->unused_bgs_lock);
3085 	spin_lock_init(&fs_info->treelog_bg_lock);
3086 	spin_lock_init(&fs_info->zone_active_bgs_lock);
3087 	spin_lock_init(&fs_info->relocation_bg_lock);
3088 	rwlock_init(&fs_info->tree_mod_log_lock);
3089 	rwlock_init(&fs_info->global_root_lock);
3090 	mutex_init(&fs_info->unused_bg_unpin_mutex);
3091 	mutex_init(&fs_info->reclaim_bgs_lock);
3092 	mutex_init(&fs_info->reloc_mutex);
3093 	mutex_init(&fs_info->delalloc_root_mutex);
3094 	mutex_init(&fs_info->zoned_meta_io_lock);
3095 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
3096 	seqlock_init(&fs_info->profiles_lock);
3097 
3098 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3099 	INIT_LIST_HEAD(&fs_info->space_info);
3100 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3101 	INIT_LIST_HEAD(&fs_info->unused_bgs);
3102 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3103 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3104 #ifdef CONFIG_BTRFS_DEBUG
3105 	INIT_LIST_HEAD(&fs_info->allocated_roots);
3106 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
3107 	spin_lock_init(&fs_info->eb_leak_lock);
3108 #endif
3109 	extent_map_tree_init(&fs_info->mapping_tree);
3110 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
3111 			     BTRFS_BLOCK_RSV_GLOBAL);
3112 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3113 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3114 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3115 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3116 			     BTRFS_BLOCK_RSV_DELOPS);
3117 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3118 			     BTRFS_BLOCK_RSV_DELREFS);
3119 
3120 	atomic_set(&fs_info->async_delalloc_pages, 0);
3121 	atomic_set(&fs_info->defrag_running, 0);
3122 	atomic_set(&fs_info->nr_delayed_iputs, 0);
3123 	atomic64_set(&fs_info->tree_mod_seq, 0);
3124 	fs_info->global_root_tree = RB_ROOT;
3125 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3126 	fs_info->metadata_ratio = 0;
3127 	fs_info->defrag_inodes = RB_ROOT;
3128 	atomic64_set(&fs_info->free_chunk_space, 0);
3129 	fs_info->tree_mod_log = RB_ROOT;
3130 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3131 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3132 	btrfs_init_ref_verify(fs_info);
3133 
3134 	fs_info->thread_pool_size = min_t(unsigned long,
3135 					  num_online_cpus() + 2, 8);
3136 
3137 	INIT_LIST_HEAD(&fs_info->ordered_roots);
3138 	spin_lock_init(&fs_info->ordered_root_lock);
3139 
3140 	btrfs_init_scrub(fs_info);
3141 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3142 	fs_info->check_integrity_print_mask = 0;
3143 #endif
3144 	btrfs_init_balance(fs_info);
3145 	btrfs_init_async_reclaim_work(fs_info);
3146 
3147 	rwlock_init(&fs_info->block_group_cache_lock);
3148 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3149 
3150 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3151 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3152 
3153 	mutex_init(&fs_info->ordered_operations_mutex);
3154 	mutex_init(&fs_info->tree_log_mutex);
3155 	mutex_init(&fs_info->chunk_mutex);
3156 	mutex_init(&fs_info->transaction_kthread_mutex);
3157 	mutex_init(&fs_info->cleaner_mutex);
3158 	mutex_init(&fs_info->ro_block_group_mutex);
3159 	init_rwsem(&fs_info->commit_root_sem);
3160 	init_rwsem(&fs_info->cleanup_work_sem);
3161 	init_rwsem(&fs_info->subvol_sem);
3162 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3163 
3164 	btrfs_init_dev_replace_locks(fs_info);
3165 	btrfs_init_qgroup(fs_info);
3166 	btrfs_discard_init(fs_info);
3167 
3168 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3169 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3170 
3171 	init_waitqueue_head(&fs_info->transaction_throttle);
3172 	init_waitqueue_head(&fs_info->transaction_wait);
3173 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3174 	init_waitqueue_head(&fs_info->async_submit_wait);
3175 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3176 
3177 	/* Usable values until the real ones are cached from the superblock */
3178 	fs_info->nodesize = 4096;
3179 	fs_info->sectorsize = 4096;
3180 	fs_info->sectorsize_bits = ilog2(4096);
3181 	fs_info->stripesize = 4096;
3182 
3183 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3184 
3185 	spin_lock_init(&fs_info->swapfile_pins_lock);
3186 	fs_info->swapfile_pins = RB_ROOT;
3187 
3188 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3189 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3190 }
3191 
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)3192 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3193 {
3194 	int ret;
3195 
3196 	fs_info->sb = sb;
3197 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3198 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3199 
3200 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3201 	if (ret)
3202 		return ret;
3203 
3204 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3205 	if (ret)
3206 		return ret;
3207 
3208 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3209 					(1 + ilog2(nr_cpu_ids));
3210 
3211 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3212 	if (ret)
3213 		return ret;
3214 
3215 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3216 			GFP_KERNEL);
3217 	if (ret)
3218 		return ret;
3219 
3220 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3221 					GFP_KERNEL);
3222 	if (!fs_info->delayed_root)
3223 		return -ENOMEM;
3224 	btrfs_init_delayed_root(fs_info->delayed_root);
3225 
3226 	if (sb_rdonly(sb))
3227 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3228 
3229 	return btrfs_alloc_stripe_hash_table(fs_info);
3230 }
3231 
btrfs_uuid_rescan_kthread(void * data)3232 static int btrfs_uuid_rescan_kthread(void *data)
3233 {
3234 	struct btrfs_fs_info *fs_info = data;
3235 	int ret;
3236 
3237 	/*
3238 	 * 1st step is to iterate through the existing UUID tree and
3239 	 * to delete all entries that contain outdated data.
3240 	 * 2nd step is to add all missing entries to the UUID tree.
3241 	 */
3242 	ret = btrfs_uuid_tree_iterate(fs_info);
3243 	if (ret < 0) {
3244 		if (ret != -EINTR)
3245 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3246 				   ret);
3247 		up(&fs_info->uuid_tree_rescan_sem);
3248 		return ret;
3249 	}
3250 	return btrfs_uuid_scan_kthread(data);
3251 }
3252 
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)3253 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3254 {
3255 	struct task_struct *task;
3256 
3257 	down(&fs_info->uuid_tree_rescan_sem);
3258 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3259 	if (IS_ERR(task)) {
3260 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3261 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3262 		up(&fs_info->uuid_tree_rescan_sem);
3263 		return PTR_ERR(task);
3264 	}
3265 
3266 	return 0;
3267 }
3268 
3269 /*
3270  * Some options only have meaning at mount time and shouldn't persist across
3271  * remounts, or be displayed. Clear these at the end of mount and remount
3272  * code paths.
3273  */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)3274 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3275 {
3276 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3277 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3278 }
3279 
3280 /*
3281  * Mounting logic specific to read-write file systems. Shared by open_ctree
3282  * and btrfs_remount when remounting from read-only to read-write.
3283  */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3284 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3285 {
3286 	int ret;
3287 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3288 	bool clear_free_space_tree = false;
3289 
3290 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3291 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3292 		clear_free_space_tree = true;
3293 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3294 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3295 		btrfs_warn(fs_info, "free space tree is invalid");
3296 		clear_free_space_tree = true;
3297 	}
3298 
3299 	if (clear_free_space_tree) {
3300 		btrfs_info(fs_info, "clearing free space tree");
3301 		ret = btrfs_clear_free_space_tree(fs_info);
3302 		if (ret) {
3303 			btrfs_warn(fs_info,
3304 				   "failed to clear free space tree: %d", ret);
3305 			goto out;
3306 		}
3307 	}
3308 
3309 	/*
3310 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3311 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3312 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3313 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3314 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3315 	 * item before the root's tree is deleted - this means that if we unmount
3316 	 * or crash before the deletion completes, on the next mount we will not
3317 	 * delete what remains of the tree because the orphan item does not
3318 	 * exists anymore, which is what tells us we have a pending deletion.
