1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "extent-tree.h"
56 #include "root-tree.h"
57 #include "defrag.h"
58 #include "dir-item.h"
59 #include "uuid-tree.h"
60 #include "ioctl.h"
61 #include "file.h"
62 #include "scrub.h"
63 #include "super.h"
64
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71 struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74 } __attribute__ ((__packed__));
75
76 struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84 } __attribute__ ((__packed__));
85
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 __s64 send_fd; /* in */
93 __u64 clone_sources_count; /* in */
94 compat_uptr_t clone_sources; /* in */
95 __u64 parent_root; /* in */
96 __u64 flags; /* in */
97 __u32 version; /* in */
98 __u8 reserved[28]; /* in */
99 } __attribute__ ((__packed__));
100
101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 struct btrfs_ioctl_send_args_32)
103
104 struct btrfs_ioctl_encoded_io_args_32 {
105 compat_uptr_t iov;
106 compat_ulong_t iovcnt;
107 __s64 offset;
108 __u64 flags;
109 __u64 len;
110 __u64 unencoded_len;
111 __u64 unencoded_offset;
112 __u32 compression;
113 __u32 encryption;
114 __u8 reserved[64];
115 };
116
117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 struct btrfs_ioctl_encoded_io_args_32)
119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 struct btrfs_ioctl_encoded_io_args_32)
121 #endif
122
123 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125 unsigned int flags)
126 {
127 if (S_ISDIR(inode->i_mode))
128 return flags;
129 else if (S_ISREG(inode->i_mode))
130 return flags & ~FS_DIRSYNC_FL;
131 else
132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133 }
134
135 /*
136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137 * ioctl.
138 */
btrfs_inode_flags_to_fsflags(struct btrfs_inode * binode)139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140 {
141 unsigned int iflags = 0;
142 u32 flags = binode->flags;
143 u32 ro_flags = binode->ro_flags;
144
145 if (flags & BTRFS_INODE_SYNC)
146 iflags |= FS_SYNC_FL;
147 if (flags & BTRFS_INODE_IMMUTABLE)
148 iflags |= FS_IMMUTABLE_FL;
149 if (flags & BTRFS_INODE_APPEND)
150 iflags |= FS_APPEND_FL;
151 if (flags & BTRFS_INODE_NODUMP)
152 iflags |= FS_NODUMP_FL;
153 if (flags & BTRFS_INODE_NOATIME)
154 iflags |= FS_NOATIME_FL;
155 if (flags & BTRFS_INODE_DIRSYNC)
156 iflags |= FS_DIRSYNC_FL;
157 if (flags & BTRFS_INODE_NODATACOW)
158 iflags |= FS_NOCOW_FL;
159 if (ro_flags & BTRFS_INODE_RO_VERITY)
160 iflags |= FS_VERITY_FL;
161
162 if (flags & BTRFS_INODE_NOCOMPRESS)
163 iflags |= FS_NOCOMP_FL;
164 else if (flags & BTRFS_INODE_COMPRESS)
165 iflags |= FS_COMPR_FL;
166
167 return iflags;
168 }
169
170 /*
171 * Update inode->i_flags based on the btrfs internal flags.
172 */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174 {
175 struct btrfs_inode *binode = BTRFS_I(inode);
176 unsigned int new_fl = 0;
177
178 if (binode->flags & BTRFS_INODE_SYNC)
179 new_fl |= S_SYNC;
180 if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 new_fl |= S_IMMUTABLE;
182 if (binode->flags & BTRFS_INODE_APPEND)
183 new_fl |= S_APPEND;
184 if (binode->flags & BTRFS_INODE_NOATIME)
185 new_fl |= S_NOATIME;
186 if (binode->flags & BTRFS_INODE_DIRSYNC)
187 new_fl |= S_DIRSYNC;
188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189 new_fl |= S_VERITY;
190
191 set_mask_bits(&inode->i_flags,
192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 S_VERITY, new_fl);
194 }
195
196 /*
197 * Check if @flags are a supported and valid set of FS_*_FL flags and that
198 * the old and new flags are not conflicting
199 */
check_fsflags(unsigned int old_flags,unsigned int flags)200 static int check_fsflags(unsigned int old_flags, unsigned int flags)
201 {
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
206 FS_NOCOW_FL))
207 return -EOPNOTSUPP;
208
209 /* COMPR and NOCOMP on new/old are valid */
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214 return -EINVAL;
215
216 /* NOCOW and compression options are mutually exclusive */
217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218 return -EINVAL;
219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220 return -EINVAL;
221
222 return 0;
223 }
224
check_fsflags_compatible(struct btrfs_fs_info * fs_info,unsigned int flags)225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226 unsigned int flags)
227 {
228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229 return -EPERM;
230
231 return 0;
232 }
233
234 /*
235 * Set flags/xflags from the internal inode flags. The remaining items of
236 * fsxattr are zeroed.
237 */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239 {
240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241
242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243 return 0;
244 }
245
btrfs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)246 int btrfs_fileattr_set(struct mnt_idmap *idmap,
247 struct dentry *dentry, struct fileattr *fa)
248 {
249 struct inode *inode = d_inode(dentry);
250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 struct btrfs_inode *binode = BTRFS_I(inode);
252 struct btrfs_root *root = binode->root;
253 struct btrfs_trans_handle *trans;
254 unsigned int fsflags, old_fsflags;
255 int ret;
256 const char *comp = NULL;
257 u32 binode_flags;
258
259 if (btrfs_root_readonly(root))
260 return -EROFS;
261
262 if (fileattr_has_fsx(fa))
263 return -EOPNOTSUPP;
264
265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 ret = check_fsflags(old_fsflags, fsflags);
268 if (ret)
269 return ret;
270
271 ret = check_fsflags_compatible(fs_info, fsflags);
272 if (ret)
273 return ret;
274
275 binode_flags = binode->flags;
276 if (fsflags & FS_SYNC_FL)
277 binode_flags |= BTRFS_INODE_SYNC;
278 else
279 binode_flags &= ~BTRFS_INODE_SYNC;
280 if (fsflags & FS_IMMUTABLE_FL)
281 binode_flags |= BTRFS_INODE_IMMUTABLE;
282 else
283 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 if (fsflags & FS_APPEND_FL)
285 binode_flags |= BTRFS_INODE_APPEND;
286 else
287 binode_flags &= ~BTRFS_INODE_APPEND;
288 if (fsflags & FS_NODUMP_FL)
289 binode_flags |= BTRFS_INODE_NODUMP;
290 else
291 binode_flags &= ~BTRFS_INODE_NODUMP;
292 if (fsflags & FS_NOATIME_FL)
293 binode_flags |= BTRFS_INODE_NOATIME;
294 else
295 binode_flags &= ~BTRFS_INODE_NOATIME;
296
297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 if (!fa->flags_valid) {
299 /* 1 item for the inode */
300 trans = btrfs_start_transaction(root, 1);
301 if (IS_ERR(trans))
302 return PTR_ERR(trans);
303 goto update_flags;
304 }
305
306 if (fsflags & FS_DIRSYNC_FL)
307 binode_flags |= BTRFS_INODE_DIRSYNC;
308 else
309 binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 if (fsflags & FS_NOCOW_FL) {
311 if (S_ISREG(inode->i_mode)) {
312 /*
313 * It's safe to turn csums off here, no extents exist.
314 * Otherwise we want the flag to reflect the real COW
315 * status of the file and will not set it.
316 */
317 if (inode->i_size == 0)
318 binode_flags |= BTRFS_INODE_NODATACOW |
319 BTRFS_INODE_NODATASUM;
320 } else {
321 binode_flags |= BTRFS_INODE_NODATACOW;
322 }
323 } else {
324 /*
325 * Revert back under same assumptions as above
326 */
327 if (S_ISREG(inode->i_mode)) {
328 if (inode->i_size == 0)
329 binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 BTRFS_INODE_NODATASUM);
331 } else {
332 binode_flags &= ~BTRFS_INODE_NODATACOW;
333 }
334 }
335
336 /*
337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 * flag may be changed automatically if compression code won't make
339 * things smaller.
340 */
341 if (fsflags & FS_NOCOMP_FL) {
342 binode_flags &= ~BTRFS_INODE_COMPRESS;
343 binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 } else if (fsflags & FS_COMPR_FL) {
345
346 if (IS_SWAPFILE(inode))
347 return -ETXTBSY;
348
349 binode_flags |= BTRFS_INODE_COMPRESS;
350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351
352 comp = btrfs_compress_type2str(fs_info->compress_type);
353 if (!comp || comp[0] == 0)
354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355 } else {
356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357 }
358
359 /*
360 * 1 for inode item
361 * 2 for properties
362 */
363 trans = btrfs_start_transaction(root, 3);
364 if (IS_ERR(trans))
365 return PTR_ERR(trans);
366
367 if (comp) {
368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369 strlen(comp), 0);
370 if (ret) {
371 btrfs_abort_transaction(trans, ret);
372 goto out_end_trans;
373 }
374 } else {
375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376 0, 0);
377 if (ret && ret != -ENODATA) {
378 btrfs_abort_transaction(trans, ret);
379 goto out_end_trans;
380 }
381 }
382
383 update_flags:
384 binode->flags = binode_flags;
385 btrfs_sync_inode_flags_to_i_flags(inode);
386 inode_inc_iversion(inode);
387 inode_set_ctime_current(inode);
388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
389
390 out_end_trans:
391 btrfs_end_transaction(trans);
392 return ret;
393 }
394
395 /*
396 * Start exclusive operation @type, return true on success
397 */
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 enum btrfs_exclusive_operation type)
400 {
401 bool ret = false;
402
403 spin_lock(&fs_info->super_lock);
404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 fs_info->exclusive_operation = type;
406 ret = true;
407 }
408 spin_unlock(&fs_info->super_lock);
409
410 return ret;
411 }
412
413 /*
414 * Conditionally allow to enter the exclusive operation in case it's compatible
415 * with the running one. This must be paired with btrfs_exclop_start_unlock and
416 * btrfs_exclop_finish.
417 *
418 * Compatibility:
419 * - the same type is already running
420 * - when trying to add a device and balance has been paused
421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422 * must check the condition first that would allow none -> @type
423 */
btrfs_exclop_start_try_lock(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 enum btrfs_exclusive_operation type)
426 {
427 spin_lock(&fs_info->super_lock);
428 if (fs_info->exclusive_operation == type ||
429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 type == BTRFS_EXCLOP_DEV_ADD))
431 return true;
432
433 spin_unlock(&fs_info->super_lock);
434 return false;
435 }
436
btrfs_exclop_start_unlock(struct btrfs_fs_info * fs_info)437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438 {
439 spin_unlock(&fs_info->super_lock);
440 }
441
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443 {
444 spin_lock(&fs_info->super_lock);
445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 spin_unlock(&fs_info->super_lock);
447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448 }
449
btrfs_exclop_balance(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation op)450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 enum btrfs_exclusive_operation op)
452 {
453 switch (op) {
454 case BTRFS_EXCLOP_BALANCE_PAUSED:
455 spin_lock(&fs_info->super_lock);
456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461 spin_unlock(&fs_info->super_lock);
462 break;
463 case BTRFS_EXCLOP_BALANCE:
464 spin_lock(&fs_info->super_lock);
465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467 spin_unlock(&fs_info->super_lock);
468 break;
469 default:
470 btrfs_warn(fs_info,
471 "invalid exclop balance operation %d requested", op);
472 }
473 }
474
btrfs_ioctl_getversion(struct inode * inode,int __user * arg)475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
476 {
477 return put_user(inode->i_generation, arg);
478 }
479
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
481 void __user *arg)
482 {
483 struct btrfs_device *device;
484 struct fstrim_range range;
485 u64 minlen = ULLONG_MAX;
486 u64 num_devices = 0;
487 int ret;
488
489 if (!capable(CAP_SYS_ADMIN))
490 return -EPERM;
491
492 /*
493 * btrfs_trim_block_group() depends on space cache, which is not
494 * available in zoned filesystem. So, disallow fitrim on a zoned
495 * filesystem for now.
496 */
497 if (btrfs_is_zoned(fs_info))
498 return -EOPNOTSUPP;
499
500 /*
501 * If the fs is mounted with nologreplay, which requires it to be
502 * mounted in RO mode as well, we can not allow discard on free space
503 * inside block groups, because log trees refer to extents that are not
504 * pinned in a block group's free space cache (pinning the extents is
505 * precisely the first phase of replaying a log tree).
506 */
507 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
508 return -EROFS;
509
510 rcu_read_lock();
511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
512 dev_list) {
513 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
514 continue;
515 num_devices++;
516 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
517 minlen);
518 }
519 rcu_read_unlock();
520
521 if (!num_devices)
522 return -EOPNOTSUPP;
523 if (copy_from_user(&range, arg, sizeof(range)))
524 return -EFAULT;
525
526 /*
527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
528 * block group is in the logical address space, which can be any
529 * sectorsize aligned bytenr in the range [0, U64_MAX].
530 */
531 if (range.len < fs_info->sb->s_blocksize)
532 return -EINVAL;
533
534 range.minlen = max(range.minlen, minlen);
535 ret = btrfs_trim_fs(fs_info, &range);
536 if (ret < 0)
537 return ret;
538
539 if (copy_to_user(arg, &range, sizeof(range)))
540 return -EFAULT;
541
542 return 0;
543 }
544
btrfs_is_empty_uuid(u8 * uuid)545 int __pure btrfs_is_empty_uuid(u8 *uuid)
546 {
547 int i;
548
549 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
550 if (uuid[i])
551 return 0;
552 }
553 return 1;
554 }
555
556 /*
557 * Calculate the number of transaction items to reserve for creating a subvolume
558 * or snapshot, not including the inode, directory entries, or parent directory.
559 */
create_subvol_num_items(struct btrfs_qgroup_inherit * inherit)560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
561 {
562 /*
563 * 1 to add root block
564 * 1 to add root item
565 * 1 to add root ref
566 * 1 to add root backref
567 * 1 to add UUID item
568 * 1 to add qgroup info
569 * 1 to add qgroup limit
570 *
571 * Ideally the last two would only be accounted if qgroups are enabled,
572 * but that can change between now and the time we would insert them.
573 */
574 unsigned int num_items = 7;
575
576 if (inherit) {
577 /* 2 to add qgroup relations for each inherited qgroup */
578 num_items += 2 * inherit->num_qgroups;
579 }
580 return num_items;
581 }
582
create_subvol(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)583 static noinline int create_subvol(struct mnt_idmap *idmap,
584 struct inode *dir, struct dentry *dentry,
585 struct btrfs_qgroup_inherit *inherit)
586 {
587 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
588 struct btrfs_trans_handle *trans;
589 struct btrfs_key key;
590 struct btrfs_root_item *root_item;
591 struct btrfs_inode_item *inode_item;
592 struct extent_buffer *leaf;
593 struct btrfs_root *root = BTRFS_I(dir)->root;
594 struct btrfs_root *new_root;
595 struct btrfs_block_rsv block_rsv;
596 struct timespec64 cur_time = current_time(dir);
597 struct btrfs_new_inode_args new_inode_args = {
598 .dir = dir,
599 .dentry = dentry,
600 .subvol = true,
601 };
602 unsigned int trans_num_items;
603 int ret;
604 dev_t anon_dev;
605 u64 objectid;
606
607 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
608 if (!root_item)
609 return -ENOMEM;
610
611 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
612 if (ret)
613 goto out_root_item;
614
615 /*
616 * Don't create subvolume whose level is not zero. Or qgroup will be
617 * screwed up since it assumes subvolume qgroup's level to be 0.
618 */
619 if (btrfs_qgroup_level(objectid)) {
620 ret = -ENOSPC;
621 goto out_root_item;
622 }
623
624 ret = get_anon_bdev(&anon_dev);
625 if (ret < 0)
626 goto out_root_item;
627
628 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
629 if (!new_inode_args.inode) {
630 ret = -ENOMEM;
631 goto out_anon_dev;
632 }
633 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
634 if (ret)
635 goto out_inode;
636 trans_num_items += create_subvol_num_items(inherit);
637
638 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
639 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
640 trans_num_items, false);
641 if (ret)
642 goto out_new_inode_args;
643
644 trans = btrfs_start_transaction(root, 0);
645 if (IS_ERR(trans)) {
646 ret = PTR_ERR(trans);
647 btrfs_subvolume_release_metadata(root, &block_rsv);
648 goto out_new_inode_args;
649 }
650 trans->block_rsv = &block_rsv;
651 trans->bytes_reserved = block_rsv.size;
652 /* Tree log can't currently deal with an inode which is a new root. */
653 btrfs_set_log_full_commit(trans);
654
655 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
656 if (ret)
657 goto out;
658
659 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
660 BTRFS_NESTING_NORMAL);
661 if (IS_ERR(leaf)) {
662 ret = PTR_ERR(leaf);
663 goto out;
664 }
665
666 btrfs_mark_buffer_dirty(trans, leaf);
667
668 inode_item = &root_item->inode;
669 btrfs_set_stack_inode_generation(inode_item, 1);
670 btrfs_set_stack_inode_size(inode_item, 3);
671 btrfs_set_stack_inode_nlink(inode_item, 1);
672 btrfs_set_stack_inode_nbytes(inode_item,
673 fs_info->nodesize);
674 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
675
676 btrfs_set_root_flags(root_item, 0);
677 btrfs_set_root_limit(root_item, 0);
678 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
679
680 btrfs_set_root_bytenr(root_item, leaf->start);
681 btrfs_set_root_generation(root_item, trans->transid);
682 btrfs_set_root_level(root_item, 0);
683 btrfs_set_root_refs(root_item, 1);
684 btrfs_set_root_used(root_item, leaf->len);
685 btrfs_set_root_last_snapshot(root_item, 0);
686
687 btrfs_set_root_generation_v2(root_item,
688 btrfs_root_generation(root_item));
689 generate_random_guid(root_item->uuid);
690 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
691 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
692 root_item->ctime = root_item->otime;
693 btrfs_set_root_ctransid(root_item, trans->transid);
694 btrfs_set_root_otransid(root_item, trans->transid);
695
696 btrfs_tree_unlock(leaf);
697
698 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
699
700 key.objectid = objectid;
701 key.offset = 0;
702 key.type = BTRFS_ROOT_ITEM_KEY;
703 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
704 root_item);
705 if (ret) {
706 /*
707 * Since we don't abort the transaction in this case, free the
708 * tree block so that we don't leak space and leave the
709 * filesystem in an inconsistent state (an extent item in the
710 * extent tree with a backreference for a root that does not
711 * exists).
