1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include "ctree.h"
20 #include "transaction.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 
24 /*
25  * lookup the root with the highest offset for a given objectid.  The key we do
26  * find is copied into 'key'.  If we find something return 0, otherwise 1, < 0
27  * on error.
28  */
btrfs_find_last_root(struct btrfs_root * root,u64 objectid,struct btrfs_root_item * item,struct btrfs_key * key)29 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid,
30 			struct btrfs_root_item *item, struct btrfs_key *key)
31 {
32 	struct btrfs_path *path;
33 	struct btrfs_key search_key;
34 	struct btrfs_key found_key;
35 	struct extent_buffer *l;
36 	int ret;
37 	int slot;
38 
39 	search_key.objectid = objectid;
40 	search_key.type = BTRFS_ROOT_ITEM_KEY;
41 	search_key.offset = (u64)-1;
42 
43 	path = btrfs_alloc_path();
44 	if (!path)
45 		return -ENOMEM;
46 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
47 	if (ret < 0)
48 		goto out;
49 
50 	BUG_ON(ret == 0);
51 	if (path->slots[0] == 0) {
52 		ret = 1;
53 		goto out;
54 	}
55 	l = path->nodes[0];
56 	slot = path->slots[0] - 1;
57 	btrfs_item_key_to_cpu(l, &found_key, slot);
58 	if (found_key.objectid != objectid ||
59 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
60 		ret = 1;
61 		goto out;
62 	}
63 	if (item)
64 		read_extent_buffer(l, item, btrfs_item_ptr_offset(l, slot),
65 				   sizeof(*item));
66 	if (key)
67 		memcpy(key, &found_key, sizeof(found_key));
68 	ret = 0;
69 out:
70 	btrfs_free_path(path);
71 	return ret;
72 }
73 
btrfs_set_root_node(struct btrfs_root_item * item,struct extent_buffer * node)74 void btrfs_set_root_node(struct btrfs_root_item *item,
75 			 struct extent_buffer *node)
76 {
77 	btrfs_set_root_bytenr(item, node->start);
78 	btrfs_set_root_level(item, btrfs_header_level(node));
79 	btrfs_set_root_generation(item, btrfs_header_generation(node));
80 }
81 
82 /*
83  * copy the data in 'item' into the btree
84  */
btrfs_update_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_root_item * item)85 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
86 		      *root, struct btrfs_key *key, struct btrfs_root_item
87 		      *item)
88 {
89 	struct btrfs_path *path;
90 	struct extent_buffer *l;
91 	int ret;
92 	int slot;
93 	unsigned long ptr;
94 
95 	path = btrfs_alloc_path();
96 	if (!path)
97 		return -ENOMEM;
98 
99 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
100 	if (ret < 0) {
101 		btrfs_abort_transaction(trans, root, ret);
102 		goto out;
103 	}
104 
105 	if (ret != 0) {
106 		btrfs_print_leaf(root, path->nodes[0]);
107 		printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
108 		       (unsigned long long)key->objectid, key->type,
109 		       (unsigned long long)key->offset);
110 		BUG_ON(1);
111 	}
112 
113 	l = path->nodes[0];
114 	slot = path->slots[0];
115 	ptr = btrfs_item_ptr_offset(l, slot);
116 	write_extent_buffer(l, item, ptr, sizeof(*item));
117 	btrfs_mark_buffer_dirty(path->nodes[0]);
118 out:
119 	btrfs_free_path(path);
120 	return ret;
121 }
122 
btrfs_insert_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_root_item * item)123 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
124 		      struct btrfs_key *key, struct btrfs_root_item *item)
125 {
126 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
127 }
128 
129 /*
130  * at mount time we want to find all the old transaction snapshots that were in
131  * the process of being deleted if we crashed.  This is any root item with an
132  * offset lower than the latest root.  They need to be queued for deletion to
133  * finish what was happening when we crashed.
