1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28 
29 /* magic values for the inode_only field in btrfs_log_inode:
30  *
31  * LOG_INODE_ALL means to log everything
32  * LOG_INODE_EXISTS means to log just enough to recreate the inode
33  * during log replay
34  */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root, struct inode *inode,
96 			     int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 			     struct btrfs_root *root,
99 			     struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 				       struct btrfs_root *root,
102 				       struct btrfs_root *log,
103 				       struct btrfs_path *path,
104 				       u64 dirid, int del_all);
105 
106 /*
107  * tree logging is a special write ahead log used to make sure that
108  * fsyncs and O_SYNCs can happen without doing full tree commits.
109  *
110  * Full tree commits are expensive because they require commonly
111  * modified blocks to be recowed, creating many dirty pages in the
112  * extent tree an 4x-6x higher write load than ext3.
113  *
114  * Instead of doing a tree commit on every fsync, we use the
115  * key ranges and transaction ids to find items for a given file or directory
116  * that have changed in this transaction.  Those items are copied into
117  * a special tree (one per subvolume root), that tree is written to disk
118  * and then the fsync is considered complete.
119  *
120  * After a crash, items are copied out of the log-tree back into the
121  * subvolume tree.  Any file data extents found are recorded in the extent
122  * allocation tree, and the log-tree freed.
123  *
124  * The log tree is read three times, once to pin down all the extents it is
125  * using in ram and once, once to create all the inodes logged in the tree
126  * and once to do all the other items.
127  */
128 
129 /*
130  * start a sub transaction and setup the log tree
131  * this increments the log tree writer count to make the people
132  * syncing the tree wait for us to finish
133  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 			   struct btrfs_root *root)
136 {
137 	int ret;
138 	int err = 0;
139 
140 	mutex_lock(&root->log_mutex);
141 	if (root->log_root) {
142 		if (!root->log_start_pid) {
143 			root->log_start_pid = current->pid;
144 			root->log_multiple_pids = false;
145 		} else if (root->log_start_pid != current->pid) {
146 			root->log_multiple_pids = true;
147 		}
148 
149 		root->log_batch++;
150 		atomic_inc(&root->log_writers);
151 		mutex_unlock(&root->log_mutex);
152 		return 0;
153 	}
154 	root->log_multiple_pids = false;
155 	root->log_start_pid = current->pid;
156 	mutex_lock(&root->fs_info->tree_log_mutex);
157 	if (!root->fs_info->log_root_tree) {
158 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 		if (ret)
160 			err = ret;
161 	}
162 	if (err == 0 && !root->log_root) {
163 		ret = btrfs_add_log_tree(trans, root);
164 		if (ret)
165 			err = ret;
166 	}
167 	mutex_unlock(&root->fs_info->tree_log_mutex);
168 	root->log_batch++;
169 	atomic_inc(&root->log_writers);
170 	mutex_unlock(&root->log_mutex);
171 	return err;
172 }
173 
174 /*
175  * returns 0 if there was a log transaction running and we were able
176  * to join, or returns -ENOENT if there were not transactions
177  * in progress
178  */
join_running_log_trans(struct btrfs_root * root)179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 	int ret = -ENOENT;
182 
183 	smp_mb();
184 	if (!root->log_root)
185 		return -ENOENT;
186 
187 	mutex_lock(&root->log_mutex);
188 	if (root->log_root) {
189 		ret = 0;
190 		atomic_inc(&root->log_writers);
191 	}
192 	mutex_unlock(&root->log_mutex);
193 	return ret;
194 }
195 
196 /*
197  * This either makes the current running log transaction wait
198  * until you call btrfs_end_log_trans() or it makes any future
199  * log transactions wait until you call btrfs_end_log_trans()
200  */
btrfs_pin_log_trans(struct btrfs_root * root)201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 	int ret = -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	atomic_inc(&root->log_writers);
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * indicate we're done making changes to the log tree
213  * and wake up anyone waiting to do a sync
214  */
btrfs_end_log_trans(struct btrfs_root * root)215 int btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 	if (atomic_dec_and_test(&root->log_writers)) {
218 		smp_mb();
219 		if (waitqueue_active(&root->log_writer_wait))
220 			wake_up(&root->log_writer_wait);
221 	}
222 	return 0;
223 }
224 
225 
226 /*
227  * the walk control struct is used to pass state down the chain when
228  * processing the log tree.  The stage field tells us which part
229  * of the log tree processing we are currently doing.  The others
230  * are state fields used for that specific part
231  */
232 struct walk_control {
233 	/* should we free the extent on disk when done?  This is used
234 	 * at transaction commit time while freeing a log tree
235 	 */
236 	int free;
237 
238 	/* should we write out the extent buffer?  This is used
239 	 * while flushing the log tree to disk during a sync
240 	 */
241 	int write;
242 
243 	/* should we wait for the extent buffer io to finish?  Also used
244 	 * while flushing the log tree to disk for a sync
245 	 */
246 	int wait;
247 
248 	/* pin only walk, we record which extents on disk belong to the
249 	 * log trees
250 	 */
251 	int pin;
252 
253 	/* what stage of the replay code we're currently in */
254 	int stage;
255 
256 	/* the root we are currently replaying */
257 	struct btrfs_root *replay_dest;
258 
259 	/* the trans handle for the current replay */
260 	struct btrfs_trans_handle *trans;
261 
262 	/* the function that gets used to process blocks we find in the
263 	 * tree.  Note the extent_buffer might not be up to date when it is
264 	 * passed in, and it must be checked or read if you need the data
265 	 * inside it
266 	 */
267 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 			    struct walk_control *wc, u64 gen);
269 };
270 
271 /*
272  * process_func used to pin down extents, write them or wait on them
273  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)274 static int process_one_buffer(struct btrfs_root *log,
275 			      struct extent_buffer *eb,
276 			      struct walk_control *wc, u64 gen)
277 {
278 	if (wc->pin)
279 		btrfs_pin_extent(log->fs_info->extent_root,
280 				 eb->start, eb->len, 0);
281 
282 	if (btrfs_buffer_uptodate(eb, gen)) {
283 		if (wc->write)
284 			btrfs_write_tree_block(eb);
285 		if (wc->wait)
286 			btrfs_wait_tree_block_writeback(eb);
287 	}
288 	return 0;
289 }
290 
291 /*
292  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
293  * to the src data we are copying out.
294  *
295  * root is the tree we are copying into, and path is a scratch
296  * path for use in this function (it should be released on entry and
297  * will be released on exit).
298  *
299  * If the key is already in the destination tree the existing item is
300  * overwritten.  If the existing item isn't big enough, it is extended.
301  * If it is too large, it is truncated.
302  *
303  * If the key isn't in the destination yet, a new item is inserted.
304  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 				   struct btrfs_root *root,
307 				   struct btrfs_path *path,
308 				   struct extent_buffer *eb, int slot,
309 				   struct btrfs_key *key)
310 {
311 	int ret;
312 	u32 item_size;
313 	u64 saved_i_size = 0;
314 	int save_old_i_size = 0;
315 	unsigned long src_ptr;
316 	unsigned long dst_ptr;
317 	int overwrite_root = 0;
318 
319 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 		overwrite_root = 1;
321 
322 	item_size = btrfs_item_size_nr(eb, slot);
323 	src_ptr = btrfs_item_ptr_offset(eb, slot);
324 
325 	/* look for the key in the destination tree */
326 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 	if (ret == 0) {
328 		char *src_copy;
329 		char *dst_copy;
330 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 						  path->slots[0]);
332 		if (dst_size != item_size)
333 			goto insert;
334 
335 		if (item_size == 0) {
336 			btrfs_release_path(root, path);
337 			return 0;
338 		}
339 		dst_copy = kmalloc(item_size, GFP_NOFS);
340 		src_copy = kmalloc(item_size, GFP_NOFS);
341 		if (!dst_copy || !src_copy) {
342 			btrfs_release_path(root, path);
343 			kfree(dst_copy);
344 			kfree(src_copy);
345 			return -ENOMEM;
346 		}
347 
348 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
349 
350 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 				   item_size);
353 		ret = memcmp(dst_copy, src_copy, item_size);
354 
355 		kfree(dst_copy);
356 		kfree(src_copy);
357 		/*
358 		 * they have the same contents, just return, this saves
359 		 * us from cowing blocks in the destination tree and doing
360 		 * extra writes that may not have been done by a previous
361 		 * sync
362 		 */
363 		if (ret == 0) {
364 			btrfs_release_path(root, path);
365 			return 0;
366 		}
367 
368 	}
369 insert:
370 	btrfs_release_path(root, path);
371 	/* try to insert the key into the destination tree */
372 	ret = btrfs_insert_empty_item(trans, root, path,
373 				      key, item_size);
374 
375 	/* make sure any existing item is the correct size */
376 	if (ret == -EEXIST) {
377 		u32 found_size;
378 		found_size = btrfs_item_size_nr(path->nodes[0],
379 						path->slots[0]);
380 		if (found_size > item_size) {
381 			btrfs_truncate_item(trans, root, path, item_size, 1);
382 		} else if (found_size < item_size) {
383 			ret = btrfs_extend_item(trans, root, path,
384 						item_size - found_size);
385 			BUG_ON(ret);
386 		}
387 	} else if (ret) {
388 		return ret;
389 	}
390 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
391 					path->slots[0]);
392 
393 	/* don't overwrite an existing inode if the generation number
394 	 * was logged as zero.  This is done when the tree logging code
395 	 * is just logging an inode to make sure it exists after recovery.
396 	 *
397 	 * Also, don't overwrite i_size on directories during replay.
398 	 * log replay inserts and removes directory items based on the
399 	 * state of the tree found in the subvolume, and i_size is modified
400 	 * as it goes
401 	 */
402 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
403 		struct btrfs_inode_item *src_item;
404 		struct btrfs_inode_item *dst_item;
405 
406 		src_item = (struct btrfs_inode_item *)src_ptr;
407 		dst_item = (struct btrfs_inode_item *)dst_ptr;
408 
409 		if (btrfs_inode_generation(eb, src_item) == 0)
410 			goto no_copy;
411 
412 		if (overwrite_root &&
413 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
414 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
415 			save_old_i_size = 1;
416 			saved_i_size = btrfs_inode_size(path->nodes[0],
417 							dst_item);
418 		}
419 	}
420 
421 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
422 			   src_ptr, item_size);
423 
424 	if (save_old_i_size) {
425 		struct btrfs_inode_item *dst_item;
426 		dst_item = (struct btrfs_inode_item *)dst_ptr;
427 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
428 	}
429 
430 	/* make sure the generation is filled in */
431 	if (key->type == BTRFS_INODE_ITEM_KEY) {
432 		struct btrfs_inode_item *dst_item;
433 		dst_item = (struct btrfs_inode_item *)dst_ptr;
434 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
435 			btrfs_set_inode_generation(path->nodes[0], dst_item,
436 						   trans->transid);
437 		}
438 	}
439 no_copy:
440 	btrfs_mark_buffer_dirty(path->nodes[0]);
441 	btrfs_release_path(root, path);
442 	return 0;
443 }
444 
445 /*
446  * simple helper to read an inode off the disk from a given root
447  * This can only be called for subvolume roots and not for the log
448  */
read_one_inode(struct btrfs_root * root,u64 objectid)449 static noinline struct inode *read_one_inode(struct btrfs_root *root,
450 					     u64 objectid)
451 {
452 	struct btrfs_key key;
453 	struct inode *inode;
454 
455 	key.objectid = objectid;
456 	key.type = BTRFS_INODE_ITEM_KEY;
457 	key.offset = 0;
458 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
459 	if (IS_ERR(inode)) {
460 		inode = NULL;
461 	} else if (is_bad_inode(inode)) {
462 		iput(inode);
463 		inode = NULL;
464 	}
465 	return inode;
466 }
467 
468 /* replays a single extent in 'eb' at 'slot' with 'key' into the
469  * subvolume 'root'.  path is released on entry and should be released
470  * on exit.
471  *
472  * extents in the log tree have not been allocated out of the extent
473  * tree yet.  So, this completes the allocation, taking a reference
474  * as required if the extent already exists or creating a new extent
475  * if it isn't in the extent allocation tree yet.
476  *
477  * The extent is inserted into the file, dropping any existing extents
478  * from the file that overlap the new one.
