1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/err.h>
7 #include <linux/uuid.h>
8 #include "ctree.h"
9 #include "transaction.h"
10 #include "disk-io.h"
11 #include "print-tree.h"
12 #include "qgroup.h"
13 #include "space-info.h"
14
15 /*
16 * Read a root item from the tree. In case we detect a root item smaller then
17 * sizeof(root_item), we know it's an old version of the root structure and
18 * initialize all new fields to zero. The same happens if we detect mismatching
19 * generation numbers as then we know the root was once mounted with an older
20 * kernel that was not aware of the root item structure change.
21 */
btrfs_read_root_item(struct extent_buffer * eb,int slot,struct btrfs_root_item * item)22 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
23 struct btrfs_root_item *item)
24 {
25 u32 len;
26 int need_reset = 0;
27
28 len = btrfs_item_size(eb, slot);
29 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
30 min_t(u32, len, sizeof(*item)));
31 if (len < sizeof(*item))
32 need_reset = 1;
33 if (!need_reset && btrfs_root_generation(item)
34 != btrfs_root_generation_v2(item)) {
35 if (btrfs_root_generation_v2(item) != 0) {
36 btrfs_warn(eb->fs_info,
37 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
38 }
39 need_reset = 1;
40 }
41 if (need_reset) {
42 /* Clear all members from generation_v2 onwards. */
43 memset_startat(item, 0, generation_v2);
44 generate_random_guid(item->uuid);
45 }
46 }
47
48 /*
49 * btrfs_find_root - lookup the root by the key.
50 * root: the root of the root tree
51 * search_key: the key to search
52 * path: the path we search
53 * root_item: the root item of the tree we look for
54 * root_key: the root key of the tree we look for
55 *
56 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
57 * of the search key, just lookup the root with the highest offset for a
58 * given objectid.
59 *
60 * If we find something return 0, otherwise > 0, < 0 on error.
61 */
btrfs_find_root(struct btrfs_root * root,const struct btrfs_key * search_key,struct btrfs_path * path,struct btrfs_root_item * root_item,struct btrfs_key * root_key)62 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
63 struct btrfs_path *path, struct btrfs_root_item *root_item,
64 struct btrfs_key *root_key)
65 {
66 struct btrfs_key found_key;
67 struct extent_buffer *l;
68 int ret;
69 int slot;
70
71 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
72 if (ret < 0)
73 return ret;
74
75 if (search_key->offset != -1ULL) { /* the search key is exact */
76 if (ret > 0)
77 goto out;
78 } else {
79 BUG_ON(ret == 0); /* Logical error */
80 if (path->slots[0] == 0)
81 goto out;
82 path->slots[0]--;
83 ret = 0;
84 }
85
86 l = path->nodes[0];
87 slot = path->slots[0];
88
89 btrfs_item_key_to_cpu(l, &found_key, slot);
90 if (found_key.objectid != search_key->objectid ||
91 found_key.type != BTRFS_ROOT_ITEM_KEY) {
92 ret = 1;
93 goto out;
94 }
95
96 if (root_item)
97 btrfs_read_root_item(l, slot, root_item);
98 if (root_key)
99 memcpy(root_key, &found_key, sizeof(found_key));
100 out:
101 btrfs_release_path(path);
102 return ret;
103 }
104
btrfs_set_root_node(struct btrfs_root_item * item,struct extent_buffer * node)105 void btrfs_set_root_node(struct btrfs_root_item *item,
106 struct extent_buffer *node)
107 {
108 btrfs_set_root_bytenr(item, node->start);
109 btrfs_set_root_level(item, btrfs_header_level(node));
110 btrfs_set_root_generation(item, btrfs_header_generation(node));
111 }
112
113 /*
114 * copy the data in 'item' into the btree
115 */
btrfs_update_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_root_item * item)116 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
117 *root, struct btrfs_key *key, struct btrfs_root_item
118 *item)
119 {
120 struct btrfs_fs_info *fs_info = root->fs_info;
121 struct btrfs_path *path;
122 struct extent_buffer *l;
123 int ret;
124 int slot;
125 unsigned long ptr;
126 u32 old_len;
127
128 path = btrfs_alloc_path();
129 if (!path)
130 return -ENOMEM;
131
132 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
133 if (ret < 0)
134 goto out;
135
136 if (ret > 0) {
137 btrfs_crit(fs_info,
138 "unable to find root key (%llu %u %llu) in tree %llu",
139 key->objectid, key->type, key->offset,
140 root->root_key.objectid);
141 ret = -EUCLEAN;
142 btrfs_abort_transaction(trans, ret);
143 goto out;
144 }
145
146 l = path->nodes[0];
147 slot = path->slots[0];
148 ptr = btrfs_item_ptr_offset(l, slot);
149 old_len = btrfs_item_size(l, slot);
150
151 /*
152 * If this is the first time we update the root item which originated
153 * from an older kernel, we need to enlarge the item size to make room
154 * for the added fields.