712 */
713 btrfs_tree_lock(leaf);
714 btrfs_clear_buffer_dirty(trans, leaf);
715 btrfs_tree_unlock(leaf);
716 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
717 free_extent_buffer(leaf);
718 goto out;
719 }
720
721 free_extent_buffer(leaf);
722 leaf = NULL;
723
724 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
725 if (IS_ERR(new_root)) {
726 ret = PTR_ERR(new_root);
727 btrfs_abort_transaction(trans, ret);
728 goto out;
729 }
730 /* anon_dev is owned by new_root now. */
731 anon_dev = 0;
732 BTRFS_I(new_inode_args.inode)->root = new_root;
733 /* ... and new_root is owned by new_inode_args.inode now. */
734
735 ret = btrfs_record_root_in_trans(trans, new_root);
736 if (ret) {
737 btrfs_abort_transaction(trans, ret);
738 goto out;
739 }
740
741 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
742 BTRFS_UUID_KEY_SUBVOL, objectid);
743 if (ret) {
744 btrfs_abort_transaction(trans, ret);
745 goto out;
746 }
747
748 ret = btrfs_create_new_inode(trans, &new_inode_args);
749 if (ret) {
750 btrfs_abort_transaction(trans, ret);
751 goto out;
752 }
753
754 d_instantiate_new(dentry, new_inode_args.inode);
755 new_inode_args.inode = NULL;
756
757 out:
758 trans->block_rsv = NULL;
759 trans->bytes_reserved = 0;
760 btrfs_subvolume_release_metadata(root, &block_rsv);
761
762 btrfs_end_transaction(trans);
763 out_new_inode_args:
764 btrfs_new_inode_args_destroy(&new_inode_args);
765 out_inode:
766 iput(new_inode_args.inode);
767 out_anon_dev:
768 if (anon_dev)
769 free_anon_bdev(anon_dev);
770 out_root_item:
771 kfree(root_item);
772 return ret;
773 }
774
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)775 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
776 struct dentry *dentry, bool readonly,
777 struct btrfs_qgroup_inherit *inherit)
778 {
779 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
780 struct inode *inode;
781 struct btrfs_pending_snapshot *pending_snapshot;
782 unsigned int trans_num_items;
783 struct btrfs_trans_handle *trans;
784 int ret;
785
786 /* We do not support snapshotting right now. */
787 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
788 btrfs_warn(fs_info,
789 "extent tree v2 doesn't support snapshotting yet");
790 return -EOPNOTSUPP;
791 }
792
793 if (btrfs_root_refs(&root->root_item) == 0)
794 return -ENOENT;
795
796 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
797 return -EINVAL;
798
799 if (atomic_read(&root->nr_swapfiles)) {
800 btrfs_warn(fs_info,
801 "cannot snapshot subvolume with active swapfile");
802 return -ETXTBSY;
803 }
804
805 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
806 if (!pending_snapshot)
807 return -ENOMEM;
808
809 ret = get_anon_bdev(&pending_snapshot->anon_dev);
810 if (ret < 0)
811 goto free_pending;
812 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
813 GFP_KERNEL);
814 pending_snapshot->path = btrfs_alloc_path();
815 if (!pending_snapshot->root_item || !pending_snapshot->path) {
816 ret = -ENOMEM;
817 goto free_pending;
818 }
819
820 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
821 BTRFS_BLOCK_RSV_TEMP);
822 /*
823 * 1 to add dir item
824 * 1 to add dir index
825 * 1 to update parent inode item
826 */
827 trans_num_items = create_subvol_num_items(inherit) + 3;
828 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
829 &pending_snapshot->block_rsv,
830 trans_num_items, false);
831 if (ret)
832 goto free_pending;
833
834 pending_snapshot->dentry = dentry;
835 pending_snapshot->root = root;
836 pending_snapshot->readonly = readonly;
837 pending_snapshot->dir = dir;
838 pending_snapshot->inherit = inherit;
839
840 trans = btrfs_start_transaction(root, 0);
841 if (IS_ERR(trans)) {
842 ret = PTR_ERR(trans);
843 goto fail;
844 }
845
846 trans->pending_snapshot = pending_snapshot;
847
848 ret = btrfs_commit_transaction(trans);
849 if (ret)
850 goto fail;
851
852 ret = pending_snapshot->error;
853 if (ret)
854 goto fail;
855
856 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
857 if (ret)
858 goto fail;
859
860 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
861 if (IS_ERR(inode)) {
862 ret = PTR_ERR(inode);
863 goto fail;
864 }
865
866 d_instantiate(dentry, inode);
867 ret = 0;
868 pending_snapshot->anon_dev = 0;
869 fail:
870 /* Prevent double freeing of anon_dev */
871 if (ret && pending_snapshot->snap)
872 pending_snapshot->snap->anon_dev = 0;
873 btrfs_put_root(pending_snapshot->snap);
874 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
875 free_pending:
876 if (pending_snapshot->anon_dev)
877 free_anon_bdev(pending_snapshot->anon_dev);
878 kfree(pending_snapshot->root_item);
879 btrfs_free_path(pending_snapshot->path);
880 kfree(pending_snapshot);
881
882 return ret;
883 }
884
885 /* copy of may_delete in fs/namei.c()
886 * Check whether we can remove a link victim from directory dir, check
887 * whether the type of victim is right.
888 * 1. We can't do it if dir is read-only (done in permission())
889 * 2. We should have write and exec permissions on dir
890 * 3. We can't remove anything from append-only dir
891 * 4. We can't do anything with immutable dir (done in permission())
892 * 5. If the sticky bit on dir is set we should either
893 * a. be owner of dir, or
894 * b. be owner of victim, or
895 * c. have CAP_FOWNER capability
896 * 6. If the victim is append-only or immutable we can't do anything with
897 * links pointing to it.
898 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
899 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
900 * 9. We can't remove a root or mountpoint.
901 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
902 * nfs_async_unlink().
903 */
904
btrfs_may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,int isdir)905 static int btrfs_may_delete(struct mnt_idmap *idmap,
906 struct inode *dir, struct dentry *victim, int isdir)
907 {
908 int error;
909
910 if (d_really_is_negative(victim))
911 return -ENOENT;
912
913 BUG_ON(d_inode(victim->d_parent) != dir);
914 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
915
916 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
917 if (error)
918 return error;
919 if (IS_APPEND(dir))
920 return -EPERM;
921 if (check_sticky(idmap, dir, d_inode(victim)) ||
922 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
923 IS_SWAPFILE(d_inode(victim)))
924 return -EPERM;
925 if (isdir) {
926 if (!d_is_dir(victim))
927 return -ENOTDIR;
928 if (IS_ROOT(victim))
929 return -EBUSY;
930 } else if (d_is_dir(victim))
931 return -EISDIR;
932 if (IS_DEADDIR(dir))
933 return -ENOENT;
934 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
935 return -EBUSY;
936 return 0;
937 }
938
939 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)940 static inline int btrfs_may_create(struct mnt_idmap *idmap,
941 struct inode *dir, struct dentry *child)
942 {
943 if (d_really_is_positive(child))
944 return -EEXIST;
945 if (IS_DEADDIR(dir))
946 return -ENOENT;
947 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
948 return -EOVERFLOW;
949 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
950 }
951
952 /*
953 * Create a new subvolume below @parent. This is largely modeled after
954 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
955 * inside this filesystem so it's quite a bit simpler.
956 */
btrfs_mksubvol(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)957 static noinline int btrfs_mksubvol(const struct path *parent,
958 struct mnt_idmap *idmap,
959 const char *name, int namelen,
960 struct btrfs_root *snap_src,
961 bool readonly,
962 struct btrfs_qgroup_inherit *inherit)
963 {
964 struct inode *dir = d_inode(parent->dentry);
965 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
966 struct dentry *dentry;
967 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
968 int error;
969
970 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
971 if (error == -EINTR)
972 return error;
973
974 dentry = lookup_one(idmap, name, parent->dentry, namelen);
975 error = PTR_ERR(dentry);
976 if (IS_ERR(dentry))
977 goto out_unlock;
978
979 error = btrfs_may_create(idmap, dir, dentry);
980 if (error)
981 goto out_dput;
982
983 /*
984 * even if this name doesn't exist, we may get hash collisions.
985 * check for them now when we can safely fail
986 */
987 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
988 dir->i_ino, &name_str);
989 if (error)
990 goto out_dput;
991
992 down_read(&fs_info->subvol_sem);
993
994 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
995 goto out_up_read;
996
997 if (snap_src)
998 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
999 else
1000 error = create_subvol(idmap, dir, dentry, inherit);
1001
1002 if (!error)
1003 fsnotify_mkdir(dir, dentry);
1004 out_up_read:
1005 up_read(&fs_info->subvol_sem);
1006 out_dput:
1007 dput(dentry);
1008 out_unlock:
1009 btrfs_inode_unlock(BTRFS_I(dir), 0);
1010 return error;
1011 }
1012
btrfs_mksnapshot(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)1013 static noinline int btrfs_mksnapshot(const struct path *parent,
1014 struct mnt_idmap *idmap,
1015 const char *name, int namelen,
1016 struct btrfs_root *root,
1017 bool readonly,
1018 struct btrfs_qgroup_inherit *inherit)
1019 {
1020 int ret;
1021 bool snapshot_force_cow = false;
1022
1023 /*
1024 * Force new buffered writes to reserve space even when NOCOW is
1025 * possible. This is to avoid later writeback (running dealloc) to
1026 * fallback to COW mode and unexpectedly fail with ENOSPC.
1027 */
1028 btrfs_drew_read_lock(&root->snapshot_lock);
1029
1030 ret = btrfs_start_delalloc_snapshot(root, false);
1031 if (ret)
1032 goto out;
1033
1034 /*
1035 * All previous writes have started writeback in NOCOW mode, so now
1036 * we force future writes to fallback to COW mode during snapshot
1037 * creation.
1038 */
1039 atomic_inc(&root->snapshot_force_cow);
1040 snapshot_force_cow = true;
1041
1042 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1043
1044 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1045 root, readonly, inherit);
1046 out:
1047 if (snapshot_force_cow)
1048 atomic_dec(&root->snapshot_force_cow);
1049 btrfs_drew_read_unlock(&root->snapshot_lock);
1050 return ret;
1051 }
1052
1053 /*
1054 * Try to start exclusive operation @type or cancel it if it's running.
1055 *
1056 * Return:
1057 * 0 - normal mode, newly claimed op started
1058 * >0 - normal mode, something else is running,
1059 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1060 * ECANCELED - cancel mode, successful cancel
1061 * ENOTCONN - cancel mode, operation not running anymore
1062 */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)1063 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1064 enum btrfs_exclusive_operation type, bool cancel)
1065 {
1066 if (!cancel) {
1067 /* Start normal op */
1068 if (!btrfs_exclop_start(fs_info, type))
1069 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1070 /* Exclusive operation is now claimed */
1071 return 0;
1072 }
1073
1074 /* Cancel running op */
1075 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1076 /*
1077 * This blocks any exclop finish from setting it to NONE, so we
1078 * request cancellation. Either it runs and we will wait for it,
1079 * or it has finished and no waiting will happen.
1080 */
1081 atomic_inc(&fs_info->reloc_cancel_req);
1082 btrfs_exclop_start_unlock(fs_info);
1083
1084 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1085 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1086 TASK_INTERRUPTIBLE);
1087
1088 return -ECANCELED;
1089 }
1090
1091 /* Something else is running or none */
1092 return -ENOTCONN;
1093 }
1094
btrfs_ioctl_resize(struct file * file,void __user * arg)1095 static noinline int btrfs_ioctl_resize(struct file *file,
1096 void __user *arg)
1097 {
1098 BTRFS_DEV_LOOKUP_ARGS(args);
1099 struct inode *inode = file_inode(file);
1100 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1101 u64 new_size;
1102 u64 old_size;
1103 u64 devid = 1;
1104 struct btrfs_root *root = BTRFS_I(inode)->root;
1105 struct btrfs_ioctl_vol_args *vol_args;
1106 struct btrfs_trans_handle *trans;
1107 struct btrfs_device *device = NULL;
1108 char *sizestr;
1109 char *retptr;
1110 char *devstr = NULL;
1111 int ret = 0;
1112 int mod = 0;
1113 bool cancel;
1114
1115 if (!capable(CAP_SYS_ADMIN))
1116 return -EPERM;
1117
1118 ret = mnt_want_write_file(file);
1119 if (ret)
1120 return ret;
1121
1122 /*
1123 * Read the arguments before checking exclusivity to be able to
1124 * distinguish regular resize and cancel
1125 */
1126 vol_args = memdup_user(arg, sizeof(*vol_args));
1127 if (IS_ERR(vol_args)) {
1128 ret = PTR_ERR(vol_args);
1129 goto out_drop;
1130 }
1131 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1132 sizestr = vol_args->name;
1133 cancel = (strcmp("cancel", sizestr) == 0);
1134 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1135 if (ret)
1136 goto out_free;
1137 /* Exclusive operation is now claimed */
1138
1139 devstr = strchr(sizestr, ':');
1140 if (devstr) {
1141 sizestr = devstr + 1;
1142 *devstr = '\0';
1143 devstr = vol_args->name;
1144 ret = kstrtoull(devstr, 10, &devid);
1145 if (ret)
1146 goto out_finish;
1147 if (!devid) {
1148 ret = -EINVAL;
1149 goto out_finish;
1150 }
1151 btrfs_info(fs_info, "resizing devid %llu", devid);
1152 }
1153
1154 args.devid = devid;
1155 device = btrfs_find_device(fs_info->fs_devices, &args);
1156 if (!device) {
1157 btrfs_info(fs_info, "resizer unable to find device %llu",
1158 devid);
1159 ret = -ENODEV;
1160 goto out_finish;
1161 }
1162
1163 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1164 btrfs_info(fs_info,
1165 "resizer unable to apply on readonly device %llu",
1166 devid);
1167 ret = -EPERM;
1168 goto out_finish;
1169 }
1170
1171 if (!strcmp(sizestr, "max"))
1172 new_size = bdev_nr_bytes(device->bdev);
1173 else {
1174 if (sizestr[0] == '-') {
1175 mod = -1;
1176 sizestr++;
1177 } else if (sizestr[0] == '+') {
1178 mod = 1;
1179 sizestr++;
1180 }
1181 new_size = memparse(sizestr, &retptr);
1182 if (*retptr != '\0' || new_size == 0) {
1183 ret = -EINVAL;
1184 goto out_finish;
1185 }
1186 }
1187
1188 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1189 ret = -EPERM;
1190 goto out_finish;
1191 }
1192
1193 old_size = btrfs_device_get_total_bytes(device);
1194
1195 if (mod < 0) {
1196 if (new_size > old_size) {
1197 ret = -EINVAL;
1198 goto out_finish;
1199 }
1200 new_size = old_size - new_size;
1201 } else if (mod > 0) {
1202 if (new_size > ULLONG_MAX - old_size) {
1203 ret = -ERANGE;
1204 goto out_finish;
1205 }
1206 new_size = old_size + new_size;
1207 }
1208
1209 if (new_size < SZ_256M) {
1210 ret = -EINVAL;
1211 goto out_finish;
1212 }
1213 if (new_size > bdev_nr_bytes(device->bdev)) {
1214 ret = -EFBIG;
1215 goto out_finish;
1216 }
1217
1218 new_size = round_down(new_size, fs_info->sectorsize);
1219
1220 if (new_size > old_size) {
1221 trans = btrfs_start_transaction(root, 0);
1222 if (IS_ERR(trans)) {
1223 ret = PTR_ERR(trans);
1224 goto out_finish;
1225 }
1226 ret = btrfs_grow_device(trans, device, new_size);
1227 btrfs_commit_transaction(trans);
1228 } else if (new_size < old_size) {
1229 ret = btrfs_shrink_device(device, new_size);
1230 } /* equal, nothing need to do */
1231
1232 if (ret == 0 && new_size != old_size)
1233 btrfs_info_in_rcu(fs_info,
1234 "resize device %s (devid %llu) from %llu to %llu",
1235 btrfs_dev_name(device), device->devid,
1236 old_size, new_size);
1237 out_finish:
1238 btrfs_exclop_finish(fs_info);
1239 out_free:
1240 kfree(vol_args);
1241 out_drop:
1242 mnt_drop_write_file(file);
1243 return ret;
1244 }
1245
__btrfs_ioctl_snap_create(struct file * file,struct mnt_idmap * idmap,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1246 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1247 struct mnt_idmap *idmap,
1248 const char *name, unsigned long fd, int subvol,
1249 bool readonly,
1250 struct btrfs_qgroup_inherit *inherit)
1251 {
1252 int namelen;
1253 int ret = 0;
1254
1255 if (!S_ISDIR(file_inode(file)->i_mode))
1256 return -ENOTDIR;
1257
1258 ret = mnt_want_write_file(file);
1259 if (ret)
1260 goto out;
1261
1262 namelen = strlen(name);
1263 if (strchr(name, '/')) {
1264 ret = -EINVAL;
1265 goto out_drop_write;
1266 }
1267
1268 if (name[0] == '.' &&
1269 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1270 ret = -EEXIST;
1271 goto out_drop_write;
1272 }
1273
1274 if (subvol) {
1275 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1276 namelen, NULL, readonly, inherit);
1277 } else {
1278 struct fd src = fdget(fd);
1279 struct inode *src_inode;
1280 if (!src.file) {
1281 ret = -EINVAL;
1282 goto out_drop_write;
1283 }
1284
1285 src_inode = file_inode(src.file);
1286 if (src_inode->i_sb != file_inode(file)->i_sb) {
1287 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1288 "Snapshot src from another FS");
1289 ret = -EXDEV;
1290 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1291 /*
1292 * Subvolume creation is not restricted, but snapshots
1293 * are limited to own subvolumes only
1294 */
1295 ret = -EPERM;
1296 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1297 /*
1298 * Snapshots must be made with the src_inode referring
1299 * to the subvolume inode, otherwise the permission
1300 * checking above is useless because we may have
1301 * permission on a lower directory but not the subvol
1302 * itself.