479  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)480 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
481 				      struct btrfs_root *root,
482 				      struct btrfs_path *path,
483 				      struct extent_buffer *eb, int slot,
484 				      struct btrfs_key *key)
485 {
486 	int found_type;
487 	u64 mask = root->sectorsize - 1;
488 	u64 extent_end;
489 	u64 alloc_hint;
490 	u64 start = key->offset;
491 	u64 saved_nbytes;
492 	struct btrfs_file_extent_item *item;
493 	struct inode *inode = NULL;
494 	unsigned long size;
495 	int ret = 0;
496 
497 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
498 	found_type = btrfs_file_extent_type(eb, item);
499 
500 	if (found_type == BTRFS_FILE_EXTENT_REG ||
501 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
502 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
503 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
504 		size = btrfs_file_extent_inline_len(eb, item);
505 		extent_end = (start + size + mask) & ~mask;
506 	} else {
507 		ret = 0;
508 		goto out;
509 	}
510 
511 	inode = read_one_inode(root, key->objectid);
512 	if (!inode) {
513 		ret = -EIO;
514 		goto out;
515 	}
516 
517 	/*
518 	 * first check to see if we already have this extent in the
519 	 * file.  This must be done before the btrfs_drop_extents run
520 	 * so we don't try to drop this extent.
521 	 */
522 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
523 				       start, 0);
524 
525 	if (ret == 0 &&
526 	    (found_type == BTRFS_FILE_EXTENT_REG ||
527 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
528 		struct btrfs_file_extent_item cmp1;
529 		struct btrfs_file_extent_item cmp2;
530 		struct btrfs_file_extent_item *existing;
531 		struct extent_buffer *leaf;
532 
533 		leaf = path->nodes[0];
534 		existing = btrfs_item_ptr(leaf, path->slots[0],
535 					  struct btrfs_file_extent_item);
536 
537 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
538 				   sizeof(cmp1));
539 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
540 				   sizeof(cmp2));
541 
542 		/*
543 		 * we already have a pointer to this exact extent,
544 		 * we don't have to do anything
545 		 */
546 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
547 			btrfs_release_path(root, path);
548 			goto out;
549 		}
550 	}
551 	btrfs_release_path(root, path);
552 
553 	saved_nbytes = inode_get_bytes(inode);
554 	/* drop any overlapping extents */
555 	ret = btrfs_drop_extents(trans, inode, start, extent_end,
556 				 &alloc_hint, 1);
557 	BUG_ON(ret);
558 
559 	if (found_type == BTRFS_FILE_EXTENT_REG ||
560 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
561 		u64 offset;
562 		unsigned long dest_offset;
563 		struct btrfs_key ins;
564 
565 		ret = btrfs_insert_empty_item(trans, root, path, key,
566 					      sizeof(*item));
567 		BUG_ON(ret);
568 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
569 						    path->slots[0]);
570 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
571 				(unsigned long)item,  sizeof(*item));
572 
573 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
574 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
575 		ins.type = BTRFS_EXTENT_ITEM_KEY;
576 		offset = key->offset - btrfs_file_extent_offset(eb, item);
577 
578 		if (ins.objectid > 0) {
579 			u64 csum_start;
580 			u64 csum_end;
581 			LIST_HEAD(ordered_sums);
582 			/*
583 			 * is this extent already allocated in the extent
584 			 * allocation tree?  If so, just add a reference
585 			 */
586 			ret = btrfs_lookup_extent(root, ins.objectid,
587 						ins.offset);
588 			if (ret == 0) {
589 				ret = btrfs_inc_extent_ref(trans, root,
590 						ins.objectid, ins.offset,
591 						0, root->root_key.objectid,
592 						key->objectid, offset);
593 			} else {
594 				/*
595 				 * insert the extent pointer in the extent
596 				 * allocation tree
597 				 */
598 				ret = btrfs_alloc_logged_file_extent(trans,
599 						root, root->root_key.objectid,
600 						key->objectid, offset, &ins);
601 				BUG_ON(ret);
602 			}
603 			btrfs_release_path(root, path);
604 
605 			if (btrfs_file_extent_compression(eb, item)) {
606 				csum_start = ins.objectid;
607 				csum_end = csum_start + ins.offset;
608 			} else {
609 				csum_start = ins.objectid +
610 					btrfs_file_extent_offset(eb, item);
611 				csum_end = csum_start +
612 					btrfs_file_extent_num_bytes(eb, item);
613 			}
614 
615 			ret = btrfs_lookup_csums_range(root->log_root,
616 						csum_start, csum_end - 1,
617 						&ordered_sums);
618 			BUG_ON(ret);
619 			while (!list_empty(&ordered_sums)) {
620 				struct btrfs_ordered_sum *sums;
621 				sums = list_entry(ordered_sums.next,
622 						struct btrfs_ordered_sum,
623 						list);
624 				ret = btrfs_csum_file_blocks(trans,
625 						root->fs_info->csum_root,
626 						sums);
627 				BUG_ON(ret);
628 				list_del(&sums->list);
629 				kfree(sums);
630 			}
631 		} else {
632 			btrfs_release_path(root, path);
633 		}
634 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 		/* inline extents are easy, we just overwrite them */
636 		ret = overwrite_item(trans, root, path, eb, slot, key);
637 		BUG_ON(ret);
638 	}
639 
640 	inode_set_bytes(inode, saved_nbytes);
641 	btrfs_update_inode(trans, root, inode);
642 out:
643 	if (inode)
644 		iput(inode);
645 	return ret;
646 }
647 
648 /*
649  * when cleaning up conflicts between the directory names in the
650  * subvolume, directory names in the log and directory names in the
651  * inode back references, we may have to unlink inodes from directories.
652  *
653  * This is a helper function to do the unlink of a specific directory
654  * item
655  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct inode * dir,struct btrfs_dir_item * di)656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 				      struct btrfs_root *root,
658 				      struct btrfs_path *path,
659 				      struct inode *dir,
660 				      struct btrfs_dir_item *di)
661 {
662 	struct inode *inode;
663 	char *name;
664 	int name_len;
665 	struct extent_buffer *leaf;
666 	struct btrfs_key location;
667 	int ret;
668 
669 	leaf = path->nodes[0];
670 
671 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 	name_len = btrfs_dir_name_len(leaf, di);
673 	name = kmalloc(name_len, GFP_NOFS);
674 	if (!name)
675 		return -ENOMEM;
676 
677 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 	btrfs_release_path(root, path);
679 
680 	inode = read_one_inode(root, location.objectid);
681 	BUG_ON(!inode);
682 
683 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
684 	BUG_ON(ret);
685 
686 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
687 	BUG_ON(ret);
688 	kfree(name);
689 
690 	iput(inode);
691 	return ret;
692 }
693 
694 /*
695  * helper function to see if a given name and sequence number found
696  * in an inode back reference are already in a directory and correctly
697  * point to this inode
698  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)699 static noinline int inode_in_dir(struct btrfs_root *root,
700 				 struct btrfs_path *path,
701 				 u64 dirid, u64 objectid, u64 index,
702 				 const char *name, int name_len)
703 {
704 	struct btrfs_dir_item *di;
705 	struct btrfs_key location;
706 	int match = 0;
707 
708 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
709 					 index, name, name_len, 0);
710 	if (di && !IS_ERR(di)) {
711 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
712 		if (location.objectid != objectid)
713 			goto out;
714 	} else
715 		goto out;
716 	btrfs_release_path(root, path);
717 
718 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
719 	if (di && !IS_ERR(di)) {
720 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
721 		if (location.objectid != objectid)
722 			goto out;
723 	} else
724 		goto out;
725 	match = 1;
726 out:
727 	btrfs_release_path(root, path);
728 	return match;
729 }
730 
731 /*
732  * helper function to check a log tree for a named back reference in
733  * an inode.  This is used to decide if a back reference that is
734  * found in the subvolume conflicts with what we find in the log.
735  *
736  * inode backreferences may have multiple refs in a single item,
737  * during replay we process one reference at a time, and we don't
738  * want to delete valid links to a file from the subvolume if that
739  * link is also in the log.
740  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,char * name,int namelen)741 static noinline int backref_in_log(struct btrfs_root *log,
742 				   struct btrfs_key *key,
743 				   char *name, int namelen)
744 {
745 	struct btrfs_path *path;
746 	struct btrfs_inode_ref *ref;
747 	unsigned long ptr;
748 	unsigned long ptr_end;
749 	unsigned long name_ptr;
750 	int found_name_len;
751 	int item_size;
752 	int ret;
753 	int match = 0;
754 
755 	path = btrfs_alloc_path();
756 	if (!path)
757 		return -ENOMEM;
758 
759 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
760 	if (ret != 0)
761 		goto out;
762 
763 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
764 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
765 	ptr_end = ptr + item_size;
766 	while (ptr < ptr_end) {
767 		ref = (struct btrfs_inode_ref *)ptr;
768 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
769 		if (found_name_len == namelen) {
770 			name_ptr = (unsigned long)(ref + 1);
771 			ret = memcmp_extent_buffer(path->nodes[0], name,
772 						   name_ptr, namelen);
773 			if (ret == 0) {
774 				match = 1;
775 				goto out;
776 			}
777 		}
778 		ptr = (unsigned long)(ref + 1) + found_name_len;
779 	}
780 out:
781 	btrfs_free_path(path);
782 	return match;
783 }
784 
785 
786 /*
787  * replay one inode back reference item found in the log tree.
788  * eb, slot and key refer to the buffer and key found in the log tree.
789  * root is the destination we are replaying into, and path is for temp
790  * use by this function.  (it should be released on return).
791  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)792 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
793 				  struct btrfs_root *root,
794 				  struct btrfs_root *log,
795 				  struct btrfs_path *path,
796 				  struct extent_buffer *eb, int slot,
797 				  struct btrfs_key *key)
798 {
799 	struct inode *dir;
800 	int ret;
801 	struct btrfs_inode_ref *ref;
802 	struct inode *inode;
803 	char *name;
804 	int namelen;
805 	unsigned long ref_ptr;
806 	unsigned long ref_end;
807 	int search_done = 0;
808 
809 	/*
810 	 * it is possible that we didn't log all the parent directories
811 	 * for a given inode.  If we don't find the dir, just don't
812 	 * copy the back ref in.  The link count fixup code will take
813 	 * care of the rest
814 	 */
815 	dir = read_one_inode(root, key->offset);
816 	if (!dir)
817 		return -ENOENT;
818 
819 	inode = read_one_inode(root, key->objectid);
820 	BUG_ON(!inode);
821 
822 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
823 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
824 
825 again:
826 	ref = (struct btrfs_inode_ref *)ref_ptr;
827 
828 	namelen = btrfs_inode_ref_name_len(eb, ref);
829 	name = kmalloc(namelen, GFP_NOFS);
830 	BUG_ON(!name);
831 
832 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
833 
834 	/* if we already have a perfect match, we're done */
835 	if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
836 			 btrfs_inode_ref_index(eb, ref),
837 			 name, namelen)) {
838 		goto out;
839 	}
840 
841 	/*
842 	 * look for a conflicting back reference in the metadata.
843 	 * if we find one we have to unlink that name of the file
844 	 * before we add our new link.  Later on, we overwrite any
845 	 * existing back reference, and we don't want to create
846 	 * dangling pointers in the directory.
847 	 */
848 
849 	if (search_done)
850 		goto insert;
851 
852 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
853 	if (ret == 0) {
854 		char *victim_name;
855 		int victim_name_len;
856 		struct btrfs_inode_ref *victim_ref;
857 		unsigned long ptr;
858 		unsigned long ptr_end;
859 		struct extent_buffer *leaf = path->nodes[0];
860 
861 		/* are we trying to overwrite a back ref for the root directory
862 		 * if so, just jump out, we're done
863 		 */
864 		if (key->objectid == key->offset)
865 			goto out_nowrite;
866 
867 		/* check all the names in this back reference to see
868 		 * if they are in the log.  if so, we allow them to stay
869 		 * otherwise they must be unlinked as a conflict
870 		 */
871 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
872 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
873 		while (ptr < ptr_end) {
874 			victim_ref = (struct btrfs_inode_ref *)ptr;
875 			victim_name_len = btrfs_inode_ref_name_len(leaf,
876 								   victim_ref);
877 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
878 			BUG_ON(!victim_name);
879 
880 			read_extent_buffer(leaf, victim_name,
881 					   (unsigned long)(victim_ref + 1),
882 					   victim_name_len);
883 
884 			if (!backref_in_log(log, key, victim_name,
885 					    victim_name_len)) {
886 				btrfs_inc_nlink(inode);
887 				btrfs_release_path(root, path);
888 
889 				ret = btrfs_unlink_inode(trans, root, dir,
890 							 inode, victim_name,
891 							 victim_name_len);
892 			}
893 			kfree(victim_name);
894 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
895 		}
896 		BUG_ON(ret);
897 
898 		/*
899 		 * NOTE: we have searched root tree and checked the
900 		 * coresponding ref, it does not need to check again.
