1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53
54 #ifdef CONFIG_64BIT
55 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
56 * structures are incorrect, as the timespec structure from userspace
57 * is 4 bytes too small. We define these alternatives here to teach
58 * the kernel about the 32-bit struct packing.
59 */
60 struct btrfs_ioctl_timespec_32 {
61 __u64 sec;
62 __u32 nsec;
63 } __attribute__ ((__packed__));
64
65 struct btrfs_ioctl_received_subvol_args_32 {
66 char uuid[BTRFS_UUID_SIZE]; /* in */
67 __u64 stransid; /* in */
68 __u64 rtransid; /* out */
69 struct btrfs_ioctl_timespec_32 stime; /* in */
70 struct btrfs_ioctl_timespec_32 rtime; /* out */
71 __u64 flags; /* in */
72 __u64 reserved[16]; /* in */
73 } __attribute__ ((__packed__));
74
75 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
76 struct btrfs_ioctl_received_subvol_args_32)
77 #endif
78
79 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
80 struct btrfs_ioctl_send_args_32 {
81 __s64 send_fd; /* in */
82 __u64 clone_sources_count; /* in */
83 compat_uptr_t clone_sources; /* in */
84 __u64 parent_root; /* in */
85 __u64 flags; /* in */
86 __u32 version; /* in */
87 __u8 reserved[28]; /* in */
88 } __attribute__ ((__packed__));
89
90 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
91 struct btrfs_ioctl_send_args_32)
92
93 struct btrfs_ioctl_encoded_io_args_32 {
94 compat_uptr_t iov;
95 compat_ulong_t iovcnt;
96 __s64 offset;
97 __u64 flags;
98 __u64 len;
99 __u64 unencoded_len;
100 __u64 unencoded_offset;
101 __u32 compression;
102 __u32 encryption;
103 __u8 reserved[64];
104 };
105
106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
107 struct btrfs_ioctl_encoded_io_args_32)
108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
109 struct btrfs_ioctl_encoded_io_args_32)
110 #endif
111
112 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
114 unsigned int flags)
115 {
116 if (S_ISDIR(inode->i_mode))
117 return flags;
118 else if (S_ISREG(inode->i_mode))
119 return flags & ~FS_DIRSYNC_FL;
120 else
121 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
122 }
123
124 /*
125 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
126 * ioctl.
127 */
btrfs_inode_flags_to_fsflags(struct btrfs_inode * binode)128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
129 {
130 unsigned int iflags = 0;
131 u32 flags = binode->flags;
132 u32 ro_flags = binode->ro_flags;
133
134 if (flags & BTRFS_INODE_SYNC)
135 iflags |= FS_SYNC_FL;
136 if (flags & BTRFS_INODE_IMMUTABLE)
137 iflags |= FS_IMMUTABLE_FL;
138 if (flags & BTRFS_INODE_APPEND)
139 iflags |= FS_APPEND_FL;
140 if (flags & BTRFS_INODE_NODUMP)
141 iflags |= FS_NODUMP_FL;
142 if (flags & BTRFS_INODE_NOATIME)
143 iflags |= FS_NOATIME_FL;
144 if (flags & BTRFS_INODE_DIRSYNC)
145 iflags |= FS_DIRSYNC_FL;
146 if (flags & BTRFS_INODE_NODATACOW)
147 iflags |= FS_NOCOW_FL;
148 if (ro_flags & BTRFS_INODE_RO_VERITY)
149 iflags |= FS_VERITY_FL;
150
151 if (flags & BTRFS_INODE_NOCOMPRESS)
152 iflags |= FS_NOCOMP_FL;
153 else if (flags & BTRFS_INODE_COMPRESS)
154 iflags |= FS_COMPR_FL;
155
156 return iflags;
157 }
158
159 /*
160 * Update inode->i_flags based on the btrfs internal flags.
161 */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
163 {
164 struct btrfs_inode *binode = BTRFS_I(inode);
165 unsigned int new_fl = 0;
166
167 if (binode->flags & BTRFS_INODE_SYNC)
168 new_fl |= S_SYNC;
169 if (binode->flags & BTRFS_INODE_IMMUTABLE)
170 new_fl |= S_IMMUTABLE;
171 if (binode->flags & BTRFS_INODE_APPEND)
172 new_fl |= S_APPEND;
173 if (binode->flags & BTRFS_INODE_NOATIME)
174 new_fl |= S_NOATIME;
175 if (binode->flags & BTRFS_INODE_DIRSYNC)
176 new_fl |= S_DIRSYNC;
177 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
178 new_fl |= S_VERITY;
179
180 set_mask_bits(&inode->i_flags,
181 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
182 S_VERITY, new_fl);
183 }
184
185 /*
186 * Check if @flags are a supported and valid set of FS_*_FL flags and that
187 * the old and new flags are not conflicting
188 */
check_fsflags(unsigned int old_flags,unsigned int flags)189 static int check_fsflags(unsigned int old_flags, unsigned int flags)
190 {
191 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
192 FS_NOATIME_FL | FS_NODUMP_FL | \
193 FS_SYNC_FL | FS_DIRSYNC_FL | \
194 FS_NOCOMP_FL | FS_COMPR_FL |
195 FS_NOCOW_FL))
196 return -EOPNOTSUPP;
197
198 /* COMPR and NOCOMP on new/old are valid */
199 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
200 return -EINVAL;
201
202 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
203 return -EINVAL;
204
205 /* NOCOW and compression options are mutually exclusive */
206 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
207 return -EINVAL;
208 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
209 return -EINVAL;
210
211 return 0;
212 }
213
check_fsflags_compatible(struct btrfs_fs_info * fs_info,unsigned int flags)214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
215 unsigned int flags)
216 {
217 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
218 return -EPERM;
219
220 return 0;
221 }
222
223 /*
224 * Set flags/xflags from the internal inode flags. The remaining items of
225 * fsxattr are zeroed.
226 */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
228 {
229 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
230
231 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
232 return 0;
233 }
234
btrfs_fileattr_set(struct user_namespace * mnt_userns,struct dentry * dentry,struct fileattr * fa)235 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
236 struct dentry *dentry, struct fileattr *fa)
237 {
238 struct inode *inode = d_inode(dentry);
239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
240 struct btrfs_inode *binode = BTRFS_I(inode);
241 struct btrfs_root *root = binode->root;
242 struct btrfs_trans_handle *trans;
243 unsigned int fsflags, old_fsflags;
244 int ret;
245 const char *comp = NULL;
246 u32 binode_flags;
247
248 if (btrfs_root_readonly(root))
249 return -EROFS;
250
251 if (fileattr_has_fsx(fa))
252 return -EOPNOTSUPP;
253
254 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
255 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
256 ret = check_fsflags(old_fsflags, fsflags);
257 if (ret)
258 return ret;
259
260 ret = check_fsflags_compatible(fs_info, fsflags);
261 if (ret)
262 return ret;
263
264 binode_flags = binode->flags;
265 if (fsflags & FS_SYNC_FL)
266 binode_flags |= BTRFS_INODE_SYNC;
267 else
268 binode_flags &= ~BTRFS_INODE_SYNC;
269 if (fsflags & FS_IMMUTABLE_FL)
270 binode_flags |= BTRFS_INODE_IMMUTABLE;
271 else
272 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
273 if (fsflags & FS_APPEND_FL)
274 binode_flags |= BTRFS_INODE_APPEND;
275 else
276 binode_flags &= ~BTRFS_INODE_APPEND;
277 if (fsflags & FS_NODUMP_FL)
278 binode_flags |= BTRFS_INODE_NODUMP;
279 else
280 binode_flags &= ~BTRFS_INODE_NODUMP;
281 if (fsflags & FS_NOATIME_FL)
282 binode_flags |= BTRFS_INODE_NOATIME;
283 else
284 binode_flags &= ~BTRFS_INODE_NOATIME;
285
286 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
287 if (!fa->flags_valid) {
288 /* 1 item for the inode */
289 trans = btrfs_start_transaction(root, 1);
290 if (IS_ERR(trans))
291 return PTR_ERR(trans);
292 goto update_flags;
293 }
294
295 if (fsflags & FS_DIRSYNC_FL)
296 binode_flags |= BTRFS_INODE_DIRSYNC;
297 else
298 binode_flags &= ~BTRFS_INODE_DIRSYNC;
299 if (fsflags & FS_NOCOW_FL) {
300 if (S_ISREG(inode->i_mode)) {
301 /*
302 * It's safe to turn csums off here, no extents exist.
303 * Otherwise we want the flag to reflect the real COW
304 * status of the file and will not set it.
305 */
306 if (inode->i_size == 0)
307 binode_flags |= BTRFS_INODE_NODATACOW |
308 BTRFS_INODE_NODATASUM;
309 } else {
310 binode_flags |= BTRFS_INODE_NODATACOW;
311 }
312 } else {
313 /*
314 * Revert back under same assumptions as above
315 */
316 if (S_ISREG(inode->i_mode)) {
317 if (inode->i_size == 0)
318 binode_flags &= ~(BTRFS_INODE_NODATACOW |
319 BTRFS_INODE_NODATASUM);
320 } else {
321 binode_flags &= ~BTRFS_INODE_NODATACOW;
322 }
323 }
324
325 /*
326 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
327 * flag may be changed automatically if compression code won't make
328 * things smaller.
329 */
330 if (fsflags & FS_NOCOMP_FL) {
331 binode_flags &= ~BTRFS_INODE_COMPRESS;
332 binode_flags |= BTRFS_INODE_NOCOMPRESS;
333 } else if (fsflags & FS_COMPR_FL) {
334
335 if (IS_SWAPFILE(inode))
336 return -ETXTBSY;
337
338 binode_flags |= BTRFS_INODE_COMPRESS;
339 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
340
341 comp = btrfs_compress_type2str(fs_info->compress_type);
342 if (!comp || comp[0] == 0)
343 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
344 } else {
345 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
346 }
347
348 /*
349 * 1 for inode item
350 * 2 for properties
351 */
352 trans = btrfs_start_transaction(root, 3);
353 if (IS_ERR(trans))
354 return PTR_ERR(trans);
355
356 if (comp) {
357 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
358 strlen(comp), 0);
359 if (ret) {
360 btrfs_abort_transaction(trans, ret);
361 goto out_end_trans;
362 }
363 } else {
364 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
365 0, 0);
366 if (ret && ret != -ENODATA) {
367 btrfs_abort_transaction(trans, ret);
368 goto out_end_trans;
369 }
370 }
371
372 update_flags:
373 binode->flags = binode_flags;
374 btrfs_sync_inode_flags_to_i_flags(inode);
375 inode_inc_iversion(inode);
376 inode->i_ctime = current_time(inode);
377 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
378
379 out_end_trans:
380 btrfs_end_transaction(trans);
381 return ret;
382 }
383
384 /*
385 * Start exclusive operation @type, return true on success
386 */
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
388 enum btrfs_exclusive_operation type)
389 {
390 bool ret = false;
391
392 spin_lock(&fs_info->super_lock);
393 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
394 fs_info->exclusive_operation = type;
395 ret = true;
396 }
397 spin_unlock(&fs_info->super_lock);
398
399 return ret;
400 }
401
402 /*
403 * Conditionally allow to enter the exclusive operation in case it's compatible
404 * with the running one. This must be paired with btrfs_exclop_start_unlock and
405 * btrfs_exclop_finish.