1303 */
1304 ret = -EINVAL;
1305 } else {
1306 ret = btrfs_mksnapshot(&file->f_path, idmap,
1307 name, namelen,
1308 BTRFS_I(src_inode)->root,
1309 readonly, inherit);
1310 }
1311 fdput(src);
1312 }
1313 out_drop_write:
1314 mnt_drop_write_file(file);
1315 out:
1316 return ret;
1317 }
1318
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1319 static noinline int btrfs_ioctl_snap_create(struct file *file,
1320 void __user *arg, int subvol)
1321 {
1322 struct btrfs_ioctl_vol_args *vol_args;
1323 int ret;
1324
1325 if (!S_ISDIR(file_inode(file)->i_mode))
1326 return -ENOTDIR;
1327
1328 vol_args = memdup_user(arg, sizeof(*vol_args));
1329 if (IS_ERR(vol_args))
1330 return PTR_ERR(vol_args);
1331 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1332
1333 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1334 vol_args->name, vol_args->fd, subvol,
1335 false, NULL);
1336
1337 kfree(vol_args);
1338 return ret;
1339 }
1340
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1341 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1342 void __user *arg, int subvol)
1343 {
1344 struct btrfs_ioctl_vol_args_v2 *vol_args;
1345 int ret;
1346 bool readonly = false;
1347 struct btrfs_qgroup_inherit *inherit = NULL;
1348
1349 if (!S_ISDIR(file_inode(file)->i_mode))
1350 return -ENOTDIR;
1351
1352 vol_args = memdup_user(arg, sizeof(*vol_args));
1353 if (IS_ERR(vol_args))
1354 return PTR_ERR(vol_args);
1355 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1356
1357 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1358 ret = -EOPNOTSUPP;
1359 goto free_args;
1360 }
1361
1362 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1363 readonly = true;
1364 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1365 u64 nums;
1366
1367 if (vol_args->size < sizeof(*inherit) ||
1368 vol_args->size > PAGE_SIZE) {
1369 ret = -EINVAL;
1370 goto free_args;
1371 }
1372 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1373 if (IS_ERR(inherit)) {
1374 ret = PTR_ERR(inherit);
1375 goto free_args;
1376 }
1377
1378 if (inherit->num_qgroups > PAGE_SIZE ||
1379 inherit->num_ref_copies > PAGE_SIZE ||
1380 inherit->num_excl_copies > PAGE_SIZE) {
1381 ret = -EINVAL;
1382 goto free_inherit;
1383 }
1384
1385 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1386 2 * inherit->num_excl_copies;
1387 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1388 ret = -EINVAL;
1389 goto free_inherit;
1390 }
1391 }
1392
1393 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1394 vol_args->name, vol_args->fd, subvol,
1395 readonly, inherit);
1396 if (ret)
1397 goto free_inherit;
1398 free_inherit:
1399 kfree(inherit);
1400 free_args:
1401 kfree(vol_args);
1402 return ret;
1403 }
1404
btrfs_ioctl_subvol_getflags(struct inode * inode,void __user * arg)1405 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1406 void __user *arg)
1407 {
1408 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1409 struct btrfs_root *root = BTRFS_I(inode)->root;
1410 int ret = 0;
1411 u64 flags = 0;
1412
1413 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1414 return -EINVAL;
1415
1416 down_read(&fs_info->subvol_sem);
1417 if (btrfs_root_readonly(root))
1418 flags |= BTRFS_SUBVOL_RDONLY;
1419 up_read(&fs_info->subvol_sem);
1420
1421 if (copy_to_user(arg, &flags, sizeof(flags)))
1422 ret = -EFAULT;
1423
1424 return ret;
1425 }
1426
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1427 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1428 void __user *arg)
1429 {
1430 struct inode *inode = file_inode(file);
1431 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1432 struct btrfs_root *root = BTRFS_I(inode)->root;
1433 struct btrfs_trans_handle *trans;
1434 u64 root_flags;
1435 u64 flags;
1436 int ret = 0;
1437
1438 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1439 return -EPERM;
1440
1441 ret = mnt_want_write_file(file);
1442 if (ret)
1443 goto out;
1444
1445 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1446 ret = -EINVAL;
1447 goto out_drop_write;
1448 }
1449
1450 if (copy_from_user(&flags, arg, sizeof(flags))) {
1451 ret = -EFAULT;
1452 goto out_drop_write;
1453 }
1454
1455 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1456 ret = -EOPNOTSUPP;
1457 goto out_drop_write;
1458 }
1459
1460 down_write(&fs_info->subvol_sem);
1461
1462 /* nothing to do */
1463 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1464 goto out_drop_sem;
1465
1466 root_flags = btrfs_root_flags(&root->root_item);
1467 if (flags & BTRFS_SUBVOL_RDONLY) {
1468 btrfs_set_root_flags(&root->root_item,
1469 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1470 } else {
1471 /*
1472 * Block RO -> RW transition if this subvolume is involved in
1473 * send
1474 */
1475 spin_lock(&root->root_item_lock);
1476 if (root->send_in_progress == 0) {
1477 btrfs_set_root_flags(&root->root_item,
1478 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1479 spin_unlock(&root->root_item_lock);
1480 } else {
1481 spin_unlock(&root->root_item_lock);
1482 btrfs_warn(fs_info,
1483 "Attempt to set subvolume %llu read-write during send",
1484 root->root_key.objectid);
1485 ret = -EPERM;
1486 goto out_drop_sem;
1487 }
1488 }
1489
1490 trans = btrfs_start_transaction(root, 1);
1491 if (IS_ERR(trans)) {
1492 ret = PTR_ERR(trans);
1493 goto out_reset;
1494 }
1495
1496 ret = btrfs_update_root(trans, fs_info->tree_root,
1497 &root->root_key, &root->root_item);
1498 if (ret < 0) {
1499 btrfs_end_transaction(trans);
1500 goto out_reset;
1501 }
1502
1503 ret = btrfs_commit_transaction(trans);
1504
1505 out_reset:
1506 if (ret)
1507 btrfs_set_root_flags(&root->root_item, root_flags);
1508 out_drop_sem:
1509 up_write(&fs_info->subvol_sem);
1510 out_drop_write:
1511 mnt_drop_write_file(file);
1512 out:
1513 return ret;
1514 }
1515
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1516 static noinline int key_in_sk(struct btrfs_key *key,
1517 struct btrfs_ioctl_search_key *sk)
1518 {
1519 struct btrfs_key test;
1520 int ret;
1521
1522 test.objectid = sk->min_objectid;
1523 test.type = sk->min_type;
1524 test.offset = sk->min_offset;
1525
1526 ret = btrfs_comp_cpu_keys(key, &test);
1527 if (ret < 0)
1528 return 0;
1529
1530 test.objectid = sk->max_objectid;
1531 test.type = sk->max_type;
1532 test.offset = sk->max_offset;
1533
1534 ret = btrfs_comp_cpu_keys(key, &test);
1535 if (ret > 0)
1536 return 0;
1537 return 1;
1538 }
1539
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1540 static noinline int copy_to_sk(struct btrfs_path *path,
1541 struct btrfs_key *key,
1542 struct btrfs_ioctl_search_key *sk,
1543 u64 *buf_size,
1544 char __user *ubuf,
1545 unsigned long *sk_offset,
1546 int *num_found)
1547 {
1548 u64 found_transid;
1549 struct extent_buffer *leaf;
1550 struct btrfs_ioctl_search_header sh;
1551 struct btrfs_key test;
1552 unsigned long item_off;
1553 unsigned long item_len;
1554 int nritems;
1555 int i;
1556 int slot;
1557 int ret = 0;
1558
1559 leaf = path->nodes[0];
1560 slot = path->slots[0];
1561 nritems = btrfs_header_nritems(leaf);
1562
1563 if (btrfs_header_generation(leaf) > sk->max_transid) {
1564 i = nritems;
1565 goto advance_key;
1566 }
1567 found_transid = btrfs_header_generation(leaf);
1568
1569 for (i = slot; i < nritems; i++) {
1570 item_off = btrfs_item_ptr_offset(leaf, i);
1571 item_len = btrfs_item_size(leaf, i);
1572
1573 btrfs_item_key_to_cpu(leaf, key, i);
1574 if (!key_in_sk(key, sk))
1575 continue;
1576
1577 if (sizeof(sh) + item_len > *buf_size) {
1578 if (*num_found) {
1579 ret = 1;
1580 goto out;
1581 }
1582
1583 /*
1584 * return one empty item back for v1, which does not
1585 * handle -EOVERFLOW
1586 */
1587
1588 *buf_size = sizeof(sh) + item_len;
1589 item_len = 0;
1590 ret = -EOVERFLOW;
1591 }
1592
1593 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1594 ret = 1;
1595 goto out;
1596 }
1597
1598 sh.objectid = key->objectid;
1599 sh.offset = key->offset;
1600 sh.type = key->type;
1601 sh.len = item_len;
1602 sh.transid = found_transid;
1603
1604 /*
1605 * Copy search result header. If we fault then loop again so we
1606 * can fault in the pages and -EFAULT there if there's a
1607 * problem. Otherwise we'll fault and then copy the buffer in
1608 * properly this next time through
1609 */
1610 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1611 ret = 0;
1612 goto out;
1613 }
1614
1615 *sk_offset += sizeof(sh);
1616
1617 if (item_len) {
1618 char __user *up = ubuf + *sk_offset;
1619 /*
1620 * Copy the item, same behavior as above, but reset the
1621 * * sk_offset so we copy the full thing again.
1622 */
1623 if (read_extent_buffer_to_user_nofault(leaf, up,
1624 item_off, item_len)) {
1625 ret = 0;
1626 *sk_offset -= sizeof(sh);
1627 goto out;
1628 }
1629
1630 *sk_offset += item_len;
1631 }
1632 (*num_found)++;
1633
1634 if (ret) /* -EOVERFLOW from above */
1635 goto out;
1636
1637 if (*num_found >= sk->nr_items) {
1638 ret = 1;
1639 goto out;
1640 }
1641 }
1642 advance_key:
1643 ret = 0;
1644 test.objectid = sk->max_objectid;
1645 test.type = sk->max_type;
1646 test.offset = sk->max_offset;
1647 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1648 ret = 1;
1649 else if (key->offset < (u64)-1)
1650 key->offset++;
1651 else if (key->type < (u8)-1) {
1652 key->offset = 0;
1653 key->type++;
1654 } else if (key->objectid < (u64)-1) {
1655 key->offset = 0;
1656 key->type = 0;
1657 key->objectid++;
1658 } else
1659 ret = 1;
1660 out:
1661 /*
1662 * 0: all items from this leaf copied, continue with next
1663 * 1: * more items can be copied, but unused buffer is too small
1664 * * all items were found
1665 * Either way, it will stops the loop which iterates to the next
1666 * leaf
1667 * -EOVERFLOW: item was to large for buffer
1668 * -EFAULT: could not copy extent buffer back to userspace
1669 */
1670 return ret;
1671 }
1672
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)1673 static noinline int search_ioctl(struct inode *inode,
1674 struct btrfs_ioctl_search_key *sk,
1675 u64 *buf_size,
1676 char __user *ubuf)
1677 {
1678 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1679 struct btrfs_root *root;
1680 struct btrfs_key key;
1681 struct btrfs_path *path;
1682 int ret;
1683 int num_found = 0;
1684 unsigned long sk_offset = 0;
1685
1686 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1687 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1688 return -EOVERFLOW;
1689 }
1690
1691 path = btrfs_alloc_path();
1692 if (!path)
1693 return -ENOMEM;
1694
1695 if (sk->tree_id == 0) {
1696 /* search the root of the inode that was passed */
1697 root = btrfs_grab_root(BTRFS_I(inode)->root);
1698 } else {
1699 root = btrfs_get_fs_root(info, sk->tree_id, true);
1700 if (IS_ERR(root)) {
1701 btrfs_free_path(path);
1702 return PTR_ERR(root);
1703 }
1704 }
1705
1706 key.objectid = sk->min_objectid;
1707 key.type = sk->min_type;
1708 key.offset = sk->min_offset;
1709
1710 while (1) {
1711 ret = -EFAULT;
1712 /*
1713 * Ensure that the whole user buffer is faulted in at sub-page
1714 * granularity, otherwise the loop may live-lock.
1715 */
1716 if (fault_in_subpage_writeable(ubuf + sk_offset,
1717 *buf_size - sk_offset))
1718 break;
1719
1720 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1721 if (ret != 0) {
1722 if (ret > 0)
1723 ret = 0;
1724 goto err;
1725 }
1726 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1727 &sk_offset, &num_found);
1728 btrfs_release_path(path);
1729 if (ret)
1730 break;
1731
1732 }
1733 if (ret > 0)
1734 ret = 0;
1735 err:
1736 sk->nr_items = num_found;
1737 btrfs_put_root(root);
1738 btrfs_free_path(path);
1739 return ret;
1740 }
1741
btrfs_ioctl_tree_search(struct inode * inode,void __user * argp)1742 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1743 void __user *argp)
1744 {
1745 struct btrfs_ioctl_search_args __user *uargs = argp;
1746 struct btrfs_ioctl_search_key sk;
1747 int ret;
1748 u64 buf_size;
1749
1750 if (!capable(CAP_SYS_ADMIN))
1751 return -EPERM;
1752
1753 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1754 return -EFAULT;
1755
1756 buf_size = sizeof(uargs->buf);
1757
1758 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1759
1760 /*
1761 * In the origin implementation an overflow is handled by returning a
1762 * search header with a len of zero, so reset ret.
1763 */
1764 if (ret == -EOVERFLOW)
1765 ret = 0;
1766
1767 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1768 ret = -EFAULT;
1769 return ret;
1770 }
1771
btrfs_ioctl_tree_search_v2(struct inode * inode,void __user * argp)1772 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1773 void __user *argp)
1774 {
1775 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1776 struct btrfs_ioctl_search_args_v2 args;
1777 int ret;
1778 u64 buf_size;
1779 const u64 buf_limit = SZ_16M;
1780
1781 if (!capable(CAP_SYS_ADMIN))
1782 return -EPERM;
1783
1784 /* copy search header and buffer size */
1785 if (copy_from_user(&args, uarg, sizeof(args)))
1786 return -EFAULT;
1787
1788 buf_size = args.buf_size;
1789
1790 /* limit result size to 16MB */
1791 if (buf_size > buf_limit)
1792 buf_size = buf_limit;
1793
1794 ret = search_ioctl(inode, &args.key, &buf_size,
1795 (char __user *)(&uarg->buf[0]));
1796 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1797 ret = -EFAULT;
1798 else if (ret == -EOVERFLOW &&
1799 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1800 ret = -EFAULT;
1801
1802 return ret;
1803 }
1804
1805 /*
1806 * Search INODE_REFs to identify path name of 'dirid' directory
1807 * in a 'tree_id' tree. and sets path name to 'name'.
