1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18
19 /* Just an arbitrary number so we can be sure this happened */
20 #define BACKREF_FOUND_SHARED 6
21
22 struct extent_inode_elem {
23 u64 inum;
24 u64 offset;
25 struct extent_inode_elem *next;
26 };
27
check_extent_in_eb(const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)28 static int check_extent_in_eb(const struct btrfs_key *key,
29 const struct extent_buffer *eb,
30 const struct btrfs_file_extent_item *fi,
31 u64 extent_item_pos,
32 struct extent_inode_elem **eie,
33 bool ignore_offset)
34 {
35 u64 offset = 0;
36 struct extent_inode_elem *e;
37
38 if (!ignore_offset &&
39 !btrfs_file_extent_compression(eb, fi) &&
40 !btrfs_file_extent_encryption(eb, fi) &&
41 !btrfs_file_extent_other_encoding(eb, fi)) {
42 u64 data_offset;
43 u64 data_len;
44
45 data_offset = btrfs_file_extent_offset(eb, fi);
46 data_len = btrfs_file_extent_num_bytes(eb, fi);
47
48 if (extent_item_pos < data_offset ||
49 extent_item_pos >= data_offset + data_len)
50 return 1;
51 offset = extent_item_pos - data_offset;
52 }
53
54 e = kmalloc(sizeof(*e), GFP_NOFS);
55 if (!e)
56 return -ENOMEM;
57
58 e->next = *eie;
59 e->inum = key->objectid;
60 e->offset = key->offset + offset;
61 *eie = e;
62
63 return 0;
64 }
65
free_inode_elem_list(struct extent_inode_elem * eie)66 static void free_inode_elem_list(struct extent_inode_elem *eie)
67 {
68 struct extent_inode_elem *eie_next;
69
70 for (; eie; eie = eie_next) {
71 eie_next = eie->next;
72 kfree(eie);
73 }
74 }
75
find_extent_in_eb(const struct extent_buffer * eb,u64 wanted_disk_byte,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)76 static int find_extent_in_eb(const struct extent_buffer *eb,
77 u64 wanted_disk_byte, u64 extent_item_pos,
78 struct extent_inode_elem **eie,
79 bool ignore_offset)
80 {
81 u64 disk_byte;
82 struct btrfs_key key;
83 struct btrfs_file_extent_item *fi;
84 int slot;
85 int nritems;
86 int extent_type;
87 int ret;
88
89 /*
90 * from the shared data ref, we only have the leaf but we need
91 * the key. thus, we must look into all items and see that we
92 * find one (some) with a reference to our extent item.
93 */
94 nritems = btrfs_header_nritems(eb);
95 for (slot = 0; slot < nritems; ++slot) {
96 btrfs_item_key_to_cpu(eb, &key, slot);
97 if (key.type != BTRFS_EXTENT_DATA_KEY)
98 continue;
99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 extent_type = btrfs_file_extent_type(eb, fi);
101 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 continue;
103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 if (disk_byte != wanted_disk_byte)
106 continue;
107
108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
109 if (ret < 0)
110 return ret;
111 }
112
113 return 0;
114 }
115
116 struct preftree {
117 struct rb_root_cached root;
118 unsigned int count;
119 };
120
121 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
122
123 struct preftrees {
124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 struct preftree indirect_missing_keys;
127 };
128
129 /*
130 * Checks for a shared extent during backref search.
131 *
132 * The share_count tracks prelim_refs (direct and indirect) having a
133 * ref->count >0:
134 * - incremented when a ref->count transitions to >0
135 * - decremented when a ref->count transitions to <1
136 */
137 struct share_check {
138 u64 root_objectid;
139 u64 inum;
140 int share_count;
141 };
142
extent_is_shared(struct share_check * sc)143 static inline int extent_is_shared(struct share_check *sc)
144 {
145 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
146 }
147
148 static struct kmem_cache *btrfs_prelim_ref_cache;
149
btrfs_prelim_ref_init(void)150 int __init btrfs_prelim_ref_init(void)
151 {
152 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
153 sizeof(struct prelim_ref),
154 0,
155 SLAB_MEM_SPREAD,
156 NULL);
157 if (!btrfs_prelim_ref_cache)
158 return -ENOMEM;
159 return 0;
160 }
161
btrfs_prelim_ref_exit(void)162 void __cold btrfs_prelim_ref_exit(void)
163 {
164 kmem_cache_destroy(btrfs_prelim_ref_cache);
165 }
166
free_pref(struct prelim_ref * ref)167 static void free_pref(struct prelim_ref *ref)
168 {
169 kmem_cache_free(btrfs_prelim_ref_cache, ref);
170 }
171
172 /*
173 * Return 0 when both refs are for the same block (and can be merged).
174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
175 * indicates a 'higher' block.
176 */
prelim_ref_compare(struct prelim_ref * ref1,struct prelim_ref * ref2)177 static int prelim_ref_compare(struct prelim_ref *ref1,
178 struct prelim_ref *ref2)
179 {
180 if (ref1->level < ref2->level)
181 return -1;
182 if (ref1->level > ref2->level)
183 return 1;
184 if (ref1->root_id < ref2->root_id)
185 return -1;
186 if (ref1->root_id > ref2->root_id)
187 return 1;
188 if (ref1->key_for_search.type < ref2->key_for_search.type)
189 return -1;
190 if (ref1->key_for_search.type > ref2->key_for_search.type)
191 return 1;
192 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
193 return -1;
194 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
195 return 1;
196 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
197 return -1;
198 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
199 return 1;
200 if (ref1->parent < ref2->parent)
201 return -1;
202 if (ref1->parent > ref2->parent)
203 return 1;
204
205 return 0;
206 }
207
update_share_count(struct share_check * sc,int oldcount,int newcount)208 static void update_share_count(struct share_check *sc, int oldcount,
209 int newcount)
210 {
211 if ((!sc) || (oldcount == 0 && newcount < 1))
212 return;
213
214 if (oldcount > 0 && newcount < 1)
215 sc->share_count--;
216 else if (oldcount < 1 && newcount > 0)
217 sc->share_count++;
218 }
219
220 /*
221 * Add @newref to the @root rbtree, merging identical refs.
222 *
223 * Callers should assume that newref has been freed after calling.
224 */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
226 struct preftree *preftree,
227 struct prelim_ref *newref,
228 struct share_check *sc)
229 {
230 struct rb_root_cached *root;
231 struct rb_node **p;
232 struct rb_node *parent = NULL;
233 struct prelim_ref *ref;
234 int result;
235 bool leftmost = true;
236
237 root = &preftree->root;
238 p = &root->rb_root.rb_node;
239
240 while (*p) {
241 parent = *p;
242 ref = rb_entry(parent, struct prelim_ref, rbnode);
243 result = prelim_ref_compare(ref, newref);
244 if (result < 0) {
245 p = &(*p)->rb_left;
246 } else if (result > 0) {
247 p = &(*p)->rb_right;
248 leftmost = false;
249 } else {
250 /* Identical refs, merge them and free @newref */
251 struct extent_inode_elem *eie = ref->inode_list;
252
253 while (eie && eie->next)
254 eie = eie->next;
255
256 if (!eie)
257 ref->inode_list = newref->inode_list;
258 else
259 eie->next = newref->inode_list;
260 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
261 preftree->count);
262 /*
263 * A delayed ref can have newref->count < 0.
264 * The ref->count is updated to follow any
265 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
266 */
267 update_share_count(sc, ref->count,
268 ref->count + newref->count);
269 ref->count += newref->count;
270 free_pref(newref);
271 return;
272 }
273 }
274
275 update_share_count(sc, 0, newref->count);
276 preftree->count++;
277 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
278 rb_link_node(&newref->rbnode, parent, p);
279 rb_insert_color_cached(&newref->rbnode, root, leftmost);
280 }
281
282 /*
283 * Release the entire tree. We don't care about internal consistency so
284 * just free everything and then reset the tree root.
285 */
prelim_release(struct preftree * preftree)286 static void prelim_release(struct preftree *preftree)
287 {
288 struct prelim_ref *ref, *next_ref;
289
290 rbtree_postorder_for_each_entry_safe(ref, next_ref,
291 &preftree->root.rb_root, rbnode)
292 free_pref(ref);
293
294 preftree->root = RB_ROOT_CACHED;
295 preftree->count = 0;
296 }
297
298 /*
299 * the rules for all callers of this function are:
300 * - obtaining the parent is the goal
301 * - if you add a key, you must know that it is a correct key
302 * - if you cannot add the parent or a correct key, then we will look into the
303 * block later to set a correct key
304 *
305 * delayed refs
306 * ============
307 * backref type | shared | indirect | shared | indirect
308 * information | tree | tree | data | data
309 * --------------------+--------+----------+--------+----------
310 * parent logical | y | - | - | -
311 * key to resolve | - | y | y | y
312 * tree block logical | - | - | - | -
313 * root for resolving | y | y | y | y
314 *
315 * - column 1: we've the parent -> done
316 * - column 2, 3, 4: we use the key to find the parent
317 *
318 * on disk refs (inline or keyed)
319 * ==============================
320 * backref type | shared | indirect | shared | indirect
321 * information | tree | tree | data | data
322 * --------------------+--------+----------+--------+----------
323 * parent logical | y | - | y | -
324 * key to resolve | - | - | - | y
325 * tree block logical | y | y | y | y
326 * root for resolving | - | y | y | y
327 *
328 * - column 1, 3: we've the parent -> done
329 * - column 2: we take the first key from the block to find the parent
330 * (see add_missing_keys)
331 * - column 4: we use the key to find the parent
332 *
333 * additional information that's available but not required to find the parent
334 * block might help in merging entries to gain some speed.
335 */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)336 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
337 struct preftree *preftree, u64 root_id,
338 const struct btrfs_key *key, int level, u64 parent,
339 u64 wanted_disk_byte, int count,
340 struct share_check *sc, gfp_t gfp_mask)
341 {
342 struct prelim_ref *ref;
343
344 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
345 return 0;
346
347 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
348 if (!ref)
349 return -ENOMEM;
350
351 ref->root_id = root_id;
352 if (key)
353 ref->key_for_search = *key;
354 else
355 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
356
357 ref->inode_list = NULL;
358 ref->level = level;
359 ref->count = count;
360 ref->parent = parent;
361 ref->wanted_disk_byte = wanted_disk_byte;
362 prelim_ref_insert(fs_info, preftree, ref, sc);
363 return extent_is_shared(sc);
364 }
365
366 /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)367 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
368 struct preftrees *preftrees, int level, u64 parent,
369 u64 wanted_disk_byte, int count,
370 struct share_check *sc, gfp_t gfp_mask)
371 {
372 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
373 parent, wanted_disk_byte, count, sc, gfp_mask);
374 }
375
376 /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)377 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
378 struct preftrees *preftrees, u64 root_id,
379 const struct btrfs_key *key, int level,
380 u64 wanted_disk_byte, int count,
381 struct share_check *sc, gfp_t gfp_mask)
382 {
383 struct preftree *tree = &preftrees->indirect;
384
385 if (!key)
386 tree = &preftrees->indirect_missing_keys;
387 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
388 wanted_disk_byte, count, sc, gfp_mask);
389 }
390
is_shared_data_backref(struct preftrees * preftrees,u64 bytenr)391 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
392 {
393 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
394 struct rb_node *parent = NULL;
395 struct prelim_ref *ref = NULL;
396 struct prelim_ref target = {};
397 int result;
398
399 target.parent = bytenr;
400
401 while (*p) {
402 parent = *p;
403 ref = rb_entry(parent, struct prelim_ref, rbnode);
404 result = prelim_ref_compare(ref, &target);
405
406 if (result < 0)
407 p = &(*p)->rb_left;
408 else if (result > 0)
409 p = &(*p)->rb_right;
410 else
411 return 1;
412 }
413 return 0;
414 }
415
add_all_parents(struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct preftrees * preftrees,struct prelim_ref * ref,int level,u64 time_seq,const u64 * extent_item_pos,bool ignore_offset)416 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
417 struct ulist *parents,
418 struct preftrees *preftrees, struct prelim_ref *ref,
419 int level, u64 time_seq, const u64 *extent_item_pos,
420 bool ignore_offset)
421 {
422 int ret = 0;
423 int slot;
424 struct extent_buffer *eb;
425 struct btrfs_key key;
426 struct btrfs_key *key_for_search = &ref->key_for_search;
427 struct btrfs_file_extent_item *fi;
428 struct extent_inode_elem *eie = NULL, *old = NULL;
429 u64 disk_byte;
430 u64 wanted_disk_byte = ref->wanted_disk_byte;
431 u64 count = 0;
432 u64 data_offset;
433
434 if (level != 0) {
435 eb = path->nodes[level];
436 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
437 if (ret < 0)
438 return ret;
439 return 0;
440 }
441
442 /*
443 * 1. We normally enter this function with the path already pointing to
444 * the first item to check. But sometimes, we may enter it with
445 * slot == nritems.