406 *
407 * Compatibility:
408 * - the same type is already running
409 * - when trying to add a device and balance has been paused
410 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
411 * must check the condition first that would allow none -> @type
412 */
btrfs_exclop_start_try_lock(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
414 enum btrfs_exclusive_operation type)
415 {
416 spin_lock(&fs_info->super_lock);
417 if (fs_info->exclusive_operation == type ||
418 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
419 type == BTRFS_EXCLOP_DEV_ADD))
420 return true;
421
422 spin_unlock(&fs_info->super_lock);
423 return false;
424 }
425
btrfs_exclop_start_unlock(struct btrfs_fs_info * fs_info)426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
427 {
428 spin_unlock(&fs_info->super_lock);
429 }
430
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
432 {
433 spin_lock(&fs_info->super_lock);
434 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
435 spin_unlock(&fs_info->super_lock);
436 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
437 }
438
btrfs_exclop_balance(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation op)439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
440 enum btrfs_exclusive_operation op)
441 {
442 switch (op) {
443 case BTRFS_EXCLOP_BALANCE_PAUSED:
444 spin_lock(&fs_info->super_lock);
445 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
446 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
447 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
448 spin_unlock(&fs_info->super_lock);
449 break;
450 case BTRFS_EXCLOP_BALANCE:
451 spin_lock(&fs_info->super_lock);
452 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
453 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
454 spin_unlock(&fs_info->super_lock);
455 break;
456 default:
457 btrfs_warn(fs_info,
458 "invalid exclop balance operation %d requested", op);
459 }
460 }
461
btrfs_ioctl_getversion(struct inode * inode,int __user * arg)462 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
463 {
464 return put_user(inode->i_generation, arg);
465 }
466
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)467 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
468 void __user *arg)
469 {
470 struct btrfs_device *device;
471 struct fstrim_range range;
472 u64 minlen = ULLONG_MAX;
473 u64 num_devices = 0;
474 int ret;
475
476 if (!capable(CAP_SYS_ADMIN))
477 return -EPERM;
478
479 /*
480 * btrfs_trim_block_group() depends on space cache, which is not
481 * available in zoned filesystem. So, disallow fitrim on a zoned
482 * filesystem for now.
483 */
484 if (btrfs_is_zoned(fs_info))
485 return -EOPNOTSUPP;
486
487 /*
488 * If the fs is mounted with nologreplay, which requires it to be
489 * mounted in RO mode as well, we can not allow discard on free space
490 * inside block groups, because log trees refer to extents that are not
491 * pinned in a block group's free space cache (pinning the extents is
492 * precisely the first phase of replaying a log tree).
493 */
494 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
495 return -EROFS;
496
497 rcu_read_lock();
498 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
499 dev_list) {
500 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
501 continue;
502 num_devices++;
503 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
504 minlen);
505 }
506 rcu_read_unlock();
507
508 if (!num_devices)
509 return -EOPNOTSUPP;
510 if (copy_from_user(&range, arg, sizeof(range)))
511 return -EFAULT;
512
513 /*
514 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
515 * block group is in the logical address space, which can be any
516 * sectorsize aligned bytenr in the range [0, U64_MAX].
517 */
518 if (range.len < fs_info->sb->s_blocksize)
519 return -EINVAL;
520
521 range.minlen = max(range.minlen, minlen);
522 ret = btrfs_trim_fs(fs_info, &range);
523 if (ret < 0)
524 return ret;
525
526 if (copy_to_user(arg, &range, sizeof(range)))
527 return -EFAULT;
528
529 return 0;
530 }
531
btrfs_is_empty_uuid(u8 * uuid)532 int __pure btrfs_is_empty_uuid(u8 *uuid)
533 {
534 int i;
535
536 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
537 if (uuid[i])
538 return 0;
539 }
540 return 1;
541 }
542
543 /*
544 * Calculate the number of transaction items to reserve for creating a subvolume
545 * or snapshot, not including the inode, directory entries, or parent directory.
546 */
create_subvol_num_items(struct btrfs_qgroup_inherit * inherit)547 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
548 {
549 /*
550 * 1 to add root block
551 * 1 to add root item
552 * 1 to add root ref
553 * 1 to add root backref
554 * 1 to add UUID item
555 * 1 to add qgroup info
556 * 1 to add qgroup limit
557 *
558 * Ideally the last two would only be accounted if qgroups are enabled,
559 * but that can change between now and the time we would insert them.
560 */
561 unsigned int num_items = 7;
562
563 if (inherit) {
564 /* 2 to add qgroup relations for each inherited qgroup */
565 num_items += 2 * inherit->num_qgroups;
566 }
567 return num_items;
568 }
569
create_subvol(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)570 static noinline int create_subvol(struct user_namespace *mnt_userns,
571 struct inode *dir, struct dentry *dentry,
572 struct btrfs_qgroup_inherit *inherit)
573 {
574 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
575 struct btrfs_trans_handle *trans;
576 struct btrfs_key key;
577 struct btrfs_root_item *root_item;
578 struct btrfs_inode_item *inode_item;
579 struct extent_buffer *leaf;
580 struct btrfs_root *root = BTRFS_I(dir)->root;
581 struct btrfs_root *new_root;
582 struct btrfs_block_rsv block_rsv;
583 struct timespec64 cur_time = current_time(dir);
584 struct btrfs_new_inode_args new_inode_args = {
585 .dir = dir,
586 .dentry = dentry,
587 .subvol = true,
588 };
589 unsigned int trans_num_items;
590 int ret;
591 dev_t anon_dev;
592 u64 objectid;
593
594 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
595 if (!root_item)
596 return -ENOMEM;
597
598 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
599 if (ret)
600 goto out_root_item;
601
602 /*
603 * Don't create subvolume whose level is not zero. Or qgroup will be
604 * screwed up since it assumes subvolume qgroup's level to be 0.
605 */
606 if (btrfs_qgroup_level(objectid)) {
607 ret = -ENOSPC;
608 goto out_root_item;
609 }
610
611 ret = get_anon_bdev(&anon_dev);
612 if (ret < 0)
613 goto out_root_item;
614
615 new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir);
616 if (!new_inode_args.inode) {
617 ret = -ENOMEM;
618 goto out_anon_dev;
619 }
620 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
621 if (ret)
622 goto out_inode;
623 trans_num_items += create_subvol_num_items(inherit);
624
625 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
626 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
627 trans_num_items, false);
628 if (ret)
629 goto out_new_inode_args;
630
631 trans = btrfs_start_transaction(root, 0);
632 if (IS_ERR(trans)) {
633 ret = PTR_ERR(trans);
634 btrfs_subvolume_release_metadata(root, &block_rsv);
635 goto out_new_inode_args;
636 }
637 trans->block_rsv = &block_rsv;
638 trans->bytes_reserved = block_rsv.size;
639
640 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
641 if (ret)
642 goto out;
643
644 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
645 BTRFS_NESTING_NORMAL);
646 if (IS_ERR(leaf)) {
647 ret = PTR_ERR(leaf);
648 goto out;
649 }
650
651 btrfs_mark_buffer_dirty(leaf);
652
653 inode_item = &root_item->inode;
654 btrfs_set_stack_inode_generation(inode_item, 1);
655 btrfs_set_stack_inode_size(inode_item, 3);
656 btrfs_set_stack_inode_nlink(inode_item, 1);
657 btrfs_set_stack_inode_nbytes(inode_item,
658 fs_info->nodesize);
659 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
660
661 btrfs_set_root_flags(root_item, 0);
662 btrfs_set_root_limit(root_item, 0);
663 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
664
665 btrfs_set_root_bytenr(root_item, leaf->start);
666 btrfs_set_root_generation(root_item, trans->transid);
667 btrfs_set_root_level(root_item, 0);
668 btrfs_set_root_refs(root_item, 1);
669 btrfs_set_root_used(root_item, leaf->len);
670 btrfs_set_root_last_snapshot(root_item, 0);
671
672 btrfs_set_root_generation_v2(root_item,
673 btrfs_root_generation(root_item));
674 generate_random_guid(root_item->uuid);
675 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
676 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
677 root_item->ctime = root_item->otime;
678 btrfs_set_root_ctransid(root_item, trans->transid);
679 btrfs_set_root_otransid(root_item, trans->transid);
680
681 btrfs_tree_unlock(leaf);
682
683 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
684
685 key.objectid = objectid;
686 key.offset = 0;
687 key.type = BTRFS_ROOT_ITEM_KEY;
688 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
689 root_item);
690 if (ret) {
691 /*
692 * Since we don't abort the transaction in this case, free the
693 * tree block so that we don't leak space and leave the
694 * filesystem in an inconsistent state (an extent item in the
695 * extent tree with a backreference for a root that does not
696 * exists).
