1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33 
34 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 /*
36  * when auto defrag is enabled we
37  * queue up these defrag structs to remember which
38  * inodes need defragging passes
39  */
40 struct inode_defrag {
41 	struct rb_node rb_node;
42 	/* objectid */
43 	u64 ino;
44 	/*
45 	 * transid where the defrag was added, we search for
46 	 * extents newer than this
47 	 */
48 	u64 transid;
49 
50 	/* root objectid */
51 	u64 root;
52 
53 	/*
54 	 * The extent size threshold for autodefrag.
55 	 *
56 	 * This value is different for compressed/non-compressed extents,
57 	 * thus needs to be passed from higher layer.
58 	 * (aka, inode_should_defrag())
59 	 */
60 	u32 extent_thresh;
61 };
62 
__compare_inode_defrag(struct inode_defrag * defrag1,struct inode_defrag * defrag2)63 static int __compare_inode_defrag(struct inode_defrag *defrag1,
64 				  struct inode_defrag *defrag2)
65 {
66 	if (defrag1->root > defrag2->root)
67 		return 1;
68 	else if (defrag1->root < defrag2->root)
69 		return -1;
70 	else if (defrag1->ino > defrag2->ino)
71 		return 1;
72 	else if (defrag1->ino < defrag2->ino)
73 		return -1;
74 	else
75 		return 0;
76 }
77 
78 /* pop a record for an inode into the defrag tree.  The lock
79  * must be held already
80  *
81  * If you're inserting a record for an older transid than an
82  * existing record, the transid already in the tree is lowered
83  *
84  * If an existing record is found the defrag item you
85  * pass in is freed
86  */
__btrfs_add_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)87 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
88 				    struct inode_defrag *defrag)
89 {
90 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
91 	struct inode_defrag *entry;
92 	struct rb_node **p;
93 	struct rb_node *parent = NULL;
94 	int ret;
95 
96 	p = &fs_info->defrag_inodes.rb_node;
97 	while (*p) {
98 		parent = *p;
99 		entry = rb_entry(parent, struct inode_defrag, rb_node);
100 
101 		ret = __compare_inode_defrag(defrag, entry);
102 		if (ret < 0)
103 			p = &parent->rb_left;
104 		else if (ret > 0)
105 			p = &parent->rb_right;
106 		else {
107 			/* if we're reinserting an entry for
108 			 * an old defrag run, make sure to
109 			 * lower the transid of our existing record
110 			 */
111 			if (defrag->transid < entry->transid)
112 				entry->transid = defrag->transid;
113 			entry->extent_thresh = min(defrag->extent_thresh,
114 						   entry->extent_thresh);
115 			return -EEXIST;
116 		}
117 	}
118 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
119 	rb_link_node(&defrag->rb_node, parent, p);
120 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
121 	return 0;
122 }
123 
__need_auto_defrag(struct btrfs_fs_info * fs_info)124 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
125 {
126 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
127 		return 0;
128 
129 	if (btrfs_fs_closing(fs_info))
130 		return 0;
131 
132 	return 1;
133 }
134 
135 /*
136  * insert a defrag record for this inode if auto defrag is
137  * enabled
138  */
btrfs_add_inode_defrag(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u32 extent_thresh)139 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
140 			   struct btrfs_inode *inode, u32 extent_thresh)
141 {
142 	struct btrfs_root *root = inode->root;
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	struct inode_defrag *defrag;
145 	u64 transid;
146 	int ret;
147 
148 	if (!__need_auto_defrag(fs_info))
149 		return 0;
150 
151 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
152 		return 0;
153 
154 	if (trans)
155 		transid = trans->transid;
156 	else
157 		transid = inode->root->last_trans;
158 
159 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
160 	if (!defrag)
161 		return -ENOMEM;
162 
163 	defrag->ino = btrfs_ino(inode);
164 	defrag->transid = transid;
165 	defrag->root = root->root_key.objectid;
166 	defrag->extent_thresh = extent_thresh;
167 
168 	spin_lock(&fs_info->defrag_inodes_lock);
169 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
170 		/*
171 		 * If we set IN_DEFRAG flag and evict the inode from memory,
172 		 * and then re-read this inode, this new inode doesn't have
173 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
174 		 */
175 		ret = __btrfs_add_inode_defrag(inode, defrag);
176 		if (ret)
177 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
178 	} else {
179 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
180 	}
181 	spin_unlock(&fs_info->defrag_inodes_lock);
182 	return 0;
183 }
184 
185 /*
186  * pick the defragable inode that we want, if it doesn't exist, we will get
187  * the next one.
188  */
189 static struct inode_defrag *
btrfs_pick_defrag_inode(struct btrfs_fs_info * fs_info,u64 root,u64 ino)190 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
191 {
192 	struct inode_defrag *entry = NULL;
193 	struct inode_defrag tmp;
194 	struct rb_node *p;
195 	struct rb_node *parent = NULL;
196 	int ret;
197 
198 	tmp.ino = ino;
199 	tmp.root = root;
200 
201 	spin_lock(&fs_info->defrag_inodes_lock);
202 	p = fs_info->defrag_inodes.rb_node;
203 	while (p) {
204 		parent = p;
205 		entry = rb_entry(parent, struct inode_defrag, rb_node);
206 
207 		ret = __compare_inode_defrag(&tmp, entry);
208 		if (ret < 0)
209 			p = parent->rb_left;
210 		else if (ret > 0)
211 			p = parent->rb_right;
212 		else
213 			goto out;
214 	}
215 
216 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
217 		parent = rb_next(parent);
218 		if (parent)
219 			entry = rb_entry(parent, struct inode_defrag, rb_node);
220 		else
221 			entry = NULL;
222 	}
223 out:
224 	if (entry)
225 		rb_erase(parent, &fs_info->defrag_inodes);
226 	spin_unlock(&fs_info->defrag_inodes_lock);
227 	return entry;
228 }
229 
btrfs_cleanup_defrag_inodes(struct btrfs_fs_info * fs_info)230 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
231 {
232 	struct inode_defrag *defrag;
233 	struct rb_node *node;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	node = rb_first(&fs_info->defrag_inodes);
237 	while (node) {
238 		rb_erase(node, &fs_info->defrag_inodes);
239 		defrag = rb_entry(node, struct inode_defrag, rb_node);
240 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
241 
242 		cond_resched_lock(&fs_info->defrag_inodes_lock);
243 
244 		node = rb_first(&fs_info->defrag_inodes);
245 	}
246 	spin_unlock(&fs_info->defrag_inodes_lock);
247 }
248 
249 #define BTRFS_DEFRAG_BATCH	1024
250 
__btrfs_run_defrag_inode(struct btrfs_fs_info * fs_info,struct inode_defrag * defrag)251 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
252 				    struct inode_defrag *defrag)
253 {
254 	struct btrfs_root *inode_root;
255 	struct inode *inode;
256 	struct btrfs_ioctl_defrag_range_args range;
257 	int ret = 0;
258 	u64 cur = 0;
259 
260 again:
261 	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
262 		goto cleanup;
263 	if (!__need_auto_defrag(fs_info))
264 		goto cleanup;
265 
266 	/* get the inode */
267 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
268 	if (IS_ERR(inode_root)) {
269 		ret = PTR_ERR(inode_root);
270 		goto cleanup;
271 	}
272 
273 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
274 	btrfs_put_root(inode_root);
275 	if (IS_ERR(inode)) {
276 		ret = PTR_ERR(inode);
277 		goto cleanup;
278 	}
279 
280 	if (cur >= i_size_read(inode)) {
281 		iput(inode);
282 		goto cleanup;
283 	}
284 
285 	/* do a chunk of defrag */
286 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
287 	memset(&range, 0, sizeof(range));
288 	range.len = (u64)-1;
289 	range.start = cur;
290 	range.extent_thresh = defrag->extent_thresh;
291 
292 	sb_start_write(fs_info->sb);
293 	ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
294 				       BTRFS_DEFRAG_BATCH);
295 	sb_end_write(fs_info->sb);
296 	iput(inode);
297 
298 	if (ret < 0)
299 		goto cleanup;
300 
301 	cur = max(cur + fs_info->sectorsize, range.start);
302 	goto again;
303 
304 cleanup:
305 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
306 	return ret;
307 }
308 
309 /*
310  * run through the list of inodes in the FS that need
311  * defragging
312  */
btrfs_run_defrag_inodes(struct btrfs_fs_info * fs_info)313 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
314 {
315 	struct inode_defrag *defrag;
316 	u64 first_ino = 0;
317 	u64 root_objectid = 0;
318 
319 	atomic_inc(&fs_info->defrag_running);
320 	while (1) {
321 		/* Pause the auto defragger. */
322 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
323 			     &fs_info->fs_state))
324 			break;
325 
326 		if (!__need_auto_defrag(fs_info))
327 			break;
328 
329 		/* find an inode to defrag */
330 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
331 						 first_ino);
332 		if (!defrag) {
333 			if (root_objectid || first_ino) {
334 				root_objectid = 0;
335 				first_ino = 0;
336 				continue;
337 			} else {
338 				break;
339 			}
340 		}
341 
342 		first_ino = defrag->ino + 1;
343 		root_objectid = defrag->root;
344 
345 		__btrfs_run_defrag_inode(fs_info, defrag);
346 	}
347 	atomic_dec(&fs_info->defrag_running);
348 
349 	/*
350 	 * during unmount, we use the transaction_wait queue to
351 	 * wait for the defragger to stop
352 	 */
353 	wake_up(&fs_info->transaction_wait);
354 	return 0;
355 }
356 
357 /* simple helper to fault in pages and copy.  This should go away
358  * and be replaced with calls into generic code.
359  */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)360 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
361 					 struct page **prepared_pages,
362 					 struct iov_iter *i)
363 {
364 	size_t copied = 0;
365 	size_t total_copied = 0;
366 	int pg = 0;
367 	int offset = offset_in_page(pos);
368 
369 	while (write_bytes > 0) {
370 		size_t count = min_t(size_t,
371 				     PAGE_SIZE - offset, write_bytes);
372 		struct page *page = prepared_pages[pg];
373 		/*
374 		 * Copy data from userspace to the current page
375 		 */
376 		copied = copy_page_from_iter_atomic(page, offset, count, i);
377 
378 		/* Flush processor's dcache for this page */
379 		flush_dcache_page(page);
380 
381 		/*
382 		 * if we get a partial write, we can end up with
383 		 * partially up to date pages.  These add
384 		 * a lot of complexity, so make sure they don't
385 		 * happen by forcing this copy to be retried.
386 		 *
387 		 * The rest of the btrfs_file_write code will fall
388 		 * back to page at a time copies after we return 0.
389 		 */
390 		if (unlikely(copied < count)) {
391 			if (!PageUptodate(page)) {
392 				iov_iter_revert(i, copied);
393 				copied = 0;
394 			}
395 			if (!copied)
396 				break;
397 		}
398 
399 		write_bytes -= copied;
400 		total_copied += copied;
401 		offset += copied;
402 		if (offset == PAGE_SIZE) {
403 			pg++;
404 			offset = 0;
405 		}
406 	}
407 	return total_copied;
408 }
409 
410 /*
411  * unlocks pages after btrfs_file_write is done with them
412  */
btrfs_drop_pages(struct btrfs_fs_info * fs_info,struct page ** pages,size_t num_pages,u64 pos,u64 copied)413 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
414 			     struct page **pages, size_t num_pages,
415 			     u64 pos, u64 copied)
416 {
417 	size_t i;
418 	u64 block_start = round_down(pos, fs_info->sectorsize);
419 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
420 
421 	ASSERT(block_len <= U32_MAX);
422 	for (i = 0; i < num_pages; i++) {
423 		/* page checked is some magic around finding pages that
424 		 * have been modified without going through btrfs_set_page_dirty
425 		 * clear it here. There should be no need to mark the pages
426 		 * accessed as prepare_pages should have marked them accessed
427 		 * in prepare_pages via find_or_create_page()
428 		 */
429 		btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
430 					       block_len);
431 		unlock_page(pages[i]);
432 		put_page(pages[i]);
433 	}
434 }
435 
436 /*
437  * After btrfs_copy_from_user(), update the following things for delalloc:
438  * - Mark newly dirtied pages as DELALLOC in the io tree.
439  *   Used to advise which range is to be written back.
440  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
441  * - Update inode size for past EOF write
442  */
btrfs_dirty_pages(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)443 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
444 		      size_t num_pages, loff_t pos, size_t write_bytes,
445 		      struct extent_state **cached, bool noreserve)
446 {
447 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
448 	int err = 0;
449 	int i;
450 	u64 num_bytes;
451 	u64 start_pos;
452 	u64 end_of_last_block;
453 	u64 end_pos = pos + write_bytes;
454 	loff_t isize = i_size_read(&inode->vfs_inode);
455 	unsigned int extra_bits = 0;
456 
457 	if (write_bytes == 0)
458 		return 0;
459 
460 	if (noreserve)
461 		extra_bits |= EXTENT_NORESERVE;
462 
463 	start_pos = round_down(pos, fs_info->sectorsize);
464 	num_bytes = round_up(write_bytes + pos - start_pos,
465 			     fs_info->sectorsize);
466 	ASSERT(num_bytes <= U32_MAX);
467 
468 	end_of_last_block = start_pos + num_bytes - 1;
469 
470 	/*
471 	 * The pages may have already been dirty, clear out old accounting so
472 	 * we can set things up properly
473 	 */
474 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
475 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
476 			 cached);
477 
478 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
479 					extra_bits, cached);
480 	if (err)
481 		return err;
482 
483 	for (i = 0; i < num_pages; i++) {
484 		struct page *p = pages[i];
485 
486 		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
487 		btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
488 		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
489 	}
490 
491 	/*
492 	 * we've only changed i_size in ram, and we haven't updated
493 	 * the disk i_size.  There is no need to log the inode
494 	 * at this time.
495 	 */
496 	if (end_pos > isize)
497 		i_size_write(&inode->vfs_inode, end_pos);
498 	return 0;
499 }
500 
501 /*
502  * this is very complex, but the basic idea is to drop all extents
503  * in the range start - end.  hint_block is filled in with a block number
504  * that would be a good hint to the block allocator for this file.
505  *
506  * If an extent intersects the range but is not entirely inside the range
507  * it is either truncated or split.  Anything entirely inside the range
508  * is deleted from the tree.
509  *
510  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
511  * to deal with that. We set the field 'bytes_found' of the arguments structure
512  * with the number of allocated bytes found in the target range, so that the
513  * caller can update the inode's number of bytes in an atomic way when
514  * replacing extents in a range to avoid races with stat(2).
515  */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)516 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
517 		       struct btrfs_root *root, struct btrfs_inode *inode,
518 		       struct btrfs_drop_extents_args *args)
519 {
520 	struct btrfs_fs_info *fs_info = root->fs_info;
521 	struct extent_buffer *leaf;
522 	struct btrfs_file_extent_item *fi;
523 	struct btrfs_ref ref = { 0 };
524 	struct btrfs_key key;
525 	struct btrfs_key new_key;
526 	u64 ino = btrfs_ino(inode);
527 	u64 search_start = args->start;
528 	u64 disk_bytenr = 0;
529 	u64 num_bytes = 0;
530 	u64 extent_offset = 0;
531 	u64 extent_end = 0;
532 	u64 last_end = args->start;
533 	int del_nr = 0;
534 	int del_slot = 0;
535 	int extent_type;
536 	int recow;
537 	int ret;
538 	int modify_tree = -1;
539 	int update_refs;
540 	int found = 0;
541 	struct btrfs_path *path = args->path;
542 
543 	args->bytes_found = 0;
544 	args->extent_inserted = false;
545 
546 	/* Must always have a path if ->replace_extent is true */
547 	ASSERT(!(args->replace_extent && !args->path));
548 
549 	if (!path) {
550 		path = btrfs_alloc_path();
551 		if (!path) {
552 			ret = -ENOMEM;
553 			goto out;
554 		}
555 	}
556 
557 	if (args->drop_cache)
558 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
559 
560 	if (args->start >= inode->disk_i_size && !args->replace_extent)
561 		modify_tree = 0;
562 
563 	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
564 	while (1) {
565 		recow = 0;
566 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
567 					       search_start, modify_tree);
568 		if (ret < 0)
569 			break;
570 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
571 			leaf = path->nodes[0];
572 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
573 			if (key.objectid == ino &&
574 			    key.type == BTRFS_EXTENT_DATA_KEY)
575 				path->slots[0]--;
576 		}
577 		ret = 0;
578 next_slot:
579 		leaf = path->nodes[0];
580 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
581 			BUG_ON(del_nr > 0);
582 			ret = btrfs_next_leaf(root, path);
583 			if (ret < 0)
584 				break;
585 			if (ret > 0) {
586 				ret = 0;
587 				break;
588 			}
589 			leaf = path->nodes[0];
590 			recow = 1;
591 		}
592 
593 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
594 
595 		if (key.objectid > ino)
596 			break;
597 		if (WARN_ON_ONCE(key.objectid < ino) ||
598 		    key.type < BTRFS_EXTENT_DATA_KEY) {
599 			ASSERT(del_nr == 0);
600 			path->slots[0]++;
601 			goto next_slot;
602 		}
603 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
604 			break;
605 
606 		fi = btrfs_item_ptr(leaf, path->slots[0],
607 				    struct btrfs_file_extent_item);
608 		extent_type = btrfs_file_extent_type(leaf, fi);
609 
610 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
611 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
612 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
613 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
614 			extent_offset = btrfs_file_extent_offset(leaf, fi);
615 			extent_end = key.offset +
616 				btrfs_file_extent_num_bytes(leaf, fi);
617 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
618 			extent_end = key.offset +
619 				btrfs_file_extent_ram_bytes(leaf, fi);
620 		} else {
621 			/* can't happen */
622 			BUG();
623 		}
624 
625 		/*
626 		 * Don't skip extent items representing 0 byte lengths. They
627 		 * used to be created (bug) if while punching holes we hit
628 		 * -ENOSPC condition. So if we find one here, just ensure we
629 		 * delete it, otherwise we would insert a new file extent item
630 		 * with the same key (offset) as that 0 bytes length file
631 		 * extent item in the call to setup_items_for_insert() later
632 		 * in this function.
