1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/list_sort.h>
4 #include "misc.h"
5 #include "ctree.h"
6 #include "block-group.h"
7 #include "space-info.h"
8 #include "disk-io.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 #include "zoned.h"
20
21 /*
22 * Return target flags in extended format or 0 if restripe for this chunk_type
23 * is not in progress
24 *
25 * Should be called with balance_lock held
26 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
28 {
29 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 u64 target = 0;
31
32 if (!bctl)
33 return 0;
34
35 if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 }
45
46 return target;
47 }
48
49 /*
50 * @flags: available profiles in extended format (see ctree.h)
51 *
52 * Return reduced profile in chunk format. If profile changing is in progress
53 * (either running or paused) picks the target profile (if it's already
54 * available), otherwise falls back to plain reducing.
55 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 u64 num_devices = fs_info->fs_devices->rw_devices;
59 u64 target;
60 u64 raid_type;
61 u64 allowed = 0;
62
63 /*
64 * See if restripe for this chunk_type is in progress, if so try to
65 * reduce to the target profile
66 */
67 spin_lock(&fs_info->balance_lock);
68 target = get_restripe_target(fs_info, flags);
69 if (target) {
70 spin_unlock(&fs_info->balance_lock);
71 return extended_to_chunk(target);
72 }
73 spin_unlock(&fs_info->balance_lock);
74
75 /* First, mask out the RAID levels which aren't possible */
76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 allowed |= btrfs_raid_array[raid_type].bg_flag;
79 }
80 allowed &= flags;
81
82 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 allowed = BTRFS_BLOCK_GROUP_RAID6;
84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 allowed = BTRFS_BLOCK_GROUP_RAID5;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 allowed = BTRFS_BLOCK_GROUP_RAID10;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 allowed = BTRFS_BLOCK_GROUP_RAID1;
90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 allowed = BTRFS_BLOCK_GROUP_RAID0;
92
93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94
95 return extended_to_chunk(flags | allowed);
96 }
97
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 unsigned seq;
101 u64 flags;
102
103 do {
104 flags = orig_flags;
105 seq = read_seqbegin(&fs_info->profiles_lock);
106
107 if (flags & BTRFS_BLOCK_GROUP_DATA)
108 flags |= fs_info->avail_data_alloc_bits;
109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 flags |= fs_info->avail_system_alloc_bits;
111 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 flags |= fs_info->avail_metadata_alloc_bits;
113 } while (read_seqretry(&fs_info->profiles_lock, seq));
114
115 return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117
btrfs_get_block_group(struct btrfs_block_group * cache)118 void btrfs_get_block_group(struct btrfs_block_group *cache)
119 {
120 refcount_inc(&cache->refs);
121 }
122
btrfs_put_block_group(struct btrfs_block_group * cache)123 void btrfs_put_block_group(struct btrfs_block_group *cache)
124 {
125 if (refcount_dec_and_test(&cache->refs)) {
126 WARN_ON(cache->pinned > 0);
127 /*
128 * If there was a failure to cleanup a log tree, very likely due
129 * to an IO failure on a writeback attempt of one or more of its
130 * extent buffers, we could not do proper (and cheap) unaccounting
131 * of their reserved space, so don't warn on reserved > 0 in that
132 * case.
133 */
134 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
135 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
136 WARN_ON(cache->reserved > 0);
137
138 /*
139 * A block_group shouldn't be on the discard_list anymore.
140 * Remove the block_group from the discard_list to prevent us
141 * from causing a panic due to NULL pointer dereference.
142 */
143 if (WARN_ON(!list_empty(&cache->discard_list)))
144 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
145 cache);
146
147 /*
148 * If not empty, someone is still holding mutex of
149 * full_stripe_lock, which can only be released by caller.
150 * And it will definitely cause use-after-free when caller
151 * tries to release full stripe lock.
152 *
153 * No better way to resolve, but only to warn.
154 */
155 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
156 kfree(cache->free_space_ctl);
157 kfree(cache->physical_map);
158 kfree(cache);
159 }
160 }
161
162 /*
163 * This adds the block group to the fs_info rb tree for the block group cache
164 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
166 struct btrfs_block_group *block_group)
167 {
168 struct rb_node **p;
169 struct rb_node *parent = NULL;
170 struct btrfs_block_group *cache;
171 bool leftmost = true;
172
173 ASSERT(block_group->length != 0);
174
175 write_lock(&info->block_group_cache_lock);
176 p = &info->block_group_cache_tree.rb_root.rb_node;
177
178 while (*p) {
179 parent = *p;
180 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
181 if (block_group->start < cache->start) {
182 p = &(*p)->rb_left;
183 } else if (block_group->start > cache->start) {
184 p = &(*p)->rb_right;
185 leftmost = false;
186 } else {
187 write_unlock(&info->block_group_cache_lock);
188 return -EEXIST;
189 }
190 }
191
192 rb_link_node(&block_group->cache_node, parent, p);
193 rb_insert_color_cached(&block_group->cache_node,
194 &info->block_group_cache_tree, leftmost);
195
196 write_unlock(&info->block_group_cache_lock);
197
198 return 0;
199 }
200
201 /*
202 * This will return the block group at or after bytenr if contains is 0, else
203 * it will return the block group that contains the bytenr
204 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)205 static struct btrfs_block_group *block_group_cache_tree_search(
206 struct btrfs_fs_info *info, u64 bytenr, int contains)
207 {
208 struct btrfs_block_group *cache, *ret = NULL;
209 struct rb_node *n;
210 u64 end, start;
211
212 read_lock(&info->block_group_cache_lock);
213 n = info->block_group_cache_tree.rb_root.rb_node;
214
215 while (n) {
216 cache = rb_entry(n, struct btrfs_block_group, cache_node);
217 end = cache->start + cache->length - 1;
218 start = cache->start;
219
220 if (bytenr < start) {
221 if (!contains && (!ret || start < ret->start))
222 ret = cache;
223 n = n->rb_left;
224 } else if (bytenr > start) {
225 if (contains && bytenr <= end) {
226 ret = cache;
227 break;
228 }
229 n = n->rb_right;
230 } else {
231 ret = cache;
232 break;
233 }
234 }
235 if (ret)
236 btrfs_get_block_group(ret);
237 read_unlock(&info->block_group_cache_lock);
238
239 return ret;
240 }
241
242 /*
243 * Return the block group that starts at or after bytenr
244 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)245 struct btrfs_block_group *btrfs_lookup_first_block_group(
246 struct btrfs_fs_info *info, u64 bytenr)
247 {
248 return block_group_cache_tree_search(info, bytenr, 0);
249 }
250
251 /*
252 * Return the block group that contains the given bytenr
253 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)254 struct btrfs_block_group *btrfs_lookup_block_group(
255 struct btrfs_fs_info *info, u64 bytenr)
256 {
257 return block_group_cache_tree_search(info, bytenr, 1);
258 }
259
btrfs_next_block_group(struct btrfs_block_group * cache)260 struct btrfs_block_group *btrfs_next_block_group(
261 struct btrfs_block_group *cache)
262 {
263 struct btrfs_fs_info *fs_info = cache->fs_info;
264 struct rb_node *node;
265
266 read_lock(&fs_info->block_group_cache_lock);
267
268 /* If our block group was removed, we need a full search. */
269 if (RB_EMPTY_NODE(&cache->cache_node)) {
270 const u64 next_bytenr = cache->start + cache->length;
271
272 read_unlock(&fs_info->block_group_cache_lock);
273 btrfs_put_block_group(cache);
274 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
275 }
276 node = rb_next(&cache->cache_node);
277 btrfs_put_block_group(cache);
278 if (node) {
279 cache = rb_entry(node, struct btrfs_block_group, cache_node);
280 btrfs_get_block_group(cache);
281 } else
282 cache = NULL;
283 read_unlock(&fs_info->block_group_cache_lock);
284 return cache;
285 }
286
287 /**
288 * Check if we can do a NOCOW write for a given extent.
289 *
290 * @fs_info: The filesystem information object.
291 * @bytenr: Logical start address of the extent.
292 *
293 * Check if we can do a NOCOW write for the given extent, and increments the
294 * number of NOCOW writers in the block group that contains the extent, as long
295 * as the block group exists and it's currently not in read-only mode.
296 *
297 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
298 * is responsible for calling btrfs_dec_nocow_writers() later.
299 *
300 * Or NULL if we can not do a NOCOW write
301 */
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)302 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
303 u64 bytenr)
304 {
305 struct btrfs_block_group *bg;
306 bool can_nocow = true;
307
308 bg = btrfs_lookup_block_group(fs_info, bytenr);
309 if (!bg)
310 return NULL;
311
312 spin_lock(&bg->lock);
313 if (bg->ro)
314 can_nocow = false;
315 else
316 atomic_inc(&bg->nocow_writers);
317 spin_unlock(&bg->lock);
318
319 if (!can_nocow) {
320 btrfs_put_block_group(bg);
321 return NULL;
322 }
323
324 /* No put on block group, done by btrfs_dec_nocow_writers(). */
325 return bg;
326 }
327
328 /**
329 * Decrement the number of NOCOW writers in a block group.
330 *
331 * @bg: The block group.
332 *
333 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
334 * and on the block group returned by that call. Typically this is called after
335 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
336 * relocation.
337 *
338 * After this call, the caller should not use the block group anymore. It it wants
339 * to use it, then it should get a reference on it before calling this function.
340 */
btrfs_dec_nocow_writers(struct btrfs_block_group * bg)341 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
342 {
343 if (atomic_dec_and_test(&bg->nocow_writers))
344 wake_up_var(&bg->nocow_writers);
345
346 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
347 btrfs_put_block_group(bg);
348 }
349
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)350 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
351 {
352 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
353 }
354
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)355 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
356 const u64 start)
357 {
358 struct btrfs_block_group *bg;
359
360 bg = btrfs_lookup_block_group(fs_info, start);
361 ASSERT(bg);
362 if (atomic_dec_and_test(&bg->reservations))
363 wake_up_var(&bg->reservations);
364 btrfs_put_block_group(bg);
365 }
366
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)367 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
368 {
369 struct btrfs_space_info *space_info = bg->space_info;
370
371 ASSERT(bg->ro);
372
373 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
374 return;
375
376 /*
377 * Our block group is read only but before we set it to read only,
378 * some task might have had allocated an extent from it already, but it
379 * has not yet created a respective ordered extent (and added it to a
380 * root's list of ordered extents).
381 * Therefore wait for any task currently allocating extents, since the
382 * block group's reservations counter is incremented while a read lock
383 * on the groups' semaphore is held and decremented after releasing
384 * the read access on that semaphore and creating the ordered extent.
385 */
386 down_write(&space_info->groups_sem);
387 up_write(&space_info->groups_sem);
388
389 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
390 }
391
btrfs_get_caching_control(struct btrfs_block_group * cache)392 struct btrfs_caching_control *btrfs_get_caching_control(
393 struct btrfs_block_group *cache)
394 {
395 struct btrfs_caching_control *ctl;
396
397 spin_lock(&cache->lock);
398 if (!cache->caching_ctl) {
399 spin_unlock(&cache->lock);
400 return NULL;
401 }
402
403 ctl = cache->caching_ctl;
404 refcount_inc(&ctl->count);
405 spin_unlock(&cache->lock);
406 return ctl;
407 }
408
btrfs_put_caching_control(struct btrfs_caching_control * ctl)409 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
410 {
411 if (refcount_dec_and_test(&ctl->count))
412 kfree(ctl);
413 }
414
415 /*
416 * When we wait for progress in the block group caching, its because our
417 * allocation attempt failed at least once. So, we must sleep and let some
418 * progress happen before we try again.
419 *
420 * This function will sleep at least once waiting for new free space to show
421 * up, and then it will check the block group free space numbers for our min
422 * num_bytes. Another option is to have it go ahead and look in the rbtree for
423 * a free extent of a given size, but this is a good start.
424 *
425 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
426 * any of the information in this block group.
427 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)428 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
429 u64 num_bytes)
430 {
431 struct btrfs_caching_control *caching_ctl;
432
433 caching_ctl = btrfs_get_caching_control(cache);
434 if (!caching_ctl)
435 return;
436
437 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
438 (cache->free_space_ctl->free_space >= num_bytes));
439
440 btrfs_put_caching_control(caching_ctl);
441 }
442
btrfs_caching_ctl_wait_done(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)443 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
444 struct btrfs_caching_control *caching_ctl)
445 {
446 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
447 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
448 }
449
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)450 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
451 {
452 struct btrfs_caching_control *caching_ctl;
453 int ret;
454
455 caching_ctl = btrfs_get_caching_control(cache);
456 if (!caching_ctl)
457 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
458 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
459 btrfs_put_caching_control(caching_ctl);
460 return ret;
461 }
462
463 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)464 static void fragment_free_space(struct btrfs_block_group *block_group)
465 {
466 struct btrfs_fs_info *fs_info = block_group->fs_info;
467 u64 start = block_group->start;
468 u64 len = block_group->length;
469 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
470 fs_info->nodesize : fs_info->sectorsize;
471 u64 step = chunk << 1;
472
473 while (len > chunk) {
474 btrfs_remove_free_space(block_group, start, chunk);
475 start += step;
476 if (len < step)
477 len = 0;
478 else
479 len -= step;
480 }
481 }
482 #endif
483
484 /*
485 * This is only called by btrfs_cache_block_group, since we could have freed
486 * extents we need to check the pinned_extents for any extents that can't be
487 * used yet since their free space will be released as soon as the transaction
488 * commits.
489 */
add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end)490 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
491 {
492 struct btrfs_fs_info *info = block_group->fs_info;
493 u64 extent_start, extent_end, size, total_added = 0;
494 int ret;
495
496 while (start < end) {
497 ret = find_first_extent_bit(&info->excluded_extents, start,
498 &extent_start, &extent_end,
499 EXTENT_DIRTY | EXTENT_UPTODATE,
500 NULL);
501 if (ret)
502 break;
503
504 if (extent_start <= start) {
505 start = extent_end + 1;
506 } else if (extent_start > start && extent_start < end) {
507 size = extent_start - start;
508 total_added += size;
509 ret = btrfs_add_free_space_async_trimmed(block_group,
510 start, size);
511 BUG_ON(ret); /* -ENOMEM or logic error */
512 start = extent_end + 1;
513 } else {
514 break;
515 }
516 }
517
518 if (start < end) {
519 size = end - start;
520 total_added += size;
521 ret = btrfs_add_free_space_async_trimmed(block_group, start,
522 size);
523 BUG_ON(ret); /* -ENOMEM or logic error */
524 }
525
526 return total_added;
527 }
528
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)529 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
530 {
531 struct btrfs_block_group *block_group = caching_ctl->block_group;
532 struct btrfs_fs_info *fs_info = block_group->fs_info;
533 struct btrfs_root *extent_root;
534 struct btrfs_path *path;
535 struct extent_buffer *leaf;
536 struct btrfs_key key;
537 u64 total_found = 0;
538 u64 last = 0;
539 u32 nritems;
540 int ret;
541 bool wakeup = true;
542
543 path = btrfs_alloc_path();
544 if (!path)
545 return -ENOMEM;
546
547 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
548 extent_root = btrfs_extent_root(fs_info, last);
549
550 #ifdef CONFIG_BTRFS_DEBUG
551 /*
552 * If we're fragmenting we don't want to make anybody think we can
553 * allocate from this block group until we've had a chance to fragment
554 * the free space.