901 		 */
902 		search_done = 1;
903 	}
904 	btrfs_release_path(root, path);
905 
906 insert:
907 	/* insert our name */
908 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
909 			     btrfs_inode_ref_index(eb, ref));
910 	BUG_ON(ret);
911 
912 	btrfs_update_inode(trans, root, inode);
913 
914 out:
915 	ref_ptr = (unsigned long)(ref + 1) + namelen;
916 	kfree(name);
917 	if (ref_ptr < ref_end)
918 		goto again;
919 
920 	/* finally write the back reference in the inode */
921 	ret = overwrite_item(trans, root, path, eb, slot, key);
922 	BUG_ON(ret);
923 
924 out_nowrite:
925 	btrfs_release_path(root, path);
926 	iput(dir);
927 	iput(inode);
928 	return 0;
929 }
930 
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 offset)931 static int insert_orphan_item(struct btrfs_trans_handle *trans,
932 			      struct btrfs_root *root, u64 offset)
933 {
934 	int ret;
935 	ret = btrfs_find_orphan_item(root, offset);
936 	if (ret > 0)
937 		ret = btrfs_insert_orphan_item(trans, root, offset);
938 	return ret;
939 }
940 
941 
942 /*
943  * There are a few corners where the link count of the file can't
944  * be properly maintained during replay.  So, instead of adding
945  * lots of complexity to the log code, we just scan the backrefs
946  * for any file that has been through replay.
947  *
948  * The scan will update the link count on the inode to reflect the
949  * number of back refs found.  If it goes down to zero, the iput
950  * will free the inode.
951  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)952 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
953 					   struct btrfs_root *root,
954 					   struct inode *inode)
955 {
956 	struct btrfs_path *path;
957 	int ret;
958 	struct btrfs_key key;
959 	u64 nlink = 0;
960 	unsigned long ptr;
961 	unsigned long ptr_end;
962 	int name_len;
963 
964 	key.objectid = inode->i_ino;
965 	key.type = BTRFS_INODE_REF_KEY;
966 	key.offset = (u64)-1;
967 
968 	path = btrfs_alloc_path();
969 	if (!path)
970 		return -ENOMEM;
971 
972 	while (1) {
973 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
974 		if (ret < 0)
975 			break;
976 		if (ret > 0) {
977 			if (path->slots[0] == 0)
978 				break;
979 			path->slots[0]--;
980 		}
981 		btrfs_item_key_to_cpu(path->nodes[0], &key,
982 				      path->slots[0]);
983 		if (key.objectid != inode->i_ino ||
984 		    key.type != BTRFS_INODE_REF_KEY)
985 			break;
986 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
987 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
988 						   path->slots[0]);
989 		while (ptr < ptr_end) {
990 			struct btrfs_inode_ref *ref;
991 
992 			ref = (struct btrfs_inode_ref *)ptr;
993 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
994 							    ref);
995 			ptr = (unsigned long)(ref + 1) + name_len;
996 			nlink++;
997 		}
998 
999 		if (key.offset == 0)
1000 			break;
1001 		key.offset--;
1002 		btrfs_release_path(root, path);
1003 	}
1004 	btrfs_release_path(root, path);
1005 	if (nlink != inode->i_nlink) {
1006 		inode->i_nlink = nlink;
1007 		btrfs_update_inode(trans, root, inode);
1008 	}
1009 	BTRFS_I(inode)->index_cnt = (u64)-1;
1010 
1011 	if (inode->i_nlink == 0) {
1012 		if (S_ISDIR(inode->i_mode)) {
1013 			ret = replay_dir_deletes(trans, root, NULL, path,
1014 						 inode->i_ino, 1);
1015 			BUG_ON(ret);
1016 		}
1017 		ret = insert_orphan_item(trans, root, inode->i_ino);
1018 		BUG_ON(ret);
1019 	}
1020 	btrfs_free_path(path);
1021 
1022 	return 0;
1023 }
1024 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1025 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1026 					    struct btrfs_root *root,
1027 					    struct btrfs_path *path)
1028 {
1029 	int ret;
1030 	struct btrfs_key key;
1031 	struct inode *inode;
1032 
1033 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1034 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1035 	key.offset = (u64)-1;
1036 	while (1) {
1037 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1038 		if (ret < 0)
1039 			break;
1040 
1041 		if (ret == 1) {
1042 			if (path->slots[0] == 0)
1043 				break;
1044 			path->slots[0]--;
1045 		}
1046 
1047 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1048 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1049 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1050 			break;
1051 
1052 		ret = btrfs_del_item(trans, root, path);
1053 		BUG_ON(ret);
1054 
1055 		btrfs_release_path(root, path);
1056 		inode = read_one_inode(root, key.offset);
1057 		BUG_ON(!inode);
1058 
1059 		ret = fixup_inode_link_count(trans, root, inode);
1060 		BUG_ON(ret);
1061 
1062 		iput(inode);
1063 
1064 		/*
1065 		 * fixup on a directory may create new entries,
1066 		 * make sure we always look for the highset possible
1067 		 * offset
1068 		 */
1069 		key.offset = (u64)-1;
1070 	}
1071 	btrfs_release_path(root, path);
1072 	return 0;
1073 }
1074 
1075 
1076 /*
1077  * record a given inode in the fixup dir so we can check its link
1078  * count when replay is done.  The link count is incremented here
1079  * so the inode won't go away until we check it
1080  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1081 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1082 				      struct btrfs_root *root,
1083 				      struct btrfs_path *path,
1084 				      u64 objectid)
1085 {
1086 	struct btrfs_key key;
1087 	int ret = 0;
1088 	struct inode *inode;
1089 
1090 	inode = read_one_inode(root, objectid);
1091 	BUG_ON(!inode);
1092 
1093 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1094 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1095 	key.offset = objectid;
1096 
1097 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1098 
1099 	btrfs_release_path(root, path);
1100 	if (ret == 0) {
1101 		btrfs_inc_nlink(inode);
1102 		btrfs_update_inode(trans, root, inode);
1103 	} else if (ret == -EEXIST) {
1104 		ret = 0;
1105 	} else {
1106 		BUG();
1107 	}
1108 	iput(inode);
1109 
1110 	return ret;
1111 }
1112 
1113 /*
1114  * when replaying the log for a directory, we only insert names
1115  * for inodes that actually exist.  This means an fsync on a directory
1116  * does not implicitly fsync all the new files in it
1117  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 index,char * name,int name_len,u8 type,struct btrfs_key * location)1118 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1119 				    struct btrfs_root *root,
1120 				    struct btrfs_path *path,
1121 				    u64 dirid, u64 index,
1122 				    char *name, int name_len, u8 type,
1123 				    struct btrfs_key *location)
1124 {
1125 	struct inode *inode;
1126 	struct inode *dir;
1127 	int ret;
1128 
1129 	inode = read_one_inode(root, location->objectid);
1130 	if (!inode)
1131 		return -ENOENT;
1132 
1133 	dir = read_one_inode(root, dirid);
1134 	if (!dir) {
1135 		iput(inode);
1136 		return -EIO;
1137 	}
1138 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1139 
1140 	/* FIXME, put inode into FIXUP list */
1141 
1142 	iput(inode);
1143 	iput(dir);
1144 	return ret;
1145 }
1146 
1147 /*
1148  * take a single entry in a log directory item and replay it into
1149  * the subvolume.
1150  *
1151  * if a conflicting item exists in the subdirectory already,
1152  * the inode it points to is unlinked and put into the link count
1153  * fix up tree.
1154  *
1155  * If a name from the log points to a file or directory that does
1156  * not exist in the FS, it is skipped.  fsyncs on directories
1157  * do not force down inodes inside that directory, just changes to the
1158  * names or unlinks in a directory.
1159  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1160 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1161 				    struct btrfs_root *root,
1162 				    struct btrfs_path *path,
1163 				    struct extent_buffer *eb,
1164 				    struct btrfs_dir_item *di,
1165 				    struct btrfs_key *key)
1166 {
1167 	char *name;
1168 	int name_len;
1169 	struct btrfs_dir_item *dst_di;
1170 	struct btrfs_key found_key;
1171 	struct btrfs_key log_key;
1172 	struct inode *dir;
1173 	u8 log_type;
1174 	int exists;
1175 	int ret;
1176 
1177 	dir = read_one_inode(root, key->objectid);
1178 	BUG_ON(!dir);
1179 
1180 	name_len = btrfs_dir_name_len(eb, di);
1181 	name = kmalloc(name_len, GFP_NOFS);
1182 	if (!name)
1183 		return -ENOMEM;
1184 
1185 	log_type = btrfs_dir_type(eb, di);
1186 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1187 		   name_len);
1188 
1189 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1190 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1191 	if (exists == 0)
1192 		exists = 1;
1193 	else
1194 		exists = 0;
1195 	btrfs_release_path(root, path);
1196 
1197 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1198 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1199 				       name, name_len, 1);
1200 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1201 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1202 						     key->objectid,
1203 						     key->offset, name,
1204 						     name_len, 1);
1205 	} else {
1206 		BUG();
1207 	}
1208 	if (!dst_di || IS_ERR(dst_di)) {
1209 		/* we need a sequence number to insert, so we only
1210 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1211 		 */
1212 		if (key->type != BTRFS_DIR_INDEX_KEY)
1213 			goto out;
1214 		goto insert;
1215 	}
1216 
1217 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1218 	/* the existing item matches the logged item */
1219 	if (found_key.objectid == log_key.objectid &&
1220 	    found_key.type == log_key.type &&
1221 	    found_key.offset == log_key.offset &&
1222 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1223 		goto out;
1224 	}
1225 
1226 	/*
1227 	 * don't drop the conflicting directory entry if the inode
1228 	 * for the new entry doesn't exist
1229 	 */
1230 	if (!exists)
1231 		goto out;
1232 
1233 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1234 	BUG_ON(ret);
1235 
1236 	if (key->type == BTRFS_DIR_INDEX_KEY)
1237 		goto insert;
1238 out:
1239 	btrfs_release_path(root, path);
1240 	kfree(name);
1241 	iput(dir);
1242 	return 0;
1243 
1244 insert:
1245 	btrfs_release_path(root, path);
1246 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1247 			      name, name_len, log_type, &log_key);
1248 
1249 	BUG_ON(ret && ret != -ENOENT);
1250 	goto out;
1251 }
1252 
1253 /*
1254  * find all the names in a directory item and reconcile them into
1255  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1256  * one name in a directory item, but the same code gets used for
1257  * both directory index types
1258  */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1259 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1260 					struct btrfs_root *root,
1261 					struct btrfs_path *path,
1262 					struct extent_buffer *eb, int slot,
1263 					struct btrfs_key *key)
1264 {
1265 	int ret;
1266 	u32 item_size = btrfs_item_size_nr(eb, slot);
1267 	struct btrfs_dir_item *di;
1268 	int name_len;
1269 	unsigned long ptr;
1270 	unsigned long ptr_end;
1271 
1272 	ptr = btrfs_item_ptr_offset(eb, slot);
1273 	ptr_end = ptr + item_size;
1274 	while (ptr < ptr_end) {
1275 		di = (struct btrfs_dir_item *)ptr;
1276 		if (verify_dir_item(root, eb, di))
1277 			return -EIO;
1278 		name_len = btrfs_dir_name_len(eb, di);
1279 		ret = replay_one_name(trans, root, path, eb, di, key);
1280 		BUG_ON(ret);
1281 		ptr = (unsigned long)(di + 1);
1282 		ptr += name_len;
1283 	}
1284 	return 0;
1285 }
1286 
1287 /*
1288  * directory replay has two parts.  There are the standard directory
1289  * items in the log copied from the subvolume, and range items
1290  * created in the log while the subvolume was logged.
1291  *
1292  * The range items tell us which parts of the key space the log
1293  * is authoritative for.  During replay, if a key in the subvolume
1294  * directory is in a logged range item, but not actually in the log
1295  * that means it was deleted from the directory before the fsync
1296  * and should be removed.