633 		 */
634 		if (extent_end == key.offset && extent_end >= search_start) {
635 			last_end = extent_end;
636 			goto delete_extent_item;
637 		}
638 
639 		if (extent_end <= search_start) {
640 			path->slots[0]++;
641 			goto next_slot;
642 		}
643 
644 		found = 1;
645 		search_start = max(key.offset, args->start);
646 		if (recow || !modify_tree) {
647 			modify_tree = -1;
648 			btrfs_release_path(path);
649 			continue;
650 		}
651 
652 		/*
653 		 *     | - range to drop - |
654 		 *  | -------- extent -------- |
655 		 */
656 		if (args->start > key.offset && args->end < extent_end) {
657 			BUG_ON(del_nr > 0);
658 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
659 				ret = -EOPNOTSUPP;
660 				break;
661 			}
662 
663 			memcpy(&new_key, &key, sizeof(new_key));
664 			new_key.offset = args->start;
665 			ret = btrfs_duplicate_item(trans, root, path,
666 						   &new_key);
667 			if (ret == -EAGAIN) {
668 				btrfs_release_path(path);
669 				continue;
670 			}
671 			if (ret < 0)
672 				break;
673 
674 			leaf = path->nodes[0];
675 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
676 					    struct btrfs_file_extent_item);
677 			btrfs_set_file_extent_num_bytes(leaf, fi,
678 							args->start - key.offset);
679 
680 			fi = btrfs_item_ptr(leaf, path->slots[0],
681 					    struct btrfs_file_extent_item);
682 
683 			extent_offset += args->start - key.offset;
684 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
685 			btrfs_set_file_extent_num_bytes(leaf, fi,
686 							extent_end - args->start);
687 			btrfs_mark_buffer_dirty(leaf);
688 
689 			if (update_refs && disk_bytenr > 0) {
690 				btrfs_init_generic_ref(&ref,
691 						BTRFS_ADD_DELAYED_REF,
692 						disk_bytenr, num_bytes, 0);
693 				btrfs_init_data_ref(&ref,
694 						root->root_key.objectid,
695 						new_key.objectid,
696 						args->start - extent_offset,
697 						0, false);
698 				ret = btrfs_inc_extent_ref(trans, &ref);
699 				if (ret) {
700 					btrfs_abort_transaction(trans, ret);
701 					break;
702 				}
703 			}
704 			key.offset = args->start;
705 		}
706 		/*
707 		 * From here on out we will have actually dropped something, so
708 		 * last_end can be updated.
709 		 */
710 		last_end = extent_end;
711 
712 		/*
713 		 *  | ---- range to drop ----- |
714 		 *      | -------- extent -------- |
715 		 */
716 		if (args->start <= key.offset && args->end < extent_end) {
717 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
718 				ret = -EOPNOTSUPP;
719 				break;
720 			}
721 
722 			memcpy(&new_key, &key, sizeof(new_key));
723 			new_key.offset = args->end;
724 			btrfs_set_item_key_safe(fs_info, path, &new_key);
725 
726 			extent_offset += args->end - key.offset;
727 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
728 			btrfs_set_file_extent_num_bytes(leaf, fi,
729 							extent_end - args->end);
730 			btrfs_mark_buffer_dirty(leaf);
731 			if (update_refs && disk_bytenr > 0)
732 				args->bytes_found += args->end - key.offset;
733 			break;
734 		}
735 
736 		search_start = extent_end;
737 		/*
738 		 *       | ---- range to drop ----- |
739 		 *  | -------- extent -------- |
740 		 */
741 		if (args->start > key.offset && args->end >= extent_end) {
742 			BUG_ON(del_nr > 0);
743 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
744 				ret = -EOPNOTSUPP;
745 				break;
746 			}
747 
748 			btrfs_set_file_extent_num_bytes(leaf, fi,
749 							args->start - key.offset);
750 			btrfs_mark_buffer_dirty(leaf);
751 			if (update_refs && disk_bytenr > 0)
752 				args->bytes_found += extent_end - args->start;
753 			if (args->end == extent_end)
754 				break;
755 
756 			path->slots[0]++;
757 			goto next_slot;
758 		}
759 
760 		/*
761 		 *  | ---- range to drop ----- |
762 		 *    | ------ extent ------ |
763 		 */
764 		if (args->start <= key.offset && args->end >= extent_end) {
765 delete_extent_item:
766 			if (del_nr == 0) {
767 				del_slot = path->slots[0];
768 				del_nr = 1;
769 			} else {
770 				BUG_ON(del_slot + del_nr != path->slots[0]);
771 				del_nr++;
772 			}
773 
774 			if (update_refs &&
775 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
776 				args->bytes_found += extent_end - key.offset;
777 				extent_end = ALIGN(extent_end,
778 						   fs_info->sectorsize);
779 			} else if (update_refs && disk_bytenr > 0) {
780 				btrfs_init_generic_ref(&ref,
781 						BTRFS_DROP_DELAYED_REF,
782 						disk_bytenr, num_bytes, 0);
783 				btrfs_init_data_ref(&ref,
784 						root->root_key.objectid,
785 						key.objectid,
786 						key.offset - extent_offset, 0,
787 						false);
788 				ret = btrfs_free_extent(trans, &ref);
789 				if (ret) {
790 					btrfs_abort_transaction(trans, ret);
791 					break;
792 				}
793 				args->bytes_found += extent_end - key.offset;
794 			}
795 
796 			if (args->end == extent_end)
797 				break;
798 
799 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
800 				path->slots[0]++;
801 				goto next_slot;
802 			}
803 
804 			ret = btrfs_del_items(trans, root, path, del_slot,
805 					      del_nr);
806 			if (ret) {
807 				btrfs_abort_transaction(trans, ret);
808 				break;
809 			}
810 
811 			del_nr = 0;
812 			del_slot = 0;
813 
814 			btrfs_release_path(path);
815 			continue;
816 		}
817 
818 		BUG();
819 	}
820 
821 	if (!ret && del_nr > 0) {
822 		/*
823 		 * Set path->slots[0] to first slot, so that after the delete
824 		 * if items are move off from our leaf to its immediate left or
825 		 * right neighbor leafs, we end up with a correct and adjusted
826 		 * path->slots[0] for our insertion (if args->replace_extent).
827 		 */
828 		path->slots[0] = del_slot;
829 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
830 		if (ret)
831 			btrfs_abort_transaction(trans, ret);
832 	}
833 
834 	leaf = path->nodes[0];
835 	/*
836 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
837 	 * which case it unlocked our path, so check path->locks[0] matches a
838 	 * write lock.
839 	 */
840 	if (!ret && args->replace_extent &&
841 	    path->locks[0] == BTRFS_WRITE_LOCK &&
842 	    btrfs_leaf_free_space(leaf) >=
843 	    sizeof(struct btrfs_item) + args->extent_item_size) {
844 
845 		key.objectid = ino;
846 		key.type = BTRFS_EXTENT_DATA_KEY;
847 		key.offset = args->start;
848 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
849 			struct btrfs_key slot_key;
850 
851 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
852 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
853 				path->slots[0]++;
854 		}
855 		btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
856 		args->extent_inserted = true;
857 	}
858 
859 	if (!args->path)
860 		btrfs_free_path(path);
861 	else if (!args->extent_inserted)
862 		btrfs_release_path(path);
863 out:
864 	args->drop_end = found ? min(args->end, last_end) : args->end;
865 
866 	return ret;
867 }
868 
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)869 static int extent_mergeable(struct extent_buffer *leaf, int slot,
870 			    u64 objectid, u64 bytenr, u64 orig_offset,
871 			    u64 *start, u64 *end)
872 {
873 	struct btrfs_file_extent_item *fi;
874 	struct btrfs_key key;
875 	u64 extent_end;
876 
877 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
878 		return 0;
879 
880 	btrfs_item_key_to_cpu(leaf, &key, slot);
881 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
882 		return 0;
883 
884 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
885 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
886 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
887 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
888 	    btrfs_file_extent_compression(leaf, fi) ||
889 	    btrfs_file_extent_encryption(leaf, fi) ||
890 	    btrfs_file_extent_other_encoding(leaf, fi))
891 		return 0;
892 
893 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
894 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
895 		return 0;
896 
897 	*start = key.offset;
898 	*end = extent_end;
899 	return 1;
900 }
901 
902 /*
903  * Mark extent in the range start - end as written.
904  *
905  * This changes extent type from 'pre-allocated' to 'regular'. If only
906  * part of extent is marked as written, the extent will be split into
907  * two or three.
908  */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)909 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
910 			      struct btrfs_inode *inode, u64 start, u64 end)
911 {
912 	struct btrfs_fs_info *fs_info = trans->fs_info;
913 	struct btrfs_root *root = inode->root;
914 	struct extent_buffer *leaf;
915 	struct btrfs_path *path;
916 	struct btrfs_file_extent_item *fi;
917 	struct btrfs_ref ref = { 0 };
918 	struct btrfs_key key;
919 	struct btrfs_key new_key;
920 	u64 bytenr;
921 	u64 num_bytes;
922 	u64 extent_end;
923 	u64 orig_offset;
924 	u64 other_start;
925 	u64 other_end;
926 	u64 split;
927 	int del_nr = 0;
928 	int del_slot = 0;
929 	int recow;
930 	int ret = 0;
931 	u64 ino = btrfs_ino(inode);
932 
933 	path = btrfs_alloc_path();
934 	if (!path)
935 		return -ENOMEM;
936 again:
937 	recow = 0;
938 	split = start;
939 	key.objectid = ino;
940 	key.type = BTRFS_EXTENT_DATA_KEY;
941 	key.offset = split;
942 
943 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
944 	if (ret < 0)
945 		goto out;
946 	if (ret > 0 && path->slots[0] > 0)
947 		path->slots[0]--;
948 
949 	leaf = path->nodes[0];
950 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
951 	if (key.objectid != ino ||
952 	    key.type != BTRFS_EXTENT_DATA_KEY) {
953 		ret = -EINVAL;
954 		btrfs_abort_transaction(trans, ret);
955 		goto out;
956 	}
957 	fi = btrfs_item_ptr(leaf, path->slots[0],
958 			    struct btrfs_file_extent_item);
959 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
960 		ret = -EINVAL;
961 		btrfs_abort_transaction(trans, ret);
962 		goto out;
963 	}
964 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
965 	if (key.offset > start || extent_end < end) {
966 		ret = -EINVAL;
967 		btrfs_abort_transaction(trans, ret);
968 		goto out;
969 	}
970 
971 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
972 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
973 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
974 	memcpy(&new_key, &key, sizeof(new_key));
975 
976 	if (start == key.offset && end < extent_end) {
977 		other_start = 0;
978 		other_end = start;
979 		if (extent_mergeable(leaf, path->slots[0] - 1,
980 				     ino, bytenr, orig_offset,
981 				     &other_start, &other_end)) {
982 			new_key.offset = end;
983 			btrfs_set_item_key_safe(fs_info, path, &new_key);
984 			fi = btrfs_item_ptr(leaf, path->slots[0],
985 					    struct btrfs_file_extent_item);
986 			btrfs_set_file_extent_generation(leaf, fi,
987 							 trans->transid);
988 			btrfs_set_file_extent_num_bytes(leaf, fi,
989 							extent_end - end);
990 			btrfs_set_file_extent_offset(leaf, fi,
991 						     end - orig_offset);
992 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
993 					    struct btrfs_file_extent_item);
994 			btrfs_set_file_extent_generation(leaf, fi,
995 							 trans->transid);
996 			btrfs_set_file_extent_num_bytes(leaf, fi,
997 							end - other_start);
998 			btrfs_mark_buffer_dirty(leaf);
999 			goto out;
1000 		}
1001 	}
1002 
1003 	if (start > key.offset && end == extent_end) {
1004 		other_start = end;
1005 		other_end = 0;
1006 		if (extent_mergeable(leaf, path->slots[0] + 1,
1007 				     ino, bytenr, orig_offset,
1008 				     &other_start, &other_end)) {
1009 			fi = btrfs_item_ptr(leaf, path->slots[0],
1010 					    struct btrfs_file_extent_item);
1011 			btrfs_set_file_extent_num_bytes(leaf, fi,
1012 							start - key.offset);
1013 			btrfs_set_file_extent_generation(leaf, fi,
1014 							 trans->transid);
1015 			path->slots[0]++;
1016 			new_key.offset = start;
1017 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1018 
1019 			fi = btrfs_item_ptr(leaf, path->slots[0],
1020 					    struct btrfs_file_extent_item);
1021 			btrfs_set_file_extent_generation(leaf, fi,
1022 							 trans->transid);
1023 			btrfs_set_file_extent_num_bytes(leaf, fi,
1024 							other_end - start);
1025 			btrfs_set_file_extent_offset(leaf, fi,
1026 						     start - orig_offset);
1027 			btrfs_mark_buffer_dirty(leaf);
1028 			goto out;
1029 		}
1030 	}
1031 
1032 	while (start > key.offset || end < extent_end) {
1033 		if (key.offset == start)
1034 			split = end;
1035 
1036 		new_key.offset = split;
1037 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1038 		if (ret == -EAGAIN) {
1039 			btrfs_release_path(path);
1040 			goto again;
1041 		}
1042 		if (ret < 0) {
1043 			btrfs_abort_transaction(trans, ret);
1044 			goto out;
1045 		}
1046 
1047 		leaf = path->nodes[0];
1048 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1049 				    struct btrfs_file_extent_item);
1050 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1051 		btrfs_set_file_extent_num_bytes(leaf, fi,
1052 						split - key.offset);
1053 
1054 		fi = btrfs_item_ptr(leaf, path->slots[0],
1055 				    struct btrfs_file_extent_item);
1056 
1057 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1058 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1059 		btrfs_set_file_extent_num_bytes(leaf, fi,
1060 						extent_end - split);
1061 		btrfs_mark_buffer_dirty(leaf);
1062 
1063 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1064 				       num_bytes, 0);
1065 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1066 				    orig_offset, 0, false);
1067 		ret = btrfs_inc_extent_ref(trans, &ref);
1068 		if (ret) {
1069 			btrfs_abort_transaction(trans, ret);
1070 			goto out;
1071 		}
1072 
1073 		if (split == start) {
1074 			key.offset = start;
1075 		} else {
1076 			if (start != key.offset) {
1077 				ret = -EINVAL;
1078 				btrfs_abort_transaction(trans, ret);
1079 				goto out;
1080 			}
1081 			path->slots[0]--;
1082 			extent_end = end;
1083 		}
1084 		recow = 1;
1085 	}
1086 
1087 	other_start = end;
1088 	other_end = 0;
1089 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1090 			       num_bytes, 0);
1091 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
1092 			    0, false);
1093 	if (extent_mergeable(leaf, path->slots[0] + 1,
1094 			     ino, bytenr, orig_offset,
1095 			     &other_start, &other_end)) {
1096 		if (recow) {
1097 			btrfs_release_path(path);
1098 			goto again;
1099 		}
1100 		extent_end = other_end;
1101 		del_slot = path->slots[0] + 1;
1102 		del_nr++;
1103 		ret = btrfs_free_extent(trans, &ref);
1104 		if (ret) {
1105 			btrfs_abort_transaction(trans, ret);
1106 			goto out;
1107 		}
1108 	}
1109 	other_start = 0;
1110 	other_end = start;
1111 	if (extent_mergeable(leaf, path->slots[0] - 1,
1112 			     ino, bytenr, orig_offset,
1113 			     &other_start, &other_end)) {
1114 		if (recow) {
1115 			btrfs_release_path(path);
1116 			goto again;
1117 		}
1118 		key.offset = other_start;
1119 		del_slot = path->slots[0];
1120 		del_nr++;
1121 		ret = btrfs_free_extent(trans, &ref);
1122 		if (ret) {
1123 			btrfs_abort_transaction(trans, ret);
1124 			goto out;
1125 		}
1126 	}
1127 	if (del_nr == 0) {
1128 		fi = btrfs_item_ptr(leaf, path->slots[0],
1129 			   struct btrfs_file_extent_item);
1130 		btrfs_set_file_extent_type(leaf, fi,
1131 					   BTRFS_FILE_EXTENT_REG);
1132 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1133 		btrfs_mark_buffer_dirty(leaf);
1134 	} else {
1135 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1136 			   struct btrfs_file_extent_item);
1137 		btrfs_set_file_extent_type(leaf, fi,
1138 					   BTRFS_FILE_EXTENT_REG);
1139 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1140 		btrfs_set_file_extent_num_bytes(leaf, fi,
1141 						extent_end - key.offset);
1142 		btrfs_mark_buffer_dirty(leaf);
1143 
1144 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1145 		if (ret < 0) {
1146 			btrfs_abort_transaction(trans, ret);
1147 			goto out;
1148 		}
1149 	}
1150 out:
1151 	btrfs_free_path(path);
1152 	return ret;
1153 }
1154 
1155 /*
1156  * on error we return an unlocked page and the error value
1157  * on success we return a locked page and 0
1158  */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)1159 static int prepare_uptodate_page(struct inode *inode,
1160 				 struct page *page, u64 pos,
1161 				 bool force_uptodate)
1162 {
1163 	struct folio *folio = page_folio(page);
1164 	int ret = 0;
1165 
1166 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1167 	    !PageUptodate(page)) {
1168 		ret = btrfs_read_folio(NULL, folio);
1169 		if (ret)
1170 			return ret;
1171 		lock_page(page);
1172 		if (!PageUptodate(page)) {
1173 			unlock_page(page);
1174 			return -EIO;
1175 		}
1176 
1177 		/*
1178 		 * Since btrfs_read_folio() will unlock the folio before it
1179 		 * returns, there is a window where btrfs_release_folio() can be
1180 		 * called to release the page.  Here we check both inode
1181 		 * mapping and PagePrivate() to make sure the page was not
1182 		 * released.