697 */
698 btrfs_tree_lock(leaf);
699 btrfs_clean_tree_block(leaf);
700 btrfs_tree_unlock(leaf);
701 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
702 free_extent_buffer(leaf);
703 goto out;
704 }
705
706 free_extent_buffer(leaf);
707 leaf = NULL;
708
709 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
710 if (IS_ERR(new_root)) {
711 ret = PTR_ERR(new_root);
712 btrfs_abort_transaction(trans, ret);
713 goto out;
714 }
715 /* anon_dev is owned by new_root now. */
716 anon_dev = 0;
717 BTRFS_I(new_inode_args.inode)->root = new_root;
718 /* ... and new_root is owned by new_inode_args.inode now. */
719
720 ret = btrfs_record_root_in_trans(trans, new_root);
721 if (ret) {
722 btrfs_abort_transaction(trans, ret);
723 goto out;
724 }
725
726 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
727 BTRFS_UUID_KEY_SUBVOL, objectid);
728 if (ret) {
729 btrfs_abort_transaction(trans, ret);
730 goto out;
731 }
732
733 ret = btrfs_create_new_inode(trans, &new_inode_args);
734 if (ret) {
735 btrfs_abort_transaction(trans, ret);
736 goto out;
737 }
738
739 d_instantiate_new(dentry, new_inode_args.inode);
740 new_inode_args.inode = NULL;
741
742 out:
743 trans->block_rsv = NULL;
744 trans->bytes_reserved = 0;
745 btrfs_subvolume_release_metadata(root, &block_rsv);
746
747 if (ret)
748 btrfs_end_transaction(trans);
749 else
750 ret = btrfs_commit_transaction(trans);
751 out_new_inode_args:
752 btrfs_new_inode_args_destroy(&new_inode_args);
753 out_inode:
754 iput(new_inode_args.inode);
755 out_anon_dev:
756 if (anon_dev)
757 free_anon_bdev(anon_dev);
758 out_root_item:
759 kfree(root_item);
760 return ret;
761 }
762
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)763 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
764 struct dentry *dentry, bool readonly,
765 struct btrfs_qgroup_inherit *inherit)
766 {
767 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
768 struct inode *inode;
769 struct btrfs_pending_snapshot *pending_snapshot;
770 unsigned int trans_num_items;
771 struct btrfs_trans_handle *trans;
772 int ret;
773
774 /* We do not support snapshotting right now. */
775 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
776 btrfs_warn(fs_info,
777 "extent tree v2 doesn't support snapshotting yet");
778 return -EOPNOTSUPP;
779 }
780
781 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
782 return -EINVAL;
783
784 if (atomic_read(&root->nr_swapfiles)) {
785 btrfs_warn(fs_info,
786 "cannot snapshot subvolume with active swapfile");
787 return -ETXTBSY;
788 }
789
790 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
791 if (!pending_snapshot)
792 return -ENOMEM;
793
794 ret = get_anon_bdev(&pending_snapshot->anon_dev);
795 if (ret < 0)
796 goto free_pending;
797 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
798 GFP_KERNEL);
799 pending_snapshot->path = btrfs_alloc_path();
800 if (!pending_snapshot->root_item || !pending_snapshot->path) {
801 ret = -ENOMEM;
802 goto free_pending;
803 }
804
805 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
806 BTRFS_BLOCK_RSV_TEMP);
807 /*
808 * 1 to add dir item
809 * 1 to add dir index
810 * 1 to update parent inode item
811 */
812 trans_num_items = create_subvol_num_items(inherit) + 3;
813 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
814 &pending_snapshot->block_rsv,
815 trans_num_items, false);
816 if (ret)
817 goto free_pending;
818
819 pending_snapshot->dentry = dentry;
820 pending_snapshot->root = root;
821 pending_snapshot->readonly = readonly;
822 pending_snapshot->dir = dir;
823 pending_snapshot->inherit = inherit;
824
825 trans = btrfs_start_transaction(root, 0);
826 if (IS_ERR(trans)) {
827 ret = PTR_ERR(trans);
828 goto fail;
829 }
830
831 trans->pending_snapshot = pending_snapshot;
832
833 ret = btrfs_commit_transaction(trans);
834 if (ret)
835 goto fail;
836
837 ret = pending_snapshot->error;
838 if (ret)
839 goto fail;
840
841 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
842 if (ret)
843 goto fail;
844
845 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
846 if (IS_ERR(inode)) {
847 ret = PTR_ERR(inode);
848 goto fail;
849 }
850
851 d_instantiate(dentry, inode);
852 ret = 0;
853 pending_snapshot->anon_dev = 0;
854 fail:
855 /* Prevent double freeing of anon_dev */
856 if (ret && pending_snapshot->snap)
857 pending_snapshot->snap->anon_dev = 0;
858 btrfs_put_root(pending_snapshot->snap);
859 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
860 free_pending:
861 if (pending_snapshot->anon_dev)
862 free_anon_bdev(pending_snapshot->anon_dev);
863 kfree(pending_snapshot->root_item);
864 btrfs_free_path(pending_snapshot->path);
865 kfree(pending_snapshot);
866
867 return ret;
868 }
869
870 /* copy of may_delete in fs/namei.c()
871 * Check whether we can remove a link victim from directory dir, check
872 * whether the type of victim is right.
873 * 1. We can't do it if dir is read-only (done in permission())
874 * 2. We should have write and exec permissions on dir
875 * 3. We can't remove anything from append-only dir
876 * 4. We can't do anything with immutable dir (done in permission())
877 * 5. If the sticky bit on dir is set we should either
878 * a. be owner of dir, or
879 * b. be owner of victim, or
880 * c. have CAP_FOWNER capability
881 * 6. If the victim is append-only or immutable we can't do anything with
882 * links pointing to it.
883 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
884 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
885 * 9. We can't remove a root or mountpoint.
886 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
887 * nfs_async_unlink().
888 */
889
btrfs_may_delete(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * victim,int isdir)890 static int btrfs_may_delete(struct user_namespace *mnt_userns,
891 struct inode *dir, struct dentry *victim, int isdir)
892 {
893 int error;
894
895 if (d_really_is_negative(victim))
896 return -ENOENT;
897
898 BUG_ON(d_inode(victim->d_parent) != dir);
899 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
900
901 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
902 if (error)
903 return error;
904 if (IS_APPEND(dir))
905 return -EPERM;
906 if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
907 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
908 IS_SWAPFILE(d_inode(victim)))
909 return -EPERM;
910 if (isdir) {
911 if (!d_is_dir(victim))
912 return -ENOTDIR;
913 if (IS_ROOT(victim))
914 return -EBUSY;
915 } else if (d_is_dir(victim))
916 return -EISDIR;
917 if (IS_DEADDIR(dir))
918 return -ENOENT;
919 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
920 return -EBUSY;
921 return 0;
922 }
923
924 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * child)925 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
926 struct inode *dir, struct dentry *child)
927 {
928 if (d_really_is_positive(child))
929 return -EEXIST;
930 if (IS_DEADDIR(dir))
931 return -ENOENT;
932 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
933 return -EOVERFLOW;
934 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
935 }
936
937 /*
938 * Create a new subvolume below @parent. This is largely modeled after
939 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
940 * inside this filesystem so it's quite a bit simpler.
941 */
btrfs_mksubvol(const struct path * parent,struct user_namespace * mnt_userns,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)942 static noinline int btrfs_mksubvol(const struct path *parent,
943 struct user_namespace *mnt_userns,
944 const char *name, int namelen,
945 struct btrfs_root *snap_src,
946 bool readonly,
947 struct btrfs_qgroup_inherit *inherit)
948 {
949 struct inode *dir = d_inode(parent->dentry);
950 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
951 struct dentry *dentry;
952 int error;
953
954 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
955 if (error == -EINTR)
956 return error;
957
958 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
959 error = PTR_ERR(dentry);
960 if (IS_ERR(dentry))
961 goto out_unlock;
962
963 error = btrfs_may_create(mnt_userns, dir, dentry);
964 if (error)
965 goto out_dput;
966
967 /*
968 * even if this name doesn't exist, we may get hash collisions.
969 * check for them now when we can safely fail
970 */
971 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
972 dir->i_ino, name,
973 namelen);
974 if (error)
975 goto out_dput;
976
977 down_read(&fs_info->subvol_sem);
978
979 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
980 goto out_up_read;
981
982 if (snap_src)
983 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
984 else
985 error = create_subvol(mnt_userns, dir, dentry, inherit);
986
987 if (!error)
988 fsnotify_mkdir(dir, dentry);
989 out_up_read:
990 up_read(&fs_info->subvol_sem);
991 out_dput:
992 dput(dentry);
993 out_unlock:
994 btrfs_inode_unlock(dir, 0);
995 return error;
996 }
997
btrfs_mksnapshot(const struct path * parent,struct user_namespace * mnt_userns,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)998 static noinline int btrfs_mksnapshot(const struct path *parent,
999 struct user_namespace *mnt_userns,
1000 const char *name, int namelen,
1001 struct btrfs_root *root,
1002 bool readonly,
1003 struct btrfs_qgroup_inherit *inherit)
1004 {
1005 int ret;
1006 bool snapshot_force_cow = false;
1007
1008 /*
1009 * Force new buffered writes to reserve space even when NOCOW is
1010 * possible. This is to avoid later writeback (running dealloc) to
1011 * fallback to COW mode and unexpectedly fail with ENOSPC.
1012 */
1013 btrfs_drew_read_lock(&root->snapshot_lock);
1014
1015 ret = btrfs_start_delalloc_snapshot(root, false);
1016 if (ret)
1017 goto out;
1018
1019 /*
1020 * All previous writes have started writeback in NOCOW mode, so now
1021 * we force future writes to fallback to COW mode during snapshot
1022 * creation.
1023 */
1024 atomic_inc(&root->snapshot_force_cow);
1025 snapshot_force_cow = true;
1026
1027 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1028
1029 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1030 root, readonly, inherit);
1031 out:
1032 if (snapshot_force_cow)
1033 atomic_dec(&root->snapshot_force_cow);
1034 btrfs_drew_read_unlock(&root->snapshot_lock);
1035 return ret;
1036 }
1037
1038 /*
1039 * Defrag specific helper to get an extent map.
1040 *
1041 * Differences between this and btrfs_get_extent() are:
1042 *
1043 * - No extent_map will be added to inode->extent_tree
1044 * To reduce memory usage in the long run.
1045 *
1046 * - Extra optimization to skip file extents older than @newer_than
1047 * By using btrfs_search_forward() we can skip entire file ranges that
1048 * have extents created in past transactions, because btrfs_search_forward()
1049 * will not visit leaves and nodes with a generation smaller than given
1050 * minimal generation threshold (@newer_than).
1051 *
1052 * Return valid em if we find a file extent matching the requirement.
1053 * Return NULL if we can not find a file extent matching the requirement.
1054 *
1055 * Return ERR_PTR() for error.
1056 */
defrag_get_extent(struct btrfs_inode * inode,u64 start,u64 newer_than)1057 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
1058 u64 start, u64 newer_than)
1059 {
1060 struct btrfs_root *root = inode->root;
1061 struct btrfs_file_extent_item *fi;
1062 struct btrfs_path path = { 0 };
1063 struct extent_map *em;
1064 struct btrfs_key key;
1065 u64 ino = btrfs_ino(inode);
1066 int ret;
1067
1068 em = alloc_extent_map();
1069 if (!em) {
1070 ret = -ENOMEM;
1071 goto err;
1072 }
1073
1074 key.objectid = ino;
1075 key.type = BTRFS_EXTENT_DATA_KEY;
1076 key.offset = start;
1077
1078 if (newer_than) {
1079 ret = btrfs_search_forward(root, &key, &path, newer_than);
1080 if (ret < 0)
1081 goto err;
1082 /* Can't find anything newer */
1083 if (ret > 0)
1084 goto not_found;
1085 } else {
1086 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1087 if (ret < 0)
1088 goto err;
1089 }
1090 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
1091 /*
1092 * If btrfs_search_slot() makes path to point beyond nritems,
1093 * we should not have an empty leaf, as this inode must at
1094 * least have its INODE_ITEM.
1095 */
1096 ASSERT(btrfs_header_nritems(path.nodes[0]));
1097 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
1098 }
1099 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1100 /* Perfect match, no need to go one slot back */
1101 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
1102 key.offset == start)
1103 goto iterate;
1104
1105 /* We didn't find a perfect match, needs to go one slot back */
1106 if (path.slots[0] > 0) {
1107 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1108 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
1109 path.slots[0]--;
1110 }
1111
1112 iterate:
1113 /* Iterate through the path to find a file extent covering @start */
1114 while (true) {
1115 u64 extent_end;
1116
1117 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
1118 goto next;
1119
1120 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1121
1122 /*
1123 * We may go one slot back to INODE_REF/XATTR item, then
1124 * need to go forward until we reach an EXTENT_DATA.