555 */
556 if (btrfs_should_fragment_free_space(block_group))
557 wakeup = false;
558 #endif
559 /*
560 * We don't want to deadlock with somebody trying to allocate a new
561 * extent for the extent root while also trying to search the extent
562 * root to add free space. So we skip locking and search the commit
563 * root, since its read-only
564 */
565 path->skip_locking = 1;
566 path->search_commit_root = 1;
567 path->reada = READA_FORWARD;
568
569 key.objectid = last;
570 key.offset = 0;
571 key.type = BTRFS_EXTENT_ITEM_KEY;
572
573 next:
574 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
575 if (ret < 0)
576 goto out;
577
578 leaf = path->nodes[0];
579 nritems = btrfs_header_nritems(leaf);
580
581 while (1) {
582 if (btrfs_fs_closing(fs_info) > 1) {
583 last = (u64)-1;
584 break;
585 }
586
587 if (path->slots[0] < nritems) {
588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589 } else {
590 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
591 if (ret)
592 break;
593
594 if (need_resched() ||
595 rwsem_is_contended(&fs_info->commit_root_sem)) {
596 if (wakeup)
597 caching_ctl->progress = last;
598 btrfs_release_path(path);
599 up_read(&fs_info->commit_root_sem);
600 mutex_unlock(&caching_ctl->mutex);
601 cond_resched();
602 mutex_lock(&caching_ctl->mutex);
603 down_read(&fs_info->commit_root_sem);
604 goto next;
605 }
606
607 ret = btrfs_next_leaf(extent_root, path);
608 if (ret < 0)
609 goto out;
610 if (ret)
611 break;
612 leaf = path->nodes[0];
613 nritems = btrfs_header_nritems(leaf);
614 continue;
615 }
616
617 if (key.objectid < last) {
618 key.objectid = last;
619 key.offset = 0;
620 key.type = BTRFS_EXTENT_ITEM_KEY;
621
622 if (wakeup)
623 caching_ctl->progress = last;
624 btrfs_release_path(path);
625 goto next;
626 }
627
628 if (key.objectid < block_group->start) {
629 path->slots[0]++;
630 continue;
631 }
632
633 if (key.objectid >= block_group->start + block_group->length)
634 break;
635
636 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
637 key.type == BTRFS_METADATA_ITEM_KEY) {
638 total_found += add_new_free_space(block_group, last,
639 key.objectid);
640 if (key.type == BTRFS_METADATA_ITEM_KEY)
641 last = key.objectid +
642 fs_info->nodesize;
643 else
644 last = key.objectid + key.offset;
645
646 if (total_found > CACHING_CTL_WAKE_UP) {
647 total_found = 0;
648 if (wakeup)
649 wake_up(&caching_ctl->wait);
650 }
651 }
652 path->slots[0]++;
653 }
654 ret = 0;
655
656 total_found += add_new_free_space(block_group, last,
657 block_group->start + block_group->length);
658 caching_ctl->progress = (u64)-1;
659
660 out:
661 btrfs_free_path(path);
662 return ret;
663 }
664
caching_thread(struct btrfs_work * work)665 static noinline void caching_thread(struct btrfs_work *work)
666 {
667 struct btrfs_block_group *block_group;
668 struct btrfs_fs_info *fs_info;
669 struct btrfs_caching_control *caching_ctl;
670 int ret;
671
672 caching_ctl = container_of(work, struct btrfs_caching_control, work);
673 block_group = caching_ctl->block_group;
674 fs_info = block_group->fs_info;
675
676 mutex_lock(&caching_ctl->mutex);
677 down_read(&fs_info->commit_root_sem);
678
679 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
680 ret = load_free_space_cache(block_group);
681 if (ret == 1) {
682 ret = 0;
683 goto done;
684 }
685
686 /*
687 * We failed to load the space cache, set ourselves to
688 * CACHE_STARTED and carry on.
689 */
690 spin_lock(&block_group->lock);
691 block_group->cached = BTRFS_CACHE_STARTED;
692 spin_unlock(&block_group->lock);
693 wake_up(&caching_ctl->wait);
694 }
695
696 /*
697 * If we are in the transaction that populated the free space tree we
698 * can't actually cache from the free space tree as our commit root and
699 * real root are the same, so we could change the contents of the blocks
700 * while caching. Instead do the slow caching in this case, and after
701 * the transaction has committed we will be safe.
702 */
703 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
704 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
705 ret = load_free_space_tree(caching_ctl);
706 else
707 ret = load_extent_tree_free(caching_ctl);
708 done:
709 spin_lock(&block_group->lock);
710 block_group->caching_ctl = NULL;
711 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
712 spin_unlock(&block_group->lock);
713
714 #ifdef CONFIG_BTRFS_DEBUG
715 if (btrfs_should_fragment_free_space(block_group)) {
716 u64 bytes_used;
717
718 spin_lock(&block_group->space_info->lock);
719 spin_lock(&block_group->lock);
720 bytes_used = block_group->length - block_group->used;
721 block_group->space_info->bytes_used += bytes_used >> 1;
722 spin_unlock(&block_group->lock);
723 spin_unlock(&block_group->space_info->lock);
724 fragment_free_space(block_group);
725 }
726 #endif
727
728 caching_ctl->progress = (u64)-1;
729
730 up_read(&fs_info->commit_root_sem);
731 btrfs_free_excluded_extents(block_group);
732 mutex_unlock(&caching_ctl->mutex);
733
734 wake_up(&caching_ctl->wait);
735
736 btrfs_put_caching_control(caching_ctl);
737 btrfs_put_block_group(block_group);
738 }
739
btrfs_cache_block_group(struct btrfs_block_group * cache,bool wait)740 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
741 {
742 struct btrfs_fs_info *fs_info = cache->fs_info;
743 struct btrfs_caching_control *caching_ctl = NULL;
744 int ret = 0;
745
746 /* Allocator for zoned filesystems does not use the cache at all */
747 if (btrfs_is_zoned(fs_info))
748 return 0;
749
750 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
751 if (!caching_ctl)
752 return -ENOMEM;
753
754 INIT_LIST_HEAD(&caching_ctl->list);
755 mutex_init(&caching_ctl->mutex);
756 init_waitqueue_head(&caching_ctl->wait);
757 caching_ctl->block_group = cache;
758 caching_ctl->progress = cache->start;
759 refcount_set(&caching_ctl->count, 2);
760 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
761
762 spin_lock(&cache->lock);
763 if (cache->cached != BTRFS_CACHE_NO) {
764 kfree(caching_ctl);
765
766 caching_ctl = cache->caching_ctl;
767 if (caching_ctl)
768 refcount_inc(&caching_ctl->count);
769 spin_unlock(&cache->lock);
770 goto out;
771 }
772 WARN_ON(cache->caching_ctl);
773 cache->caching_ctl = caching_ctl;
774 cache->cached = BTRFS_CACHE_STARTED;
775 cache->has_caching_ctl = 1;
776 spin_unlock(&cache->lock);
777
778 write_lock(&fs_info->block_group_cache_lock);
779 refcount_inc(&caching_ctl->count);
780 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
781 write_unlock(&fs_info->block_group_cache_lock);
782
783 btrfs_get_block_group(cache);
784
785 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
786 out:
787 if (wait && caching_ctl)
788 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
789 if (caching_ctl)
790 btrfs_put_caching_control(caching_ctl);
791
792 return ret;
793 }
794
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)795 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
796 {
797 u64 extra_flags = chunk_to_extended(flags) &
798 BTRFS_EXTENDED_PROFILE_MASK;
799
800 write_seqlock(&fs_info->profiles_lock);
801 if (flags & BTRFS_BLOCK_GROUP_DATA)
802 fs_info->avail_data_alloc_bits &= ~extra_flags;
803 if (flags & BTRFS_BLOCK_GROUP_METADATA)
804 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
805 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
806 fs_info->avail_system_alloc_bits &= ~extra_flags;
807 write_sequnlock(&fs_info->profiles_lock);
808 }
809
810 /*
811 * Clear incompat bits for the following feature(s):
812 *
813 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
814 * in the whole filesystem
815 *
816 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
817 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)818 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
819 {
820 bool found_raid56 = false;
821 bool found_raid1c34 = false;
822
823 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
824 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
825 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
826 struct list_head *head = &fs_info->space_info;
827 struct btrfs_space_info *sinfo;
828
829 list_for_each_entry_rcu(sinfo, head, list) {
830 down_read(&sinfo->groups_sem);
831 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
832 found_raid56 = true;
833 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
834 found_raid56 = true;
835 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
836 found_raid1c34 = true;
837 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
838 found_raid1c34 = true;
839 up_read(&sinfo->groups_sem);
840 }
841 if (!found_raid56)
842 btrfs_clear_fs_incompat(fs_info, RAID56);
843 if (!found_raid1c34)
844 btrfs_clear_fs_incompat(fs_info, RAID1C34);
845 }
846 }
847
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)848 static int remove_block_group_item(struct btrfs_trans_handle *trans,
849 struct btrfs_path *path,
850 struct btrfs_block_group *block_group)
851 {
852 struct btrfs_fs_info *fs_info = trans->fs_info;
853 struct btrfs_root *root;
854 struct btrfs_key key;
855 int ret;
856
857 root = btrfs_block_group_root(fs_info);
858 key.objectid = block_group->start;
859 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
860 key.offset = block_group->length;
861
862 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
863 if (ret > 0)
864 ret = -ENOENT;
865 if (ret < 0)
866 return ret;
867
868 ret = btrfs_del_item(trans, root, path);
869 return ret;
870 }
871
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)872 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
873 u64 group_start, struct extent_map *em)
874 {
875 struct btrfs_fs_info *fs_info = trans->fs_info;
876 struct btrfs_path *path;
877 struct btrfs_block_group *block_group;
878 struct btrfs_free_cluster *cluster;
879 struct inode *inode;
880 struct kobject *kobj = NULL;
881 int ret;
882 int index;
883 int factor;
884 struct btrfs_caching_control *caching_ctl = NULL;
885 bool remove_em;
886 bool remove_rsv = false;
887
888 block_group = btrfs_lookup_block_group(fs_info, group_start);
889 BUG_ON(!block_group);
890 BUG_ON(!block_group->ro);
891
892 trace_btrfs_remove_block_group(block_group);
893 /*
894 * Free the reserved super bytes from this block group before
895 * remove it.
896 */
897 btrfs_free_excluded_extents(block_group);
898 btrfs_free_ref_tree_range(fs_info, block_group->start,
899 block_group->length);
900
901 index = btrfs_bg_flags_to_raid_index(block_group->flags);
902 factor = btrfs_bg_type_to_factor(block_group->flags);
903
904 /* make sure this block group isn't part of an allocation cluster */
905 cluster = &fs_info->data_alloc_cluster;
906 spin_lock(&cluster->refill_lock);
907 btrfs_return_cluster_to_free_space(block_group, cluster);
908 spin_unlock(&cluster->refill_lock);
909
910 /*
911 * make sure this block group isn't part of a metadata
912 * allocation cluster
913 */
914 cluster = &fs_info->meta_alloc_cluster;
915 spin_lock(&cluster->refill_lock);
916 btrfs_return_cluster_to_free_space(block_group, cluster);
917 spin_unlock(&cluster->refill_lock);
918
919 btrfs_clear_treelog_bg(block_group);
920 btrfs_clear_data_reloc_bg(block_group);
921
922 path = btrfs_alloc_path();
923 if (!path) {
924 ret = -ENOMEM;
925 goto out;
926 }
927
928 /*
929 * get the inode first so any iput calls done for the io_list
930 * aren't the final iput (no unlinks allowed now)
931 */
932 inode = lookup_free_space_inode(block_group, path);
933
934 mutex_lock(&trans->transaction->cache_write_mutex);
935 /*
936 * Make sure our free space cache IO is done before removing the
937 * free space inode
938 */
939 spin_lock(&trans->transaction->dirty_bgs_lock);
940 if (!list_empty(&block_group->io_list)) {
941 list_del_init(&block_group->io_list);
942
943 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
944
945 spin_unlock(&trans->transaction->dirty_bgs_lock);
946 btrfs_wait_cache_io(trans, block_group, path);
947 btrfs_put_block_group(block_group);
948 spin_lock(&trans->transaction->dirty_bgs_lock);
949 }
950
951 if (!list_empty(&block_group->dirty_list)) {
952 list_del_init(&block_group->dirty_list);
953 remove_rsv = true;
954 btrfs_put_block_group(block_group);
955 }
956 spin_unlock(&trans->transaction->dirty_bgs_lock);
957 mutex_unlock(&trans->transaction->cache_write_mutex);
958
959 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
960 if (ret)
961 goto out;
962
963 write_lock(&fs_info->block_group_cache_lock);
964 rb_erase_cached(&block_group->cache_node,
965 &fs_info->block_group_cache_tree);
966 RB_CLEAR_NODE(&block_group->cache_node);
967
968 /* Once for the block groups rbtree */
969 btrfs_put_block_group(block_group);
970
971 write_unlock(&fs_info->block_group_cache_lock);
972
973 down_write(&block_group->space_info->groups_sem);
974 /*
975 * we must use list_del_init so people can check to see if they
976 * are still on the list after taking the semaphore
977 */
978 list_del_init(&block_group->list);
979 if (list_empty(&block_group->space_info->block_groups[index])) {
980 kobj = block_group->space_info->block_group_kobjs[index];
981 block_group->space_info->block_group_kobjs[index] = NULL;
982 clear_avail_alloc_bits(fs_info, block_group->flags);
983 }
984 up_write(&block_group->space_info->groups_sem);
985 clear_incompat_bg_bits(fs_info, block_group->flags);
986 if (kobj) {
987 kobject_del(kobj);
988 kobject_put(kobj);
989 }
990
991 if (block_group->has_caching_ctl)
992 caching_ctl = btrfs_get_caching_control(block_group);
993 if (block_group->cached == BTRFS_CACHE_STARTED)
994 btrfs_wait_block_group_cache_done(block_group);
995 if (block_group->has_caching_ctl) {
996 write_lock(&fs_info->block_group_cache_lock);
997 if (!caching_ctl) {
998 struct btrfs_caching_control *ctl;
999
1000 list_for_each_entry(ctl,
1001 &fs_info->caching_block_groups, list)
1002 if (ctl->block_group == block_group) {
1003 caching_ctl = ctl;
1004 refcount_inc(&caching_ctl->count);
1005 break;
1006 }
1007 }
1008 if (caching_ctl)
1009 list_del_init(&caching_ctl->list);
1010 write_unlock(&fs_info->block_group_cache_lock);
1011 if (caching_ctl) {
1012 /* Once for the caching bgs list and once for us. */
1013 btrfs_put_caching_control(caching_ctl);
1014 btrfs_put_caching_control(caching_ctl);
1015 }
1016 }
1017
1018 spin_lock(&trans->transaction->dirty_bgs_lock);
1019 WARN_ON(!list_empty(&block_group->dirty_list));
1020 WARN_ON(!list_empty(&block_group->io_list));
1021 spin_unlock(&trans->transaction->dirty_bgs_lock);
1022
1023 btrfs_remove_free_space_cache(block_group);
1024
1025 spin_lock(&block_group->space_info->lock);
1026 list_del_init(&block_group->ro_list);
1027
1028 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1029 WARN_ON(block_group->space_info->total_bytes
1030 < block_group->length);
1031 WARN_ON(block_group->space_info->bytes_readonly
1032 < block_group->length - block_group->zone_unusable);
1033 WARN_ON(block_group->space_info->bytes_zone_unusable
1034 < block_group->zone_unusable);
1035 WARN_ON(block_group->space_info->disk_total
1036 < block_group->length * factor);
1037 WARN_ON(block_group->zone_is_active &&
1038 block_group->space_info->active_total_bytes
1039 < block_group->length);
1040 }
1041 block_group->space_info->total_bytes -= block_group->length;
1042 if (block_group->zone_is_active)
1043 block_group->space_info->active_total_bytes -= block_group->length;
1044 block_group->space_info->bytes_readonly -=
1045 (block_group->length - block_group->zone_unusable);
1046 block_group->space_info->bytes_zone_unusable -=
1047 block_group->zone_unusable;
1048 block_group->space_info->disk_total -= block_group->length * factor;
1049
1050 spin_unlock(&block_group->space_info->lock);
1051
1052 /*
1053 * Remove the free space for the block group from the free space tree
1054 * and the block group's item from the extent tree before marking the
1055 * block group as removed. This is to prevent races with tasks that
1056 * freeze and unfreeze a block group, this task and another task
1057 * allocating a new block group - the unfreeze task ends up removing
1058 * the block group's extent map before the task calling this function
1059 * deletes the block group item from the extent tree, allowing for
1060 * another task to attempt to create another block group with the same
1061 * item key (and failing with -EEXIST and a transaction abort).
1062 */
1063 ret = remove_block_group_free_space(trans, block_group);
1064 if (ret)
1065 goto out;
1066
1067 ret = remove_block_group_item(trans, path, block_group);
1068 if (ret < 0)
1069 goto out;
1070
1071 spin_lock(&block_group->lock);
1072 block_group->removed = 1;
1073 /*
1074 * At this point trimming or scrub can't start on this block group,
1075 * because we removed the block group from the rbtree
1076 * fs_info->block_group_cache_tree so no one can't find it anymore and
1077 * even if someone already got this block group before we removed it
1078 * from the rbtree, they have already incremented block_group->frozen -
1079 * if they didn't, for the trimming case they won't find any free space
1080 * entries because we already removed them all when we called
1081 * btrfs_remove_free_space_cache().
1082 *
1083 * And we must not remove the extent map from the fs_info->mapping_tree
1084 * to prevent the same logical address range and physical device space
1085 * ranges from being reused for a new block group. This is needed to
1086 * avoid races with trimming and scrub.
1087 *
1088 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1089 * completely transactionless, so while it is trimming a range the
1090 * currently running transaction might finish and a new one start,
1091 * allowing for new block groups to be created that can reuse the same
1092 * physical device locations unless we take this special care.
1093 *
1094 * There may also be an implicit trim operation if the file system
1095 * is mounted with -odiscard. The same protections must remain
1096 * in place until the extents have been discarded completely when
1097 * the transaction commit has completed.