1183 		 *
1184 		 * The private flag check is essential for subpage as we need
1185 		 * to store extra bitmap using page->private.
1186 		 */
1187 		if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1188 			unlock_page(page);
1189 			return -EAGAIN;
1190 		}
1191 	}
1192 	return 0;
1193 }
1194 
get_prepare_fgp_flags(bool nowait)1195 static unsigned int get_prepare_fgp_flags(bool nowait)
1196 {
1197 	unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
1198 
1199 	if (nowait)
1200 		fgp_flags |= FGP_NOWAIT;
1201 
1202 	return fgp_flags;
1203 }
1204 
get_prepare_gfp_flags(struct inode * inode,bool nowait)1205 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
1206 {
1207 	gfp_t gfp;
1208 
1209 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
1210 	if (nowait) {
1211 		gfp &= ~__GFP_DIRECT_RECLAIM;
1212 		gfp |= GFP_NOWAIT;
1213 	}
1214 
1215 	return gfp;
1216 }
1217 
1218 /*
1219  * this just gets pages into the page cache and locks them down.
1220  */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate,bool nowait)1221 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1222 				  size_t num_pages, loff_t pos,
1223 				  size_t write_bytes, bool force_uptodate,
1224 				  bool nowait)
1225 {
1226 	int i;
1227 	unsigned long index = pos >> PAGE_SHIFT;
1228 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
1229 	unsigned int fgp_flags = get_prepare_fgp_flags(nowait);
1230 	int err = 0;
1231 	int faili;
1232 
1233 	for (i = 0; i < num_pages; i++) {
1234 again:
1235 		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
1236 					      fgp_flags, mask | __GFP_WRITE);
1237 		if (!pages[i]) {
1238 			faili = i - 1;
1239 			if (nowait)
1240 				err = -EAGAIN;
1241 			else
1242 				err = -ENOMEM;
1243 			goto fail;
1244 		}
1245 
1246 		err = set_page_extent_mapped(pages[i]);
1247 		if (err < 0) {
1248 			faili = i;
1249 			goto fail;
1250 		}
1251 
1252 		if (i == 0)
1253 			err = prepare_uptodate_page(inode, pages[i], pos,
1254 						    force_uptodate);
1255 		if (!err && i == num_pages - 1)
1256 			err = prepare_uptodate_page(inode, pages[i],
1257 						    pos + write_bytes, false);
1258 		if (err) {
1259 			put_page(pages[i]);
1260 			if (!nowait && err == -EAGAIN) {
1261 				err = 0;
1262 				goto again;
1263 			}
1264 			faili = i - 1;
1265 			goto fail;
1266 		}
1267 		wait_on_page_writeback(pages[i]);
1268 	}
1269 
1270 	return 0;
1271 fail:
1272 	while (faili >= 0) {
1273 		unlock_page(pages[faili]);
1274 		put_page(pages[faili]);
1275 		faili--;
1276 	}
1277 	return err;
1278 
1279 }
1280 
1281 /*
1282  * This function locks the extent and properly waits for data=ordered extents
1283  * to finish before allowing the pages to be modified if need.
1284  *
1285  * The return value:
1286  * 1 - the extent is locked
1287  * 0 - the extent is not locked, and everything is OK
1288  * -EAGAIN - need re-prepare the pages
1289  * the other < 0 number - Something wrong happens
1290  */
1291 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)1292 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1293 				size_t num_pages, loff_t pos,
1294 				size_t write_bytes,
1295 				u64 *lockstart, u64 *lockend, bool nowait,
1296 				struct extent_state **cached_state)
1297 {
1298 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1299 	u64 start_pos;
1300 	u64 last_pos;
1301 	int i;
1302 	int ret = 0;
1303 
1304 	start_pos = round_down(pos, fs_info->sectorsize);
1305 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1306 
1307 	if (start_pos < inode->vfs_inode.i_size) {
1308 		struct btrfs_ordered_extent *ordered;
1309 
1310 		if (nowait) {
1311 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos)) {
1312 				for (i = 0; i < num_pages; i++) {
1313 					unlock_page(pages[i]);
1314 					put_page(pages[i]);
1315 					pages[i] = NULL;
1316 				}
1317 
1318 				return -EAGAIN;
1319 			}
1320 		} else {
1321 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1322 		}
1323 
1324 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1325 						     last_pos - start_pos + 1);
1326 		if (ordered &&
1327 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1328 		    ordered->file_offset <= last_pos) {
1329 			unlock_extent(&inode->io_tree, start_pos, last_pos,
1330 				      cached_state);
1331 			for (i = 0; i < num_pages; i++) {
1332 				unlock_page(pages[i]);
1333 				put_page(pages[i]);
1334 			}
1335 			btrfs_start_ordered_extent(ordered, 1);
1336 			btrfs_put_ordered_extent(ordered);
1337 			return -EAGAIN;
1338 		}
1339 		if (ordered)
1340 			btrfs_put_ordered_extent(ordered);
1341 
1342 		*lockstart = start_pos;
1343 		*lockend = last_pos;
1344 		ret = 1;
1345 	}
1346 
1347 	/*
1348 	 * We should be called after prepare_pages() which should have locked
1349 	 * all pages in the range.
1350 	 */
1351 	for (i = 0; i < num_pages; i++)
1352 		WARN_ON(!PageLocked(pages[i]));
1353 
1354 	return ret;
1355 }
1356 
1357 /*
1358  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1359  *
1360  * @pos:         File offset.
1361  * @write_bytes: The length to write, will be updated to the nocow writeable
1362  *               range.
1363  *
1364  * This function will flush ordered extents in the range to ensure proper
1365  * nocow checks.
1366  *
1367  * Return:
1368  * > 0          If we can nocow, and updates @write_bytes.
1369  *  0           If we can't do a nocow write.
1370  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1371  *              root is in progress.
1372  * < 0          If an error happened.
1373  *
1374  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1375  */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1376 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1377 			   size_t *write_bytes, bool nowait)
1378 {
1379 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1380 	struct btrfs_root *root = inode->root;
1381 	u64 lockstart, lockend;
1382 	u64 num_bytes;
1383 	int ret;
1384 
1385 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1386 		return 0;
1387 
1388 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1389 		return -EAGAIN;
1390 
1391 	lockstart = round_down(pos, fs_info->sectorsize);
1392 	lockend = round_up(pos + *write_bytes,
1393 			   fs_info->sectorsize) - 1;
1394 	num_bytes = lockend - lockstart + 1;
1395 
1396 	if (nowait) {
1397 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend)) {
1398 			btrfs_drew_write_unlock(&root->snapshot_lock);
1399 			return -EAGAIN;
1400 		}
1401 	} else {
1402 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, NULL);
1403 	}
1404 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1405 			NULL, NULL, NULL, nowait, false);
1406 	if (ret <= 0)
1407 		btrfs_drew_write_unlock(&root->snapshot_lock);
1408 	else
1409 		*write_bytes = min_t(size_t, *write_bytes ,
1410 				     num_bytes - pos + lockstart);
1411 	unlock_extent(&inode->io_tree, lockstart, lockend, NULL);
1412 
1413 	return ret;
1414 }
1415 
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1416 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1417 {
1418 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1419 }
1420 
update_time_for_write(struct inode * inode)1421 static void update_time_for_write(struct inode *inode)
1422 {
1423 	struct timespec64 now;
1424 
1425 	if (IS_NOCMTIME(inode))
1426 		return;
1427 
1428 	now = current_time(inode);
1429 	if (!timespec64_equal(&inode->i_mtime, &now))
1430 		inode->i_mtime = now;
1431 
1432 	if (!timespec64_equal(&inode->i_ctime, &now))
1433 		inode->i_ctime = now;
1434 
1435 	if (IS_I_VERSION(inode))
1436 		inode_inc_iversion(inode);
1437 }
1438 
btrfs_write_check(struct kiocb * iocb,struct iov_iter * from,size_t count)1439 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1440 			     size_t count)
1441 {
1442 	struct file *file = iocb->ki_filp;
1443 	struct inode *inode = file_inode(file);
1444 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1445 	loff_t pos = iocb->ki_pos;
1446 	int ret;
1447 	loff_t oldsize;
1448 	loff_t start_pos;
1449 
1450 	/*
1451 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1452 	 * prealloc flags, as without those flags we always have to COW. We will
1453 	 * later check if we can really COW into the target range (using
1454 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1455 	 */
1456 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1457 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1458 		return -EAGAIN;
1459 
1460 	current->backing_dev_info = inode_to_bdi(inode);
1461 	ret = file_remove_privs(file);
1462 	if (ret)
1463 		return ret;
1464 
1465 	/*
1466 	 * We reserve space for updating the inode when we reserve space for the
1467 	 * extent we are going to write, so we will enospc out there.  We don't
1468 	 * need to start yet another transaction to update the inode as we will
1469 	 * update the inode when we finish writing whatever data we write.
1470 	 */
1471 	update_time_for_write(inode);
1472 
1473 	start_pos = round_down(pos, fs_info->sectorsize);
1474 	oldsize = i_size_read(inode);
1475 	if (start_pos > oldsize) {
1476 		/* Expand hole size to cover write data, preventing empty gap */
1477 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1478 
1479 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1480 		if (ret) {
1481 			current->backing_dev_info = NULL;
1482 			return ret;
1483 		}
1484 	}
1485 
1486 	return 0;
1487 }
1488 
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1489 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1490 					       struct iov_iter *i)
1491 {
1492 	struct file *file = iocb->ki_filp;
1493 	loff_t pos;
1494 	struct inode *inode = file_inode(file);
1495 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1496 	struct page **pages = NULL;
1497 	struct extent_changeset *data_reserved = NULL;
1498 	u64 release_bytes = 0;
1499 	u64 lockstart;
1500 	u64 lockend;
1501 	size_t num_written = 0;
1502 	int nrptrs;
1503 	ssize_t ret;
1504 	bool only_release_metadata = false;
1505 	bool force_page_uptodate = false;
1506 	loff_t old_isize = i_size_read(inode);
1507 	unsigned int ilock_flags = 0;
1508 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1509 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1510 
1511 	if (nowait)
1512 		ilock_flags |= BTRFS_ILOCK_TRY;
1513 
1514 	ret = btrfs_inode_lock(inode, ilock_flags);
1515 	if (ret < 0)
1516 		return ret;
1517 
1518 	ret = generic_write_checks(iocb, i);
1519 	if (ret <= 0)
1520 		goto out;
1521 
1522 	ret = btrfs_write_check(iocb, i, ret);
1523 	if (ret < 0)
1524 		goto out;
1525 
1526 	pos = iocb->ki_pos;
1527 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1528 			PAGE_SIZE / (sizeof(struct page *)));
1529 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1530 	nrptrs = max(nrptrs, 8);
1531 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1532 	if (!pages) {
1533 		ret = -ENOMEM;
1534 		goto out;
1535 	}
1536 
1537 	while (iov_iter_count(i) > 0) {
1538 		struct extent_state *cached_state = NULL;
1539 		size_t offset = offset_in_page(pos);
1540 		size_t sector_offset;
1541 		size_t write_bytes = min(iov_iter_count(i),
1542 					 nrptrs * (size_t)PAGE_SIZE -
1543 					 offset);
1544 		size_t num_pages;
1545 		size_t reserve_bytes;
1546 		size_t dirty_pages;
1547 		size_t copied;
1548 		size_t dirty_sectors;
1549 		size_t num_sectors;
1550 		int extents_locked;
1551 
1552 		/*
1553 		 * Fault pages before locking them in prepare_pages
1554 		 * to avoid recursive lock
1555 		 */
1556 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1557 			ret = -EFAULT;
1558 			break;
1559 		}
1560 
1561 		only_release_metadata = false;
1562 		sector_offset = pos & (fs_info->sectorsize - 1);
1563 
1564 		extent_changeset_release(data_reserved);
1565 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1566 						  &data_reserved, pos,
1567 						  write_bytes, nowait);
1568 		if (ret < 0) {
1569 			int can_nocow;
1570 
1571 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1572 				ret = -EAGAIN;
1573 				break;
1574 			}
1575 
1576 			/*
1577 			 * If we don't have to COW at the offset, reserve
1578 			 * metadata only. write_bytes may get smaller than
1579 			 * requested here.