3319 	 */
3320 	ret = btrfs_find_orphan_roots(fs_info);
3321 	if (ret)
3322 		goto out;
3323 
3324 	ret = btrfs_cleanup_fs_roots(fs_info);
3325 	if (ret)
3326 		goto out;
3327 
3328 	down_read(&fs_info->cleanup_work_sem);
3329 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3330 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3331 		up_read(&fs_info->cleanup_work_sem);
3332 		goto out;
3333 	}
3334 	up_read(&fs_info->cleanup_work_sem);
3335 
3336 	mutex_lock(&fs_info->cleaner_mutex);
3337 	ret = btrfs_recover_relocation(fs_info);
3338 	mutex_unlock(&fs_info->cleaner_mutex);
3339 	if (ret < 0) {
3340 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3341 		goto out;
3342 	}
3343 
3344 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3345 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3346 		btrfs_info(fs_info, "creating free space tree");
3347 		ret = btrfs_create_free_space_tree(fs_info);
3348 		if (ret) {
3349 			btrfs_warn(fs_info,
3350 				"failed to create free space tree: %d", ret);
3351 			goto out;
3352 		}
3353 	}
3354 
3355 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3356 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3357 		if (ret)
3358 			goto out;
3359 	}
3360 
3361 	ret = btrfs_resume_balance_async(fs_info);
3362 	if (ret)
3363 		goto out;
3364 
3365 	ret = btrfs_resume_dev_replace_async(fs_info);
3366 	if (ret) {
3367 		btrfs_warn(fs_info, "failed to resume dev_replace");
3368 		goto out;
3369 	}
3370 
3371 	btrfs_qgroup_rescan_resume(fs_info);
3372 
3373 	if (!fs_info->uuid_root) {
3374 		btrfs_info(fs_info, "creating UUID tree");
3375 		ret = btrfs_create_uuid_tree(fs_info);
3376 		if (ret) {
3377 			btrfs_warn(fs_info,
3378 				   "failed to create the UUID tree %d", ret);
3379 			goto out;
3380 		}
3381 	}
3382 
3383 out:
3384 	return ret;
3385 }
3386 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)3387 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3388 		      char *options)
3389 {
3390 	u32 sectorsize;
3391 	u32 nodesize;
3392 	u32 stripesize;
3393 	u64 generation;
3394 	u64 features;
3395 	u16 csum_type;
3396 	struct btrfs_super_block *disk_super;
3397 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3398 	struct btrfs_root *tree_root;
3399 	struct btrfs_root *chunk_root;
3400 	int ret;
3401 	int err = -EINVAL;
3402 	int level;
3403 
3404 	ret = init_mount_fs_info(fs_info, sb);
3405 	if (ret) {
3406 		err = ret;
3407 		goto fail;
3408 	}
3409 
3410 	/* These need to be init'ed before we start creating inodes and such. */
3411 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3412 				     GFP_KERNEL);
3413 	fs_info->tree_root = tree_root;
3414 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3415 				      GFP_KERNEL);
3416 	fs_info->chunk_root = chunk_root;
3417 	if (!tree_root || !chunk_root) {
3418 		err = -ENOMEM;
3419 		goto fail;
3420 	}
3421 
3422 	fs_info->btree_inode = new_inode(sb);
3423 	if (!fs_info->btree_inode) {
3424 		err = -ENOMEM;
3425 		goto fail;
3426 	}
3427 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3428 	btrfs_init_btree_inode(fs_info);
3429 
3430 	invalidate_bdev(fs_devices->latest_dev->bdev);
3431 
3432 	/*
3433 	 * Read super block and check the signature bytes only
3434 	 */
3435 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3436 	if (IS_ERR(disk_super)) {
3437 		err = PTR_ERR(disk_super);
3438 		goto fail_alloc;
3439 	}
3440 
3441 	/*
3442 	 * Verify the type first, if that or the checksum value are
3443 	 * corrupted, we'll find out
3444 	 */
3445 	csum_type = btrfs_super_csum_type(disk_super);
3446 	if (!btrfs_supported_super_csum(csum_type)) {
3447 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3448 			  csum_type);
3449 		err = -EINVAL;
3450 		btrfs_release_disk_super(disk_super);
3451 		goto fail_alloc;
3452 	}
3453 
3454 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3455 
3456 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3457 	if (ret) {
3458 		err = ret;
3459 		btrfs_release_disk_super(disk_super);
3460 		goto fail_alloc;
3461 	}
3462 
3463 	/*
3464 	 * We want to check superblock checksum, the type is stored inside.
3465 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3466 	 */
3467 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3468 		btrfs_err(fs_info, "superblock checksum mismatch");
3469 		err = -EINVAL;
3470 		btrfs_release_disk_super(disk_super);
3471 		goto fail_alloc;
3472 	}
3473 
3474 	/*
3475 	 * super_copy is zeroed at allocation time and we never touch the
3476 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3477 	 * the whole block of INFO_SIZE
3478 	 */
3479 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3480 	btrfs_release_disk_super(disk_super);
3481 
3482 	disk_super = fs_info->super_copy;
3483 
3484 
3485 	features = btrfs_super_flags(disk_super);
3486 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3487 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3488 		btrfs_set_super_flags(disk_super, features);
3489 		btrfs_info(fs_info,
3490 			"found metadata UUID change in progress flag, clearing");
3491 	}
3492 
3493 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3494 	       sizeof(*fs_info->super_for_commit));
3495 
3496 	ret = btrfs_validate_mount_super(fs_info);
3497 	if (ret) {
3498 		btrfs_err(fs_info, "superblock contains fatal errors");
3499 		err = -EINVAL;
3500 		goto fail_alloc;
3501 	}
3502 
3503 	if (!btrfs_super_root(disk_super))
3504 		goto fail_alloc;
3505 
3506 	/* check FS state, whether FS is broken. */
3507 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3508 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3509 
3510 	/*
3511 	 * In the long term, we'll store the compression type in the super
3512 	 * block, and it'll be used for per file compression control.
3513 	 */
3514 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3515 
3516 
3517 	/* Set up fs_info before parsing mount options */
3518 	nodesize = btrfs_super_nodesize(disk_super);
3519 	sectorsize = btrfs_super_sectorsize(disk_super);
3520 	stripesize = sectorsize;
3521 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3522 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3523 
3524 	fs_info->nodesize = nodesize;
3525 	fs_info->sectorsize = sectorsize;
3526 	fs_info->sectorsize_bits = ilog2(sectorsize);
3527 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3528 	fs_info->stripesize = stripesize;
3529 
3530 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3531 	if (ret) {
3532 		err = ret;
3533 		goto fail_alloc;
3534 	}
3535 
3536 	features = btrfs_super_incompat_flags(disk_super) &
3537 		~BTRFS_FEATURE_INCOMPAT_SUPP;
3538 	if (features) {
3539 		btrfs_err(fs_info,
3540 		    "cannot mount because of unsupported optional features (0x%llx)",
3541 		    features);
3542 		err = -EINVAL;
3543 		goto fail_alloc;
3544 	}
3545 
3546 	features = btrfs_super_incompat_flags(disk_super);
3547 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3548 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3549 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3550 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3551 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3552 
3553 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3554 		btrfs_info(fs_info, "has skinny extents");
3555 
3556 	/*
3557 	 * Flag our filesystem as having big metadata blocks if they are bigger
3558 	 * than the page size.
3559 	 */
3560 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3561 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3562 			btrfs_info(fs_info,
3563 				"flagging fs with big metadata feature");
3564 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3565 	}
3566 
3567 	/*
3568 	 * mixed block groups end up with duplicate but slightly offset
3569 	 * extent buffers for the same range.  It leads to corruptions
3570 	 */
3571 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3572 	    (sectorsize != nodesize)) {
3573 		btrfs_err(fs_info,
3574 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3575 			nodesize, sectorsize);
3576 		goto fail_alloc;
3577 	}
3578 
3579 	/*
3580 	 * Needn't use the lock because there is no other task which will
3581 	 * update the flag.
3582 	 */
3583 	btrfs_set_super_incompat_flags(disk_super, features);
3584 
3585 	features = btrfs_super_compat_ro_flags(disk_super) &
3586 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3587 	if (!sb_rdonly(sb) && features) {
3588 		btrfs_err(fs_info,
3589 	"cannot mount read-write because of unsupported optional features (0x%llx)",
3590 		       features);
3591 		err = -EINVAL;
3592 		goto fail_alloc;
3593 	}
3594 	/*
3595 	 * We have unsupported RO compat features, although RO mounted, we
3596 	 * should not cause any metadata write, including log replay.
3597 	 * Or we could screw up whatever the new feature requires.
3598 	 */
3599 	if (unlikely(features && btrfs_super_log_root(disk_super) &&
3600 		     !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3601 		btrfs_err(fs_info,
3602 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3603 			  features);
3604 		err = -EINVAL;
3605 		goto fail_alloc;
3606 	}
3607 
3608 
3609 	if (sectorsize < PAGE_SIZE) {
3610 		struct btrfs_subpage_info *subpage_info;
3611 
3612 		/*
3613 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3614 		 * going to be deprecated.
3615 		 *
3616 		 * Force to use v2 cache for subpage case.