1297  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)1298 static noinline int find_dir_range(struct btrfs_root *root,
1299 				   struct btrfs_path *path,
1300 				   u64 dirid, int key_type,
1301 				   u64 *start_ret, u64 *end_ret)
1302 {
1303 	struct btrfs_key key;
1304 	u64 found_end;
1305 	struct btrfs_dir_log_item *item;
1306 	int ret;
1307 	int nritems;
1308 
1309 	if (*start_ret == (u64)-1)
1310 		return 1;
1311 
1312 	key.objectid = dirid;
1313 	key.type = key_type;
1314 	key.offset = *start_ret;
1315 
1316 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1317 	if (ret < 0)
1318 		goto out;
1319 	if (ret > 0) {
1320 		if (path->slots[0] == 0)
1321 			goto out;
1322 		path->slots[0]--;
1323 	}
1324 	if (ret != 0)
1325 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1326 
1327 	if (key.type != key_type || key.objectid != dirid) {
1328 		ret = 1;
1329 		goto next;
1330 	}
1331 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1332 			      struct btrfs_dir_log_item);
1333 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1334 
1335 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1336 		ret = 0;
1337 		*start_ret = key.offset;
1338 		*end_ret = found_end;
1339 		goto out;
1340 	}
1341 	ret = 1;
1342 next:
1343 	/* check the next slot in the tree to see if it is a valid item */
1344 	nritems = btrfs_header_nritems(path->nodes[0]);
1345 	if (path->slots[0] >= nritems) {
1346 		ret = btrfs_next_leaf(root, path);
1347 		if (ret)
1348 			goto out;
1349 	} else {
1350 		path->slots[0]++;
1351 	}
1352 
1353 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1354 
1355 	if (key.type != key_type || key.objectid != dirid) {
1356 		ret = 1;
1357 		goto out;
1358 	}
1359 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1360 			      struct btrfs_dir_log_item);
1361 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1362 	*start_ret = key.offset;
1363 	*end_ret = found_end;
1364 	ret = 0;
1365 out:
1366 	btrfs_release_path(root, path);
1367 	return ret;
1368 }
1369 
1370 /*
1371  * this looks for a given directory item in the log.  If the directory
1372  * item is not in the log, the item is removed and the inode it points
1373  * to is unlinked
1374  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)1375 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1376 				      struct btrfs_root *root,
1377 				      struct btrfs_root *log,
1378 				      struct btrfs_path *path,
1379 				      struct btrfs_path *log_path,
1380 				      struct inode *dir,
1381 				      struct btrfs_key *dir_key)
1382 {
1383 	int ret;
1384 	struct extent_buffer *eb;
1385 	int slot;
1386 	u32 item_size;
1387 	struct btrfs_dir_item *di;
1388 	struct btrfs_dir_item *log_di;
1389 	int name_len;
1390 	unsigned long ptr;
1391 	unsigned long ptr_end;
1392 	char *name;
1393 	struct inode *inode;
1394 	struct btrfs_key location;
1395 
1396 again:
1397 	eb = path->nodes[0];
1398 	slot = path->slots[0];
1399 	item_size = btrfs_item_size_nr(eb, slot);
1400 	ptr = btrfs_item_ptr_offset(eb, slot);
1401 	ptr_end = ptr + item_size;
1402 	while (ptr < ptr_end) {
1403 		di = (struct btrfs_dir_item *)ptr;
1404 		if (verify_dir_item(root, eb, di)) {
1405 			ret = -EIO;
1406 			goto out;
1407 		}
1408 
1409 		name_len = btrfs_dir_name_len(eb, di);
1410 		name = kmalloc(name_len, GFP_NOFS);
1411 		if (!name) {
1412 			ret = -ENOMEM;
1413 			goto out;
1414 		}
1415 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1416 				  name_len);
1417 		log_di = NULL;
1418 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1419 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1420 						       dir_key->objectid,
1421 						       name, name_len, 0);
1422 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1423 			log_di = btrfs_lookup_dir_index_item(trans, log,
1424 						     log_path,
1425 						     dir_key->objectid,
1426 						     dir_key->offset,
1427 						     name, name_len, 0);
1428 		}
1429 		if (!log_di || IS_ERR(log_di)) {
1430 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1431 			btrfs_release_path(root, path);
1432 			btrfs_release_path(log, log_path);
1433 			inode = read_one_inode(root, location.objectid);
1434 			BUG_ON(!inode);
1435 
1436 			ret = link_to_fixup_dir(trans, root,
1437 						path, location.objectid);
1438 			BUG_ON(ret);
1439 			btrfs_inc_nlink(inode);
1440 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1441 						 name, name_len);
1442 			BUG_ON(ret);
1443 			kfree(name);
1444 			iput(inode);
1445 
1446 			/* there might still be more names under this key
1447 			 * check and repeat if required
1448 			 */
1449 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1450 						0, 0);
1451 			if (ret == 0)
1452 				goto again;
1453 			ret = 0;
1454 			goto out;
1455 		}
1456 		btrfs_release_path(log, log_path);
1457 		kfree(name);
1458 
1459 		ptr = (unsigned long)(di + 1);
1460 		ptr += name_len;
1461 	}
1462 	ret = 0;
1463 out:
1464 	btrfs_release_path(root, path);
1465 	btrfs_release_path(log, log_path);
1466 	return ret;
1467 }
1468 
1469 /*
1470  * deletion replay happens before we copy any new directory items
1471  * out of the log or out of backreferences from inodes.  It
1472  * scans the log to find ranges of keys that log is authoritative for,
1473  * and then scans the directory to find items in those ranges that are
1474  * not present in the log.
1475  *
1476  * Anything we don't find in the log is unlinked and removed from the
1477  * directory.
1478  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)1479 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1480 				       struct btrfs_root *root,
1481 				       struct btrfs_root *log,
1482 				       struct btrfs_path *path,
1483 				       u64 dirid, int del_all)
1484 {
1485 	u64 range_start;
1486 	u64 range_end;
1487 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1488 	int ret = 0;
1489 	struct btrfs_key dir_key;
1490 	struct btrfs_key found_key;
1491 	struct btrfs_path *log_path;
1492 	struct inode *dir;
1493 
1494 	dir_key.objectid = dirid;
1495 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1496 	log_path = btrfs_alloc_path();
1497 	if (!log_path)
1498 		return -ENOMEM;
1499 
1500 	dir = read_one_inode(root, dirid);
1501 	/* it isn't an error if the inode isn't there, that can happen
1502 	 * because we replay the deletes before we copy in the inode item
1503 	 * from the log
1504 	 */
1505 	if (!dir) {
1506 		btrfs_free_path(log_path);
1507 		return 0;
1508 	}
1509 again:
1510 	range_start = 0;
1511 	range_end = 0;
1512 	while (1) {
1513 		if (del_all)
1514 			range_end = (u64)-1;
1515 		else {
1516 			ret = find_dir_range(log, path, dirid, key_type,
1517 					     &range_start, &range_end);
1518 			if (ret != 0)
1519 				break;
1520 		}
1521 
1522 		dir_key.offset = range_start;
1523 		while (1) {
1524 			int nritems;
1525 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1526 						0, 0);
1527 			if (ret < 0)
1528 				goto out;
1529 
1530 			nritems = btrfs_header_nritems(path->nodes[0]);
1531 			if (path->slots[0] >= nritems) {
1532 				ret = btrfs_next_leaf(root, path);
1533 				if (ret)
1534 					break;
1535 			}
1536 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1537 					      path->slots[0]);
1538 			if (found_key.objectid != dirid ||
1539 			    found_key.type != dir_key.type)
1540 				goto next_type;
1541 
1542 			if (found_key.offset > range_end)
1543 				break;
1544 
1545 			ret = check_item_in_log(trans, root, log, path,
1546 						log_path, dir,
1547 						&found_key);
1548 			BUG_ON(ret);
1549 			if (found_key.offset == (u64)-1)
1550 				break;
1551 			dir_key.offset = found_key.offset + 1;
1552 		}
1553 		btrfs_release_path(root, path);
1554 		if (range_end == (u64)-1)
1555 			break;
1556 		range_start = range_end + 1;
1557 	}
1558 
1559 next_type:
1560 	ret = 0;
1561 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1562 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1563 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1564 		btrfs_release_path(root, path);
1565 		goto again;
1566 	}
1567 out:
1568 	btrfs_release_path(root, path);
1569 	btrfs_free_path(log_path);
1570 	iput(dir);
1571 	return ret;
1572 }
1573 
1574 /*
1575  * the process_func used to replay items from the log tree.  This
1576  * gets called in two different stages.  The first stage just looks
1577  * for inodes and makes sure they are all copied into the subvolume.
1578  *
1579  * The second stage copies all the other item types from the log into
1580  * the subvolume.  The two stage approach is slower, but gets rid of
1581  * lots of complexity around inodes referencing other inodes that exist
1582  * only in the log (references come from either directory items or inode
1583  * back refs).
1584  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)1585 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1586 			     struct walk_control *wc, u64 gen)
1587 {
1588 	int nritems;
1589 	struct btrfs_path *path;
1590 	struct btrfs_root *root = wc->replay_dest;
1591 	struct btrfs_key key;
1592 	int level;
1593 	int i;
1594 	int ret;
1595 
1596 	btrfs_read_buffer(eb, gen);
1597 
1598 	level = btrfs_header_level(eb);
1599 
1600 	if (level != 0)
1601 		return 0;
1602 
1603 	path = btrfs_alloc_path();
1604 	BUG_ON(!path);
1605 
1606 	nritems = btrfs_header_nritems(eb);
1607 	for (i = 0; i < nritems; i++) {
1608 		btrfs_item_key_to_cpu(eb, &key, i);
1609 
1610 		/* inode keys are done during the first stage */
1611 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1612 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1613 			struct btrfs_inode_item *inode_item;
1614 			u32 mode;
1615 
1616 			inode_item = btrfs_item_ptr(eb, i,
1617 					    struct btrfs_inode_item);
1618 			mode = btrfs_inode_mode(eb, inode_item);
1619 			if (S_ISDIR(mode)) {
1620 				ret = replay_dir_deletes(wc->trans,
1621 					 root, log, path, key.objectid, 0);
1622 				BUG_ON(ret);
1623 			}
1624 			ret = overwrite_item(wc->trans, root, path,
1625 					     eb, i, &key);
1626 			BUG_ON(ret);
1627 
1628 			/* for regular files, make sure corresponding
1629 			 * orhpan item exist. extents past the new EOF
1630 			 * will be truncated later by orphan cleanup.