446 * 2. We are searching for normal backref but bytenr of this leaf
447 * matches shared data backref
448 * 3. The leaf owner is not equal to the root we are searching
449 *
450 * For these cases, go to the next leaf before we continue.
451 */
452 eb = path->nodes[0];
453 if (path->slots[0] >= btrfs_header_nritems(eb) ||
454 is_shared_data_backref(preftrees, eb->start) ||
455 ref->root_id != btrfs_header_owner(eb)) {
456 if (time_seq == BTRFS_SEQ_LAST)
457 ret = btrfs_next_leaf(root, path);
458 else
459 ret = btrfs_next_old_leaf(root, path, time_seq);
460 }
461
462 while (!ret && count < ref->count) {
463 eb = path->nodes[0];
464 slot = path->slots[0];
465
466 btrfs_item_key_to_cpu(eb, &key, slot);
467
468 if (key.objectid != key_for_search->objectid ||
469 key.type != BTRFS_EXTENT_DATA_KEY)
470 break;
471
472 /*
473 * We are searching for normal backref but bytenr of this leaf
474 * matches shared data backref, OR
475 * the leaf owner is not equal to the root we are searching for
476 */
477 if (slot == 0 &&
478 (is_shared_data_backref(preftrees, eb->start) ||
479 ref->root_id != btrfs_header_owner(eb))) {
480 if (time_seq == BTRFS_SEQ_LAST)
481 ret = btrfs_next_leaf(root, path);
482 else
483 ret = btrfs_next_old_leaf(root, path, time_seq);
484 continue;
485 }
486 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
487 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
488 data_offset = btrfs_file_extent_offset(eb, fi);
489
490 if (disk_byte == wanted_disk_byte) {
491 eie = NULL;
492 old = NULL;
493 if (ref->key_for_search.offset == key.offset - data_offset)
494 count++;
495 else
496 goto next;
497 if (extent_item_pos) {
498 ret = check_extent_in_eb(&key, eb, fi,
499 *extent_item_pos,
500 &eie, ignore_offset);
501 if (ret < 0)
502 break;
503 }
504 if (ret > 0)
505 goto next;
506 ret = ulist_add_merge_ptr(parents, eb->start,
507 eie, (void **)&old, GFP_NOFS);
508 if (ret < 0)
509 break;
510 if (!ret && extent_item_pos) {
511 while (old->next)
512 old = old->next;
513 old->next = eie;
514 }
515 eie = NULL;
516 }
517 next:
518 if (time_seq == BTRFS_SEQ_LAST)
519 ret = btrfs_next_item(root, path);
520 else
521 ret = btrfs_next_old_item(root, path, time_seq);
522 }
523
524 if (ret > 0)
525 ret = 0;
526 else if (ret < 0)
527 free_inode_elem_list(eie);
528 return ret;
529 }
530
531 /*
532 * resolve an indirect backref in the form (root_id, key, level)
533 * to a logical address
534 */
resolve_indirect_ref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,struct prelim_ref * ref,struct ulist * parents,const u64 * extent_item_pos,bool ignore_offset)535 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
536 struct btrfs_path *path, u64 time_seq,
537 struct preftrees *preftrees,
538 struct prelim_ref *ref, struct ulist *parents,
539 const u64 *extent_item_pos, bool ignore_offset)
540 {
541 struct btrfs_root *root;
542 struct extent_buffer *eb;
543 int ret = 0;
544 int root_level;
545 int level = ref->level;
546 struct btrfs_key search_key = ref->key_for_search;
547
548 /*
549 * If we're search_commit_root we could possibly be holding locks on
550 * other tree nodes. This happens when qgroups does backref walks when
551 * adding new delayed refs. To deal with this we need to look in cache
552 * for the root, and if we don't find it then we need to search the
553 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
554 * here.
555 */
556 if (path->search_commit_root)
557 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
558 else
559 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
560 if (IS_ERR(root)) {
561 ret = PTR_ERR(root);
562 goto out_free;
563 }
564
565 if (!path->search_commit_root &&
566 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
567 ret = -ENOENT;
568 goto out;
569 }
570
571 if (btrfs_is_testing(fs_info)) {
572 ret = -ENOENT;
573 goto out;
574 }
575
576 if (path->search_commit_root)
577 root_level = btrfs_header_level(root->commit_root);
578 else if (time_seq == BTRFS_SEQ_LAST)
579 root_level = btrfs_header_level(root->node);
580 else
581 root_level = btrfs_old_root_level(root, time_seq);
582
583 if (root_level + 1 == level)
584 goto out;
585
586 /*
587 * We can often find data backrefs with an offset that is too large
588 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
589 * subtracting a file's offset with the data offset of its
590 * corresponding extent data item. This can happen for example in the
591 * clone ioctl.
592 *
593 * So if we detect such case we set the search key's offset to zero to
594 * make sure we will find the matching file extent item at
595 * add_all_parents(), otherwise we will miss it because the offset
596 * taken form the backref is much larger then the offset of the file
597 * extent item. This can make us scan a very large number of file
598 * extent items, but at least it will not make us miss any.
599 *
600 * This is an ugly workaround for a behaviour that should have never
601 * existed, but it does and a fix for the clone ioctl would touch a lot
602 * of places, cause backwards incompatibility and would not fix the
603 * problem for extents cloned with older kernels.
604 */
605 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
606 search_key.offset >= LLONG_MAX)
607 search_key.offset = 0;
608 path->lowest_level = level;
609 if (time_seq == BTRFS_SEQ_LAST)
610 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
611 else
612 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
613
614 btrfs_debug(fs_info,
615 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
616 ref->root_id, level, ref->count, ret,
617 ref->key_for_search.objectid, ref->key_for_search.type,
618 ref->key_for_search.offset);
619 if (ret < 0)
620 goto out;
621
622 eb = path->nodes[level];
623 while (!eb) {
624 if (WARN_ON(!level)) {
625 ret = 1;
626 goto out;
627 }
628 level--;
629 eb = path->nodes[level];
630 }
631
632 ret = add_all_parents(root, path, parents, preftrees, ref, level,
633 time_seq, extent_item_pos, ignore_offset);
634 out:
635 btrfs_put_root(root);
636 out_free:
637 path->lowest_level = 0;
638 btrfs_release_path(path);
639 return ret;
640 }
641
642 static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)643 unode_aux_to_inode_list(struct ulist_node *node)
644 {
645 if (!node)
646 return NULL;
647 return (struct extent_inode_elem *)(uintptr_t)node->aux;
648 }
649
650 /*
651 * We maintain three separate rbtrees: one for direct refs, one for
652 * indirect refs which have a key, and one for indirect refs which do not
653 * have a key. Each tree does merge on insertion.
654 *
655 * Once all of the references are located, we iterate over the tree of
656 * indirect refs with missing keys. An appropriate key is located and
657 * the ref is moved onto the tree for indirect refs. After all missing
658 * keys are thus located, we iterate over the indirect ref tree, resolve
659 * each reference, and then insert the resolved reference onto the
660 * direct tree (merging there too).
661 *
662 * New backrefs (i.e., for parent nodes) are added to the appropriate
663 * rbtree as they are encountered. The new backrefs are subsequently
664 * resolved as above.
665 */
resolve_indirect_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)666 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
667 struct btrfs_path *path, u64 time_seq,
668 struct preftrees *preftrees,
669 const u64 *extent_item_pos,
670 struct share_check *sc, bool ignore_offset)
671 {
672 int err;
673 int ret = 0;
674 struct ulist *parents;
675 struct ulist_node *node;
676 struct ulist_iterator uiter;
677 struct rb_node *rnode;
678
679 parents = ulist_alloc(GFP_NOFS);
680 if (!parents)
681 return -ENOMEM;
682
683 /*
684 * We could trade memory usage for performance here by iterating
685 * the tree, allocating new refs for each insertion, and then
686 * freeing the entire indirect tree when we're done. In some test
687 * cases, the tree can grow quite large (~200k objects).
688 */
689 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
690 struct prelim_ref *ref;
691
692 ref = rb_entry(rnode, struct prelim_ref, rbnode);
693 if (WARN(ref->parent,
694 "BUG: direct ref found in indirect tree")) {
695 ret = -EINVAL;
696 goto out;
697 }
698
699 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
700 preftrees->indirect.count--;
701
702 if (ref->count == 0) {
703 free_pref(ref);
704 continue;
705 }
706
707 if (sc && sc->root_objectid &&
708 ref->root_id != sc->root_objectid) {
709 free_pref(ref);
710 ret = BACKREF_FOUND_SHARED;
711 goto out;
712 }
713 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
714 ref, parents, extent_item_pos,
715 ignore_offset);
716 /*
717 * we can only tolerate ENOENT,otherwise,we should catch error
718 * and return directly.
719 */
720 if (err == -ENOENT) {
721 prelim_ref_insert(fs_info, &preftrees->direct, ref,
722 NULL);
723 continue;
724 } else if (err) {
725 free_pref(ref);
726 ret = err;
727 goto out;
728 }
729
730 /* we put the first parent into the ref at hand */
731 ULIST_ITER_INIT(&uiter);
732 node = ulist_next(parents, &uiter);
733 ref->parent = node ? node->val : 0;
734 ref->inode_list = unode_aux_to_inode_list(node);
735
736 /* Add a prelim_ref(s) for any other parent(s). */
737 while ((node = ulist_next(parents, &uiter))) {
738 struct prelim_ref *new_ref;
739
740 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
741 GFP_NOFS);
742 if (!new_ref) {
743 free_pref(ref);
744 ret = -ENOMEM;
745 goto out;
746 }
747 memcpy(new_ref, ref, sizeof(*ref));
748 new_ref->parent = node->val;
749 new_ref->inode_list = unode_aux_to_inode_list(node);
750 prelim_ref_insert(fs_info, &preftrees->direct,
751 new_ref, NULL);
752 }
753
754 /*
755 * Now it's a direct ref, put it in the direct tree. We must
756 * do this last because the ref could be merged/freed here.
757 */
758 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
759
760 ulist_reinit(parents);
761 cond_resched();
762 }
763 out:
764 ulist_free(parents);
765 return ret;
766 }
767
768 /*
769 * read tree blocks and add keys where required.
770 */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)771 static int add_missing_keys(struct btrfs_fs_info *fs_info,
772 struct preftrees *preftrees, bool lock)
773 {
774 struct prelim_ref *ref;
775 struct extent_buffer *eb;
776 struct preftree *tree = &preftrees->indirect_missing_keys;
777 struct rb_node *node;
778
779 while ((node = rb_first_cached(&tree->root))) {
780 ref = rb_entry(node, struct prelim_ref, rbnode);
781 rb_erase_cached(node, &tree->root);
782
783 BUG_ON(ref->parent); /* should not be a direct ref */
784 BUG_ON(ref->key_for_search.type);
785 BUG_ON(!ref->wanted_disk_byte);
786
787 eb = read_tree_block(fs_info, ref->wanted_disk_byte,
788 ref->root_id, 0, ref->level - 1, NULL);
789 if (IS_ERR(eb)) {
790 free_pref(ref);
791 return PTR_ERR(eb);
792 }
793 if (!extent_buffer_uptodate(eb)) {
794 free_pref(ref);
795 free_extent_buffer(eb);
796 return -EIO;
797 }
798
799 if (lock)
800 btrfs_tree_read_lock(eb);
801 if (btrfs_header_level(eb) == 0)
802 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
803 else
804 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
805 if (lock)
806 btrfs_tree_read_unlock(eb);
807 free_extent_buffer(eb);
808 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
809 cond_resched();
810 }
811 return 0;
812 }
813
814 /*
815 * add all currently queued delayed refs from this head whose seq nr is
816 * smaller or equal that seq to the list
817 */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,struct share_check * sc)818 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
819 struct btrfs_delayed_ref_head *head, u64 seq,
820 struct preftrees *preftrees, struct share_check *sc)
821 {
822 struct btrfs_delayed_ref_node *node;
823 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
824 struct btrfs_key key;
825 struct btrfs_key tmp_op_key;
826 struct rb_node *n;
827 int count;
828 int ret = 0;
829
830 if (extent_op && extent_op->update_key)
831 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
832
833 spin_lock(&head->lock);
834 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
835 node = rb_entry(n, struct btrfs_delayed_ref_node,
836 ref_node);
837 if (node->seq > seq)
838 continue;
839
840 switch (node->action) {
841 case BTRFS_ADD_DELAYED_EXTENT:
842 case BTRFS_UPDATE_DELAYED_HEAD:
843 WARN_ON(1);
844 continue;
845 case BTRFS_ADD_DELAYED_REF:
846 count = node->ref_mod;
847 break;
848 case BTRFS_DROP_DELAYED_REF:
849 count = node->ref_mod * -1;
850 break;
851 default:
852 BUG();
853 }
854 switch (node->type) {
855 case BTRFS_TREE_BLOCK_REF_KEY: {
856 /* NORMAL INDIRECT METADATA backref */
857 struct btrfs_delayed_tree_ref *ref;
858
859 ref = btrfs_delayed_node_to_tree_ref(node);
860 ret = add_indirect_ref(fs_info, preftrees, ref->root,
861 &tmp_op_key, ref->level + 1,
862 node->bytenr, count, sc,
863 GFP_ATOMIC);
864 break;
865 }
866 case BTRFS_SHARED_BLOCK_REF_KEY: {
867 /* SHARED DIRECT METADATA backref */
868 struct btrfs_delayed_tree_ref *ref;
869
870 ref = btrfs_delayed_node_to_tree_ref(node);
871
872 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
873 ref->parent, node->bytenr, count,
874 sc, GFP_ATOMIC);
875 break;
876 }
877 case BTRFS_EXTENT_DATA_REF_KEY: {
878 /* NORMAL INDIRECT DATA backref */
879 struct btrfs_delayed_data_ref *ref;
880 ref = btrfs_delayed_node_to_data_ref(node);
881
882 key.objectid = ref->objectid;
883 key.type = BTRFS_EXTENT_DATA_KEY;
884 key.offset = ref->offset;
885
886 /*
887 * Found a inum that doesn't match our known inum, we
888 * know it's shared.