3617 		 */
3618 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3619 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3620 			"forcing free space tree for sector size %u with page size %lu",
3621 			sectorsize, PAGE_SIZE);
3622 
3623 		btrfs_warn(fs_info,
3624 		"read-write for sector size %u with page size %lu is experimental",
3625 			   sectorsize, PAGE_SIZE);
3626 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3627 		if (!subpage_info)
3628 			goto fail_alloc;
3629 		btrfs_init_subpage_info(subpage_info, sectorsize);
3630 		fs_info->subpage_info = subpage_info;
3631 	}
3632 
3633 	ret = btrfs_init_workqueues(fs_info);
3634 	if (ret) {
3635 		err = ret;
3636 		goto fail_sb_buffer;
3637 	}
3638 
3639 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3640 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3641 
3642 	sb->s_blocksize = sectorsize;
3643 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3644 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3645 
3646 	mutex_lock(&fs_info->chunk_mutex);
3647 	ret = btrfs_read_sys_array(fs_info);
3648 	mutex_unlock(&fs_info->chunk_mutex);
3649 	if (ret) {
3650 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3651 		goto fail_sb_buffer;
3652 	}
3653 
3654 	generation = btrfs_super_chunk_root_generation(disk_super);
3655 	level = btrfs_super_chunk_root_level(disk_super);
3656 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3657 			      generation, level);
3658 	if (ret) {
3659 		btrfs_err(fs_info, "failed to read chunk root");
3660 		goto fail_tree_roots;
3661 	}
3662 
3663 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3664 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3665 			   BTRFS_UUID_SIZE);
3666 
3667 	ret = btrfs_read_chunk_tree(fs_info);
3668 	if (ret) {
3669 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3670 		goto fail_tree_roots;
3671 	}
3672 
3673 	/*
3674 	 * At this point we know all the devices that make this filesystem,
3675 	 * including the seed devices but we don't know yet if the replace
3676 	 * target is required. So free devices that are not part of this
3677 	 * filesystem but skip the replace target device which is checked
3678 	 * below in btrfs_init_dev_replace().
3679 	 */
3680 	btrfs_free_extra_devids(fs_devices);
3681 	if (!fs_devices->latest_dev->bdev) {
3682 		btrfs_err(fs_info, "failed to read devices");
3683 		goto fail_tree_roots;
3684 	}
3685 
3686 	ret = init_tree_roots(fs_info);
3687 	if (ret)
3688 		goto fail_tree_roots;
3689 
3690 	/*
3691 	 * Get zone type information of zoned block devices. This will also
3692 	 * handle emulation of a zoned filesystem if a regular device has the
3693 	 * zoned incompat feature flag set.
3694 	 */
3695 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3696 	if (ret) {
3697 		btrfs_err(fs_info,
3698 			  "zoned: failed to read device zone info: %d",
3699 			  ret);
3700 		goto fail_block_groups;
3701 	}
3702 
3703 	/*
3704 	 * If we have a uuid root and we're not being told to rescan we need to
3705 	 * check the generation here so we can set the
3706 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3707 	 * transaction during a balance or the log replay without updating the
3708 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3709 	 * even though it was perfectly fine.
3710 	 */
3711 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3712 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3713 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3714 
3715 	ret = btrfs_verify_dev_extents(fs_info);
3716 	if (ret) {
3717 		btrfs_err(fs_info,
3718 			  "failed to verify dev extents against chunks: %d",
3719 			  ret);
3720 		goto fail_block_groups;
3721 	}
3722 	ret = btrfs_recover_balance(fs_info);
3723 	if (ret) {
3724 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3725 		goto fail_block_groups;
3726 	}
3727 
3728 	ret = btrfs_init_dev_stats(fs_info);
3729 	if (ret) {
3730 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3731 		goto fail_block_groups;
3732 	}
3733 
3734 	ret = btrfs_init_dev_replace(fs_info);
3735 	if (ret) {
3736 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3737 		goto fail_block_groups;
3738 	}
3739 
3740 	ret = btrfs_check_zoned_mode(fs_info);
3741 	if (ret) {
3742 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3743 			  ret);
3744 		goto fail_block_groups;
3745 	}
3746 
3747 	ret = btrfs_sysfs_add_fsid(fs_devices);
3748 	if (ret) {
3749 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3750 				ret);
3751 		goto fail_block_groups;
3752 	}
3753 
3754 	ret = btrfs_sysfs_add_mounted(fs_info);
3755 	if (ret) {
3756 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3757 		goto fail_fsdev_sysfs;
3758 	}
3759 
3760 	ret = btrfs_init_space_info(fs_info);
3761 	if (ret) {
3762 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3763 		goto fail_sysfs;
3764 	}
3765 
3766 	ret = btrfs_read_block_groups(fs_info);
3767 	if (ret) {
3768 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3769 		goto fail_sysfs;
3770 	}
3771 
3772 	btrfs_free_zone_cache(fs_info);
3773 
3774 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3775 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3776 		btrfs_warn(fs_info,
3777 		"writable mount is not allowed due to too many missing devices");
3778 		goto fail_sysfs;
3779 	}
3780 
3781 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3782 					       "btrfs-cleaner");
3783 	if (IS_ERR(fs_info->cleaner_kthread))
3784 		goto fail_sysfs;
3785 
3786 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3787 						   tree_root,
3788 						   "btrfs-transaction");
3789 	if (IS_ERR(fs_info->transaction_kthread))
3790 		goto fail_cleaner;
3791 
3792 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3793 	    !fs_info->fs_devices->rotating) {
3794 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3795 	}
3796 
3797 	/*
3798 	 * Mount does not set all options immediately, we can do it now and do
3799 	 * not have to wait for transaction commit
3800 	 */
3801 	btrfs_apply_pending_changes(fs_info);
3802 
3803 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3804 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3805 		ret = btrfsic_mount(fs_info, fs_devices,
3806 				    btrfs_test_opt(fs_info,
3807 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3808 				    fs_info->check_integrity_print_mask);
3809 		if (ret)
3810 			btrfs_warn(fs_info,
3811 				"failed to initialize integrity check module: %d",
3812 				ret);
3813 	}
3814 #endif
3815 	ret = btrfs_read_qgroup_config(fs_info);
3816 	if (ret)
3817 		goto fail_trans_kthread;
3818 
3819 	if (btrfs_build_ref_tree(fs_info))
3820 		btrfs_err(fs_info, "couldn't build ref tree");
3821 
3822 	/* do not make disk changes in broken FS or nologreplay is given */
3823 	if (btrfs_super_log_root(disk_super) != 0 &&
3824 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3825 		btrfs_info(fs_info, "start tree-log replay");
3826 		ret = btrfs_replay_log(fs_info, fs_devices);
3827 		if (ret) {
3828 			err = ret;
3829 			goto fail_qgroup;
3830 		}
3831 	}
3832 
3833 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3834 	if (IS_ERR(fs_info->fs_root)) {
3835 		err = PTR_ERR(fs_info->fs_root);
3836 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3837 		fs_info->fs_root = NULL;
3838 		goto fail_qgroup;
3839 	}
3840 
3841 	if (sb_rdonly(sb))
3842 		goto clear_oneshot;
3843 
3844 	ret = btrfs_start_pre_rw_mount(fs_info);
3845 	if (ret) {
3846 		close_ctree(fs_info);
3847 		return ret;
3848 	}
3849 	btrfs_discard_resume(fs_info);
3850 
3851 	if (fs_info->uuid_root &&
3852 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3853 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3854 		btrfs_info(fs_info, "checking UUID tree");
3855 		ret = btrfs_check_uuid_tree(fs_info);
3856 		if (ret) {
3857 			btrfs_warn(fs_info,
3858 				"failed to check the UUID tree: %d", ret);
3859 			close_ctree(fs_info);
3860 			return ret;
3861 		}
3862 	}
3863 
3864 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3865 
3866 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3867 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3868 		wake_up_process(fs_info->cleaner_kthread);
3869 
3870 clear_oneshot:
3871 	btrfs_clear_oneshot_options(fs_info);
3872 	return 0;
3873 
3874 fail_qgroup:
3875 	btrfs_free_qgroup_config(fs_info);
3876 fail_trans_kthread:
3877 	kthread_stop(fs_info->transaction_kthread);
3878 	btrfs_cleanup_transaction(fs_info);
3879 	btrfs_free_fs_roots(fs_info);
3880 fail_cleaner:
3881 	kthread_stop(fs_info->cleaner_kthread);
3882 
3883 	/*
3884 	 * make sure we're done with the btree inode before we stop our
3885 	 * kthreads
3886 	 */
3887 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3888 
3889 fail_sysfs:
3890 	btrfs_sysfs_remove_mounted(fs_info);
3891 
3892 fail_fsdev_sysfs:
3893 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3894 
3895 fail_block_groups:
3896 	btrfs_put_block_group_cache(fs_info);
3897 
3898 fail_tree_roots:
3899 	if (fs_info->data_reloc_root)
3900 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3901 	free_root_pointers(fs_info, true);
3902 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3903 
3904 fail_sb_buffer:
3905 	btrfs_stop_all_workers(fs_info);
3906 	btrfs_free_block_groups(fs_info);
3907 fail_alloc:
3908 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3909 
3910 	iput(fs_info->btree_inode);
3911 fail:
3912 	btrfs_close_devices(fs_info->fs_devices);
3913 	return err;
3914 }
3915 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3916 
btrfs_end_super_write(struct bio * bio)3917 static void btrfs_end_super_write(struct bio *bio)
3918 {
3919 	struct btrfs_device *device = bio->bi_private;
3920 	struct bio_vec *bvec;
3921 	struct bvec_iter_all iter_all;
3922 	struct page *page;
3923 
3924 	bio_for_each_segment_all(bvec, bio, iter_all) {
3925 		page = bvec->bv_page;
3926 
3927 		if (bio->bi_status) {
3928 			btrfs_warn_rl_in_rcu(device->fs_info,
3929 				"lost page write due to IO error on %s (%d)",
3930 				rcu_str_deref(device->name),
3931 				blk_status_to_errno(bio->bi_status));
3932 			ClearPageUptodate(page);
3933 			SetPageError(page);
3934 			btrfs_dev_stat_inc_and_print(device,
3935 						     BTRFS_DEV_STAT_WRITE_ERRS);
3936 		} else {
3937 			SetPageUptodate(page);
3938 		}
3939 
3940 		put_page(page);
3941 		unlock_page(page);
3942 	}
3943 
3944 	bio_put(bio);
3945 }
3946 
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num)3947 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3948 						   int copy_num)
3949 {
3950 	struct btrfs_super_block *super;
3951 	struct page *page;
3952 	u64 bytenr, bytenr_orig;
3953 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3954 	int ret;
3955 
3956 	bytenr_orig = btrfs_sb_offset(copy_num);
3957 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3958 	if (ret == -ENOENT)
3959 		return ERR_PTR(-EINVAL);
3960 	else if (ret)
3961 		return ERR_PTR(ret);
3962 
3963 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3964 		return ERR_PTR(-EINVAL);
3965 
3966 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3967 	if (IS_ERR(page))
3968 		return ERR_CAST(page);
3969 
3970 	super = page_address(page);
3971 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3972 		btrfs_release_disk_super(super);
3973 		return ERR_PTR(-ENODATA);
3974 	}
3975 
3976 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3977 		btrfs_release_disk_super(super);
3978 		return ERR_PTR(-EINVAL);
3979 	}
3980 
3981 	return super;
3982 }
3983 
3984 
btrfs_read_dev_super(struct block_device * bdev)3985 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3986 {
3987 	struct btrfs_super_block *super, *latest = NULL;
3988 	int i;
3989 	u64 transid = 0;
3990 
3991 	/* we would like to check all the supers, but that would make
3992 	 * a btrfs mount succeed after a mkfs from a different FS.