155 */
156 if (old_len < sizeof(*item)) {
157 btrfs_release_path(path);
158 ret = btrfs_search_slot(trans, root, key, path,
159 -1, 1);
160 if (ret < 0) {
161 btrfs_abort_transaction(trans, ret);
162 goto out;
163 }
164
165 ret = btrfs_del_item(trans, root, path);
166 if (ret < 0) {
167 btrfs_abort_transaction(trans, ret);
168 goto out;
169 }
170 btrfs_release_path(path);
171 ret = btrfs_insert_empty_item(trans, root, path,
172 key, sizeof(*item));
173 if (ret < 0) {
174 btrfs_abort_transaction(trans, ret);
175 goto out;
176 }
177 l = path->nodes[0];
178 slot = path->slots[0];
179 ptr = btrfs_item_ptr_offset(l, slot);
180 }
181
182 /*
183 * Update generation_v2 so at the next mount we know the new root
184 * fields are valid.
185 */
186 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
187
188 write_extent_buffer(l, item, ptr, sizeof(*item));
189 btrfs_mark_buffer_dirty(path->nodes[0]);
190 out:
191 btrfs_free_path(path);
192 return ret;
193 }
194
btrfs_insert_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_root_item * item)195 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
196 const struct btrfs_key *key, struct btrfs_root_item *item)
197 {
198 /*
199 * Make sure generation v1 and v2 match. See update_root for details.
200 */
201 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
202 return btrfs_insert_item(trans, root, key, item, sizeof(*item));
203 }
204
btrfs_find_orphan_roots(struct btrfs_fs_info * fs_info)205 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
206 {
207 struct btrfs_root *tree_root = fs_info->tree_root;
208 struct extent_buffer *leaf;
209 struct btrfs_path *path;
210 struct btrfs_key key;
211 struct btrfs_root *root;
212 int err = 0;
213 int ret;
214
215 path = btrfs_alloc_path();
216 if (!path)
217 return -ENOMEM;
218
219 key.objectid = BTRFS_ORPHAN_OBJECTID;
220 key.type = BTRFS_ORPHAN_ITEM_KEY;
221 key.offset = 0;
222
223 while (1) {
224 u64 root_objectid;
225
226 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
227 if (ret < 0) {
228 err = ret;
229 break;
230 }
231
232 leaf = path->nodes[0];
233 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
234 ret = btrfs_next_leaf(tree_root, path);
235 if (ret < 0)
236 err = ret;
237 if (ret != 0)
238 break;
239 leaf = path->nodes[0];
240 }
241
242 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
243 btrfs_release_path(path);
244
245 if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
246 key.type != BTRFS_ORPHAN_ITEM_KEY)
247 break;
248
249 root_objectid = key.offset;
250 key.offset++;
251
252 root = btrfs_get_fs_root(fs_info, root_objectid, false);
253 err = PTR_ERR_OR_ZERO(root);
254 if (err && err != -ENOENT) {
255 break;
256 } else if (err == -ENOENT) {
257 struct btrfs_trans_handle *trans;
258
259 btrfs_release_path(path);
260
261 trans = btrfs_join_transaction(tree_root);
262 if (IS_ERR(trans)) {
263 err = PTR_ERR(trans);
264 btrfs_handle_fs_error(fs_info, err,
265 "Failed to start trans to delete orphan item");
266 break;
267 }
268 err = btrfs_del_orphan_item(trans, tree_root,
269 root_objectid);
270 btrfs_end_transaction(trans);
271 if (err) {
272 btrfs_handle_fs_error(fs_info, err,
273 "Failed to delete root orphan item");
274 break;
275 }
276 continue;
277 }
278
279 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
280 if (btrfs_root_refs(&root->root_item) == 0) {
281 struct btrfs_key drop_key;
282
283 btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
284 /*
285 * If we have a non-zero drop_progress then we know we
286 * made it partly through deleting this snapshot, and
287 * thus we need to make sure we block any balance from
288 * happening until this snapshot is completely dropped.