1125 * But we should still has the correct ino as key.objectid.
1126 */
1127 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
1128 goto next;
1129
1130 /* It's beyond our target range, definitely not extent found */
1131 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
1132 goto not_found;
1133
1134 /*
1135 * | |<- File extent ->|
1136 * \- start
1137 *
1138 * This means there is a hole between start and key.offset.
1139 */
1140 if (key.offset > start) {
1141 em->start = start;
1142 em->orig_start = start;
1143 em->block_start = EXTENT_MAP_HOLE;
1144 em->len = key.offset - start;
1145 break;
1146 }
1147
1148 fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
1149 struct btrfs_file_extent_item);
1150 extent_end = btrfs_file_extent_end(&path);
1151
1152 /*
1153 * |<- file extent ->| |
1154 * \- start
1155 *
1156 * We haven't reached start, search next slot.
1157 */
1158 if (extent_end <= start)
1159 goto next;
1160
1161 /* Now this extent covers @start, convert it to em */
1162 btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
1163 break;
1164 next:
1165 ret = btrfs_next_item(root, &path);
1166 if (ret < 0)
1167 goto err;
1168 if (ret > 0)
1169 goto not_found;
1170 }
1171 btrfs_release_path(&path);
1172 return em;
1173
1174 not_found:
1175 btrfs_release_path(&path);
1176 free_extent_map(em);
1177 return NULL;
1178
1179 err:
1180 btrfs_release_path(&path);
1181 free_extent_map(em);
1182 return ERR_PTR(ret);
1183 }
1184
defrag_lookup_extent(struct inode * inode,u64 start,u64 newer_than,bool locked)1185 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1186 u64 newer_than, bool locked)
1187 {
1188 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1189 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1190 struct extent_map *em;
1191 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1192
1193 /*
1194 * hopefully we have this extent in the tree already, try without
1195 * the full extent lock
1196 */
1197 read_lock(&em_tree->lock);
1198 em = lookup_extent_mapping(em_tree, start, sectorsize);
1199 read_unlock(&em_tree->lock);
1200
1201 /*
1202 * We can get a merged extent, in that case, we need to re-search
1203 * tree to get the original em for defrag.
1204 *
1205 * If @newer_than is 0 or em::generation < newer_than, we can trust
1206 * this em, as either we don't care about the generation, or the
1207 * merged extent map will be rejected anyway.
1208 */
1209 if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
1210 newer_than && em->generation >= newer_than) {
1211 free_extent_map(em);
1212 em = NULL;
1213 }
1214
1215 if (!em) {
1216 struct extent_state *cached = NULL;
1217 u64 end = start + sectorsize - 1;
1218
1219 /* get the big lock and read metadata off disk */
1220 if (!locked)
1221 lock_extent(io_tree, start, end, &cached);
1222 em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
1223 if (!locked)
1224 unlock_extent(io_tree, start, end, &cached);
1225
1226 if (IS_ERR(em))
1227 return NULL;
1228 }
1229
1230 return em;
1231 }
1232
get_extent_max_capacity(const struct btrfs_fs_info * fs_info,const struct extent_map * em)1233 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
1234 const struct extent_map *em)
1235 {
1236 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1237 return BTRFS_MAX_COMPRESSED;
1238 return fs_info->max_extent_size;
1239 }
1240
defrag_check_next_extent(struct inode * inode,struct extent_map * em,u32 extent_thresh,u64 newer_than,bool locked)1241 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1242 u32 extent_thresh, u64 newer_than, bool locked)
1243 {
1244 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1245 struct extent_map *next;
1246 bool ret = false;
1247
1248 /* this is the last extent */
1249 if (em->start + em->len >= i_size_read(inode))
1250 return false;
1251
1252 /*
1253 * Here we need to pass @newer_then when checking the next extent, or
1254 * we will hit a case we mark current extent for defrag, but the next
1255 * one will not be a target.
1256 * This will just cause extra IO without really reducing the fragments.
1257 */
1258 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
1259 /* No more em or hole */
1260 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1261 goto out;
1262 if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
1263 goto out;
1264 /*
1265 * If the next extent is at its max capacity, defragging current extent
1266 * makes no sense, as the total number of extents won't change.
1267 */
1268 if (next->len >= get_extent_max_capacity(fs_info, em))
1269 goto out;
1270 /* Skip older extent */
1271 if (next->generation < newer_than)
1272 goto out;
1273 /* Also check extent size */
1274 if (next->len >= extent_thresh)
1275 goto out;
1276
1277 ret = true;
1278 out:
1279 free_extent_map(next);
1280 return ret;
1281 }
1282
1283 /*
1284 * Prepare one page to be defragged.
1285 *
1286 * This will ensure:
1287 *
1288 * - Returned page is locked and has been set up properly.
1289 * - No ordered extent exists in the page.
1290 * - The page is uptodate.
1291 *
1292 * NOTE: Caller should also wait for page writeback after the cluster is
1293 * prepared, here we don't do writeback wait for each page.
1294 */
defrag_prepare_one_page(struct btrfs_inode * inode,pgoff_t index)1295 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1296 pgoff_t index)
1297 {
1298 struct address_space *mapping = inode->vfs_inode.i_mapping;
1299 gfp_t mask = btrfs_alloc_write_mask(mapping);
1300 u64 page_start = (u64)index << PAGE_SHIFT;
1301 u64 page_end = page_start + PAGE_SIZE - 1;
1302 struct extent_state *cached_state = NULL;
1303 struct page *page;
1304 int ret;
1305
1306 again:
1307 page = find_or_create_page(mapping, index, mask);
1308 if (!page)
1309 return ERR_PTR(-ENOMEM);
1310
1311 /*
1312 * Since we can defragment files opened read-only, we can encounter
1313 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1314 * can't do I/O using huge pages yet, so return an error for now.
1315 * Filesystem transparent huge pages are typically only used for
1316 * executables that explicitly enable them, so this isn't very
1317 * restrictive.
1318 */
1319 if (PageCompound(page)) {
1320 unlock_page(page);
1321 put_page(page);
1322 return ERR_PTR(-ETXTBSY);
1323 }
1324
1325 ret = set_page_extent_mapped(page);
1326 if (ret < 0) {
1327 unlock_page(page);
1328 put_page(page);
1329 return ERR_PTR(ret);
1330 }
1331
1332 /* Wait for any existing ordered extent in the range */
1333 while (1) {
1334 struct btrfs_ordered_extent *ordered;
1335
1336 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
1337 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1338 unlock_extent(&inode->io_tree, page_start, page_end,
1339 &cached_state);
1340 if (!ordered)
1341 break;
1342
1343 unlock_page(page);
1344 btrfs_start_ordered_extent(ordered, 1);
1345 btrfs_put_ordered_extent(ordered);
1346 lock_page(page);
1347 /*
1348 * We unlocked the page above, so we need check if it was
1349 * released or not.
1350 */
1351 if (page->mapping != mapping || !PagePrivate(page)) {
1352 unlock_page(page);
1353 put_page(page);
1354 goto again;
1355 }
1356 }
1357
1358 /*
1359 * Now the page range has no ordered extent any more. Read the page to
1360 * make it uptodate.
1361 */
1362 if (!PageUptodate(page)) {
1363 btrfs_read_folio(NULL, page_folio(page));
1364 lock_page(page);
1365 if (page->mapping != mapping || !PagePrivate(page)) {
1366 unlock_page(page);
1367 put_page(page);
1368 goto again;
1369 }
1370 if (!PageUptodate(page)) {
1371 unlock_page(page);
1372 put_page(page);
1373 return ERR_PTR(-EIO);
1374 }
1375 }
1376 return page;
1377 }
1378
1379 struct defrag_target_range {
1380 struct list_head list;
1381 u64 start;
1382 u64 len;
1383 };
1384
1385 /*
1386 * Collect all valid target extents.
1387 *
1388 * @start: file offset to lookup
1389 * @len: length to lookup
1390 * @extent_thresh: file extent size threshold, any extent size >= this value
1391 * will be ignored
1392 * @newer_than: only defrag extents newer than this value
1393 * @do_compress: whether the defrag is doing compression
1394 * if true, @extent_thresh will be ignored and all regular
1395 * file extents meeting @newer_than will be targets.
1396 * @locked: if the range has already held extent lock
1397 * @target_list: list of targets file extents
1398 */
defrag_collect_targets(struct btrfs_inode * inode,u64 start,u64 len,u32 extent_thresh,u64 newer_than,bool do_compress,bool locked,struct list_head * target_list,u64 * last_scanned_ret)1399 static int defrag_collect_targets(struct btrfs_inode *inode,
1400 u64 start, u64 len, u32 extent_thresh,
1401 u64 newer_than, bool do_compress,
1402 bool locked, struct list_head *target_list,
1403 u64 *last_scanned_ret)
1404 {
1405 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1406 bool last_is_target = false;
1407 u64 cur = start;
1408 int ret = 0;
1409
1410 while (cur < start + len) {
1411 struct extent_map *em;
1412 struct defrag_target_range *new;
1413 bool next_mergeable = true;
1414 u64 range_len;
1415
1416 last_is_target = false;
1417 em = defrag_lookup_extent(&inode->vfs_inode, cur,
1418 newer_than, locked);
1419 if (!em)
1420 break;
1421
1422 /*
1423 * If the file extent is an inlined one, we may still want to
1424 * defrag it (fallthrough) if it will cause a regular extent.
1425 * This is for users who want to convert inline extents to
1426 * regular ones through max_inline= mount option.
1427 */
1428 if (em->block_start == EXTENT_MAP_INLINE &&
1429 em->len <= inode->root->fs_info->max_inline)
1430 goto next;
1431
1432 /* Skip hole/delalloc/preallocated extents */
1433 if (em->block_start == EXTENT_MAP_HOLE ||
1434 em->block_start == EXTENT_MAP_DELALLOC ||
1435 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1436 goto next;
1437
1438 /* Skip older extent */
1439 if (em->generation < newer_than)
1440 goto next;
1441
1442 /* This em is under writeback, no need to defrag */
1443 if (em->generation == (u64)-1)
1444 goto next;
1445
1446 /*
1447 * Our start offset might be in the middle of an existing extent
1448 * map, so take that into account.
1449 */
1450 range_len = em->len - (cur - em->start);
1451 /*
1452 * If this range of the extent map is already flagged for delalloc,
1453 * skip it, because:
1454 *
1455 * 1) We could deadlock later, when trying to reserve space for
1456 * delalloc, because in case we can't immediately reserve space
1457 * the flusher can start delalloc and wait for the respective
1458 * ordered extents to complete. The deadlock would happen
1459 * because we do the space reservation while holding the range
1460 * locked, and starting writeback, or finishing an ordered
1461 * extent, requires locking the range;
1462 *
1463 * 2) If there's delalloc there, it means there's dirty pages for
1464 * which writeback has not started yet (we clean the delalloc
1465 * flag when starting writeback and after creating an ordered
1466 * extent). If we mark pages in an adjacent range for defrag,
1467 * then we will have a larger contiguous range for delalloc,
1468 * very likely resulting in a larger extent after writeback is
1469 * triggered (except in a case of free space fragmentation).