3993 	 * So, we need to add a special mount option to scan for
3994 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3995 	 */
3996 	for (i = 0; i < 1; i++) {
3997 		super = btrfs_read_dev_one_super(bdev, i);
3998 		if (IS_ERR(super))
3999 			continue;
4000 
4001 		if (!latest || btrfs_super_generation(super) > transid) {
4002 			if (latest)
4003 				btrfs_release_disk_super(super);
4004 
4005 			latest = super;
4006 			transid = btrfs_super_generation(super);
4007 		}
4008 	}
4009 
4010 	return super;
4011 }
4012 
4013 /*
4014  * Write superblock @sb to the @device. Do not wait for completion, all the
4015  * pages we use for writing are locked.
4016  *
4017  * Write @max_mirrors copies of the superblock, where 0 means default that fit
4018  * the expected device size at commit time. Note that max_mirrors must be
4019  * same for write and wait phases.
4020  *
4021  * Return number of errors when page is not found or submission fails.
4022  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)4023 static int write_dev_supers(struct btrfs_device *device,
4024 			    struct btrfs_super_block *sb, int max_mirrors)
4025 {
4026 	struct btrfs_fs_info *fs_info = device->fs_info;
4027 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4028 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
4029 	int i;
4030 	int errors = 0;
4031 	int ret;
4032 	u64 bytenr, bytenr_orig;
4033 
4034 	if (max_mirrors == 0)
4035 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4036 
4037 	shash->tfm = fs_info->csum_shash;
4038 
4039 	for (i = 0; i < max_mirrors; i++) {
4040 		struct page *page;
4041 		struct bio *bio;
4042 		struct btrfs_super_block *disk_super;
4043 
4044 		bytenr_orig = btrfs_sb_offset(i);
4045 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4046 		if (ret == -ENOENT) {
4047 			continue;
4048 		} else if (ret < 0) {
4049 			btrfs_err(device->fs_info,
4050 				"couldn't get super block location for mirror %d",
4051 				i);
4052 			errors++;
4053 			continue;
4054 		}
4055 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4056 		    device->commit_total_bytes)
4057 			break;
4058 
4059 		btrfs_set_super_bytenr(sb, bytenr_orig);
4060 
4061 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4062 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4063 				    sb->csum);
4064 
4065 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4066 					   GFP_NOFS);
4067 		if (!page) {
4068 			btrfs_err(device->fs_info,
4069 			    "couldn't get super block page for bytenr %llu",
4070 			    bytenr);
4071 			errors++;
4072 			continue;
4073 		}
4074 
4075 		/* Bump the refcount for wait_dev_supers() */
4076 		get_page(page);
4077 
4078 		disk_super = page_address(page);
4079 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4080 
4081 		/*
4082 		 * Directly use bios here instead of relying on the page cache
4083 		 * to do I/O, so we don't lose the ability to do integrity
4084 		 * checking.
4085 		 */
4086 		bio = bio_alloc(device->bdev, 1,
4087 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4088 				GFP_NOFS);
4089 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4090 		bio->bi_private = device;
4091 		bio->bi_end_io = btrfs_end_super_write;
4092 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4093 			       offset_in_page(bytenr));
4094 
4095 		/*
4096 		 * We FUA only the first super block.  The others we allow to
4097 		 * go down lazy and there's a short window where the on-disk
4098 		 * copies might still contain the older version.
4099 		 */
4100 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4101 			bio->bi_opf |= REQ_FUA;
4102 
4103 		btrfsic_check_bio(bio);
4104 		submit_bio(bio);
4105 
4106 		if (btrfs_advance_sb_log(device, i))
4107 			errors++;
4108 	}
4109 	return errors < i ? 0 : -1;
4110 }
4111 
4112 /*
4113  * Wait for write completion of superblocks done by write_dev_supers,
4114  * @max_mirrors same for write and wait phases.
4115  *
4116  * Return number of errors when page is not found or not marked up to
4117  * date.
4118  */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)4119 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4120 {
4121 	int i;
4122 	int errors = 0;
4123 	bool primary_failed = false;
4124 	int ret;
4125 	u64 bytenr;
4126 
4127 	if (max_mirrors == 0)
4128 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4129 
4130 	for (i = 0; i < max_mirrors; i++) {
4131 		struct page *page;
4132 
4133 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4134 		if (ret == -ENOENT) {
4135 			break;
4136 		} else if (ret < 0) {
4137 			errors++;
4138 			if (i == 0)
4139 				primary_failed = true;
4140 			continue;
4141 		}
4142 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4143 		    device->commit_total_bytes)
4144 			break;
4145 
4146 		page = find_get_page(device->bdev->bd_inode->i_mapping,
4147 				     bytenr >> PAGE_SHIFT);
4148 		if (!page) {
4149 			errors++;
4150 			if (i == 0)
4151 				primary_failed = true;
4152 			continue;
4153 		}
4154 		/* Page is submitted locked and unlocked once the IO completes */
4155 		wait_on_page_locked(page);
4156 		if (PageError(page)) {
4157 			errors++;
4158 			if (i == 0)
4159 				primary_failed = true;
4160 		}
4161 
4162 		/* Drop our reference */
4163 		put_page(page);
4164 
4165 		/* Drop the reference from the writing run */
4166 		put_page(page);
4167 	}
4168 
4169 	/* log error, force error return */
4170 	if (primary_failed) {
4171 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4172 			  device->devid);
4173 		return -1;
4174 	}
4175 
4176 	return errors < i ? 0 : -1;
4177 }
4178 
4179 /*
4180  * endio for the write_dev_flush, this will wake anyone waiting
4181  * for the barrier when it is done
4182  */
btrfs_end_empty_barrier(struct bio * bio)4183 static void btrfs_end_empty_barrier(struct bio *bio)
4184 {
4185 	bio_uninit(bio);
4186 	complete(bio->bi_private);
4187 }
4188 
4189 /*
4190  * Submit a flush request to the device if it supports it. Error handling is
4191  * done in the waiting counterpart.
4192  */
write_dev_flush(struct btrfs_device * device)4193 static void write_dev_flush(struct btrfs_device *device)
4194 {
4195 	struct bio *bio = &device->flush_bio;
4196 
4197 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4198 	/*
4199 	 * When a disk has write caching disabled, we skip submission of a bio
4200 	 * with flush and sync requests before writing the superblock, since
4201 	 * it's not needed. However when the integrity checker is enabled, this
4202 	 * results in reports that there are metadata blocks referred by a
4203 	 * superblock that were not properly flushed. So don't skip the bio
4204 	 * submission only when the integrity checker is enabled for the sake
4205 	 * of simplicity, since this is a debug tool and not meant for use in
4206 	 * non-debug builds.
4207 	 */
4208 	if (!bdev_write_cache(device->bdev))
4209 		return;
4210 #endif
4211 
4212 	bio_init(bio, device->bdev, NULL, 0,
4213 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4214 	bio->bi_end_io = btrfs_end_empty_barrier;
4215 	init_completion(&device->flush_wait);
4216 	bio->bi_private = &device->flush_wait;
4217 
4218 	btrfsic_check_bio(bio);
4219 	submit_bio(bio);
4220 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4221 }
4222 
4223 /*
4224  * If the flush bio has been submitted by write_dev_flush, wait for it.