1580 			 */
1581 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1582 							   &write_bytes, nowait);
1583 			if (can_nocow < 0)
1584 				ret = can_nocow;
1585 			if (can_nocow > 0)
1586 				ret = 0;
1587 			if (ret)
1588 				break;
1589 			only_release_metadata = true;
1590 		}
1591 
1592 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1593 		WARN_ON(num_pages > nrptrs);
1594 		reserve_bytes = round_up(write_bytes + sector_offset,
1595 					 fs_info->sectorsize);
1596 		WARN_ON(reserve_bytes == 0);
1597 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1598 						      reserve_bytes,
1599 						      reserve_bytes, nowait);
1600 		if (ret) {
1601 			if (!only_release_metadata)
1602 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1603 						data_reserved, pos,
1604 						write_bytes);
1605 			else
1606 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1607 
1608 			if (nowait && ret == -ENOSPC)
1609 				ret = -EAGAIN;
1610 			break;
1611 		}
1612 
1613 		release_bytes = reserve_bytes;
1614 again:
1615 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1616 		if (ret) {
1617 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1618 			break;
1619 		}
1620 
1621 		/*
1622 		 * This is going to setup the pages array with the number of
1623 		 * pages we want, so we don't really need to worry about the
1624 		 * contents of pages from loop to loop
1625 		 */
1626 		ret = prepare_pages(inode, pages, num_pages,
1627 				    pos, write_bytes, force_page_uptodate, false);
1628 		if (ret) {
1629 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1630 						       reserve_bytes);
1631 			break;
1632 		}
1633 
1634 		extents_locked = lock_and_cleanup_extent_if_need(
1635 				BTRFS_I(inode), pages,
1636 				num_pages, pos, write_bytes, &lockstart,
1637 				&lockend, nowait, &cached_state);
1638 		if (extents_locked < 0) {
1639 			if (!nowait && extents_locked == -EAGAIN)
1640 				goto again;
1641 
1642 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1643 						       reserve_bytes);
1644 			ret = extents_locked;
1645 			break;
1646 		}
1647 
1648 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1649 
1650 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1651 		dirty_sectors = round_up(copied + sector_offset,
1652 					fs_info->sectorsize);
1653 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1654 
1655 		/*
1656 		 * if we have trouble faulting in the pages, fall
1657 		 * back to one page at a time
1658 		 */
1659 		if (copied < write_bytes)
1660 			nrptrs = 1;
1661 
1662 		if (copied == 0) {
1663 			force_page_uptodate = true;
1664 			dirty_sectors = 0;
1665 			dirty_pages = 0;
1666 		} else {
1667 			force_page_uptodate = false;
1668 			dirty_pages = DIV_ROUND_UP(copied + offset,
1669 						   PAGE_SIZE);
1670 		}
1671 
1672 		if (num_sectors > dirty_sectors) {
1673 			/* release everything except the sectors we dirtied */
1674 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1675 			if (only_release_metadata) {
1676 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1677 							release_bytes, true);
1678 			} else {
1679 				u64 __pos;
1680 
1681 				__pos = round_down(pos,
1682 						   fs_info->sectorsize) +
1683 					(dirty_pages << PAGE_SHIFT);
1684 				btrfs_delalloc_release_space(BTRFS_I(inode),
1685 						data_reserved, __pos,
1686 						release_bytes, true);
1687 			}
1688 		}
1689 
1690 		release_bytes = round_up(copied + sector_offset,
1691 					fs_info->sectorsize);
1692 
1693 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1694 					dirty_pages, pos, copied,
1695 					&cached_state, only_release_metadata);
1696 
1697 		/*
1698 		 * If we have not locked the extent range, because the range's
1699 		 * start offset is >= i_size, we might still have a non-NULL
1700 		 * cached extent state, acquired while marking the extent range
1701 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1702 		 * possible cached extent state to avoid a memory leak.
1703 		 */
1704 		if (extents_locked)
1705 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1706 				      lockend, &cached_state);
1707 		else
1708 			free_extent_state(cached_state);
1709 
1710 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1711 		if (ret) {
1712 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1713 			break;
1714 		}
1715 
1716 		release_bytes = 0;
1717 		if (only_release_metadata)
1718 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1719 
1720 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1721 
1722 		cond_resched();
1723 
1724 		pos += copied;
1725 		num_written += copied;
1726 	}
1727 
1728 	kfree(pages);
1729 
1730 	if (release_bytes) {
1731 		if (only_release_metadata) {
1732 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1733 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1734 					release_bytes, true);
1735 		} else {
1736 			btrfs_delalloc_release_space(BTRFS_I(inode),
1737 					data_reserved,
1738 					round_down(pos, fs_info->sectorsize),
1739 					release_bytes, true);
1740 		}
1741 	}
1742 
1743 	extent_changeset_free(data_reserved);
1744 	if (num_written > 0) {
1745 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1746 		iocb->ki_pos += num_written;
1747 	}
1748 out:
1749 	btrfs_inode_unlock(inode, ilock_flags);
1750 	return num_written ? num_written : ret;
1751 }
1752 
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)1753 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1754 			       const struct iov_iter *iter, loff_t offset)
1755 {
1756 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1757 
1758 	if (offset & blocksize_mask)
1759 		return -EINVAL;
1760 
1761 	if (iov_iter_alignment(iter) & blocksize_mask)
1762 		return -EINVAL;
1763 
1764 	return 0;
1765 }
1766 
btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1767 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1768 {
1769 	struct file *file = iocb->ki_filp;
1770 	struct inode *inode = file_inode(file);
1771 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1772 	loff_t pos;
1773 	ssize_t written = 0;
1774 	ssize_t written_buffered;
1775 	size_t prev_left = 0;
1776 	loff_t endbyte;
1777 	ssize_t err;
1778 	unsigned int ilock_flags = 0;
1779 	struct iomap_dio *dio;
1780 
1781 	if (iocb->ki_flags & IOCB_NOWAIT)
1782 		ilock_flags |= BTRFS_ILOCK_TRY;
1783 
1784 	/* If the write DIO is within EOF, use a shared lock */
1785 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1786 		ilock_flags |= BTRFS_ILOCK_SHARED;
1787 
1788 relock:
1789 	err = btrfs_inode_lock(inode, ilock_flags);
1790 	if (err < 0)
1791 		return err;
1792 
1793 	err = generic_write_checks(iocb, from);
1794 	if (err <= 0) {
1795 		btrfs_inode_unlock(inode, ilock_flags);
1796 		return err;
1797 	}
1798 
1799 	err = btrfs_write_check(iocb, from, err);
1800 	if (err < 0) {
1801 		btrfs_inode_unlock(inode, ilock_flags);
1802 		goto out;
1803 	}
1804 
1805 	pos = iocb->ki_pos;
1806 	/*
1807 	 * Re-check since file size may have changed just before taking the
1808 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1809 	 */
1810 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1811 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1812 		btrfs_inode_unlock(inode, ilock_flags);
1813 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1814 		goto relock;
1815 	}
1816 
1817 	if (check_direct_IO(fs_info, from, pos)) {
1818 		btrfs_inode_unlock(inode, ilock_flags);
1819 		goto buffered;
1820 	}
1821 
1822 	/*
1823 	 * The iov_iter can be mapped to the same file range we are writing to.
1824 	 * If that's the case, then we will deadlock in the iomap code, because
1825 	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1826 	 * an ordered extent, and after that it will fault in the pages that the
1827 	 * iov_iter refers to. During the fault in we end up in the readahead
1828 	 * pages code (starting at btrfs_readahead()), which will lock the range,
1829 	 * find that ordered extent and then wait for it to complete (at
1830 	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1831 	 * obviously the ordered extent can never complete as we didn't submit
1832 	 * yet the respective bio(s). This always happens when the buffer is
1833 	 * memory mapped to the same file range, since the iomap DIO code always
1834 	 * invalidates pages in the target file range (after starting and waiting
1835 	 * for any writeback).
1836 	 *
1837 	 * So here we disable page faults in the iov_iter and then retry if we
1838 	 * got -EFAULT, faulting in the pages before the retry.
1839 	 */
1840 	from->nofault = true;
1841 	dio = btrfs_dio_write(iocb, from, written);
1842 	from->nofault = false;
1843 
1844 	/*
1845 	 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1846 	 * iocb, and that needs to lock the inode. So unlock it before calling
1847 	 * iomap_dio_complete() to avoid a deadlock.
1848 	 */
1849 	btrfs_inode_unlock(inode, ilock_flags);
1850 
1851 	if (IS_ERR_OR_NULL(dio))
1852 		err = PTR_ERR_OR_ZERO(dio);
1853 	else
1854 		err = iomap_dio_complete(dio);
1855 
1856 	/* No increment (+=) because iomap returns a cumulative value. */
1857 	if (err > 0)
1858 		written = err;
1859 
1860 	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1861 		const size_t left = iov_iter_count(from);
1862 		/*
1863 		 * We have more data left to write. Try to fault in as many as
1864 		 * possible of the remainder pages and retry. We do this without
1865 		 * releasing and locking again the inode, to prevent races with
1866 		 * truncate.
1867 		 *
1868 		 * Also, in case the iov refers to pages in the file range of the
1869 		 * file we want to write to (due to a mmap), we could enter an
1870 		 * infinite loop if we retry after faulting the pages in, since
1871 		 * iomap will invalidate any pages in the range early on, before
1872 		 * it tries to fault in the pages of the iov. So we keep track of
1873 		 * how much was left of iov in the previous EFAULT and fallback
1874 		 * to buffered IO in case we haven't made any progress.
1875 		 */
1876 		if (left == prev_left) {
1877 			err = -ENOTBLK;
1878 		} else {
1879 			fault_in_iov_iter_readable(from, left);
1880 			prev_left = left;
1881 			goto relock;
1882 		}
1883 	}
1884 
1885 	/*
1886 	 * If 'err' is -ENOTBLK or we have not written all data, then it means
1887 	 * we must fallback to buffered IO.
1888 	 */
1889 	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1890 		goto out;
1891 
1892 buffered:
1893 	/*
1894 	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1895 	 * it must retry the operation in a context where blocking is acceptable,
1896 	 * since we currently don't have NOWAIT semantics support for buffered IO
1897 	 * and may block there for many reasons (reserving space for example).
1898 	 */
1899 	if (iocb->ki_flags & IOCB_NOWAIT) {
1900 		err = -EAGAIN;
1901 		goto out;
1902 	}
1903 
1904 	pos = iocb->ki_pos;
1905 	written_buffered = btrfs_buffered_write(iocb, from);
1906 	if (written_buffered < 0) {
1907 		err = written_buffered;
1908 		goto out;
1909 	}
1910 	/*
1911 	 * Ensure all data is persisted. We want the next direct IO read to be
1912 	 * able to read what was just written.
1913 	 */
1914 	endbyte = pos + written_buffered - 1;
1915 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1916 	if (err)
1917 		goto out;
1918 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1919 	if (err)
1920 		goto out;
1921 	written += written_buffered;
1922 	iocb->ki_pos = pos + written_buffered;
1923 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1924 				 endbyte >> PAGE_SHIFT);
1925 out:
1926 	return err < 0 ? err : written;
1927 }
1928 
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1929 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1930 			const struct btrfs_ioctl_encoded_io_args *encoded)
1931 {
1932 	struct file *file = iocb->ki_filp;
1933 	struct inode *inode = file_inode(file);
1934 	loff_t count;
1935 	ssize_t ret;
1936 
1937 	btrfs_inode_lock(inode, 0);
1938 	count = encoded->len;
1939 	ret = generic_write_checks_count(iocb, &count);
1940 	if (ret == 0 && count != encoded->len) {
1941 		/*
1942 		 * The write got truncated by generic_write_checks_count(). We
1943 		 * can't do a partial encoded write.
1944 		 */
1945 		ret = -EFBIG;
1946 	}
1947 	if (ret || encoded->len == 0)
1948 		goto out;
1949 
1950 	ret = btrfs_write_check(iocb, from, encoded->len);
1951 	if (ret < 0)
1952 		goto out;
1953 
1954 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1955 out:
1956 	btrfs_inode_unlock(inode, 0);
1957 	return ret;
1958 }
1959 
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1960 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1961 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1962 {
1963 	struct file *file = iocb->ki_filp;
1964 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1965 	ssize_t num_written, num_sync;
1966 	const bool sync = iocb_is_dsync(iocb);
1967 
1968 	/*
1969 	 * If the fs flips readonly due to some impossible error, although we
1970 	 * have opened a file as writable, we have to stop this write operation
1971 	 * to ensure consistency.
1972 	 */
1973 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1974 		return -EROFS;
1975 
1976 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1977 		return -EOPNOTSUPP;
1978 
1979 	if (sync)
1980 		atomic_inc(&inode->sync_writers);
1981 
1982 	if (encoded) {
1983 		num_written = btrfs_encoded_write(iocb, from, encoded);
1984 		num_sync = encoded->len;
1985 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1986 		num_written = btrfs_direct_write(iocb, from);
1987 		num_sync = num_written;
1988 	} else {
1989 		num_written = btrfs_buffered_write(iocb, from);
1990 		num_sync = num_written;
1991 	}
1992 
1993 	btrfs_set_inode_last_sub_trans(inode);
1994 
1995 	if (num_sync > 0) {
1996 		num_sync = generic_write_sync(iocb, num_sync);
1997 		if (num_sync < 0)
1998 			num_written = num_sync;
1999 	}
2000 
2001 	if (sync)
2002 		atomic_dec(&inode->sync_writers);
2003 
2004 	current->backing_dev_info = NULL;
2005 	return num_written;
2006 }
2007 
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2008 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2009 {
2010 	return btrfs_do_write_iter(iocb, from, NULL);
2011 }
2012 
btrfs_release_file(struct inode * inode,struct file * filp)2013 int btrfs_release_file(struct inode *inode, struct file *filp)
2014 {
2015 	struct btrfs_file_private *private = filp->private_data;
2016 
2017 	if (private && private->filldir_buf)
2018 		kfree(private->filldir_buf);
2019 	kfree(private);
2020 	filp->private_data = NULL;
2021 
2022 	/*
2023 	 * Set by setattr when we are about to truncate a file from a non-zero
2024 	 * size to a zero size.  This tries to flush down new bytes that may
2025 	 * have been written if the application were using truncate to replace
2026 	 * a file in place.
2027 	 */
2028 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2029 			       &BTRFS_I(inode)->runtime_flags))
2030 			filemap_flush(inode->i_mapping);
2031 	return 0;
2032 }
2033 
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)2034 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2035 {
2036 	int ret;
2037 	struct blk_plug plug;
2038 
2039 	/*
2040 	 * This is only called in fsync, which would do synchronous writes, so
2041 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2042 	 * multiple disks using raid profile, a large IO can be split to
2043 	 * several segments of stripe length (currently 64K).
2044 	 */
2045 	blk_start_plug(&plug);
2046 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2047 	ret = btrfs_fdatawrite_range(inode, start, end);
2048 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2049 	blk_finish_plug(&plug);
2050 
2051 	return ret;
2052 }
2053 
skip_inode_logging(const struct btrfs_log_ctx * ctx)2054 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2055 {
2056 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2057 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2058 
2059 	if (btrfs_inode_in_log(inode, fs_info->generation) &&
2060 	    list_empty(&ctx->ordered_extents))
2061 		return true;
2062 
2063 	/*
2064 	 * If we are doing a fast fsync we can not bail out if the inode's
2065 	 * last_trans is <= then the last committed transaction, because we only
2066 	 * update the last_trans of the inode during ordered extent completion,
2067 	 * and for a fast fsync we don't wait for that, we only wait for the
2068 	 * writeback to complete.
2069 	 */
2070 	if (inode->last_trans <= fs_info->last_trans_committed &&
2071 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2072 	     list_empty(&ctx->ordered_extents)))
2073 		return true;
2074 
2075 	return false;
2076 }
2077 
2078 /*
2079  * fsync call for both files and directories.  This logs the inode into
2080  * the tree log instead of forcing full commits whenever possible.
2081  *
2082  * It needs to call filemap_fdatawait so that all ordered extent updates are
2083  * in the metadata btree are up to date for copying to the log.
2084  *
2085  * It drops the inode mutex before doing the tree log commit.  This is an
2086  * important optimization for directories because holding the mutex prevents
2087  * new operations on the dir while we write to disk.
2088  */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)2089 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2090 {
2091 	struct dentry *dentry = file_dentry(file);
2092 	struct inode *inode = d_inode(dentry);
2093 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2094 	struct btrfs_root *root = BTRFS_I(inode)->root;
2095 	struct btrfs_trans_handle *trans;
2096 	struct btrfs_log_ctx ctx;
2097 	int ret = 0, err;
2098 	u64 len;
2099 	bool full_sync;
2100 
2101 	trace_btrfs_sync_file(file, datasync);
2102 
2103 	btrfs_init_log_ctx(&ctx, inode);
2104 
2105 	/*
2106 	 * Always set the range to a full range, otherwise we can get into
2107 	 * several problems, from missing file extent items to represent holes
2108 	 * when not using the NO_HOLES feature, to log tree corruption due to
2109 	 * races between hole detection during logging and completion of ordered
2110 	 * extents outside the range, to missing checksums due to ordered extents
2111 	 * for which we flushed only a subset of their pages.
2112 	 */
2113 	start = 0;
2114 	end = LLONG_MAX;
2115 	len = (u64)LLONG_MAX + 1;
2116 
2117 	/*
2118 	 * We write the dirty pages in the range and wait until they complete
2119 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2120 	 * multi-task, and make the performance up.  See
2121 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2122 	 */
2123 	ret = start_ordered_ops(inode, start, end);
2124 	if (ret)
2125 		goto out;
2126 
2127 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2128 
2129 	atomic_inc(&root->log_batch);
2130 
2131 	/*
2132 	 * Before we acquired the inode's lock and the mmap lock, someone may
2133 	 * have dirtied more pages in the target range. We need to make sure
2134 	 * that writeback for any such pages does not start while we are logging
2135 	 * the inode, because if it does, any of the following might happen when
2136 	 * we are not doing a full inode sync:
2137 	 *
2138 	 * 1) We log an extent after its writeback finishes but before its
2139 	 *    checksums are added to the csum tree, leading to -EIO errors
2140 	 *    when attempting to read the extent after a log replay.
2141 	 *
2142 	 * 2) We can end up logging an extent before its writeback finishes.
2143 	 *    Therefore after the log replay we will have a file extent item
2144 	 *    pointing to an unwritten extent (and no data checksums as well).