1470 */
1471 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1472 EXTENT_DELALLOC, 0, NULL))
1473 goto next;
1474
1475 /*
1476 * For do_compress case, we want to compress all valid file
1477 * extents, thus no @extent_thresh or mergeable check.
1478 */
1479 if (do_compress)
1480 goto add;
1481
1482 /* Skip too large extent */
1483 if (range_len >= extent_thresh)
1484 goto next;
1485
1486 /*
1487 * Skip extents already at its max capacity, this is mostly for
1488 * compressed extents, which max cap is only 128K.
1489 */
1490 if (em->len >= get_extent_max_capacity(fs_info, em))
1491 goto next;
1492
1493 /*
1494 * Normally there are no more extents after an inline one, thus
1495 * @next_mergeable will normally be false and not defragged.
1496 * So if an inline extent passed all above checks, just add it
1497 * for defrag, and be converted to regular extents.
1498 */
1499 if (em->block_start == EXTENT_MAP_INLINE)
1500 goto add;
1501
1502 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1503 extent_thresh, newer_than, locked);
1504 if (!next_mergeable) {
1505 struct defrag_target_range *last;
1506
1507 /* Empty target list, no way to merge with last entry */
1508 if (list_empty(target_list))
1509 goto next;
1510 last = list_entry(target_list->prev,
1511 struct defrag_target_range, list);
1512 /* Not mergeable with last entry */
1513 if (last->start + last->len != cur)
1514 goto next;
1515
1516 /* Mergeable, fall through to add it to @target_list. */
1517 }
1518
1519 add:
1520 last_is_target = true;
1521 range_len = min(extent_map_end(em), start + len) - cur;
1522 /*
1523 * This one is a good target, check if it can be merged into
1524 * last range of the target list.
1525 */
1526 if (!list_empty(target_list)) {
1527 struct defrag_target_range *last;
1528
1529 last = list_entry(target_list->prev,
1530 struct defrag_target_range, list);
1531 ASSERT(last->start + last->len <= cur);
1532 if (last->start + last->len == cur) {
1533 /* Mergeable, enlarge the last entry */
1534 last->len += range_len;
1535 goto next;
1536 }
1537 /* Fall through to allocate a new entry */
1538 }
1539
1540 /* Allocate new defrag_target_range */
1541 new = kmalloc(sizeof(*new), GFP_NOFS);
1542 if (!new) {
1543 free_extent_map(em);
1544 ret = -ENOMEM;
1545 break;
1546 }
1547 new->start = cur;
1548 new->len = range_len;
1549 list_add_tail(&new->list, target_list);
1550
1551 next:
1552 cur = extent_map_end(em);
1553 free_extent_map(em);
1554 }
1555 if (ret < 0) {
1556 struct defrag_target_range *entry;
1557 struct defrag_target_range *tmp;
1558
1559 list_for_each_entry_safe(entry, tmp, target_list, list) {
1560 list_del_init(&entry->list);
1561 kfree(entry);
1562 }
1563 }
1564 if (!ret && last_scanned_ret) {
1565 /*
1566 * If the last extent is not a target, the caller can skip to
1567 * the end of that extent.
1568 * Otherwise, we can only go the end of the specified range.
1569 */
1570 if (!last_is_target)
1571 *last_scanned_ret = max(cur, *last_scanned_ret);
1572 else
1573 *last_scanned_ret = max(start + len, *last_scanned_ret);
1574 }
1575 return ret;
1576 }
1577
1578 #define CLUSTER_SIZE (SZ_256K)
1579 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1580
1581 /*
1582 * Defrag one contiguous target range.
1583 *
1584 * @inode: target inode
1585 * @target: target range to defrag
1586 * @pages: locked pages covering the defrag range
1587 * @nr_pages: number of locked pages
1588 *
1589 * Caller should ensure:
1590 *
1591 * - Pages are prepared
1592 * Pages should be locked, no ordered extent in the pages range,
1593 * no writeback.
1594 *
1595 * - Extent bits are locked
1596 */
defrag_one_locked_target(struct btrfs_inode * inode,struct defrag_target_range * target,struct page ** pages,int nr_pages,struct extent_state ** cached_state)1597 static int defrag_one_locked_target(struct btrfs_inode *inode,
1598 struct defrag_target_range *target,
1599 struct page **pages, int nr_pages,
1600 struct extent_state **cached_state)
1601 {
1602 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1603 struct extent_changeset *data_reserved = NULL;
1604 const u64 start = target->start;
1605 const u64 len = target->len;
1606 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1607 unsigned long start_index = start >> PAGE_SHIFT;
1608 unsigned long first_index = page_index(pages[0]);
1609 int ret = 0;
1610 int i;
1611
1612 ASSERT(last_index - first_index + 1 <= nr_pages);
1613
1614 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1615 if (ret < 0)
1616 return ret;
1617 clear_extent_bit(&inode->io_tree, start, start + len - 1,
1618 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1619 EXTENT_DEFRAG, cached_state);
1620 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1621
1622 /* Update the page status */
1623 for (i = start_index - first_index; i <= last_index - first_index; i++) {
1624 ClearPageChecked(pages[i]);
1625 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1626 }
1627 btrfs_delalloc_release_extents(inode, len);
1628 extent_changeset_free(data_reserved);
1629
1630 return ret;
1631 }
1632
defrag_one_range(struct btrfs_inode * inode,u64 start,u32 len,u32 extent_thresh,u64 newer_than,bool do_compress,u64 * last_scanned_ret)1633 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1634 u32 extent_thresh, u64 newer_than, bool do_compress,
1635 u64 *last_scanned_ret)
1636 {
1637 struct extent_state *cached_state = NULL;
1638 struct defrag_target_range *entry;
1639 struct defrag_target_range *tmp;
1640 LIST_HEAD(target_list);
1641 struct page **pages;
1642 const u32 sectorsize = inode->root->fs_info->sectorsize;
1643 u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1644 u64 start_index = start >> PAGE_SHIFT;
1645 unsigned int nr_pages = last_index - start_index + 1;
1646 int ret = 0;
1647 int i;
1648
1649 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1650 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1651
1652 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1653 if (!pages)
1654 return -ENOMEM;
1655
1656 /* Prepare all pages */
1657 for (i = 0; i < nr_pages; i++) {
1658 pages[i] = defrag_prepare_one_page(inode, start_index + i);
1659 if (IS_ERR(pages[i])) {
1660 ret = PTR_ERR(pages[i]);
1661 pages[i] = NULL;
1662 goto free_pages;
1663 }
1664 }
1665 for (i = 0; i < nr_pages; i++)
1666 wait_on_page_writeback(pages[i]);
1667
1668 /* Lock the pages range */
1669 lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1670 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1671 &cached_state);
1672 /*
1673 * Now we have a consistent view about the extent map, re-check
1674 * which range really needs to be defragged.
1675 *
1676 * And this time we have extent locked already, pass @locked = true
1677 * so that we won't relock the extent range and cause deadlock.
1678 */
1679 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1680 newer_than, do_compress, true,
1681 &target_list, last_scanned_ret);
1682 if (ret < 0)
1683 goto unlock_extent;
1684
1685 list_for_each_entry(entry, &target_list, list) {
1686 ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1687 &cached_state);
1688 if (ret < 0)
1689 break;
1690 }
1691
1692 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1693 list_del_init(&entry->list);
1694 kfree(entry);
1695 }
1696 unlock_extent:
1697 unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1698 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1699 &cached_state);
1700 free_pages:
1701 for (i = 0; i < nr_pages; i++) {
1702 if (pages[i]) {
1703 unlock_page(pages[i]);
1704 put_page(pages[i]);
1705 }
1706 }
1707 kfree(pages);
1708 return ret;
1709 }
1710
defrag_one_cluster(struct btrfs_inode * inode,struct file_ra_state * ra,u64 start,u32 len,u32 extent_thresh,u64 newer_than,bool do_compress,unsigned long * sectors_defragged,unsigned long max_sectors,u64 * last_scanned_ret)1711 static int defrag_one_cluster(struct btrfs_inode *inode,
1712 struct file_ra_state *ra,
1713 u64 start, u32 len, u32 extent_thresh,
1714 u64 newer_than, bool do_compress,
1715 unsigned long *sectors_defragged,
1716 unsigned long max_sectors,
1717 u64 *last_scanned_ret)
1718 {
1719 const u32 sectorsize = inode->root->fs_info->sectorsize;
1720 struct defrag_target_range *entry;
1721 struct defrag_target_range *tmp;
1722 LIST_HEAD(target_list);
1723 int ret;
1724
1725 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1726 newer_than, do_compress, false,
1727 &target_list, NULL);
1728 if (ret < 0)
1729 goto out;
1730
1731 list_for_each_entry(entry, &target_list, list) {
1732 u32 range_len = entry->len;
1733
1734 /* Reached or beyond the limit */
1735 if (max_sectors && *sectors_defragged >= max_sectors) {
1736 ret = 1;
1737 break;
1738 }
1739
1740 if (max_sectors)
1741 range_len = min_t(u32, range_len,
1742 (max_sectors - *sectors_defragged) * sectorsize);
1743
1744 /*
1745 * If defrag_one_range() has updated last_scanned_ret,
1746 * our range may already be invalid (e.g. hole punched).
1747 * Skip if our range is before last_scanned_ret, as there is
1748 * no need to defrag the range anymore.
1749 */
1750 if (entry->start + range_len <= *last_scanned_ret)
1751 continue;
1752
1753 if (ra)
1754 page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1755 ra, NULL, entry->start >> PAGE_SHIFT,
1756 ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1757 (entry->start >> PAGE_SHIFT) + 1);
1758 /*
1759 * Here we may not defrag any range if holes are punched before
1760 * we locked the pages.
1761 * But that's fine, it only affects the @sectors_defragged
1762 * accounting.
1763 */
1764 ret = defrag_one_range(inode, entry->start, range_len,
1765 extent_thresh, newer_than, do_compress,
1766 last_scanned_ret);
1767 if (ret < 0)
1768 break;
1769 *sectors_defragged += range_len >>
1770 inode->root->fs_info->sectorsize_bits;
1771 }
1772 out:
1773 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1774 list_del_init(&entry->list);
1775 kfree(entry);
1776 }
1777 if (ret >= 0)
1778 *last_scanned_ret = max(*last_scanned_ret, start + len);
1779 return ret;
1780 }
1781
1782 /*
1783 * Entry point to file defragmentation.
1784 *
1785 * @inode: inode to be defragged
1786 * @ra: readahead state (can be NUL)
1787 * @range: defrag options including range and flags
1788 * @newer_than: minimum transid to defrag
1789 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1790 * will be defragged.