1631 			 */
1632 			if (S_ISREG(mode)) {
1633 				ret = insert_orphan_item(wc->trans, root,
1634 							 key.objectid);
1635 				BUG_ON(ret);
1636 			}
1637 
1638 			ret = link_to_fixup_dir(wc->trans, root,
1639 						path, key.objectid);
1640 			BUG_ON(ret);
1641 		}
1642 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1643 			continue;
1644 
1645 		/* these keys are simply copied */
1646 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1647 			ret = overwrite_item(wc->trans, root, path,
1648 					     eb, i, &key);
1649 			BUG_ON(ret);
1650 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1651 			ret = add_inode_ref(wc->trans, root, log, path,
1652 					    eb, i, &key);
1653 			BUG_ON(ret && ret != -ENOENT);
1654 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1655 			ret = replay_one_extent(wc->trans, root, path,
1656 						eb, i, &key);
1657 			BUG_ON(ret);
1658 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1659 			   key.type == BTRFS_DIR_INDEX_KEY) {
1660 			ret = replay_one_dir_item(wc->trans, root, path,
1661 						  eb, i, &key);
1662 			BUG_ON(ret);
1663 		}
1664 	}
1665 	btrfs_free_path(path);
1666 	return 0;
1667 }
1668 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)1669 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1670 				   struct btrfs_root *root,
1671 				   struct btrfs_path *path, int *level,
1672 				   struct walk_control *wc)
1673 {
1674 	u64 root_owner;
1675 	u64 bytenr;
1676 	u64 ptr_gen;
1677 	struct extent_buffer *next;
1678 	struct extent_buffer *cur;
1679 	struct extent_buffer *parent;
1680 	u32 blocksize;
1681 	int ret = 0;
1682 
1683 	WARN_ON(*level < 0);
1684 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1685 
1686 	while (*level > 0) {
1687 		WARN_ON(*level < 0);
1688 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1689 		cur = path->nodes[*level];
1690 
1691 		if (btrfs_header_level(cur) != *level)
1692 			WARN_ON(1);
1693 
1694 		if (path->slots[*level] >=
1695 		    btrfs_header_nritems(cur))
1696 			break;
1697 
1698 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1699 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1700 		blocksize = btrfs_level_size(root, *level - 1);
1701 
1702 		parent = path->nodes[*level];
1703 		root_owner = btrfs_header_owner(parent);
1704 
1705 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1706 		if (!next)
1707 			return -ENOMEM;
1708 
1709 		if (*level == 1) {
1710 			wc->process_func(root, next, wc, ptr_gen);
1711 
1712 			path->slots[*level]++;
1713 			if (wc->free) {
1714 				btrfs_read_buffer(next, ptr_gen);
1715 
1716 				btrfs_tree_lock(next);
1717 				clean_tree_block(trans, root, next);
1718 				btrfs_set_lock_blocking(next);
1719 				btrfs_wait_tree_block_writeback(next);
1720 				btrfs_tree_unlock(next);
1721 
1722 				WARN_ON(root_owner !=
1723 					BTRFS_TREE_LOG_OBJECTID);
1724 				ret = btrfs_free_reserved_extent(root,
1725 							 bytenr, blocksize);
1726 				BUG_ON(ret);
1727 			}
1728 			free_extent_buffer(next);
1729 			continue;
1730 		}
1731 		btrfs_read_buffer(next, ptr_gen);
1732 
1733 		WARN_ON(*level <= 0);
1734 		if (path->nodes[*level-1])
1735 			free_extent_buffer(path->nodes[*level-1]);
1736 		path->nodes[*level-1] = next;
1737 		*level = btrfs_header_level(next);
1738 		path->slots[*level] = 0;
1739 		cond_resched();
1740 	}
1741 	WARN_ON(*level < 0);
1742 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1743 
1744 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1745 
1746 	cond_resched();
1747 	return 0;
1748 }
1749 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)1750 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1751 				 struct btrfs_root *root,
1752 				 struct btrfs_path *path, int *level,
1753 				 struct walk_control *wc)
1754 {
1755 	u64 root_owner;
1756 	int i;
1757 	int slot;
1758 	int ret;
1759 
1760 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1761 		slot = path->slots[i];
1762 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1763 			path->slots[i]++;
1764 			*level = i;
1765 			WARN_ON(*level == 0);
1766 			return 0;
1767 		} else {
1768 			struct extent_buffer *parent;
1769 			if (path->nodes[*level] == root->node)
1770 				parent = path->nodes[*level];
1771 			else
1772 				parent = path->nodes[*level + 1];
1773 
1774 			root_owner = btrfs_header_owner(parent);
1775 			wc->process_func(root, path->nodes[*level], wc,
1776 				 btrfs_header_generation(path->nodes[*level]));
1777 			if (wc->free) {
1778 				struct extent_buffer *next;
1779 
1780 				next = path->nodes[*level];
1781 
1782 				btrfs_tree_lock(next);
1783 				clean_tree_block(trans, root, next);
1784 				btrfs_set_lock_blocking(next);
1785 				btrfs_wait_tree_block_writeback(next);
1786 				btrfs_tree_unlock(next);
1787 
1788 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1789 				ret = btrfs_free_reserved_extent(root,
1790 						path->nodes[*level]->start,
1791 						path->nodes[*level]->len);
1792 				BUG_ON(ret);
1793 			}
1794 			free_extent_buffer(path->nodes[*level]);
1795 			path->nodes[*level] = NULL;
1796 			*level = i + 1;
1797 		}
1798 	}
1799 	return 1;
1800 }
1801 
1802 /*
1803  * drop the reference count on the tree rooted at 'snap'.  This traverses
1804  * the tree freeing any blocks that have a ref count of zero after being
1805  * decremented.
1806  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)1807 static int walk_log_tree(struct btrfs_trans_handle *trans,
1808 			 struct btrfs_root *log, struct walk_control *wc)
1809 {
1810 	int ret = 0;
1811 	int wret;
1812 	int level;
1813 	struct btrfs_path *path;
1814 	int i;
1815 	int orig_level;
1816 
1817 	path = btrfs_alloc_path();
1818 	if (!path)
1819 		return -ENOMEM;
1820 
1821 	level = btrfs_header_level(log->node);
1822 	orig_level = level;
1823 	path->nodes[level] = log->node;
1824 	extent_buffer_get(log->node);
1825 	path->slots[level] = 0;
1826 
1827 	while (1) {
1828 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1829 		if (wret > 0)
1830 			break;
1831 		if (wret < 0)
1832 			ret = wret;
1833 
1834 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1835 		if (wret > 0)
1836 			break;
1837 		if (wret < 0)
1838 			ret = wret;
1839 	}
1840 
1841 	/* was the root node processed? if not, catch it here */
1842 	if (path->nodes[orig_level]) {
1843 		wc->process_func(log, path->nodes[orig_level], wc,
1844 			 btrfs_header_generation(path->nodes[orig_level]));
1845 		if (wc->free) {
1846 			struct extent_buffer *next;
1847 
1848 			next = path->nodes[orig_level];
1849 
1850 			btrfs_tree_lock(next);
1851 			clean_tree_block(trans, log, next);
1852 			btrfs_set_lock_blocking(next);
1853 			btrfs_wait_tree_block_writeback(next);
1854 			btrfs_tree_unlock(next);
1855 
1856 			WARN_ON(log->root_key.objectid !=
1857 				BTRFS_TREE_LOG_OBJECTID);
1858 			ret = btrfs_free_reserved_extent(log, next->start,
1859 							 next->len);
1860 			BUG_ON(ret);
1861 		}
1862 	}
1863 
1864 	for (i = 0; i <= orig_level; i++) {
1865 		if (path->nodes[i]) {
1866 			free_extent_buffer(path->nodes[i]);
1867 			path->nodes[i] = NULL;
1868 		}
1869 	}
1870 	btrfs_free_path(path);
1871 	return ret;
1872 }
1873 
1874 /*
1875  * helper function to update the item for a given subvolumes log root
1876  * in the tree of log roots
1877  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log)1878 static int update_log_root(struct btrfs_trans_handle *trans,
1879 			   struct btrfs_root *log)
1880 {
1881 	int ret;
1882 
1883 	if (log->log_transid == 1) {
1884 		/* insert root item on the first sync */
1885 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1886 				&log->root_key, &log->root_item);
1887 	} else {
1888 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1889 				&log->root_key, &log->root_item);
1890 	}
1891 	return ret;
1892 }
1893 
wait_log_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long transid)1894 static int wait_log_commit(struct btrfs_trans_handle *trans,
1895 			   struct btrfs_root *root, unsigned long transid)
1896 {
1897 	DEFINE_WAIT(wait);
1898 	int index = transid % 2;
1899 
1900 	/*
1901 	 * we only allow two pending log transactions at a time,
1902 	 * so we know that if ours is more than 2 older than the
1903 	 * current transaction, we're done
1904 	 */
1905 	do {
1906 		prepare_to_wait(&root->log_commit_wait[index],
1907 				&wait, TASK_UNINTERRUPTIBLE);
1908 		mutex_unlock(&root->log_mutex);
1909 
1910 		if (root->fs_info->last_trans_log_full_commit !=
1911 		    trans->transid && root->log_transid < transid + 2 &&
1912 		    atomic_read(&root->log_commit[index]))
1913 			schedule();
1914 
1915 		finish_wait(&root->log_commit_wait[index], &wait);
1916 		mutex_lock(&root->log_mutex);
1917 	} while (root->log_transid < transid + 2 &&
1918 		 atomic_read(&root->log_commit[index]));
1919 	return 0;
1920 }
1921 
wait_for_writer(struct btrfs_trans_handle * trans,struct btrfs_root * root)1922 static int wait_for_writer(struct btrfs_trans_handle *trans,
1923 			   struct btrfs_root *root)
1924 {
1925 	DEFINE_WAIT(wait);
1926 	while (atomic_read(&root->log_writers)) {
1927 		prepare_to_wait(&root->log_writer_wait,
1928 				&wait, TASK_UNINTERRUPTIBLE);
1929 		mutex_unlock(&root->log_mutex);
1930 		if (root->fs_info->last_trans_log_full_commit !=
1931 		    trans->transid && atomic_read(&root->log_writers))
1932 			schedule();
1933 		mutex_lock(&root->log_mutex);
1934 		finish_wait(&root->log_writer_wait, &wait);
1935 	}
1936 	return 0;
1937 }
1938 
1939 /*
1940  * btrfs_sync_log does sends a given tree log down to the disk and
1941  * updates the super blocks to record it.  When this call is done,
1942  * you know that any inodes previously logged are safely on disk only
1943  * if it returns 0.
1944  *
1945  * Any other return value means you need to call btrfs_commit_transaction.
1946  * Some of the edge cases for fsyncing directories that have had unlinks
1947  * or renames done in the past mean that sometimes the only safe
1948  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1949  * that has happened.
1950  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)1951 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1952 		   struct btrfs_root *root)
1953 {
1954 	int index1;
1955 	int index2;
1956 	int mark;
1957 	int ret;
1958 	struct btrfs_root *log = root->log_root;
1959 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1960 	unsigned long log_transid = 0;
1961 
1962 	mutex_lock(&root->log_mutex);
1963 	index1 = root->log_transid % 2;
1964 	if (atomic_read(&root->log_commit[index1])) {
1965 		wait_log_commit(trans, root, root->log_transid);
1966 		mutex_unlock(&root->log_mutex);
1967 		return 0;
1968 	}
1969 	atomic_set(&root->log_commit[index1], 1);
1970 
1971 	/* wait for previous tree log sync to complete */
1972 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1973 		wait_log_commit(trans, root, root->log_transid - 1);
1974 
1975 	while (1) {
1976 		unsigned long batch = root->log_batch;
1977 		if (root->log_multiple_pids) {
1978 			mutex_unlock(&root->log_mutex);
1979 			schedule_timeout_uninterruptible(1);
1980 			mutex_lock(&root->log_mutex);
1981 		}
1982 		wait_for_writer(trans, root);
1983 		if (batch == root->log_batch)
1984 			break;
1985 	}
1986 
1987 	/* bail out if we need to do a full commit */
1988 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
1989 		ret = -EAGAIN;
1990 		mutex_unlock(&root->log_mutex);
1991 		goto out;
1992 	}
1993 
1994 	log_transid = root->log_transid;
1995 	if (log_transid % 2 == 0)
1996 		mark = EXTENT_DIRTY;
1997 	else
1998 		mark = EXTENT_NEW;
1999 
2000 	/* we start IO on  all the marked extents here, but we don't actually
2001 	 * wait for them until later.
2002 	 */
2003 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2004 	BUG_ON(ret);
2005 
2006 	btrfs_set_root_node(&log->root_item, log->node);
2007 
2008 	root->log_batch = 0;
2009 	root->log_transid++;
2010 	log->log_transid = root->log_transid;
2011 	root->log_start_pid = 0;
2012 	smp_mb();
2013 	/*
2014 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2015 	 * in their headers. new modifications of the log will be written to
2016 	 * new positions. so it's safe to allow log writers to go in.
2017 	 */
2018 	mutex_unlock(&root->log_mutex);
2019 
2020 	mutex_lock(&log_root_tree->log_mutex);
2021 	log_root_tree->log_batch++;
2022 	atomic_inc(&log_root_tree->log_writers);
2023 	mutex_unlock(&log_root_tree->log_mutex);
2024 
2025 	ret = update_log_root(trans, log);
2026 
2027 	mutex_lock(&log_root_tree->log_mutex);
2028 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2029 		smp_mb();
2030 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2031 			wake_up(&log_root_tree->log_writer_wait);
2032 	}
2033 
2034 	if (ret) {
2035 		BUG_ON(ret != -ENOSPC);
2036 		root->fs_info->last_trans_log_full_commit = trans->transid;
2037 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2038 		mutex_unlock(&log_root_tree->log_mutex);
2039 		ret = -EAGAIN;
2040 		goto out;
2041 	}
2042 
2043 	index2 = log_root_tree->log_transid % 2;
2044 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2045 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2046 		wait_log_commit(trans, log_root_tree,
2047 				log_root_tree->log_transid);
2048 		mutex_unlock(&log_root_tree->log_mutex);
2049 		ret = 0;
2050 		goto out;
2051 	}
2052 	atomic_set(&log_root_tree->log_commit[index2], 1);
2053 
2054 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2055 		wait_log_commit(trans, log_root_tree,
2056 				log_root_tree->log_transid - 1);
2057 	}
2058 
2059 	wait_for_writer(trans, log_root_tree);
2060 
2061 	/*
2062 	 * now that we've moved on to the tree of log tree roots,
2063 	 * check the full commit flag again
2064 	 */
2065 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2066 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2067 		mutex_unlock(&log_root_tree->log_mutex);
2068 		ret = -EAGAIN;
2069 		goto out_wake_log_root;
2070 	}
2071 
2072 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2073 				&log_root_tree->dirty_log_pages,
2074 				EXTENT_DIRTY | EXTENT_NEW);
2075 	BUG_ON(ret);
2076 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2077 
2078 	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2079 				log_root_tree->node->start);
2080 	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2081 				btrfs_header_level(log_root_tree->node));
2082 
2083 	log_root_tree->log_batch = 0;
2084 	log_root_tree->log_transid++;
2085 	smp_mb();
2086 
2087 	mutex_unlock(&log_root_tree->log_mutex);
2088 
2089 	/*
2090 	 * nobody else is going to jump in and write the the ctree
2091 	 * super here because the log_commit atomic below is protecting
2092 	 * us.  We must be called with a transaction handle pinning
2093 	 * the running transaction open, so a full commit can't hop
2094 	 * in and cause problems either.