889 */
890 if (sc && sc->inum && ref->objectid != sc->inum) {
891 ret = BACKREF_FOUND_SHARED;
892 goto out;
893 }
894
895 ret = add_indirect_ref(fs_info, preftrees, ref->root,
896 &key, 0, node->bytenr, count, sc,
897 GFP_ATOMIC);
898 break;
899 }
900 case BTRFS_SHARED_DATA_REF_KEY: {
901 /* SHARED DIRECT FULL backref */
902 struct btrfs_delayed_data_ref *ref;
903
904 ref = btrfs_delayed_node_to_data_ref(node);
905
906 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
907 node->bytenr, count, sc,
908 GFP_ATOMIC);
909 break;
910 }
911 default:
912 WARN_ON(1);
913 }
914 /*
915 * We must ignore BACKREF_FOUND_SHARED until all delayed
916 * refs have been checked.
917 */
918 if (ret && (ret != BACKREF_FOUND_SHARED))
919 break;
920 }
921 if (!ret)
922 ret = extent_is_shared(sc);
923 out:
924 spin_unlock(&head->lock);
925 return ret;
926 }
927
928 /*
929 * add all inline backrefs for bytenr to the list
930 *
931 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
932 */
add_inline_refs(const struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int * info_level,struct preftrees * preftrees,struct share_check * sc)933 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
934 struct btrfs_path *path, u64 bytenr,
935 int *info_level, struct preftrees *preftrees,
936 struct share_check *sc)
937 {
938 int ret = 0;
939 int slot;
940 struct extent_buffer *leaf;
941 struct btrfs_key key;
942 struct btrfs_key found_key;
943 unsigned long ptr;
944 unsigned long end;
945 struct btrfs_extent_item *ei;
946 u64 flags;
947 u64 item_size;
948
949 /*
950 * enumerate all inline refs
951 */
952 leaf = path->nodes[0];
953 slot = path->slots[0];
954
955 item_size = btrfs_item_size(leaf, slot);
956 BUG_ON(item_size < sizeof(*ei));
957
958 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
959 flags = btrfs_extent_flags(leaf, ei);
960 btrfs_item_key_to_cpu(leaf, &found_key, slot);
961
962 ptr = (unsigned long)(ei + 1);
963 end = (unsigned long)ei + item_size;
964
965 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
966 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
967 struct btrfs_tree_block_info *info;
968
969 info = (struct btrfs_tree_block_info *)ptr;
970 *info_level = btrfs_tree_block_level(leaf, info);
971 ptr += sizeof(struct btrfs_tree_block_info);
972 BUG_ON(ptr > end);
973 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
974 *info_level = found_key.offset;
975 } else {
976 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
977 }
978
979 while (ptr < end) {
980 struct btrfs_extent_inline_ref *iref;
981 u64 offset;
982 int type;
983
984 iref = (struct btrfs_extent_inline_ref *)ptr;
985 type = btrfs_get_extent_inline_ref_type(leaf, iref,
986 BTRFS_REF_TYPE_ANY);
987 if (type == BTRFS_REF_TYPE_INVALID)
988 return -EUCLEAN;
989
990 offset = btrfs_extent_inline_ref_offset(leaf, iref);
991
992 switch (type) {
993 case BTRFS_SHARED_BLOCK_REF_KEY:
994 ret = add_direct_ref(fs_info, preftrees,
995 *info_level + 1, offset,
996 bytenr, 1, NULL, GFP_NOFS);
997 break;
998 case BTRFS_SHARED_DATA_REF_KEY: {
999 struct btrfs_shared_data_ref *sdref;
1000 int count;
1001
1002 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1003 count = btrfs_shared_data_ref_count(leaf, sdref);
1004
1005 ret = add_direct_ref(fs_info, preftrees, 0, offset,
1006 bytenr, count, sc, GFP_NOFS);
1007 break;
1008 }
1009 case BTRFS_TREE_BLOCK_REF_KEY:
1010 ret = add_indirect_ref(fs_info, preftrees, offset,
1011 NULL, *info_level + 1,
1012 bytenr, 1, NULL, GFP_NOFS);
1013 break;
1014 case BTRFS_EXTENT_DATA_REF_KEY: {
1015 struct btrfs_extent_data_ref *dref;
1016 int count;
1017 u64 root;
1018
1019 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1020 count = btrfs_extent_data_ref_count(leaf, dref);
1021 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1022 dref);
1023 key.type = BTRFS_EXTENT_DATA_KEY;
1024 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1025
1026 if (sc && sc->inum && key.objectid != sc->inum) {
1027 ret = BACKREF_FOUND_SHARED;
1028 break;
1029 }
1030
1031 root = btrfs_extent_data_ref_root(leaf, dref);
1032
1033 ret = add_indirect_ref(fs_info, preftrees, root,
1034 &key, 0, bytenr, count,
1035 sc, GFP_NOFS);
1036 break;
1037 }
1038 default:
1039 WARN_ON(1);
1040 }
1041 if (ret)
1042 return ret;
1043 ptr += btrfs_extent_inline_ref_size(type);
1044 }
1045
1046 return 0;
1047 }
1048
1049 /*
1050 * add all non-inline backrefs for bytenr to the list
1051 *
1052 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1053 */
add_keyed_refs(struct btrfs_root * extent_root,struct btrfs_path * path,u64 bytenr,int info_level,struct preftrees * preftrees,struct share_check * sc)1054 static int add_keyed_refs(struct btrfs_root *extent_root,
1055 struct btrfs_path *path, u64 bytenr,
1056 int info_level, struct preftrees *preftrees,
1057 struct share_check *sc)
1058 {
1059 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1060 int ret;
1061 int slot;
1062 struct extent_buffer *leaf;
1063 struct btrfs_key key;
1064
1065 while (1) {
1066 ret = btrfs_next_item(extent_root, path);
1067 if (ret < 0)
1068 break;
1069 if (ret) {
1070 ret = 0;
1071 break;
1072 }
1073
1074 slot = path->slots[0];
1075 leaf = path->nodes[0];
1076 btrfs_item_key_to_cpu(leaf, &key, slot);
1077
1078 if (key.objectid != bytenr)
1079 break;
1080 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1081 continue;
1082 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1083 break;
1084
1085 switch (key.type) {
1086 case BTRFS_SHARED_BLOCK_REF_KEY:
1087 /* SHARED DIRECT METADATA backref */
1088 ret = add_direct_ref(fs_info, preftrees,
1089 info_level + 1, key.offset,
1090 bytenr, 1, NULL, GFP_NOFS);
1091 break;
1092 case BTRFS_SHARED_DATA_REF_KEY: {
1093 /* SHARED DIRECT FULL backref */
1094 struct btrfs_shared_data_ref *sdref;
1095 int count;
1096
1097 sdref = btrfs_item_ptr(leaf, slot,
1098 struct btrfs_shared_data_ref);
1099 count = btrfs_shared_data_ref_count(leaf, sdref);
1100 ret = add_direct_ref(fs_info, preftrees, 0,
1101 key.offset, bytenr, count,
1102 sc, GFP_NOFS);
1103 break;
1104 }
1105 case BTRFS_TREE_BLOCK_REF_KEY:
1106 /* NORMAL INDIRECT METADATA backref */
1107 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1108 NULL, info_level + 1, bytenr,
1109 1, NULL, GFP_NOFS);
1110 break;
1111 case BTRFS_EXTENT_DATA_REF_KEY: {
1112 /* NORMAL INDIRECT DATA backref */
1113 struct btrfs_extent_data_ref *dref;
1114 int count;
1115 u64 root;
1116
1117 dref = btrfs_item_ptr(leaf, slot,
1118 struct btrfs_extent_data_ref);
1119 count = btrfs_extent_data_ref_count(leaf, dref);
1120 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1121 dref);
1122 key.type = BTRFS_EXTENT_DATA_KEY;
1123 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1124
1125 if (sc && sc->inum && key.objectid != sc->inum) {
1126 ret = BACKREF_FOUND_SHARED;
1127 break;
1128 }
1129
1130 root = btrfs_extent_data_ref_root(leaf, dref);
1131 ret = add_indirect_ref(fs_info, preftrees, root,
1132 &key, 0, bytenr, count,
1133 sc, GFP_NOFS);
1134 break;
1135 }
1136 default:
1137 WARN_ON(1);
1138 }
1139 if (ret)
1140 return ret;
1141
1142 }
1143
1144 return ret;
1145 }
1146
1147 /*
1148 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1149 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1150 * indirect refs to their parent bytenr.
1151 * When roots are found, they're added to the roots list
1152 *
1153 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1154 * behave much like trans == NULL case, the difference only lies in it will not
1155 * commit root.
1156 * The special case is for qgroup to search roots in commit_transaction().
1157 *
1158 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1159 * shared extent is detected.
1160 *
1161 * Otherwise this returns 0 for success and <0 for an error.
1162 *
1163 * If ignore_offset is set to false, only extent refs whose offsets match
1164 * extent_item_pos are returned. If true, every extent ref is returned
1165 * and extent_item_pos is ignored.
1166 *
1167 * FIXME some caching might speed things up
1168 */
find_parent_nodes(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist * refs,struct ulist * roots,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)1169 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1170 struct btrfs_fs_info *fs_info, u64 bytenr,
1171 u64 time_seq, struct ulist *refs,
1172 struct ulist *roots, const u64 *extent_item_pos,
1173 struct share_check *sc, bool ignore_offset)
1174 {
1175 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
1176 struct btrfs_key key;
1177 struct btrfs_path *path;
1178 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1179 struct btrfs_delayed_ref_head *head;
1180 int info_level = 0;
1181 int ret;
1182 struct prelim_ref *ref;
1183 struct rb_node *node;
1184 struct extent_inode_elem *eie = NULL;
1185 struct preftrees preftrees = {
1186 .direct = PREFTREE_INIT,
1187 .indirect = PREFTREE_INIT,
1188 .indirect_missing_keys = PREFTREE_INIT
1189 };
1190
1191 key.objectid = bytenr;
1192 key.offset = (u64)-1;
1193 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1194 key.type = BTRFS_METADATA_ITEM_KEY;
1195 else
1196 key.type = BTRFS_EXTENT_ITEM_KEY;
1197
1198 path = btrfs_alloc_path();
1199 if (!path)
1200 return -ENOMEM;
1201 if (!trans) {
1202 path->search_commit_root = 1;
1203 path->skip_locking = 1;
1204 }
1205
1206 if (time_seq == BTRFS_SEQ_LAST)
1207 path->skip_locking = 1;
1208
1209 again:
1210 head = NULL;
1211
1212 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1213 if (ret < 0)
1214 goto out;
1215 if (ret == 0) {
1216 /* This shouldn't happen, indicates a bug or fs corruption. */
1217 ASSERT(ret != 0);
1218 ret = -EUCLEAN;
1219 goto out;
1220 }
1221
1222 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1223 time_seq != BTRFS_SEQ_LAST) {
1224 /*
1225 * We have a specific time_seq we care about and trans which
1226 * means we have the path lock, we need to grab the ref head and
1227 * lock it so we have a consistent view of the refs at the given
1228 * time.