1098 */
1099 remove_em = (atomic_read(&block_group->frozen) == 0);
1100 spin_unlock(&block_group->lock);
1101
1102 if (remove_em) {
1103 struct extent_map_tree *em_tree;
1104
1105 em_tree = &fs_info->mapping_tree;
1106 write_lock(&em_tree->lock);
1107 remove_extent_mapping(em_tree, em);
1108 write_unlock(&em_tree->lock);
1109 /* once for the tree */
1110 free_extent_map(em);
1111 }
1112
1113 out:
1114 /* Once for the lookup reference */
1115 btrfs_put_block_group(block_group);
1116 if (remove_rsv)
1117 btrfs_delayed_refs_rsv_release(fs_info, 1);
1118 btrfs_free_path(path);
1119 return ret;
1120 }
1121
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1122 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1123 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1124 {
1125 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1126 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1127 struct extent_map *em;
1128 struct map_lookup *map;
1129 unsigned int num_items;
1130
1131 read_lock(&em_tree->lock);
1132 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1133 read_unlock(&em_tree->lock);
1134 ASSERT(em && em->start == chunk_offset);
1135
1136 /*
1137 * We need to reserve 3 + N units from the metadata space info in order
1138 * to remove a block group (done at btrfs_remove_chunk() and at
1139 * btrfs_remove_block_group()), which are used for:
1140 *
1141 * 1 unit for adding the free space inode's orphan (located in the tree
1142 * of tree roots).
1143 * 1 unit for deleting the block group item (located in the extent
1144 * tree).
1145 * 1 unit for deleting the free space item (located in tree of tree
1146 * roots).
1147 * N units for deleting N device extent items corresponding to each
1148 * stripe (located in the device tree).
1149 *
1150 * In order to remove a block group we also need to reserve units in the
1151 * system space info in order to update the chunk tree (update one or
1152 * more device items and remove one chunk item), but this is done at
1153 * btrfs_remove_chunk() through a call to check_system_chunk().
1154 */
1155 map = em->map_lookup;
1156 num_items = 3 + map->num_stripes;
1157 free_extent_map(em);
1158
1159 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1160 }
1161
1162 /*
1163 * Mark block group @cache read-only, so later write won't happen to block
1164 * group @cache.
1165 *
1166 * If @force is not set, this function will only mark the block group readonly
1167 * if we have enough free space (1M) in other metadata/system block groups.
1168 * If @force is not set, this function will mark the block group readonly
1169 * without checking free space.
1170 *
1171 * NOTE: This function doesn't care if other block groups can contain all the
1172 * data in this block group. That check should be done by relocation routine,
1173 * not this function.
1174 */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1175 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1176 {
1177 struct btrfs_space_info *sinfo = cache->space_info;
1178 u64 num_bytes;
1179 int ret = -ENOSPC;
1180
1181 spin_lock(&sinfo->lock);
1182 spin_lock(&cache->lock);
1183
1184 if (cache->swap_extents) {
1185 ret = -ETXTBSY;
1186 goto out;
1187 }
1188
1189 if (cache->ro) {
1190 cache->ro++;
1191 ret = 0;
1192 goto out;
1193 }
1194
1195 num_bytes = cache->length - cache->reserved - cache->pinned -
1196 cache->bytes_super - cache->zone_unusable - cache->used;
1197
1198 /*
1199 * Data never overcommits, even in mixed mode, so do just the straight
1200 * check of left over space in how much we have allocated.
1201 */
1202 if (force) {
1203 ret = 0;
1204 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1205 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1206
1207 /*
1208 * Here we make sure if we mark this bg RO, we still have enough
1209 * free space as buffer.
1210 */
1211 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1212 ret = 0;
1213 } else {
1214 /*
1215 * We overcommit metadata, so we need to do the
1216 * btrfs_can_overcommit check here, and we need to pass in
1217 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1218 * leeway to allow us to mark this block group as read only.
1219 */
1220 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1221 BTRFS_RESERVE_NO_FLUSH))
1222 ret = 0;
1223 }
1224
1225 if (!ret) {
1226 sinfo->bytes_readonly += num_bytes;
1227 if (btrfs_is_zoned(cache->fs_info)) {
1228 /* Migrate zone_unusable bytes to readonly */
1229 sinfo->bytes_readonly += cache->zone_unusable;
1230 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1231 cache->zone_unusable = 0;
1232 }
1233 cache->ro++;
1234 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1235 }
1236 out:
1237 spin_unlock(&cache->lock);
1238 spin_unlock(&sinfo->lock);
1239 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1240 btrfs_info(cache->fs_info,
1241 "unable to make block group %llu ro", cache->start);
1242 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1243 }
1244 return ret;
1245 }
1246
clean_pinned_extents(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)1247 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1248 struct btrfs_block_group *bg)
1249 {
1250 struct btrfs_fs_info *fs_info = bg->fs_info;
1251 struct btrfs_transaction *prev_trans = NULL;
1252 const u64 start = bg->start;
1253 const u64 end = start + bg->length - 1;
1254 int ret;
1255
1256 spin_lock(&fs_info->trans_lock);
1257 if (trans->transaction->list.prev != &fs_info->trans_list) {
1258 prev_trans = list_last_entry(&trans->transaction->list,
1259 struct btrfs_transaction, list);
1260 refcount_inc(&prev_trans->use_count);
1261 }
1262 spin_unlock(&fs_info->trans_lock);
1263
1264 /*
1265 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1266 * btrfs_finish_extent_commit(). If we are at transaction N, another
1267 * task might be running finish_extent_commit() for the previous
1268 * transaction N - 1, and have seen a range belonging to the block
1269 * group in pinned_extents before we were able to clear the whole block
1270 * group range from pinned_extents. This means that task can lookup for
1271 * the block group after we unpinned it from pinned_extents and removed
1272 * it, leading to a BUG_ON() at unpin_extent_range().
1273 */
1274 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1275 if (prev_trans) {
1276 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1277 EXTENT_DIRTY);
1278 if (ret)
1279 goto out;
1280 }
1281
1282 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1283 EXTENT_DIRTY);
1284 out:
1285 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1286 if (prev_trans)
1287 btrfs_put_transaction(prev_trans);
1288
1289 return ret == 0;
1290 }
1291
1292 /*
1293 * Process the unused_bgs list and remove any that don't have any allocated
1294 * space inside of them.
1295 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1296 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1297 {
1298 struct btrfs_block_group *block_group;
1299 struct btrfs_space_info *space_info;
1300 struct btrfs_trans_handle *trans;
1301 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1302 int ret = 0;
1303
1304 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1305 return;
1306
1307 /*
1308 * Long running balances can keep us blocked here for eternity, so
1309 * simply skip deletion if we're unable to get the mutex.
1310 */
1311 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1312 return;
1313
1314 spin_lock(&fs_info->unused_bgs_lock);
1315 while (!list_empty(&fs_info->unused_bgs)) {
1316 int trimming;
1317
1318 block_group = list_first_entry(&fs_info->unused_bgs,
1319 struct btrfs_block_group,
1320 bg_list);
1321 list_del_init(&block_group->bg_list);
1322
1323 space_info = block_group->space_info;
1324
1325 if (ret || btrfs_mixed_space_info(space_info)) {
1326 btrfs_put_block_group(block_group);
1327 continue;
1328 }
1329 spin_unlock(&fs_info->unused_bgs_lock);
1330
1331 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1332
1333 /* Don't want to race with allocators so take the groups_sem */
1334 down_write(&space_info->groups_sem);
1335
1336 /*
1337 * Async discard moves the final block group discard to be prior
1338 * to the unused_bgs code path. Therefore, if it's not fully
1339 * trimmed, punt it back to the async discard lists.
1340 */
1341 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1342 !btrfs_is_free_space_trimmed(block_group)) {
1343 trace_btrfs_skip_unused_block_group(block_group);
1344 up_write(&space_info->groups_sem);
1345 /* Requeue if we failed because of async discard */
1346 btrfs_discard_queue_work(&fs_info->discard_ctl,
1347 block_group);
1348 goto next;
1349 }
1350
1351 spin_lock(&block_group->lock);
1352 if (block_group->reserved || block_group->pinned ||
1353 block_group->used || block_group->ro ||
1354 list_is_singular(&block_group->list)) {
1355 /*
1356 * We want to bail if we made new allocations or have
1357 * outstanding allocations in this block group. We do
1358 * the ro check in case balance is currently acting on
1359 * this block group.
1360 */
1361 trace_btrfs_skip_unused_block_group(block_group);
1362 spin_unlock(&block_group->lock);
1363 up_write(&space_info->groups_sem);
1364 goto next;
1365 }
1366 spin_unlock(&block_group->lock);
1367
1368 /* We don't want to force the issue, only flip if it's ok. */
1369 ret = inc_block_group_ro(block_group, 0);
1370 up_write(&space_info->groups_sem);
1371 if (ret < 0) {
1372 ret = 0;
1373 goto next;
1374 }
1375
1376 ret = btrfs_zone_finish(block_group);
1377 if (ret < 0) {
1378 btrfs_dec_block_group_ro(block_group);
1379 if (ret == -EAGAIN)
1380 ret = 0;
1381 goto next;
1382 }
1383
1384 /*
1385 * Want to do this before we do anything else so we can recover
1386 * properly if we fail to join the transaction.
1387 */
1388 trans = btrfs_start_trans_remove_block_group(fs_info,
1389 block_group->start);
1390 if (IS_ERR(trans)) {
1391 btrfs_dec_block_group_ro(block_group);
1392 ret = PTR_ERR(trans);
1393 goto next;
1394 }
1395
1396 /*
1397 * We could have pending pinned extents for this block group,
1398 * just delete them, we don't care about them anymore.
1399 */
1400 if (!clean_pinned_extents(trans, block_group)) {
1401 btrfs_dec_block_group_ro(block_group);
1402 goto end_trans;
1403 }
1404
1405 /*
1406 * At this point, the block_group is read only and should fail
1407 * new allocations. However, btrfs_finish_extent_commit() can
1408 * cause this block_group to be placed back on the discard
1409 * lists because now the block_group isn't fully discarded.
1410 * Bail here and try again later after discarding everything.
1411 */
1412 spin_lock(&fs_info->discard_ctl.lock);
1413 if (!list_empty(&block_group->discard_list)) {
1414 spin_unlock(&fs_info->discard_ctl.lock);
1415 btrfs_dec_block_group_ro(block_group);
1416 btrfs_discard_queue_work(&fs_info->discard_ctl,
1417 block_group);
1418 goto end_trans;
1419 }
1420 spin_unlock(&fs_info->discard_ctl.lock);
1421
1422 /* Reset pinned so btrfs_put_block_group doesn't complain */
1423 spin_lock(&space_info->lock);
1424 spin_lock(&block_group->lock);
1425
1426 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1427 -block_group->pinned);
1428 space_info->bytes_readonly += block_group->pinned;
1429 block_group->pinned = 0;
1430
1431 spin_unlock(&block_group->lock);
1432 spin_unlock(&space_info->lock);
1433
1434 /*
1435 * The normal path here is an unused block group is passed here,
1436 * then trimming is handled in the transaction commit path.
1437 * Async discard interposes before this to do the trimming
1438 * before coming down the unused block group path as trimming
1439 * will no longer be done later in the transaction commit path.
1440 */
1441 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1442 goto flip_async;
1443
1444 /*
1445 * DISCARD can flip during remount. On zoned filesystems, we
1446 * need to reset sequential-required zones.
1447 */
1448 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1449 btrfs_is_zoned(fs_info);
1450
1451 /* Implicit trim during transaction commit. */
1452 if (trimming)
1453 btrfs_freeze_block_group(block_group);
1454
1455 /*
1456 * Btrfs_remove_chunk will abort the transaction if things go
1457 * horribly wrong.
1458 */
1459 ret = btrfs_remove_chunk(trans, block_group->start);
1460
1461 if (ret) {
1462 if (trimming)
1463 btrfs_unfreeze_block_group(block_group);
1464 goto end_trans;
1465 }
1466
1467 /*
1468 * If we're not mounted with -odiscard, we can just forget
1469 * about this block group. Otherwise we'll need to wait
1470 * until transaction commit to do the actual discard.
1471 */
1472 if (trimming) {
1473 spin_lock(&fs_info->unused_bgs_lock);
1474 /*
1475 * A concurrent scrub might have added us to the list
1476 * fs_info->unused_bgs, so use a list_move operation
1477 * to add the block group to the deleted_bgs list.
1478 */
1479 list_move(&block_group->bg_list,
1480 &trans->transaction->deleted_bgs);
1481 spin_unlock(&fs_info->unused_bgs_lock);
1482 btrfs_get_block_group(block_group);
1483 }
1484 end_trans:
1485 btrfs_end_transaction(trans);
1486 next:
1487 btrfs_put_block_group(block_group);
1488 spin_lock(&fs_info->unused_bgs_lock);
1489 }
1490 spin_unlock(&fs_info->unused_bgs_lock);
1491 mutex_unlock(&fs_info->reclaim_bgs_lock);
1492 return;
1493
1494 flip_async:
1495 btrfs_end_transaction(trans);
1496 mutex_unlock(&fs_info->reclaim_bgs_lock);
1497 btrfs_put_block_group(block_group);
1498 btrfs_discard_punt_unused_bgs_list(fs_info);
1499 }
1500
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1501 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1502 {
1503 struct btrfs_fs_info *fs_info = bg->fs_info;
1504
1505 spin_lock(&fs_info->unused_bgs_lock);
1506 if (list_empty(&bg->bg_list)) {
1507 btrfs_get_block_group(bg);
1508 trace_btrfs_add_unused_block_group(bg);
1509 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1510 }
1511 spin_unlock(&fs_info->unused_bgs_lock);
1512 }
1513
1514 /*
1515 * We want block groups with a low number of used bytes to be in the beginning
1516 * of the list, so they will get reclaimed first.
1517 */
reclaim_bgs_cmp(void * unused,const struct list_head * a,const struct list_head * b)1518 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1519 const struct list_head *b)
1520 {
1521 const struct btrfs_block_group *bg1, *bg2;
1522
1523 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1524 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1525
1526 return bg1->used > bg2->used;
1527 }
1528
btrfs_should_reclaim(struct btrfs_fs_info * fs_info)1529 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1530 {
1531 if (btrfs_is_zoned(fs_info))
1532 return btrfs_zoned_should_reclaim(fs_info);
1533 return true;
1534 }
1535
btrfs_reclaim_bgs_work(struct work_struct * work)1536 void btrfs_reclaim_bgs_work(struct work_struct *work)
1537 {
1538 struct btrfs_fs_info *fs_info =
1539 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1540 struct btrfs_block_group *bg;
1541 struct btrfs_space_info *space_info;
1542
1543 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1544 return;
1545
1546 if (!btrfs_should_reclaim(fs_info))
1547 return;
1548
1549 sb_start_write(fs_info->sb);
1550
1551 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1552 sb_end_write(fs_info->sb);
1553 return;
1554 }
1555
1556 /*
1557 * Long running balances can keep us blocked here for eternity, so
1558 * simply skip reclaim if we're unable to get the mutex.
1559 */
1560 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1561 btrfs_exclop_finish(fs_info);
1562 sb_end_write(fs_info->sb);
1563 return;
1564 }
1565
1566 spin_lock(&fs_info->unused_bgs_lock);
1567 /*
1568 * Sort happens under lock because we can't simply splice it and sort.
1569 * The block groups might still be in use and reachable via bg_list,
1570 * and their presence in the reclaim_bgs list must be preserved.
1571 */
1572 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1573 while (!list_empty(&fs_info->reclaim_bgs)) {
1574 u64 zone_unusable;
1575 int ret = 0;
1576
1577 bg = list_first_entry(&fs_info->reclaim_bgs,
1578 struct btrfs_block_group,
1579 bg_list);
1580 list_del_init(&bg->bg_list);
1581
1582 space_info = bg->space_info;
1583 spin_unlock(&fs_info->unused_bgs_lock);
1584
1585 /* Don't race with allocators so take the groups_sem */
1586 down_write(&space_info->groups_sem);
1587
1588 spin_lock(&bg->lock);
1589 if (bg->reserved || bg->pinned || bg->ro) {
1590 /*
1591 * We want to bail if we made new allocations or have
1592 * outstanding allocations in this block group. We do
1593 * the ro check in case balance is currently acting on
1594 * this block group.
1595 */
1596 spin_unlock(&bg->lock);
1597 up_write(&space_info->groups_sem);
1598 goto next;
1599 }
1600 spin_unlock(&bg->lock);
1601
1602 /* Get out fast, in case we're unmounting the filesystem */
1603 if (btrfs_fs_closing(fs_info)) {
1604 up_write(&space_info->groups_sem);
1605 goto next;
1606 }
1607
1608 /*
1609 * Cache the zone_unusable value before turning the block group
1610 * to read only. As soon as the blog group is read only it's
1611 * zone_unusable value gets moved to the block group's read-only
1612 * bytes and isn't available for calculations anymore.