2095 	 */
2096 	write_ctree_super(trans, root->fs_info->tree_root, 1);
2097 	ret = 0;
2098 
2099 	mutex_lock(&root->log_mutex);
2100 	if (root->last_log_commit < log_transid)
2101 		root->last_log_commit = log_transid;
2102 	mutex_unlock(&root->log_mutex);
2103 
2104 out_wake_log_root:
2105 	atomic_set(&log_root_tree->log_commit[index2], 0);
2106 	smp_mb();
2107 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2108 		wake_up(&log_root_tree->log_commit_wait[index2]);
2109 out:
2110 	atomic_set(&root->log_commit[index1], 0);
2111 	smp_mb();
2112 	if (waitqueue_active(&root->log_commit_wait[index1]))
2113 		wake_up(&root->log_commit_wait[index1]);
2114 	return ret;
2115 }
2116 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)2117 static void free_log_tree(struct btrfs_trans_handle *trans,
2118 			  struct btrfs_root *log)
2119 {
2120 	int ret;
2121 	u64 start;
2122 	u64 end;
2123 	struct walk_control wc = {
2124 		.free = 1,
2125 		.process_func = process_one_buffer
2126 	};
2127 
2128 	ret = walk_log_tree(trans, log, &wc);
2129 	BUG_ON(ret);
2130 
2131 	while (1) {
2132 		ret = find_first_extent_bit(&log->dirty_log_pages,
2133 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2134 		if (ret)
2135 			break;
2136 
2137 		clear_extent_bits(&log->dirty_log_pages, start, end,
2138 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2139 	}
2140 
2141 	free_extent_buffer(log->node);
2142 	kfree(log);
2143 }
2144 
2145 /*
2146  * free all the extents used by the tree log.  This should be called
2147  * at commit time of the full transaction
2148  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)2149 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2150 {
2151 	if (root->log_root) {
2152 		free_log_tree(trans, root->log_root);
2153 		root->log_root = NULL;
2154 	}
2155 	return 0;
2156 }
2157 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2158 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2159 			     struct btrfs_fs_info *fs_info)
2160 {
2161 	if (fs_info->log_root_tree) {
2162 		free_log_tree(trans, fs_info->log_root_tree);
2163 		fs_info->log_root_tree = NULL;
2164 	}
2165 	return 0;
2166 }
2167 
2168 /*
2169  * If both a file and directory are logged, and unlinks or renames are
2170  * mixed in, we have a few interesting corners:
2171  *
2172  * create file X in dir Y
2173  * link file X to X.link in dir Y
2174  * fsync file X
2175  * unlink file X but leave X.link
2176  * fsync dir Y
2177  *
2178  * After a crash we would expect only X.link to exist.  But file X
2179  * didn't get fsync'd again so the log has back refs for X and X.link.
2180  *
2181  * We solve this by removing directory entries and inode backrefs from the
2182  * log when a file that was logged in the current transaction is
2183  * unlinked.  Any later fsync will include the updated log entries, and
2184  * we'll be able to reconstruct the proper directory items from backrefs.
2185  *
2186  * This optimizations allows us to avoid relogging the entire inode
2187  * or the entire directory.
2188  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * dir,u64 index)2189 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2190 				 struct btrfs_root *root,
2191 				 const char *name, int name_len,
2192 				 struct inode *dir, u64 index)
2193 {
2194 	struct btrfs_root *log;
2195 	struct btrfs_dir_item *di;
2196 	struct btrfs_path *path;
2197 	int ret;
2198 	int err = 0;
2199 	int bytes_del = 0;
2200 
2201 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2202 		return 0;
2203 
2204 	ret = join_running_log_trans(root);
2205 	if (ret)
2206 		return 0;
2207 
2208 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2209 
2210 	log = root->log_root;
2211 	path = btrfs_alloc_path();
2212 	if (!path) {
2213 		err = -ENOMEM;
2214 		goto out_unlock;
2215 	}
2216 
2217 	di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2218 				   name, name_len, -1);
2219 	if (IS_ERR(di)) {
2220 		err = PTR_ERR(di);
2221 		goto fail;
2222 	}
2223 	if (di) {
2224 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2225 		bytes_del += name_len;
2226 		BUG_ON(ret);
2227 	}
2228 	btrfs_release_path(log, path);
2229 	di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2230 					 index, name, name_len, -1);
2231 	if (IS_ERR(di)) {
2232 		err = PTR_ERR(di);
2233 		goto fail;
2234 	}
2235 	if (di) {
2236 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2237 		bytes_del += name_len;
2238 		BUG_ON(ret);
2239 	}
2240 
2241 	/* update the directory size in the log to reflect the names
2242 	 * we have removed
2243 	 */
2244 	if (bytes_del) {
2245 		struct btrfs_key key;
2246 
2247 		key.objectid = dir->i_ino;
2248 		key.offset = 0;
2249 		key.type = BTRFS_INODE_ITEM_KEY;
2250 		btrfs_release_path(log, path);
2251 
2252 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2253 		if (ret < 0) {
2254 			err = ret;
2255 			goto fail;
2256 		}
2257 		if (ret == 0) {
2258 			struct btrfs_inode_item *item;
2259 			u64 i_size;
2260 
2261 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2262 					      struct btrfs_inode_item);
2263 			i_size = btrfs_inode_size(path->nodes[0], item);
2264 			if (i_size > bytes_del)
2265 				i_size -= bytes_del;
2266 			else
2267 				i_size = 0;
2268 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2269 			btrfs_mark_buffer_dirty(path->nodes[0]);
2270 		} else
2271 			ret = 0;
2272 		btrfs_release_path(log, path);
2273 	}
2274 fail:
2275 	btrfs_free_path(path);
2276 out_unlock:
2277 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2278 	if (ret == -ENOSPC) {
2279 		root->fs_info->last_trans_log_full_commit = trans->transid;
2280 		ret = 0;
2281 	}
2282 	btrfs_end_log_trans(root);
2283 
2284 	return err;
2285 }
2286 
2287 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * inode,u64 dirid)2288 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2289 			       struct btrfs_root *root,
2290 			       const char *name, int name_len,
2291 			       struct inode *inode, u64 dirid)
2292 {
2293 	struct btrfs_root *log;
2294 	u64 index;
2295 	int ret;
2296 
2297 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2298 		return 0;
2299 
2300 	ret = join_running_log_trans(root);
2301 	if (ret)
2302 		return 0;
2303 	log = root->log_root;
2304 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2305 
2306 	ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2307 				  dirid, &index);
2308 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2309 	if (ret == -ENOSPC) {
2310 		root->fs_info->last_trans_log_full_commit = trans->transid;
2311 		ret = 0;
2312 	}
2313 	btrfs_end_log_trans(root);
2314 
2315 	return ret;
2316 }
2317 
2318 /*
2319  * creates a range item in the log for 'dirid'.  first_offset and
2320  * last_offset tell us which parts of the key space the log should
2321  * be considered authoritative for.
2322  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)2323 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2324 				       struct btrfs_root *log,
2325 				       struct btrfs_path *path,
2326 				       int key_type, u64 dirid,
2327 				       u64 first_offset, u64 last_offset)
2328 {
2329 	int ret;
2330 	struct btrfs_key key;
2331 	struct btrfs_dir_log_item *item;
2332 
2333 	key.objectid = dirid;
2334 	key.offset = first_offset;
2335 	if (key_type == BTRFS_DIR_ITEM_KEY)
2336 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2337 	else
2338 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2339 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2340 	if (ret)
2341 		return ret;
2342 
2343 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2344 			      struct btrfs_dir_log_item);
2345 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2346 	btrfs_mark_buffer_dirty(path->nodes[0]);
2347 	btrfs_release_path(log, path);
2348 	return 0;
2349 }
2350 
2351 /*
2352  * log all the items included in the current transaction for a given
2353  * directory.  This also creates the range items in the log tree required
2354  * to replay anything deleted before the fsync
2355  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,u64 min_offset,u64 * last_offset_ret)2356 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2357 			  struct btrfs_root *root, struct inode *inode,
2358 			  struct btrfs_path *path,
2359 			  struct btrfs_path *dst_path, int key_type,
2360 			  u64 min_offset, u64 *last_offset_ret)
2361 {
2362 	struct btrfs_key min_key;
2363 	struct btrfs_key max_key;
2364 	struct btrfs_root *log = root->log_root;
2365 	struct extent_buffer *src;
2366 	int err = 0;
2367 	int ret;
2368 	int i;
2369 	int nritems;
2370 	u64 first_offset = min_offset;
2371 	u64 last_offset = (u64)-1;
2372 
2373 	log = root->log_root;
2374 	max_key.objectid = inode->i_ino;
2375 	max_key.offset = (u64)-1;
2376 	max_key.type = key_type;
2377 
2378 	min_key.objectid = inode->i_ino;
2379 	min_key.type = key_type;
2380 	min_key.offset = min_offset;
2381 
2382 	path->keep_locks = 1;
2383 
2384 	ret = btrfs_search_forward(root, &min_key, &max_key,
2385 				   path, 0, trans->transid);
2386 
2387 	/*
2388 	 * we didn't find anything from this transaction, see if there
2389 	 * is anything at all
2390 	 */
2391 	if (ret != 0 || min_key.objectid != inode->i_ino ||
2392 	    min_key.type != key_type) {
2393 		min_key.objectid = inode->i_ino;
2394 		min_key.type = key_type;
2395 		min_key.offset = (u64)-1;
2396 		btrfs_release_path(root, path);
2397 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2398 		if (ret < 0) {
2399 			btrfs_release_path(root, path);
2400 			return ret;
2401 		}
2402 		ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2403 
2404 		/* if ret == 0 there are items for this type,
2405 		 * create a range to tell us the last key of this type.
2406 		 * otherwise, there are no items in this directory after
2407 		 * *min_offset, and we create a range to indicate that.
2408 		 */
2409 		if (ret == 0) {
2410 			struct btrfs_key tmp;
2411 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2412 					      path->slots[0]);
2413 			if (key_type == tmp.type)
2414 				first_offset = max(min_offset, tmp.offset) + 1;
2415 		}
2416 		goto done;
2417 	}
2418 
2419 	/* go backward to find any previous key */
2420 	ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2421 	if (ret == 0) {
2422 		struct btrfs_key tmp;
2423 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2424 		if (key_type == tmp.type) {
2425 			first_offset = tmp.offset;
2426 			ret = overwrite_item(trans, log, dst_path,
2427 					     path->nodes[0], path->slots[0],
2428 					     &tmp);
2429 			if (ret) {
2430 				err = ret;
2431 				goto done;
2432 			}
2433 		}
2434 	}
2435 	btrfs_release_path(root, path);
2436 
2437 	/* find the first key from this transaction again */
2438 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2439 	if (ret != 0) {
2440 		WARN_ON(1);
2441 		goto done;
2442 	}
2443 
2444 	/*
2445 	 * we have a block from this transaction, log every item in it
2446 	 * from our directory
2447 	 */
2448 	while (1) {
2449 		struct btrfs_key tmp;
2450 		src = path->nodes[0];
2451 		nritems = btrfs_header_nritems(src);
2452 		for (i = path->slots[0]; i < nritems; i++) {
2453 			btrfs_item_key_to_cpu(src, &min_key, i);
2454 
2455 			if (min_key.objectid != inode->i_ino ||
2456 			    min_key.type != key_type)
2457 				goto done;
2458 			ret = overwrite_item(trans, log, dst_path, src, i,
2459 					     &min_key);
2460 			if (ret) {
2461 				err = ret;
2462 				goto done;
2463 			}
2464 		}
2465 		path->slots[0] = nritems;
2466 
2467 		/*
2468 		 * look ahead to the next item and see if it is also
2469 		 * from this directory and from this transaction
2470 		 */
2471 		ret = btrfs_next_leaf(root, path);
2472 		if (ret == 1) {
2473 			last_offset = (u64)-1;
2474 			goto done;
2475 		}
2476 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2477 		if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2478 			last_offset = (u64)-1;
2479 			goto done;
2480 		}
2481 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2482 			ret = overwrite_item(trans, log, dst_path,
2483 					     path->nodes[0], path->slots[0],
2484 					     &tmp);
2485 			if (ret)
2486 				err = ret;
2487 			else
2488 				last_offset = tmp.offset;
2489 			goto done;
2490 		}
2491 	}
2492 done:
2493 	btrfs_release_path(root, path);
2494 	btrfs_release_path(log, dst_path);
2495 
2496 	if (err == 0) {
2497 		*last_offset_ret = last_offset;
2498 		/*
2499 		 * insert the log range keys to indicate where the log
2500 		 * is valid
2501 		 */
2502 		ret = insert_dir_log_key(trans, log, path, key_type,
2503 					 inode->i_ino, first_offset,
2504 					 last_offset);
2505 		if (ret)
2506 			err = ret;
2507 	}
2508 	return err;
2509 }
2510 
2511 /*
2512  * logging directories is very similar to logging inodes, We find all the items
2513  * from the current transaction and write them to the log.