4225  */
wait_dev_flush(struct btrfs_device * device)4226 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4227 {
4228 	struct bio *bio = &device->flush_bio;
4229 
4230 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4231 		return BLK_STS_OK;
4232 
4233 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4234 	wait_for_completion_io(&device->flush_wait);
4235 
4236 	return bio->bi_status;
4237 }
4238 
check_barrier_error(struct btrfs_fs_info * fs_info)4239 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4240 {
4241 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4242 		return -EIO;
4243 	return 0;
4244 }
4245 
4246 /*
4247  * send an empty flush down to each device in parallel,
4248  * then wait for them
4249  */
barrier_all_devices(struct btrfs_fs_info * info)4250 static int barrier_all_devices(struct btrfs_fs_info *info)
4251 {
4252 	struct list_head *head;
4253 	struct btrfs_device *dev;
4254 	int errors_wait = 0;
4255 	blk_status_t ret;
4256 
4257 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4258 	/* send down all the barriers */
4259 	head = &info->fs_devices->devices;
4260 	list_for_each_entry(dev, head, dev_list) {
4261 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4262 			continue;
4263 		if (!dev->bdev)
4264 			continue;
4265 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4266 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4267 			continue;
4268 
4269 		write_dev_flush(dev);
4270 		dev->last_flush_error = BLK_STS_OK;
4271 	}
4272 
4273 	/* wait for all the barriers */
4274 	list_for_each_entry(dev, head, dev_list) {
4275 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4276 			continue;
4277 		if (!dev->bdev) {
4278 			errors_wait++;
4279 			continue;
4280 		}
4281 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4282 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4283 			continue;
4284 
4285 		ret = wait_dev_flush(dev);
4286 		if (ret) {
4287 			dev->last_flush_error = ret;
4288 			btrfs_dev_stat_inc_and_print(dev,
4289 					BTRFS_DEV_STAT_FLUSH_ERRS);
4290 			errors_wait++;
4291 		}
4292 	}
4293 
4294 	if (errors_wait) {
4295 		/*
4296 		 * At some point we need the status of all disks
4297 		 * to arrive at the volume status. So error checking
4298 		 * is being pushed to a separate loop.
4299 		 */
4300 		return check_barrier_error(info);
4301 	}
4302 	return 0;
4303 }
4304 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)4305 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4306 {
4307 	int raid_type;
4308 	int min_tolerated = INT_MAX;
4309 
4310 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4311 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4312 		min_tolerated = min_t(int, min_tolerated,
4313 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4314 				    tolerated_failures);
4315 
4316 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4317 		if (raid_type == BTRFS_RAID_SINGLE)
4318 			continue;
4319 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4320 			continue;
4321 		min_tolerated = min_t(int, min_tolerated,
4322 				    btrfs_raid_array[raid_type].
4323 				    tolerated_failures);
4324 	}
4325 
4326 	if (min_tolerated == INT_MAX) {
4327 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4328 		min_tolerated = 0;
4329 	}
4330 
4331 	return min_tolerated;
4332 }
4333 
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4334 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4335 {
4336 	struct list_head *head;
4337 	struct btrfs_device *dev;
4338 	struct btrfs_super_block *sb;
4339 	struct btrfs_dev_item *dev_item;
4340 	int ret;
4341 	int do_barriers;
4342 	int max_errors;
4343 	int total_errors = 0;
4344 	u64 flags;
4345 
4346 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4347 
4348 	/*
4349 	 * max_mirrors == 0 indicates we're from commit_transaction,
4350 	 * not from fsync where the tree roots in fs_info have not
4351 	 * been consistent on disk.
4352 	 */
4353 	if (max_mirrors == 0)
4354 		backup_super_roots(fs_info);
4355 
4356 	sb = fs_info->super_for_commit;
4357 	dev_item = &sb->dev_item;
4358 
4359 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4360 	head = &fs_info->fs_devices->devices;
4361 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4362 
4363 	if (do_barriers) {
4364 		ret = barrier_all_devices(fs_info);
4365 		if (ret) {
4366 			mutex_unlock(
4367 				&fs_info->fs_devices->device_list_mutex);
4368 			btrfs_handle_fs_error(fs_info, ret,
4369 					      "errors while submitting device barriers.");
4370 			return ret;
4371 		}
4372 	}
4373 
4374 	list_for_each_entry(dev, head, dev_list) {
4375 		if (!dev->bdev) {
4376 			total_errors++;
4377 			continue;
4378 		}
4379 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4380 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4381 			continue;
4382 
4383 		btrfs_set_stack_device_generation(dev_item, 0);
4384 		btrfs_set_stack_device_type(dev_item, dev->type);
4385 		btrfs_set_stack_device_id(dev_item, dev->devid);
4386 		btrfs_set_stack_device_total_bytes(dev_item,
4387 						   dev->commit_total_bytes);
4388 		btrfs_set_stack_device_bytes_used(dev_item,
4389 						  dev->commit_bytes_used);
4390 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4391 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4392 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4393 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4394 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4395 		       BTRFS_FSID_SIZE);
4396 
4397 		flags = btrfs_super_flags(sb);
4398 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4399 
4400 		ret = btrfs_validate_write_super(fs_info, sb);
4401 		if (ret < 0) {
4402 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4403 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4404 				"unexpected superblock corruption detected");
4405 			return -EUCLEAN;
4406 		}
4407 
4408 		ret = write_dev_supers(dev, sb, max_mirrors);
4409 		if (ret)
4410 			total_errors++;
4411 	}
4412 	if (total_errors > max_errors) {
4413 		btrfs_err(fs_info, "%d errors while writing supers",
4414 			  total_errors);
4415 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4416 
4417 		/* FUA is masked off if unsupported and can't be the reason */
4418 		btrfs_handle_fs_error(fs_info, -EIO,
4419 				      "%d errors while writing supers",
4420 				      total_errors);
4421 		return -EIO;
4422 	}
4423 
4424 	total_errors = 0;
4425 	list_for_each_entry(dev, head, dev_list) {
4426 		if (!dev->bdev)
4427 			continue;
4428 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4429 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4430 			continue;
4431 
4432 		ret = wait_dev_supers(dev, max_mirrors);
4433 		if (ret)
4434 			total_errors++;
4435 	}
4436 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4437 	if (total_errors > max_errors) {
4438 		btrfs_handle_fs_error(fs_info, -EIO,
4439 				      "%d errors while writing supers",
4440 				      total_errors);
4441 		return -EIO;
4442 	}
4443 	return 0;
4444 }
4445 
4446 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4447 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4448 				  struct btrfs_root *root)
4449 {
4450 	bool drop_ref = false;
4451 
4452 	spin_lock(&fs_info->fs_roots_radix_lock);
4453 	radix_tree_delete(&fs_info->fs_roots_radix,
4454 			  (unsigned long)root->root_key.objectid);
4455 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4456 		drop_ref = true;
4457 	spin_unlock(&fs_info->fs_roots_radix_lock);
4458 
4459 	if (BTRFS_FS_ERROR(fs_info)) {
4460 		ASSERT(root->log_root == NULL);
4461 		if (root->reloc_root) {
4462 			btrfs_put_root(root->reloc_root);
4463 			root->reloc_root = NULL;
4464 		}
4465 	}
4466 
4467 	if (drop_ref)
4468 		btrfs_put_root(root);
4469 }
4470 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)4471 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4472 {
4473 	u64 root_objectid = 0;
4474 	struct btrfs_root *gang[8];
4475 	int i = 0;
4476 	int err = 0;
4477 	unsigned int ret = 0;
4478 
4479 	while (1) {
4480 		spin_lock(&fs_info->fs_roots_radix_lock);
4481 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4482 					     (void **)gang, root_objectid,
4483 					     ARRAY_SIZE(gang));
4484 		if (!ret) {
4485 			spin_unlock(&fs_info->fs_roots_radix_lock);
4486 			break;
4487 		}
4488 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4489 
4490 		for (i = 0; i < ret; i++) {
4491 			/* Avoid to grab roots in dead_roots */
4492 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4493 				gang[i] = NULL;
4494 				continue;
4495 			}
4496 			/* grab all the search result for later use */
4497 			gang[i] = btrfs_grab_root(gang[i]);
4498 		}
4499 		spin_unlock(&fs_info->fs_roots_radix_lock);
4500 
4501 		for (i = 0; i < ret; i++) {
4502 			if (!gang[i])
4503 				continue;
4504 			root_objectid = gang[i]->root_key.objectid;
4505 			err = btrfs_orphan_cleanup(gang[i]);
4506 			if (err)
4507 				break;
4508 			btrfs_put_root(gang[i]);
4509 		}
4510 		root_objectid++;
4511 	}
4512 
4513 	/* release the uncleaned roots due to error */
4514 	for (; i < ret; i++) {
4515 		if (gang[i])
4516 			btrfs_put_root(gang[i]);
4517 	}
4518 	return err;
4519 }
4520 
btrfs_commit_super(struct btrfs_fs_info * fs_info)4521 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4522 {
4523 	struct btrfs_root *root = fs_info->tree_root;
4524 	struct btrfs_trans_handle *trans;
4525 
4526 	mutex_lock(&fs_info->cleaner_mutex);
4527 	btrfs_run_delayed_iputs(fs_info);
4528 	mutex_unlock(&fs_info->cleaner_mutex);
4529 	wake_up_process(fs_info->cleaner_kthread);
4530 
4531 	/* wait until ongoing cleanup work done */
4532 	down_write(&fs_info->cleanup_work_sem);
4533 	up_write(&fs_info->cleanup_work_sem);
4534 
4535 	trans = btrfs_join_transaction(root);
4536 	if (IS_ERR(trans))
4537 		return PTR_ERR(trans);
4538 	return btrfs_commit_transaction(trans);
4539 }
4540 
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4541 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4542 {
4543 	struct btrfs_transaction *trans;
4544 	struct btrfs_transaction *tmp;
4545 	bool found = false;
4546 
4547 	if (list_empty(&fs_info->trans_list))
4548 		return;
4549 
4550 	/*
4551 	 * This function is only called at the very end of close_ctree(),
4552 	 * thus no other running transaction, no need to take trans_lock.