134  */
btrfs_find_dead_roots(struct btrfs_root * root,u64 objectid)135 int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid)
136 {
137 	struct btrfs_root *dead_root;
138 	struct btrfs_root_item *ri;
139 	struct btrfs_key key;
140 	struct btrfs_key found_key;
141 	struct btrfs_path *path;
142 	int ret;
143 	u32 nritems;
144 	struct extent_buffer *leaf;
145 	int slot;
146 
147 	key.objectid = objectid;
148 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
149 	key.offset = 0;
150 	path = btrfs_alloc_path();
151 	if (!path)
152 		return -ENOMEM;
153 
154 again:
155 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
156 	if (ret < 0)
157 		goto err;
158 	while (1) {
159 		leaf = path->nodes[0];
160 		nritems = btrfs_header_nritems(leaf);
161 		slot = path->slots[0];
162 		if (slot >= nritems) {
163 			ret = btrfs_next_leaf(root, path);
164 			if (ret)
165 				break;
166 			leaf = path->nodes[0];
167 			nritems = btrfs_header_nritems(leaf);
168 			slot = path->slots[0];
169 		}
170 		btrfs_item_key_to_cpu(leaf, &key, slot);
171 		if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY)
172 			goto next;
173 
174 		if (key.objectid < objectid)
175 			goto next;
176 
177 		if (key.objectid > objectid)
178 			break;
179 
180 		ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item);
181 		if (btrfs_disk_root_refs(leaf, ri) != 0)
182 			goto next;
183 
184 		memcpy(&found_key, &key, sizeof(key));
185 		key.offset++;
186 		btrfs_release_path(path);
187 		dead_root =
188 			btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
189 						    &found_key);
190 		if (IS_ERR(dead_root)) {
191 			ret = PTR_ERR(dead_root);
192 			goto err;
193 		}
194 
195 		ret = btrfs_add_dead_root(dead_root);
196 		if (ret)
197 			goto err;
198 		goto again;
199 next:
200 		slot++;
201 		path->slots[0]++;
202 	}
203 	ret = 0;
204 err:
205 	btrfs_free_path(path);
206 	return ret;
207 }
208 
btrfs_find_orphan_roots(struct btrfs_root * tree_root)209 int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
210 {
211 	struct extent_buffer *leaf;
212 	struct btrfs_path *path;
213 	struct btrfs_key key;
214 	struct btrfs_key root_key;
215 	struct btrfs_root *root;
216 	int err = 0;
217 	int ret;
218 
219 	path = btrfs_alloc_path();
220 	if (!path)
221 		return -ENOMEM;
222 
223 	key.objectid = BTRFS_ORPHAN_OBJECTID;
224 	key.type = BTRFS_ORPHAN_ITEM_KEY;
225 	key.offset = 0;
226 
227 	root_key.type = BTRFS_ROOT_ITEM_KEY;
228 	root_key.offset = (u64)-1;
229 
230 	while (1) {
231 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
232 		if (ret < 0) {
233 			err = ret;
234 			break;
235 		}
236 
237 		leaf = path->nodes[0];
238 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
239 			ret = btrfs_next_leaf(tree_root, path);
240 			if (ret < 0)
241 				err = ret;
242 			if (ret != 0)
243 				break;
244 			leaf = path->nodes[0];
245 		}
246 
247 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
248 		btrfs_release_path(path);
249 
250 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
251 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
252 			break;
253 
254 		root_key.objectid = key.offset;
255 		key.offset++;
256 
257 		root = btrfs_read_fs_root_no_name(tree_root->fs_info,
258 						  &root_key);
259 		if (!IS_ERR(root))
260 			continue;
261 
262 		ret = PTR_ERR(root);
263 		if (ret != -ENOENT) {
264 			err = ret;
265 			break;
266 		}
267 
268 		ret = btrfs_find_dead_roots(tree_root, root_key.objectid);
269 		if (ret) {
270 			err = ret;
271 			break;
272 		}
273 	}
274 
275 	btrfs_free_path(path);
276 	return err;
277 }
278 
279 /* drop the root item for 'key' from 'root' */
btrfs_del_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key)280 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
281 		   struct btrfs_key *key)
282 {
283 	struct btrfs_path *path;
284 	int ret;
285 	struct btrfs_root_item *ri;
286 	struct extent_buffer *leaf;
287 
288 	path = btrfs_alloc_path();
289 	if (!path)
290 		return -ENOMEM;
291 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
292 	if (ret < 0)
293 		goto out;
294 
295 	BUG_ON(ret != 0);
296 	leaf = path->nodes[0];
297 	ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item);
298 
299 	ret = btrfs_del_item(trans, root, path);
300 out:
301 	btrfs_free_path(path);
302 	return ret;
303 }
304 
btrfs_del_root_ref(struct btrfs_trans_handle * trans,struct btrfs_root * tree_root,u64 root_id,u64 ref_id,u64 dirid,u64 * sequence,const char * name,int name_len)305 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
306 		       struct btrfs_root *tree_root,
307 		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
308 		       const char *name, int name_len)