2514  *
2515  * The recovery code scans the directory in the subvolume, and if it finds a
2516  * key in the range logged that is not present in the log tree, then it means
2517  * that dir entry was unlinked during the transaction.
2518  *
2519  * In order for that scan to work, we must include one key smaller than
2520  * the smallest logged by this transaction and one key larger than the largest
2521  * key logged by this transaction.
2522  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)2523 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2524 			  struct btrfs_root *root, struct inode *inode,
2525 			  struct btrfs_path *path,
2526 			  struct btrfs_path *dst_path)
2527 {
2528 	u64 min_key;
2529 	u64 max_key;
2530 	int ret;
2531 	int key_type = BTRFS_DIR_ITEM_KEY;
2532 
2533 again:
2534 	min_key = 0;
2535 	max_key = 0;
2536 	while (1) {
2537 		ret = log_dir_items(trans, root, inode, path,
2538 				    dst_path, key_type, min_key,
2539 				    &max_key);
2540 		if (ret)
2541 			return ret;
2542 		if (max_key == (u64)-1)
2543 			break;
2544 		min_key = max_key + 1;
2545 	}
2546 
2547 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2548 		key_type = BTRFS_DIR_INDEX_KEY;
2549 		goto again;
2550 	}
2551 	return 0;
2552 }
2553 
2554 /*
2555  * a helper function to drop items from the log before we relog an
2556  * inode.  max_key_type indicates the highest item type to remove.
2557  * This cannot be run for file data extents because it does not
2558  * free the extents they point to.
2559  */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)2560 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2561 				  struct btrfs_root *log,
2562 				  struct btrfs_path *path,
2563 				  u64 objectid, int max_key_type)
2564 {
2565 	int ret;
2566 	struct btrfs_key key;
2567 	struct btrfs_key found_key;
2568 
2569 	key.objectid = objectid;
2570 	key.type = max_key_type;
2571 	key.offset = (u64)-1;
2572 
2573 	while (1) {
2574 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2575 		BUG_ON(ret == 0);
2576 		if (ret < 0)
2577 			break;
2578 
2579 		if (path->slots[0] == 0)
2580 			break;
2581 
2582 		path->slots[0]--;
2583 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2584 				      path->slots[0]);
2585 
2586 		if (found_key.objectid != objectid)
2587 			break;
2588 
2589 		ret = btrfs_del_item(trans, log, path);
2590 		BUG_ON(ret);
2591 		btrfs_release_path(log, path);
2592 	}
2593 	btrfs_release_path(log, path);
2594 	return ret;
2595 }
2596 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * dst_path,struct extent_buffer * src,int start_slot,int nr,int inode_only)2597 static noinline int copy_items(struct btrfs_trans_handle *trans,
2598 			       struct btrfs_root *log,
2599 			       struct btrfs_path *dst_path,
2600 			       struct extent_buffer *src,
2601 			       int start_slot, int nr, int inode_only)
2602 {
2603 	unsigned long src_offset;
2604 	unsigned long dst_offset;
2605 	struct btrfs_file_extent_item *extent;
2606 	struct btrfs_inode_item *inode_item;
2607 	int ret;
2608 	struct btrfs_key *ins_keys;
2609 	u32 *ins_sizes;
2610 	char *ins_data;
2611 	int i;
2612 	struct list_head ordered_sums;
2613 
2614 	INIT_LIST_HEAD(&ordered_sums);
2615 
2616 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2617 			   nr * sizeof(u32), GFP_NOFS);
2618 	if (!ins_data)
2619 		return -ENOMEM;
2620 
2621 	ins_sizes = (u32 *)ins_data;
2622 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2623 
2624 	for (i = 0; i < nr; i++) {
2625 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2626 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2627 	}
2628 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2629 				       ins_keys, ins_sizes, nr);
2630 	if (ret) {
2631 		kfree(ins_data);
2632 		return ret;
2633 	}
2634 
2635 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2636 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2637 						   dst_path->slots[0]);
2638 
2639 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2640 
2641 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2642 				   src_offset, ins_sizes[i]);
2643 
2644 		if (inode_only == LOG_INODE_EXISTS &&
2645 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2646 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2647 						    dst_path->slots[0],
2648 						    struct btrfs_inode_item);
2649 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2650 
2651 			/* set the generation to zero so the recover code
2652 			 * can tell the difference between an logging
2653 			 * just to say 'this inode exists' and a logging
2654 			 * to say 'update this inode with these values'
2655 			 */
2656 			btrfs_set_inode_generation(dst_path->nodes[0],
2657 						   inode_item, 0);
2658 		}
2659 		/* take a reference on file data extents so that truncates
2660 		 * or deletes of this inode don't have to relog the inode
2661 		 * again
2662 		 */
2663 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2664 			int found_type;
2665 			extent = btrfs_item_ptr(src, start_slot + i,
2666 						struct btrfs_file_extent_item);
2667 
2668 			found_type = btrfs_file_extent_type(src, extent);
2669 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2670 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2671 				u64 ds, dl, cs, cl;
2672 				ds = btrfs_file_extent_disk_bytenr(src,
2673 								extent);
2674 				/* ds == 0 is a hole */
2675 				if (ds == 0)
2676 					continue;
2677 
2678 				dl = btrfs_file_extent_disk_num_bytes(src,
2679 								extent);
2680 				cs = btrfs_file_extent_offset(src, extent);
2681 				cl = btrfs_file_extent_num_bytes(src,
2682 								extent);
2683 				if (btrfs_file_extent_compression(src,
2684 								  extent)) {
2685 					cs = 0;
2686 					cl = dl;
2687 				}
2688 
2689 				ret = btrfs_lookup_csums_range(
2690 						log->fs_info->csum_root,
2691 						ds + cs, ds + cs + cl - 1,
2692 						&ordered_sums);
2693 				BUG_ON(ret);
2694 			}
2695 		}
2696 	}
2697 
2698 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2699 	btrfs_release_path(log, dst_path);
2700 	kfree(ins_data);
2701 
2702 	/*
2703 	 * we have to do this after the loop above to avoid changing the
2704 	 * log tree while trying to change the log tree.
2705 	 */
2706 	ret = 0;
2707 	while (!list_empty(&ordered_sums)) {
2708 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2709 						   struct btrfs_ordered_sum,
2710 						   list);
2711 		if (!ret)
2712 			ret = btrfs_csum_file_blocks(trans, log, sums);
2713 		list_del(&sums->list);
2714 		kfree(sums);
2715 	}
2716 	return ret;
2717 }
2718 
2719 /* log a single inode in the tree log.
2720  * At least one parent directory for this inode must exist in the tree
2721  * or be logged already.
2722  *
2723  * Any items from this inode changed by the current transaction are copied
2724  * to the log tree.  An extra reference is taken on any extents in this
2725  * file, allowing us to avoid a whole pile of corner cases around logging
2726  * blocks that have been removed from the tree.
2727  *
2728  * See LOG_INODE_ALL and related defines for a description of what inode_only
2729  * does.
2730  *
2731  * This handles both files and directories.
2732  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,int inode_only)2733 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2734 			     struct btrfs_root *root, struct inode *inode,
2735 			     int inode_only)
2736 {
2737 	struct btrfs_path *path;
2738 	struct btrfs_path *dst_path;
2739 	struct btrfs_key min_key;
2740 	struct btrfs_key max_key;
2741 	struct btrfs_root *log = root->log_root;
2742 	struct extent_buffer *src = NULL;
2743 	int err = 0;
2744 	int ret;
2745 	int nritems;
2746 	int ins_start_slot = 0;
2747 	int ins_nr;
2748 
2749 	log = root->log_root;
2750 
2751 	path = btrfs_alloc_path();
2752 	if (!path)
2753 		return -ENOMEM;
2754 	dst_path = btrfs_alloc_path();
2755 	if (!dst_path) {
2756 		btrfs_free_path(path);
2757 		return -ENOMEM;
2758 	}
2759 
2760 	min_key.objectid = inode->i_ino;
2761 	min_key.type = BTRFS_INODE_ITEM_KEY;
2762 	min_key.offset = 0;
2763 
2764 	max_key.objectid = inode->i_ino;
2765 
2766 	/* today the code can only do partial logging of directories */
2767 	if (!S_ISDIR(inode->i_mode))
2768 	    inode_only = LOG_INODE_ALL;
2769 
2770 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2771 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2772 	else
2773 		max_key.type = (u8)-1;
2774 	max_key.offset = (u64)-1;
2775 
2776 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2777 
2778 	/*
2779 	 * a brute force approach to making sure we get the most uptodate
2780 	 * copies of everything.
2781 	 */
2782 	if (S_ISDIR(inode->i_mode)) {
2783 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2784 
2785 		if (inode_only == LOG_INODE_EXISTS)
2786 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2787 		ret = drop_objectid_items(trans, log, path,
2788 					  inode->i_ino, max_key_type);
2789 	} else {
2790 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2791 	}
2792 	if (ret) {
2793 		err = ret;
2794 		goto out_unlock;
2795 	}
2796 	path->keep_locks = 1;
2797 
2798 	while (1) {
2799 		ins_nr = 0;
2800 		ret = btrfs_search_forward(root, &min_key, &max_key,
2801 					   path, 0, trans->transid);
2802 		if (ret != 0)
2803 			break;
2804 again:
2805 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2806 		if (min_key.objectid != inode->i_ino)
2807 			break;
2808 		if (min_key.type > max_key.type)
2809 			break;
2810 
2811 		src = path->nodes[0];
2812 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2813 			ins_nr++;
2814 			goto next_slot;
2815 		} else if (!ins_nr) {
2816 			ins_start_slot = path->slots[0];
2817 			ins_nr = 1;
2818 			goto next_slot;
2819 		}
2820 
2821 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2822 				 ins_nr, inode_only);
2823 		if (ret) {
2824 			err = ret;
2825 			goto out_unlock;
2826 		}
2827 		ins_nr = 1;
2828 		ins_start_slot = path->slots[0];
2829 next_slot:
2830 
2831 		nritems = btrfs_header_nritems(path->nodes[0]);
2832 		path->slots[0]++;
2833 		if (path->slots[0] < nritems) {
2834 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2835 					      path->slots[0]);
2836 			goto again;
2837 		}
2838 		if (ins_nr) {
2839 			ret = copy_items(trans, log, dst_path, src,
2840 					 ins_start_slot,
2841 					 ins_nr, inode_only);
2842 			if (ret) {
2843 				err = ret;
2844 				goto out_unlock;
2845 			}
2846 			ins_nr = 0;
2847 		}
2848 		btrfs_release_path(root, path);
2849 
2850 		if (min_key.offset < (u64)-1)
2851 			min_key.offset++;
2852 		else if (min_key.type < (u8)-1)
2853 			min_key.type++;
2854 		else if (min_key.objectid < (u64)-1)
2855 			min_key.objectid++;
2856 		else
2857 			break;
2858 	}
2859 	if (ins_nr) {
2860 		ret = copy_items(trans, log, dst_path, src,
2861 				 ins_start_slot,
2862 				 ins_nr, inode_only);
2863 		if (ret) {
2864 			err = ret;
2865 			goto out_unlock;
2866 		}
2867 		ins_nr = 0;
2868 	}
2869 	WARN_ON(ins_nr);
2870 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2871 		btrfs_release_path(root, path);
2872 		btrfs_release_path(log, dst_path);
2873 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2874 		if (ret) {
2875 			err = ret;
2876 			goto out_unlock;
2877 		}
2878 	}
2879 	BTRFS_I(inode)->logged_trans = trans->transid;
2880 out_unlock:
2881 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2882 
2883 	btrfs_free_path(path);
2884 	btrfs_free_path(dst_path);
2885 	return err;
2886 }
2887 
2888 /*
2889  * follow the dentry parent pointers up the chain and see if any
2890  * of the directories in it require a full commit before they can
2891  * be logged.  Returns zero if nothing special needs to be done or 1 if
2892  * a full commit is required.