1229 */
1230 delayed_refs = &trans->transaction->delayed_refs;
1231 spin_lock(&delayed_refs->lock);
1232 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1233 if (head) {
1234 if (!mutex_trylock(&head->mutex)) {
1235 refcount_inc(&head->refs);
1236 spin_unlock(&delayed_refs->lock);
1237
1238 btrfs_release_path(path);
1239
1240 /*
1241 * Mutex was contended, block until it's
1242 * released and try again
1243 */
1244 mutex_lock(&head->mutex);
1245 mutex_unlock(&head->mutex);
1246 btrfs_put_delayed_ref_head(head);
1247 goto again;
1248 }
1249 spin_unlock(&delayed_refs->lock);
1250 ret = add_delayed_refs(fs_info, head, time_seq,
1251 &preftrees, sc);
1252 mutex_unlock(&head->mutex);
1253 if (ret)
1254 goto out;
1255 } else {
1256 spin_unlock(&delayed_refs->lock);
1257 }
1258 }
1259
1260 if (path->slots[0]) {
1261 struct extent_buffer *leaf;
1262 int slot;
1263
1264 path->slots[0]--;
1265 leaf = path->nodes[0];
1266 slot = path->slots[0];
1267 btrfs_item_key_to_cpu(leaf, &key, slot);
1268 if (key.objectid == bytenr &&
1269 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1270 key.type == BTRFS_METADATA_ITEM_KEY)) {
1271 ret = add_inline_refs(fs_info, path, bytenr,
1272 &info_level, &preftrees, sc);
1273 if (ret)
1274 goto out;
1275 ret = add_keyed_refs(root, path, bytenr, info_level,
1276 &preftrees, sc);
1277 if (ret)
1278 goto out;
1279 }
1280 }
1281
1282 btrfs_release_path(path);
1283
1284 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1285 if (ret)
1286 goto out;
1287
1288 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1289
1290 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1291 extent_item_pos, sc, ignore_offset);
1292 if (ret)
1293 goto out;
1294
1295 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1296
1297 /*
1298 * This walks the tree of merged and resolved refs. Tree blocks are
1299 * read in as needed. Unique entries are added to the ulist, and
1300 * the list of found roots is updated.
1301 *
1302 * We release the entire tree in one go before returning.
1303 */
1304 node = rb_first_cached(&preftrees.direct.root);
1305 while (node) {
1306 ref = rb_entry(node, struct prelim_ref, rbnode);
1307 node = rb_next(&ref->rbnode);
1308 /*
1309 * ref->count < 0 can happen here if there are delayed
1310 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1311 * prelim_ref_insert() relies on this when merging
1312 * identical refs to keep the overall count correct.
1313 * prelim_ref_insert() will merge only those refs
1314 * which compare identically. Any refs having
1315 * e.g. different offsets would not be merged,
1316 * and would retain their original ref->count < 0.
1317 */
1318 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1319 if (sc && sc->root_objectid &&
1320 ref->root_id != sc->root_objectid) {
1321 ret = BACKREF_FOUND_SHARED;
1322 goto out;
1323 }
1324
1325 /* no parent == root of tree */
1326 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1327 if (ret < 0)
1328 goto out;
1329 }
1330 if (ref->count && ref->parent) {
1331 if (extent_item_pos && !ref->inode_list &&
1332 ref->level == 0) {
1333 struct extent_buffer *eb;
1334
1335 eb = read_tree_block(fs_info, ref->parent, 0,
1336 0, ref->level, NULL);
1337 if (IS_ERR(eb)) {
1338 ret = PTR_ERR(eb);
1339 goto out;
1340 }
1341 if (!extent_buffer_uptodate(eb)) {
1342 free_extent_buffer(eb);
1343 ret = -EIO;
1344 goto out;
1345 }
1346
1347 if (!path->skip_locking)
1348 btrfs_tree_read_lock(eb);
1349 ret = find_extent_in_eb(eb, bytenr,
1350 *extent_item_pos, &eie, ignore_offset);
1351 if (!path->skip_locking)
1352 btrfs_tree_read_unlock(eb);
1353 free_extent_buffer(eb);
1354 if (ret < 0)
1355 goto out;
1356 ref->inode_list = eie;
1357 }
1358 ret = ulist_add_merge_ptr(refs, ref->parent,
1359 ref->inode_list,
1360 (void **)&eie, GFP_NOFS);
1361 if (ret < 0)
1362 goto out;
1363 if (!ret && extent_item_pos) {
1364 /*
1365 * We've recorded that parent, so we must extend
1366 * its inode list here.
1367 *
1368 * However if there was corruption we may not
1369 * have found an eie, return an error in this
1370 * case.
1371 */
1372 ASSERT(eie);
1373 if (!eie) {
1374 ret = -EUCLEAN;
1375 goto out;
1376 }
1377 while (eie->next)
1378 eie = eie->next;
1379 eie->next = ref->inode_list;
1380 }
1381 eie = NULL;
1382 }
1383 cond_resched();
1384 }
1385
1386 out:
1387 btrfs_free_path(path);
1388
1389 prelim_release(&preftrees.direct);
1390 prelim_release(&preftrees.indirect);
1391 prelim_release(&preftrees.indirect_missing_keys);
1392
1393 if (ret < 0)
1394 free_inode_elem_list(eie);
1395 return ret;
1396 }
1397
free_leaf_list(struct ulist * blocks)1398 static void free_leaf_list(struct ulist *blocks)
1399 {
1400 struct ulist_node *node = NULL;
1401 struct extent_inode_elem *eie;
1402 struct ulist_iterator uiter;
1403
1404 ULIST_ITER_INIT(&uiter);
1405 while ((node = ulist_next(blocks, &uiter))) {
1406 if (!node->aux)
1407 continue;
1408 eie = unode_aux_to_inode_list(node);
1409 free_inode_elem_list(eie);
1410 node->aux = 0;
1411 }
1412
1413 ulist_free(blocks);
1414 }
1415
1416 /*
1417 * Finds all leafs with a reference to the specified combination of bytenr and
1418 * offset. key_list_head will point to a list of corresponding keys (caller must
1419 * free each list element). The leafs will be stored in the leafs ulist, which
1420 * must be freed with ulist_free.
1421 *
1422 * returns 0 on success, <0 on error
1423 */
btrfs_find_all_leafs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist ** leafs,const u64 * extent_item_pos,bool ignore_offset)1424 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1425 struct btrfs_fs_info *fs_info, u64 bytenr,
1426 u64 time_seq, struct ulist **leafs,
1427 const u64 *extent_item_pos, bool ignore_offset)
1428 {
1429 int ret;
1430
1431 *leafs = ulist_alloc(GFP_NOFS);
1432 if (!*leafs)
1433 return -ENOMEM;
1434
1435 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1436 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1437 if (ret < 0 && ret != -ENOENT) {
1438 free_leaf_list(*leafs);
1439 return ret;
1440 }
1441
1442 return 0;
1443 }
1444
1445 /*
1446 * walk all backrefs for a given extent to find all roots that reference this
1447 * extent. Walking a backref means finding all extents that reference this
1448 * extent and in turn walk the backrefs of those, too. Naturally this is a
1449 * recursive process, but here it is implemented in an iterative fashion: We
1450 * find all referencing extents for the extent in question and put them on a
1451 * list. In turn, we find all referencing extents for those, further appending
1452 * to the list. The way we iterate the list allows adding more elements after
1453 * the current while iterating. The process stops when we reach the end of the
1454 * list. Found roots are added to the roots list.
1455 *
1456 * returns 0 on success, < 0 on error.
1457 */
btrfs_find_all_roots_safe(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist ** roots,bool ignore_offset)1458 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1459 struct btrfs_fs_info *fs_info, u64 bytenr,
1460 u64 time_seq, struct ulist **roots,
1461 bool ignore_offset)
1462 {
1463 struct ulist *tmp;
1464 struct ulist_node *node = NULL;
1465 struct ulist_iterator uiter;
1466 int ret;
1467
1468 tmp = ulist_alloc(GFP_NOFS);
1469 if (!tmp)
1470 return -ENOMEM;
1471 *roots = ulist_alloc(GFP_NOFS);
1472 if (!*roots) {
1473 ulist_free(tmp);
1474 return -ENOMEM;
1475 }
1476
1477 ULIST_ITER_INIT(&uiter);
1478 while (1) {
1479 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1480 tmp, *roots, NULL, NULL, ignore_offset);
1481 if (ret < 0 && ret != -ENOENT) {
1482 ulist_free(tmp);
1483 ulist_free(*roots);
1484 *roots = NULL;
1485 return ret;
1486 }
1487 node = ulist_next(tmp, &uiter);
1488 if (!node)
1489 break;
1490 bytenr = node->val;
1491 cond_resched();
1492 }
1493
1494 ulist_free(tmp);
1495 return 0;
1496 }
1497
btrfs_find_all_roots(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist ** roots,bool skip_commit_root_sem)1498 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1499 struct btrfs_fs_info *fs_info, u64 bytenr,
1500 u64 time_seq, struct ulist **roots,
1501 bool skip_commit_root_sem)
1502 {
1503 int ret;
1504
1505 if (!trans && !skip_commit_root_sem)
1506 down_read(&fs_info->commit_root_sem);
1507 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1508 time_seq, roots, false);
1509 if (!trans && !skip_commit_root_sem)
1510 up_read(&fs_info->commit_root_sem);
1511 return ret;
1512 }
1513
1514 /**
1515 * Check if an extent is shared or not
1516 *
1517 * @root: root inode belongs to
1518 * @inum: inode number of the inode whose extent we are checking
1519 * @bytenr: logical bytenr of the extent we are checking
1520 * @roots: list of roots this extent is shared among
1521 * @tmp: temporary list used for iteration
1522 *
1523 * btrfs_check_shared uses the backref walking code but will short
1524 * circuit as soon as it finds a root or inode that doesn't match the
1525 * one passed in. This provides a significant performance benefit for
1526 * callers (such as fiemap) which want to know whether the extent is
1527 * shared but do not need a ref count.
1528 *
1529 * This attempts to attach to the running transaction in order to account for
1530 * delayed refs, but continues on even when no running transaction exists.
1531 *
1532 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1533 */
btrfs_check_shared(struct btrfs_root * root,u64 inum,u64 bytenr,struct ulist * roots,struct ulist * tmp)1534 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1535 struct ulist *roots, struct ulist *tmp)
1536 {
1537 struct btrfs_fs_info *fs_info = root->fs_info;
1538 struct btrfs_trans_handle *trans;
1539 struct ulist_iterator uiter;
1540 struct ulist_node *node;
1541 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1542 int ret = 0;
1543 struct share_check shared = {
1544 .root_objectid = root->root_key.objectid,
1545 .inum = inum,
1546 .share_count = 0,
1547 };
1548
1549 ulist_init(roots);
1550 ulist_init(tmp);
1551
1552 trans = btrfs_join_transaction_nostart(root);
1553 if (IS_ERR(trans)) {
1554 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1555 ret = PTR_ERR(trans);
1556 goto out;
1557 }
1558 trans = NULL;
1559 down_read(&fs_info->commit_root_sem);
1560 } else {
1561 btrfs_get_tree_mod_seq(fs_info, &elem);
1562 }
1563
1564 ULIST_ITER_INIT(&uiter);
1565 while (1) {
1566 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1567 roots, NULL, &shared, false);
1568 if (ret == BACKREF_FOUND_SHARED) {
1569 /* this is the only condition under which we return 1 */
1570 ret = 1;
1571 break;
1572 }
1573 if (ret < 0 && ret != -ENOENT)
1574 break;
1575 ret = 0;
1576 node = ulist_next(tmp, &uiter);
1577 if (!node)
1578 break;
1579 bytenr = node->val;
1580 shared.share_count = 0;
1581 cond_resched();
1582 }
1583
1584 if (trans) {
1585 btrfs_put_tree_mod_seq(fs_info, &elem);
1586 btrfs_end_transaction(trans);
1587 } else {
1588 up_read(&fs_info->commit_root_sem);
1589 }
1590 out:
1591 ulist_release(roots);
1592 ulist_release(tmp);
1593 return ret;
1594 }
1595
btrfs_find_one_extref(struct btrfs_root * root,u64 inode_objectid,u64 start_off,struct btrfs_path * path,struct btrfs_inode_extref ** ret_extref,u64 * found_off)1596 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1597 u64 start_off, struct btrfs_path *path,
1598 struct btrfs_inode_extref **ret_extref,
1599 u64 *found_off)
1600 {
1601 int ret, slot;
1602 struct btrfs_key key;
1603 struct btrfs_key found_key;
1604 struct btrfs_inode_extref *extref;
1605 const struct extent_buffer *leaf;
1606 unsigned long ptr;
1607
1608 key.objectid = inode_objectid;
1609 key.type = BTRFS_INODE_EXTREF_KEY;
1610 key.offset = start_off;
1611
1612 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1613 if (ret < 0)
1614 return ret;
1615
1616 while (1) {
1617 leaf = path->nodes[0];
1618 slot = path->slots[0];
1619 if (slot >= btrfs_header_nritems(leaf)) {
1620 /*
1621 * If the item at offset is not found,
1622 * btrfs_search_slot will point us to the slot
1623 * where it should be inserted. In our case
1624 * that will be the slot directly before the
1625 * next INODE_REF_KEY_V2 item. In the case
1626 * that we're pointing to the last slot in a
1627 * leaf, we must move one leaf over.