1808 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)1809 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1810 u64 tree_id, u64 dirid, char *name)
1811 {
1812 struct btrfs_root *root;
1813 struct btrfs_key key;
1814 char *ptr;
1815 int ret = -1;
1816 int slot;
1817 int len;
1818 int total_len = 0;
1819 struct btrfs_inode_ref *iref;
1820 struct extent_buffer *l;
1821 struct btrfs_path *path;
1822
1823 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1824 name[0]='\0';
1825 return 0;
1826 }
1827
1828 path = btrfs_alloc_path();
1829 if (!path)
1830 return -ENOMEM;
1831
1832 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1833
1834 root = btrfs_get_fs_root(info, tree_id, true);
1835 if (IS_ERR(root)) {
1836 ret = PTR_ERR(root);
1837 root = NULL;
1838 goto out;
1839 }
1840
1841 key.objectid = dirid;
1842 key.type = BTRFS_INODE_REF_KEY;
1843 key.offset = (u64)-1;
1844
1845 while (1) {
1846 ret = btrfs_search_backwards(root, &key, path);
1847 if (ret < 0)
1848 goto out;
1849 else if (ret > 0) {
1850 ret = -ENOENT;
1851 goto out;
1852 }
1853
1854 l = path->nodes[0];
1855 slot = path->slots[0];
1856
1857 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1858 len = btrfs_inode_ref_name_len(l, iref);
1859 ptr -= len + 1;
1860 total_len += len + 1;
1861 if (ptr < name) {
1862 ret = -ENAMETOOLONG;
1863 goto out;
1864 }
1865
1866 *(ptr + len) = '/';
1867 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1868
1869 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1870 break;
1871
1872 btrfs_release_path(path);
1873 key.objectid = key.offset;
1874 key.offset = (u64)-1;
1875 dirid = key.objectid;
1876 }
1877 memmove(name, ptr, total_len);
1878 name[total_len] = '\0';
1879 ret = 0;
1880 out:
1881 btrfs_put_root(root);
1882 btrfs_free_path(path);
1883 return ret;
1884 }
1885
btrfs_search_path_in_tree_user(struct mnt_idmap * idmap,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)1886 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1887 struct inode *inode,
1888 struct btrfs_ioctl_ino_lookup_user_args *args)
1889 {
1890 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1891 struct super_block *sb = inode->i_sb;
1892 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1893 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1894 u64 dirid = args->dirid;
1895 unsigned long item_off;
1896 unsigned long item_len;
1897 struct btrfs_inode_ref *iref;
1898 struct btrfs_root_ref *rref;
1899 struct btrfs_root *root = NULL;
1900 struct btrfs_path *path;
1901 struct btrfs_key key, key2;
1902 struct extent_buffer *leaf;
1903 struct inode *temp_inode;
1904 char *ptr;
1905 int slot;
1906 int len;
1907 int total_len = 0;
1908 int ret;
1909
1910 path = btrfs_alloc_path();
1911 if (!path)
1912 return -ENOMEM;
1913
1914 /*
1915 * If the bottom subvolume does not exist directly under upper_limit,
1916 * construct the path in from the bottom up.
1917 */
1918 if (dirid != upper_limit.objectid) {
1919 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1920
1921 root = btrfs_get_fs_root(fs_info, treeid, true);
1922 if (IS_ERR(root)) {
1923 ret = PTR_ERR(root);
1924 goto out;
1925 }
1926
1927 key.objectid = dirid;
1928 key.type = BTRFS_INODE_REF_KEY;
1929 key.offset = (u64)-1;
1930 while (1) {
1931 ret = btrfs_search_backwards(root, &key, path);
1932 if (ret < 0)
1933 goto out_put;
1934 else if (ret > 0) {
1935 ret = -ENOENT;
1936 goto out_put;
1937 }
1938
1939 leaf = path->nodes[0];
1940 slot = path->slots[0];
1941
1942 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1943 len = btrfs_inode_ref_name_len(leaf, iref);
1944 ptr -= len + 1;
1945 total_len += len + 1;
1946 if (ptr < args->path) {
1947 ret = -ENAMETOOLONG;
1948 goto out_put;
1949 }
1950
1951 *(ptr + len) = '/';
1952 read_extent_buffer(leaf, ptr,
1953 (unsigned long)(iref + 1), len);
1954
1955 /* Check the read+exec permission of this directory */
1956 ret = btrfs_previous_item(root, path, dirid,
1957 BTRFS_INODE_ITEM_KEY);
1958 if (ret < 0) {
1959 goto out_put;
1960 } else if (ret > 0) {
1961 ret = -ENOENT;
1962 goto out_put;
1963 }
1964
1965 leaf = path->nodes[0];
1966 slot = path->slots[0];
1967 btrfs_item_key_to_cpu(leaf, &key2, slot);
1968 if (key2.objectid != dirid) {
1969 ret = -ENOENT;
1970 goto out_put;
1971 }
1972
1973 /*
1974 * We don't need the path anymore, so release it and
1975 * avoid deadlocks and lockdep warnings in case
1976 * btrfs_iget() needs to lookup the inode from its root
1977 * btree and lock the same leaf.
1978 */
1979 btrfs_release_path(path);
1980 temp_inode = btrfs_iget(sb, key2.objectid, root);
1981 if (IS_ERR(temp_inode)) {
1982 ret = PTR_ERR(temp_inode);
1983 goto out_put;
1984 }
1985 ret = inode_permission(idmap, temp_inode,
1986 MAY_READ | MAY_EXEC);
1987 iput(temp_inode);
1988 if (ret) {
1989 ret = -EACCES;
1990 goto out_put;
1991 }
1992
1993 if (key.offset == upper_limit.objectid)
1994 break;
1995 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1996 ret = -EACCES;
1997 goto out_put;
1998 }
1999
2000 key.objectid = key.offset;
2001 key.offset = (u64)-1;
2002 dirid = key.objectid;
2003 }
2004
2005 memmove(args->path, ptr, total_len);
2006 args->path[total_len] = '\0';
2007 btrfs_put_root(root);
2008 root = NULL;
2009 btrfs_release_path(path);
2010 }
2011
2012 /* Get the bottom subvolume's name from ROOT_REF */
2013 key.objectid = treeid;
2014 key.type = BTRFS_ROOT_REF_KEY;
2015 key.offset = args->treeid;
2016 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2017 if (ret < 0) {
2018 goto out;
2019 } else if (ret > 0) {
2020 ret = -ENOENT;
2021 goto out;
2022 }
2023
2024 leaf = path->nodes[0];
2025 slot = path->slots[0];
2026 btrfs_item_key_to_cpu(leaf, &key, slot);
2027
2028 item_off = btrfs_item_ptr_offset(leaf, slot);
2029 item_len = btrfs_item_size(leaf, slot);
2030 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2031 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2032 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2033 ret = -EINVAL;
2034 goto out;
2035 }
2036
2037 /* Copy subvolume's name */
2038 item_off += sizeof(struct btrfs_root_ref);
2039 item_len -= sizeof(struct btrfs_root_ref);
2040 read_extent_buffer(leaf, args->name, item_off, item_len);
2041 args->name[item_len] = 0;
2042
2043 out_put:
2044 btrfs_put_root(root);
2045 out:
2046 btrfs_free_path(path);
2047 return ret;
2048 }
2049
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)2050 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2051 void __user *argp)
2052 {
2053 struct btrfs_ioctl_ino_lookup_args *args;
2054 int ret = 0;
2055
2056 args = memdup_user(argp, sizeof(*args));
2057 if (IS_ERR(args))
2058 return PTR_ERR(args);
2059
2060 /*
2061 * Unprivileged query to obtain the containing subvolume root id. The
2062 * path is reset so it's consistent with btrfs_search_path_in_tree.
2063 */
2064 if (args->treeid == 0)
2065 args->treeid = root->root_key.objectid;
2066
2067 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2068 args->name[0] = 0;
2069 goto out;
2070 }
2071
2072 if (!capable(CAP_SYS_ADMIN)) {
2073 ret = -EPERM;
2074 goto out;
2075 }
2076
2077 ret = btrfs_search_path_in_tree(root->fs_info,
2078 args->treeid, args->objectid,
2079 args->name);
2080
2081 out:
2082 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2083 ret = -EFAULT;
2084
2085 kfree(args);
2086 return ret;
2087 }
2088
2089 /*
2090 * Version of ino_lookup ioctl (unprivileged)
2091 *
2092 * The main differences from ino_lookup ioctl are:
2093 *
2094 * 1. Read + Exec permission will be checked using inode_permission() during
2095 * path construction. -EACCES will be returned in case of failure.
2096 * 2. Path construction will be stopped at the inode number which corresponds
2097 * to the fd with which this ioctl is called. If constructed path does not
2098 * exist under fd's inode, -EACCES will be returned.
2099 * 3. The name of bottom subvolume is also searched and filled.
2100 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2101 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2102 {
2103 struct btrfs_ioctl_ino_lookup_user_args *args;
2104 struct inode *inode;
2105 int ret;
2106
2107 args = memdup_user(argp, sizeof(*args));
2108 if (IS_ERR(args))
2109 return PTR_ERR(args);
2110
2111 inode = file_inode(file);
2112
2113 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2114 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2115 /*
2116 * The subvolume does not exist under fd with which this is
2117 * called
2118 */
2119 kfree(args);
2120 return -EACCES;
2121 }
2122
2123 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2124
2125 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2126 ret = -EFAULT;
2127
2128 kfree(args);
2129 return ret;
2130 }
2131
2132 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)2133 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2134 {
2135 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2136 struct btrfs_fs_info *fs_info;
2137 struct btrfs_root *root;
2138 struct btrfs_path *path;
2139 struct btrfs_key key;
2140 struct btrfs_root_item *root_item;
2141 struct btrfs_root_ref *rref;
2142 struct extent_buffer *leaf;
2143 unsigned long item_off;
2144 unsigned long item_len;
2145 int slot;
2146 int ret = 0;
2147
2148 path = btrfs_alloc_path();
2149 if (!path)
2150 return -ENOMEM;
2151
2152 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2153 if (!subvol_info) {
2154 btrfs_free_path(path);
2155 return -ENOMEM;
2156 }
2157
2158 fs_info = BTRFS_I(inode)->root->fs_info;
2159
2160 /* Get root_item of inode's subvolume */
2161 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2162 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2163 if (IS_ERR(root)) {
2164 ret = PTR_ERR(root);
2165 goto out_free;
2166 }
2167 root_item = &root->root_item;
2168
2169 subvol_info->treeid = key.objectid;
2170
2171 subvol_info->generation = btrfs_root_generation(root_item);
2172 subvol_info->flags = btrfs_root_flags(root_item);
2173
2174 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2175 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2176 BTRFS_UUID_SIZE);
2177 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2178 BTRFS_UUID_SIZE);
2179
2180 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2181 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2182 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2183
2184 subvol_info->otransid = btrfs_root_otransid(root_item);
2185 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2186 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2187
2188 subvol_info->stransid = btrfs_root_stransid(root_item);
2189 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2190 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2191
2192 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2193 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2194 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2195
2196 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2197 /* Search root tree for ROOT_BACKREF of this subvolume */
2198 key.type = BTRFS_ROOT_BACKREF_KEY;
2199 key.offset = 0;
2200 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2201 if (ret < 0) {
2202 goto out;
2203 } else if (path->slots[0] >=
2204 btrfs_header_nritems(path->nodes[0])) {
2205 ret = btrfs_next_leaf(fs_info->tree_root, path);
2206 if (ret < 0) {
2207 goto out;
2208 } else if (ret > 0) {
2209 ret = -EUCLEAN;
2210 goto out;
2211 }
2212 }
2213
2214 leaf = path->nodes[0];
2215 slot = path->slots[0];
2216 btrfs_item_key_to_cpu(leaf, &key, slot);
2217 if (key.objectid == subvol_info->treeid &&
2218 key.type == BTRFS_ROOT_BACKREF_KEY) {
2219 subvol_info->parent_id = key.offset;
2220
2221 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2222 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2223
2224 item_off = btrfs_item_ptr_offset(leaf, slot)
2225 + sizeof(struct btrfs_root_ref);
2226 item_len = btrfs_item_size(leaf, slot)
2227 - sizeof(struct btrfs_root_ref);
2228 read_extent_buffer(leaf, subvol_info->name,
2229 item_off, item_len);
2230 } else {
2231 ret = -ENOENT;
2232 goto out;
2233 }
2234 }
2235
2236 btrfs_free_path(path);
2237 path = NULL;
2238 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2239 ret = -EFAULT;
2240
2241 out:
2242 btrfs_put_root(root);
2243 out_free:
2244 btrfs_free_path(path);
2245 kfree(subvol_info);
2246 return ret;
2247 }
2248
2249 /*
2250 * Return ROOT_REF information of the subvolume containing this inode
2251 * except the subvolume name.
2252 */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)2253 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2254 void __user *argp)
2255 {
2256 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2257 struct btrfs_root_ref *rref;
2258 struct btrfs_path *path;
2259 struct btrfs_key key;
2260 struct extent_buffer *leaf;
2261 u64 objectid;
2262 int slot;
2263 int ret;
2264 u8 found;
2265
2266 path = btrfs_alloc_path();
2267 if (!path)
2268 return -ENOMEM;
2269
2270 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2271 if (IS_ERR(rootrefs)) {
2272 btrfs_free_path(path);
2273 return PTR_ERR(rootrefs);
2274 }
2275
2276 objectid = root->root_key.objectid;
2277 key.objectid = objectid;
2278 key.type = BTRFS_ROOT_REF_KEY;
2279 key.offset = rootrefs->min_treeid;
2280 found = 0;
2281
2282 root = root->fs_info->tree_root;
2283 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2284 if (ret < 0) {
2285 goto out;
2286 } else if (path->slots[0] >=
2287 btrfs_header_nritems(path->nodes[0])) {
2288 ret = btrfs_next_leaf(root, path);
2289 if (ret < 0) {
2290 goto out;
2291 } else if (ret > 0) {
2292 ret = -EUCLEAN;
2293 goto out;
2294 }
2295 }
2296 while (1) {
2297 leaf = path->nodes[0];
2298 slot = path->slots[0];
2299
2300 btrfs_item_key_to_cpu(leaf, &key, slot);
2301 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2302 ret = 0;
2303 goto out;
2304 }
2305
2306 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2307 ret = -EOVERFLOW;
2308 goto out;
2309 }
2310
2311 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2312 rootrefs->rootref[found].treeid = key.offset;
2313 rootrefs->rootref[found].dirid =
2314 btrfs_root_ref_dirid(leaf, rref);
2315 found++;
2316
2317 ret = btrfs_next_item(root, path);
2318 if (ret < 0) {
2319 goto out;
2320 } else if (ret > 0) {
2321 ret = -EUCLEAN;
2322 goto out;
2323 }
2324 }
2325
2326 out:
2327 btrfs_free_path(path);
2328
2329 if (!ret || ret == -EOVERFLOW) {
2330 rootrefs->num_items = found;
2331 /* update min_treeid for next search */
2332 if (found)
2333 rootrefs->min_treeid =
2334 rootrefs->rootref[found - 1].treeid + 1;
2335 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2336 ret = -EFAULT;
2337 }
2338
2339 kfree(rootrefs);
2340
2341 return ret;
2342 }
2343
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2344 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2345 void __user *arg,
2346 bool destroy_v2)
2347 {
2348 struct dentry *parent = file->f_path.dentry;
2349 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2350 struct dentry *dentry;
2351 struct inode *dir = d_inode(parent);
2352 struct inode *inode;
2353 struct btrfs_root *root = BTRFS_I(dir)->root;
2354 struct btrfs_root *dest = NULL;
2355 struct btrfs_ioctl_vol_args *vol_args = NULL;
2356 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2357 struct mnt_idmap *idmap = file_mnt_idmap(file);
2358 char *subvol_name, *subvol_name_ptr = NULL;
2359 int subvol_namelen;
2360 int err = 0;
2361 bool destroy_parent = false;
2362
2363 /* We don't support snapshots with extent tree v2 yet. */
2364 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2365 btrfs_err(fs_info,
2366 "extent tree v2 doesn't support snapshot deletion yet");
2367 return -EOPNOTSUPP;
2368 }
2369
2370 if (destroy_v2) {
2371 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2372 if (IS_ERR(vol_args2))
2373 return PTR_ERR(vol_args2);
2374
2375 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2376 err = -EOPNOTSUPP;
2377 goto out;
2378 }
2379
2380 /*
2381 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2382 * name, same as v1 currently does.
2383 */
2384 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2385 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2386 subvol_name = vol_args2->name;
2387
2388 err = mnt_want_write_file(file);
2389 if (err)
2390 goto out;
2391 } else {
2392 struct inode *old_dir;
2393
2394 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2395 err = -EINVAL;
2396 goto out;
2397 }
2398
2399 err = mnt_want_write_file(file);
2400 if (err)
2401 goto out;
2402
2403 dentry = btrfs_get_dentry(fs_info->sb,
2404 BTRFS_FIRST_FREE_OBJECTID,
2405 vol_args2->subvolid, 0);
2406 if (IS_ERR(dentry)) {
2407 err = PTR_ERR(dentry);
2408 goto out_drop_write;
2409 }
2410
2411 /*
2412 * Change the default parent since the subvolume being
2413 * deleted can be outside of the current mount point.
2414 */
2415 parent = btrfs_get_parent(dentry);
2416
2417 /*
2418 * At this point dentry->d_name can point to '/' if the
2419 * subvolume we want to destroy is outsite of the
2420 * current mount point, so we need to release the
2421 * current dentry and execute the lookup to return a new
2422 * one with ->d_name pointing to the
2423 * <mount point>/subvol_name.