1791 *
1792 * Return <0 for error.
1793 * Return >=0 for the number of sectors defragged, and range->start will be updated
1794 * to indicate the file offset where next defrag should be started at.
1795 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1796 * defragging all the range).
1797 */
btrfs_defrag_file(struct inode * inode,struct file_ra_state * ra,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1798 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1799 struct btrfs_ioctl_defrag_range_args *range,
1800 u64 newer_than, unsigned long max_to_defrag)
1801 {
1802 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1803 unsigned long sectors_defragged = 0;
1804 u64 isize = i_size_read(inode);
1805 u64 cur;
1806 u64 last_byte;
1807 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1808 bool ra_allocated = false;
1809 int compress_type = BTRFS_COMPRESS_ZLIB;
1810 int ret = 0;
1811 u32 extent_thresh = range->extent_thresh;
1812 pgoff_t start_index;
1813
1814 if (isize == 0)
1815 return 0;
1816
1817 if (range->start >= isize)
1818 return -EINVAL;
1819
1820 if (do_compress) {
1821 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1822 return -EINVAL;
1823 if (range->compress_type)
1824 compress_type = range->compress_type;
1825 }
1826
1827 if (extent_thresh == 0)
1828 extent_thresh = SZ_256K;
1829
1830 if (range->start + range->len > range->start) {
1831 /* Got a specific range */
1832 last_byte = min(isize, range->start + range->len);
1833 } else {
1834 /* Defrag until file end */
1835 last_byte = isize;
1836 }
1837
1838 /* Align the range */
1839 cur = round_down(range->start, fs_info->sectorsize);
1840 last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1841
1842 /*
1843 * If we were not given a ra, allocate a readahead context. As
1844 * readahead is just an optimization, defrag will work without it so
1845 * we don't error out.
1846 */
1847 if (!ra) {
1848 ra_allocated = true;
1849 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1850 if (ra)
1851 file_ra_state_init(ra, inode->i_mapping);
1852 }
1853
1854 /*
1855 * Make writeback start from the beginning of the range, so that the
1856 * defrag range can be written sequentially.
1857 */
1858 start_index = cur >> PAGE_SHIFT;
1859 if (start_index < inode->i_mapping->writeback_index)
1860 inode->i_mapping->writeback_index = start_index;
1861
1862 while (cur < last_byte) {
1863 const unsigned long prev_sectors_defragged = sectors_defragged;
1864 u64 last_scanned = cur;
1865 u64 cluster_end;
1866
1867 if (btrfs_defrag_cancelled(fs_info)) {
1868 ret = -EAGAIN;
1869 break;
1870 }
1871
1872 /* We want the cluster end at page boundary when possible */
1873 cluster_end = (((cur >> PAGE_SHIFT) +
1874 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1875 cluster_end = min(cluster_end, last_byte);
1876
1877 btrfs_inode_lock(inode, 0);
1878 if (IS_SWAPFILE(inode)) {
1879 ret = -ETXTBSY;
1880 btrfs_inode_unlock(inode, 0);
1881 break;
1882 }
1883 if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1884 btrfs_inode_unlock(inode, 0);
1885 break;
1886 }
1887 if (do_compress)
1888 BTRFS_I(inode)->defrag_compress = compress_type;
1889 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1890 cluster_end + 1 - cur, extent_thresh,
1891 newer_than, do_compress, §ors_defragged,
1892 max_to_defrag, &last_scanned);
1893
1894 if (sectors_defragged > prev_sectors_defragged)
1895 balance_dirty_pages_ratelimited(inode->i_mapping);
1896
1897 btrfs_inode_unlock(inode, 0);
1898 if (ret < 0)
1899 break;
1900 cur = max(cluster_end + 1, last_scanned);
1901 if (ret > 0) {
1902 ret = 0;
1903 break;
1904 }
1905 cond_resched();
1906 }
1907
1908 if (ra_allocated)
1909 kfree(ra);
1910 /*
1911 * Update range.start for autodefrag, this will indicate where to start
1912 * in next run.
1913 */
1914 range->start = cur;
1915 if (sectors_defragged) {
1916 /*
1917 * We have defragged some sectors, for compression case they
1918 * need to be written back immediately.
1919 */
1920 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1921 filemap_flush(inode->i_mapping);
1922 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1923 &BTRFS_I(inode)->runtime_flags))
1924 filemap_flush(inode->i_mapping);
1925 }
1926 if (range->compress_type == BTRFS_COMPRESS_LZO)
1927 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1928 else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1929 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1930 ret = sectors_defragged;
1931 }
1932 if (do_compress) {
1933 btrfs_inode_lock(inode, 0);
1934 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1935 btrfs_inode_unlock(inode, 0);
1936 }
1937 return ret;
1938 }
1939
1940 /*
1941 * Try to start exclusive operation @type or cancel it if it's running.
1942 *
1943 * Return:
1944 * 0 - normal mode, newly claimed op started
1945 * >0 - normal mode, something else is running,
1946 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1947 * ECANCELED - cancel mode, successful cancel
1948 * ENOTCONN - cancel mode, operation not running anymore
1949 */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)1950 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1951 enum btrfs_exclusive_operation type, bool cancel)
1952 {
1953 if (!cancel) {
1954 /* Start normal op */
1955 if (!btrfs_exclop_start(fs_info, type))
1956 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1957 /* Exclusive operation is now claimed */
1958 return 0;
1959 }
1960
1961 /* Cancel running op */
1962 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1963 /*
1964 * This blocks any exclop finish from setting it to NONE, so we
1965 * request cancellation. Either it runs and we will wait for it,
1966 * or it has finished and no waiting will happen.
1967 */
1968 atomic_inc(&fs_info->reloc_cancel_req);
1969 btrfs_exclop_start_unlock(fs_info);
1970
1971 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1972 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1973 TASK_INTERRUPTIBLE);
1974
1975 return -ECANCELED;
1976 }
1977
1978 /* Something else is running or none */
1979 return -ENOTCONN;
1980 }
1981
btrfs_ioctl_resize(struct file * file,void __user * arg)1982 static noinline int btrfs_ioctl_resize(struct file *file,
1983 void __user *arg)
1984 {
1985 BTRFS_DEV_LOOKUP_ARGS(args);
1986 struct inode *inode = file_inode(file);
1987 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1988 u64 new_size;
1989 u64 old_size;
1990 u64 devid = 1;
1991 struct btrfs_root *root = BTRFS_I(inode)->root;
1992 struct btrfs_ioctl_vol_args *vol_args;
1993 struct btrfs_trans_handle *trans;
1994 struct btrfs_device *device = NULL;
1995 char *sizestr;
1996 char *retptr;
1997 char *devstr = NULL;
1998 int ret = 0;
1999 int mod = 0;
2000 bool cancel;
2001
2002 if (!capable(CAP_SYS_ADMIN))
2003 return -EPERM;
2004
2005 ret = mnt_want_write_file(file);
2006 if (ret)
2007 return ret;
2008
2009 /*
2010 * Read the arguments before checking exclusivity to be able to
2011 * distinguish regular resize and cancel
2012 */
2013 vol_args = memdup_user(arg, sizeof(*vol_args));
2014 if (IS_ERR(vol_args)) {
2015 ret = PTR_ERR(vol_args);
2016 goto out_drop;
2017 }
2018 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2019 sizestr = vol_args->name;
2020 cancel = (strcmp("cancel", sizestr) == 0);
2021 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
2022 if (ret)
2023 goto out_free;
2024 /* Exclusive operation is now claimed */
2025
2026 devstr = strchr(sizestr, ':');
2027 if (devstr) {
2028 sizestr = devstr + 1;
2029 *devstr = '\0';
2030 devstr = vol_args->name;
2031 ret = kstrtoull(devstr, 10, &devid);
2032 if (ret)
2033 goto out_finish;
2034 if (!devid) {
2035 ret = -EINVAL;
2036 goto out_finish;
2037 }
2038 btrfs_info(fs_info, "resizing devid %llu", devid);
2039 }
2040
2041 args.devid = devid;
2042 device = btrfs_find_device(fs_info->fs_devices, &args);
2043 if (!device) {
2044 btrfs_info(fs_info, "resizer unable to find device %llu",
2045 devid);
2046 ret = -ENODEV;
2047 goto out_finish;
2048 }
2049
2050 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2051 btrfs_info(fs_info,
2052 "resizer unable to apply on readonly device %llu",
2053 devid);
2054 ret = -EPERM;
2055 goto out_finish;
2056 }
2057
2058 if (!strcmp(sizestr, "max"))
2059 new_size = bdev_nr_bytes(device->bdev);
2060 else {
2061 if (sizestr[0] == '-') {
2062 mod = -1;
2063 sizestr++;
2064 } else if (sizestr[0] == '+') {
2065 mod = 1;
2066 sizestr++;
2067 }
2068 new_size = memparse(sizestr, &retptr);
2069 if (*retptr != '\0' || new_size == 0) {
2070 ret = -EINVAL;
2071 goto out_finish;
2072 }
2073 }
2074
2075 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2076 ret = -EPERM;
2077 goto out_finish;
2078 }
2079
2080 old_size = btrfs_device_get_total_bytes(device);
2081
2082 if (mod < 0) {
2083 if (new_size > old_size) {
2084 ret = -EINVAL;
2085 goto out_finish;
2086 }
2087 new_size = old_size - new_size;
2088 } else if (mod > 0) {
2089 if (new_size > ULLONG_MAX - old_size) {
2090 ret = -ERANGE;
2091 goto out_finish;
2092 }
2093 new_size = old_size + new_size;
2094 }
2095
2096 if (new_size < SZ_256M) {
2097 ret = -EINVAL;
2098 goto out_finish;
2099 }
2100 if (new_size > bdev_nr_bytes(device->bdev)) {
2101 ret = -EFBIG;
2102 goto out_finish;
2103 }
2104
2105 new_size = round_down(new_size, fs_info->sectorsize);
2106
2107 if (new_size > old_size) {
2108 trans = btrfs_start_transaction(root, 0);
2109 if (IS_ERR(trans)) {
2110 ret = PTR_ERR(trans);
2111 goto out_finish;
2112 }
2113 ret = btrfs_grow_device(trans, device, new_size);
2114 btrfs_commit_transaction(trans);
2115 } else if (new_size < old_size) {
2116 ret = btrfs_shrink_device(device, new_size);
2117 } /* equal, nothing need to do */
2118
2119 if (ret == 0 && new_size != old_size)
2120 btrfs_info_in_rcu(fs_info,
2121 "resize device %s (devid %llu) from %llu to %llu",
2122 rcu_str_deref(device->name), device->devid,
2123 old_size, new_size);
2124 out_finish:
2125 btrfs_exclop_finish(fs_info);
2126 out_free:
2127 kfree(vol_args);
2128 out_drop:
2129 mnt_drop_write_file(file);