2145 	 *
2146 	 * So trigger writeback for any eventual new dirty pages and then we
2147 	 * wait for all ordered extents to complete below.
2148 	 */
2149 	ret = start_ordered_ops(inode, start, end);
2150 	if (ret) {
2151 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2152 		goto out;
2153 	}
2154 
2155 	/*
2156 	 * Always check for the full sync flag while holding the inode's lock,
2157 	 * to avoid races with other tasks. The flag must be either set all the
2158 	 * time during logging or always off all the time while logging.
2159 	 * We check the flag here after starting delalloc above, because when
2160 	 * running delalloc the full sync flag may be set if we need to drop
2161 	 * extra extent map ranges due to temporary memory allocation failures.
2162 	 */
2163 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2164 			     &BTRFS_I(inode)->runtime_flags);
2165 
2166 	/*
2167 	 * We have to do this here to avoid the priority inversion of waiting on
2168 	 * IO of a lower priority task while holding a transaction open.
2169 	 *
2170 	 * For a full fsync we wait for the ordered extents to complete while
2171 	 * for a fast fsync we wait just for writeback to complete, and then
2172 	 * attach the ordered extents to the transaction so that a transaction
2173 	 * commit waits for their completion, to avoid data loss if we fsync,
2174 	 * the current transaction commits before the ordered extents complete
2175 	 * and a power failure happens right after that.
2176 	 *
2177 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2178 	 * logical address recorded in the ordered extent may change. We need
2179 	 * to wait for the IO to stabilize the logical address.
2180 	 */
2181 	if (full_sync || btrfs_is_zoned(fs_info)) {
2182 		ret = btrfs_wait_ordered_range(inode, start, len);
2183 	} else {
2184 		/*
2185 		 * Get our ordered extents as soon as possible to avoid doing
2186 		 * checksum lookups in the csum tree, and use instead the
2187 		 * checksums attached to the ordered extents.
2188 		 */
2189 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2190 						      &ctx.ordered_extents);
2191 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2192 	}
2193 
2194 	if (ret)
2195 		goto out_release_extents;
2196 
2197 	atomic_inc(&root->log_batch);
2198 
2199 	smp_mb();
2200 	if (skip_inode_logging(&ctx)) {
2201 		/*
2202 		 * We've had everything committed since the last time we were
2203 		 * modified so clear this flag in case it was set for whatever
2204 		 * reason, it's no longer relevant.
2205 		 */
2206 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2207 			  &BTRFS_I(inode)->runtime_flags);
2208 		/*
2209 		 * An ordered extent might have started before and completed
2210 		 * already with io errors, in which case the inode was not
2211 		 * updated and we end up here. So check the inode's mapping
2212 		 * for any errors that might have happened since we last
2213 		 * checked called fsync.
2214 		 */
2215 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2216 		goto out_release_extents;
2217 	}
2218 
2219 	/*
2220 	 * We use start here because we will need to wait on the IO to complete
2221 	 * in btrfs_sync_log, which could require joining a transaction (for
2222 	 * example checking cross references in the nocow path).  If we use join
2223 	 * here we could get into a situation where we're waiting on IO to
2224 	 * happen that is blocked on a transaction trying to commit.  With start
2225 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2226 	 * before we start blocking joiners.  This comment is to keep somebody
2227 	 * from thinking they are super smart and changing this to
2228 	 * btrfs_join_transaction *cough*Josef*cough*.
2229 	 */
2230 	trans = btrfs_start_transaction(root, 0);
2231 	if (IS_ERR(trans)) {
2232 		ret = PTR_ERR(trans);
2233 		goto out_release_extents;
2234 	}
2235 	trans->in_fsync = true;
2236 
2237 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2238 	btrfs_release_log_ctx_extents(&ctx);
2239 	if (ret < 0) {
2240 		/* Fallthrough and commit/free transaction. */
2241 		ret = BTRFS_LOG_FORCE_COMMIT;
2242 	}
2243 
2244 	/* we've logged all the items and now have a consistent
2245 	 * version of the file in the log.  It is possible that
2246 	 * someone will come in and modify the file, but that's
2247 	 * fine because the log is consistent on disk, and we
2248 	 * have references to all of the file's extents
2249 	 *
2250 	 * It is possible that someone will come in and log the
2251 	 * file again, but that will end up using the synchronization
2252 	 * inside btrfs_sync_log to keep things safe.
2253 	 */
2254 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2255 
2256 	if (ret == BTRFS_NO_LOG_SYNC) {
2257 		ret = btrfs_end_transaction(trans);
2258 		goto out;
2259 	}
2260 
2261 	/* We successfully logged the inode, attempt to sync the log. */
2262 	if (!ret) {
2263 		ret = btrfs_sync_log(trans, root, &ctx);
2264 		if (!ret) {
2265 			ret = btrfs_end_transaction(trans);
2266 			goto out;
2267 		}
2268 	}
2269 
2270 	/*
2271 	 * At this point we need to commit the transaction because we had
2272 	 * btrfs_need_log_full_commit() or some other error.
2273 	 *
2274 	 * If we didn't do a full sync we have to stop the trans handle, wait on
2275 	 * the ordered extents, start it again and commit the transaction.  If
2276 	 * we attempt to wait on the ordered extents here we could deadlock with
2277 	 * something like fallocate() that is holding the extent lock trying to
2278 	 * start a transaction while some other thread is trying to commit the
2279 	 * transaction while we (fsync) are currently holding the transaction
2280 	 * open.
2281 	 */
2282 	if (!full_sync) {
2283 		ret = btrfs_end_transaction(trans);
2284 		if (ret)
2285 			goto out;
2286 		ret = btrfs_wait_ordered_range(inode, start, len);
2287 		if (ret)
2288 			goto out;
2289 
2290 		/*
2291 		 * This is safe to use here because we're only interested in
2292 		 * making sure the transaction that had the ordered extents is
2293 		 * committed.  We aren't waiting on anything past this point,
2294 		 * we're purely getting the transaction and committing it.
2295 		 */
2296 		trans = btrfs_attach_transaction_barrier(root);
2297 		if (IS_ERR(trans)) {
2298 			ret = PTR_ERR(trans);
2299 
2300 			/*
2301 			 * We committed the transaction and there's no currently
2302 			 * running transaction, this means everything we care
2303 			 * about made it to disk and we are done.
2304 			 */
2305 			if (ret == -ENOENT)
2306 				ret = 0;
2307 			goto out;
2308 		}
2309 	}
2310 
2311 	ret = btrfs_commit_transaction(trans);
2312 out:
2313 	ASSERT(list_empty(&ctx.list));
2314 	ASSERT(list_empty(&ctx.conflict_inodes));
2315 	err = file_check_and_advance_wb_err(file);
2316 	if (!ret)
2317 		ret = err;
2318 	return ret > 0 ? -EIO : ret;
2319 
2320 out_release_extents:
2321 	btrfs_release_log_ctx_extents(&ctx);
2322 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2323 	goto out;
2324 }
2325 
2326 static const struct vm_operations_struct btrfs_file_vm_ops = {
2327 	.fault		= filemap_fault,
2328 	.map_pages	= filemap_map_pages,
2329 	.page_mkwrite	= btrfs_page_mkwrite,
2330 };
2331 
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2332 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2333 {
2334 	struct address_space *mapping = filp->f_mapping;
2335 
2336 	if (!mapping->a_ops->read_folio)
2337 		return -ENOEXEC;
2338 
2339 	file_accessed(filp);
2340 	vma->vm_ops = &btrfs_file_vm_ops;
2341 
2342 	return 0;
2343 }
2344 
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2345 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2346 			  int slot, u64 start, u64 end)
2347 {
2348 	struct btrfs_file_extent_item *fi;
2349 	struct btrfs_key key;
2350 
2351 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2352 		return 0;
2353 
2354 	btrfs_item_key_to_cpu(leaf, &key, slot);
2355 	if (key.objectid != btrfs_ino(inode) ||
2356 	    key.type != BTRFS_EXTENT_DATA_KEY)
2357 		return 0;
2358 
2359 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2360 
2361 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2362 		return 0;
2363 
2364 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2365 		return 0;
2366 
2367 	if (key.offset == end)
2368 		return 1;
2369 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2370 		return 1;
2371 	return 0;
2372 }
2373 
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2374 static int fill_holes(struct btrfs_trans_handle *trans,
2375 		struct btrfs_inode *inode,
2376 		struct btrfs_path *path, u64 offset, u64 end)
2377 {
2378 	struct btrfs_fs_info *fs_info = trans->fs_info;
2379 	struct btrfs_root *root = inode->root;
2380 	struct extent_buffer *leaf;
2381 	struct btrfs_file_extent_item *fi;
2382 	struct extent_map *hole_em;
2383 	struct btrfs_key key;
2384 	int ret;
2385 
2386 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2387 		goto out;
2388 
2389 	key.objectid = btrfs_ino(inode);
2390 	key.type = BTRFS_EXTENT_DATA_KEY;
2391 	key.offset = offset;
2392 
2393 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2394 	if (ret <= 0) {
2395 		/*
2396 		 * We should have dropped this offset, so if we find it then
2397 		 * something has gone horribly wrong.
2398 		 */
2399 		if (ret == 0)
2400 			ret = -EINVAL;
2401 		return ret;
2402 	}
2403 
2404 	leaf = path->nodes[0];
2405 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2406 		u64 num_bytes;
2407 
2408 		path->slots[0]--;
2409 		fi = btrfs_item_ptr(leaf, path->slots[0],
2410 				    struct btrfs_file_extent_item);
2411 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2412 			end - offset;
2413 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2414 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2415 		btrfs_set_file_extent_offset(leaf, fi, 0);
2416 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2417 		btrfs_mark_buffer_dirty(leaf);
2418 		goto out;
2419 	}
2420 
2421 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2422 		u64 num_bytes;
2423 
2424 		key.offset = offset;
2425 		btrfs_set_item_key_safe(fs_info, path, &key);
2426 		fi = btrfs_item_ptr(leaf, path->slots[0],
2427 				    struct btrfs_file_extent_item);
2428 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2429 			offset;
2430 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2431 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2432 		btrfs_set_file_extent_offset(leaf, fi, 0);
2433 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2434 		btrfs_mark_buffer_dirty(leaf);
2435 		goto out;
2436 	}
2437 	btrfs_release_path(path);
2438 
2439 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2440 				       end - offset);
2441 	if (ret)
2442 		return ret;
2443 
2444 out:
2445 	btrfs_release_path(path);
2446 
2447 	hole_em = alloc_extent_map();
2448 	if (!hole_em) {
2449 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2450 		btrfs_set_inode_full_sync(inode);
2451 	} else {
2452 		hole_em->start = offset;
2453 		hole_em->len = end - offset;
2454 		hole_em->ram_bytes = hole_em->len;
2455 		hole_em->orig_start = offset;
2456 
2457 		hole_em->block_start = EXTENT_MAP_HOLE;
2458 		hole_em->block_len = 0;
2459 		hole_em->orig_block_len = 0;
2460 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2461 		hole_em->generation = trans->transid;
2462 
2463 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2464 		free_extent_map(hole_em);
2465 		if (ret)
2466 			btrfs_set_inode_full_sync(inode);
2467 	}
2468 
2469 	return 0;
2470 }
2471 
2472 /*
2473  * Find a hole extent on given inode and change start/len to the end of hole
2474  * extent.(hole/vacuum extent whose em->start <= start &&
2475  *	   em->start + em->len > start)
2476  * When a hole extent is found, return 1 and modify start/len.
2477  */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2478 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2479 {
2480 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2481 	struct extent_map *em;
2482 	int ret = 0;
2483 
2484 	em = btrfs_get_extent(inode, NULL, 0,
2485 			      round_down(*start, fs_info->sectorsize),
2486 			      round_up(*len, fs_info->sectorsize));
2487 	if (IS_ERR(em))
2488 		return PTR_ERR(em);
2489 
2490 	/* Hole or vacuum extent(only exists in no-hole mode) */
2491 	if (em->block_start == EXTENT_MAP_HOLE) {
2492 		ret = 1;
2493 		*len = em->start + em->len > *start + *len ?
2494 		       0 : *start + *len - em->start - em->len;
2495 		*start = em->start + em->len;
2496 	}
2497 	free_extent_map(em);
2498 	return ret;
2499 }
2500 
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2501 static void btrfs_punch_hole_lock_range(struct inode *inode,
2502 					const u64 lockstart,
2503 					const u64 lockend,
2504 					struct extent_state **cached_state)
2505 {
2506 	/*
2507 	 * For subpage case, if the range is not at page boundary, we could
2508 	 * have pages at the leading/tailing part of the range.
2509 	 * This could lead to dead loop since filemap_range_has_page()
2510 	 * will always return true.
2511 	 * So here we need to do extra page alignment for
2512 	 * filemap_range_has_page().
2513 	 */
2514 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2515 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2516 
2517 	while (1) {
2518 		truncate_pagecache_range(inode, lockstart, lockend);
2519 
2520 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2521 			    cached_state);
2522 		/*
2523 		 * We can't have ordered extents in the range, nor dirty/writeback
2524 		 * pages, because we have locked the inode's VFS lock in exclusive
2525 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2526 		 * we have flushed all delalloc in the range and we have waited
2527 		 * for any ordered extents in the range to complete.
2528 		 * We can race with anyone reading pages from this range, so after
2529 		 * locking the range check if we have pages in the range, and if
2530 		 * we do, unlock the range and retry.
2531 		 */
2532 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2533 					    page_lockend))
2534 			break;
2535 
2536 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2537 			      cached_state);
2538 	}
2539 
2540 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2541 }
2542 
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2543 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2544 				     struct btrfs_inode *inode,
2545 				     struct btrfs_path *path,
2546 				     struct btrfs_replace_extent_info *extent_info,
2547 				     const u64 replace_len,
2548 				     const u64 bytes_to_drop)
2549 {
2550 	struct btrfs_fs_info *fs_info = trans->fs_info;
2551 	struct btrfs_root *root = inode->root;
2552 	struct btrfs_file_extent_item *extent;
2553 	struct extent_buffer *leaf;
2554 	struct btrfs_key key;
2555 	int slot;
2556 	struct btrfs_ref ref = { 0 };
2557 	int ret;
2558 
2559 	if (replace_len == 0)
2560 		return 0;
2561 
2562 	if (extent_info->disk_offset == 0 &&
2563 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2564 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2565 		return 0;
2566 	}
2567 
2568 	key.objectid = btrfs_ino(inode);
2569 	key.type = BTRFS_EXTENT_DATA_KEY;
2570 	key.offset = extent_info->file_offset;
2571 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2572 				      sizeof(struct btrfs_file_extent_item));
2573 	if (ret)
2574 		return ret;
2575 	leaf = path->nodes[0];
2576 	slot = path->slots[0];
2577 	write_extent_buffer(leaf, extent_info->extent_buf,
2578 			    btrfs_item_ptr_offset(leaf, slot),
2579 			    sizeof(struct btrfs_file_extent_item));
2580 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2581 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2582 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2583 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2584 	if (extent_info->is_new_extent)
2585 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2586 	btrfs_mark_buffer_dirty(leaf);
2587 	btrfs_release_path(path);
2588 
2589 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2590 						replace_len);
2591 	if (ret)
2592 		return ret;
2593 
2594 	/* If it's a hole, nothing more needs to be done. */
2595 	if (extent_info->disk_offset == 0) {
2596 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2597 		return 0;
2598 	}
2599 
2600 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2601 
2602 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2603 		key.objectid = extent_info->disk_offset;
2604 		key.type = BTRFS_EXTENT_ITEM_KEY;
2605 		key.offset = extent_info->disk_len;
2606 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2607 						       btrfs_ino(inode),
2608 						       extent_info->file_offset,
2609 						       extent_info->qgroup_reserved,
2610 						       &key);
2611 	} else {
2612 		u64 ref_offset;
2613 
2614 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2615 				       extent_info->disk_offset,
2616 				       extent_info->disk_len, 0);
2617 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2618 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2619 				    btrfs_ino(inode), ref_offset, 0, false);
2620 		ret = btrfs_inc_extent_ref(trans, &ref);
2621 	}
2622 
2623 	extent_info->insertions++;
2624 
2625 	return ret;
2626 }
2627 
2628 /*
2629  * The respective range must have been previously locked, as well as the inode.
2630  * The end offset is inclusive (last byte of the range).
2631  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2632  * the file range with an extent.
2633  * When not punching a hole, we don't want to end up in a state where we dropped
2634  * extents without inserting a new one, so we must abort the transaction to avoid
2635  * a corruption.