2424 */
2425 dput(dentry);
2426 if (IS_ERR(parent)) {
2427 err = PTR_ERR(parent);
2428 goto out_drop_write;
2429 }
2430 old_dir = dir;
2431 dir = d_inode(parent);
2432
2433 /*
2434 * If v2 was used with SPEC_BY_ID, a new parent was
2435 * allocated since the subvolume can be outside of the
2436 * current mount point. Later on we need to release this
2437 * new parent dentry.
2438 */
2439 destroy_parent = true;
2440
2441 /*
2442 * On idmapped mounts, deletion via subvolid is
2443 * restricted to subvolumes that are immediate
2444 * ancestors of the inode referenced by the file
2445 * descriptor in the ioctl. Otherwise the idmapping
2446 * could potentially be abused to delete subvolumes
2447 * anywhere in the filesystem the user wouldn't be able
2448 * to delete without an idmapped mount.
2449 */
2450 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2451 err = -EOPNOTSUPP;
2452 goto free_parent;
2453 }
2454
2455 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2456 fs_info, vol_args2->subvolid);
2457 if (IS_ERR(subvol_name_ptr)) {
2458 err = PTR_ERR(subvol_name_ptr);
2459 goto free_parent;
2460 }
2461 /* subvol_name_ptr is already nul terminated */
2462 subvol_name = (char *)kbasename(subvol_name_ptr);
2463 }
2464 } else {
2465 vol_args = memdup_user(arg, sizeof(*vol_args));
2466 if (IS_ERR(vol_args))
2467 return PTR_ERR(vol_args);
2468
2469 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2470 subvol_name = vol_args->name;
2471
2472 err = mnt_want_write_file(file);
2473 if (err)
2474 goto out;
2475 }
2476
2477 subvol_namelen = strlen(subvol_name);
2478
2479 if (strchr(subvol_name, '/') ||
2480 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2481 err = -EINVAL;
2482 goto free_subvol_name;
2483 }
2484
2485 if (!S_ISDIR(dir->i_mode)) {
2486 err = -ENOTDIR;
2487 goto free_subvol_name;
2488 }
2489
2490 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2491 if (err == -EINTR)
2492 goto free_subvol_name;
2493 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2494 if (IS_ERR(dentry)) {
2495 err = PTR_ERR(dentry);
2496 goto out_unlock_dir;
2497 }
2498
2499 if (d_really_is_negative(dentry)) {
2500 err = -ENOENT;
2501 goto out_dput;
2502 }
2503
2504 inode = d_inode(dentry);
2505 dest = BTRFS_I(inode)->root;
2506 if (!capable(CAP_SYS_ADMIN)) {
2507 /*
2508 * Regular user. Only allow this with a special mount
2509 * option, when the user has write+exec access to the
2510 * subvol root, and when rmdir(2) would have been
2511 * allowed.
2512 *
2513 * Note that this is _not_ check that the subvol is
2514 * empty or doesn't contain data that we wouldn't
2515 * otherwise be able to delete.
2516 *
2517 * Users who want to delete empty subvols should try
2518 * rmdir(2).
2519 */
2520 err = -EPERM;
2521 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2522 goto out_dput;
2523
2524 /*
2525 * Do not allow deletion if the parent dir is the same
2526 * as the dir to be deleted. That means the ioctl
2527 * must be called on the dentry referencing the root
2528 * of the subvol, not a random directory contained
2529 * within it.
2530 */
2531 err = -EINVAL;
2532 if (root == dest)
2533 goto out_dput;
2534
2535 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2536 if (err)
2537 goto out_dput;
2538 }
2539
2540 /* check if subvolume may be deleted by a user */
2541 err = btrfs_may_delete(idmap, dir, dentry, 1);
2542 if (err)
2543 goto out_dput;
2544
2545 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2546 err = -EINVAL;
2547 goto out_dput;
2548 }
2549
2550 btrfs_inode_lock(BTRFS_I(inode), 0);
2551 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2552 btrfs_inode_unlock(BTRFS_I(inode), 0);
2553 if (!err)
2554 d_delete_notify(dir, dentry);
2555
2556 out_dput:
2557 dput(dentry);
2558 out_unlock_dir:
2559 btrfs_inode_unlock(BTRFS_I(dir), 0);
2560 free_subvol_name:
2561 kfree(subvol_name_ptr);
2562 free_parent:
2563 if (destroy_parent)
2564 dput(parent);
2565 out_drop_write:
2566 mnt_drop_write_file(file);
2567 out:
2568 kfree(vol_args2);
2569 kfree(vol_args);
2570 return err;
2571 }
2572
btrfs_ioctl_defrag(struct file * file,void __user * argp)2573 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2574 {
2575 struct inode *inode = file_inode(file);
2576 struct btrfs_root *root = BTRFS_I(inode)->root;
2577 struct btrfs_ioctl_defrag_range_args range = {0};
2578 int ret;
2579
2580 ret = mnt_want_write_file(file);
2581 if (ret)
2582 return ret;
2583
2584 if (btrfs_root_readonly(root)) {
2585 ret = -EROFS;
2586 goto out;
2587 }
2588
2589 switch (inode->i_mode & S_IFMT) {
2590 case S_IFDIR:
2591 if (!capable(CAP_SYS_ADMIN)) {
2592 ret = -EPERM;
2593 goto out;
2594 }
2595 ret = btrfs_defrag_root(root);
2596 break;
2597 case S_IFREG:
2598 /*
2599 * Note that this does not check the file descriptor for write
2600 * access. This prevents defragmenting executables that are
2601 * running and allows defrag on files open in read-only mode.
2602 */
2603 if (!capable(CAP_SYS_ADMIN) &&
2604 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2605 ret = -EPERM;
2606 goto out;
2607 }
2608
2609 if (argp) {
2610 if (copy_from_user(&range, argp, sizeof(range))) {
2611 ret = -EFAULT;
2612 goto out;
2613 }
2614 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2615 ret = -EOPNOTSUPP;
2616 goto out;
2617 }
2618 /* compression requires us to start the IO */
2619 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2620 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2621 range.extent_thresh = (u32)-1;
2622 }
2623 } else {
2624 /* the rest are all set to zero by kzalloc */
2625 range.len = (u64)-1;
2626 }
2627 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2628 &range, BTRFS_OLDEST_GENERATION, 0);
2629 if (ret > 0)
2630 ret = 0;
2631 break;
2632 default:
2633 ret = -EINVAL;
2634 }
2635 out:
2636 mnt_drop_write_file(file);
2637 return ret;
2638 }
2639
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)2640 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2641 {
2642 struct btrfs_ioctl_vol_args *vol_args;
2643 bool restore_op = false;
2644 int ret;
2645
2646 if (!capable(CAP_SYS_ADMIN))
2647 return -EPERM;
2648
2649 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2650 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2651 return -EINVAL;
2652 }
2653
2654 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2655 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2656 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2657
2658 /*
2659 * We can do the device add because we have a paused balanced,
2660 * change the exclusive op type and remember we should bring
2661 * back the paused balance
2662 */
2663 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2664 btrfs_exclop_start_unlock(fs_info);
2665 restore_op = true;
2666 }
2667
2668 vol_args = memdup_user(arg, sizeof(*vol_args));
2669 if (IS_ERR(vol_args)) {
2670 ret = PTR_ERR(vol_args);
2671 goto out;
2672 }
2673
2674 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2675 ret = btrfs_init_new_device(fs_info, vol_args->name);
2676
2677 if (!ret)
2678 btrfs_info(fs_info, "disk added %s", vol_args->name);
2679
2680 kfree(vol_args);
2681 out:
2682 if (restore_op)
2683 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2684 else
2685 btrfs_exclop_finish(fs_info);
2686 return ret;
2687 }
2688
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)2689 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2690 {
2691 BTRFS_DEV_LOOKUP_ARGS(args);
2692 struct inode *inode = file_inode(file);
2693 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2694 struct btrfs_ioctl_vol_args_v2 *vol_args;
2695 struct block_device *bdev = NULL;
2696 void *holder;
2697 int ret;
2698 bool cancel = false;
2699
2700 if (!capable(CAP_SYS_ADMIN))
2701 return -EPERM;
2702
2703 vol_args = memdup_user(arg, sizeof(*vol_args));
2704 if (IS_ERR(vol_args))
2705 return PTR_ERR(vol_args);
2706
2707 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2708 ret = -EOPNOTSUPP;
2709 goto out;
2710 }
2711
2712 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2713 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2714 args.devid = vol_args->devid;
2715 } else if (!strcmp("cancel", vol_args->name)) {
2716 cancel = true;
2717 } else {
2718 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2719 if (ret)
2720 goto out;
2721 }
2722
2723 ret = mnt_want_write_file(file);
2724 if (ret)
2725 goto out;
2726
2727 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2728 cancel);
2729 if (ret)
2730 goto err_drop;
2731
2732 /* Exclusive operation is now claimed */
2733 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2734
2735 btrfs_exclop_finish(fs_info);
2736
2737 if (!ret) {
2738 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2739 btrfs_info(fs_info, "device deleted: id %llu",
2740 vol_args->devid);
2741 else
2742 btrfs_info(fs_info, "device deleted: %s",
2743 vol_args->name);
2744 }
2745 err_drop:
2746 mnt_drop_write_file(file);
2747 if (bdev)
2748 blkdev_put(bdev, holder);
2749 out:
2750 btrfs_put_dev_args_from_path(&args);
2751 kfree(vol_args);
2752 return ret;
2753 }
2754
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2755 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2756 {
2757 BTRFS_DEV_LOOKUP_ARGS(args);
2758 struct inode *inode = file_inode(file);
2759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2760 struct btrfs_ioctl_vol_args *vol_args;
2761 struct block_device *bdev = NULL;
2762 void *holder;
2763 int ret;
2764 bool cancel = false;
2765
2766 if (!capable(CAP_SYS_ADMIN))
2767 return -EPERM;
2768
2769 vol_args = memdup_user(arg, sizeof(*vol_args));
2770 if (IS_ERR(vol_args))
2771 return PTR_ERR(vol_args);
2772
2773 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2774 if (!strcmp("cancel", vol_args->name)) {
2775 cancel = true;
2776 } else {
2777 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2778 if (ret)
2779 goto out;
2780 }
2781
2782 ret = mnt_want_write_file(file);
2783 if (ret)
2784 goto out;
2785
2786 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2787 cancel);
2788 if (ret == 0) {
2789 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2790 if (!ret)
2791 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2792 btrfs_exclop_finish(fs_info);
2793 }
2794
2795 mnt_drop_write_file(file);
2796 if (bdev)
2797 blkdev_put(bdev, holder);
2798 out:
2799 btrfs_put_dev_args_from_path(&args);
2800 kfree(vol_args);
2801 return ret;
2802 }
2803
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)2804 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2805 void __user *arg)
2806 {
2807 struct btrfs_ioctl_fs_info_args *fi_args;
2808 struct btrfs_device *device;
2809 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2810 u64 flags_in;
2811 int ret = 0;
2812
2813 fi_args = memdup_user(arg, sizeof(*fi_args));
2814 if (IS_ERR(fi_args))
2815 return PTR_ERR(fi_args);
2816
2817 flags_in = fi_args->flags;
2818 memset(fi_args, 0, sizeof(*fi_args));
2819
2820 rcu_read_lock();
2821 fi_args->num_devices = fs_devices->num_devices;
2822
2823 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2824 if (device->devid > fi_args->max_id)
2825 fi_args->max_id = device->devid;
2826 }
2827 rcu_read_unlock();
2828
2829 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2830 fi_args->nodesize = fs_info->nodesize;
2831 fi_args->sectorsize = fs_info->sectorsize;
2832 fi_args->clone_alignment = fs_info->sectorsize;
2833
2834 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2835 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2836 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2837 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2838 }
2839
2840 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2841 fi_args->generation = fs_info->generation;
2842 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2843 }
2844
2845 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2846 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2847 sizeof(fi_args->metadata_uuid));
2848 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2849 }
2850
2851 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2852 ret = -EFAULT;
2853
2854 kfree(fi_args);
2855 return ret;
2856 }
2857
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)2858 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2859 void __user *arg)
2860 {
2861 BTRFS_DEV_LOOKUP_ARGS(args);
2862 struct btrfs_ioctl_dev_info_args *di_args;
2863 struct btrfs_device *dev;
2864 int ret = 0;
2865
2866 di_args = memdup_user(arg, sizeof(*di_args));
2867 if (IS_ERR(di_args))
2868 return PTR_ERR(di_args);
2869
2870 args.devid = di_args->devid;
2871 if (!btrfs_is_empty_uuid(di_args->uuid))
2872 args.uuid = di_args->uuid;
2873
2874 rcu_read_lock();
2875 dev = btrfs_find_device(fs_info->fs_devices, &args);
2876 if (!dev) {
2877 ret = -ENODEV;
2878 goto out;
2879 }
2880
2881 di_args->devid = dev->devid;
2882 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2883 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2884 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2885 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2886 if (dev->name)
2887 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2888 else
2889 di_args->path[0] = '\0';
2890
2891 out:
2892 rcu_read_unlock();
2893 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2894 ret = -EFAULT;
2895
2896 kfree(di_args);
2897 return ret;
2898 }
2899
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)2900 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2901 {
2902 struct inode *inode = file_inode(file);
2903 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2904 struct btrfs_root *root = BTRFS_I(inode)->root;
2905 struct btrfs_root *new_root;
2906 struct btrfs_dir_item *di;
2907 struct btrfs_trans_handle *trans;
2908 struct btrfs_path *path = NULL;
2909 struct btrfs_disk_key disk_key;
2910 struct fscrypt_str name = FSTR_INIT("default", 7);
2911 u64 objectid = 0;
2912 u64 dir_id;
2913 int ret;
2914
2915 if (!capable(CAP_SYS_ADMIN))
2916 return -EPERM;
2917
2918 ret = mnt_want_write_file(file);
2919 if (ret)
2920 return ret;
2921
2922 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2923 ret = -EFAULT;
2924 goto out;
2925 }
2926
2927 if (!objectid)
2928 objectid = BTRFS_FS_TREE_OBJECTID;
2929
2930 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2931 if (IS_ERR(new_root)) {
2932 ret = PTR_ERR(new_root);
2933 goto out;
2934 }
2935 if (!is_fstree(new_root->root_key.objectid)) {
2936 ret = -ENOENT;
2937 goto out_free;
2938 }
2939
2940 path = btrfs_alloc_path();
2941 if (!path) {
2942 ret = -ENOMEM;
2943 goto out_free;
2944 }
2945
2946 trans = btrfs_start_transaction(root, 1);
2947 if (IS_ERR(trans)) {
2948 ret = PTR_ERR(trans);
2949 goto out_free;
2950 }
2951
2952 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2953 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2954 dir_id, &name, 1);
2955 if (IS_ERR_OR_NULL(di)) {
2956 btrfs_release_path(path);
2957 btrfs_end_transaction(trans);
2958 btrfs_err(fs_info,
2959 "Umm, you don't have the default diritem, this isn't going to work");
2960 ret = -ENOENT;
2961 goto out_free;
2962 }
2963
2964 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2965 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2966 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
2967 btrfs_release_path(path);
2968
2969 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2970 btrfs_end_transaction(trans);
2971 out_free:
2972 btrfs_put_root(new_root);
2973 btrfs_free_path(path);
2974 out:
2975 mnt_drop_write_file(file);
2976 return ret;
2977 }
2978
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)2979 static void get_block_group_info(struct list_head *groups_list,
2980 struct btrfs_ioctl_space_info *space)
2981 {
2982 struct btrfs_block_group *block_group;
2983
2984 space->total_bytes = 0;
2985 space->used_bytes = 0;
2986 space->flags = 0;
2987 list_for_each_entry(block_group, groups_list, list) {
2988 space->flags = block_group->flags;
2989 space->total_bytes += block_group->length;
2990 space->used_bytes += block_group->used;
2991 }
2992 }
2993
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)2994 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2995 void __user *arg)
2996 {
2997 struct btrfs_ioctl_space_args space_args = { 0 };
2998 struct btrfs_ioctl_space_info space;
2999 struct btrfs_ioctl_space_info *dest;
3000 struct btrfs_ioctl_space_info *dest_orig;
3001 struct btrfs_ioctl_space_info __user *user_dest;
3002 struct btrfs_space_info *info;
3003 static const u64 types[] = {
3004 BTRFS_BLOCK_GROUP_DATA,
3005 BTRFS_BLOCK_GROUP_SYSTEM,
3006 BTRFS_BLOCK_GROUP_METADATA,
3007 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3008 };
3009 int num_types = 4;
3010 int alloc_size;
3011 int ret = 0;
3012 u64 slot_count = 0;
3013 int i, c;
3014
3015 if (copy_from_user(&space_args,
3016 (struct btrfs_ioctl_space_args __user *)arg,
3017 sizeof(space_args)))
3018 return -EFAULT;
3019
3020 for (i = 0; i < num_types; i++) {
3021 struct btrfs_space_info *tmp;
3022
3023 info = NULL;
3024 list_for_each_entry(tmp, &fs_info->space_info, list) {
3025 if (tmp->flags == types[i]) {
3026 info = tmp;
3027 break;
3028 }
3029 }
3030
3031 if (!info)
3032 continue;
3033
3034 down_read(&info->groups_sem);
3035 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3036 if (!list_empty(&info->block_groups[c]))
3037 slot_count++;
3038 }
3039 up_read(&info->groups_sem);
3040 }
3041
3042 /*
3043 * Global block reserve, exported as a space_info
3044 */
3045 slot_count++;
3046
3047 /* space_slots == 0 means they are asking for a count */
3048 if (space_args.space_slots == 0) {
3049 space_args.total_spaces = slot_count;
3050 goto out;
3051 }
3052
3053 slot_count = min_t(u64, space_args.space_slots, slot_count);
3054
3055 alloc_size = sizeof(*dest) * slot_count;
3056
3057 /* we generally have at most 6 or so space infos, one for each raid
3058 * level. So, a whole page should be more than enough for everyone
3059 */
3060 if (alloc_size > PAGE_SIZE)
3061 return -ENOMEM;
3062
3063 space_args.total_spaces = 0;
3064 dest = kmalloc(alloc_size, GFP_KERNEL);
3065 if (!dest)
3066 return -ENOMEM;
3067 dest_orig = dest;
3068
3069 /* now we have a buffer to copy into */
3070 for (i = 0; i < num_types; i++) {
3071 struct btrfs_space_info *tmp;
3072
3073 if (!slot_count)
3074 break;
3075
3076 info = NULL;
3077 list_for_each_entry(tmp, &fs_info->space_info, list) {
3078 if (tmp->flags == types[i]) {
3079 info = tmp;
3080 break;
3081 }
3082 }
3083
3084 if (!info)
3085 continue;
3086 down_read(&info->groups_sem);
3087 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3088 if (!list_empty(&info->block_groups[c])) {
3089 get_block_group_info(&info->block_groups[c],
3090 &space);
3091 memcpy(dest, &space, sizeof(space));
3092 dest++;
3093 space_args.total_spaces++;
3094 slot_count--;
3095 }
3096 if (!slot_count)
3097 break;
3098 }
3099 up_read(&info->groups_sem);
3100 }
3101
3102 /*
3103 * Add global block reserve
3104 */
3105 if (slot_count) {
3106 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3107
3108 spin_lock(&block_rsv->lock);
3109 space.total_bytes = block_rsv->size;
3110 space.used_bytes = block_rsv->size - block_rsv->reserved;
3111 spin_unlock(&block_rsv->lock);
3112 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3113 memcpy(dest, &space, sizeof(space));
3114 space_args.total_spaces++;
3115 }
3116
3117 user_dest = (struct btrfs_ioctl_space_info __user *)
3118 (arg + sizeof(struct btrfs_ioctl_space_args));
3119
3120 if (copy_to_user(user_dest, dest_orig, alloc_size))
3121 ret = -EFAULT;
3122
3123 kfree(dest_orig);
3124 out:
3125 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3126 ret = -EFAULT;
3127
3128 return ret;
3129 }
3130
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3131 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3132 void __user *argp)
3133 {
3134 struct btrfs_trans_handle *trans;
3135 u64 transid;
3136
3137 /*
3138 * Start orphan cleanup here for the given root in case it hasn't been
3139 * started already by other means. Errors are handled in the other
3140 * functions during transaction commit.