1628 */
1629 ret = btrfs_next_leaf(root, path);
1630 if (ret) {
1631 if (ret >= 1)
1632 ret = -ENOENT;
1633 break;
1634 }
1635 continue;
1636 }
1637
1638 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1639
1640 /*
1641 * Check that we're still looking at an extended ref key for
1642 * this particular objectid. If we have different
1643 * objectid or type then there are no more to be found
1644 * in the tree and we can exit.
1645 */
1646 ret = -ENOENT;
1647 if (found_key.objectid != inode_objectid)
1648 break;
1649 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1650 break;
1651
1652 ret = 0;
1653 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1654 extref = (struct btrfs_inode_extref *)ptr;
1655 *ret_extref = extref;
1656 if (found_off)
1657 *found_off = found_key.offset;
1658 break;
1659 }
1660
1661 return ret;
1662 }
1663
1664 /*
1665 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1666 * Elements of the path are separated by '/' and the path is guaranteed to be
1667 * 0-terminated. the path is only given within the current file system.
1668 * Therefore, it never starts with a '/'. the caller is responsible to provide
1669 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1670 * the start point of the resulting string is returned. this pointer is within
1671 * dest, normally.
1672 * in case the path buffer would overflow, the pointer is decremented further
1673 * as if output was written to the buffer, though no more output is actually
1674 * generated. that way, the caller can determine how much space would be
1675 * required for the path to fit into the buffer. in that case, the returned
1676 * value will be smaller than dest. callers must check this!
1677 */
btrfs_ref_to_path(struct btrfs_root * fs_root,struct btrfs_path * path,u32 name_len,unsigned long name_off,struct extent_buffer * eb_in,u64 parent,char * dest,u32 size)1678 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1679 u32 name_len, unsigned long name_off,
1680 struct extent_buffer *eb_in, u64 parent,
1681 char *dest, u32 size)
1682 {
1683 int slot;
1684 u64 next_inum;
1685 int ret;
1686 s64 bytes_left = ((s64)size) - 1;
1687 struct extent_buffer *eb = eb_in;
1688 struct btrfs_key found_key;
1689 struct btrfs_inode_ref *iref;
1690
1691 if (bytes_left >= 0)
1692 dest[bytes_left] = '\0';
1693
1694 while (1) {
1695 bytes_left -= name_len;
1696 if (bytes_left >= 0)
1697 read_extent_buffer(eb, dest + bytes_left,
1698 name_off, name_len);
1699 if (eb != eb_in) {
1700 if (!path->skip_locking)
1701 btrfs_tree_read_unlock(eb);
1702 free_extent_buffer(eb);
1703 }
1704 ret = btrfs_find_item(fs_root, path, parent, 0,
1705 BTRFS_INODE_REF_KEY, &found_key);
1706 if (ret > 0)
1707 ret = -ENOENT;
1708 if (ret)
1709 break;
1710
1711 next_inum = found_key.offset;
1712
1713 /* regular exit ahead */
1714 if (parent == next_inum)
1715 break;
1716
1717 slot = path->slots[0];
1718 eb = path->nodes[0];
1719 /* make sure we can use eb after releasing the path */
1720 if (eb != eb_in) {
1721 path->nodes[0] = NULL;
1722 path->locks[0] = 0;
1723 }
1724 btrfs_release_path(path);
1725 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1726
1727 name_len = btrfs_inode_ref_name_len(eb, iref);
1728 name_off = (unsigned long)(iref + 1);
1729
1730 parent = next_inum;
1731 --bytes_left;
1732 if (bytes_left >= 0)
1733 dest[bytes_left] = '/';
1734 }
1735
1736 btrfs_release_path(path);
1737
1738 if (ret)
1739 return ERR_PTR(ret);
1740
1741 return dest + bytes_left;
1742 }
1743
1744 /*
1745 * this makes the path point to (logical EXTENT_ITEM *)
1746 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1747 * tree blocks and <0 on error.
1748 */
extent_from_logical(struct btrfs_fs_info * fs_info,u64 logical,struct btrfs_path * path,struct btrfs_key * found_key,u64 * flags_ret)1749 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1750 struct btrfs_path *path, struct btrfs_key *found_key,
1751 u64 *flags_ret)
1752 {
1753 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
1754 int ret;
1755 u64 flags;
1756 u64 size = 0;
1757 u32 item_size;
1758 const struct extent_buffer *eb;
1759 struct btrfs_extent_item *ei;
1760 struct btrfs_key key;
1761
1762 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1763 key.type = BTRFS_METADATA_ITEM_KEY;
1764 else
1765 key.type = BTRFS_EXTENT_ITEM_KEY;
1766 key.objectid = logical;
1767 key.offset = (u64)-1;
1768
1769 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1770 if (ret < 0)
1771 return ret;
1772
1773 ret = btrfs_previous_extent_item(extent_root, path, 0);
1774 if (ret) {
1775 if (ret > 0)
1776 ret = -ENOENT;
1777 return ret;
1778 }
1779 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1780 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1781 size = fs_info->nodesize;
1782 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1783 size = found_key->offset;
1784
1785 if (found_key->objectid > logical ||
1786 found_key->objectid + size <= logical) {
1787 btrfs_debug(fs_info,
1788 "logical %llu is not within any extent", logical);
1789 return -ENOENT;
1790 }
1791
1792 eb = path->nodes[0];
1793 item_size = btrfs_item_size(eb, path->slots[0]);
1794 BUG_ON(item_size < sizeof(*ei));
1795
1796 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1797 flags = btrfs_extent_flags(eb, ei);
1798
1799 btrfs_debug(fs_info,
1800 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1801 logical, logical - found_key->objectid, found_key->objectid,
1802 found_key->offset, flags, item_size);
1803
1804 WARN_ON(!flags_ret);
1805 if (flags_ret) {
1806 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1807 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1808 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1809 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1810 else
1811 BUG();
1812 return 0;
1813 }
1814
1815 return -EIO;
1816 }
1817
1818 /*
1819 * helper function to iterate extent inline refs. ptr must point to a 0 value
1820 * for the first call and may be modified. it is used to track state.
1821 * if more refs exist, 0 is returned and the next call to
1822 * get_extent_inline_ref must pass the modified ptr parameter to get the
1823 * next ref. after the last ref was processed, 1 is returned.
1824 * returns <0 on error
1825 */
get_extent_inline_ref(unsigned long * ptr,const struct extent_buffer * eb,const struct btrfs_key * key,const struct btrfs_extent_item * ei,u32 item_size,struct btrfs_extent_inline_ref ** out_eiref,int * out_type)1826 static int get_extent_inline_ref(unsigned long *ptr,
1827 const struct extent_buffer *eb,
1828 const struct btrfs_key *key,
1829 const struct btrfs_extent_item *ei,
1830 u32 item_size,
1831 struct btrfs_extent_inline_ref **out_eiref,
1832 int *out_type)
1833 {
1834 unsigned long end;
1835 u64 flags;
1836 struct btrfs_tree_block_info *info;
1837
1838 if (!*ptr) {
1839 /* first call */
1840 flags = btrfs_extent_flags(eb, ei);
1841 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1842 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1843 /* a skinny metadata extent */
1844 *out_eiref =
1845 (struct btrfs_extent_inline_ref *)(ei + 1);
1846 } else {
1847 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1848 info = (struct btrfs_tree_block_info *)(ei + 1);
1849 *out_eiref =
1850 (struct btrfs_extent_inline_ref *)(info + 1);
1851 }
1852 } else {
1853 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1854 }
1855 *ptr = (unsigned long)*out_eiref;
1856 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1857 return -ENOENT;
1858 }
1859
1860 end = (unsigned long)ei + item_size;
1861 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1862 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1863 BTRFS_REF_TYPE_ANY);
1864 if (*out_type == BTRFS_REF_TYPE_INVALID)
1865 return -EUCLEAN;
1866
1867 *ptr += btrfs_extent_inline_ref_size(*out_type);
1868 WARN_ON(*ptr > end);
1869 if (*ptr == end)
1870 return 1; /* last */
1871
1872 return 0;
1873 }
1874
1875 /*
1876 * reads the tree block backref for an extent. tree level and root are returned
1877 * through out_level and out_root. ptr must point to a 0 value for the first
1878 * call and may be modified (see get_extent_inline_ref comment).
1879 * returns 0 if data was provided, 1 if there was no more data to provide or
1880 * <0 on error.
1881 */
tree_backref_for_extent(unsigned long * ptr,struct extent_buffer * eb,struct btrfs_key * key,struct btrfs_extent_item * ei,u32 item_size,u64 * out_root,u8 * out_level)1882 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1883 struct btrfs_key *key, struct btrfs_extent_item *ei,
1884 u32 item_size, u64 *out_root, u8 *out_level)
1885 {
1886 int ret;
1887 int type;
1888 struct btrfs_extent_inline_ref *eiref;
1889
1890 if (*ptr == (unsigned long)-1)
1891 return 1;
1892
1893 while (1) {
1894 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1895 &eiref, &type);
1896 if (ret < 0)
1897 return ret;
1898
1899 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1900 type == BTRFS_SHARED_BLOCK_REF_KEY)
1901 break;
1902
1903 if (ret == 1)
1904 return 1;
1905 }
1906
1907 /* we can treat both ref types equally here */
1908 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1909
1910 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1911 struct btrfs_tree_block_info *info;
1912
1913 info = (struct btrfs_tree_block_info *)(ei + 1);
1914 *out_level = btrfs_tree_block_level(eb, info);
1915 } else {
1916 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1917 *out_level = (u8)key->offset;
1918 }
1919
1920 if (ret == 1)
1921 *ptr = (unsigned long)-1;
1922
1923 return 0;
1924 }
1925
iterate_leaf_refs(struct btrfs_fs_info * fs_info,struct extent_inode_elem * inode_list,u64 root,u64 extent_item_objectid,iterate_extent_inodes_t * iterate,void * ctx)1926 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1927 struct extent_inode_elem *inode_list,
1928 u64 root, u64 extent_item_objectid,
1929 iterate_extent_inodes_t *iterate, void *ctx)
1930 {
1931 struct extent_inode_elem *eie;
1932 int ret = 0;
1933
1934 for (eie = inode_list; eie; eie = eie->next) {
1935 btrfs_debug(fs_info,
1936 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1937 extent_item_objectid, eie->inum,
1938 eie->offset, root);
1939 ret = iterate(eie->inum, eie->offset, root, ctx);
1940 if (ret) {
1941 btrfs_debug(fs_info,
1942 "stopping iteration for %llu due to ret=%d",
1943 extent_item_objectid, ret);
1944 break;
1945 }
1946 }
1947
1948 return ret;
1949 }
1950
1951 /*
1952 * calls iterate() for every inode that references the extent identified by
1953 * the given parameters.
1954 * when the iterator function returns a non-zero value, iteration stops.