2636  */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2637 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2638 			       struct btrfs_path *path, const u64 start,
2639 			       const u64 end,
2640 			       struct btrfs_replace_extent_info *extent_info,
2641 			       struct btrfs_trans_handle **trans_out)
2642 {
2643 	struct btrfs_drop_extents_args drop_args = { 0 };
2644 	struct btrfs_root *root = inode->root;
2645 	struct btrfs_fs_info *fs_info = root->fs_info;
2646 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2647 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2648 	struct btrfs_trans_handle *trans = NULL;
2649 	struct btrfs_block_rsv *rsv;
2650 	unsigned int rsv_count;
2651 	u64 cur_offset;
2652 	u64 len = end - start;
2653 	int ret = 0;
2654 
2655 	if (end <= start)
2656 		return -EINVAL;
2657 
2658 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2659 	if (!rsv) {
2660 		ret = -ENOMEM;
2661 		goto out;
2662 	}
2663 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2664 	rsv->failfast = true;
2665 
2666 	/*
2667 	 * 1 - update the inode
2668 	 * 1 - removing the extents in the range
2669 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2670 	 *     replacing the range with a new extent
2671 	 */
2672 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2673 		rsv_count = 3;
2674 	else
2675 		rsv_count = 2;
2676 
2677 	trans = btrfs_start_transaction(root, rsv_count);
2678 	if (IS_ERR(trans)) {
2679 		ret = PTR_ERR(trans);
2680 		trans = NULL;
2681 		goto out_free;
2682 	}
2683 
2684 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2685 				      min_size, false);
2686 	if (WARN_ON(ret))
2687 		goto out_trans;
2688 	trans->block_rsv = rsv;
2689 
2690 	cur_offset = start;
2691 	drop_args.path = path;
2692 	drop_args.end = end + 1;
2693 	drop_args.drop_cache = true;
2694 	while (cur_offset < end) {
2695 		drop_args.start = cur_offset;
2696 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2697 		/* If we are punching a hole decrement the inode's byte count */
2698 		if (!extent_info)
2699 			btrfs_update_inode_bytes(inode, 0,
2700 						 drop_args.bytes_found);
2701 		if (ret != -ENOSPC) {
2702 			/*
2703 			 * The only time we don't want to abort is if we are
2704 			 * attempting to clone a partial inline extent, in which
2705 			 * case we'll get EOPNOTSUPP.  However if we aren't
2706 			 * clone we need to abort no matter what, because if we
2707 			 * got EOPNOTSUPP via prealloc then we messed up and
2708 			 * need to abort.
2709 			 */
2710 			if (ret &&
2711 			    (ret != -EOPNOTSUPP ||
2712 			     (extent_info && extent_info->is_new_extent)))
2713 				btrfs_abort_transaction(trans, ret);
2714 			break;
2715 		}
2716 
2717 		trans->block_rsv = &fs_info->trans_block_rsv;
2718 
2719 		if (!extent_info && cur_offset < drop_args.drop_end &&
2720 		    cur_offset < ino_size) {
2721 			ret = fill_holes(trans, inode, path, cur_offset,
2722 					 drop_args.drop_end);
2723 			if (ret) {
2724 				/*
2725 				 * If we failed then we didn't insert our hole
2726 				 * entries for the area we dropped, so now the
2727 				 * fs is corrupted, so we must abort the
2728 				 * transaction.
2729 				 */
2730 				btrfs_abort_transaction(trans, ret);
2731 				break;
2732 			}
2733 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2734 			/*
2735 			 * We are past the i_size here, but since we didn't
2736 			 * insert holes we need to clear the mapped area so we
2737 			 * know to not set disk_i_size in this area until a new
2738 			 * file extent is inserted here.
2739 			 */
2740 			ret = btrfs_inode_clear_file_extent_range(inode,
2741 					cur_offset,
2742 					drop_args.drop_end - cur_offset);
2743 			if (ret) {
2744 				/*
2745 				 * We couldn't clear our area, so we could
2746 				 * presumably adjust up and corrupt the fs, so
2747 				 * we need to abort.
2748 				 */
2749 				btrfs_abort_transaction(trans, ret);
2750 				break;
2751 			}
2752 		}
2753 
2754 		if (extent_info &&
2755 		    drop_args.drop_end > extent_info->file_offset) {
2756 			u64 replace_len = drop_args.drop_end -
2757 					  extent_info->file_offset;
2758 
2759 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2760 					extent_info, replace_len,
2761 					drop_args.bytes_found);
2762 			if (ret) {
2763 				btrfs_abort_transaction(trans, ret);
2764 				break;
2765 			}
2766 			extent_info->data_len -= replace_len;
2767 			extent_info->data_offset += replace_len;
2768 			extent_info->file_offset += replace_len;
2769 		}
2770 
2771 		/*
2772 		 * We are releasing our handle on the transaction, balance the
2773 		 * dirty pages of the btree inode and flush delayed items, and
2774 		 * then get a new transaction handle, which may now point to a
2775 		 * new transaction in case someone else may have committed the
2776 		 * transaction we used to replace/drop file extent items. So
2777 		 * bump the inode's iversion and update mtime and ctime except
2778 		 * if we are called from a dedupe context. This is because a
2779 		 * power failure/crash may happen after the transaction is
2780 		 * committed and before we finish replacing/dropping all the
2781 		 * file extent items we need.
2782 		 */
2783 		inode_inc_iversion(&inode->vfs_inode);
2784 
2785 		if (!extent_info || extent_info->update_times) {
2786 			inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode);
2787 			inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime;
2788 		}
2789 
2790 		ret = btrfs_update_inode(trans, root, inode);
2791 		if (ret)
2792 			break;
2793 
2794 		btrfs_end_transaction(trans);
2795 		btrfs_btree_balance_dirty(fs_info);
2796 
2797 		trans = btrfs_start_transaction(root, rsv_count);
2798 		if (IS_ERR(trans)) {
2799 			ret = PTR_ERR(trans);
2800 			trans = NULL;
2801 			break;
2802 		}
2803 
2804 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2805 					      rsv, min_size, false);
2806 		if (WARN_ON(ret))
2807 			break;
2808 		trans->block_rsv = rsv;
2809 
2810 		cur_offset = drop_args.drop_end;
2811 		len = end - cur_offset;
2812 		if (!extent_info && len) {
2813 			ret = find_first_non_hole(inode, &cur_offset, &len);
2814 			if (unlikely(ret < 0))
2815 				break;
2816 			if (ret && !len) {
2817 				ret = 0;
2818 				break;
2819 			}
2820 		}
2821 	}
2822 
2823 	/*
2824 	 * If we were cloning, force the next fsync to be a full one since we
2825 	 * we replaced (or just dropped in the case of cloning holes when
2826 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2827 	 * maps for the replacement extents (or holes).
2828 	 */
2829 	if (extent_info && !extent_info->is_new_extent)
2830 		btrfs_set_inode_full_sync(inode);
2831 
2832 	if (ret)
2833 		goto out_trans;
2834 
2835 	trans->block_rsv = &fs_info->trans_block_rsv;
2836 	/*
2837 	 * If we are using the NO_HOLES feature we might have had already an
2838 	 * hole that overlaps a part of the region [lockstart, lockend] and
2839 	 * ends at (or beyond) lockend. Since we have no file extent items to
2840 	 * represent holes, drop_end can be less than lockend and so we must
2841 	 * make sure we have an extent map representing the existing hole (the
2842 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2843 	 * map representing the existing hole), otherwise the fast fsync path
2844 	 * will not record the existence of the hole region
2845 	 * [existing_hole_start, lockend].
2846 	 */
2847 	if (drop_args.drop_end <= end)
2848 		drop_args.drop_end = end + 1;
2849 	/*
2850 	 * Don't insert file hole extent item if it's for a range beyond eof
2851 	 * (because it's useless) or if it represents a 0 bytes range (when
2852 	 * cur_offset == drop_end).
2853 	 */
2854 	if (!extent_info && cur_offset < ino_size &&
2855 	    cur_offset < drop_args.drop_end) {
2856 		ret = fill_holes(trans, inode, path, cur_offset,
2857 				 drop_args.drop_end);
2858 		if (ret) {
2859 			/* Same comment as above. */
2860 			btrfs_abort_transaction(trans, ret);
2861 			goto out_trans;
2862 		}
2863 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2864 		/* See the comment in the loop above for the reasoning here. */
2865 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2866 					drop_args.drop_end - cur_offset);
2867 		if (ret) {
2868 			btrfs_abort_transaction(trans, ret);
2869 			goto out_trans;
2870 		}
2871 
2872 	}
2873 	if (extent_info) {
2874 		ret = btrfs_insert_replace_extent(trans, inode, path,
2875 				extent_info, extent_info->data_len,
2876 				drop_args.bytes_found);
2877 		if (ret) {
2878 			btrfs_abort_transaction(trans, ret);
2879 			goto out_trans;
2880 		}
2881 	}
2882 
2883 out_trans:
2884 	if (!trans)
2885 		goto out_free;
2886 
2887 	trans->block_rsv = &fs_info->trans_block_rsv;
2888 	if (ret)
2889 		btrfs_end_transaction(trans);
2890 	else
2891 		*trans_out = trans;
2892 out_free:
2893 	btrfs_free_block_rsv(fs_info, rsv);
2894 out:
2895 	return ret;
2896 }
2897 
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2898 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2899 {
2900 	struct inode *inode = file_inode(file);
2901 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2902 	struct btrfs_root *root = BTRFS_I(inode)->root;
2903 	struct extent_state *cached_state = NULL;
2904 	struct btrfs_path *path;
2905 	struct btrfs_trans_handle *trans = NULL;
2906 	u64 lockstart;
2907 	u64 lockend;
2908 	u64 tail_start;
2909 	u64 tail_len;
2910 	u64 orig_start = offset;
2911 	int ret = 0;
2912 	bool same_block;
2913 	u64 ino_size;
2914 	bool truncated_block = false;
2915 	bool updated_inode = false;
2916 
2917 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2918 
2919 	ret = btrfs_wait_ordered_range(inode, offset, len);
2920 	if (ret)
2921 		goto out_only_mutex;
2922 
2923 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2924 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2925 	if (ret < 0)
2926 		goto out_only_mutex;
2927 	if (ret && !len) {
2928 		/* Already in a large hole */
2929 		ret = 0;
2930 		goto out_only_mutex;
2931 	}
2932 
2933 	ret = file_modified(file);
2934 	if (ret)
2935 		goto out_only_mutex;
2936 
2937 	lockstart = round_up(offset, fs_info->sectorsize);
2938 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2939 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2940 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2941 	/*
2942 	 * We needn't truncate any block which is beyond the end of the file
2943 	 * because we are sure there is no data there.
2944 	 */
2945 	/*
2946 	 * Only do this if we are in the same block and we aren't doing the
2947 	 * entire block.
2948 	 */
2949 	if (same_block && len < fs_info->sectorsize) {
2950 		if (offset < ino_size) {
2951 			truncated_block = true;
2952 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2953 						   0);
2954 		} else {
2955 			ret = 0;
2956 		}
2957 		goto out_only_mutex;
2958 	}
2959 
2960 	/* zero back part of the first block */
2961 	if (offset < ino_size) {
2962 		truncated_block = true;
2963 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2964 		if (ret) {
2965 			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2966 			return ret;
2967 		}
2968 	}
2969 
2970 	/* Check the aligned pages after the first unaligned page,
2971 	 * if offset != orig_start, which means the first unaligned page
2972 	 * including several following pages are already in holes,
2973 	 * the extra check can be skipped */
2974 	if (offset == orig_start) {
2975 		/* after truncate page, check hole again */
2976 		len = offset + len - lockstart;
2977 		offset = lockstart;
2978 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2979 		if (ret < 0)
2980 			goto out_only_mutex;
2981 		if (ret && !len) {
2982 			ret = 0;
2983 			goto out_only_mutex;
2984 		}
2985 		lockstart = offset;
2986 	}
2987 
2988 	/* Check the tail unaligned part is in a hole */
2989 	tail_start = lockend + 1;
2990 	tail_len = offset + len - tail_start;
2991 	if (tail_len) {
2992 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2993 		if (unlikely(ret < 0))
2994 			goto out_only_mutex;
2995 		if (!ret) {
2996 			/* zero the front end of the last page */
2997 			if (tail_start + tail_len < ino_size) {
2998 				truncated_block = true;
2999 				ret = btrfs_truncate_block(BTRFS_I(inode),
3000 							tail_start + tail_len,
3001 							0, 1);
3002 				if (ret)
3003 					goto out_only_mutex;
3004 			}
3005 		}
3006 	}
3007 
3008 	if (lockend < lockstart) {
3009 		ret = 0;
3010 		goto out_only_mutex;
3011 	}
3012 
3013 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
3014 
3015 	path = btrfs_alloc_path();
3016 	if (!path) {
3017 		ret = -ENOMEM;
3018 		goto out;
3019 	}
3020 
3021 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3022 					 lockend, NULL, &trans);
3023 	btrfs_free_path(path);
3024 	if (ret)
3025 		goto out;
3026 
3027 	ASSERT(trans != NULL);
3028 	inode_inc_iversion(inode);
3029 	inode->i_mtime = current_time(inode);
3030 	inode->i_ctime = inode->i_mtime;
3031 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3032 	updated_inode = true;
3033 	btrfs_end_transaction(trans);
3034 	btrfs_btree_balance_dirty(fs_info);
3035 out:
3036 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3037 		      &cached_state);
3038 out_only_mutex:
3039 	if (!updated_inode && truncated_block && !ret) {
3040 		/*
3041 		 * If we only end up zeroing part of a page, we still need to
3042 		 * update the inode item, so that all the time fields are
3043 		 * updated as well as the necessary btrfs inode in memory fields
3044 		 * for detecting, at fsync time, if the inode isn't yet in the
3045 		 * log tree or it's there but not up to date.
3046 		 */
3047 		struct timespec64 now = current_time(inode);
3048 
3049 		inode_inc_iversion(inode);
3050 		inode->i_mtime = now;
3051 		inode->i_ctime = now;
3052 		trans = btrfs_start_transaction(root, 1);
3053 		if (IS_ERR(trans)) {
3054 			ret = PTR_ERR(trans);
3055 		} else {
3056 			int ret2;
3057 
3058 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3059 			ret2 = btrfs_end_transaction(trans);
3060 			if (!ret)
3061 				ret = ret2;
3062 		}
3063 	}
3064 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3065 	return ret;
3066 }
3067 
3068 /* Helper structure to record which range is already reserved */
3069 struct falloc_range {
3070 	struct list_head list;
3071 	u64 start;
3072 	u64 len;
3073 };
3074 
3075 /*
3076  * Helper function to add falloc range
3077  *
3078  * Caller should have locked the larger range of extent containing
3079  * [start, len)
3080  */
add_falloc_range(struct list_head * head,u64 start,u64 len)3081 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3082 {
3083 	struct falloc_range *range = NULL;
3084 
3085 	if (!list_empty(head)) {
3086 		/*
3087 		 * As fallocate iterates by bytenr order, we only need to check
3088 		 * the last range.