3141 */
3142 btrfs_orphan_cleanup(root);
3143
3144 trans = btrfs_attach_transaction_barrier(root);
3145 if (IS_ERR(trans)) {
3146 if (PTR_ERR(trans) != -ENOENT)
3147 return PTR_ERR(trans);
3148
3149 /* No running transaction, don't bother */
3150 transid = root->fs_info->last_trans_committed;
3151 goto out;
3152 }
3153 transid = trans->transid;
3154 btrfs_commit_transaction_async(trans);
3155 out:
3156 if (argp)
3157 if (copy_to_user(argp, &transid, sizeof(transid)))
3158 return -EFAULT;
3159 return 0;
3160 }
3161
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3162 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3163 void __user *argp)
3164 {
3165 /* By default wait for the current transaction. */
3166 u64 transid = 0;
3167
3168 if (argp)
3169 if (copy_from_user(&transid, argp, sizeof(transid)))
3170 return -EFAULT;
3171
3172 return btrfs_wait_for_commit(fs_info, transid);
3173 }
3174
btrfs_ioctl_scrub(struct file * file,void __user * arg)3175 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3176 {
3177 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3178 struct btrfs_ioctl_scrub_args *sa;
3179 int ret;
3180
3181 if (!capable(CAP_SYS_ADMIN))
3182 return -EPERM;
3183
3184 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3185 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3186 return -EINVAL;
3187 }
3188
3189 sa = memdup_user(arg, sizeof(*sa));
3190 if (IS_ERR(sa))
3191 return PTR_ERR(sa);
3192
3193 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3194 ret = -EOPNOTSUPP;
3195 goto out;
3196 }
3197
3198 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3199 ret = mnt_want_write_file(file);
3200 if (ret)
3201 goto out;
3202 }
3203
3204 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3205 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3206 0);
3207
3208 /*
3209 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3210 * error. This is important as it allows user space to know how much
3211 * progress scrub has done. For example, if scrub is canceled we get
3212 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3213 * space. Later user space can inspect the progress from the structure
3214 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3215 * previously (btrfs-progs does this).
3216 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3217 * then return -EFAULT to signal the structure was not copied or it may
3218 * be corrupt and unreliable due to a partial copy.
3219 */
3220 if (copy_to_user(arg, sa, sizeof(*sa)))
3221 ret = -EFAULT;
3222
3223 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3224 mnt_drop_write_file(file);
3225 out:
3226 kfree(sa);
3227 return ret;
3228 }
3229
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3230 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3231 {
3232 if (!capable(CAP_SYS_ADMIN))
3233 return -EPERM;
3234
3235 return btrfs_scrub_cancel(fs_info);
3236 }
3237
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3238 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3239 void __user *arg)
3240 {
3241 struct btrfs_ioctl_scrub_args *sa;
3242 int ret;
3243
3244 if (!capable(CAP_SYS_ADMIN))
3245 return -EPERM;
3246
3247 sa = memdup_user(arg, sizeof(*sa));
3248 if (IS_ERR(sa))
3249 return PTR_ERR(sa);
3250
3251 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3252
3253 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3254 ret = -EFAULT;
3255
3256 kfree(sa);
3257 return ret;
3258 }
3259
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3260 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3261 void __user *arg)
3262 {
3263 struct btrfs_ioctl_get_dev_stats *sa;
3264 int ret;
3265
3266 sa = memdup_user(arg, sizeof(*sa));
3267 if (IS_ERR(sa))
3268 return PTR_ERR(sa);
3269
3270 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3271 kfree(sa);
3272 return -EPERM;
3273 }
3274
3275 ret = btrfs_get_dev_stats(fs_info, sa);
3276
3277 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3278 ret = -EFAULT;
3279
3280 kfree(sa);
3281 return ret;
3282 }
3283
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3284 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3285 void __user *arg)
3286 {
3287 struct btrfs_ioctl_dev_replace_args *p;
3288 int ret;
3289
3290 if (!capable(CAP_SYS_ADMIN))
3291 return -EPERM;
3292
3293 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3294 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3295 return -EINVAL;
3296 }
3297
3298 p = memdup_user(arg, sizeof(*p));
3299 if (IS_ERR(p))
3300 return PTR_ERR(p);
3301
3302 switch (p->cmd) {
3303 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3304 if (sb_rdonly(fs_info->sb)) {
3305 ret = -EROFS;
3306 goto out;
3307 }
3308 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3309 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3310 } else {
3311 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3312 btrfs_exclop_finish(fs_info);
3313 }
3314 break;
3315 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3316 btrfs_dev_replace_status(fs_info, p);
3317 ret = 0;
3318 break;
3319 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3320 p->result = btrfs_dev_replace_cancel(fs_info);
3321 ret = 0;
3322 break;
3323 default:
3324 ret = -EINVAL;
3325 break;
3326 }
3327
3328 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3329 ret = -EFAULT;
3330 out:
3331 kfree(p);
3332 return ret;
3333 }
3334
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3335 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3336 {
3337 int ret = 0;
3338 int i;
3339 u64 rel_ptr;
3340 int size;
3341 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3342 struct inode_fs_paths *ipath = NULL;
3343 struct btrfs_path *path;
3344
3345 if (!capable(CAP_DAC_READ_SEARCH))
3346 return -EPERM;
3347
3348 path = btrfs_alloc_path();
3349 if (!path) {
3350 ret = -ENOMEM;
3351 goto out;
3352 }
3353
3354 ipa = memdup_user(arg, sizeof(*ipa));
3355 if (IS_ERR(ipa)) {
3356 ret = PTR_ERR(ipa);
3357 ipa = NULL;
3358 goto out;
3359 }
3360
3361 size = min_t(u32, ipa->size, 4096);
3362 ipath = init_ipath(size, root, path);
3363 if (IS_ERR(ipath)) {
3364 ret = PTR_ERR(ipath);
3365 ipath = NULL;
3366 goto out;
3367 }
3368
3369 ret = paths_from_inode(ipa->inum, ipath);
3370 if (ret < 0)
3371 goto out;
3372
3373 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3374 rel_ptr = ipath->fspath->val[i] -
3375 (u64)(unsigned long)ipath->fspath->val;
3376 ipath->fspath->val[i] = rel_ptr;
3377 }
3378
3379 btrfs_free_path(path);
3380 path = NULL;
3381 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3382 ipath->fspath, size);
3383 if (ret) {
3384 ret = -EFAULT;
3385 goto out;
3386 }
3387
3388 out:
3389 btrfs_free_path(path);
3390 free_ipath(ipath);
3391 kfree(ipa);
3392
3393 return ret;
3394 }
3395
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3396 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3397 void __user *arg, int version)
3398 {
3399 int ret = 0;
3400 int size;
3401 struct btrfs_ioctl_logical_ino_args *loi;
3402 struct btrfs_data_container *inodes = NULL;
3403 struct btrfs_path *path = NULL;
3404 bool ignore_offset;
3405
3406 if (!capable(CAP_SYS_ADMIN))
3407 return -EPERM;
3408
3409 loi = memdup_user(arg, sizeof(*loi));
3410 if (IS_ERR(loi))
3411 return PTR_ERR(loi);
3412
3413 if (version == 1) {
3414 ignore_offset = false;
3415 size = min_t(u32, loi->size, SZ_64K);
3416 } else {
3417 /* All reserved bits must be 0 for now */
3418 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3419 ret = -EINVAL;
3420 goto out_loi;
3421 }
3422 /* Only accept flags we have defined so far */
3423 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3424 ret = -EINVAL;
3425 goto out_loi;
3426 }
3427 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3428 size = min_t(u32, loi->size, SZ_16M);
3429 }
3430
3431 inodes = init_data_container(size);
3432 if (IS_ERR(inodes)) {
3433 ret = PTR_ERR(inodes);
3434 goto out_loi;
3435 }
3436
3437 path = btrfs_alloc_path();
3438 if (!path) {
3439 ret = -ENOMEM;
3440 goto out;
3441 }
3442 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3443 inodes, ignore_offset);
3444 btrfs_free_path(path);
3445 if (ret == -EINVAL)
3446 ret = -ENOENT;
3447 if (ret < 0)
3448 goto out;
3449
3450 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3451 size);
3452 if (ret)
3453 ret = -EFAULT;
3454
3455 out:
3456 kvfree(inodes);
3457 out_loi:
3458 kfree(loi);
3459
3460 return ret;
3461 }
3462
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3463 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3464 struct btrfs_ioctl_balance_args *bargs)
3465 {
3466 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3467
3468 bargs->flags = bctl->flags;
3469
3470 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3471 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3472 if (atomic_read(&fs_info->balance_pause_req))
3473 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3474 if (atomic_read(&fs_info->balance_cancel_req))
3475 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3476
3477 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3478 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3479 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3480
3481 spin_lock(&fs_info->balance_lock);
3482 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3483 spin_unlock(&fs_info->balance_lock);
3484 }
3485
3486 /*
3487 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3488 * required.
3489 *
3490 * @fs_info: the filesystem
3491 * @excl_acquired: ptr to boolean value which is set to false in case balance
3492 * is being resumed
3493 *
3494 * Return 0 on success in which case both fs_info::balance is acquired as well
3495 * as exclusive ops are blocked. In case of failure return an error code.
3496 */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)3497 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3498 {
3499 int ret;
3500
3501 /*
3502 * Exclusive operation is locked. Three possibilities:
3503 * (1) some other op is running
3504 * (2) balance is running
3505 * (3) balance is paused -- special case (think resume)
3506 */
3507 while (1) {
3508 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3509 *excl_acquired = true;
3510 mutex_lock(&fs_info->balance_mutex);
3511 return 0;
3512 }
3513
3514 mutex_lock(&fs_info->balance_mutex);
3515 if (fs_info->balance_ctl) {
3516 /* This is either (2) or (3) */
3517 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3518 /* This is (2) */
3519 ret = -EINPROGRESS;
3520 goto out_failure;
3521
3522 } else {
3523 mutex_unlock(&fs_info->balance_mutex);
3524 /*
3525 * Lock released to allow other waiters to
3526 * continue, we'll reexamine the status again.
3527 */
3528 mutex_lock(&fs_info->balance_mutex);
3529
3530 if (fs_info->balance_ctl &&
3531 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3532 /* This is (3) */
3533 *excl_acquired = false;
3534 return 0;
3535 }
3536 }
3537 } else {
3538 /* This is (1) */
3539 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3540 goto out_failure;
3541 }
3542
3543 mutex_unlock(&fs_info->balance_mutex);
3544 }
3545
3546 out_failure:
3547 mutex_unlock(&fs_info->balance_mutex);
3548 *excl_acquired = false;
3549 return ret;
3550 }
3551
btrfs_ioctl_balance(struct file * file,void __user * arg)3552 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3553 {
3554 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3555 struct btrfs_fs_info *fs_info = root->fs_info;
3556 struct btrfs_ioctl_balance_args *bargs;
3557 struct btrfs_balance_control *bctl;
3558 bool need_unlock = true;
3559 int ret;
3560
3561 if (!capable(CAP_SYS_ADMIN))
3562 return -EPERM;
3563
3564 ret = mnt_want_write_file(file);
3565 if (ret)
3566 return ret;
3567
3568 bargs = memdup_user(arg, sizeof(*bargs));
3569 if (IS_ERR(bargs)) {
3570 ret = PTR_ERR(bargs);
3571 bargs = NULL;
3572 goto out;
3573 }
3574
3575 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3576 if (ret)
3577 goto out;
3578
3579 lockdep_assert_held(&fs_info->balance_mutex);
3580
3581 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3582 if (!fs_info->balance_ctl) {
3583 ret = -ENOTCONN;
3584 goto out_unlock;
3585 }
3586
3587 bctl = fs_info->balance_ctl;
3588 spin_lock(&fs_info->balance_lock);
3589 bctl->flags |= BTRFS_BALANCE_RESUME;
3590 spin_unlock(&fs_info->balance_lock);
3591 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3592
3593 goto do_balance;
3594 }
3595
3596 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3597 ret = -EINVAL;
3598 goto out_unlock;
3599 }
3600
3601 if (fs_info->balance_ctl) {
3602 ret = -EINPROGRESS;
3603 goto out_unlock;
3604 }
3605
3606 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3607 if (!bctl) {
3608 ret = -ENOMEM;
3609 goto out_unlock;
3610 }
3611
3612 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3613 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3614 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3615
3616 bctl->flags = bargs->flags;
3617 do_balance:
3618 /*
3619 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3620 * bctl is freed in reset_balance_state, or, if restriper was paused
3621 * all the way until unmount, in free_fs_info. The flag should be
3622 * cleared after reset_balance_state.