1955 */
iterate_extent_inodes(struct btrfs_fs_info * fs_info,u64 extent_item_objectid,u64 extent_item_pos,int search_commit_root,iterate_extent_inodes_t * iterate,void * ctx,bool ignore_offset)1956 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1957 u64 extent_item_objectid, u64 extent_item_pos,
1958 int search_commit_root,
1959 iterate_extent_inodes_t *iterate, void *ctx,
1960 bool ignore_offset)
1961 {
1962 int ret;
1963 struct btrfs_trans_handle *trans = NULL;
1964 struct ulist *refs = NULL;
1965 struct ulist *roots = NULL;
1966 struct ulist_node *ref_node = NULL;
1967 struct ulist_node *root_node = NULL;
1968 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
1969 struct ulist_iterator ref_uiter;
1970 struct ulist_iterator root_uiter;
1971
1972 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1973 extent_item_objectid);
1974
1975 if (!search_commit_root) {
1976 trans = btrfs_attach_transaction(fs_info->tree_root);
1977 if (IS_ERR(trans)) {
1978 if (PTR_ERR(trans) != -ENOENT &&
1979 PTR_ERR(trans) != -EROFS)
1980 return PTR_ERR(trans);
1981 trans = NULL;
1982 }
1983 }
1984
1985 if (trans)
1986 btrfs_get_tree_mod_seq(fs_info, &seq_elem);
1987 else
1988 down_read(&fs_info->commit_root_sem);
1989
1990 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1991 seq_elem.seq, &refs,
1992 &extent_item_pos, ignore_offset);
1993 if (ret)
1994 goto out;
1995
1996 ULIST_ITER_INIT(&ref_uiter);
1997 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1998 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1999 seq_elem.seq, &roots,
2000 ignore_offset);
2001 if (ret)
2002 break;
2003 ULIST_ITER_INIT(&root_uiter);
2004 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2005 btrfs_debug(fs_info,
2006 "root %llu references leaf %llu, data list %#llx",
2007 root_node->val, ref_node->val,
2008 ref_node->aux);
2009 ret = iterate_leaf_refs(fs_info,
2010 (struct extent_inode_elem *)
2011 (uintptr_t)ref_node->aux,
2012 root_node->val,
2013 extent_item_objectid,
2014 iterate, ctx);
2015 }
2016 ulist_free(roots);
2017 }
2018
2019 free_leaf_list(refs);
2020 out:
2021 if (trans) {
2022 btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2023 btrfs_end_transaction(trans);
2024 } else {
2025 up_read(&fs_info->commit_root_sem);
2026 }
2027
2028 return ret;
2029 }
2030
iterate_inodes_from_logical(u64 logical,struct btrfs_fs_info * fs_info,struct btrfs_path * path,iterate_extent_inodes_t * iterate,void * ctx,bool ignore_offset)2031 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2032 struct btrfs_path *path,
2033 iterate_extent_inodes_t *iterate, void *ctx,
2034 bool ignore_offset)
2035 {
2036 int ret;
2037 u64 extent_item_pos;
2038 u64 flags = 0;
2039 struct btrfs_key found_key;
2040 int search_commit_root = path->search_commit_root;
2041
2042 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2043 btrfs_release_path(path);
2044 if (ret < 0)
2045 return ret;
2046 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2047 return -EINVAL;
2048
2049 extent_item_pos = logical - found_key.objectid;
2050 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2051 extent_item_pos, search_commit_root,
2052 iterate, ctx, ignore_offset);
2053
2054 return ret;
2055 }
2056
2057 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2058 struct extent_buffer *eb, void *ctx);
2059
iterate_inode_refs(u64 inum,struct btrfs_root * fs_root,struct btrfs_path * path,iterate_irefs_t * iterate,void * ctx)2060 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2061 struct btrfs_path *path,
2062 iterate_irefs_t *iterate, void *ctx)
2063 {
2064 int ret = 0;
2065 int slot;
2066 u32 cur;
2067 u32 len;
2068 u32 name_len;
2069 u64 parent = 0;
2070 int found = 0;
2071 struct extent_buffer *eb;
2072 struct btrfs_inode_ref *iref;
2073 struct btrfs_key found_key;
2074
2075 while (!ret) {
2076 ret = btrfs_find_item(fs_root, path, inum,
2077 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2078 &found_key);
2079
2080 if (ret < 0)
2081 break;
2082 if (ret) {
2083 ret = found ? 0 : -ENOENT;
2084 break;
2085 }
2086 ++found;
2087
2088 parent = found_key.offset;
2089 slot = path->slots[0];
2090 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2091 if (!eb) {
2092 ret = -ENOMEM;
2093 break;
2094 }
2095 btrfs_release_path(path);
2096
2097 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2098
2099 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2100 name_len = btrfs_inode_ref_name_len(eb, iref);
2101 /* path must be released before calling iterate()! */
2102 btrfs_debug(fs_root->fs_info,
2103 "following ref at offset %u for inode %llu in tree %llu",
2104 cur, found_key.objectid,
2105 fs_root->root_key.objectid);
2106 ret = iterate(parent, name_len,
2107 (unsigned long)(iref + 1), eb, ctx);
2108 if (ret)
2109 break;
2110 len = sizeof(*iref) + name_len;
2111 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2112 }
2113 free_extent_buffer(eb);
2114 }
2115
2116 btrfs_release_path(path);
2117
2118 return ret;
2119 }
2120
iterate_inode_extrefs(u64 inum,struct btrfs_root * fs_root,struct btrfs_path * path,iterate_irefs_t * iterate,void * ctx)2121 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2122 struct btrfs_path *path,
2123 iterate_irefs_t *iterate, void *ctx)
2124 {
2125 int ret;
2126 int slot;
2127 u64 offset = 0;
2128 u64 parent;
2129 int found = 0;
2130 struct extent_buffer *eb;
2131 struct btrfs_inode_extref *extref;
2132 u32 item_size;
2133 u32 cur_offset;
2134 unsigned long ptr;
2135
2136 while (1) {
2137 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2138 &offset);
2139 if (ret < 0)
2140 break;
2141 if (ret) {
2142 ret = found ? 0 : -ENOENT;
2143 break;
2144 }
2145 ++found;
2146
2147 slot = path->slots[0];
2148 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2149 if (!eb) {
2150 ret = -ENOMEM;
2151 break;
2152 }
2153 btrfs_release_path(path);
2154
2155 item_size = btrfs_item_size(eb, slot);
2156 ptr = btrfs_item_ptr_offset(eb, slot);
2157 cur_offset = 0;
2158
2159 while (cur_offset < item_size) {
2160 u32 name_len;
2161
2162 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2163 parent = btrfs_inode_extref_parent(eb, extref);
2164 name_len = btrfs_inode_extref_name_len(eb, extref);
2165 ret = iterate(parent, name_len,
2166 (unsigned long)&extref->name, eb, ctx);
2167 if (ret)
2168 break;
2169
2170 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2171 cur_offset += sizeof(*extref);
2172 }
2173 free_extent_buffer(eb);
2174
2175 offset++;
2176 }
2177
2178 btrfs_release_path(path);
2179
2180 return ret;
2181 }
2182
iterate_irefs(u64 inum,struct btrfs_root * fs_root,struct btrfs_path * path,iterate_irefs_t * iterate,void * ctx)2183 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2184 struct btrfs_path *path, iterate_irefs_t *iterate,
2185 void *ctx)
2186 {
2187 int ret;
2188 int found_refs = 0;
2189
2190 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2191 if (!ret)
2192 ++found_refs;
2193 else if (ret != -ENOENT)
2194 return ret;
2195
2196 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2197 if (ret == -ENOENT && found_refs)
2198 return 0;
2199
2200 return ret;
2201 }
2202
2203 /*
2204 * returns 0 if the path could be dumped (probably truncated)
2205 * returns <0 in case of an error
2206 */
inode_to_path(u64 inum,u32 name_len,unsigned long name_off,struct extent_buffer * eb,void * ctx)2207 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2208 struct extent_buffer *eb, void *ctx)
2209 {
2210 struct inode_fs_paths *ipath = ctx;
2211 char *fspath;
2212 char *fspath_min;
2213 int i = ipath->fspath->elem_cnt;
2214 const int s_ptr = sizeof(char *);
2215 u32 bytes_left;
2216
2217 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2218 ipath->fspath->bytes_left - s_ptr : 0;
2219
2220 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2221 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2222 name_off, eb, inum, fspath_min, bytes_left);
2223 if (IS_ERR(fspath))
2224 return PTR_ERR(fspath);
2225
2226 if (fspath > fspath_min) {
2227 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2228 ++ipath->fspath->elem_cnt;
2229 ipath->fspath->bytes_left = fspath - fspath_min;
2230 } else {
2231 ++ipath->fspath->elem_missed;
2232 ipath->fspath->bytes_missing += fspath_min - fspath;
2233 ipath->fspath->bytes_left = 0;
2234 }
2235
2236 return 0;
2237 }
2238
2239 /*
2240 * this dumps all file system paths to the inode into the ipath struct, provided
2241 * is has been created large enough. each path is zero-terminated and accessed
2242 * from ipath->fspath->val[i].
2243 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2244 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2245 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2246 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2247 * have been needed to return all paths.
2248 */
paths_from_inode(u64 inum,struct inode_fs_paths * ipath)2249 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2250 {
2251 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2252 inode_to_path, ipath);
2253 }
2254
init_data_container(u32 total_bytes)2255 struct btrfs_data_container *init_data_container(u32 total_bytes)
2256 {
2257 struct btrfs_data_container *data;
2258 size_t alloc_bytes;
2259
2260 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2261 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2262 if (!data)
2263 return ERR_PTR(-ENOMEM);
2264
2265 if (total_bytes >= sizeof(*data)) {
2266 data->bytes_left = total_bytes - sizeof(*data);
2267 data->bytes_missing = 0;
2268 } else {
2269 data->bytes_missing = sizeof(*data) - total_bytes;
2270 data->bytes_left = 0;
2271 }
2272
2273 data->elem_cnt = 0;
2274 data->elem_missed = 0;
2275
2276 return data;
2277 }
2278
2279 /*
2280 * allocates space to return multiple file system paths for an inode.
2281 * total_bytes to allocate are passed, note that space usable for actual path
2282 * information will be total_bytes - sizeof(struct inode_fs_paths).
2283 * the returned pointer must be freed with free_ipath() in the end.
2284 */
init_ipath(s32 total_bytes,struct btrfs_root * fs_root,struct btrfs_path * path)2285 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2286 struct btrfs_path *path)
2287 {
2288 struct inode_fs_paths *ifp;
2289 struct btrfs_data_container *fspath;
2290
2291 fspath = init_data_container(total_bytes);
2292 if (IS_ERR(fspath))
2293 return ERR_CAST(fspath);
2294
2295 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2296 if (!ifp) {
2297 kvfree(fspath);
2298 return ERR_PTR(-ENOMEM);
2299 }
2300
2301 ifp->btrfs_path = path;
2302 ifp->fspath = fspath;
2303 ifp->fs_root = fs_root;
2304
2305 return ifp;
2306 }
2307
free_ipath(struct inode_fs_paths * ipath)2308 void free_ipath(struct inode_fs_paths *ipath)
2309 {
2310 if (!ipath)
2311 return;
2312 kvfree(ipath->fspath);
2313 kfree(ipath);
2314 }
2315
btrfs_backref_iter_alloc(struct btrfs_fs_info * fs_info,gfp_t gfp_flag)2316 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2317 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2318 {
2319 struct btrfs_backref_iter *ret;
2320
2321 ret = kzalloc(sizeof(*ret), gfp_flag);
2322 if (!ret)
2323 return NULL;
2324
2325 ret->path = btrfs_alloc_path();
2326 if (!ret->path) {
2327 kfree(ret);
2328 return NULL;
2329 }
2330
2331 /* Current backref iterator only supports iteration in commit root */
2332 ret->path->search_commit_root = 1;
2333 ret->path->skip_locking = 1;
2334 ret->fs_info = fs_info;
2335
2336 return ret;
2337 }
2338
btrfs_backref_iter_start(struct btrfs_backref_iter * iter,u64 bytenr)2339 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2340 {
2341 struct btrfs_fs_info *fs_info = iter->fs_info;
2342 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2343 struct btrfs_path *path = iter->path;
2344 struct btrfs_extent_item *ei;
2345 struct btrfs_key key;
2346 int ret;
2347
2348 key.objectid = bytenr;
2349 key.type = BTRFS_METADATA_ITEM_KEY;
2350 key.offset = (u64)-1;
2351 iter->bytenr = bytenr;
2352
2353 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2354 if (ret < 0)
2355 return ret;
2356 if (ret == 0) {
2357 ret = -EUCLEAN;
2358 goto release;
2359 }
2360 if (path->slots[0] == 0) {
2361 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2362 ret = -EUCLEAN;
2363 goto release;
2364 }
2365 path->slots[0]--;
2366
2367 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2368 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2369 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2370 ret = -ENOENT;
2371 goto release;
2372 }
2373 memcpy(&iter->cur_key, &key, sizeof(key));
2374 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2375 path->slots[0]);
2376 iter->end_ptr = (u32)(iter->item_ptr +
2377 btrfs_item_size(path->nodes[0], path->slots[0]));
2378 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2379 struct btrfs_extent_item);
2380
2381 /*
2382 * Only support iteration on tree backref yet.