3089 		 */
3090 		range = list_last_entry(head, struct falloc_range, list);
3091 		if (range->start + range->len == start) {
3092 			range->len += len;
3093 			return 0;
3094 		}
3095 	}
3096 
3097 	range = kmalloc(sizeof(*range), GFP_KERNEL);
3098 	if (!range)
3099 		return -ENOMEM;
3100 	range->start = start;
3101 	range->len = len;
3102 	list_add_tail(&range->list, head);
3103 	return 0;
3104 }
3105 
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)3106 static int btrfs_fallocate_update_isize(struct inode *inode,
3107 					const u64 end,
3108 					const int mode)
3109 {
3110 	struct btrfs_trans_handle *trans;
3111 	struct btrfs_root *root = BTRFS_I(inode)->root;
3112 	int ret;
3113 	int ret2;
3114 
3115 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3116 		return 0;
3117 
3118 	trans = btrfs_start_transaction(root, 1);
3119 	if (IS_ERR(trans))
3120 		return PTR_ERR(trans);
3121 
3122 	inode->i_ctime = current_time(inode);
3123 	i_size_write(inode, end);
3124 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3125 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3126 	ret2 = btrfs_end_transaction(trans);
3127 
3128 	return ret ? ret : ret2;
3129 }
3130 
3131 enum {
3132 	RANGE_BOUNDARY_WRITTEN_EXTENT,
3133 	RANGE_BOUNDARY_PREALLOC_EXTENT,
3134 	RANGE_BOUNDARY_HOLE,
3135 };
3136 
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)3137 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3138 						 u64 offset)
3139 {
3140 	const u64 sectorsize = inode->root->fs_info->sectorsize;
3141 	struct extent_map *em;
3142 	int ret;
3143 
3144 	offset = round_down(offset, sectorsize);
3145 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3146 	if (IS_ERR(em))
3147 		return PTR_ERR(em);
3148 
3149 	if (em->block_start == EXTENT_MAP_HOLE)
3150 		ret = RANGE_BOUNDARY_HOLE;
3151 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3152 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3153 	else
3154 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3155 
3156 	free_extent_map(em);
3157 	return ret;
3158 }
3159 
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)3160 static int btrfs_zero_range(struct inode *inode,
3161 			    loff_t offset,
3162 			    loff_t len,
3163 			    const int mode)
3164 {
3165 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3166 	struct extent_map *em;
3167 	struct extent_changeset *data_reserved = NULL;
3168 	int ret;
3169 	u64 alloc_hint = 0;
3170 	const u64 sectorsize = fs_info->sectorsize;
3171 	u64 alloc_start = round_down(offset, sectorsize);
3172 	u64 alloc_end = round_up(offset + len, sectorsize);
3173 	u64 bytes_to_reserve = 0;
3174 	bool space_reserved = false;
3175 
3176 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3177 			      alloc_end - alloc_start);
3178 	if (IS_ERR(em)) {
3179 		ret = PTR_ERR(em);
3180 		goto out;
3181 	}
3182 
3183 	/*
3184 	 * Avoid hole punching and extent allocation for some cases. More cases
3185 	 * could be considered, but these are unlikely common and we keep things
3186 	 * as simple as possible for now. Also, intentionally, if the target
3187 	 * range contains one or more prealloc extents together with regular
3188 	 * extents and holes, we drop all the existing extents and allocate a
3189 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3190 	 */
3191 	if (em->start <= alloc_start &&
3192 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3193 		const u64 em_end = em->start + em->len;
3194 
3195 		if (em_end >= offset + len) {
3196 			/*
3197 			 * The whole range is already a prealloc extent,
3198 			 * do nothing except updating the inode's i_size if
3199 			 * needed.
3200 			 */
3201 			free_extent_map(em);
3202 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3203 							   mode);
3204 			goto out;
3205 		}
3206 		/*
3207 		 * Part of the range is already a prealloc extent, so operate
3208 		 * only on the remaining part of the range.
3209 		 */
3210 		alloc_start = em_end;
3211 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3212 		len = offset + len - alloc_start;
3213 		offset = alloc_start;
3214 		alloc_hint = em->block_start + em->len;
3215 	}
3216 	free_extent_map(em);
3217 
3218 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3219 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3220 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3221 				      sectorsize);
3222 		if (IS_ERR(em)) {
3223 			ret = PTR_ERR(em);
3224 			goto out;
3225 		}
3226 
3227 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3228 			free_extent_map(em);
3229 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3230 							   mode);
3231 			goto out;
3232 		}
3233 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3234 			free_extent_map(em);
3235 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3236 						   0);
3237 			if (!ret)
3238 				ret = btrfs_fallocate_update_isize(inode,
3239 								   offset + len,
3240 								   mode);
3241 			return ret;
3242 		}
3243 		free_extent_map(em);
3244 		alloc_start = round_down(offset, sectorsize);
3245 		alloc_end = alloc_start + sectorsize;
3246 		goto reserve_space;
3247 	}
3248 
3249 	alloc_start = round_up(offset, sectorsize);
3250 	alloc_end = round_down(offset + len, sectorsize);
3251 
3252 	/*
3253 	 * For unaligned ranges, check the pages at the boundaries, they might
3254 	 * map to an extent, in which case we need to partially zero them, or
3255 	 * they might map to a hole, in which case we need our allocation range
3256 	 * to cover them.
3257 	 */
3258 	if (!IS_ALIGNED(offset, sectorsize)) {
3259 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3260 							    offset);
3261 		if (ret < 0)
3262 			goto out;
3263 		if (ret == RANGE_BOUNDARY_HOLE) {
3264 			alloc_start = round_down(offset, sectorsize);
3265 			ret = 0;
3266 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3267 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3268 			if (ret)
3269 				goto out;
3270 		} else {
3271 			ret = 0;
3272 		}
3273 	}
3274 
3275 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3276 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3277 							    offset + len);
3278 		if (ret < 0)
3279 			goto out;
3280 		if (ret == RANGE_BOUNDARY_HOLE) {
3281 			alloc_end = round_up(offset + len, sectorsize);
3282 			ret = 0;
3283 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3284 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3285 						   0, 1);
3286 			if (ret)
3287 				goto out;
3288 		} else {
3289 			ret = 0;
3290 		}
3291 	}
3292 
3293 reserve_space:
3294 	if (alloc_start < alloc_end) {
3295 		struct extent_state *cached_state = NULL;
3296 		const u64 lockstart = alloc_start;
3297 		const u64 lockend = alloc_end - 1;
3298 
3299 		bytes_to_reserve = alloc_end - alloc_start;
3300 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3301 						      bytes_to_reserve);
3302 		if (ret < 0)
3303 			goto out;
3304 		space_reserved = true;
3305 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3306 					    &cached_state);
3307 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3308 						alloc_start, bytes_to_reserve);
3309 		if (ret) {
3310 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3311 				      lockend, &cached_state);
3312 			goto out;
3313 		}
3314 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3315 						alloc_end - alloc_start,
3316 						i_blocksize(inode),
3317 						offset + len, &alloc_hint);
3318 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3319 			      &cached_state);
3320 		/* btrfs_prealloc_file_range releases reserved space on error */
3321 		if (ret) {
3322 			space_reserved = false;
3323 			goto out;
3324 		}
3325 	}
3326 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3327  out:
3328 	if (ret && space_reserved)
3329 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3330 					       alloc_start, bytes_to_reserve);
3331 	extent_changeset_free(data_reserved);
3332 
3333 	return ret;
3334 }
3335 
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3336 static long btrfs_fallocate(struct file *file, int mode,
3337 			    loff_t offset, loff_t len)
3338 {
3339 	struct inode *inode = file_inode(file);
3340 	struct extent_state *cached_state = NULL;
3341 	struct extent_changeset *data_reserved = NULL;
3342 	struct falloc_range *range;
3343 	struct falloc_range *tmp;
3344 	struct list_head reserve_list;
3345 	u64 cur_offset;
3346 	u64 last_byte;
3347 	u64 alloc_start;
3348 	u64 alloc_end;
3349 	u64 alloc_hint = 0;
3350 	u64 locked_end;
3351 	u64 actual_end = 0;
3352 	u64 data_space_needed = 0;
3353 	u64 data_space_reserved = 0;
3354 	u64 qgroup_reserved = 0;
3355 	struct extent_map *em;
3356 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3357 	int ret;
3358 
3359 	/* Do not allow fallocate in ZONED mode */
3360 	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3361 		return -EOPNOTSUPP;
3362 
3363 	alloc_start = round_down(offset, blocksize);
3364 	alloc_end = round_up(offset + len, blocksize);
3365 	cur_offset = alloc_start;
3366 
3367 	/* Make sure we aren't being give some crap mode */
3368 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3369 		     FALLOC_FL_ZERO_RANGE))
3370 		return -EOPNOTSUPP;
3371 
3372 	if (mode & FALLOC_FL_PUNCH_HOLE)
3373 		return btrfs_punch_hole(file, offset, len);
3374 
3375 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3376 
3377 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3378 		ret = inode_newsize_ok(inode, offset + len);
3379 		if (ret)
3380 			goto out;
3381 	}
3382 
3383 	ret = file_modified(file);
3384 	if (ret)
3385 		goto out;
3386 
3387 	/*
3388 	 * TODO: Move these two operations after we have checked
3389 	 * accurate reserved space, or fallocate can still fail but
3390 	 * with page truncated or size expanded.
3391 	 *
3392 	 * But that's a minor problem and won't do much harm BTW.
3393 	 */
3394 	if (alloc_start > inode->i_size) {
3395 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3396 					alloc_start);
3397 		if (ret)
3398 			goto out;
3399 	} else if (offset + len > inode->i_size) {
3400 		/*
3401 		 * If we are fallocating from the end of the file onward we
3402 		 * need to zero out the end of the block if i_size lands in the
3403 		 * middle of a block.
3404 		 */
3405 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3406 		if (ret)
3407 			goto out;
3408 	}
3409 
3410 	/*
3411 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3412 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3413 	 * locking the file range, flush all dealloc in the range and wait for
3414 	 * all ordered extents in the range to complete. After this we can lock
3415 	 * the file range and, due to the previous locking we did, we know there
3416 	 * can't be more delalloc or ordered extents in the range.
3417 	 */
3418 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3419 				       alloc_end - alloc_start);
3420 	if (ret)
3421 		goto out;
3422 
3423 	if (mode & FALLOC_FL_ZERO_RANGE) {
3424 		ret = btrfs_zero_range(inode, offset, len, mode);
3425 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3426 		return ret;
3427 	}
3428 
3429 	locked_end = alloc_end - 1;
3430 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3431 		    &cached_state);
3432 
3433 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3434 
3435 	/* First, check if we exceed the qgroup limit */
3436 	INIT_LIST_HEAD(&reserve_list);
3437 	while (cur_offset < alloc_end) {
3438 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3439 				      alloc_end - cur_offset);
3440 		if (IS_ERR(em)) {
3441 			ret = PTR_ERR(em);
3442 			break;
3443 		}
3444 		last_byte = min(extent_map_end(em), alloc_end);
3445 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3446 		last_byte = ALIGN(last_byte, blocksize);
3447 		if (em->block_start == EXTENT_MAP_HOLE ||
3448 		    (cur_offset >= inode->i_size &&
3449 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3450 			const u64 range_len = last_byte - cur_offset;
3451 
3452 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3453 			if (ret < 0) {
3454 				free_extent_map(em);
3455 				break;
3456 			}
3457 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3458 					&data_reserved, cur_offset, range_len);
3459 			if (ret < 0) {
3460 				free_extent_map(em);
3461 				break;
3462 			}
3463 			qgroup_reserved += range_len;
3464 			data_space_needed += range_len;
3465 		}
3466 		free_extent_map(em);
3467 		cur_offset = last_byte;
3468 	}
3469 
3470 	if (!ret && data_space_needed > 0) {
3471 		/*
3472 		 * We are safe to reserve space here as we can't have delalloc
3473 		 * in the range, see above.
3474 		 */
3475 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3476 						      data_space_needed);
3477 		if (!ret)
3478 			data_space_reserved = data_space_needed;
3479 	}
3480 
3481 	/*
3482 	 * If ret is still 0, means we're OK to fallocate.
3483 	 * Or just cleanup the list and exit.
3484 	 */
3485 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3486 		if (!ret) {
3487 			ret = btrfs_prealloc_file_range(inode, mode,
3488 					range->start,
3489 					range->len, i_blocksize(inode),
3490 					offset + len, &alloc_hint);
3491 			/*
3492 			 * btrfs_prealloc_file_range() releases space even
3493 			 * if it returns an error.
3494 			 */
3495 			data_space_reserved -= range->len;
3496 			qgroup_reserved -= range->len;
3497 		} else if (data_space_reserved > 0) {
3498 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3499 					       data_reserved, range->start,
3500 					       range->len);
3501 			data_space_reserved -= range->len;
3502 			qgroup_reserved -= range->len;
3503 		} else if (qgroup_reserved > 0) {
3504 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3505 					       range->start, range->len);
3506 			qgroup_reserved -= range->len;
3507 		}
3508 		list_del(&range->list);
3509 		kfree(range);
3510 	}
3511 	if (ret < 0)
3512 		goto out_unlock;
3513 
3514 	/*
3515 	 * We didn't need to allocate any more space, but we still extended the
3516 	 * size of the file so we need to update i_size and the inode item.
3517 	 */
3518 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3519 out_unlock:
3520 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3521 		      &cached_state);
3522 out:
3523 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3524 	extent_changeset_free(data_reserved);
3525 	return ret;
3526 }
3527 
3528 /*
3529  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3530  * that has unflushed and/or flushing delalloc. There might be other adjacent
3531  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3532  * looping while it gets adjacent subranges, and merging them together.
3533  */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3534 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3535 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3536 {
3537 	const u64 len = end + 1 - start;
3538 	struct extent_map_tree *em_tree = &inode->extent_tree;
3539 	struct extent_map *em;
3540 	u64 em_end;
3541 	u64 delalloc_len;
3542 
3543 	/*
3544 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3545 	 * means we have delalloc (dirty pages) for which writeback has not
3546 	 * started yet.
3547 	 */
3548 	*delalloc_start_ret = start;
3549 	delalloc_len = count_range_bits(&inode->io_tree, delalloc_start_ret, end,
3550 					len, EXTENT_DELALLOC, 1);
3551 	/*
3552 	 * If delalloc was found then *delalloc_start_ret has a sector size
3553 	 * aligned value (rounded down).
3554 	 */
3555 	if (delalloc_len > 0)
3556 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3557 
3558 	/*
3559 	 * Now also check if there's any extent map in the range that does not
3560 	 * map to a hole or prealloc extent. We do this because:
3561 	 *
3562 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3563 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map for
3564 	 *    an allocated extent. So we might just have been called after
3565 	 *    delalloc is flushed and before the ordered extent completes and
3566 	 *    inserts the new file extent item in the subvolume's btree;
3567 	 *
3568 	 * 2) We may have an extent map created by flushing delalloc for a
3569 	 *    subrange that starts before the subrange we found marked with
3570 	 *    EXTENT_DELALLOC in the io tree.
3571 	 */
3572 	read_lock(&em_tree->lock);
3573 	em = lookup_extent_mapping(em_tree, start, len);
3574 	read_unlock(&em_tree->lock);
3575 
3576 	/* extent_map_end() returns a non-inclusive end offset. */
3577 	em_end = em ? extent_map_end(em) : 0;
3578 
3579 	/*
3580 	 * If we have a hole/prealloc extent map, check the next one if this one
3581 	 * ends before our range's end.
3582 	 */
3583 	if (em && (em->block_start == EXTENT_MAP_HOLE ||
3584 		   test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) && em_end < end) {
3585 		struct extent_map *next_em;
3586 
3587 		read_lock(&em_tree->lock);
3588 		next_em = lookup_extent_mapping(em_tree, em_end, len - em_end);
3589 		read_unlock(&em_tree->lock);
3590 
3591 		free_extent_map(em);
3592 		em_end = next_em ? extent_map_end(next_em) : 0;
3593 		em = next_em;
3594 	}
3595 
3596 	if (em && (em->block_start == EXTENT_MAP_HOLE ||
3597 		   test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3598 		free_extent_map(em);
3599 		em = NULL;
3600 	}
3601 
3602 	/*
3603 	 * No extent map or one for a hole or prealloc extent. Use the delalloc
3604 	 * range we found in the io tree if we have one.
3605 	 */
3606 	if (!em)
3607 		return (delalloc_len > 0);
3608 
3609 	/*
3610 	 * We don't have any range as EXTENT_DELALLOC in the io tree, so the
3611 	 * extent map is the only subrange representing delalloc.
3612 	 */
3613 	if (delalloc_len == 0) {
3614 		*delalloc_start_ret = em->start;
3615 		*delalloc_end_ret = min(end, em_end - 1);
3616 		free_extent_map(em);
3617 		return true;
3618 	}
3619 
3620 	/*
3621 	 * The extent map represents a delalloc range that starts before the
3622 	 * delalloc range we found in the io tree.
3623 	 */
3624 	if (em->start < *delalloc_start_ret) {
3625 		*delalloc_start_ret = em->start;
3626 		/*
3627 		 * If the ranges are adjacent, return a combined range.
3628 		 * Otherwise return the extent map's range.
3629 		 */
3630 		if (em_end < *delalloc_start_ret)
3631 			*delalloc_end_ret = min(end, em_end - 1);
3632 
3633 		free_extent_map(em);
3634 		return true;
3635 	}
3636 
3637 	/*
3638 	 * The extent map starts after the delalloc range we found in the io
3639 	 * tree. If it's adjacent, return a combined range, otherwise return
3640 	 * the range found in the io tree.
3641 	 */
3642 	if (*delalloc_end_ret + 1 == em->start)
3643 		*delalloc_end_ret = min(end, em_end - 1);
3644 
3645 	free_extent_map(em);
3646 	return true;
3647 }
3648 
3649 /*
3650  * Check if there's delalloc in a given range.
3651  *
3652  * @inode:               The inode.
3653  * @start:               The start offset of the range. It does not need to be
3654  *                       sector size aligned.
3655  * @end:                 The end offset (inclusive value) of the search range.
3656  *                       It does not need to be sector size aligned.
3657  * @delalloc_start_ret:  Output argument, set to the start offset of the
3658  *                       subrange found with delalloc (may not be sector size
3659  *                       aligned).