289 */
290 if (drop_key.objectid != 0 || drop_key.type != 0 ||
291 drop_key.offset != 0) {
292 set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
293 set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
294 }
295
296 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
297 btrfs_add_dead_root(root);
298 }
299 btrfs_put_root(root);
300 }
301
302 btrfs_free_path(path);
303 return err;
304 }
305
306 /* drop the root item for 'key' from the tree root */
btrfs_del_root(struct btrfs_trans_handle * trans,const struct btrfs_key * key)307 int btrfs_del_root(struct btrfs_trans_handle *trans,
308 const struct btrfs_key *key)
309 {
310 struct btrfs_root *root = trans->fs_info->tree_root;
311 struct btrfs_path *path;
312 int ret;
313
314 path = btrfs_alloc_path();
315 if (!path)
316 return -ENOMEM;
317 ret = btrfs_search_slot(trans, root, key, path, -1, 1);
318 if (ret < 0)
319 goto out;
320
321 BUG_ON(ret != 0);
322
323 ret = btrfs_del_item(trans, root, path);
324 out:
325 btrfs_free_path(path);
326 return ret;
327 }
328
btrfs_del_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 * sequence,const char * name,int name_len)329 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
330 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
331 int name_len)
332
333 {
334 struct btrfs_root *tree_root = trans->fs_info->tree_root;
335 struct btrfs_path *path;
336 struct btrfs_root_ref *ref;
337 struct extent_buffer *leaf;
338 struct btrfs_key key;
339 unsigned long ptr;
340 int err = 0;
341 int ret;
342
343 path = btrfs_alloc_path();
344 if (!path)
345 return -ENOMEM;
346
347 key.objectid = root_id;
348 key.type = BTRFS_ROOT_BACKREF_KEY;
349 key.offset = ref_id;
350 again:
351 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
352 if (ret < 0) {
353 err = ret;
354 goto out;
355 } else if (ret == 0) {
356 leaf = path->nodes[0];
357 ref = btrfs_item_ptr(leaf, path->slots[0],
358 struct btrfs_root_ref);
359 ptr = (unsigned long)(ref + 1);
360 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
361 (btrfs_root_ref_name_len(leaf, ref) != name_len) ||
362 memcmp_extent_buffer(leaf, name, ptr, name_len)) {
363 err = -ENOENT;
364 goto out;
365 }
366 *sequence = btrfs_root_ref_sequence(leaf, ref);
367
368 ret = btrfs_del_item(trans, tree_root, path);
369 if (ret) {
370 err = ret;
371 goto out;
372 }
373 } else
374 err = -ENOENT;
375
376 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
377 btrfs_release_path(path);
378 key.objectid = ref_id;
379 key.type = BTRFS_ROOT_REF_KEY;
380 key.offset = root_id;
381 goto again;
382 }
383
384 out:
385 btrfs_free_path(path);
386 return err;
387 }
388
389 /*
390 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
391 * or BTRFS_ROOT_BACKREF_KEY.
392 *
393 * The dirid, sequence, name and name_len refer to the directory entry
394 * that is referencing the root.
395 *
396 * For a forward ref, the root_id is the id of the tree referencing
397 * the root and ref_id is the id of the subvol or snapshot.
398 *
399 * For a back ref the root_id is the id of the subvol or snapshot and
400 * ref_id is the id of the tree referencing it.