1613 */
1614 zone_unusable = bg->zone_unusable;
1615 ret = inc_block_group_ro(bg, 0);
1616 up_write(&space_info->groups_sem);
1617 if (ret < 0)
1618 goto next;
1619
1620 btrfs_info(fs_info,
1621 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1622 bg->start, div_u64(bg->used * 100, bg->length),
1623 div64_u64(zone_unusable * 100, bg->length));
1624 trace_btrfs_reclaim_block_group(bg);
1625 ret = btrfs_relocate_chunk(fs_info, bg->start);
1626 if (ret) {
1627 btrfs_dec_block_group_ro(bg);
1628 btrfs_err(fs_info, "error relocating chunk %llu",
1629 bg->start);
1630 }
1631
1632 next:
1633 btrfs_put_block_group(bg);
1634 spin_lock(&fs_info->unused_bgs_lock);
1635 }
1636 spin_unlock(&fs_info->unused_bgs_lock);
1637 mutex_unlock(&fs_info->reclaim_bgs_lock);
1638 btrfs_exclop_finish(fs_info);
1639 sb_end_write(fs_info->sb);
1640 }
1641
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)1642 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1643 {
1644 spin_lock(&fs_info->unused_bgs_lock);
1645 if (!list_empty(&fs_info->reclaim_bgs))
1646 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1647 spin_unlock(&fs_info->unused_bgs_lock);
1648 }
1649
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)1650 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1651 {
1652 struct btrfs_fs_info *fs_info = bg->fs_info;
1653
1654 spin_lock(&fs_info->unused_bgs_lock);
1655 if (list_empty(&bg->bg_list)) {
1656 btrfs_get_block_group(bg);
1657 trace_btrfs_add_reclaim_block_group(bg);
1658 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1659 }
1660 spin_unlock(&fs_info->unused_bgs_lock);
1661 }
1662
read_bg_from_eb(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_path * path)1663 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1664 struct btrfs_path *path)
1665 {
1666 struct extent_map_tree *em_tree;
1667 struct extent_map *em;
1668 struct btrfs_block_group_item bg;
1669 struct extent_buffer *leaf;
1670 int slot;
1671 u64 flags;
1672 int ret = 0;
1673
1674 slot = path->slots[0];
1675 leaf = path->nodes[0];
1676
1677 em_tree = &fs_info->mapping_tree;
1678 read_lock(&em_tree->lock);
1679 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1680 read_unlock(&em_tree->lock);
1681 if (!em) {
1682 btrfs_err(fs_info,
1683 "logical %llu len %llu found bg but no related chunk",
1684 key->objectid, key->offset);
1685 return -ENOENT;
1686 }
1687
1688 if (em->start != key->objectid || em->len != key->offset) {
1689 btrfs_err(fs_info,
1690 "block group %llu len %llu mismatch with chunk %llu len %llu",
1691 key->objectid, key->offset, em->start, em->len);
1692 ret = -EUCLEAN;
1693 goto out_free_em;
1694 }
1695
1696 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1697 sizeof(bg));
1698 flags = btrfs_stack_block_group_flags(&bg) &
1699 BTRFS_BLOCK_GROUP_TYPE_MASK;
1700
1701 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1702 btrfs_err(fs_info,
1703 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1704 key->objectid, key->offset, flags,
1705 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1706 ret = -EUCLEAN;
1707 }
1708
1709 out_free_em:
1710 free_extent_map(em);
1711 return ret;
1712 }
1713
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)1714 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1715 struct btrfs_path *path,
1716 struct btrfs_key *key)
1717 {
1718 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1719 int ret;
1720 struct btrfs_key found_key;
1721
1722 btrfs_for_each_slot(root, key, &found_key, path, ret) {
1723 if (found_key.objectid >= key->objectid &&
1724 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1725 return read_bg_from_eb(fs_info, &found_key, path);
1726 }
1727 }
1728 return ret;
1729 }
1730
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)1731 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1732 {
1733 u64 extra_flags = chunk_to_extended(flags) &
1734 BTRFS_EXTENDED_PROFILE_MASK;
1735
1736 write_seqlock(&fs_info->profiles_lock);
1737 if (flags & BTRFS_BLOCK_GROUP_DATA)
1738 fs_info->avail_data_alloc_bits |= extra_flags;
1739 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1740 fs_info->avail_metadata_alloc_bits |= extra_flags;
1741 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1742 fs_info->avail_system_alloc_bits |= extra_flags;
1743 write_sequnlock(&fs_info->profiles_lock);
1744 }
1745
1746 /**
1747 * Map a physical disk address to a list of logical addresses
1748 *
1749 * @fs_info: the filesystem
1750 * @chunk_start: logical address of block group
1751 * @bdev: physical device to resolve, can be NULL to indicate any device
1752 * @physical: physical address to map to logical addresses
1753 * @logical: return array of logical addresses which map to @physical
1754 * @naddrs: length of @logical
1755 * @stripe_len: size of IO stripe for the given block group
1756 *
1757 * Maps a particular @physical disk address to a list of @logical addresses.
1758 * Used primarily to exclude those portions of a block group that contain super
1759 * block copies.
1760 */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,struct block_device * bdev,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)1761 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1762 struct block_device *bdev, u64 physical, u64 **logical,
1763 int *naddrs, int *stripe_len)
1764 {
1765 struct extent_map *em;
1766 struct map_lookup *map;
1767 u64 *buf;
1768 u64 bytenr;
1769 u64 data_stripe_length;
1770 u64 io_stripe_size;
1771 int i, nr = 0;
1772 int ret = 0;
1773
1774 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1775 if (IS_ERR(em))
1776 return -EIO;
1777
1778 map = em->map_lookup;
1779 data_stripe_length = em->orig_block_len;
1780 io_stripe_size = map->stripe_len;
1781 chunk_start = em->start;
1782
1783 /* For RAID5/6 adjust to a full IO stripe length */
1784 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1785 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1786
1787 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1788 if (!buf) {
1789 ret = -ENOMEM;
1790 goto out;
1791 }
1792
1793 for (i = 0; i < map->num_stripes; i++) {
1794 bool already_inserted = false;
1795 u64 stripe_nr;
1796 u64 offset;
1797 int j;
1798
1799 if (!in_range(physical, map->stripes[i].physical,
1800 data_stripe_length))
1801 continue;
1802
1803 if (bdev && map->stripes[i].dev->bdev != bdev)
1804 continue;
1805
1806 stripe_nr = physical - map->stripes[i].physical;
1807 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1808
1809 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1810 stripe_nr = stripe_nr * map->num_stripes + i;
1811 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1812 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1813 stripe_nr = stripe_nr * map->num_stripes + i;
1814 }
1815 /*
1816 * The remaining case would be for RAID56, multiply by
1817 * nr_data_stripes(). Alternatively, just use rmap_len below
1818 * instead of map->stripe_len
1819 */
1820
1821 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1822
1823 /* Ensure we don't add duplicate addresses */
1824 for (j = 0; j < nr; j++) {
1825 if (buf[j] == bytenr) {
1826 already_inserted = true;
1827 break;
1828 }
1829 }
1830
1831 if (!already_inserted)
1832 buf[nr++] = bytenr;
1833 }
1834
1835 *logical = buf;
1836 *naddrs = nr;
1837 *stripe_len = io_stripe_size;
1838 out:
1839 free_extent_map(em);
1840 return ret;
1841 }
1842
exclude_super_stripes(struct btrfs_block_group * cache)1843 static int exclude_super_stripes(struct btrfs_block_group *cache)
1844 {
1845 struct btrfs_fs_info *fs_info = cache->fs_info;
1846 const bool zoned = btrfs_is_zoned(fs_info);
1847 u64 bytenr;
1848 u64 *logical;
1849 int stripe_len;
1850 int i, nr, ret;
1851
1852 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1853 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1854 cache->bytes_super += stripe_len;
1855 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1856 stripe_len);
1857 if (ret)
1858 return ret;
1859 }
1860
1861 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1862 bytenr = btrfs_sb_offset(i);
1863 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1864 bytenr, &logical, &nr, &stripe_len);
1865 if (ret)
1866 return ret;
1867
1868 /* Shouldn't have super stripes in sequential zones */
1869 if (zoned && nr) {
1870 btrfs_err(fs_info,
1871 "zoned: block group %llu must not contain super block",
1872 cache->start);
1873 return -EUCLEAN;
1874 }
1875
1876 while (nr--) {
1877 u64 len = min_t(u64, stripe_len,
1878 cache->start + cache->length - logical[nr]);
1879
1880 cache->bytes_super += len;
1881 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1882 len);
1883 if (ret) {
1884 kfree(logical);
1885 return ret;
1886 }
1887 }
1888
1889 kfree(logical);
1890 }
1891 return 0;
1892 }
1893
link_block_group(struct btrfs_block_group * cache)1894 static void link_block_group(struct btrfs_block_group *cache)
1895 {
1896 struct btrfs_space_info *space_info = cache->space_info;
1897 int index = btrfs_bg_flags_to_raid_index(cache->flags);
1898
1899 down_write(&space_info->groups_sem);
1900 list_add_tail(&cache->list, &space_info->block_groups[index]);
1901 up_write(&space_info->groups_sem);
1902 }
1903
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)1904 static struct btrfs_block_group *btrfs_create_block_group_cache(
1905 struct btrfs_fs_info *fs_info, u64 start)
1906 {
1907 struct btrfs_block_group *cache;
1908
1909 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1910 if (!cache)
1911 return NULL;
1912
1913 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1914 GFP_NOFS);
1915 if (!cache->free_space_ctl) {
1916 kfree(cache);
1917 return NULL;
1918 }
1919
1920 cache->start = start;
1921
1922 cache->fs_info = fs_info;
1923 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1924
1925 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1926
1927 refcount_set(&cache->refs, 1);
1928 spin_lock_init(&cache->lock);
1929 init_rwsem(&cache->data_rwsem);
1930 INIT_LIST_HEAD(&cache->list);
1931 INIT_LIST_HEAD(&cache->cluster_list);
1932 INIT_LIST_HEAD(&cache->bg_list);
1933 INIT_LIST_HEAD(&cache->ro_list);
1934 INIT_LIST_HEAD(&cache->discard_list);
1935 INIT_LIST_HEAD(&cache->dirty_list);
1936 INIT_LIST_HEAD(&cache->io_list);
1937 INIT_LIST_HEAD(&cache->active_bg_list);
1938 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1939 atomic_set(&cache->frozen, 0);
1940 mutex_init(&cache->free_space_lock);
1941 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1942
1943 return cache;
1944 }
1945
1946 /*
1947 * Iterate all chunks and verify that each of them has the corresponding block
1948 * group
1949 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)1950 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1951 {
1952 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1953 struct extent_map *em;
1954 struct btrfs_block_group *bg;
1955 u64 start = 0;
1956 int ret = 0;
1957
1958 while (1) {
1959 read_lock(&map_tree->lock);
1960 /*
1961 * lookup_extent_mapping will return the first extent map
1962 * intersecting the range, so setting @len to 1 is enough to
1963 * get the first chunk.
1964 */
1965 em = lookup_extent_mapping(map_tree, start, 1);
1966 read_unlock(&map_tree->lock);
1967 if (!em)
1968 break;
1969
1970 bg = btrfs_lookup_block_group(fs_info, em->start);
1971 if (!bg) {
1972 btrfs_err(fs_info,
1973 "chunk start=%llu len=%llu doesn't have corresponding block group",
1974 em->start, em->len);
1975 ret = -EUCLEAN;
1976 free_extent_map(em);
1977 break;
1978 }
1979 if (bg->start != em->start || bg->length != em->len ||
1980 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1981 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1982 btrfs_err(fs_info,
1983 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1984 em->start, em->len,
1985 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1986 bg->start, bg->length,
1987 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1988 ret = -EUCLEAN;
1989 free_extent_map(em);
1990 btrfs_put_block_group(bg);
1991 break;
1992 }
1993 start = em->start + em->len;
1994 free_extent_map(em);
1995 btrfs_put_block_group(bg);
1996 }
1997 return ret;
1998 }
1999
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)2000 static int read_one_block_group(struct btrfs_fs_info *info,
2001 struct btrfs_block_group_item *bgi,
2002 const struct btrfs_key *key,
2003 int need_clear)
2004 {
2005 struct btrfs_block_group *cache;
2006 struct btrfs_space_info *space_info;
2007 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2008 int ret;
2009
2010 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2011
2012 cache = btrfs_create_block_group_cache(info, key->objectid);
2013 if (!cache)
2014 return -ENOMEM;
2015
2016 cache->length = key->offset;
2017 cache->used = btrfs_stack_block_group_used(bgi);
2018 cache->flags = btrfs_stack_block_group_flags(bgi);
2019 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2020
2021 set_free_space_tree_thresholds(cache);
2022
2023 if (need_clear) {
2024 /*
2025 * When we mount with old space cache, we need to
2026 * set BTRFS_DC_CLEAR and set dirty flag.
2027 *
2028 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2029 * truncate the old free space cache inode and
2030 * setup a new one.
2031 * b) Setting 'dirty flag' makes sure that we flush
2032 * the new space cache info onto disk.
2033 */
2034 if (btrfs_test_opt(info, SPACE_CACHE))
2035 cache->disk_cache_state = BTRFS_DC_CLEAR;
2036 }
2037 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2038 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2039 btrfs_err(info,
2040 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2041 cache->start);
2042 ret = -EINVAL;
2043 goto error;
2044 }
2045
2046 ret = btrfs_load_block_group_zone_info(cache, false);
2047 if (ret) {
2048 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2049 cache->start);
2050 goto error;
2051 }
2052
2053 /*
2054 * We need to exclude the super stripes now so that the space info has
2055 * super bytes accounted for, otherwise we'll think we have more space
2056 * than we actually do.
2057 */
2058 ret = exclude_super_stripes(cache);
2059 if (ret) {
2060 /* We may have excluded something, so call this just in case. */
2061 btrfs_free_excluded_extents(cache);
2062 goto error;
2063 }
2064
2065 /*
2066 * For zoned filesystem, space after the allocation offset is the only
2067 * free space for a block group. So, we don't need any caching work.
2068 * btrfs_calc_zone_unusable() will set the amount of free space and
2069 * zone_unusable space.
2070 *
2071 * For regular filesystem, check for two cases, either we are full, and
2072 * therefore don't need to bother with the caching work since we won't
2073 * find any space, or we are empty, and we can just add all the space
2074 * in and be done with it. This saves us _a_lot_ of time, particularly
2075 * in the full case.
2076 */
2077 if (btrfs_is_zoned(info)) {
2078 btrfs_calc_zone_unusable(cache);
2079 /* Should not have any excluded extents. Just in case, though. */
2080 btrfs_free_excluded_extents(cache);
2081 } else if (cache->length == cache->used) {
2082 cache->last_byte_to_unpin = (u64)-1;
2083 cache->cached = BTRFS_CACHE_FINISHED;
2084 btrfs_free_excluded_extents(cache);
2085 } else if (cache->used == 0) {
2086 cache->last_byte_to_unpin = (u64)-1;
2087 cache->cached = BTRFS_CACHE_FINISHED;
2088 add_new_free_space(cache, cache->start,
2089 cache->start + cache->length);
2090 btrfs_free_excluded_extents(cache);
2091 }
2092
2093 ret = btrfs_add_block_group_cache(info, cache);
2094 if (ret) {
2095 btrfs_remove_free_space_cache(cache);
2096 goto error;
2097 }
2098 trace_btrfs_add_block_group(info, cache, 0);
2099 btrfs_update_space_info(info, cache->flags, cache->length,
2100 cache->used, cache->bytes_super,
2101 cache->zone_unusable, cache->zone_is_active,
2102 &space_info);
2103
2104 cache->space_info = space_info;
2105
2106 link_block_group(cache);
2107
2108 set_avail_alloc_bits(info, cache->flags);
2109 if (btrfs_chunk_writeable(info, cache->start)) {
2110 if (cache->used == 0) {
2111 ASSERT(list_empty(&cache->bg_list));
2112 if (btrfs_test_opt(info, DISCARD_ASYNC))
2113 btrfs_discard_queue_work(&info->discard_ctl, cache);
2114 else
2115 btrfs_mark_bg_unused(cache);
2116 }
2117 } else {
2118 inc_block_group_ro(cache, 1);
2119 }
2120
2121 return 0;
2122 error:
2123 btrfs_put_block_group(cache);
2124 return ret;
2125 }
2126
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2127 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2128 {
2129 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2130 struct btrfs_space_info *space_info;
2131 struct rb_node *node;
2132 int ret = 0;
2133
2134 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2135 struct extent_map *em;
2136 struct map_lookup *map;
2137 struct btrfs_block_group *bg;
2138
2139 em = rb_entry(node, struct extent_map, rb_node);
2140 map = em->map_lookup;
2141 bg = btrfs_create_block_group_cache(fs_info, em->start);
2142 if (!bg) {
2143 ret = -ENOMEM;
2144 break;
2145 }
2146
2147 /* Fill dummy cache as FULL */
2148 bg->length = em->len;
2149 bg->flags = map->type;
2150 bg->last_byte_to_unpin = (u64)-1;
2151 bg->cached = BTRFS_CACHE_FINISHED;
2152 bg->used = em->len;
2153 bg->flags = map->type;
2154 ret = btrfs_add_block_group_cache(fs_info, bg);
2155 /*
2156 * We may have some valid block group cache added already, in
2157 * that case we skip to the next one.