2893  */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)2894 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2895 					       struct inode *inode,
2896 					       struct dentry *parent,
2897 					       struct super_block *sb,
2898 					       u64 last_committed)
2899 {
2900 	int ret = 0;
2901 	struct btrfs_root *root;
2902 	struct dentry *old_parent = NULL;
2903 
2904 	/*
2905 	 * for regular files, if its inode is already on disk, we don't
2906 	 * have to worry about the parents at all.  This is because
2907 	 * we can use the last_unlink_trans field to record renames
2908 	 * and other fun in this file.
2909 	 */
2910 	if (S_ISREG(inode->i_mode) &&
2911 	    BTRFS_I(inode)->generation <= last_committed &&
2912 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2913 			goto out;
2914 
2915 	if (!S_ISDIR(inode->i_mode)) {
2916 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2917 			goto out;
2918 		inode = parent->d_inode;
2919 	}
2920 
2921 	while (1) {
2922 		BTRFS_I(inode)->logged_trans = trans->transid;
2923 		smp_mb();
2924 
2925 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2926 			root = BTRFS_I(inode)->root;
2927 
2928 			/*
2929 			 * make sure any commits to the log are forced
2930 			 * to be full commits
2931 			 */
2932 			root->fs_info->last_trans_log_full_commit =
2933 				trans->transid;
2934 			ret = 1;
2935 			break;
2936 		}
2937 
2938 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2939 			break;
2940 
2941 		if (IS_ROOT(parent))
2942 			break;
2943 
2944 		parent = dget_parent(parent);
2945 		dput(old_parent);
2946 		old_parent = parent;
2947 		inode = parent->d_inode;
2948 
2949 	}
2950 	dput(old_parent);
2951 out:
2952 	return ret;
2953 }
2954 
inode_in_log(struct btrfs_trans_handle * trans,struct inode * inode)2955 static int inode_in_log(struct btrfs_trans_handle *trans,
2956 		 struct inode *inode)
2957 {
2958 	struct btrfs_root *root = BTRFS_I(inode)->root;
2959 	int ret = 0;
2960 
2961 	mutex_lock(&root->log_mutex);
2962 	if (BTRFS_I(inode)->logged_trans == trans->transid &&
2963 	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2964 		ret = 1;
2965 	mutex_unlock(&root->log_mutex);
2966 	return ret;
2967 }
2968 
2969 
2970 /*
2971  * helper function around btrfs_log_inode to make sure newly created
2972  * parent directories also end up in the log.  A minimal inode and backref
2973  * only logging is done of any parent directories that are older than
2974  * the last committed transaction
2975  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct dentry * parent,int exists_only)2976 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2977 		    struct btrfs_root *root, struct inode *inode,
2978 		    struct dentry *parent, int exists_only)
2979 {
2980 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2981 	struct super_block *sb;
2982 	struct dentry *old_parent = NULL;
2983 	int ret = 0;
2984 	u64 last_committed = root->fs_info->last_trans_committed;
2985 
2986 	sb = inode->i_sb;
2987 
2988 	if (btrfs_test_opt(root, NOTREELOG)) {
2989 		ret = 1;
2990 		goto end_no_trans;
2991 	}
2992 
2993 	if (root->fs_info->last_trans_log_full_commit >
2994 	    root->fs_info->last_trans_committed) {
2995 		ret = 1;
2996 		goto end_no_trans;
2997 	}
2998 
2999 	if (root != BTRFS_I(inode)->root ||
3000 	    btrfs_root_refs(&root->root_item) == 0) {
3001 		ret = 1;
3002 		goto end_no_trans;
3003 	}
3004 
3005 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3006 					 sb, last_committed);
3007 	if (ret)
3008 		goto end_no_trans;
3009 
3010 	if (inode_in_log(trans, inode)) {
3011 		ret = BTRFS_NO_LOG_SYNC;
3012 		goto end_no_trans;
3013 	}
3014 
3015 	ret = start_log_trans(trans, root);
3016 	if (ret)
3017 		goto end_trans;
3018 
3019 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3020 	if (ret)
3021 		goto end_trans;
3022 
3023 	/*
3024 	 * for regular files, if its inode is already on disk, we don't
3025 	 * have to worry about the parents at all.  This is because
3026 	 * we can use the last_unlink_trans field to record renames
3027 	 * and other fun in this file.
3028 	 */
3029 	if (S_ISREG(inode->i_mode) &&
3030 	    BTRFS_I(inode)->generation <= last_committed &&
3031 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3032 		ret = 0;
3033 		goto end_trans;
3034 	}
3035 
3036 	inode_only = LOG_INODE_EXISTS;
3037 	while (1) {
3038 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3039 			break;
3040 
3041 		inode = parent->d_inode;
3042 		if (root != BTRFS_I(inode)->root)
3043 			break;
3044 
3045 		if (BTRFS_I(inode)->generation >
3046 		    root->fs_info->last_trans_committed) {
3047 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3048 			if (ret)
3049 				goto end_trans;
3050 		}
3051 		if (IS_ROOT(parent))
3052 			break;
3053 
3054 		parent = dget_parent(parent);
3055 		dput(old_parent);
3056 		old_parent = parent;
3057 	}
3058 	ret = 0;
3059 end_trans:
3060 	dput(old_parent);
3061 	if (ret < 0) {
3062 		BUG_ON(ret != -ENOSPC);
3063 		root->fs_info->last_trans_log_full_commit = trans->transid;
3064 		ret = 1;
3065 	}
3066 	btrfs_end_log_trans(root);
3067 end_no_trans:
3068 	return ret;
3069 }
3070 
3071 /*
3072  * it is not safe to log dentry if the chunk root has added new
3073  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3074  * If this returns 1, you must commit the transaction to safely get your
3075  * data on disk.
3076  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct dentry * dentry)3077 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3078 			  struct btrfs_root *root, struct dentry *dentry)
3079 {
3080 	struct dentry *parent = dget_parent(dentry);
3081 	int ret;
3082 
3083 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3084 	dput(parent);
3085 
3086 	return ret;
3087 }
3088 
3089 /*
3090  * should be called during mount to recover any replay any log trees
3091  * from the FS
3092  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)3093 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3094 {
3095 	int ret;
3096 	struct btrfs_path *path;
3097 	struct btrfs_trans_handle *trans;
3098 	struct btrfs_key key;
3099 	struct btrfs_key found_key;
3100 	struct btrfs_key tmp_key;
3101 	struct btrfs_root *log;
3102 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3103 	struct walk_control wc = {
3104 		.process_func = process_one_buffer,
3105 		.stage = 0,
3106 	};
3107 
3108 	path = btrfs_alloc_path();
3109 	if (!path)
3110 		return -ENOMEM;
3111 
3112 	fs_info->log_root_recovering = 1;
3113 
3114 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3115 	BUG_ON(IS_ERR(trans));
3116 
3117 	wc.trans = trans;
3118 	wc.pin = 1;
3119 
3120 	ret = walk_log_tree(trans, log_root_tree, &wc);
3121 	BUG_ON(ret);
3122 
3123 again:
3124 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3125 	key.offset = (u64)-1;
3126 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3127 
3128 	while (1) {
3129 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3130 		if (ret < 0)
3131 			break;
3132 		if (ret > 0) {
3133 			if (path->slots[0] == 0)
3134 				break;
3135 			path->slots[0]--;
3136 		}
3137 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3138 				      path->slots[0]);
3139 		btrfs_release_path(log_root_tree, path);
3140 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3141 			break;
3142 
3143 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3144 						  &found_key);
3145 		BUG_ON(IS_ERR(log));
3146 
3147 		tmp_key.objectid = found_key.offset;
3148 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3149 		tmp_key.offset = (u64)-1;
3150 
3151 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3152 		BUG_ON(!wc.replay_dest);
3153 
3154 		wc.replay_dest->log_root = log;
3155 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3156 		ret = walk_log_tree(trans, log, &wc);
3157 		BUG_ON(ret);
3158 
3159 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3160 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3161 						      path);
3162 			BUG_ON(ret);
3163 		}
3164 
3165 		key.offset = found_key.offset - 1;
3166 		wc.replay_dest->log_root = NULL;
3167 		free_extent_buffer(log->node);
3168 		free_extent_buffer(log->commit_root);
3169 		kfree(log);
3170 
3171 		if (found_key.offset == 0)
3172 			break;
3173 	}
3174 	btrfs_release_path(log_root_tree, path);
3175 
3176 	/* step one is to pin it all, step two is to replay just inodes */
3177 	if (wc.pin) {
3178 		wc.pin = 0;
3179 		wc.process_func = replay_one_buffer;
3180 		wc.stage = LOG_WALK_REPLAY_INODES;
3181 		goto again;
3182 	}
3183 	/* step three is to replay everything */
3184 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3185 		wc.stage++;
3186 		goto again;
3187 	}
3188 
3189 	btrfs_free_path(path);
3190 
3191 	free_extent_buffer(log_root_tree->node);
3192 	log_root_tree->log_root = NULL;
3193 	fs_info->log_root_recovering = 0;
3194 
3195 	/* step 4: commit the transaction, which also unpins the blocks */
3196 	btrfs_commit_transaction(trans, fs_info->tree_root);
3197 
3198 	kfree(log_root_tree);
3199 	return 0;
3200 }
3201 
3202 /*
3203  * there are some corner cases where we want to force a full
3204  * commit instead of allowing a directory to be logged.
3205  *
3206  * They revolve around files there were unlinked from the directory, and
3207  * this function updates the parent directory so that a full commit is
3208  * properly done if it is fsync'd later after the unlinks are done.
3209  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct inode * dir,struct inode * inode,int for_rename)3210 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3211 			     struct inode *dir, struct inode *inode,
3212 			     int for_rename)
3213 {
3214 	/*
3215 	 * when we're logging a file, if it hasn't been renamed
3216 	 * or unlinked, and its inode is fully committed on disk,
3217 	 * we don't have to worry about walking up the directory chain
3218 	 * to log its parents.
3219 	 *
3220 	 * So, we use the last_unlink_trans field to put this transid
3221 	 * into the file.  When the file is logged we check it and
3222 	 * don't log the parents if the file is fully on disk.
3223 	 */
3224 	if (S_ISREG(inode->i_mode))
3225 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3226 
3227 	/*
3228 	 * if this directory was already logged any new
3229 	 * names for this file/dir will get recorded
3230 	 */
3231 	smp_mb();
3232 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3233 		return;
3234 
3235 	/*
3236 	 * if the inode we're about to unlink was logged,
3237 	 * the log will be properly updated for any new names
3238 	 */
3239 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3240 		return;
3241 
3242 	/*
3243 	 * when renaming files across directories, if the directory
3244 	 * there we're unlinking from gets fsync'd later on, there's
3245 	 * no way to find the destination directory later and fsync it
3246 	 * properly.  So, we have to be conservative and force commits
3247 	 * so the new name gets discovered.
3248 	 */
3249 	if (for_rename)
3250 		goto record;
3251 
3252 	/* we can safely do the unlink without any special recording */
3253 	return;
3254 
3255 record:
3256 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3257 }
3258 
3259 /*
3260  * Call this after adding a new name for a file and it will properly
3261  * update the log to reflect the new name.
3262  *
3263  * It will return zero if all goes well, and it will return 1 if a
3264  * full transaction commit is required.
3265  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * old_dir,struct dentry * parent)3266 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3267 			struct inode *inode, struct inode *old_dir,
3268 			struct dentry *parent)
3269 {
3270 	struct btrfs_root * root = BTRFS_I(inode)->root;
3271 
3272 	/*
3273 	 * this will force the logging code to walk the dentry chain
3274 	 * up for the file
3275 	 */
3276 	if (S_ISREG(inode->i_mode))
3277 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3278 
3279 	/*
3280 	 * if this inode hasn't been logged and directory we're renaming it
3281 	 * from hasn't been logged, we don't need to log it
3282 	 */
3283 	if (BTRFS_I(inode)->logged_trans <=
3284 	    root->fs_info->last_trans_committed &&
3285 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3286 		    root->fs_info->last_trans_committed))
3287 		return 0;
3288 
3289 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3290 }
3291 
3292