2383 *
2384 * This is an extra precaution for non skinny-metadata, where
2385 * EXTENT_ITEM is also used for tree blocks, that we can only use
2386 * extent flags to determine if it's a tree block.
2387 */
2388 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2389 ret = -ENOTSUPP;
2390 goto release;
2391 }
2392 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2393
2394 /* If there is no inline backref, go search for keyed backref */
2395 if (iter->cur_ptr >= iter->end_ptr) {
2396 ret = btrfs_next_item(extent_root, path);
2397
2398 /* No inline nor keyed ref */
2399 if (ret > 0) {
2400 ret = -ENOENT;
2401 goto release;
2402 }
2403 if (ret < 0)
2404 goto release;
2405
2406 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2407 path->slots[0]);
2408 if (iter->cur_key.objectid != bytenr ||
2409 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2410 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2411 ret = -ENOENT;
2412 goto release;
2413 }
2414 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2415 path->slots[0]);
2416 iter->item_ptr = iter->cur_ptr;
2417 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2418 path->nodes[0], path->slots[0]));
2419 }
2420
2421 return 0;
2422 release:
2423 btrfs_backref_iter_release(iter);
2424 return ret;
2425 }
2426
2427 /*
2428 * Go to the next backref item of current bytenr, can be either inlined or
2429 * keyed.
2430 *
2431 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2432 *
2433 * Return 0 if we get next backref without problem.
2434 * Return >0 if there is no extra backref for this bytenr.
2435 * Return <0 if there is something wrong happened.
2436 */
btrfs_backref_iter_next(struct btrfs_backref_iter * iter)2437 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2438 {
2439 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2440 struct btrfs_root *extent_root;
2441 struct btrfs_path *path = iter->path;
2442 struct btrfs_extent_inline_ref *iref;
2443 int ret;
2444 u32 size;
2445
2446 if (btrfs_backref_iter_is_inline_ref(iter)) {
2447 /* We're still inside the inline refs */
2448 ASSERT(iter->cur_ptr < iter->end_ptr);
2449
2450 if (btrfs_backref_has_tree_block_info(iter)) {
2451 /* First tree block info */
2452 size = sizeof(struct btrfs_tree_block_info);
2453 } else {
2454 /* Use inline ref type to determine the size */
2455 int type;
2456
2457 iref = (struct btrfs_extent_inline_ref *)
2458 ((unsigned long)iter->cur_ptr);
2459 type = btrfs_extent_inline_ref_type(eb, iref);
2460
2461 size = btrfs_extent_inline_ref_size(type);
2462 }
2463 iter->cur_ptr += size;
2464 if (iter->cur_ptr < iter->end_ptr)
2465 return 0;
2466
2467 /* All inline items iterated, fall through */
2468 }
2469
2470 /* We're at keyed items, there is no inline item, go to the next one */
2471 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2472 ret = btrfs_next_item(extent_root, iter->path);
2473 if (ret)
2474 return ret;
2475
2476 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2477 if (iter->cur_key.objectid != iter->bytenr ||
2478 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2479 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2480 return 1;
2481 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2482 path->slots[0]);
2483 iter->cur_ptr = iter->item_ptr;
2484 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2485 path->slots[0]);
2486 return 0;
2487 }
2488
btrfs_backref_init_cache(struct btrfs_fs_info * fs_info,struct btrfs_backref_cache * cache,int is_reloc)2489 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2490 struct btrfs_backref_cache *cache, int is_reloc)
2491 {
2492 int i;
2493
2494 cache->rb_root = RB_ROOT;
2495 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2496 INIT_LIST_HEAD(&cache->pending[i]);
2497 INIT_LIST_HEAD(&cache->changed);
2498 INIT_LIST_HEAD(&cache->detached);
2499 INIT_LIST_HEAD(&cache->leaves);
2500 INIT_LIST_HEAD(&cache->pending_edge);
2501 INIT_LIST_HEAD(&cache->useless_node);
2502 cache->fs_info = fs_info;
2503 cache->is_reloc = is_reloc;
2504 }
2505
btrfs_backref_alloc_node(struct btrfs_backref_cache * cache,u64 bytenr,int level)2506 struct btrfs_backref_node *btrfs_backref_alloc_node(
2507 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2508 {
2509 struct btrfs_backref_node *node;
2510
2511 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2512 node = kzalloc(sizeof(*node), GFP_NOFS);
2513 if (!node)
2514 return node;
2515
2516 INIT_LIST_HEAD(&node->list);
2517 INIT_LIST_HEAD(&node->upper);
2518 INIT_LIST_HEAD(&node->lower);
2519 RB_CLEAR_NODE(&node->rb_node);
2520 cache->nr_nodes++;
2521 node->level = level;
2522 node->bytenr = bytenr;
2523
2524 return node;
2525 }
2526
btrfs_backref_alloc_edge(struct btrfs_backref_cache * cache)2527 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2528 struct btrfs_backref_cache *cache)
2529 {
2530 struct btrfs_backref_edge *edge;
2531
2532 edge = kzalloc(sizeof(*edge), GFP_NOFS);
2533 if (edge)
2534 cache->nr_edges++;
2535 return edge;
2536 }
2537
2538 /*
2539 * Drop the backref node from cache, also cleaning up all its
2540 * upper edges and any uncached nodes in the path.
2541 *
2542 * This cleanup happens bottom up, thus the node should either
2543 * be the lowest node in the cache or a detached node.
2544 */
btrfs_backref_cleanup_node(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node)2545 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2546 struct btrfs_backref_node *node)
2547 {
2548 struct btrfs_backref_node *upper;
2549 struct btrfs_backref_edge *edge;
2550
2551 if (!node)
2552 return;
2553
2554 BUG_ON(!node->lowest && !node->detached);
2555 while (!list_empty(&node->upper)) {
2556 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2557 list[LOWER]);
2558 upper = edge->node[UPPER];
2559 list_del(&edge->list[LOWER]);
2560 list_del(&edge->list[UPPER]);
2561 btrfs_backref_free_edge(cache, edge);
2562
2563 /*
2564 * Add the node to leaf node list if no other child block
2565 * cached.
2566 */
2567 if (list_empty(&upper->lower)) {
2568 list_add_tail(&upper->lower, &cache->leaves);
2569 upper->lowest = 1;
2570 }
2571 }
2572
2573 btrfs_backref_drop_node(cache, node);
2574 }
2575
2576 /*
2577 * Release all nodes/edges from current cache
2578 */
btrfs_backref_release_cache(struct btrfs_backref_cache * cache)2579 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2580 {
2581 struct btrfs_backref_node *node;
2582 int i;
2583
2584 while (!list_empty(&cache->detached)) {
2585 node = list_entry(cache->detached.next,
2586 struct btrfs_backref_node, list);
2587 btrfs_backref_cleanup_node(cache, node);
2588 }
2589
2590 while (!list_empty(&cache->leaves)) {
2591 node = list_entry(cache->leaves.next,
2592 struct btrfs_backref_node, lower);
2593 btrfs_backref_cleanup_node(cache, node);
2594 }
2595
2596 cache->last_trans = 0;
2597
2598 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2599 ASSERT(list_empty(&cache->pending[i]));
2600 ASSERT(list_empty(&cache->pending_edge));
2601 ASSERT(list_empty(&cache->useless_node));
2602 ASSERT(list_empty(&cache->changed));
2603 ASSERT(list_empty(&cache->detached));
2604 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2605 ASSERT(!cache->nr_nodes);
2606 ASSERT(!cache->nr_edges);
2607 }
2608
2609 /*
2610 * Handle direct tree backref
2611 *
2612 * Direct tree backref means, the backref item shows its parent bytenr
2613 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2614 *
2615 * @ref_key: The converted backref key.
2616 * For keyed backref, it's the item key.
2617 * For inlined backref, objectid is the bytenr,
2618 * type is btrfs_inline_ref_type, offset is
2619 * btrfs_inline_ref_offset.
2620 */
handle_direct_tree_backref(struct btrfs_backref_cache * cache,struct btrfs_key * ref_key,struct btrfs_backref_node * cur)2621 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2622 struct btrfs_key *ref_key,
2623 struct btrfs_backref_node *cur)
2624 {
2625 struct btrfs_backref_edge *edge;
2626 struct btrfs_backref_node *upper;
2627 struct rb_node *rb_node;
2628
2629 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2630
2631 /* Only reloc root uses backref pointing to itself */
2632 if (ref_key->objectid == ref_key->offset) {
2633 struct btrfs_root *root;
2634
2635 cur->is_reloc_root = 1;
2636 /* Only reloc backref cache cares about a specific root */
2637 if (cache->is_reloc) {
2638 root = find_reloc_root(cache->fs_info, cur->bytenr);
2639 if (!root)
2640 return -ENOENT;
2641 cur->root = root;
2642 } else {
2643 /*
2644 * For generic purpose backref cache, reloc root node
2645 * is useless.
2646 */
2647 list_add(&cur->list, &cache->useless_node);
2648 }
2649 return 0;
2650 }
2651
2652 edge = btrfs_backref_alloc_edge(cache);
2653 if (!edge)
2654 return -ENOMEM;
2655
2656 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2657 if (!rb_node) {
2658 /* Parent node not yet cached */
2659 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2660 cur->level + 1);
2661 if (!upper) {
2662 btrfs_backref_free_edge(cache, edge);
2663 return -ENOMEM;
2664 }
2665
2666 /*
2667 * Backrefs for the upper level block isn't cached, add the
2668 * block to pending list
2669 */
2670 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2671 } else {
2672 /* Parent node already cached */
2673 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2674 ASSERT(upper->checked);
2675 INIT_LIST_HEAD(&edge->list[UPPER]);
2676 }
2677 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2678 return 0;
2679 }
2680
2681 /*
2682 * Handle indirect tree backref
2683 *
2684 * Indirect tree backref means, we only know which tree the node belongs to.
2685 * We still need to do a tree search to find out the parents. This is for
2686 * TREE_BLOCK_REF backref (keyed or inlined).
2687 *
2688 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
2689 * @tree_key: The first key of this tree block.
2690 * @path: A clean (released) path, to avoid allocating path every time
2691 * the function get called.
2692 */
handle_indirect_tree_backref(struct btrfs_backref_cache * cache,struct btrfs_path * path,struct btrfs_key * ref_key,struct btrfs_key * tree_key,struct btrfs_backref_node * cur)2693 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2694 struct btrfs_path *path,
2695 struct btrfs_key *ref_key,
2696 struct btrfs_key *tree_key,
2697 struct btrfs_backref_node *cur)
2698 {
2699 struct btrfs_fs_info *fs_info = cache->fs_info;
2700 struct btrfs_backref_node *upper;
2701 struct btrfs_backref_node *lower;
2702 struct btrfs_backref_edge *edge;
2703 struct extent_buffer *eb;
2704 struct btrfs_root *root;
2705 struct rb_node *rb_node;
2706 int level;
2707 bool need_check = true;
2708 int ret;
2709
2710 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2711 if (IS_ERR(root))
2712 return PTR_ERR(root);
2713 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2714 cur->cowonly = 1;
2715
2716 if (btrfs_root_level(&root->root_item) == cur->level) {
2717 /* Tree root */
2718 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2719 /*
2720 * For reloc backref cache, we may ignore reloc root. But for
2721 * general purpose backref cache, we can't rely on
2722 * btrfs_should_ignore_reloc_root() as it may conflict with
2723 * current running relocation and lead to missing root.
2724 *
2725 * For general purpose backref cache, reloc root detection is
2726 * completely relying on direct backref (key->offset is parent
2727 * bytenr), thus only do such check for reloc cache.