2158 */
2159 if (ret == -EEXIST) {
2160 ret = 0;
2161 btrfs_put_block_group(bg);
2162 continue;
2163 }
2164
2165 if (ret) {
2166 btrfs_remove_free_space_cache(bg);
2167 btrfs_put_block_group(bg);
2168 break;
2169 }
2170
2171 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2172 0, 0, false, &space_info);
2173 bg->space_info = space_info;
2174 link_block_group(bg);
2175
2176 set_avail_alloc_bits(fs_info, bg->flags);
2177 }
2178 if (!ret)
2179 btrfs_init_global_block_rsv(fs_info);
2180 return ret;
2181 }
2182
btrfs_read_block_groups(struct btrfs_fs_info * info)2183 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2184 {
2185 struct btrfs_root *root = btrfs_block_group_root(info);
2186 struct btrfs_path *path;
2187 int ret;
2188 struct btrfs_block_group *cache;
2189 struct btrfs_space_info *space_info;
2190 struct btrfs_key key;
2191 int need_clear = 0;
2192 u64 cache_gen;
2193
2194 if (!root)
2195 return fill_dummy_bgs(info);
2196
2197 key.objectid = 0;
2198 key.offset = 0;
2199 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2200 path = btrfs_alloc_path();
2201 if (!path)
2202 return -ENOMEM;
2203
2204 cache_gen = btrfs_super_cache_generation(info->super_copy);
2205 if (btrfs_test_opt(info, SPACE_CACHE) &&
2206 btrfs_super_generation(info->super_copy) != cache_gen)
2207 need_clear = 1;
2208 if (btrfs_test_opt(info, CLEAR_CACHE))
2209 need_clear = 1;
2210
2211 while (1) {
2212 struct btrfs_block_group_item bgi;
2213 struct extent_buffer *leaf;
2214 int slot;
2215
2216 ret = find_first_block_group(info, path, &key);
2217 if (ret > 0)
2218 break;
2219 if (ret != 0)
2220 goto error;
2221
2222 leaf = path->nodes[0];
2223 slot = path->slots[0];
2224
2225 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2226 sizeof(bgi));
2227
2228 btrfs_item_key_to_cpu(leaf, &key, slot);
2229 btrfs_release_path(path);
2230 ret = read_one_block_group(info, &bgi, &key, need_clear);
2231 if (ret < 0)
2232 goto error;
2233 key.objectid += key.offset;
2234 key.offset = 0;
2235 }
2236 btrfs_release_path(path);
2237
2238 list_for_each_entry(space_info, &info->space_info, list) {
2239 int i;
2240
2241 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2242 if (list_empty(&space_info->block_groups[i]))
2243 continue;
2244 cache = list_first_entry(&space_info->block_groups[i],
2245 struct btrfs_block_group,
2246 list);
2247 btrfs_sysfs_add_block_group_type(cache);
2248 }
2249
2250 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2251 (BTRFS_BLOCK_GROUP_RAID10 |
2252 BTRFS_BLOCK_GROUP_RAID1_MASK |
2253 BTRFS_BLOCK_GROUP_RAID56_MASK |
2254 BTRFS_BLOCK_GROUP_DUP)))
2255 continue;
2256 /*
2257 * Avoid allocating from un-mirrored block group if there are
2258 * mirrored block groups.
2259 */
2260 list_for_each_entry(cache,
2261 &space_info->block_groups[BTRFS_RAID_RAID0],
2262 list)
2263 inc_block_group_ro(cache, 1);
2264 list_for_each_entry(cache,
2265 &space_info->block_groups[BTRFS_RAID_SINGLE],
2266 list)
2267 inc_block_group_ro(cache, 1);
2268 }
2269
2270 btrfs_init_global_block_rsv(info);
2271 ret = check_chunk_block_group_mappings(info);
2272 error:
2273 btrfs_free_path(path);
2274 /*
2275 * We've hit some error while reading the extent tree, and have
2276 * rescue=ibadroots mount option.
2277 * Try to fill the tree using dummy block groups so that the user can
2278 * continue to mount and grab their data.
2279 */
2280 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2281 ret = fill_dummy_bgs(info);
2282 return ret;
2283 }
2284
2285 /*
2286 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2287 * allocation.
2288 *
2289 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2290 * phases.
2291 */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2292 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2293 struct btrfs_block_group *block_group)
2294 {
2295 struct btrfs_fs_info *fs_info = trans->fs_info;
2296 struct btrfs_block_group_item bgi;
2297 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2298 struct btrfs_key key;
2299
2300 spin_lock(&block_group->lock);
2301 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2302 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2303 block_group->global_root_id);
2304 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2305 key.objectid = block_group->start;
2306 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2307 key.offset = block_group->length;
2308 spin_unlock(&block_group->lock);
2309
2310 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2311 }
2312
insert_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2313 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2314 struct btrfs_device *device, u64 chunk_offset,
2315 u64 start, u64 num_bytes)
2316 {
2317 struct btrfs_fs_info *fs_info = device->fs_info;
2318 struct btrfs_root *root = fs_info->dev_root;
2319 struct btrfs_path *path;
2320 struct btrfs_dev_extent *extent;
2321 struct extent_buffer *leaf;
2322 struct btrfs_key key;
2323 int ret;
2324
2325 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2326 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2327 path = btrfs_alloc_path();
2328 if (!path)
2329 return -ENOMEM;
2330
2331 key.objectid = device->devid;
2332 key.type = BTRFS_DEV_EXTENT_KEY;
2333 key.offset = start;
2334 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2335 if (ret)
2336 goto out;
2337
2338 leaf = path->nodes[0];
2339 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2340 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2341 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2342 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2343 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2344
2345 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2346 btrfs_mark_buffer_dirty(leaf);
2347 out:
2348 btrfs_free_path(path);
2349 return ret;
2350 }
2351
2352 /*
2353 * This function belongs to phase 2.
2354 *
2355 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2356 * phases.
2357 */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2358 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2359 u64 chunk_offset, u64 chunk_size)
2360 {
2361 struct btrfs_fs_info *fs_info = trans->fs_info;
2362 struct btrfs_device *device;
2363 struct extent_map *em;
2364 struct map_lookup *map;
2365 u64 dev_offset;
2366 u64 stripe_size;
2367 int i;
2368 int ret = 0;
2369
2370 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2371 if (IS_ERR(em))
2372 return PTR_ERR(em);
2373
2374 map = em->map_lookup;
2375 stripe_size = em->orig_block_len;
2376
2377 /*
2378 * Take the device list mutex to prevent races with the final phase of
2379 * a device replace operation that replaces the device object associated
2380 * with the map's stripes, because the device object's id can change
2381 * at any time during that final phase of the device replace operation
2382 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2383 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2384 * resulting in persisting a device extent item with such ID.
2385 */
2386 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2387 for (i = 0; i < map->num_stripes; i++) {
2388 device = map->stripes[i].dev;
2389 dev_offset = map->stripes[i].physical;
2390
2391 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2392 stripe_size);
2393 if (ret)
2394 break;
2395 }
2396 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2397
2398 free_extent_map(em);
2399 return ret;
2400 }
2401
2402 /*
2403 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2404 * chunk allocation.
2405 *
2406 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2407 * phases.
2408 */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2409 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2410 {
2411 struct btrfs_fs_info *fs_info = trans->fs_info;
2412 struct btrfs_block_group *block_group;
2413 int ret = 0;
2414
2415 while (!list_empty(&trans->new_bgs)) {
2416 int index;
2417
2418 block_group = list_first_entry(&trans->new_bgs,
2419 struct btrfs_block_group,
2420 bg_list);
2421 if (ret)
2422 goto next;
2423
2424 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2425
2426 ret = insert_block_group_item(trans, block_group);
2427 if (ret)
2428 btrfs_abort_transaction(trans, ret);
2429 if (!block_group->chunk_item_inserted) {
2430 mutex_lock(&fs_info->chunk_mutex);
2431 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2432 mutex_unlock(&fs_info->chunk_mutex);
2433 if (ret)
2434 btrfs_abort_transaction(trans, ret);
2435 }
2436 ret = insert_dev_extents(trans, block_group->start,
2437 block_group->length);
2438 if (ret)
2439 btrfs_abort_transaction(trans, ret);
2440 add_block_group_free_space(trans, block_group);
2441
2442 /*
2443 * If we restriped during balance, we may have added a new raid
2444 * type, so now add the sysfs entries when it is safe to do so.
2445 * We don't have to worry about locking here as it's handled in
2446 * btrfs_sysfs_add_block_group_type.
2447 */
2448 if (block_group->space_info->block_group_kobjs[index] == NULL)
2449 btrfs_sysfs_add_block_group_type(block_group);
2450
2451 /* Already aborted the transaction if it failed. */
2452 next:
2453 btrfs_delayed_refs_rsv_release(fs_info, 1);
2454 list_del_init(&block_group->bg_list);
2455 }
2456 btrfs_trans_release_chunk_metadata(trans);
2457 }
2458
2459 /*
2460 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2461 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2462 */
calculate_global_root_id(struct btrfs_fs_info * fs_info,u64 offset)2463 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2464 {
2465 u64 div = SZ_1G;
2466 u64 index;
2467
2468 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2469 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2470
2471 /* If we have a smaller fs index based on 128MiB. */
2472 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2473 div = SZ_128M;
2474
2475 offset = div64_u64(offset, div);
2476 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2477 return index;
2478 }
2479
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)2480 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2481 u64 bytes_used, u64 type,
2482 u64 chunk_offset, u64 size)
2483 {
2484 struct btrfs_fs_info *fs_info = trans->fs_info;
2485 struct btrfs_block_group *cache;
2486 int ret;
2487
2488 btrfs_set_log_full_commit(trans);
2489
2490 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2491 if (!cache)
2492 return ERR_PTR(-ENOMEM);
2493
2494 cache->length = size;
2495 set_free_space_tree_thresholds(cache);
2496 cache->used = bytes_used;
2497 cache->flags = type;
2498 cache->last_byte_to_unpin = (u64)-1;
2499 cache->cached = BTRFS_CACHE_FINISHED;
2500 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2501
2502 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2503 cache->needs_free_space = 1;
2504
2505 ret = btrfs_load_block_group_zone_info(cache, true);
2506 if (ret) {
2507 btrfs_put_block_group(cache);
2508 return ERR_PTR(ret);
2509 }
2510
2511 ret = exclude_super_stripes(cache);
2512 if (ret) {
2513 /* We may have excluded something, so call this just in case */
2514 btrfs_free_excluded_extents(cache);
2515 btrfs_put_block_group(cache);
2516 return ERR_PTR(ret);
2517 }
2518
2519 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2520
2521 btrfs_free_excluded_extents(cache);
2522
2523 #ifdef CONFIG_BTRFS_DEBUG
2524 if (btrfs_should_fragment_free_space(cache)) {
2525 u64 new_bytes_used = size - bytes_used;
2526
2527 bytes_used += new_bytes_used >> 1;
2528 fragment_free_space(cache);
2529 }
2530 #endif
2531 /*
2532 * Ensure the corresponding space_info object is created and
2533 * assigned to our block group. We want our bg to be added to the rbtree
2534 * with its ->space_info set.
2535 */
2536 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2537 ASSERT(cache->space_info);
2538
2539 ret = btrfs_add_block_group_cache(fs_info, cache);
2540 if (ret) {
2541 btrfs_remove_free_space_cache(cache);
2542 btrfs_put_block_group(cache);
2543 return ERR_PTR(ret);
2544 }
2545
2546 /*
2547 * Now that our block group has its ->space_info set and is inserted in
2548 * the rbtree, update the space info's counters.
2549 */
2550 trace_btrfs_add_block_group(fs_info, cache, 1);
2551 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2552 cache->bytes_super, cache->zone_unusable,
2553 cache->zone_is_active, &cache->space_info);
2554 btrfs_update_global_block_rsv(fs_info);
2555
2556 link_block_group(cache);
2557
2558 list_add_tail(&cache->bg_list, &trans->new_bgs);
2559 trans->delayed_ref_updates++;
2560 btrfs_update_delayed_refs_rsv(trans);
2561
2562 set_avail_alloc_bits(fs_info, type);
2563 return cache;
2564 }
2565
2566 /*
2567 * Mark one block group RO, can be called several times for the same block
2568 * group.
2569 *
2570 * @cache: the destination block group
2571 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2572 * ensure we still have some free space after marking this
2573 * block group RO.
2574 */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2575 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2576 bool do_chunk_alloc)
2577 {
2578 struct btrfs_fs_info *fs_info = cache->fs_info;
2579 struct btrfs_trans_handle *trans;
2580 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2581 u64 alloc_flags;
2582 int ret;
2583 bool dirty_bg_running;
2584
2585 /*
2586 * This can only happen when we are doing read-only scrub on read-only
2587 * mount.
2588 * In that case we should not start a new transaction on read-only fs.
2589 * Thus here we skip all chunk allocations.
2590 */
2591 if (sb_rdonly(fs_info->sb)) {
2592 mutex_lock(&fs_info->ro_block_group_mutex);
2593 ret = inc_block_group_ro(cache, 0);
2594 mutex_unlock(&fs_info->ro_block_group_mutex);
2595 return ret;
2596 }
2597
2598 do {
2599 trans = btrfs_join_transaction(root);
2600 if (IS_ERR(trans))
2601 return PTR_ERR(trans);
2602
2603 dirty_bg_running = false;
2604
2605 /*
2606 * We're not allowed to set block groups readonly after the dirty
2607 * block group cache has started writing. If it already started,
2608 * back off and let this transaction commit.
2609 */
2610 mutex_lock(&fs_info->ro_block_group_mutex);
2611 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2612 u64 transid = trans->transid;
2613
2614 mutex_unlock(&fs_info->ro_block_group_mutex);
2615 btrfs_end_transaction(trans);
2616
2617 ret = btrfs_wait_for_commit(fs_info, transid);
2618 if (ret)
2619 return ret;
2620 dirty_bg_running = true;
2621 }
2622 } while (dirty_bg_running);
2623
2624 if (do_chunk_alloc) {
2625 /*
2626 * If we are changing raid levels, try to allocate a
2627 * corresponding block group with the new raid level.
2628 */
2629 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2630 if (alloc_flags != cache->flags) {
2631 ret = btrfs_chunk_alloc(trans, alloc_flags,
2632 CHUNK_ALLOC_FORCE);
2633 /*
2634 * ENOSPC is allowed here, we may have enough space
2635 * already allocated at the new raid level to carry on
2636 */
2637 if (ret == -ENOSPC)
2638 ret = 0;
2639 if (ret < 0)
2640 goto out;
2641 }
2642 }
2643
2644 ret = inc_block_group_ro(cache, 0);
2645 if (!do_chunk_alloc || ret == -ETXTBSY)
2646 goto unlock_out;
2647 if (!ret)
2648 goto out;
2649 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2650 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2651 if (ret < 0)
2652 goto out;
2653 /*
2654 * We have allocated a new chunk. We also need to activate that chunk to
2655 * grant metadata tickets for zoned filesystem.
2656 */
2657 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2658 if (ret < 0)
2659 goto out;
2660
2661 ret = inc_block_group_ro(cache, 0);
2662 if (ret == -ETXTBSY)
2663 goto unlock_out;
2664 out:
2665 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2666 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2667 mutex_lock(&fs_info->chunk_mutex);
2668 check_system_chunk(trans, alloc_flags);
2669 mutex_unlock(&fs_info->chunk_mutex);
2670 }
2671 unlock_out:
2672 mutex_unlock(&fs_info->ro_block_group_mutex);
2673
2674 btrfs_end_transaction(trans);
2675 return ret;
2676 }
2677
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)2678 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2679 {
2680 struct btrfs_space_info *sinfo = cache->space_info;
2681 u64 num_bytes;
2682
2683 BUG_ON(!cache->ro);
2684
2685 spin_lock(&sinfo->lock);
2686 spin_lock(&cache->lock);
2687 if (!--cache->ro) {
2688 if (btrfs_is_zoned(cache->fs_info)) {
2689 /* Migrate zone_unusable bytes back */
2690 cache->zone_unusable =
2691 (cache->alloc_offset - cache->used) +
2692 (cache->length - cache->zone_capacity);
2693 sinfo->bytes_zone_unusable += cache->zone_unusable;
2694 sinfo->bytes_readonly -= cache->zone_unusable;
2695 }
2696 num_bytes = cache->length - cache->reserved -
2697 cache->pinned - cache->bytes_super -
2698 cache->zone_unusable - cache->used;
2699 sinfo->bytes_readonly -= num_bytes;
2700 list_del_init(&cache->ro_list);
2701 }
2702 spin_unlock(&cache->lock);
2703 spin_unlock(&sinfo->lock);
2704 }
2705
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)2706 static int update_block_group_item(struct btrfs_trans_handle *trans,
2707 struct btrfs_path *path,
2708 struct btrfs_block_group *cache)
2709 {
2710 struct btrfs_fs_info *fs_info = trans->fs_info;
2711 int ret;
2712 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2713 unsigned long bi;
2714 struct extent_buffer *leaf;
2715 struct btrfs_block_group_item bgi;
2716 struct btrfs_key key;
2717
2718 key.objectid = cache->start;
2719 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2720 key.offset = cache->length;
2721
2722 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2723 if (ret) {
2724 if (ret > 0)
2725 ret = -ENOENT;
2726 goto fail;
2727 }
2728
2729 leaf = path->nodes[0];
2730 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2731 btrfs_set_stack_block_group_used(&bgi, cache->used);
2732 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2733 cache->global_root_id);
2734 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2735 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2736 btrfs_mark_buffer_dirty(leaf);
2737 fail:
2738 btrfs_release_path(path);
2739 return ret;
2740
2741 }
2742
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)2743 static int cache_save_setup(struct btrfs_block_group *block_group,
2744 struct btrfs_trans_handle *trans,
2745 struct btrfs_path *path)
2746 {
2747 struct btrfs_fs_info *fs_info = block_group->fs_info;
2748 struct btrfs_root *root = fs_info->tree_root;
2749 struct inode *inode = NULL;
2750 struct extent_changeset *data_reserved = NULL;
2751 u64 alloc_hint = 0;
2752 int dcs = BTRFS_DC_ERROR;
2753 u64 cache_size = 0;
2754 int retries = 0;
2755 int ret = 0;
2756
2757 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2758 return 0;
2759
2760 /*
2761 * If this block group is smaller than 100 megs don't bother caching the
2762 * block group.