309 
310 {
311 	struct btrfs_path *path;
312 	struct btrfs_root_ref *ref;
313 	struct extent_buffer *leaf;
314 	struct btrfs_key key;
315 	unsigned long ptr;
316 	int err = 0;
317 	int ret;
318 
319 	path = btrfs_alloc_path();
320 	if (!path)
321 		return -ENOMEM;
322 
323 	key.objectid = root_id;
324 	key.type = BTRFS_ROOT_BACKREF_KEY;
325 	key.offset = ref_id;
326 again:
327 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
328 	BUG_ON(ret < 0);
329 	if (ret == 0) {
330 		leaf = path->nodes[0];
331 		ref = btrfs_item_ptr(leaf, path->slots[0],
332 				     struct btrfs_root_ref);
333 
334 		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
335 		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
336 		ptr = (unsigned long)(ref + 1);
337 		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
338 		*sequence = btrfs_root_ref_sequence(leaf, ref);
339 
340 		ret = btrfs_del_item(trans, tree_root, path);
341 		if (ret) {
342 			err = ret;
343 			goto out;
344 		}
345 	} else
346 		err = -ENOENT;
347 
348 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
349 		btrfs_release_path(path);
350 		key.objectid = ref_id;
351 		key.type = BTRFS_ROOT_REF_KEY;
352 		key.offset = root_id;
353 		goto again;
354 	}
355 
356 out:
357 	btrfs_free_path(path);
358 	return err;
359 }
360 
btrfs_find_root_ref(struct btrfs_root * tree_root,struct btrfs_path * path,u64 root_id,u64 ref_id)361 int btrfs_find_root_ref(struct btrfs_root *tree_root,
362 		   struct btrfs_path *path,
363 		   u64 root_id, u64 ref_id)
364 {
365 	struct btrfs_key key;
366 	int ret;
367 
368 	key.objectid = root_id;
369 	key.type = BTRFS_ROOT_REF_KEY;
370 	key.offset = ref_id;
371 
372 	ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
373 	return ret;
374 }
375 
376 /*
377  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
378  * or BTRFS_ROOT_BACKREF_KEY.
379  *
380  * The dirid, sequence, name and name_len refer to the directory entry
381  * that is referencing the root.
382  *
383  * For a forward ref, the root_id is the id of the tree referencing
384  * the root and ref_id is the id of the subvol  or snapshot.
385  *
386  * For a back ref the root_id is the id of the subvol or snapshot and
387  * ref_id is the id of the tree referencing it.
388  *
389  * Will return 0, -ENOMEM, or anything from the CoW path
390  */
btrfs_add_root_ref(struct btrfs_trans_handle * trans,struct btrfs_root * tree_root,u64 root_id,u64 ref_id,u64 dirid,u64 sequence,const char * name,int name_len)391 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
392 		       struct btrfs_root *tree_root,
393 		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
394 		       const char *name, int name_len)
395 {
396 	struct btrfs_key key;
397 	int ret;
398 	struct btrfs_path *path;
399 	struct btrfs_root_ref *ref;
400 	struct extent_buffer *leaf;
401 	unsigned long ptr;
402 
403 	path = btrfs_alloc_path();
404 	if (!path)
405 		return -ENOMEM;
406 
407 	key.objectid = root_id;
408 	key.type = BTRFS_ROOT_BACKREF_KEY;
409 	key.offset = ref_id;
410 again:
411 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
412 				      sizeof(*ref) + name_len);
413 	if (ret) {
414 		btrfs_abort_transaction(trans, tree_root, ret);
415 		btrfs_free_path(path);
416 		return ret;
417 	}
418 
419 	leaf = path->nodes[0];
420 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
421 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
422 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
423 	btrfs_set_root_ref_name_len(leaf, ref, name_len);
424 	ptr = (unsigned long)(ref + 1);
425 	write_extent_buffer(leaf, name, ptr, name_len);
426 	btrfs_mark_buffer_dirty(leaf);
427 
428 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
429 		btrfs_release_path(path);
430 		key.objectid = ref_id;
431 		key.type = BTRFS_ROOT_REF_KEY;
432 		key.offset = root_id;
433 		goto again;
434 	}
435 
436 	btrfs_free_path(path);
437 	return 0;
438 }
439 
440 /*
441  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
442  * for subvolumes. To work around this problem, we steal a bit from
443  * root_item->inode_item->flags, and use it to indicate if those fields
444  * have been properly initialized.
445  */
btrfs_check_and_init_root_item(struct btrfs_root_item * root_item)446 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
447 {
448 	u64 inode_flags = le64_to_cpu(root_item->inode.flags);
449 
450 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
451 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
452 		root_item->inode.flags = cpu_to_le64(inode_flags);
453 		root_item->flags = 0;
454 		root_item->byte_limit = 0;
455 	}
456 }
457