3623 */
3624 need_unlock = false;
3625
3626 ret = btrfs_balance(fs_info, bctl, bargs);
3627 bctl = NULL;
3628
3629 if (ret == 0 || ret == -ECANCELED) {
3630 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3631 ret = -EFAULT;
3632 }
3633
3634 kfree(bctl);
3635 out_unlock:
3636 mutex_unlock(&fs_info->balance_mutex);
3637 if (need_unlock)
3638 btrfs_exclop_finish(fs_info);
3639 out:
3640 mnt_drop_write_file(file);
3641 kfree(bargs);
3642 return ret;
3643 }
3644
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)3645 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3646 {
3647 if (!capable(CAP_SYS_ADMIN))
3648 return -EPERM;
3649
3650 switch (cmd) {
3651 case BTRFS_BALANCE_CTL_PAUSE:
3652 return btrfs_pause_balance(fs_info);
3653 case BTRFS_BALANCE_CTL_CANCEL:
3654 return btrfs_cancel_balance(fs_info);
3655 }
3656
3657 return -EINVAL;
3658 }
3659
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)3660 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3661 void __user *arg)
3662 {
3663 struct btrfs_ioctl_balance_args *bargs;
3664 int ret = 0;
3665
3666 if (!capable(CAP_SYS_ADMIN))
3667 return -EPERM;
3668
3669 mutex_lock(&fs_info->balance_mutex);
3670 if (!fs_info->balance_ctl) {
3671 ret = -ENOTCONN;
3672 goto out;
3673 }
3674
3675 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3676 if (!bargs) {
3677 ret = -ENOMEM;
3678 goto out;
3679 }
3680
3681 btrfs_update_ioctl_balance_args(fs_info, bargs);
3682
3683 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3684 ret = -EFAULT;
3685
3686 kfree(bargs);
3687 out:
3688 mutex_unlock(&fs_info->balance_mutex);
3689 return ret;
3690 }
3691
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)3692 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3693 {
3694 struct inode *inode = file_inode(file);
3695 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3696 struct btrfs_ioctl_quota_ctl_args *sa;
3697 int ret;
3698
3699 if (!capable(CAP_SYS_ADMIN))
3700 return -EPERM;
3701
3702 ret = mnt_want_write_file(file);
3703 if (ret)
3704 return ret;
3705
3706 sa = memdup_user(arg, sizeof(*sa));
3707 if (IS_ERR(sa)) {
3708 ret = PTR_ERR(sa);
3709 goto drop_write;
3710 }
3711
3712 down_write(&fs_info->subvol_sem);
3713
3714 switch (sa->cmd) {
3715 case BTRFS_QUOTA_CTL_ENABLE:
3716 ret = btrfs_quota_enable(fs_info);
3717 break;
3718 case BTRFS_QUOTA_CTL_DISABLE:
3719 ret = btrfs_quota_disable(fs_info);
3720 break;
3721 default:
3722 ret = -EINVAL;
3723 break;
3724 }
3725
3726 kfree(sa);
3727 up_write(&fs_info->subvol_sem);
3728 drop_write:
3729 mnt_drop_write_file(file);
3730 return ret;
3731 }
3732
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)3733 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3734 {
3735 struct inode *inode = file_inode(file);
3736 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3737 struct btrfs_root *root = BTRFS_I(inode)->root;
3738 struct btrfs_ioctl_qgroup_assign_args *sa;
3739 struct btrfs_trans_handle *trans;
3740 int ret;
3741 int err;
3742
3743 if (!capable(CAP_SYS_ADMIN))
3744 return -EPERM;
3745
3746 ret = mnt_want_write_file(file);
3747 if (ret)
3748 return ret;
3749
3750 sa = memdup_user(arg, sizeof(*sa));
3751 if (IS_ERR(sa)) {
3752 ret = PTR_ERR(sa);
3753 goto drop_write;
3754 }
3755
3756 trans = btrfs_join_transaction(root);
3757 if (IS_ERR(trans)) {
3758 ret = PTR_ERR(trans);
3759 goto out;
3760 }
3761
3762 if (sa->assign) {
3763 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3764 } else {
3765 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3766 }
3767
3768 /* update qgroup status and info */
3769 mutex_lock(&fs_info->qgroup_ioctl_lock);
3770 err = btrfs_run_qgroups(trans);
3771 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3772 if (err < 0)
3773 btrfs_handle_fs_error(fs_info, err,
3774 "failed to update qgroup status and info");
3775 err = btrfs_end_transaction(trans);
3776 if (err && !ret)
3777 ret = err;
3778
3779 out:
3780 kfree(sa);
3781 drop_write:
3782 mnt_drop_write_file(file);
3783 return ret;
3784 }
3785
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)3786 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3787 {
3788 struct inode *inode = file_inode(file);
3789 struct btrfs_root *root = BTRFS_I(inode)->root;
3790 struct btrfs_ioctl_qgroup_create_args *sa;
3791 struct btrfs_trans_handle *trans;
3792 int ret;
3793 int err;
3794
3795 if (!capable(CAP_SYS_ADMIN))
3796 return -EPERM;
3797
3798 ret = mnt_want_write_file(file);
3799 if (ret)
3800 return ret;
3801
3802 sa = memdup_user(arg, sizeof(*sa));
3803 if (IS_ERR(sa)) {
3804 ret = PTR_ERR(sa);
3805 goto drop_write;
3806 }
3807
3808 if (!sa->qgroupid) {
3809 ret = -EINVAL;
3810 goto out;
3811 }
3812
3813 if (sa->create && is_fstree(sa->qgroupid)) {
3814 ret = -EINVAL;
3815 goto out;
3816 }
3817
3818 trans = btrfs_join_transaction(root);
3819 if (IS_ERR(trans)) {
3820 ret = PTR_ERR(trans);
3821 goto out;
3822 }
3823
3824 if (sa->create) {
3825 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3826 } else {
3827 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3828 }
3829
3830 err = btrfs_end_transaction(trans);
3831 if (err && !ret)
3832 ret = err;
3833
3834 out:
3835 kfree(sa);
3836 drop_write:
3837 mnt_drop_write_file(file);
3838 return ret;
3839 }
3840
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)3841 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3842 {
3843 struct inode *inode = file_inode(file);
3844 struct btrfs_root *root = BTRFS_I(inode)->root;
3845 struct btrfs_ioctl_qgroup_limit_args *sa;
3846 struct btrfs_trans_handle *trans;
3847 int ret;
3848 int err;
3849 u64 qgroupid;
3850
3851 if (!capable(CAP_SYS_ADMIN))
3852 return -EPERM;
3853
3854 ret = mnt_want_write_file(file);
3855 if (ret)
3856 return ret;
3857
3858 sa = memdup_user(arg, sizeof(*sa));
3859 if (IS_ERR(sa)) {
3860 ret = PTR_ERR(sa);
3861 goto drop_write;
3862 }
3863
3864 trans = btrfs_join_transaction(root);
3865 if (IS_ERR(trans)) {
3866 ret = PTR_ERR(trans);
3867 goto out;
3868 }
3869
3870 qgroupid = sa->qgroupid;
3871 if (!qgroupid) {
3872 /* take the current subvol as qgroup */
3873 qgroupid = root->root_key.objectid;
3874 }
3875
3876 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3877
3878 err = btrfs_end_transaction(trans);
3879 if (err && !ret)
3880 ret = err;
3881
3882 out:
3883 kfree(sa);
3884 drop_write:
3885 mnt_drop_write_file(file);
3886 return ret;
3887 }
3888
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)3889 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3890 {
3891 struct inode *inode = file_inode(file);
3892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3893 struct btrfs_ioctl_quota_rescan_args *qsa;
3894 int ret;
3895
3896 if (!capable(CAP_SYS_ADMIN))
3897 return -EPERM;
3898
3899 ret = mnt_want_write_file(file);
3900 if (ret)
3901 return ret;
3902
3903 qsa = memdup_user(arg, sizeof(*qsa));
3904 if (IS_ERR(qsa)) {
3905 ret = PTR_ERR(qsa);
3906 goto drop_write;
3907 }
3908
3909 if (qsa->flags) {
3910 ret = -EINVAL;
3911 goto out;
3912 }
3913
3914 ret = btrfs_qgroup_rescan(fs_info);
3915
3916 out:
3917 kfree(qsa);
3918 drop_write:
3919 mnt_drop_write_file(file);
3920 return ret;
3921 }
3922
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)3923 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3924 void __user *arg)
3925 {
3926 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3927
3928 if (!capable(CAP_SYS_ADMIN))
3929 return -EPERM;
3930
3931 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3932 qsa.flags = 1;
3933 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3934 }
3935
3936 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3937 return -EFAULT;
3938
3939 return 0;
3940 }
3941
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)3942 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3943 void __user *arg)
3944 {
3945 if (!capable(CAP_SYS_ADMIN))
3946 return -EPERM;
3947
3948 return btrfs_qgroup_wait_for_completion(fs_info, true);
3949 }
3950
_btrfs_ioctl_set_received_subvol(struct file * file,struct mnt_idmap * idmap,struct btrfs_ioctl_received_subvol_args * sa)3951 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3952 struct mnt_idmap *idmap,
3953 struct btrfs_ioctl_received_subvol_args *sa)
3954 {
3955 struct inode *inode = file_inode(file);
3956 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3957 struct btrfs_root *root = BTRFS_I(inode)->root;
3958 struct btrfs_root_item *root_item = &root->root_item;
3959 struct btrfs_trans_handle *trans;
3960 struct timespec64 ct = current_time(inode);
3961 int ret = 0;
3962 int received_uuid_changed;
3963
3964 if (!inode_owner_or_capable(idmap, inode))
3965 return -EPERM;
3966
3967 ret = mnt_want_write_file(file);
3968 if (ret < 0)
3969 return ret;
3970
3971 down_write(&fs_info->subvol_sem);
3972
3973 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3974 ret = -EINVAL;
3975 goto out;
3976 }
3977
3978 if (btrfs_root_readonly(root)) {
3979 ret = -EROFS;
3980 goto out;
3981 }
3982
3983 /*
3984 * 1 - root item
3985 * 2 - uuid items (received uuid + subvol uuid)
3986 */
3987 trans = btrfs_start_transaction(root, 3);
3988 if (IS_ERR(trans)) {
3989 ret = PTR_ERR(trans);
3990 trans = NULL;
3991 goto out;
3992 }
3993
3994 sa->rtransid = trans->transid;
3995 sa->rtime.sec = ct.tv_sec;
3996 sa->rtime.nsec = ct.tv_nsec;
3997
3998 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3999 BTRFS_UUID_SIZE);
4000 if (received_uuid_changed &&
4001 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4002 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4003 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4004 root->root_key.objectid);
4005 if (ret && ret != -ENOENT) {
4006 btrfs_abort_transaction(trans, ret);
4007 btrfs_end_transaction(trans);
4008 goto out;
4009 }
4010 }
4011 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4012 btrfs_set_root_stransid(root_item, sa->stransid);
4013 btrfs_set_root_rtransid(root_item, sa->rtransid);
4014 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4015 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4016 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4017 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4018
4019 ret = btrfs_update_root(trans, fs_info->tree_root,
4020 &root->root_key, &root->root_item);
4021 if (ret < 0) {
4022 btrfs_end_transaction(trans);
4023 goto out;
4024 }
4025 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4026 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4027 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4028 root->root_key.objectid);
4029 if (ret < 0 && ret != -EEXIST) {
4030 btrfs_abort_transaction(trans, ret);
4031 btrfs_end_transaction(trans);
4032 goto out;
4033 }
4034 }
4035 ret = btrfs_commit_transaction(trans);
4036 out:
4037 up_write(&fs_info->subvol_sem);
4038 mnt_drop_write_file(file);
4039 return ret;
4040 }
4041
4042 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4043 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4044 void __user *arg)
4045 {
4046 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4047 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4048 int ret = 0;
4049
4050 args32 = memdup_user(arg, sizeof(*args32));
4051 if (IS_ERR(args32))
4052 return PTR_ERR(args32);
4053
4054 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4055 if (!args64) {
4056 ret = -ENOMEM;
4057 goto out;
4058 }
4059
4060 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4061 args64->stransid = args32->stransid;
4062 args64->rtransid = args32->rtransid;
4063 args64->stime.sec = args32->stime.sec;
4064 args64->stime.nsec = args32->stime.nsec;
4065 args64->rtime.sec = args32->rtime.sec;
4066 args64->rtime.nsec = args32->rtime.nsec;
4067 args64->flags = args32->flags;
4068
4069 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4070 if (ret)
4071 goto out;
4072
4073 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4074 args32->stransid = args64->stransid;
4075 args32->rtransid = args64->rtransid;
4076 args32->stime.sec = args64->stime.sec;
4077 args32->stime.nsec = args64->stime.nsec;
4078 args32->rtime.sec = args64->rtime.sec;
4079 args32->rtime.nsec = args64->rtime.nsec;
4080 args32->flags = args64->flags;
4081
4082 ret = copy_to_user(arg, args32, sizeof(*args32));
4083 if (ret)
4084 ret = -EFAULT;
4085
4086 out:
4087 kfree(args32);
4088 kfree(args64);
4089 return ret;
4090 }
4091 #endif
4092
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4093 static long btrfs_ioctl_set_received_subvol(struct file *file,
4094 void __user *arg)
4095 {
4096 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4097 int ret = 0;
4098
4099 sa = memdup_user(arg, sizeof(*sa));
4100 if (IS_ERR(sa))
4101 return PTR_ERR(sa);
4102
4103 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4104
4105 if (ret)
4106 goto out;
4107
4108 ret = copy_to_user(arg, sa, sizeof(*sa));
4109 if (ret)
4110 ret = -EFAULT;
4111
4112 out:
4113 kfree(sa);
4114 return ret;
4115 }
4116
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4117 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4118 void __user *arg)
4119 {
4120 size_t len;
4121 int ret;
4122 char label[BTRFS_LABEL_SIZE];
4123
4124 spin_lock(&fs_info->super_lock);
4125 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4126 spin_unlock(&fs_info->super_lock);
4127
4128 len = strnlen(label, BTRFS_LABEL_SIZE);
4129
4130 if (len == BTRFS_LABEL_SIZE) {
4131 btrfs_warn(fs_info,
4132 "label is too long, return the first %zu bytes",
4133 --len);
4134 }
4135
4136 ret = copy_to_user(arg, label, len);
4137
4138 return ret ? -EFAULT : 0;
4139 }
4140
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4141 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4142 {
4143 struct inode *inode = file_inode(file);
4144 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4145 struct btrfs_root *root = BTRFS_I(inode)->root;
4146 struct btrfs_super_block *super_block = fs_info->super_copy;
4147 struct btrfs_trans_handle *trans;
4148 char label[BTRFS_LABEL_SIZE];
4149 int ret;
4150
4151 if (!capable(CAP_SYS_ADMIN))
4152 return -EPERM;
4153
4154 if (copy_from_user(label, arg, sizeof(label)))
4155 return -EFAULT;
4156
4157 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4158 btrfs_err(fs_info,
4159 "unable to set label with more than %d bytes",
4160 BTRFS_LABEL_SIZE - 1);
4161 return -EINVAL;
4162 }
4163
4164 ret = mnt_want_write_file(file);
4165 if (ret)
4166 return ret;
4167
4168 trans = btrfs_start_transaction(root, 0);
4169 if (IS_ERR(trans)) {
4170 ret = PTR_ERR(trans);
4171 goto out_unlock;
4172 }
4173
4174 spin_lock(&fs_info->super_lock);
4175 strcpy(super_block->label, label);
4176 spin_unlock(&fs_info->super_lock);
4177 ret = btrfs_commit_transaction(trans);
4178
4179 out_unlock:
4180 mnt_drop_write_file(file);
4181 return ret;
4182 }
4183
4184 #define INIT_FEATURE_FLAGS(suffix) \
4185 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4186 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4187 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4188
btrfs_ioctl_get_supported_features(void __user * arg)4189 int btrfs_ioctl_get_supported_features(void __user *arg)
4190 {
4191 static const struct btrfs_ioctl_feature_flags features[3] = {
4192 INIT_FEATURE_FLAGS(SUPP),
4193 INIT_FEATURE_FLAGS(SAFE_SET),
4194 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4195 };
4196
4197 if (copy_to_user(arg, &features, sizeof(features)))
4198 return -EFAULT;
4199
4200 return 0;
4201 }
4202
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4203 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4204 void __user *arg)
4205 {
4206 struct btrfs_super_block *super_block = fs_info->super_copy;
4207 struct btrfs_ioctl_feature_flags features;
4208
4209 features.compat_flags = btrfs_super_compat_flags(super_block);
4210 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4211 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4212
4213 if (copy_to_user(arg, &features, sizeof(features)))
4214 return -EFAULT;
4215
4216 return 0;
4217 }
4218
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4219 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4220 enum btrfs_feature_set set,
4221 u64 change_mask, u64 flags, u64 supported_flags,
4222 u64 safe_set, u64 safe_clear)
4223 {
4224 const char *type = btrfs_feature_set_name(set);
4225 char *names;
4226 u64 disallowed, unsupported;
4227 u64 set_mask = flags & change_mask;
4228 u64 clear_mask = ~flags & change_mask;
4229
4230 unsupported = set_mask & ~supported_flags;