2763 */
2764 if (block_group->length < (100 * SZ_1M)) {
2765 spin_lock(&block_group->lock);
2766 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2767 spin_unlock(&block_group->lock);
2768 return 0;
2769 }
2770
2771 if (TRANS_ABORTED(trans))
2772 return 0;
2773 again:
2774 inode = lookup_free_space_inode(block_group, path);
2775 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2776 ret = PTR_ERR(inode);
2777 btrfs_release_path(path);
2778 goto out;
2779 }
2780
2781 if (IS_ERR(inode)) {
2782 BUG_ON(retries);
2783 retries++;
2784
2785 if (block_group->ro)
2786 goto out_free;
2787
2788 ret = create_free_space_inode(trans, block_group, path);
2789 if (ret)
2790 goto out_free;
2791 goto again;
2792 }
2793
2794 /*
2795 * We want to set the generation to 0, that way if anything goes wrong
2796 * from here on out we know not to trust this cache when we load up next
2797 * time.
2798 */
2799 BTRFS_I(inode)->generation = 0;
2800 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2801 if (ret) {
2802 /*
2803 * So theoretically we could recover from this, simply set the
2804 * super cache generation to 0 so we know to invalidate the
2805 * cache, but then we'd have to keep track of the block groups
2806 * that fail this way so we know we _have_ to reset this cache
2807 * before the next commit or risk reading stale cache. So to
2808 * limit our exposure to horrible edge cases lets just abort the
2809 * transaction, this only happens in really bad situations
2810 * anyway.
2811 */
2812 btrfs_abort_transaction(trans, ret);
2813 goto out_put;
2814 }
2815 WARN_ON(ret);
2816
2817 /* We've already setup this transaction, go ahead and exit */
2818 if (block_group->cache_generation == trans->transid &&
2819 i_size_read(inode)) {
2820 dcs = BTRFS_DC_SETUP;
2821 goto out_put;
2822 }
2823
2824 if (i_size_read(inode) > 0) {
2825 ret = btrfs_check_trunc_cache_free_space(fs_info,
2826 &fs_info->global_block_rsv);
2827 if (ret)
2828 goto out_put;
2829
2830 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2831 if (ret)
2832 goto out_put;
2833 }
2834
2835 spin_lock(&block_group->lock);
2836 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2837 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2838 /*
2839 * don't bother trying to write stuff out _if_
2840 * a) we're not cached,
2841 * b) we're with nospace_cache mount option,
2842 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2843 */
2844 dcs = BTRFS_DC_WRITTEN;
2845 spin_unlock(&block_group->lock);
2846 goto out_put;
2847 }
2848 spin_unlock(&block_group->lock);
2849
2850 /*
2851 * We hit an ENOSPC when setting up the cache in this transaction, just
2852 * skip doing the setup, we've already cleared the cache so we're safe.
2853 */
2854 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2855 ret = -ENOSPC;
2856 goto out_put;
2857 }
2858
2859 /*
2860 * Try to preallocate enough space based on how big the block group is.
2861 * Keep in mind this has to include any pinned space which could end up
2862 * taking up quite a bit since it's not folded into the other space
2863 * cache.
2864 */
2865 cache_size = div_u64(block_group->length, SZ_256M);
2866 if (!cache_size)
2867 cache_size = 1;
2868
2869 cache_size *= 16;
2870 cache_size *= fs_info->sectorsize;
2871
2872 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2873 cache_size);
2874 if (ret)
2875 goto out_put;
2876
2877 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2878 cache_size, cache_size,
2879 &alloc_hint);
2880 /*
2881 * Our cache requires contiguous chunks so that we don't modify a bunch
2882 * of metadata or split extents when writing the cache out, which means
2883 * we can enospc if we are heavily fragmented in addition to just normal
2884 * out of space conditions. So if we hit this just skip setting up any
2885 * other block groups for this transaction, maybe we'll unpin enough
2886 * space the next time around.
2887 */
2888 if (!ret)
2889 dcs = BTRFS_DC_SETUP;
2890 else if (ret == -ENOSPC)
2891 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2892
2893 out_put:
2894 iput(inode);
2895 out_free:
2896 btrfs_release_path(path);
2897 out:
2898 spin_lock(&block_group->lock);
2899 if (!ret && dcs == BTRFS_DC_SETUP)
2900 block_group->cache_generation = trans->transid;
2901 block_group->disk_cache_state = dcs;
2902 spin_unlock(&block_group->lock);
2903
2904 extent_changeset_free(data_reserved);
2905 return ret;
2906 }
2907
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)2908 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2909 {
2910 struct btrfs_fs_info *fs_info = trans->fs_info;
2911 struct btrfs_block_group *cache, *tmp;
2912 struct btrfs_transaction *cur_trans = trans->transaction;
2913 struct btrfs_path *path;
2914
2915 if (list_empty(&cur_trans->dirty_bgs) ||
2916 !btrfs_test_opt(fs_info, SPACE_CACHE))
2917 return 0;
2918
2919 path = btrfs_alloc_path();
2920 if (!path)
2921 return -ENOMEM;
2922
2923 /* Could add new block groups, use _safe just in case */
2924 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2925 dirty_list) {
2926 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2927 cache_save_setup(cache, trans, path);
2928 }
2929
2930 btrfs_free_path(path);
2931 return 0;
2932 }
2933
2934 /*
2935 * Transaction commit does final block group cache writeback during a critical
2936 * section where nothing is allowed to change the FS. This is required in
2937 * order for the cache to actually match the block group, but can introduce a
2938 * lot of latency into the commit.
2939 *
2940 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2941 * There's a chance we'll have to redo some of it if the block group changes
2942 * again during the commit, but it greatly reduces the commit latency by
2943 * getting rid of the easy block groups while we're still allowing others to
2944 * join the commit.
2945 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)2946 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2947 {
2948 struct btrfs_fs_info *fs_info = trans->fs_info;
2949 struct btrfs_block_group *cache;
2950 struct btrfs_transaction *cur_trans = trans->transaction;
2951 int ret = 0;
2952 int should_put;
2953 struct btrfs_path *path = NULL;
2954 LIST_HEAD(dirty);
2955 struct list_head *io = &cur_trans->io_bgs;
2956 int loops = 0;
2957
2958 spin_lock(&cur_trans->dirty_bgs_lock);
2959 if (list_empty(&cur_trans->dirty_bgs)) {
2960 spin_unlock(&cur_trans->dirty_bgs_lock);
2961 return 0;
2962 }
2963 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2964 spin_unlock(&cur_trans->dirty_bgs_lock);
2965
2966 again:
2967 /* Make sure all the block groups on our dirty list actually exist */
2968 btrfs_create_pending_block_groups(trans);
2969
2970 if (!path) {
2971 path = btrfs_alloc_path();
2972 if (!path) {
2973 ret = -ENOMEM;
2974 goto out;
2975 }
2976 }
2977
2978 /*
2979 * cache_write_mutex is here only to save us from balance or automatic
2980 * removal of empty block groups deleting this block group while we are
2981 * writing out the cache
2982 */
2983 mutex_lock(&trans->transaction->cache_write_mutex);
2984 while (!list_empty(&dirty)) {
2985 bool drop_reserve = true;
2986
2987 cache = list_first_entry(&dirty, struct btrfs_block_group,
2988 dirty_list);
2989 /*
2990 * This can happen if something re-dirties a block group that
2991 * is already under IO. Just wait for it to finish and then do
2992 * it all again
2993 */
2994 if (!list_empty(&cache->io_list)) {
2995 list_del_init(&cache->io_list);
2996 btrfs_wait_cache_io(trans, cache, path);
2997 btrfs_put_block_group(cache);
2998 }
2999
3000
3001 /*
3002 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3003 * it should update the cache_state. Don't delete until after
3004 * we wait.
3005 *
3006 * Since we're not running in the commit critical section
3007 * we need the dirty_bgs_lock to protect from update_block_group
3008 */
3009 spin_lock(&cur_trans->dirty_bgs_lock);
3010 list_del_init(&cache->dirty_list);
3011 spin_unlock(&cur_trans->dirty_bgs_lock);
3012
3013 should_put = 1;
3014
3015 cache_save_setup(cache, trans, path);
3016
3017 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3018 cache->io_ctl.inode = NULL;
3019 ret = btrfs_write_out_cache(trans, cache, path);
3020 if (ret == 0 && cache->io_ctl.inode) {
3021 should_put = 0;
3022
3023 /*
3024 * The cache_write_mutex is protecting the
3025 * io_list, also refer to the definition of
3026 * btrfs_transaction::io_bgs for more details
3027 */
3028 list_add_tail(&cache->io_list, io);
3029 } else {
3030 /*
3031 * If we failed to write the cache, the
3032 * generation will be bad and life goes on
3033 */
3034 ret = 0;
3035 }
3036 }
3037 if (!ret) {
3038 ret = update_block_group_item(trans, path, cache);
3039 /*
3040 * Our block group might still be attached to the list
3041 * of new block groups in the transaction handle of some
3042 * other task (struct btrfs_trans_handle->new_bgs). This
3043 * means its block group item isn't yet in the extent
3044 * tree. If this happens ignore the error, as we will
3045 * try again later in the critical section of the
3046 * transaction commit.
3047 */
3048 if (ret == -ENOENT) {
3049 ret = 0;
3050 spin_lock(&cur_trans->dirty_bgs_lock);
3051 if (list_empty(&cache->dirty_list)) {
3052 list_add_tail(&cache->dirty_list,
3053 &cur_trans->dirty_bgs);
3054 btrfs_get_block_group(cache);
3055 drop_reserve = false;
3056 }
3057 spin_unlock(&cur_trans->dirty_bgs_lock);
3058 } else if (ret) {
3059 btrfs_abort_transaction(trans, ret);
3060 }
3061 }
3062
3063 /* If it's not on the io list, we need to put the block group */
3064 if (should_put)
3065 btrfs_put_block_group(cache);
3066 if (drop_reserve)
3067 btrfs_delayed_refs_rsv_release(fs_info, 1);
3068 /*
3069 * Avoid blocking other tasks for too long. It might even save
3070 * us from writing caches for block groups that are going to be
3071 * removed.
3072 */
3073 mutex_unlock(&trans->transaction->cache_write_mutex);
3074 if (ret)
3075 goto out;
3076 mutex_lock(&trans->transaction->cache_write_mutex);
3077 }
3078 mutex_unlock(&trans->transaction->cache_write_mutex);
3079
3080 /*
3081 * Go through delayed refs for all the stuff we've just kicked off
3082 * and then loop back (just once)
3083 */
3084 if (!ret)
3085 ret = btrfs_run_delayed_refs(trans, 0);
3086 if (!ret && loops == 0) {
3087 loops++;
3088 spin_lock(&cur_trans->dirty_bgs_lock);
3089 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3090 /*
3091 * dirty_bgs_lock protects us from concurrent block group
3092 * deletes too (not just cache_write_mutex).
3093 */
3094 if (!list_empty(&dirty)) {
3095 spin_unlock(&cur_trans->dirty_bgs_lock);
3096 goto again;
3097 }
3098 spin_unlock(&cur_trans->dirty_bgs_lock);
3099 }
3100 out:
3101 if (ret < 0) {
3102 spin_lock(&cur_trans->dirty_bgs_lock);
3103 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3104 spin_unlock(&cur_trans->dirty_bgs_lock);
3105 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3106 }
3107
3108 btrfs_free_path(path);
3109 return ret;
3110 }
3111
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3112 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3113 {
3114 struct btrfs_fs_info *fs_info = trans->fs_info;
3115 struct btrfs_block_group *cache;
3116 struct btrfs_transaction *cur_trans = trans->transaction;
3117 int ret = 0;
3118 int should_put;
3119 struct btrfs_path *path;
3120 struct list_head *io = &cur_trans->io_bgs;
3121
3122 path = btrfs_alloc_path();
3123 if (!path)
3124 return -ENOMEM;
3125
3126 /*
3127 * Even though we are in the critical section of the transaction commit,
3128 * we can still have concurrent tasks adding elements to this
3129 * transaction's list of dirty block groups. These tasks correspond to
3130 * endio free space workers started when writeback finishes for a
3131 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3132 * allocate new block groups as a result of COWing nodes of the root
3133 * tree when updating the free space inode. The writeback for the space
3134 * caches is triggered by an earlier call to
3135 * btrfs_start_dirty_block_groups() and iterations of the following
3136 * loop.
3137 * Also we want to do the cache_save_setup first and then run the
3138 * delayed refs to make sure we have the best chance at doing this all
3139 * in one shot.
3140 */
3141 spin_lock(&cur_trans->dirty_bgs_lock);
3142 while (!list_empty(&cur_trans->dirty_bgs)) {
3143 cache = list_first_entry(&cur_trans->dirty_bgs,
3144 struct btrfs_block_group,
3145 dirty_list);
3146
3147 /*
3148 * This can happen if cache_save_setup re-dirties a block group
3149 * that is already under IO. Just wait for it to finish and
3150 * then do it all again
3151 */
3152 if (!list_empty(&cache->io_list)) {
3153 spin_unlock(&cur_trans->dirty_bgs_lock);
3154 list_del_init(&cache->io_list);
3155 btrfs_wait_cache_io(trans, cache, path);
3156 btrfs_put_block_group(cache);
3157 spin_lock(&cur_trans->dirty_bgs_lock);
3158 }
3159
3160 /*
3161 * Don't remove from the dirty list until after we've waited on
3162 * any pending IO
3163 */
3164 list_del_init(&cache->dirty_list);
3165 spin_unlock(&cur_trans->dirty_bgs_lock);
3166 should_put = 1;
3167
3168 cache_save_setup(cache, trans, path);
3169
3170 if (!ret)
3171 ret = btrfs_run_delayed_refs(trans,
3172 (unsigned long) -1);
3173
3174 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3175 cache->io_ctl.inode = NULL;
3176 ret = btrfs_write_out_cache(trans, cache, path);
3177 if (ret == 0 && cache->io_ctl.inode) {
3178 should_put = 0;
3179 list_add_tail(&cache->io_list, io);
3180 } else {
3181 /*
3182 * If we failed to write the cache, the
3183 * generation will be bad and life goes on
3184 */
3185 ret = 0;
3186 }
3187 }
3188 if (!ret) {
3189 ret = update_block_group_item(trans, path, cache);
3190 /*
3191 * One of the free space endio workers might have
3192 * created a new block group while updating a free space
3193 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3194 * and hasn't released its transaction handle yet, in
3195 * which case the new block group is still attached to
3196 * its transaction handle and its creation has not
3197 * finished yet (no block group item in the extent tree
3198 * yet, etc). If this is the case, wait for all free
3199 * space endio workers to finish and retry. This is a
3200 * very rare case so no need for a more efficient and
3201 * complex approach.
3202 */
3203 if (ret == -ENOENT) {
3204 wait_event(cur_trans->writer_wait,
3205 atomic_read(&cur_trans->num_writers) == 1);
3206 ret = update_block_group_item(trans, path, cache);
3207 }
3208 if (ret)
3209 btrfs_abort_transaction(trans, ret);
3210 }
3211
3212 /* If its not on the io list, we need to put the block group */
3213 if (should_put)
3214 btrfs_put_block_group(cache);
3215 btrfs_delayed_refs_rsv_release(fs_info, 1);
3216 spin_lock(&cur_trans->dirty_bgs_lock);
3217 }
3218 spin_unlock(&cur_trans->dirty_bgs_lock);
3219
3220 /*
3221 * Refer to the definition of io_bgs member for details why it's safe
3222 * to use it without any locking
3223 */
3224 while (!list_empty(io)) {
3225 cache = list_first_entry(io, struct btrfs_block_group,
3226 io_list);
3227 list_del_init(&cache->io_list);
3228 btrfs_wait_cache_io(trans, cache, path);
3229 btrfs_put_block_group(cache);
3230 }
3231
3232 btrfs_free_path(path);
3233 return ret;
3234 }
3235
should_reclaim_block_group(struct btrfs_block_group * bg,u64 bytes_freed)3236 static inline bool should_reclaim_block_group(struct btrfs_block_group *bg,
3237 u64 bytes_freed)
3238 {
3239 const struct btrfs_space_info *space_info = bg->space_info;
3240 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
3241 const u64 new_val = bg->used;
3242 const u64 old_val = new_val + bytes_freed;
3243 u64 thresh;
3244
3245 if (reclaim_thresh == 0)
3246 return false;
3247
3248 thresh = div_factor_fine(bg->length, reclaim_thresh);
3249
3250 /*
3251 * If we were below the threshold before don't reclaim, we are likely a
3252 * brand new block group and we don't want to relocate new block groups.