4553 	 */
4554 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4555 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4556 		struct extent_state *cached = NULL;
4557 		u64 dirty_bytes = 0;
4558 		u64 cur = 0;
4559 		u64 found_start;
4560 		u64 found_end;
4561 
4562 		found = true;
4563 		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4564 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4565 			dirty_bytes += found_end + 1 - found_start;
4566 			cur = found_end + 1;
4567 		}
4568 		btrfs_warn(fs_info,
4569 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4570 			   trans->transid, dirty_bytes);
4571 		btrfs_cleanup_one_transaction(trans, fs_info);
4572 
4573 		if (trans == fs_info->running_transaction)
4574 			fs_info->running_transaction = NULL;
4575 		list_del_init(&trans->list);
4576 
4577 		btrfs_put_transaction(trans);
4578 		trace_btrfs_transaction_commit(fs_info);
4579 	}
4580 	ASSERT(!found);
4581 }
4582 
close_ctree(struct btrfs_fs_info * fs_info)4583 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4584 {
4585 	int ret;
4586 
4587 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4588 
4589 	/*
4590 	 * We may have the reclaim task running and relocating a data block group,
4591 	 * in which case it may create delayed iputs. So stop it before we park
4592 	 * the cleaner kthread otherwise we can get new delayed iputs after
4593 	 * parking the cleaner, and that can make the async reclaim task to hang
4594 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4595 	 * parked and can not run delayed iputs - this will make us hang when
4596 	 * trying to stop the async reclaim task.
4597 	 */
4598 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4599 	/*
4600 	 * We don't want the cleaner to start new transactions, add more delayed
4601 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4602 	 * because that frees the task_struct, and the transaction kthread might
4603 	 * still try to wake up the cleaner.
4604 	 */
4605 	kthread_park(fs_info->cleaner_kthread);
4606 
4607 	/*
4608 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4609 	 * clear that bit and wake up relocation so it can stop.
4610 	 */
4611 	btrfs_wake_unfinished_drop(fs_info);
4612 
4613 	/* wait for the qgroup rescan worker to stop */
4614 	btrfs_qgroup_wait_for_completion(fs_info, false);
4615 
4616 	/* wait for the uuid_scan task to finish */
4617 	down(&fs_info->uuid_tree_rescan_sem);
4618 	/* avoid complains from lockdep et al., set sem back to initial state */
4619 	up(&fs_info->uuid_tree_rescan_sem);
4620 
4621 	/* pause restriper - we want to resume on mount */
4622 	btrfs_pause_balance(fs_info);
4623 
4624 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4625 
4626 	btrfs_scrub_cancel(fs_info);
4627 
4628 	/* wait for any defraggers to finish */
4629 	wait_event(fs_info->transaction_wait,
4630 		   (atomic_read(&fs_info->defrag_running) == 0));
4631 
4632 	/* clear out the rbtree of defraggable inodes */
4633 	btrfs_cleanup_defrag_inodes(fs_info);
4634 
4635 	cancel_work_sync(&fs_info->async_reclaim_work);
4636 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4637 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4638 
4639 	/* Cancel or finish ongoing discard work */
4640 	btrfs_discard_cleanup(fs_info);
4641 
4642 	if (!sb_rdonly(fs_info->sb)) {
4643 		/*
4644 		 * The cleaner kthread is stopped, so do one final pass over
4645 		 * unused block groups.
4646 		 */
4647 		btrfs_delete_unused_bgs(fs_info);
4648 
4649 		/*
4650 		 * There might be existing delayed inode workers still running
4651 		 * and holding an empty delayed inode item. We must wait for
4652 		 * them to complete first because they can create a transaction.
4653 		 * This happens when someone calls btrfs_balance_delayed_items()
4654 		 * and then a transaction commit runs the same delayed nodes
4655 		 * before any delayed worker has done something with the nodes.
4656 		 * We must wait for any worker here and not at transaction
4657 		 * commit time since that could cause a deadlock.
4658 		 * This is a very rare case.
4659 		 */
4660 		btrfs_flush_workqueue(fs_info->delayed_workers);
4661 
4662 		ret = btrfs_commit_super(fs_info);
4663 		if (ret)
4664 			btrfs_err(fs_info, "commit super ret %d", ret);
4665 	}
4666 
4667 	if (BTRFS_FS_ERROR(fs_info))
4668 		btrfs_error_commit_super(fs_info);
4669 
4670 	kthread_stop(fs_info->transaction_kthread);
4671 	kthread_stop(fs_info->cleaner_kthread);
4672 
4673 	ASSERT(list_empty(&fs_info->delayed_iputs));
4674 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4675 
4676 	if (btrfs_check_quota_leak(fs_info)) {
4677 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4678 		btrfs_err(fs_info, "qgroup reserved space leaked");
4679 	}
4680 
4681 	btrfs_free_qgroup_config(fs_info);
4682 	ASSERT(list_empty(&fs_info->delalloc_roots));
4683 
4684 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4685 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4686 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4687 	}
4688 
4689 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4690 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4691 			   percpu_counter_sum(&fs_info->ordered_bytes));
4692 
4693 	btrfs_sysfs_remove_mounted(fs_info);
4694 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4695 
4696 	btrfs_put_block_group_cache(fs_info);
4697 
4698 	/*
4699 	 * we must make sure there is not any read request to
4700 	 * submit after we stopping all workers.
4701 	 */
4702 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4703 	btrfs_stop_all_workers(fs_info);
4704 
4705 	/* We shouldn't have any transaction open at this point */
4706 	warn_about_uncommitted_trans(fs_info);
4707 
4708 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4709 	free_root_pointers(fs_info, true);
4710 	btrfs_free_fs_roots(fs_info);
4711 
4712 	/*
4713 	 * We must free the block groups after dropping the fs_roots as we could
4714 	 * have had an IO error and have left over tree log blocks that aren't
4715 	 * cleaned up until the fs roots are freed.  This makes the block group
4716 	 * accounting appear to be wrong because there's pending reserved bytes,
4717 	 * so make sure we do the block group cleanup afterwards.
4718 	 */
4719 	btrfs_free_block_groups(fs_info);
4720 
4721 	iput(fs_info->btree_inode);
4722 
4723 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4724 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4725 		btrfsic_unmount(fs_info->fs_devices);
4726 #endif
4727 
4728 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4729 	btrfs_close_devices(fs_info->fs_devices);
4730 }
4731 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4732 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4733 			  int atomic)
4734 {
4735 	int ret;
4736 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4737 
4738 	ret = extent_buffer_uptodate(buf);
4739 	if (!ret)
4740 		return ret;
4741 
4742 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4743 				    parent_transid, atomic);
4744 	if (ret == -EAGAIN)
4745 		return ret;
4746 	return !ret;
4747 }
4748 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4749 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4750 {
4751 	struct btrfs_fs_info *fs_info = buf->fs_info;
4752 	u64 transid = btrfs_header_generation(buf);
4753 	int was_dirty;
4754 
4755 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4756 	/*
4757 	 * This is a fast path so only do this check if we have sanity tests
4758 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4759 	 * outside of the sanity tests.
4760 	 */
4761 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4762 		return;
4763 #endif
4764 	btrfs_assert_tree_write_locked(buf);
4765 	if (transid != fs_info->generation)
4766 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4767 			buf->start, transid, fs_info->generation);
4768 	was_dirty = set_extent_buffer_dirty(buf);
4769 	if (!was_dirty)
4770 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4771 					 buf->len,
4772 					 fs_info->dirty_metadata_batch);
4773 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4774 	/*
4775 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4776 	 * but item data not updated.
4777 	 * So here we should only check item pointers, not item data.