4231 if (unsupported) {
4232 names = btrfs_printable_features(set, unsupported);
4233 if (names) {
4234 btrfs_warn(fs_info,
4235 "this kernel does not support the %s feature bit%s",
4236 names, strchr(names, ',') ? "s" : "");
4237 kfree(names);
4238 } else
4239 btrfs_warn(fs_info,
4240 "this kernel does not support %s bits 0x%llx",
4241 type, unsupported);
4242 return -EOPNOTSUPP;
4243 }
4244
4245 disallowed = set_mask & ~safe_set;
4246 if (disallowed) {
4247 names = btrfs_printable_features(set, disallowed);
4248 if (names) {
4249 btrfs_warn(fs_info,
4250 "can't set the %s feature bit%s while mounted",
4251 names, strchr(names, ',') ? "s" : "");
4252 kfree(names);
4253 } else
4254 btrfs_warn(fs_info,
4255 "can't set %s bits 0x%llx while mounted",
4256 type, disallowed);
4257 return -EPERM;
4258 }
4259
4260 disallowed = clear_mask & ~safe_clear;
4261 if (disallowed) {
4262 names = btrfs_printable_features(set, disallowed);
4263 if (names) {
4264 btrfs_warn(fs_info,
4265 "can't clear the %s feature bit%s while mounted",
4266 names, strchr(names, ',') ? "s" : "");
4267 kfree(names);
4268 } else
4269 btrfs_warn(fs_info,
4270 "can't clear %s bits 0x%llx while mounted",
4271 type, disallowed);
4272 return -EPERM;
4273 }
4274
4275 return 0;
4276 }
4277
4278 #define check_feature(fs_info, change_mask, flags, mask_base) \
4279 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4280 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4281 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4282 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4283
btrfs_ioctl_set_features(struct file * file,void __user * arg)4284 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4285 {
4286 struct inode *inode = file_inode(file);
4287 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4288 struct btrfs_root *root = BTRFS_I(inode)->root;
4289 struct btrfs_super_block *super_block = fs_info->super_copy;
4290 struct btrfs_ioctl_feature_flags flags[2];
4291 struct btrfs_trans_handle *trans;
4292 u64 newflags;
4293 int ret;
4294
4295 if (!capable(CAP_SYS_ADMIN))
4296 return -EPERM;
4297
4298 if (copy_from_user(flags, arg, sizeof(flags)))
4299 return -EFAULT;
4300
4301 /* Nothing to do */
4302 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4303 !flags[0].incompat_flags)
4304 return 0;
4305
4306 ret = check_feature(fs_info, flags[0].compat_flags,
4307 flags[1].compat_flags, COMPAT);
4308 if (ret)
4309 return ret;
4310
4311 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4312 flags[1].compat_ro_flags, COMPAT_RO);
4313 if (ret)
4314 return ret;
4315
4316 ret = check_feature(fs_info, flags[0].incompat_flags,
4317 flags[1].incompat_flags, INCOMPAT);
4318 if (ret)
4319 return ret;
4320
4321 ret = mnt_want_write_file(file);
4322 if (ret)
4323 return ret;
4324
4325 trans = btrfs_start_transaction(root, 0);
4326 if (IS_ERR(trans)) {
4327 ret = PTR_ERR(trans);
4328 goto out_drop_write;
4329 }
4330
4331 spin_lock(&fs_info->super_lock);
4332 newflags = btrfs_super_compat_flags(super_block);
4333 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4334 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4335 btrfs_set_super_compat_flags(super_block, newflags);
4336
4337 newflags = btrfs_super_compat_ro_flags(super_block);
4338 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4339 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4340 btrfs_set_super_compat_ro_flags(super_block, newflags);
4341
4342 newflags = btrfs_super_incompat_flags(super_block);
4343 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4344 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4345 btrfs_set_super_incompat_flags(super_block, newflags);
4346 spin_unlock(&fs_info->super_lock);
4347
4348 ret = btrfs_commit_transaction(trans);
4349 out_drop_write:
4350 mnt_drop_write_file(file);
4351
4352 return ret;
4353 }
4354
_btrfs_ioctl_send(struct inode * inode,void __user * argp,bool compat)4355 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4356 {
4357 struct btrfs_ioctl_send_args *arg;
4358 int ret;
4359
4360 if (compat) {
4361 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4362 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4363
4364 ret = copy_from_user(&args32, argp, sizeof(args32));
4365 if (ret)
4366 return -EFAULT;
4367 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4368 if (!arg)
4369 return -ENOMEM;
4370 arg->send_fd = args32.send_fd;
4371 arg->clone_sources_count = args32.clone_sources_count;
4372 arg->clone_sources = compat_ptr(args32.clone_sources);
4373 arg->parent_root = args32.parent_root;
4374 arg->flags = args32.flags;
4375 arg->version = args32.version;
4376 memcpy(arg->reserved, args32.reserved,
4377 sizeof(args32.reserved));
4378 #else
4379 return -ENOTTY;
4380 #endif
4381 } else {
4382 arg = memdup_user(argp, sizeof(*arg));
4383 if (IS_ERR(arg))
4384 return PTR_ERR(arg);
4385 }
4386 ret = btrfs_ioctl_send(inode, arg);
4387 kfree(arg);
4388 return ret;
4389 }
4390
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)4391 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4392 bool compat)
4393 {
4394 struct btrfs_ioctl_encoded_io_args args = { 0 };
4395 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4396 flags);
4397 size_t copy_end;
4398 struct iovec iovstack[UIO_FASTIOV];
4399 struct iovec *iov = iovstack;
4400 struct iov_iter iter;
4401 loff_t pos;
4402 struct kiocb kiocb;
4403 ssize_t ret;
4404
4405 if (!capable(CAP_SYS_ADMIN)) {
4406 ret = -EPERM;
4407 goto out_acct;
4408 }
4409
4410 if (compat) {
4411 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4412 struct btrfs_ioctl_encoded_io_args_32 args32;
4413
4414 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4415 flags);
4416 if (copy_from_user(&args32, argp, copy_end)) {
4417 ret = -EFAULT;
4418 goto out_acct;
4419 }
4420 args.iov = compat_ptr(args32.iov);
4421 args.iovcnt = args32.iovcnt;
4422 args.offset = args32.offset;
4423 args.flags = args32.flags;
4424 #else
4425 return -ENOTTY;
4426 #endif
4427 } else {
4428 copy_end = copy_end_kernel;
4429 if (copy_from_user(&args, argp, copy_end)) {
4430 ret = -EFAULT;
4431 goto out_acct;
4432 }
4433 }
4434 if (args.flags != 0) {
4435 ret = -EINVAL;
4436 goto out_acct;
4437 }
4438
4439 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4440 &iov, &iter);
4441 if (ret < 0)
4442 goto out_acct;
4443
4444 if (iov_iter_count(&iter) == 0) {
4445 ret = 0;
4446 goto out_iov;
4447 }
4448 pos = args.offset;
4449 ret = rw_verify_area(READ, file, &pos, args.len);
4450 if (ret < 0)
4451 goto out_iov;
4452
4453 init_sync_kiocb(&kiocb, file);
4454 kiocb.ki_pos = pos;
4455
4456 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4457 if (ret >= 0) {
4458 fsnotify_access(file);
4459 if (copy_to_user(argp + copy_end,
4460 (char *)&args + copy_end_kernel,
4461 sizeof(args) - copy_end_kernel))
4462 ret = -EFAULT;
4463 }
4464
4465 out_iov:
4466 kfree(iov);
4467 out_acct:
4468 if (ret > 0)
4469 add_rchar(current, ret);
4470 inc_syscr(current);
4471 return ret;
4472 }
4473
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)4474 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4475 {
4476 struct btrfs_ioctl_encoded_io_args args;
4477 struct iovec iovstack[UIO_FASTIOV];
4478 struct iovec *iov = iovstack;
4479 struct iov_iter iter;
4480 loff_t pos;
4481 struct kiocb kiocb;
4482 ssize_t ret;
4483
4484 if (!capable(CAP_SYS_ADMIN)) {
4485 ret = -EPERM;
4486 goto out_acct;
4487 }
4488
4489 if (!(file->f_mode & FMODE_WRITE)) {
4490 ret = -EBADF;
4491 goto out_acct;
4492 }
4493
4494 if (compat) {
4495 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4496 struct btrfs_ioctl_encoded_io_args_32 args32;
4497
4498 if (copy_from_user(&args32, argp, sizeof(args32))) {
4499 ret = -EFAULT;
4500 goto out_acct;
4501 }
4502 args.iov = compat_ptr(args32.iov);
4503 args.iovcnt = args32.iovcnt;
4504 args.offset = args32.offset;
4505 args.flags = args32.flags;
4506 args.len = args32.len;
4507 args.unencoded_len = args32.unencoded_len;
4508 args.unencoded_offset = args32.unencoded_offset;
4509 args.compression = args32.compression;
4510 args.encryption = args32.encryption;
4511 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4512 #else
4513 return -ENOTTY;
4514 #endif
4515 } else {
4516 if (copy_from_user(&args, argp, sizeof(args))) {
4517 ret = -EFAULT;
4518 goto out_acct;
4519 }
4520 }
4521
4522 ret = -EINVAL;
4523 if (args.flags != 0)
4524 goto out_acct;
4525 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4526 goto out_acct;
4527 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4528 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4529 goto out_acct;
4530 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4531 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4532 goto out_acct;
4533 if (args.unencoded_offset > args.unencoded_len)
4534 goto out_acct;
4535 if (args.len > args.unencoded_len - args.unencoded_offset)
4536 goto out_acct;
4537
4538 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4539 &iov, &iter);
4540 if (ret < 0)
4541 goto out_acct;
4542
4543 file_start_write(file);
4544
4545 if (iov_iter_count(&iter) == 0) {
4546 ret = 0;
4547 goto out_end_write;
4548 }
4549 pos = args.offset;
4550 ret = rw_verify_area(WRITE, file, &pos, args.len);
4551 if (ret < 0)
4552 goto out_end_write;
4553
4554 init_sync_kiocb(&kiocb, file);
4555 ret = kiocb_set_rw_flags(&kiocb, 0);
4556 if (ret)
4557 goto out_end_write;
4558 kiocb.ki_pos = pos;
4559
4560 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4561 if (ret > 0)
4562 fsnotify_modify(file);
4563
4564 out_end_write:
4565 file_end_write(file);
4566 kfree(iov);
4567 out_acct:
4568 if (ret > 0)
4569 add_wchar(current, ret);
4570 inc_syscw(current);
4571 return ret;
4572 }
4573
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4574 long btrfs_ioctl(struct file *file, unsigned int
4575 cmd, unsigned long arg)
4576 {
4577 struct inode *inode = file_inode(file);
4578 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4579 struct btrfs_root *root = BTRFS_I(inode)->root;
4580 void __user *argp = (void __user *)arg;
4581
4582 switch (cmd) {
4583 case FS_IOC_GETVERSION:
4584 return btrfs_ioctl_getversion(inode, argp);
4585 case FS_IOC_GETFSLABEL:
4586 return btrfs_ioctl_get_fslabel(fs_info, argp);
4587 case FS_IOC_SETFSLABEL:
4588 return btrfs_ioctl_set_fslabel(file, argp);
4589 case FITRIM:
4590 return btrfs_ioctl_fitrim(fs_info, argp);
4591 case BTRFS_IOC_SNAP_CREATE:
4592 return btrfs_ioctl_snap_create(file, argp, 0);
4593 case BTRFS_IOC_SNAP_CREATE_V2:
4594 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4595 case BTRFS_IOC_SUBVOL_CREATE:
4596 return btrfs_ioctl_snap_create(file, argp, 1);
4597 case BTRFS_IOC_SUBVOL_CREATE_V2:
4598 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4599 case BTRFS_IOC_SNAP_DESTROY:
4600 return btrfs_ioctl_snap_destroy(file, argp, false);
4601 case BTRFS_IOC_SNAP_DESTROY_V2:
4602 return btrfs_ioctl_snap_destroy(file, argp, true);
4603 case BTRFS_IOC_SUBVOL_GETFLAGS:
4604 return btrfs_ioctl_subvol_getflags(inode, argp);
4605 case BTRFS_IOC_SUBVOL_SETFLAGS:
4606 return btrfs_ioctl_subvol_setflags(file, argp);
4607 case BTRFS_IOC_DEFAULT_SUBVOL:
4608 return btrfs_ioctl_default_subvol(file, argp);
4609 case BTRFS_IOC_DEFRAG:
4610 return btrfs_ioctl_defrag(file, NULL);
4611 case BTRFS_IOC_DEFRAG_RANGE:
4612 return btrfs_ioctl_defrag(file, argp);
4613 case BTRFS_IOC_RESIZE:
4614 return btrfs_ioctl_resize(file, argp);
4615 case BTRFS_IOC_ADD_DEV:
4616 return btrfs_ioctl_add_dev(fs_info, argp);
4617 case BTRFS_IOC_RM_DEV:
4618 return btrfs_ioctl_rm_dev(file, argp);
4619 case BTRFS_IOC_RM_DEV_V2:
4620 return btrfs_ioctl_rm_dev_v2(file, argp);
4621 case BTRFS_IOC_FS_INFO:
4622 return btrfs_ioctl_fs_info(fs_info, argp);
4623 case BTRFS_IOC_DEV_INFO:
4624 return btrfs_ioctl_dev_info(fs_info, argp);
4625 case BTRFS_IOC_TREE_SEARCH:
4626 return btrfs_ioctl_tree_search(inode, argp);
4627 case BTRFS_IOC_TREE_SEARCH_V2:
4628 return btrfs_ioctl_tree_search_v2(inode, argp);
4629 case BTRFS_IOC_INO_LOOKUP:
4630 return btrfs_ioctl_ino_lookup(root, argp);
4631 case BTRFS_IOC_INO_PATHS:
4632 return btrfs_ioctl_ino_to_path(root, argp);
4633 case BTRFS_IOC_LOGICAL_INO:
4634 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4635 case BTRFS_IOC_LOGICAL_INO_V2:
4636 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4637 case BTRFS_IOC_SPACE_INFO:
4638 return btrfs_ioctl_space_info(fs_info, argp);
4639 case BTRFS_IOC_SYNC: {
4640 int ret;
4641
4642 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4643 if (ret)
4644 return ret;
4645 ret = btrfs_sync_fs(inode->i_sb, 1);
4646 /*
4647 * The transaction thread may want to do more work,
4648 * namely it pokes the cleaner kthread that will start
4649 * processing uncleaned subvols.
4650 */
4651 wake_up_process(fs_info->transaction_kthread);
4652 return ret;
4653 }
4654 case BTRFS_IOC_START_SYNC:
4655 return btrfs_ioctl_start_sync(root, argp);
4656 case BTRFS_IOC_WAIT_SYNC:
4657 return btrfs_ioctl_wait_sync(fs_info, argp);
4658 case BTRFS_IOC_SCRUB:
4659 return btrfs_ioctl_scrub(file, argp);
4660 case BTRFS_IOC_SCRUB_CANCEL:
4661 return btrfs_ioctl_scrub_cancel(fs_info);
4662 case BTRFS_IOC_SCRUB_PROGRESS:
4663 return btrfs_ioctl_scrub_progress(fs_info, argp);
4664 case BTRFS_IOC_BALANCE_V2:
4665 return btrfs_ioctl_balance(file, argp);
4666 case BTRFS_IOC_BALANCE_CTL:
4667 return btrfs_ioctl_balance_ctl(fs_info, arg);
4668 case BTRFS_IOC_BALANCE_PROGRESS:
4669 return btrfs_ioctl_balance_progress(fs_info, argp);
4670 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4671 return btrfs_ioctl_set_received_subvol(file, argp);
4672 #ifdef CONFIG_64BIT
4673 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4674 return btrfs_ioctl_set_received_subvol_32(file, argp);
4675 #endif
4676 case BTRFS_IOC_SEND:
4677 return _btrfs_ioctl_send(inode, argp, false);
4678 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4679 case BTRFS_IOC_SEND_32:
4680 return _btrfs_ioctl_send(inode, argp, true);
4681 #endif
4682 case BTRFS_IOC_GET_DEV_STATS:
4683 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4684 case BTRFS_IOC_QUOTA_CTL:
4685 return btrfs_ioctl_quota_ctl(file, argp);
4686 case BTRFS_IOC_QGROUP_ASSIGN:
4687 return btrfs_ioctl_qgroup_assign(file, argp);
4688 case BTRFS_IOC_QGROUP_CREATE:
4689 return btrfs_ioctl_qgroup_create(file, argp);
4690 case BTRFS_IOC_QGROUP_LIMIT:
4691 return btrfs_ioctl_qgroup_limit(file, argp);
4692 case BTRFS_IOC_QUOTA_RESCAN:
4693 return btrfs_ioctl_quota_rescan(file, argp);
4694 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4695 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4696 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4697 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4698 case BTRFS_IOC_DEV_REPLACE:
4699 return btrfs_ioctl_dev_replace(fs_info, argp);
4700 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4701 return btrfs_ioctl_get_supported_features(argp);
4702 case BTRFS_IOC_GET_FEATURES:
4703 return btrfs_ioctl_get_features(fs_info, argp);
4704 case BTRFS_IOC_SET_FEATURES:
4705 return btrfs_ioctl_set_features(file, argp);
4706 case BTRFS_IOC_GET_SUBVOL_INFO:
4707 return btrfs_ioctl_get_subvol_info(inode, argp);
4708 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4709 return btrfs_ioctl_get_subvol_rootref(root, argp);
4710 case BTRFS_IOC_INO_LOOKUP_USER:
4711 return btrfs_ioctl_ino_lookup_user(file, argp);
4712 case FS_IOC_ENABLE_VERITY:
4713 return fsverity_ioctl_enable(file, (const void __user *)argp);
4714 case FS_IOC_MEASURE_VERITY:
4715 return fsverity_ioctl_measure(file, argp);
4716 case BTRFS_IOC_ENCODED_READ:
4717 return btrfs_ioctl_encoded_read(file, argp, false);
4718 case BTRFS_IOC_ENCODED_WRITE:
4719 return btrfs_ioctl_encoded_write(file, argp, false);
4720 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4721 case BTRFS_IOC_ENCODED_READ_32:
4722 return btrfs_ioctl_encoded_read(file, argp, true);
4723 case BTRFS_IOC_ENCODED_WRITE_32:
4724 return btrfs_ioctl_encoded_write(file, argp, true);
4725 #endif
4726 }
4727
4728 return -ENOTTY;
4729 }
4730
4731 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4732 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4733 {
4734 /*
4735 * These all access 32-bit values anyway so no further
4736 * handling is necessary.
4737 */
4738 switch (cmd) {
4739 case FS_IOC32_GETVERSION:
4740 cmd = FS_IOC_GETVERSION;
4741 break;
4742 }
4743
4744 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4745 }
4746 #endif
4747