3253 */
3254 if (old_val < thresh)
3255 return false;
3256 if (new_val >= thresh)
3257 return false;
3258 return true;
3259 }
3260
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool alloc)3261 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3262 u64 bytenr, u64 num_bytes, bool alloc)
3263 {
3264 struct btrfs_fs_info *info = trans->fs_info;
3265 struct btrfs_block_group *cache = NULL;
3266 u64 total = num_bytes;
3267 u64 old_val;
3268 u64 byte_in_group;
3269 int factor;
3270 int ret = 0;
3271
3272 /* Block accounting for super block */
3273 spin_lock(&info->delalloc_root_lock);
3274 old_val = btrfs_super_bytes_used(info->super_copy);
3275 if (alloc)
3276 old_val += num_bytes;
3277 else
3278 old_val -= num_bytes;
3279 btrfs_set_super_bytes_used(info->super_copy, old_val);
3280 spin_unlock(&info->delalloc_root_lock);
3281
3282 while (total) {
3283 bool reclaim;
3284
3285 cache = btrfs_lookup_block_group(info, bytenr);
3286 if (!cache) {
3287 ret = -ENOENT;
3288 break;
3289 }
3290 factor = btrfs_bg_type_to_factor(cache->flags);
3291
3292 /*
3293 * If this block group has free space cache written out, we
3294 * need to make sure to load it if we are removing space. This
3295 * is because we need the unpinning stage to actually add the
3296 * space back to the block group, otherwise we will leak space.
3297 */
3298 if (!alloc && !btrfs_block_group_done(cache))
3299 btrfs_cache_block_group(cache, true);
3300
3301 byte_in_group = bytenr - cache->start;
3302 WARN_ON(byte_in_group > cache->length);
3303
3304 spin_lock(&cache->space_info->lock);
3305 spin_lock(&cache->lock);
3306
3307 if (btrfs_test_opt(info, SPACE_CACHE) &&
3308 cache->disk_cache_state < BTRFS_DC_CLEAR)
3309 cache->disk_cache_state = BTRFS_DC_CLEAR;
3310
3311 old_val = cache->used;
3312 num_bytes = min(total, cache->length - byte_in_group);
3313 if (alloc) {
3314 old_val += num_bytes;
3315 cache->used = old_val;
3316 cache->reserved -= num_bytes;
3317 cache->space_info->bytes_reserved -= num_bytes;
3318 cache->space_info->bytes_used += num_bytes;
3319 cache->space_info->disk_used += num_bytes * factor;
3320 spin_unlock(&cache->lock);
3321 spin_unlock(&cache->space_info->lock);
3322 } else {
3323 old_val -= num_bytes;
3324 cache->used = old_val;
3325 cache->pinned += num_bytes;
3326 btrfs_space_info_update_bytes_pinned(info,
3327 cache->space_info, num_bytes);
3328 cache->space_info->bytes_used -= num_bytes;
3329 cache->space_info->disk_used -= num_bytes * factor;
3330
3331 reclaim = should_reclaim_block_group(cache, num_bytes);
3332 spin_unlock(&cache->lock);
3333 spin_unlock(&cache->space_info->lock);
3334
3335 set_extent_dirty(&trans->transaction->pinned_extents,
3336 bytenr, bytenr + num_bytes - 1,
3337 GFP_NOFS | __GFP_NOFAIL);
3338 }
3339
3340 spin_lock(&trans->transaction->dirty_bgs_lock);
3341 if (list_empty(&cache->dirty_list)) {
3342 list_add_tail(&cache->dirty_list,
3343 &trans->transaction->dirty_bgs);
3344 trans->delayed_ref_updates++;
3345 btrfs_get_block_group(cache);
3346 }
3347 spin_unlock(&trans->transaction->dirty_bgs_lock);
3348
3349 /*
3350 * No longer have used bytes in this block group, queue it for
3351 * deletion. We do this after adding the block group to the
3352 * dirty list to avoid races between cleaner kthread and space
3353 * cache writeout.
3354 */
3355 if (!alloc && old_val == 0) {
3356 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3357 btrfs_mark_bg_unused(cache);
3358 } else if (!alloc && reclaim) {
3359 btrfs_mark_bg_to_reclaim(cache);
3360 }
3361
3362 btrfs_put_block_group(cache);
3363 total -= num_bytes;
3364 bytenr += num_bytes;
3365 }
3366
3367 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3368 btrfs_update_delayed_refs_rsv(trans);
3369 return ret;
3370 }
3371
3372 /**
3373 * btrfs_add_reserved_bytes - update the block_group and space info counters
3374 * @cache: The cache we are manipulating
3375 * @ram_bytes: The number of bytes of file content, and will be same to
3376 * @num_bytes except for the compress path.
3377 * @num_bytes: The number of bytes in question
3378 * @delalloc: The blocks are allocated for the delalloc write
3379 *
3380 * This is called by the allocator when it reserves space. If this is a
3381 * reservation and the block group has become read only we cannot make the
3382 * reservation and return -EAGAIN, otherwise this function always succeeds.
3383 */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc)3384 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3385 u64 ram_bytes, u64 num_bytes, int delalloc)
3386 {
3387 struct btrfs_space_info *space_info = cache->space_info;
3388 int ret = 0;
3389
3390 spin_lock(&space_info->lock);
3391 spin_lock(&cache->lock);
3392 if (cache->ro) {
3393 ret = -EAGAIN;
3394 } else {
3395 cache->reserved += num_bytes;
3396 space_info->bytes_reserved += num_bytes;
3397 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3398 space_info->flags, num_bytes, 1);
3399 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3400 space_info, -ram_bytes);
3401 if (delalloc)
3402 cache->delalloc_bytes += num_bytes;
3403
3404 /*
3405 * Compression can use less space than we reserved, so wake
3406 * tickets if that happens
3407 */
3408 if (num_bytes < ram_bytes)
3409 btrfs_try_granting_tickets(cache->fs_info, space_info);
3410 }
3411 spin_unlock(&cache->lock);
3412 spin_unlock(&space_info->lock);
3413 return ret;
3414 }
3415
3416 /**
3417 * btrfs_free_reserved_bytes - update the block_group and space info counters
3418 * @cache: The cache we are manipulating
3419 * @num_bytes: The number of bytes in question
3420 * @delalloc: The blocks are allocated for the delalloc write
3421 *
3422 * This is called by somebody who is freeing space that was never actually used
3423 * on disk. For example if you reserve some space for a new leaf in transaction
3424 * A and before transaction A commits you free that leaf, you call this with
3425 * reserve set to 0 in order to clear the reservation.
3426 */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3427 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3428 u64 num_bytes, int delalloc)
3429 {
3430 struct btrfs_space_info *space_info = cache->space_info;
3431
3432 spin_lock(&space_info->lock);
3433 spin_lock(&cache->lock);
3434 if (cache->ro)
3435 space_info->bytes_readonly += num_bytes;
3436 cache->reserved -= num_bytes;
3437 space_info->bytes_reserved -= num_bytes;
3438 space_info->max_extent_size = 0;
3439
3440 if (delalloc)
3441 cache->delalloc_bytes -= num_bytes;
3442 spin_unlock(&cache->lock);
3443
3444 btrfs_try_granting_tickets(cache->fs_info, space_info);
3445 spin_unlock(&space_info->lock);
3446 }
3447
force_metadata_allocation(struct btrfs_fs_info * info)3448 static void force_metadata_allocation(struct btrfs_fs_info *info)
3449 {
3450 struct list_head *head = &info->space_info;
3451 struct btrfs_space_info *found;
3452
3453 list_for_each_entry(found, head, list) {
3454 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3455 found->force_alloc = CHUNK_ALLOC_FORCE;
3456 }
3457 }
3458
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)3459 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3460 struct btrfs_space_info *sinfo, int force)
3461 {
3462 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3463 u64 thresh;
3464
3465 if (force == CHUNK_ALLOC_FORCE)
3466 return 1;
3467
3468 /*
3469 * in limited mode, we want to have some free space up to
3470 * about 1% of the FS size.
3471 */
3472 if (force == CHUNK_ALLOC_LIMITED) {
3473 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3474 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3475
3476 if (sinfo->total_bytes - bytes_used < thresh)
3477 return 1;
3478 }
3479
3480 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3481 return 0;
3482 return 1;
3483 }
3484
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3485 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3486 {
3487 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3488
3489 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3490 }
3491
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags)3492 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3493 {
3494 struct btrfs_block_group *bg;
3495 int ret;
3496
3497 /*
3498 * Check if we have enough space in the system space info because we
3499 * will need to update device items in the chunk btree and insert a new
3500 * chunk item in the chunk btree as well. This will allocate a new
3501 * system block group if needed.
3502 */
3503 check_system_chunk(trans, flags);
3504
3505 bg = btrfs_create_chunk(trans, flags);
3506 if (IS_ERR(bg)) {
3507 ret = PTR_ERR(bg);
3508 goto out;
3509 }
3510
3511 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3512 /*
3513 * Normally we are not expected to fail with -ENOSPC here, since we have
3514 * previously reserved space in the system space_info and allocated one
3515 * new system chunk if necessary. However there are three exceptions:
3516 *
3517 * 1) We may have enough free space in the system space_info but all the
3518 * existing system block groups have a profile which can not be used
3519 * for extent allocation.
3520 *
3521 * This happens when mounting in degraded mode. For example we have a
3522 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3523 * using the other device in degraded mode. If we then allocate a chunk,
3524 * we may have enough free space in the existing system space_info, but
3525 * none of the block groups can be used for extent allocation since they
3526 * have a RAID1 profile, and because we are in degraded mode with a
3527 * single device, we are forced to allocate a new system chunk with a
3528 * SINGLE profile. Making check_system_chunk() iterate over all system
3529 * block groups and check if they have a usable profile and enough space
3530 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3531 * try again after forcing allocation of a new system chunk. Like this
3532 * we avoid paying the cost of that search in normal circumstances, when
3533 * we were not mounted in degraded mode;
3534 *
3535 * 2) We had enough free space info the system space_info, and one suitable
3536 * block group to allocate from when we called check_system_chunk()
3537 * above. However right after we called it, the only system block group
3538 * with enough free space got turned into RO mode by a running scrub,
3539 * and in this case we have to allocate a new one and retry. We only
3540 * need do this allocate and retry once, since we have a transaction
3541 * handle and scrub uses the commit root to search for block groups;
3542 *
3543 * 3) We had one system block group with enough free space when we called
3544 * check_system_chunk(), but after that, right before we tried to
3545 * allocate the last extent buffer we needed, a discard operation came
3546 * in and it temporarily removed the last free space entry from the
3547 * block group (discard removes a free space entry, discards it, and
3548 * then adds back the entry to the block group cache).
3549 */
3550 if (ret == -ENOSPC) {
3551 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3552 struct btrfs_block_group *sys_bg;
3553
3554 sys_bg = btrfs_create_chunk(trans, sys_flags);
3555 if (IS_ERR(sys_bg)) {
3556 ret = PTR_ERR(sys_bg);
3557 btrfs_abort_transaction(trans, ret);
3558 goto out;
3559 }
3560
3561 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3562 if (ret) {
3563 btrfs_abort_transaction(trans, ret);
3564 goto out;
3565 }
3566
3567 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3568 if (ret) {
3569 btrfs_abort_transaction(trans, ret);
3570 goto out;
3571 }
3572 } else if (ret) {
3573 btrfs_abort_transaction(trans, ret);
3574 goto out;
3575 }
3576 out:
3577 btrfs_trans_release_chunk_metadata(trans);
3578
3579 if (ret)
3580 return ERR_PTR(ret);
3581
3582 btrfs_get_block_group(bg);
3583 return bg;
3584 }
3585
3586 /*
3587 * Chunk allocation is done in 2 phases:
3588 *
3589 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3590 * the chunk, the chunk mapping, create its block group and add the items
3591 * that belong in the chunk btree to it - more specifically, we need to
3592 * update device items in the chunk btree and add a new chunk item to it.
3593 *
3594 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3595 * group item to the extent btree and the device extent items to the devices
3596 * btree.
3597 *
3598 * This is done to prevent deadlocks. For example when COWing a node from the
3599 * extent btree we are holding a write lock on the node's parent and if we
3600 * trigger chunk allocation and attempted to insert the new block group item
3601 * in the extent btree right way, we could deadlock because the path for the
3602 * insertion can include that parent node. At first glance it seems impossible
3603 * to trigger chunk allocation after starting a transaction since tasks should
3604 * reserve enough transaction units (metadata space), however while that is true
3605 * most of the time, chunk allocation may still be triggered for several reasons:
3606 *
3607 * 1) When reserving metadata, we check if there is enough free space in the
3608 * metadata space_info and therefore don't trigger allocation of a new chunk.
3609 * However later when the task actually tries to COW an extent buffer from
3610 * the extent btree or from the device btree for example, it is forced to
3611 * allocate a new block group (chunk) because the only one that had enough
3612 * free space was just turned to RO mode by a running scrub for example (or
3613 * device replace, block group reclaim thread, etc), so we can not use it
3614 * for allocating an extent and end up being forced to allocate a new one;
3615 *
3616 * 2) Because we only check that the metadata space_info has enough free bytes,
3617 * we end up not allocating a new metadata chunk in that case. However if
3618 * the filesystem was mounted in degraded mode, none of the existing block
3619 * groups might be suitable for extent allocation due to their incompatible
3620 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3621 * use a RAID1 profile, in degraded mode using a single device). In this case
3622 * when the task attempts to COW some extent buffer of the extent btree for
3623 * example, it will trigger allocation of a new metadata block group with a
3624 * suitable profile (SINGLE profile in the example of the degraded mount of
3625 * the RAID1 filesystem);
3626 *
3627 * 3) The task has reserved enough transaction units / metadata space, but when
3628 * it attempts to COW an extent buffer from the extent or device btree for
3629 * example, it does not find any free extent in any metadata block group,
3630 * therefore forced to try to allocate a new metadata block group.
3631 * This is because some other task allocated all available extents in the
3632 * meanwhile - this typically happens with tasks that don't reserve space
3633 * properly, either intentionally or as a bug. One example where this is
3634 * done intentionally is fsync, as it does not reserve any transaction units
3635 * and ends up allocating a variable number of metadata extents for log
3636 * tree extent buffers;
3637 *
3638 * 4) The task has reserved enough transaction units / metadata space, but right
3639 * before it tries to allocate the last extent buffer it needs, a discard
3640 * operation comes in and, temporarily, removes the last free space entry from
3641 * the only metadata block group that had free space (discard starts by
3642 * removing a free space entry from a block group, then does the discard
3643 * operation and, once it's done, it adds back the free space entry to the
3644 * block group).
3645 *
3646 * We also need this 2 phases setup when adding a device to a filesystem with
3647 * a seed device - we must create new metadata and system chunks without adding
3648 * any of the block group items to the chunk, extent and device btrees. If we
3649 * did not do it this way, we would get ENOSPC when attempting to update those
3650 * btrees, since all the chunks from the seed device are read-only.
3651 *
3652 * Phase 1 does the updates and insertions to the chunk btree because if we had
3653 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3654 * parallel, we risk having too many system chunks allocated by many tasks if
3655 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3656 * extreme case this leads to exhaustion of the system chunk array in the
3657 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3658 * and with RAID filesystems (so we have more device items in the chunk btree).
3659 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3660 * the system chunk array due to concurrent allocations") provides more details.
3661 *
3662 * Allocation of system chunks does not happen through this function. A task that
3663 * needs to update the chunk btree (the only btree that uses system chunks), must
3664 * preallocate chunk space by calling either check_system_chunk() or
3665 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3666 * metadata chunk or when removing a chunk, while the later is used before doing
3667 * a modification to the chunk btree - use cases for the later are adding,
3668 * removing and resizing a device as well as relocation of a system chunk.
3669 * See the comment below for more details.
3670 *
3671 * The reservation of system space, done through check_system_chunk(), as well
3672 * as all the updates and insertions into the chunk btree must be done while
3673 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3674 * an extent buffer from the chunks btree we never trigger allocation of a new
3675 * system chunk, which would result in a deadlock (trying to lock twice an
3676 * extent buffer of the chunk btree, first time before triggering the chunk
3677 * allocation and the second time during chunk allocation while attempting to
3678 * update the chunks btree). The system chunk array is also updated while holding
3679 * that mutex. The same logic applies to removing chunks - we must reserve system
3680 * space, update the chunk btree and the system chunk array in the superblock
3681 * while holding fs_info->chunk_mutex.
3682 *
3683 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3684 *
3685 * If @force is CHUNK_ALLOC_FORCE:
3686 * - return 1 if it successfully allocates a chunk,
3687 * - return errors including -ENOSPC otherwise.