401 *
402 * Will return 0, -ENOMEM, or anything from the CoW path
403 */
btrfs_add_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 sequence,const char * name,int name_len)404 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
405 u64 ref_id, u64 dirid, u64 sequence, const char *name,
406 int name_len)
407 {
408 struct btrfs_root *tree_root = trans->fs_info->tree_root;
409 struct btrfs_key key;
410 int ret;
411 struct btrfs_path *path;
412 struct btrfs_root_ref *ref;
413 struct extent_buffer *leaf;
414 unsigned long ptr;
415
416 path = btrfs_alloc_path();
417 if (!path)
418 return -ENOMEM;
419
420 key.objectid = root_id;
421 key.type = BTRFS_ROOT_BACKREF_KEY;
422 key.offset = ref_id;
423 again:
424 ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
425 sizeof(*ref) + name_len);
426 if (ret) {
427 btrfs_abort_transaction(trans, ret);
428 btrfs_free_path(path);
429 return ret;
430 }
431
432 leaf = path->nodes[0];
433 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
434 btrfs_set_root_ref_dirid(leaf, ref, dirid);
435 btrfs_set_root_ref_sequence(leaf, ref, sequence);
436 btrfs_set_root_ref_name_len(leaf, ref, name_len);
437 ptr = (unsigned long)(ref + 1);
438 write_extent_buffer(leaf, name, ptr, name_len);
439 btrfs_mark_buffer_dirty(leaf);
440
441 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
442 btrfs_release_path(path);
443 key.objectid = ref_id;
444 key.type = BTRFS_ROOT_REF_KEY;
445 key.offset = root_id;
446 goto again;
447 }
448
449 btrfs_free_path(path);
450 return 0;
451 }
452
453 /*
454 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
455 * for subvolumes. To work around this problem, we steal a bit from
456 * root_item->inode_item->flags, and use it to indicate if those fields
457 * have been properly initialized.
458 */
btrfs_check_and_init_root_item(struct btrfs_root_item * root_item)459 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
460 {
461 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
462
463 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
464 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
465 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
466 btrfs_set_root_flags(root_item, 0);
467 btrfs_set_root_limit(root_item, 0);
468 }
469 }
470
btrfs_update_root_times(struct btrfs_trans_handle * trans,struct btrfs_root * root)471 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
472 struct btrfs_root *root)
473 {
474 struct btrfs_root_item *item = &root->root_item;
475 struct timespec64 ct;
476
477 ktime_get_real_ts64(&ct);
478 spin_lock(&root->root_item_lock);
479 btrfs_set_root_ctransid(item, trans->transid);
480 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
481 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
482 spin_unlock(&root->root_item_lock);
483 }
484
485 /*
486 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
487 * root: the root of the parent directory
488 * rsv: block reservation
489 * items: the number of items that we need do reservation
490 * use_global_rsv: allow fallback to the global block reservation
491 *
492 * This function is used to reserve the space for snapshot/subvolume
493 * creation and deletion. Those operations are different with the
494 * common file/directory operations, they change two fs/file trees
495 * and root tree, the number of items that the qgroup reserves is
496 * different with the free space reservation. So we can not use
497 * the space reservation mechanism in start_transaction().
498 */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,bool use_global_rsv)499 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
500 struct btrfs_block_rsv *rsv, int items,
501 bool use_global_rsv)
502 {
503 u64 qgroup_num_bytes = 0;
504 u64 num_bytes;
505 int ret;
506 struct btrfs_fs_info *fs_info = root->fs_info;
507 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
508
509 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
510 /* One for parent inode, two for dir entries */
511 qgroup_num_bytes = 3 * fs_info->nodesize;
512 ret = btrfs_qgroup_reserve_meta_prealloc(root,
513 qgroup_num_bytes, true,
514 false);
515 if (ret)
516 return ret;
517 }
518
519 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
520 rsv->space_info = btrfs_find_space_info(fs_info,
521 BTRFS_BLOCK_GROUP_METADATA);
522 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
523 BTRFS_RESERVE_FLUSH_ALL);
524
525 if (ret == -ENOSPC && use_global_rsv)
526 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
527
528 if (ret && qgroup_num_bytes)
529 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
530
531 if (!ret) {
532 spin_lock(&rsv->lock);
533 rsv->qgroup_rsv_reserved += qgroup_num_bytes;
534 spin_unlock(&rsv->lock);
535 }
536 return ret;
537 }
538
btrfs_subvolume_release_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv)539 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
540 struct btrfs_block_rsv *rsv)
541 {
542 struct btrfs_fs_info *fs_info = root->fs_info;
543 u64 qgroup_to_release;
544
545 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
546 btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
547 }
548