4778 	 */
4779 	if (btrfs_header_level(buf) == 0 &&
4780 	    btrfs_check_leaf_relaxed(buf)) {
4781 		btrfs_print_leaf(buf);
4782 		ASSERT(0);
4783 	}
4784 #endif
4785 }
4786 
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4787 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4788 					int flush_delayed)
4789 {
4790 	/*
4791 	 * looks as though older kernels can get into trouble with
4792 	 * this code, they end up stuck in balance_dirty_pages forever
4793 	 */
4794 	int ret;
4795 
4796 	if (current->flags & PF_MEMALLOC)
4797 		return;
4798 
4799 	if (flush_delayed)
4800 		btrfs_balance_delayed_items(fs_info);
4801 
4802 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4803 				     BTRFS_DIRTY_METADATA_THRESH,
4804 				     fs_info->dirty_metadata_batch);
4805 	if (ret > 0) {
4806 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4807 	}
4808 }
4809 
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4810 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4811 {
4812 	__btrfs_btree_balance_dirty(fs_info, 1);
4813 }
4814 
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4815 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4816 {
4817 	__btrfs_btree_balance_dirty(fs_info, 0);
4818 }
4819 
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4820 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4821 {
4822 	/* cleanup FS via transaction */
4823 	btrfs_cleanup_transaction(fs_info);
4824 
4825 	mutex_lock(&fs_info->cleaner_mutex);
4826 	btrfs_run_delayed_iputs(fs_info);
4827 	mutex_unlock(&fs_info->cleaner_mutex);
4828 
4829 	down_write(&fs_info->cleanup_work_sem);
4830 	up_write(&fs_info->cleanup_work_sem);
4831 }
4832 
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4833 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4834 {
4835 	struct btrfs_root *gang[8];
4836 	u64 root_objectid = 0;
4837 	int ret;
4838 
4839 	spin_lock(&fs_info->fs_roots_radix_lock);
4840 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4841 					     (void **)gang, root_objectid,
4842 					     ARRAY_SIZE(gang))) != 0) {
4843 		int i;
4844 
4845 		for (i = 0; i < ret; i++)
4846 			gang[i] = btrfs_grab_root(gang[i]);
4847 		spin_unlock(&fs_info->fs_roots_radix_lock);
4848 
4849 		for (i = 0; i < ret; i++) {
4850 			if (!gang[i])
4851 				continue;
4852 			root_objectid = gang[i]->root_key.objectid;
4853 			btrfs_free_log(NULL, gang[i]);
4854 			btrfs_put_root(gang[i]);
4855 		}
4856 		root_objectid++;
4857 		spin_lock(&fs_info->fs_roots_radix_lock);
4858 	}
4859 	spin_unlock(&fs_info->fs_roots_radix_lock);
4860 	btrfs_free_log_root_tree(NULL, fs_info);
4861 }
4862 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4863 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4864 {
4865 	struct btrfs_ordered_extent *ordered;
4866 
4867 	spin_lock(&root->ordered_extent_lock);
4868 	/*
4869 	 * This will just short circuit the ordered completion stuff which will
4870 	 * make sure the ordered extent gets properly cleaned up.
4871 	 */
4872 	list_for_each_entry(ordered, &root->ordered_extents,
4873 			    root_extent_list)
4874 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4875 	spin_unlock(&root->ordered_extent_lock);
4876 }
4877 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4878 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4879 {
4880 	struct btrfs_root *root;
4881 	struct list_head splice;
4882 
4883 	INIT_LIST_HEAD(&splice);
4884 
4885 	spin_lock(&fs_info->ordered_root_lock);
4886 	list_splice_init(&fs_info->ordered_roots, &splice);
4887 	while (!list_empty(&splice)) {
4888 		root = list_first_entry(&splice, struct btrfs_root,
4889 					ordered_root);
4890 		list_move_tail(&root->ordered_root,
4891 			       &fs_info->ordered_roots);
4892 
4893 		spin_unlock(&fs_info->ordered_root_lock);
4894 		btrfs_destroy_ordered_extents(root);
4895 
4896 		cond_resched();
4897 		spin_lock(&fs_info->ordered_root_lock);
4898 	}
4899 	spin_unlock(&fs_info->ordered_root_lock);
4900 
4901 	/*
4902 	 * We need this here because if we've been flipped read-only we won't
4903 	 * get sync() from the umount, so we need to make sure any ordered
4904 	 * extents that haven't had their dirty pages IO start writeout yet
4905 	 * actually get run and error out properly.
4906 	 */
4907 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4908 }
4909 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4910 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4911 				      struct btrfs_fs_info *fs_info)
4912 {
4913 	struct rb_node *node;
4914 	struct btrfs_delayed_ref_root *delayed_refs;
4915 	struct btrfs_delayed_ref_node *ref;
4916 	int ret = 0;
4917 
4918 	delayed_refs = &trans->delayed_refs;
4919 
4920 	spin_lock(&delayed_refs->lock);
4921 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4922 		spin_unlock(&delayed_refs->lock);
4923 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4924 		return ret;
4925 	}
4926 
4927 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4928 		struct btrfs_delayed_ref_head *head;
4929 		struct rb_node *n;
4930 		bool pin_bytes = false;
4931 
4932 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4933 				href_node);
4934 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4935 			continue;
4936 
4937 		spin_lock(&head->lock);
4938 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4939 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4940 				       ref_node);
4941 			ref->in_tree = 0;
4942 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4943 			RB_CLEAR_NODE(&ref->ref_node);
4944 			if (!list_empty(&ref->add_list))
4945 				list_del(&ref->add_list);
4946 			atomic_dec(&delayed_refs->num_entries);
4947 			btrfs_put_delayed_ref(ref);
4948 		}
4949 		if (head->must_insert_reserved)
4950 			pin_bytes = true;
4951 		btrfs_free_delayed_extent_op(head->extent_op);
4952 		btrfs_delete_ref_head(delayed_refs, head);
4953 		spin_unlock(&head->lock);
4954 		spin_unlock(&delayed_refs->lock);
4955 		mutex_unlock(&head->mutex);
4956 
4957 		if (pin_bytes) {
4958 			struct btrfs_block_group *cache;
4959 
4960 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4961 			BUG_ON(!cache);
4962 
4963 			spin_lock(&cache->space_info->lock);
4964 			spin_lock(&cache->lock);
4965 			cache->pinned += head->num_bytes;
4966 			btrfs_space_info_update_bytes_pinned(fs_info,
4967 				cache->space_info, head->num_bytes);
4968 			cache->reserved -= head->num_bytes;
4969 			cache->space_info->bytes_reserved -= head->num_bytes;
4970 			spin_unlock(&cache->lock);
4971 			spin_unlock(&cache->space_info->lock);
4972 
4973 			btrfs_put_block_group(cache);
4974 
4975 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4976 				head->bytenr + head->num_bytes - 1);
4977 		}
4978 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4979 		btrfs_put_delayed_ref_head(head);
4980 		cond_resched();
4981 		spin_lock(&delayed_refs->lock);
4982 	}
4983 	btrfs_qgroup_destroy_extent_records(trans);
4984 
4985 	spin_unlock(&delayed_refs->lock);
4986 
4987 	return ret;
4988 }
4989 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4990 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4991 {
4992 	struct btrfs_inode *btrfs_inode;
4993 	struct list_head splice;
4994 
4995 	INIT_LIST_HEAD(&splice);
4996 
4997 	spin_lock(&root->delalloc_lock);
4998 	list_splice_init(&root->delalloc_inodes, &splice);
4999 
5000 	while (!list_empty(&splice)) {
5001 		struct inode *inode = NULL;
5002 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5003 					       delalloc_inodes);
5004 		__btrfs_del_delalloc_inode(root, btrfs_inode);
5005 		spin_unlock(&root->delalloc_lock);
5006 
5007 		/*
5008 		 * Make sure we get a live inode and that it'll not disappear
5009 		 * meanwhile.
5010 		 */
5011 		inode = igrab(&btrfs_inode->vfs_inode);
5012 		if (inode) {
5013 			invalidate_inode_pages2(inode->i_mapping);
5014 			iput(inode);
5015 		}
5016 		spin_lock(&root->delalloc_lock);
5017 	}
5018 	spin_unlock(&root->delalloc_lock);
5019 }
5020 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)5021 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5022 {
5023 	struct btrfs_root *root;
5024 	struct list_head splice;
5025 
5026 	INIT_LIST_HEAD(&splice);
5027 
5028 	spin_lock(&fs_info->delalloc_root_lock);
5029 	list_splice_init(&fs_info->delalloc_roots, &splice);
5030 	while (!list_empty(&splice)) {
5031 		root = list_first_entry(&splice, struct btrfs_root,
5032 					 delalloc_root);
5033 		root = btrfs_grab_root(root);
5034 		BUG_ON(!root);
5035 		spin_unlock(&fs_info->delalloc_root_lock);
5036 
5037 		btrfs_destroy_delalloc_inodes(root);
5038 		btrfs_put_root(root);
5039 
5040 		spin_lock(&fs_info->delalloc_root_lock);
5041 	}
5042 	spin_unlock(&fs_info->delalloc_root_lock);
5043 }
5044 
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)5045 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5046 					struct extent_io_tree *dirty_pages,
5047 					int mark)
5048 {
5049 	int ret;
5050 	struct extent_buffer *eb;
5051 	u64 start = 0;
5052 	u64 end;
5053 
5054 	while (1) {
5055 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5056 					    mark, NULL);
5057 		if (ret)
5058 			break;
5059 
5060 		clear_extent_bits(dirty_pages, start, end, mark);
5061 		while (start <= end) {
5062 			eb = find_extent_buffer(fs_info, start);
5063 			start += fs_info->nodesize;
5064 			if (!eb)
5065 				continue;
5066 			wait_on_extent_buffer_writeback(eb);
5067 
5068 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5069 					       &eb->bflags))
5070 				clear_extent_buffer_dirty(eb);
5071 			free_extent_buffer_stale(eb);
5072 		}
5073 	}
5074 
5075 	return ret;
5076 }
5077 
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)5078 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5079 				       struct extent_io_tree *unpin)
5080 {
5081 	u64 start;
5082 	u64 end;
5083 	int ret;
5084 
5085 	while (1) {
5086 		struct extent_state *cached_state = NULL;
5087 
5088 		/*
5089 		 * The btrfs_finish_extent_commit() may get the same range as
5090 		 * ours between find_first_extent_bit and clear_extent_dirty.