3688 * If @force is NOT CHUNK_ALLOC_FORCE:
3689 * - return 0 if it doesn't need to allocate a new chunk,
3690 * - return 1 if it successfully allocates a chunk,
3691 * - return errors including -ENOSPC otherwise.
3692 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)3693 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3694 enum btrfs_chunk_alloc_enum force)
3695 {
3696 struct btrfs_fs_info *fs_info = trans->fs_info;
3697 struct btrfs_space_info *space_info;
3698 struct btrfs_block_group *ret_bg;
3699 bool wait_for_alloc = false;
3700 bool should_alloc = false;
3701 bool from_extent_allocation = false;
3702 int ret = 0;
3703
3704 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3705 from_extent_allocation = true;
3706 force = CHUNK_ALLOC_FORCE;
3707 }
3708
3709 /* Don't re-enter if we're already allocating a chunk */
3710 if (trans->allocating_chunk)
3711 return -ENOSPC;
3712 /*
3713 * Allocation of system chunks can not happen through this path, as we
3714 * could end up in a deadlock if we are allocating a data or metadata
3715 * chunk and there is another task modifying the chunk btree.
3716 *
3717 * This is because while we are holding the chunk mutex, we will attempt
3718 * to add the new chunk item to the chunk btree or update an existing
3719 * device item in the chunk btree, while the other task that is modifying
3720 * the chunk btree is attempting to COW an extent buffer while holding a
3721 * lock on it and on its parent - if the COW operation triggers a system
3722 * chunk allocation, then we can deadlock because we are holding the
3723 * chunk mutex and we may need to access that extent buffer or its parent
3724 * in order to add the chunk item or update a device item.
3725 *
3726 * Tasks that want to modify the chunk tree should reserve system space
3727 * before updating the chunk btree, by calling either
3728 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3729 * It's possible that after a task reserves the space, it still ends up
3730 * here - this happens in the cases described above at do_chunk_alloc().
3731 * The task will have to either retry or fail.
3732 */
3733 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3734 return -ENOSPC;
3735
3736 space_info = btrfs_find_space_info(fs_info, flags);
3737 ASSERT(space_info);
3738
3739 do {
3740 spin_lock(&space_info->lock);
3741 if (force < space_info->force_alloc)
3742 force = space_info->force_alloc;
3743 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3744 if (space_info->full) {
3745 /* No more free physical space */
3746 if (should_alloc)
3747 ret = -ENOSPC;
3748 else
3749 ret = 0;
3750 spin_unlock(&space_info->lock);
3751 return ret;
3752 } else if (!should_alloc) {
3753 spin_unlock(&space_info->lock);
3754 return 0;
3755 } else if (space_info->chunk_alloc) {
3756 /*
3757 * Someone is already allocating, so we need to block
3758 * until this someone is finished and then loop to
3759 * recheck if we should continue with our allocation
3760 * attempt.
3761 */
3762 wait_for_alloc = true;
3763 force = CHUNK_ALLOC_NO_FORCE;
3764 spin_unlock(&space_info->lock);
3765 mutex_lock(&fs_info->chunk_mutex);
3766 mutex_unlock(&fs_info->chunk_mutex);
3767 } else {
3768 /* Proceed with allocation */
3769 space_info->chunk_alloc = 1;
3770 wait_for_alloc = false;
3771 spin_unlock(&space_info->lock);
3772 }
3773
3774 cond_resched();
3775 } while (wait_for_alloc);
3776
3777 mutex_lock(&fs_info->chunk_mutex);
3778 trans->allocating_chunk = true;
3779
3780 /*
3781 * If we have mixed data/metadata chunks we want to make sure we keep
3782 * allocating mixed chunks instead of individual chunks.
3783 */
3784 if (btrfs_mixed_space_info(space_info))
3785 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3786
3787 /*
3788 * if we're doing a data chunk, go ahead and make sure that
3789 * we keep a reasonable number of metadata chunks allocated in the
3790 * FS as well.
3791 */
3792 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3793 fs_info->data_chunk_allocations++;
3794 if (!(fs_info->data_chunk_allocations %
3795 fs_info->metadata_ratio))
3796 force_metadata_allocation(fs_info);
3797 }
3798
3799 ret_bg = do_chunk_alloc(trans, flags);
3800 trans->allocating_chunk = false;
3801
3802 if (IS_ERR(ret_bg)) {
3803 ret = PTR_ERR(ret_bg);
3804 } else if (from_extent_allocation) {
3805 /*
3806 * New block group is likely to be used soon. Try to activate
3807 * it now. Failure is OK for now.
3808 */
3809 btrfs_zone_activate(ret_bg);
3810 }
3811
3812 if (!ret)
3813 btrfs_put_block_group(ret_bg);
3814
3815 spin_lock(&space_info->lock);
3816 if (ret < 0) {
3817 if (ret == -ENOSPC)
3818 space_info->full = 1;
3819 else
3820 goto out;
3821 } else {
3822 ret = 1;
3823 space_info->max_extent_size = 0;
3824 }
3825
3826 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3827 out:
3828 space_info->chunk_alloc = 0;
3829 spin_unlock(&space_info->lock);
3830 mutex_unlock(&fs_info->chunk_mutex);
3831
3832 return ret;
3833 }
3834
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)3835 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3836 {
3837 u64 num_dev;
3838
3839 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3840 if (!num_dev)
3841 num_dev = fs_info->fs_devices->rw_devices;
3842
3843 return num_dev;
3844 }
3845
reserve_chunk_space(struct btrfs_trans_handle * trans,u64 bytes,u64 type)3846 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3847 u64 bytes,
3848 u64 type)
3849 {
3850 struct btrfs_fs_info *fs_info = trans->fs_info;
3851 struct btrfs_space_info *info;
3852 u64 left;
3853 int ret = 0;
3854
3855 /*
3856 * Needed because we can end up allocating a system chunk and for an
3857 * atomic and race free space reservation in the chunk block reserve.
3858 */
3859 lockdep_assert_held(&fs_info->chunk_mutex);
3860
3861 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3862 spin_lock(&info->lock);
3863 left = info->total_bytes - btrfs_space_info_used(info, true);
3864 spin_unlock(&info->lock);
3865
3866 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3867 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3868 left, bytes, type);
3869 btrfs_dump_space_info(fs_info, info, 0, 0);
3870 }
3871
3872 if (left < bytes) {
3873 u64 flags = btrfs_system_alloc_profile(fs_info);
3874 struct btrfs_block_group *bg;
3875
3876 /*
3877 * Ignore failure to create system chunk. We might end up not
3878 * needing it, as we might not need to COW all nodes/leafs from
3879 * the paths we visit in the chunk tree (they were already COWed
3880 * or created in the current transaction for example).
3881 */
3882 bg = btrfs_create_chunk(trans, flags);
3883 if (IS_ERR(bg)) {
3884 ret = PTR_ERR(bg);
3885 } else {
3886 /*
3887 * We have a new chunk. We also need to activate it for
3888 * zoned filesystem.
3889 */
3890 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3891 if (ret < 0)
3892 return;
3893
3894 /*
3895 * If we fail to add the chunk item here, we end up
3896 * trying again at phase 2 of chunk allocation, at
3897 * btrfs_create_pending_block_groups(). So ignore
3898 * any error here. An ENOSPC here could happen, due to
3899 * the cases described at do_chunk_alloc() - the system
3900 * block group we just created was just turned into RO
3901 * mode by a scrub for example, or a running discard
3902 * temporarily removed its free space entries, etc.
3903 */
3904 btrfs_chunk_alloc_add_chunk_item(trans, bg);
3905 }
3906 }
3907
3908 if (!ret) {
3909 ret = btrfs_block_rsv_add(fs_info,
3910 &fs_info->chunk_block_rsv,
3911 bytes, BTRFS_RESERVE_NO_FLUSH);
3912 if (!ret)
3913 trans->chunk_bytes_reserved += bytes;
3914 }
3915 }
3916
3917 /*
3918 * Reserve space in the system space for allocating or removing a chunk.
3919 * The caller must be holding fs_info->chunk_mutex.
3920 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)3921 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3922 {
3923 struct btrfs_fs_info *fs_info = trans->fs_info;
3924 const u64 num_devs = get_profile_num_devs(fs_info, type);
3925 u64 bytes;
3926
3927 /* num_devs device items to update and 1 chunk item to add or remove. */
3928 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3929 btrfs_calc_insert_metadata_size(fs_info, 1);
3930
3931 reserve_chunk_space(trans, bytes, type);
3932 }
3933
3934 /*
3935 * Reserve space in the system space, if needed, for doing a modification to the
3936 * chunk btree.
3937 *
3938 * @trans: A transaction handle.
3939 * @is_item_insertion: Indicate if the modification is for inserting a new item
3940 * in the chunk btree or if it's for the deletion or update
3941 * of an existing item.
3942 *
3943 * This is used in a context where we need to update the chunk btree outside
3944 * block group allocation and removal, to avoid a deadlock with a concurrent
3945 * task that is allocating a metadata or data block group and therefore needs to
3946 * update the chunk btree while holding the chunk mutex. After the update to the
3947 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3948 *
3949 */
btrfs_reserve_chunk_metadata(struct btrfs_trans_handle * trans,bool is_item_insertion)3950 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3951 bool is_item_insertion)
3952 {
3953 struct btrfs_fs_info *fs_info = trans->fs_info;
3954 u64 bytes;
3955
3956 if (is_item_insertion)
3957 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3958 else
3959 bytes = btrfs_calc_metadata_size(fs_info, 1);
3960
3961 mutex_lock(&fs_info->chunk_mutex);
3962 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3963 mutex_unlock(&fs_info->chunk_mutex);
3964 }
3965
btrfs_put_block_group_cache(struct btrfs_fs_info * info)3966 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3967 {
3968 struct btrfs_block_group *block_group;
3969 u64 last = 0;
3970
3971 while (1) {
3972 struct inode *inode;
3973
3974 block_group = btrfs_lookup_first_block_group(info, last);
3975 while (block_group) {
3976 btrfs_wait_block_group_cache_done(block_group);
3977 spin_lock(&block_group->lock);
3978 if (block_group->iref)
3979 break;
3980 spin_unlock(&block_group->lock);
3981 block_group = btrfs_next_block_group(block_group);
3982 }
3983 if (!block_group) {
3984 if (last == 0)
3985 break;
3986 last = 0;
3987 continue;
3988 }
3989
3990 inode = block_group->inode;
3991 block_group->iref = 0;
3992 block_group->inode = NULL;
3993 spin_unlock(&block_group->lock);
3994 ASSERT(block_group->io_ctl.inode == NULL);
3995 iput(inode);
3996 last = block_group->start + block_group->length;
3997 btrfs_put_block_group(block_group);
3998 }
3999 }
4000
4001 /*
4002 * Must be called only after stopping all workers, since we could have block
4003 * group caching kthreads running, and therefore they could race with us if we
4004 * freed the block groups before stopping them.
4005 */
btrfs_free_block_groups(struct btrfs_fs_info * info)4006 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4007 {
4008 struct btrfs_block_group *block_group;
4009 struct btrfs_space_info *space_info;
4010 struct btrfs_caching_control *caching_ctl;
4011 struct rb_node *n;
4012
4013 write_lock(&info->block_group_cache_lock);
4014 while (!list_empty(&info->caching_block_groups)) {
4015 caching_ctl = list_entry(info->caching_block_groups.next,
4016 struct btrfs_caching_control, list);
4017 list_del(&caching_ctl->list);
4018 btrfs_put_caching_control(caching_ctl);
4019 }
4020 write_unlock(&info->block_group_cache_lock);
4021
4022 spin_lock(&info->unused_bgs_lock);
4023 while (!list_empty(&info->unused_bgs)) {
4024 block_group = list_first_entry(&info->unused_bgs,
4025 struct btrfs_block_group,
4026 bg_list);
4027 list_del_init(&block_group->bg_list);
4028 btrfs_put_block_group(block_group);
4029 }
4030
4031 while (!list_empty(&info->reclaim_bgs)) {
4032 block_group = list_first_entry(&info->reclaim_bgs,
4033 struct btrfs_block_group,
4034 bg_list);
4035 list_del_init(&block_group->bg_list);
4036 btrfs_put_block_group(block_group);
4037 }
4038 spin_unlock(&info->unused_bgs_lock);
4039
4040 spin_lock(&info->zone_active_bgs_lock);
4041 while (!list_empty(&info->zone_active_bgs)) {
4042 block_group = list_first_entry(&info->zone_active_bgs,
4043 struct btrfs_block_group,
4044 active_bg_list);
4045 list_del_init(&block_group->active_bg_list);
4046 btrfs_put_block_group(block_group);
4047 }
4048 spin_unlock(&info->zone_active_bgs_lock);
4049
4050 write_lock(&info->block_group_cache_lock);
4051 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4052 block_group = rb_entry(n, struct btrfs_block_group,
4053 cache_node);
4054 rb_erase_cached(&block_group->cache_node,
4055 &info->block_group_cache_tree);
4056 RB_CLEAR_NODE(&block_group->cache_node);
4057 write_unlock(&info->block_group_cache_lock);
4058
4059 down_write(&block_group->space_info->groups_sem);
4060 list_del(&block_group->list);
4061 up_write(&block_group->space_info->groups_sem);
4062
4063 /*
4064 * We haven't cached this block group, which means we could
4065 * possibly have excluded extents on this block group.
4066 */
4067 if (block_group->cached == BTRFS_CACHE_NO ||
4068 block_group->cached == BTRFS_CACHE_ERROR)
4069 btrfs_free_excluded_extents(block_group);
4070
4071 btrfs_remove_free_space_cache(block_group);
4072 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4073 ASSERT(list_empty(&block_group->dirty_list));
4074 ASSERT(list_empty(&block_group->io_list));
4075 ASSERT(list_empty(&block_group->bg_list));
4076 ASSERT(refcount_read(&block_group->refs) == 1);
4077 ASSERT(block_group->swap_extents == 0);
4078 btrfs_put_block_group(block_group);
4079
4080 write_lock(&info->block_group_cache_lock);
4081 }
4082 write_unlock(&info->block_group_cache_lock);
4083
4084 btrfs_release_global_block_rsv(info);
4085
4086 while (!list_empty(&info->space_info)) {
4087 space_info = list_entry(info->space_info.next,
4088 struct btrfs_space_info,
4089 list);
4090
4091 /*
4092 * Do not hide this behind enospc_debug, this is actually
4093 * important and indicates a real bug if this happens.
4094 */
4095 if (WARN_ON(space_info->bytes_pinned > 0 ||
4096 space_info->bytes_may_use > 0))
4097 btrfs_dump_space_info(info, space_info, 0, 0);
4098
4099 /*
4100 * If there was a failure to cleanup a log tree, very likely due
4101 * to an IO failure on a writeback attempt of one or more of its
4102 * extent buffers, we could not do proper (and cheap) unaccounting
4103 * of their reserved space, so don't warn on bytes_reserved > 0 in
4104 * that case.
4105 */
4106 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4107 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4108 if (WARN_ON(space_info->bytes_reserved > 0))
4109 btrfs_dump_space_info(info, space_info, 0, 0);
4110 }
4111
4112 WARN_ON(space_info->reclaim_size > 0);
4113 list_del(&space_info->list);
4114 btrfs_sysfs_remove_space_info(space_info);
4115 }
4116 return 0;
4117 }
4118
btrfs_freeze_block_group(struct btrfs_block_group * cache)4119 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4120 {
4121 atomic_inc(&cache->frozen);
4122 }
4123
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)4124 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4125 {
4126 struct btrfs_fs_info *fs_info = block_group->fs_info;
4127 struct extent_map_tree *em_tree;
4128 struct extent_map *em;
4129 bool cleanup;
4130
4131 spin_lock(&block_group->lock);
4132 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4133 block_group->removed);
4134 spin_unlock(&block_group->lock);
4135
4136 if (cleanup) {
4137 em_tree = &fs_info->mapping_tree;
4138 write_lock(&em_tree->lock);
4139 em = lookup_extent_mapping(em_tree, block_group->start,
4140 1);
4141 BUG_ON(!em); /* logic error, can't happen */
4142 remove_extent_mapping(em_tree, em);
4143 write_unlock(&em_tree->lock);
4144
4145 /* once for us and once for the tree */
4146 free_extent_map(em);
4147 free_extent_map(em);
4148
4149 /*
4150 * We may have left one free space entry and other possible
4151 * tasks trimming this block group have left 1 entry each one.
4152 * Free them if any.
4153 */
4154 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
4155 }
4156 }
4157
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)4158 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4159 {
4160 bool ret = true;
4161
4162 spin_lock(&bg->lock);
4163 if (bg->ro)
4164 ret = false;
4165 else
4166 bg->swap_extents++;
4167 spin_unlock(&bg->lock);
4168
4169 return ret;
4170 }
4171
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)4172 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4173 {
4174 spin_lock(&bg->lock);
4175 ASSERT(!bg->ro);
4176 ASSERT(bg->swap_extents >= amount);
4177 bg->swap_extents -= amount;
4178 spin_unlock(&bg->lock);
4179 }
4180