3660  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3661  *                       of the subrange found with delalloc.
3662  *
3663  * Returns true if a subrange with delalloc is found within the given range, and
3664  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3665  * end offsets of the subrange.
3666  */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3667 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3668 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3669 {
3670 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3671 	u64 prev_delalloc_end = 0;
3672 	bool ret = false;
3673 
3674 	while (cur_offset <= end) {
3675 		u64 delalloc_start;
3676 		u64 delalloc_end;
3677 		bool delalloc;
3678 
3679 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3680 						  &delalloc_start,
3681 						  &delalloc_end);
3682 		if (!delalloc)
3683 			break;
3684 
3685 		if (prev_delalloc_end == 0) {
3686 			/* First subrange found. */
3687 			*delalloc_start_ret = max(delalloc_start, start);
3688 			*delalloc_end_ret = delalloc_end;
3689 			ret = true;
3690 		} else if (delalloc_start == prev_delalloc_end + 1) {
3691 			/* Subrange adjacent to the previous one, merge them. */
3692 			*delalloc_end_ret = delalloc_end;
3693 		} else {
3694 			/* Subrange not adjacent to the previous one, exit. */
3695 			break;
3696 		}
3697 
3698 		prev_delalloc_end = delalloc_end;
3699 		cur_offset = delalloc_end + 1;
3700 		cond_resched();
3701 	}
3702 
3703 	return ret;
3704 }
3705 
3706 /*
3707  * Check if there's a hole or delalloc range in a range representing a hole (or
3708  * prealloc extent) found in the inode's subvolume btree.
3709  *
3710  * @inode:      The inode.
3711  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3712  * @start:      Start offset of the hole region. It does not need to be sector
3713  *              size aligned.
3714  * @end:        End offset (inclusive value) of the hole region. It does not
3715  *              need to be sector size aligned.
3716  * @start_ret:  Return parameter, used to set the start of the subrange in the
3717  *              hole that matches the search criteria (seek mode), if such
3718  *              subrange is found (return value of the function is true).
3719  *              The value returned here may not be sector size aligned.
3720  *
3721  * Returns true if a subrange matching the given seek mode is found, and if one
3722  * is found, it updates @start_ret with the start of the subrange.
3723  */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,u64 start,u64 end,u64 * start_ret)3724 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3725 					u64 start, u64 end, u64 *start_ret)
3726 {
3727 	u64 delalloc_start;
3728 	u64 delalloc_end;
3729 	bool delalloc;
3730 
3731 	delalloc = btrfs_find_delalloc_in_range(inode, start, end,
3732 						&delalloc_start, &delalloc_end);
3733 	if (delalloc && whence == SEEK_DATA) {
3734 		*start_ret = delalloc_start;
3735 		return true;
3736 	}
3737 
3738 	if (delalloc && whence == SEEK_HOLE) {
3739 		/*
3740 		 * We found delalloc but it starts after out start offset. So we
3741 		 * have a hole between our start offset and the delalloc start.
3742 		 */
3743 		if (start < delalloc_start) {
3744 			*start_ret = start;
3745 			return true;
3746 		}
3747 		/*
3748 		 * Delalloc range starts at our start offset.
3749 		 * If the delalloc range's length is smaller than our range,
3750 		 * then it means we have a hole that starts where the delalloc
3751 		 * subrange ends.
3752 		 */
3753 		if (delalloc_end < end) {
3754 			*start_ret = delalloc_end + 1;
3755 			return true;
3756 		}
3757 
3758 		/* There's delalloc for the whole range. */
3759 		return false;
3760 	}
3761 
3762 	if (!delalloc && whence == SEEK_HOLE) {
3763 		*start_ret = start;
3764 		return true;
3765 	}
3766 
3767 	/*
3768 	 * No delalloc in the range and we are seeking for data. The caller has
3769 	 * to iterate to the next extent item in the subvolume btree.
3770 	 */
3771 	return false;
3772 }
3773 
find_desired_extent(struct btrfs_inode * inode,loff_t offset,int whence)3774 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3775 				  int whence)
3776 {
3777 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3778 	struct extent_state *cached_state = NULL;
3779 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3780 	const u64 ino = btrfs_ino(inode);
3781 	struct btrfs_root *root = inode->root;
3782 	struct btrfs_path *path;
3783 	struct btrfs_key key;
3784 	u64 last_extent_end;
3785 	u64 lockstart;
3786 	u64 lockend;
3787 	u64 start;
3788 	int ret;
3789 	bool found = false;
3790 
3791 	if (i_size == 0 || offset >= i_size)
3792 		return -ENXIO;
3793 
3794 	/*
3795 	 * Quick path. If the inode has no prealloc extents and its number of
3796 	 * bytes used matches its i_size, then it can not have holes.
3797 	 */
3798 	if (whence == SEEK_HOLE &&
3799 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3800 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3801 		return i_size;
3802 
3803 	/*
3804 	 * offset can be negative, in this case we start finding DATA/HOLE from
3805 	 * the very start of the file.
3806 	 */
3807 	start = max_t(loff_t, 0, offset);
3808 
3809 	lockstart = round_down(start, fs_info->sectorsize);
3810 	lockend = round_up(i_size, fs_info->sectorsize);
3811 	if (lockend <= lockstart)
3812 		lockend = lockstart + fs_info->sectorsize;
3813 	lockend--;
3814 
3815 	path = btrfs_alloc_path();
3816 	if (!path)
3817 		return -ENOMEM;
3818 	path->reada = READA_FORWARD;
3819 
3820 	key.objectid = ino;
3821 	key.type = BTRFS_EXTENT_DATA_KEY;
3822 	key.offset = start;
3823 
3824 	last_extent_end = lockstart;
3825 
3826 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3827 
3828 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3829 	if (ret < 0) {
3830 		goto out;
3831 	} else if (ret > 0 && path->slots[0] > 0) {
3832 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3833 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3834 			path->slots[0]--;
3835 	}
3836 
3837 	while (start < i_size) {
3838 		struct extent_buffer *leaf = path->nodes[0];
3839 		struct btrfs_file_extent_item *extent;
3840 		u64 extent_end;
3841 		u8 type;
3842 
3843 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3844 			ret = btrfs_next_leaf(root, path);
3845 			if (ret < 0)
3846 				goto out;
3847 			else if (ret > 0)
3848 				break;
3849 
3850 			leaf = path->nodes[0];
3851 		}
3852 
3853 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3854 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3855 			break;
3856 
3857 		extent_end = btrfs_file_extent_end(path);
3858 
3859 		/*
3860 		 * In the first iteration we may have a slot that points to an
3861 		 * extent that ends before our start offset, so skip it.
3862 		 */
3863 		if (extent_end <= start) {
3864 			path->slots[0]++;
3865 			continue;
3866 		}
3867 
3868 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3869 		if (last_extent_end < key.offset) {
3870 			u64 search_start = last_extent_end;
3871 			u64 found_start;
3872 
3873 			/*
3874 			 * First iteration, @start matches @offset and it's
3875 			 * within the hole.
3876 			 */
3877 			if (start == offset)
3878 				search_start = offset;
3879 
3880 			found = find_desired_extent_in_hole(inode, whence,
3881 							    search_start,
3882 							    key.offset - 1,
3883 							    &found_start);
3884 			if (found) {
3885 				start = found_start;
3886 				break;
3887 			}
3888 			/*
3889 			 * Didn't find data or a hole (due to delalloc) in the
3890 			 * implicit hole range, so need to analyze the extent.
3891 			 */
3892 		}
3893 
3894 		extent = btrfs_item_ptr(leaf, path->slots[0],
3895 					struct btrfs_file_extent_item);
3896 		type = btrfs_file_extent_type(leaf, extent);
3897 
3898 		/*
3899 		 * Can't access the extent's disk_bytenr field if this is an
3900 		 * inline extent, since at that offset, it's where the extent
3901 		 * data starts.
3902 		 */
3903 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3904 		    (type == BTRFS_FILE_EXTENT_REG &&
3905 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3906 			/*
3907 			 * Explicit hole or prealloc extent, search for delalloc.
3908 			 * A prealloc extent is treated like a hole.
3909 			 */
3910 			u64 search_start = key.offset;
3911 			u64 found_start;
3912 
3913 			/*
3914 			 * First iteration, @start matches @offset and it's
3915 			 * within the hole.
3916 			 */
3917 			if (start == offset)
3918 				search_start = offset;
3919 
3920 			found = find_desired_extent_in_hole(inode, whence,
3921 							    search_start,
3922 							    extent_end - 1,
3923 							    &found_start);
3924 			if (found) {
3925 				start = found_start;
3926 				break;
3927 			}
3928 			/*
3929 			 * Didn't find data or a hole (due to delalloc) in the
3930 			 * implicit hole range, so need to analyze the next
3931 			 * extent item.
3932 			 */
3933 		} else {
3934 			/*
3935 			 * Found a regular or inline extent.
3936 			 * If we are seeking for data, adjust the start offset
3937 			 * and stop, we're done.
3938 			 */
3939 			if (whence == SEEK_DATA) {
3940 				start = max_t(u64, key.offset, offset);
3941 				found = true;
3942 				break;
3943 			}
3944 			/*
3945 			 * Else, we are seeking for a hole, check the next file
3946 			 * extent item.
3947 			 */
3948 		}
3949 
3950 		start = extent_end;
3951 		last_extent_end = extent_end;
3952 		path->slots[0]++;
3953 		if (fatal_signal_pending(current)) {
3954 			ret = -EINTR;
3955 			goto out;
3956 		}
3957 		cond_resched();
3958 	}
3959 
3960 	/* We have an implicit hole from the last extent found up to i_size. */
3961 	if (!found && start < i_size) {
3962 		found = find_desired_extent_in_hole(inode, whence, start,
3963 						    i_size - 1, &start);
3964 		if (!found)
3965 			start = i_size;
3966 	}
3967 
3968 out:
3969 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3970 	btrfs_free_path(path);
3971 
3972 	if (ret < 0)
3973 		return ret;
3974 
3975 	if (whence == SEEK_DATA && start >= i_size)
3976 		return -ENXIO;
3977 
3978 	return min_t(loff_t, start, i_size);
3979 }
3980 
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3981 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3982 {
3983 	struct inode *inode = file->f_mapping->host;
3984 
3985 	switch (whence) {
3986 	default:
3987 		return generic_file_llseek(file, offset, whence);
3988 	case SEEK_DATA:
3989 	case SEEK_HOLE:
3990 		btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3991 		offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3992 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3993 		break;
3994 	}
3995 
3996 	if (offset < 0)
3997 		return offset;
3998 
3999 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
4000 }
4001 
btrfs_file_open(struct inode * inode,struct file * filp)4002 static int btrfs_file_open(struct inode *inode, struct file *filp)
4003 {
4004 	int ret;
4005 
4006 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC;
4007 
4008 	ret = fsverity_file_open(inode, filp);
4009 	if (ret)
4010 		return ret;
4011 	return generic_file_open(inode, filp);
4012 }
4013 
check_direct_read(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)4014 static int check_direct_read(struct btrfs_fs_info *fs_info,
4015 			     const struct iov_iter *iter, loff_t offset)
4016 {
4017 	int ret;
4018 	int i, seg;
4019 
4020 	ret = check_direct_IO(fs_info, iter, offset);
4021 	if (ret < 0)
4022 		return ret;
4023 
4024 	if (!iter_is_iovec(iter))
4025 		return 0;
4026 
4027 	for (seg = 0; seg < iter->nr_segs; seg++)
4028 		for (i = seg + 1; i < iter->nr_segs; i++)
4029 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
4030 				return -EINVAL;
4031 	return 0;
4032 }
4033 
btrfs_direct_read(struct kiocb * iocb,struct iov_iter * to)4034 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
4035 {
4036 	struct inode *inode = file_inode(iocb->ki_filp);
4037 	size_t prev_left = 0;
4038 	ssize_t read = 0;
4039 	ssize_t ret;
4040 
4041 	if (fsverity_active(inode))
4042 		return 0;
4043 
4044 	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
4045 		return 0;
4046 
4047 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
4048 again:
4049 	/*
4050 	 * This is similar to what we do for direct IO writes, see the comment
4051 	 * at btrfs_direct_write(), but we also disable page faults in addition
4052 	 * to disabling them only at the iov_iter level. This is because when
4053 	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
4054 	 * which can still trigger page fault ins despite having set ->nofault
4055 	 * to true of our 'to' iov_iter.
4056 	 *
4057 	 * The difference to direct IO writes is that we deadlock when trying
4058 	 * to lock the extent range in the inode's tree during he page reads
4059 	 * triggered by the fault in (while for writes it is due to waiting for
4060 	 * our own ordered extent). This is because for direct IO reads,
4061 	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
4062 	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
4063 	 */
4064 	pagefault_disable();
4065 	to->nofault = true;
4066 	ret = btrfs_dio_read(iocb, to, read);
4067 	to->nofault = false;
4068 	pagefault_enable();
4069 
4070 	/* No increment (+=) because iomap returns a cumulative value. */
4071 	if (ret > 0)
4072 		read = ret;
4073 
4074 	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
4075 		const size_t left = iov_iter_count(to);
4076 
4077 		if (left == prev_left) {
4078 			/*
4079 			 * We didn't make any progress since the last attempt,
4080 			 * fallback to a buffered read for the remainder of the
4081 			 * range. This is just to avoid any possibility of looping
4082 			 * for too long.
4083 			 */
4084 			ret = read;
4085 		} else {
4086 			/*
4087 			 * We made some progress since the last retry or this is
4088 			 * the first time we are retrying. Fault in as many pages
4089 			 * as possible and retry.
4090 			 */
4091 			fault_in_iov_iter_writeable(to, left);
4092 			prev_left = left;
4093 			goto again;
4094 		}
4095 	}
4096 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4097 	return ret < 0 ? ret : read;
4098 }
4099 
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4100 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4101 {
4102 	ssize_t ret = 0;
4103 
4104 	if (iocb->ki_flags & IOCB_DIRECT) {
4105 		ret = btrfs_direct_read(iocb, to);
4106 		if (ret < 0 || !iov_iter_count(to) ||
4107 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
4108 			return ret;
4109 	}
4110 
4111 	return filemap_read(iocb, to, ret);
4112 }
4113 
4114 const struct file_operations btrfs_file_operations = {
4115 	.llseek		= btrfs_file_llseek,
4116 	.read_iter      = btrfs_file_read_iter,
4117 	.splice_read	= generic_file_splice_read,
4118 	.write_iter	= btrfs_file_write_iter,
4119 	.splice_write	= iter_file_splice_write,
4120 	.mmap		= btrfs_file_mmap,
4121 	.open		= btrfs_file_open,
4122 	.release	= btrfs_release_file,
4123 	.get_unmapped_area = thp_get_unmapped_area,
4124 	.fsync		= btrfs_sync_file,
4125 	.fallocate	= btrfs_fallocate,
4126 	.unlocked_ioctl	= btrfs_ioctl,
4127 #ifdef CONFIG_COMPAT
4128 	.compat_ioctl	= btrfs_compat_ioctl,
4129 #endif
4130 	.remap_file_range = btrfs_remap_file_range,
4131 };
4132 
btrfs_auto_defrag_exit(void)4133 void __cold btrfs_auto_defrag_exit(void)
4134 {
4135 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
4136 }
4137 
btrfs_auto_defrag_init(void)4138 int __init btrfs_auto_defrag_init(void)
4139 {
4140 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
4141 					sizeof(struct inode_defrag), 0,
4142 					SLAB_MEM_SPREAD,
4143 					NULL);
4144 	if (!btrfs_inode_defrag_cachep)
4145 		return -ENOMEM;
4146 
4147 	return 0;
4148 }
4149 
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)4150 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
4151 {
4152 	int ret;
4153 
4154 	/*
4155 	 * So with compression we will find and lock a dirty page and clear the
4156 	 * first one as dirty, setup an async extent, and immediately return
4157 	 * with the entire range locked but with nobody actually marked with
4158 	 * writeback.  So we can't just filemap_write_and_wait_range() and
4159 	 * expect it to work since it will just kick off a thread to do the
4160 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
4161 	 * since it will wait on the page lock, which won't be unlocked until
4162 	 * after the pages have been marked as writeback and so we're good to go
4163 	 * from there.  We have to do this otherwise we'll miss the ordered
4164 	 * extents and that results in badness.  Please Josef, do not think you
4165 	 * know better and pull this out at some point in the future, it is
4166 	 * right and you are wrong.
4167 	 */
4168 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
4169 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
4170 			     &BTRFS_I(inode)->runtime_flags))
4171 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
4172 
4173 	return ret;
4174 }
4175