5091 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5092 		 * the same extent range.
5093 		 */
5094 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5095 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5096 					    EXTENT_DIRTY, &cached_state);
5097 		if (ret) {
5098 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5099 			break;
5100 		}
5101 
5102 		clear_extent_dirty(unpin, start, end, &cached_state);
5103 		free_extent_state(cached_state);
5104 		btrfs_error_unpin_extent_range(fs_info, start, end);
5105 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5106 		cond_resched();
5107 	}
5108 
5109 	return 0;
5110 }
5111 
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)5112 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5113 {
5114 	struct inode *inode;
5115 
5116 	inode = cache->io_ctl.inode;
5117 	if (inode) {
5118 		invalidate_inode_pages2(inode->i_mapping);
5119 		BTRFS_I(inode)->generation = 0;
5120 		cache->io_ctl.inode = NULL;
5121 		iput(inode);
5122 	}
5123 	ASSERT(cache->io_ctl.pages == NULL);
5124 	btrfs_put_block_group(cache);
5125 }
5126 
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)5127 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5128 			     struct btrfs_fs_info *fs_info)
5129 {
5130 	struct btrfs_block_group *cache;
5131 
5132 	spin_lock(&cur_trans->dirty_bgs_lock);
5133 	while (!list_empty(&cur_trans->dirty_bgs)) {
5134 		cache = list_first_entry(&cur_trans->dirty_bgs,
5135 					 struct btrfs_block_group,
5136 					 dirty_list);
5137 
5138 		if (!list_empty(&cache->io_list)) {
5139 			spin_unlock(&cur_trans->dirty_bgs_lock);
5140 			list_del_init(&cache->io_list);
5141 			btrfs_cleanup_bg_io(cache);
5142 			spin_lock(&cur_trans->dirty_bgs_lock);
5143 		}
5144 
5145 		list_del_init(&cache->dirty_list);
5146 		spin_lock(&cache->lock);
5147 		cache->disk_cache_state = BTRFS_DC_ERROR;
5148 		spin_unlock(&cache->lock);
5149 
5150 		spin_unlock(&cur_trans->dirty_bgs_lock);
5151 		btrfs_put_block_group(cache);
5152 		btrfs_delayed_refs_rsv_release(fs_info, 1);
5153 		spin_lock(&cur_trans->dirty_bgs_lock);
5154 	}
5155 	spin_unlock(&cur_trans->dirty_bgs_lock);
5156 
5157 	/*
5158 	 * Refer to the definition of io_bgs member for details why it's safe
5159 	 * to use it without any locking
5160 	 */
5161 	while (!list_empty(&cur_trans->io_bgs)) {
5162 		cache = list_first_entry(&cur_trans->io_bgs,
5163 					 struct btrfs_block_group,
5164 					 io_list);
5165 
5166 		list_del_init(&cache->io_list);
5167 		spin_lock(&cache->lock);
5168 		cache->disk_cache_state = BTRFS_DC_ERROR;
5169 		spin_unlock(&cache->lock);
5170 		btrfs_cleanup_bg_io(cache);
5171 	}
5172 }
5173 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)5174 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5175 				   struct btrfs_fs_info *fs_info)
5176 {
5177 	struct btrfs_device *dev, *tmp;
5178 
5179 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5180 	ASSERT(list_empty(&cur_trans->dirty_bgs));
5181 	ASSERT(list_empty(&cur_trans->io_bgs));
5182 
5183 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5184 				 post_commit_list) {
5185 		list_del_init(&dev->post_commit_list);
5186 	}
5187 
5188 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5189 
5190 	cur_trans->state = TRANS_STATE_COMMIT_START;
5191 	wake_up(&fs_info->transaction_blocked_wait);
5192 
5193 	cur_trans->state = TRANS_STATE_UNBLOCKED;
5194 	wake_up(&fs_info->transaction_wait);
5195 
5196 	btrfs_destroy_delayed_inodes(fs_info);
5197 
5198 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5199 				     EXTENT_DIRTY);
5200 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5201 
5202 	btrfs_free_redirty_list(cur_trans);
5203 
5204 	cur_trans->state =TRANS_STATE_COMPLETED;
5205 	wake_up(&cur_trans->commit_wait);
5206 }
5207 
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)5208 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5209 {
5210 	struct btrfs_transaction *t;
5211 
5212 	mutex_lock(&fs_info->transaction_kthread_mutex);
5213 
5214 	spin_lock(&fs_info->trans_lock);
5215 	while (!list_empty(&fs_info->trans_list)) {
5216 		t = list_first_entry(&fs_info->trans_list,
5217 				     struct btrfs_transaction, list);
5218 		if (t->state >= TRANS_STATE_COMMIT_START) {
5219 			refcount_inc(&t->use_count);
5220 			spin_unlock(&fs_info->trans_lock);
5221 			btrfs_wait_for_commit(fs_info, t->transid);
5222 			btrfs_put_transaction(t);
5223 			spin_lock(&fs_info->trans_lock);
5224 			continue;
5225 		}
5226 		if (t == fs_info->running_transaction) {
5227 			t->state = TRANS_STATE_COMMIT_DOING;
5228 			spin_unlock(&fs_info->trans_lock);
5229 			/*
5230 			 * We wait for 0 num_writers since we don't hold a trans
5231 			 * handle open currently for this transaction.
5232 			 */
5233 			wait_event(t->writer_wait,
5234 				   atomic_read(&t->num_writers) == 0);
5235 		} else {
5236 			spin_unlock(&fs_info->trans_lock);
5237 		}
5238 		btrfs_cleanup_one_transaction(t, fs_info);
5239 
5240 		spin_lock(&fs_info->trans_lock);
5241 		if (t == fs_info->running_transaction)
5242 			fs_info->running_transaction = NULL;
5243 		list_del_init(&t->list);
5244 		spin_unlock(&fs_info->trans_lock);
5245 
5246 		btrfs_put_transaction(t);
5247 		trace_btrfs_transaction_commit(fs_info);
5248 		spin_lock(&fs_info->trans_lock);
5249 	}
5250 	spin_unlock(&fs_info->trans_lock);
5251 	btrfs_destroy_all_ordered_extents(fs_info);
5252 	btrfs_destroy_delayed_inodes(fs_info);
5253 	btrfs_assert_delayed_root_empty(fs_info);
5254 	btrfs_destroy_all_delalloc_inodes(fs_info);
5255 	btrfs_drop_all_logs(fs_info);
5256 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5257 
5258 	return 0;
5259 }
5260 
btrfs_init_root_free_objectid(struct btrfs_root * root)5261 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5262 {
5263 	struct btrfs_path *path;
5264 	int ret;
5265 	struct extent_buffer *l;
5266 	struct btrfs_key search_key;
5267 	struct btrfs_key found_key;
5268 	int slot;
5269 
5270 	path = btrfs_alloc_path();
5271 	if (!path)
5272 		return -ENOMEM;
5273 
5274 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5275 	search_key.type = -1;
5276 	search_key.offset = (u64)-1;
5277 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5278 	if (ret < 0)
5279 		goto error;
5280 	BUG_ON(ret == 0); /* Corruption */
5281 	if (path->slots[0] > 0) {
5282 		slot = path->slots[0] - 1;
5283 		l = path->nodes[0];
5284 		btrfs_item_key_to_cpu(l, &found_key, slot);
5285 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5286 					    BTRFS_FIRST_FREE_OBJECTID);
5287 	} else {
5288 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5289 	}
5290 	ret = 0;
5291 error:
5292 	btrfs_free_path(path);
5293 	return ret;
5294 }
5295 
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)5296 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5297 {
5298 	int ret;
5299 	mutex_lock(&root->objectid_mutex);
5300 
5301 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5302 		btrfs_warn(root->fs_info,
5303 			   "the objectid of root %llu reaches its highest value",
5304 			   root->root_key.objectid);
5305 		ret = -ENOSPC;
5306 		goto out;
5307 	}
5308 
5309 	*objectid = root->free_objectid++;
5310 	ret = 0;
5311 out:
5312 	mutex_unlock(&root->objectid_mutex);
5313 	return ret;
5314 }
5315