2130 return ret;
2131 }
2132
__btrfs_ioctl_snap_create(struct file * file,struct user_namespace * mnt_userns,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)2133 static noinline int __btrfs_ioctl_snap_create(struct file *file,
2134 struct user_namespace *mnt_userns,
2135 const char *name, unsigned long fd, int subvol,
2136 bool readonly,
2137 struct btrfs_qgroup_inherit *inherit)
2138 {
2139 int namelen;
2140 int ret = 0;
2141
2142 if (!S_ISDIR(file_inode(file)->i_mode))
2143 return -ENOTDIR;
2144
2145 ret = mnt_want_write_file(file);
2146 if (ret)
2147 goto out;
2148
2149 namelen = strlen(name);
2150 if (strchr(name, '/')) {
2151 ret = -EINVAL;
2152 goto out_drop_write;
2153 }
2154
2155 if (name[0] == '.' &&
2156 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
2157 ret = -EEXIST;
2158 goto out_drop_write;
2159 }
2160
2161 if (subvol) {
2162 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
2163 namelen, NULL, readonly, inherit);
2164 } else {
2165 struct fd src = fdget(fd);
2166 struct inode *src_inode;
2167 if (!src.file) {
2168 ret = -EINVAL;
2169 goto out_drop_write;
2170 }
2171
2172 src_inode = file_inode(src.file);
2173 if (src_inode->i_sb != file_inode(file)->i_sb) {
2174 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
2175 "Snapshot src from another FS");
2176 ret = -EXDEV;
2177 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
2178 /*
2179 * Subvolume creation is not restricted, but snapshots
2180 * are limited to own subvolumes only
2181 */
2182 ret = -EPERM;
2183 } else {
2184 ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
2185 name, namelen,
2186 BTRFS_I(src_inode)->root,
2187 readonly, inherit);
2188 }
2189 fdput(src);
2190 }
2191 out_drop_write:
2192 mnt_drop_write_file(file);
2193 out:
2194 return ret;
2195 }
2196
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)2197 static noinline int btrfs_ioctl_snap_create(struct file *file,
2198 void __user *arg, int subvol)
2199 {
2200 struct btrfs_ioctl_vol_args *vol_args;
2201 int ret;
2202
2203 if (!S_ISDIR(file_inode(file)->i_mode))
2204 return -ENOTDIR;
2205
2206 vol_args = memdup_user(arg, sizeof(*vol_args));
2207 if (IS_ERR(vol_args))
2208 return PTR_ERR(vol_args);
2209 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2210
2211 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2212 vol_args->name, vol_args->fd, subvol,
2213 false, NULL);
2214
2215 kfree(vol_args);
2216 return ret;
2217 }
2218
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)2219 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
2220 void __user *arg, int subvol)
2221 {
2222 struct btrfs_ioctl_vol_args_v2 *vol_args;
2223 int ret;
2224 bool readonly = false;
2225 struct btrfs_qgroup_inherit *inherit = NULL;
2226
2227 if (!S_ISDIR(file_inode(file)->i_mode))
2228 return -ENOTDIR;
2229
2230 vol_args = memdup_user(arg, sizeof(*vol_args));
2231 if (IS_ERR(vol_args))
2232 return PTR_ERR(vol_args);
2233 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2234
2235 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
2236 ret = -EOPNOTSUPP;
2237 goto free_args;
2238 }
2239
2240 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
2241 readonly = true;
2242 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
2243 u64 nums;
2244
2245 if (vol_args->size < sizeof(*inherit) ||
2246 vol_args->size > PAGE_SIZE) {
2247 ret = -EINVAL;
2248 goto free_args;
2249 }
2250 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
2251 if (IS_ERR(inherit)) {
2252 ret = PTR_ERR(inherit);
2253 goto free_args;
2254 }
2255
2256 if (inherit->num_qgroups > PAGE_SIZE ||
2257 inherit->num_ref_copies > PAGE_SIZE ||
2258 inherit->num_excl_copies > PAGE_SIZE) {
2259 ret = -EINVAL;
2260 goto free_inherit;
2261 }
2262
2263 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2264 2 * inherit->num_excl_copies;
2265 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
2266 ret = -EINVAL;
2267 goto free_inherit;
2268 }
2269 }
2270
2271 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2272 vol_args->name, vol_args->fd, subvol,
2273 readonly, inherit);
2274 if (ret)
2275 goto free_inherit;
2276 free_inherit:
2277 kfree(inherit);
2278 free_args:
2279 kfree(vol_args);
2280 return ret;
2281 }
2282
btrfs_ioctl_subvol_getflags(struct inode * inode,void __user * arg)2283 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
2284 void __user *arg)
2285 {
2286 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2287 struct btrfs_root *root = BTRFS_I(inode)->root;
2288 int ret = 0;
2289 u64 flags = 0;
2290
2291 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2292 return -EINVAL;
2293
2294 down_read(&fs_info->subvol_sem);
2295 if (btrfs_root_readonly(root))
2296 flags |= BTRFS_SUBVOL_RDONLY;
2297 up_read(&fs_info->subvol_sem);
2298
2299 if (copy_to_user(arg, &flags, sizeof(flags)))
2300 ret = -EFAULT;
2301
2302 return ret;
2303 }
2304
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)2305 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2306 void __user *arg)
2307 {
2308 struct inode *inode = file_inode(file);
2309 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2310 struct btrfs_root *root = BTRFS_I(inode)->root;
2311 struct btrfs_trans_handle *trans;
2312 u64 root_flags;
2313 u64 flags;
2314 int ret = 0;
2315
2316 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2317 return -EPERM;
2318
2319 ret = mnt_want_write_file(file);
2320 if (ret)
2321 goto out;
2322
2323 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2324 ret = -EINVAL;
2325 goto out_drop_write;
2326 }
2327
2328 if (copy_from_user(&flags, arg, sizeof(flags))) {
2329 ret = -EFAULT;
2330 goto out_drop_write;
2331 }
2332
2333 if (flags & ~BTRFS_SUBVOL_RDONLY) {
2334 ret = -EOPNOTSUPP;
2335 goto out_drop_write;
2336 }
2337
2338 down_write(&fs_info->subvol_sem);
2339
2340 /* nothing to do */
2341 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2342 goto out_drop_sem;
2343
2344 root_flags = btrfs_root_flags(&root->root_item);
2345 if (flags & BTRFS_SUBVOL_RDONLY) {
2346 btrfs_set_root_flags(&root->root_item,
2347 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2348 } else {
2349 /*
2350 * Block RO -> RW transition if this subvolume is involved in
2351 * send
2352 */
2353 spin_lock(&root->root_item_lock);
2354 if (root->send_in_progress == 0) {
2355 btrfs_set_root_flags(&root->root_item,
2356 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2357 spin_unlock(&root->root_item_lock);
2358 } else {
2359 spin_unlock(&root->root_item_lock);
2360 btrfs_warn(fs_info,
2361 "Attempt to set subvolume %llu read-write during send",
2362 root->root_key.objectid);
2363 ret = -EPERM;
2364 goto out_drop_sem;
2365 }
2366 }
2367
2368 trans = btrfs_start_transaction(root, 1);
2369 if (IS_ERR(trans)) {
2370 ret = PTR_ERR(trans);
2371 goto out_reset;
2372 }
2373
2374 ret = btrfs_update_root(trans, fs_info->tree_root,
2375 &root->root_key, &root->root_item);
2376 if (ret < 0) {
2377 btrfs_end_transaction(trans);
2378 goto out_reset;
2379 }
2380
2381 ret = btrfs_commit_transaction(trans);
2382
2383 out_reset:
2384 if (ret)
2385 btrfs_set_root_flags(&root->root_item, root_flags);
2386 out_drop_sem:
2387 up_write(&fs_info->subvol_sem);
2388 out_drop_write:
2389 mnt_drop_write_file(file);
2390 out:
2391 return ret;
2392 }
2393
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2394 static noinline int key_in_sk(struct btrfs_key *key,
2395 struct btrfs_ioctl_search_key *sk)
2396 {
2397 struct btrfs_key test;
2398 int ret;
2399
2400 test.objectid = sk->min_objectid;
2401 test.type = sk->min_type;
2402 test.offset = sk->min_offset;
2403
2404 ret = btrfs_comp_cpu_keys(key, &test);
2405 if (ret < 0)
2406 return 0;
2407
2408 test.objectid = sk->max_objectid;
2409 test.type = sk->max_type;
2410 test.offset = sk->max_offset;
2411
2412 ret = btrfs_comp_cpu_keys(key, &test);
2413 if (ret > 0)
2414 return 0;
2415 return 1;
2416 }
2417
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2418 static noinline int copy_to_sk(struct btrfs_path *path,
2419 struct btrfs_key *key,
2420 struct btrfs_ioctl_search_key *sk,
2421 size_t *buf_size,
2422 char __user *ubuf,
2423 unsigned long *sk_offset,
2424 int *num_found)
2425 {
2426 u64 found_transid;
2427 struct extent_buffer *leaf;
2428 struct btrfs_ioctl_search_header sh;
2429 struct btrfs_key test;
2430 unsigned long item_off;
2431 unsigned long item_len;
2432 int nritems;
2433 int i;
2434 int slot;
2435 int ret = 0;
2436
2437 leaf = path->nodes[0];
2438 slot = path->slots[0];
2439 nritems = btrfs_header_nritems(leaf);
2440
2441 if (btrfs_header_generation(leaf) > sk->max_transid) {
2442 i = nritems;
2443 goto advance_key;
2444 }
2445 found_transid = btrfs_header_generation(leaf);
2446
2447 for (i = slot; i < nritems; i++) {
2448 item_off = btrfs_item_ptr_offset(leaf, i);
2449 item_len = btrfs_item_size(leaf, i);
2450
2451 btrfs_item_key_to_cpu(leaf, key, i);
2452 if (!key_in_sk(key, sk))
2453 continue;
2454
2455 if (sizeof(sh) + item_len > *buf_size) {
2456 if (*num_found) {
2457 ret = 1;
2458 goto out;
2459 }
2460
2461 /*
2462 * return one empty item back for v1, which does not
2463 * handle -EOVERFLOW
2464 */
2465
2466 *buf_size = sizeof(sh) + item_len;
2467 item_len = 0;
2468 ret = -EOVERFLOW;
2469 }
2470
2471 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2472 ret = 1;
2473 goto out;
2474 }
2475
2476 sh.objectid = key->objectid;
2477 sh.offset = key->offset;
2478 sh.type = key->type;
2479 sh.len = item_len;
2480 sh.transid = found_transid;
2481
2482 /*
2483 * Copy search result header. If we fault then loop again so we
2484 * can fault in the pages and -EFAULT there if there's a
2485 * problem. Otherwise we'll fault and then copy the buffer in
2486 * properly this next time through
2487 */
2488 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2489 ret = 0;
2490 goto out;
2491 }
2492
2493 *sk_offset += sizeof(sh);
2494
2495 if (item_len) {
2496 char __user *up = ubuf + *sk_offset;
2497 /*
2498 * Copy the item, same behavior as above, but reset the
2499 * * sk_offset so we copy the full thing again.