2728 */
2729 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2730 btrfs_put_root(root);
2731 list_add(&cur->list, &cache->useless_node);
2732 } else {
2733 cur->root = root;
2734 }
2735 return 0;
2736 }
2737
2738 level = cur->level + 1;
2739
2740 /* Search the tree to find parent blocks referring to the block */
2741 path->search_commit_root = 1;
2742 path->skip_locking = 1;
2743 path->lowest_level = level;
2744 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2745 path->lowest_level = 0;
2746 if (ret < 0) {
2747 btrfs_put_root(root);
2748 return ret;
2749 }
2750 if (ret > 0 && path->slots[level] > 0)
2751 path->slots[level]--;
2752
2753 eb = path->nodes[level];
2754 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2755 btrfs_err(fs_info,
2756 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2757 cur->bytenr, level - 1, root->root_key.objectid,
2758 tree_key->objectid, tree_key->type, tree_key->offset);
2759 btrfs_put_root(root);
2760 ret = -ENOENT;
2761 goto out;
2762 }
2763 lower = cur;
2764
2765 /* Add all nodes and edges in the path */
2766 for (; level < BTRFS_MAX_LEVEL; level++) {
2767 if (!path->nodes[level]) {
2768 ASSERT(btrfs_root_bytenr(&root->root_item) ==
2769 lower->bytenr);
2770 /* Same as previous should_ignore_reloc_root() call */
2771 if (btrfs_should_ignore_reloc_root(root) &&
2772 cache->is_reloc) {
2773 btrfs_put_root(root);
2774 list_add(&lower->list, &cache->useless_node);
2775 } else {
2776 lower->root = root;
2777 }
2778 break;
2779 }
2780
2781 edge = btrfs_backref_alloc_edge(cache);
2782 if (!edge) {
2783 btrfs_put_root(root);
2784 ret = -ENOMEM;
2785 goto out;
2786 }
2787
2788 eb = path->nodes[level];
2789 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2790 if (!rb_node) {
2791 upper = btrfs_backref_alloc_node(cache, eb->start,
2792 lower->level + 1);
2793 if (!upper) {
2794 btrfs_put_root(root);
2795 btrfs_backref_free_edge(cache, edge);
2796 ret = -ENOMEM;
2797 goto out;
2798 }
2799 upper->owner = btrfs_header_owner(eb);
2800 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2801 upper->cowonly = 1;
2802
2803 /*
2804 * If we know the block isn't shared we can avoid
2805 * checking its backrefs.
2806 */
2807 if (btrfs_block_can_be_shared(root, eb))
2808 upper->checked = 0;
2809 else
2810 upper->checked = 1;
2811
2812 /*
2813 * Add the block to pending list if we need to check its
2814 * backrefs, we only do this once while walking up a
2815 * tree as we will catch anything else later on.
2816 */
2817 if (!upper->checked && need_check) {
2818 need_check = false;
2819 list_add_tail(&edge->list[UPPER],
2820 &cache->pending_edge);
2821 } else {
2822 if (upper->checked)
2823 need_check = true;
2824 INIT_LIST_HEAD(&edge->list[UPPER]);
2825 }
2826 } else {
2827 upper = rb_entry(rb_node, struct btrfs_backref_node,
2828 rb_node);
2829 ASSERT(upper->checked);
2830 INIT_LIST_HEAD(&edge->list[UPPER]);
2831 if (!upper->owner)
2832 upper->owner = btrfs_header_owner(eb);
2833 }
2834 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2835
2836 if (rb_node) {
2837 btrfs_put_root(root);
2838 break;
2839 }
2840 lower = upper;
2841 upper = NULL;
2842 }
2843 out:
2844 btrfs_release_path(path);
2845 return ret;
2846 }
2847
2848 /*
2849 * Add backref node @cur into @cache.
2850 *
2851 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2852 * links aren't yet bi-directional. Needs to finish such links.
2853 * Use btrfs_backref_finish_upper_links() to finish such linkage.
2854 *
2855 * @path: Released path for indirect tree backref lookup
2856 * @iter: Released backref iter for extent tree search
2857 * @node_key: The first key of the tree block
2858 */
btrfs_backref_add_tree_node(struct btrfs_backref_cache * cache,struct btrfs_path * path,struct btrfs_backref_iter * iter,struct btrfs_key * node_key,struct btrfs_backref_node * cur)2859 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2860 struct btrfs_path *path,
2861 struct btrfs_backref_iter *iter,
2862 struct btrfs_key *node_key,
2863 struct btrfs_backref_node *cur)
2864 {
2865 struct btrfs_fs_info *fs_info = cache->fs_info;
2866 struct btrfs_backref_edge *edge;
2867 struct btrfs_backref_node *exist;
2868 int ret;
2869
2870 ret = btrfs_backref_iter_start(iter, cur->bytenr);
2871 if (ret < 0)
2872 return ret;
2873 /*
2874 * We skip the first btrfs_tree_block_info, as we don't use the key
2875 * stored in it, but fetch it from the tree block
2876 */
2877 if (btrfs_backref_has_tree_block_info(iter)) {
2878 ret = btrfs_backref_iter_next(iter);
2879 if (ret < 0)
2880 goto out;
2881 /* No extra backref? This means the tree block is corrupted */
2882 if (ret > 0) {
2883 ret = -EUCLEAN;
2884 goto out;
2885 }
2886 }
2887 WARN_ON(cur->checked);
2888 if (!list_empty(&cur->upper)) {
2889 /*
2890 * The backref was added previously when processing backref of
2891 * type BTRFS_TREE_BLOCK_REF_KEY
2892 */
2893 ASSERT(list_is_singular(&cur->upper));
2894 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2895 list[LOWER]);
2896 ASSERT(list_empty(&edge->list[UPPER]));
2897 exist = edge->node[UPPER];
2898 /*
2899 * Add the upper level block to pending list if we need check
2900 * its backrefs
2901 */
2902 if (!exist->checked)
2903 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2904 } else {
2905 exist = NULL;
2906 }
2907
2908 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2909 struct extent_buffer *eb;
2910 struct btrfs_key key;
2911 int type;
2912
2913 cond_resched();
2914 eb = btrfs_backref_get_eb(iter);
2915
2916 key.objectid = iter->bytenr;
2917 if (btrfs_backref_iter_is_inline_ref(iter)) {
2918 struct btrfs_extent_inline_ref *iref;
2919
2920 /* Update key for inline backref */
2921 iref = (struct btrfs_extent_inline_ref *)
2922 ((unsigned long)iter->cur_ptr);
2923 type = btrfs_get_extent_inline_ref_type(eb, iref,
2924 BTRFS_REF_TYPE_BLOCK);
2925 if (type == BTRFS_REF_TYPE_INVALID) {
2926 ret = -EUCLEAN;
2927 goto out;
2928 }
2929 key.type = type;
2930 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2931 } else {
2932 key.type = iter->cur_key.type;
2933 key.offset = iter->cur_key.offset;
2934 }
2935
2936 /*
2937 * Parent node found and matches current inline ref, no need to
2938 * rebuild this node for this inline ref
2939 */
2940 if (exist &&
2941 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2942 exist->owner == key.offset) ||
2943 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2944 exist->bytenr == key.offset))) {
2945 exist = NULL;
2946 continue;
2947 }
2948
2949 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2950 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2951 ret = handle_direct_tree_backref(cache, &key, cur);
2952 if (ret < 0)
2953 goto out;
2954 continue;
2955 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2956 ret = -EINVAL;
2957 btrfs_print_v0_err(fs_info);
2958 btrfs_handle_fs_error(fs_info, ret, NULL);
2959 goto out;
2960 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2961 continue;
2962 }
2963
2964 /*
2965 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2966 * means the root objectid. We need to search the tree to get
2967 * its parent bytenr.
2968 */
2969 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2970 cur);
2971 if (ret < 0)
2972 goto out;
2973 }
2974 ret = 0;
2975 cur->checked = 1;
2976 WARN_ON(exist);
2977 out:
2978 btrfs_backref_iter_release(iter);
2979 return ret;
2980 }
2981
2982 /*
2983 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2984 */
btrfs_backref_finish_upper_links(struct btrfs_backref_cache * cache,struct btrfs_backref_node * start)2985 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2986 struct btrfs_backref_node *start)
2987 {
2988 struct list_head *useless_node = &cache->useless_node;
2989 struct btrfs_backref_edge *edge;
2990 struct rb_node *rb_node;
2991 LIST_HEAD(pending_edge);
2992
2993 ASSERT(start->checked);
2994
2995 /* Insert this node to cache if it's not COW-only */
2996 if (!start->cowonly) {
2997 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2998 &start->rb_node);
2999 if (rb_node)
3000 btrfs_backref_panic(cache->fs_info, start->bytenr,
3001 -EEXIST);
3002 list_add_tail(&start->lower, &cache->leaves);
3003 }
3004
3005 /*
3006 * Use breadth first search to iterate all related edges.
3007 *
3008 * The starting points are all the edges of this node
3009 */
3010 list_for_each_entry(edge, &start->upper, list[LOWER])
3011 list_add_tail(&edge->list[UPPER], &pending_edge);
3012
3013 while (!list_empty(&pending_edge)) {
3014 struct btrfs_backref_node *upper;
3015 struct btrfs_backref_node *lower;
3016
3017 edge = list_first_entry(&pending_edge,
3018 struct btrfs_backref_edge, list[UPPER]);
3019 list_del_init(&edge->list[UPPER]);
3020 upper = edge->node[UPPER];
3021 lower = edge->node[LOWER];
3022
3023 /* Parent is detached, no need to keep any edges */
3024 if (upper->detached) {
3025 list_del(&edge->list[LOWER]);
3026 btrfs_backref_free_edge(cache, edge);
3027
3028 /* Lower node is orphan, queue for cleanup */
3029 if (list_empty(&lower->upper))
3030 list_add(&lower->list, useless_node);
3031 continue;
3032 }
3033
3034 /*
3035 * All new nodes added in current build_backref_tree() haven't
3036 * been linked to the cache rb tree.
3037 * So if we have upper->rb_node populated, this means a cache
3038 * hit. We only need to link the edge, as @upper and all its
3039 * parents have already been linked.
3040 */
3041 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3042 if (upper->lowest) {
3043 list_del_init(&upper->lower);
3044 upper->lowest = 0;
3045 }
3046
3047 list_add_tail(&edge->list[UPPER], &upper->lower);
3048 continue;
3049 }
3050
3051 /* Sanity check, we shouldn't have any unchecked nodes */
3052 if (!upper->checked) {
3053 ASSERT(0);
3054 return -EUCLEAN;
3055 }
3056
3057 /* Sanity check, COW-only node has non-COW-only parent */
3058 if (start->cowonly != upper->cowonly) {
3059 ASSERT(0);
3060 return -EUCLEAN;
3061 }
3062
3063 /* Only cache non-COW-only (subvolume trees) tree blocks */
3064 if (!upper->cowonly) {
3065 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3066 &upper->rb_node);
3067 if (rb_node) {
3068 btrfs_backref_panic(cache->fs_info,
3069 upper->bytenr, -EEXIST);
3070 return -EUCLEAN;
3071 }
3072 }
3073
3074 list_add_tail(&edge->list[UPPER], &upper->lower);
3075
3076 /*
3077 * Also queue all the parent edges of this uncached node
3078 * to finish the upper linkage
3079 */
3080 list_for_each_entry(edge, &upper->upper, list[LOWER])
3081 list_add_tail(&edge->list[UPPER], &pending_edge);
3082 }
3083 return 0;
3084 }
3085
btrfs_backref_error_cleanup(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node)3086 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3087 struct btrfs_backref_node *node)
3088 {
3089 struct btrfs_backref_node *lower;
3090 struct btrfs_backref_node *upper;
3091 struct btrfs_backref_edge *edge;
3092
3093 while (!list_empty(&cache->useless_node)) {
3094 lower = list_first_entry(&cache->useless_node,
3095 struct btrfs_backref_node, list);
3096 list_del_init(&lower->list);
3097 }
3098 while (!list_empty(&cache->pending_edge)) {
3099 edge = list_first_entry(&cache->pending_edge,
3100 struct btrfs_backref_edge, list[UPPER]);
3101 list_del(&edge->list[UPPER]);
3102 list_del(&edge->list[LOWER]);
3103 lower = edge->node[LOWER];
3104 upper = edge->node[UPPER];
3105 btrfs_backref_free_edge(cache, edge);
3106
3107 /*
3108 * Lower is no longer linked to any upper backref nodes and
3109 * isn't in the cache, we can free it ourselves.
3110 */
3111 if (list_empty(&lower->upper) &&
3112 RB_EMPTY_NODE(&lower->rb_node))
3113 list_add(&lower->list, &cache->useless_node);
3114
3115 if (!RB_EMPTY_NODE(&upper->rb_node))
3116 continue;
3117
3118 /* Add this guy's upper edges to the list to process */
3119 list_for_each_entry(edge, &upper->upper, list[LOWER])
3120 list_add_tail(&edge->list[UPPER],
3121 &cache->pending_edge);
3122 if (list_empty(&upper->upper))
3123 list_add(&upper->list, &cache->useless_node);
3124 }
3125
3126 while (!list_empty(&cache->useless_node)) {
3127 lower = list_first_entry(&cache->useless_node,
3128 struct btrfs_backref_node, list);
3129 list_del_init(&lower->list);
3130 if (lower == node)
3131 node = NULL;
3132 btrfs_backref_drop_node(cache, lower);
3133 }
3134
3135 btrfs_backref_cleanup_node(cache, node);
3136 ASSERT(list_empty(&cache->useless_node) &&
3137 list_empty(&cache->pending_edge));
3138 }
3139