2500 */
2501 if (read_extent_buffer_to_user_nofault(leaf, up,
2502 item_off, item_len)) {
2503 ret = 0;
2504 *sk_offset -= sizeof(sh);
2505 goto out;
2506 }
2507
2508 *sk_offset += item_len;
2509 }
2510 (*num_found)++;
2511
2512 if (ret) /* -EOVERFLOW from above */
2513 goto out;
2514
2515 if (*num_found >= sk->nr_items) {
2516 ret = 1;
2517 goto out;
2518 }
2519 }
2520 advance_key:
2521 ret = 0;
2522 test.objectid = sk->max_objectid;
2523 test.type = sk->max_type;
2524 test.offset = sk->max_offset;
2525 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2526 ret = 1;
2527 else if (key->offset < (u64)-1)
2528 key->offset++;
2529 else if (key->type < (u8)-1) {
2530 key->offset = 0;
2531 key->type++;
2532 } else if (key->objectid < (u64)-1) {
2533 key->offset = 0;
2534 key->type = 0;
2535 key->objectid++;
2536 } else
2537 ret = 1;
2538 out:
2539 /*
2540 * 0: all items from this leaf copied, continue with next
2541 * 1: * more items can be copied, but unused buffer is too small
2542 * * all items were found
2543 * Either way, it will stops the loop which iterates to the next
2544 * leaf
2545 * -EOVERFLOW: item was to large for buffer
2546 * -EFAULT: could not copy extent buffer back to userspace
2547 */
2548 return ret;
2549 }
2550
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2551 static noinline int search_ioctl(struct inode *inode,
2552 struct btrfs_ioctl_search_key *sk,
2553 size_t *buf_size,
2554 char __user *ubuf)
2555 {
2556 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2557 struct btrfs_root *root;
2558 struct btrfs_key key;
2559 struct btrfs_path *path;
2560 int ret;
2561 int num_found = 0;
2562 unsigned long sk_offset = 0;
2563
2564 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2565 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2566 return -EOVERFLOW;
2567 }
2568
2569 path = btrfs_alloc_path();
2570 if (!path)
2571 return -ENOMEM;
2572
2573 if (sk->tree_id == 0) {
2574 /* search the root of the inode that was passed */
2575 root = btrfs_grab_root(BTRFS_I(inode)->root);
2576 } else {
2577 root = btrfs_get_fs_root(info, sk->tree_id, true);
2578 if (IS_ERR(root)) {
2579 btrfs_free_path(path);
2580 return PTR_ERR(root);
2581 }
2582 }
2583
2584 key.objectid = sk->min_objectid;
2585 key.type = sk->min_type;
2586 key.offset = sk->min_offset;
2587
2588 while (1) {
2589 ret = -EFAULT;
2590 /*
2591 * Ensure that the whole user buffer is faulted in at sub-page
2592 * granularity, otherwise the loop may live-lock.
2593 */
2594 if (fault_in_subpage_writeable(ubuf + sk_offset,
2595 *buf_size - sk_offset))
2596 break;
2597
2598 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2599 if (ret != 0) {
2600 if (ret > 0)
2601 ret = 0;
2602 goto err;
2603 }
2604 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2605 &sk_offset, &num_found);
2606 btrfs_release_path(path);
2607 if (ret)
2608 break;
2609
2610 }
2611 if (ret > 0)
2612 ret = 0;
2613 err:
2614 sk->nr_items = num_found;
2615 btrfs_put_root(root);
2616 btrfs_free_path(path);
2617 return ret;
2618 }
2619
btrfs_ioctl_tree_search(struct inode * inode,void __user * argp)2620 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
2621 void __user *argp)
2622 {
2623 struct btrfs_ioctl_search_args __user *uargs = argp;
2624 struct btrfs_ioctl_search_key sk;
2625 int ret;
2626 size_t buf_size;
2627
2628 if (!capable(CAP_SYS_ADMIN))
2629 return -EPERM;
2630
2631 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2632 return -EFAULT;
2633
2634 buf_size = sizeof(uargs->buf);
2635
2636 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2637
2638 /*
2639 * In the origin implementation an overflow is handled by returning a
2640 * search header with a len of zero, so reset ret.
2641 */
2642 if (ret == -EOVERFLOW)
2643 ret = 0;
2644
2645 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2646 ret = -EFAULT;
2647 return ret;
2648 }
2649
btrfs_ioctl_tree_search_v2(struct inode * inode,void __user * argp)2650 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
2651 void __user *argp)
2652 {
2653 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
2654 struct btrfs_ioctl_search_args_v2 args;
2655 int ret;
2656 size_t buf_size;
2657 const size_t buf_limit = SZ_16M;
2658
2659 if (!capable(CAP_SYS_ADMIN))
2660 return -EPERM;
2661
2662 /* copy search header and buffer size */
2663 if (copy_from_user(&args, uarg, sizeof(args)))
2664 return -EFAULT;
2665
2666 buf_size = args.buf_size;
2667
2668 /* limit result size to 16MB */
2669 if (buf_size > buf_limit)
2670 buf_size = buf_limit;
2671
2672 ret = search_ioctl(inode, &args.key, &buf_size,
2673 (char __user *)(&uarg->buf[0]));
2674 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2675 ret = -EFAULT;
2676 else if (ret == -EOVERFLOW &&
2677 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2678 ret = -EFAULT;
2679
2680 return ret;
2681 }
2682
2683 /*
2684 * Search INODE_REFs to identify path name of 'dirid' directory
2685 * in a 'tree_id' tree. and sets path name to 'name'.
2686 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2687 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2688 u64 tree_id, u64 dirid, char *name)
2689 {
2690 struct btrfs_root *root;
2691 struct btrfs_key key;
2692 char *ptr;
2693 int ret = -1;
2694 int slot;
2695 int len;
2696 int total_len = 0;
2697 struct btrfs_inode_ref *iref;
2698 struct extent_buffer *l;
2699 struct btrfs_path *path;
2700
2701 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2702 name[0]='\0';
2703 return 0;
2704 }
2705
2706 path = btrfs_alloc_path();
2707 if (!path)
2708 return -ENOMEM;
2709
2710 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2711
2712 root = btrfs_get_fs_root(info, tree_id, true);
2713 if (IS_ERR(root)) {
2714 ret = PTR_ERR(root);
2715 root = NULL;
2716 goto out;
2717 }
2718
2719 key.objectid = dirid;
2720 key.type = BTRFS_INODE_REF_KEY;
2721 key.offset = (u64)-1;
2722
2723 while (1) {
2724 ret = btrfs_search_backwards(root, &key, path);
2725 if (ret < 0)
2726 goto out;
2727 else if (ret > 0) {
2728 ret = -ENOENT;
2729 goto out;
2730 }
2731
2732 l = path->nodes[0];
2733 slot = path->slots[0];
2734
2735 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2736 len = btrfs_inode_ref_name_len(l, iref);
2737 ptr -= len + 1;
2738 total_len += len + 1;
2739 if (ptr < name) {
2740 ret = -ENAMETOOLONG;
2741 goto out;
2742 }
2743
2744 *(ptr + len) = '/';
2745 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2746
2747 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2748 break;
2749
2750 btrfs_release_path(path);
2751 key.objectid = key.offset;
2752 key.offset = (u64)-1;
2753 dirid = key.objectid;
2754 }
2755 memmove(name, ptr, total_len);
2756 name[total_len] = '\0';
2757 ret = 0;
2758 out:
2759 btrfs_put_root(root);
2760 btrfs_free_path(path);
2761 return ret;
2762 }
2763
btrfs_search_path_in_tree_user(struct user_namespace * mnt_userns,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2764 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2765 struct inode *inode,
2766 struct btrfs_ioctl_ino_lookup_user_args *args)
2767 {
2768 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2769 struct super_block *sb = inode->i_sb;
2770 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2771 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2772 u64 dirid = args->dirid;
2773 unsigned long item_off;
2774 unsigned long item_len;
2775 struct btrfs_inode_ref *iref;
2776 struct btrfs_root_ref *rref;
2777 struct btrfs_root *root = NULL;
2778 struct btrfs_path *path;
2779 struct btrfs_key key, key2;
2780 struct extent_buffer *leaf;
2781 struct inode *temp_inode;
2782 char *ptr;
2783 int slot;
2784 int len;
2785 int total_len = 0;
2786 int ret;
2787
2788 path = btrfs_alloc_path();
2789 if (!path)
2790 return -ENOMEM;
2791
2792 /*
2793 * If the bottom subvolume does not exist directly under upper_limit,
2794 * construct the path in from the bottom up.
2795 */
2796 if (dirid != upper_limit.objectid) {
2797 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2798
2799 root = btrfs_get_fs_root(fs_info, treeid, true);
2800 if (IS_ERR(root)) {
2801 ret = PTR_ERR(root);
2802 goto out;
2803 }
2804
2805 key.objectid = dirid;
2806 key.type = BTRFS_INODE_REF_KEY;
2807 key.offset = (u64)-1;
2808 while (1) {
2809 ret = btrfs_search_backwards(root, &key, path);
2810 if (ret < 0)
2811 goto out_put;
2812 else if (ret > 0) {
2813 ret = -ENOENT;
2814 goto out_put;
2815 }
2816
2817 leaf = path->nodes[0];
2818 slot = path->slots[0];
2819
2820 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2821 len = btrfs_inode_ref_name_len(leaf, iref);
2822 ptr -= len + 1;
2823 total_len += len + 1;
2824 if (ptr < args->path) {
2825 ret = -ENAMETOOLONG;
2826 goto out_put;
2827 }
2828
2829 *(ptr + len) = '/';
2830 read_extent_buffer(leaf, ptr,
2831 (unsigned long)(iref + 1), len);
2832
2833 /* Check the read+exec permission of this directory */
2834 ret = btrfs_previous_item(root, path, dirid,
2835 BTRFS_INODE_ITEM_KEY);
2836 if (ret < 0) {
2837 goto out_put;
2838 } else if (ret > 0) {
2839 ret = -ENOENT;
2840 goto out_put;
2841 }
2842
2843 leaf = path->nodes[0];
2844 slot = path->slots[0];
2845 btrfs_item_key_to_cpu(leaf, &key2, slot);
2846 if (key2.objectid != dirid) {
2847 ret = -ENOENT;
2848 goto out_put;
2849 }
2850
2851 temp_inode = btrfs_iget(sb, key2.objectid, root);
2852 if (IS_ERR(temp_inode)) {
2853 ret = PTR_ERR(temp_inode);
2854 goto out_put;
2855 }
2856 ret = inode_permission(mnt_userns, temp_inode,
2857 MAY_READ | MAY_EXEC);
2858 iput(temp_inode);
2859 if (ret) {
2860 ret = -EACCES;
2861 goto out_put;
2862 }
2863
2864 if (key.offset == upper_limit.objectid)
2865 break;
2866 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2867 ret = -EACCES;
2868 goto out_put;
2869 }
2870
2871 btrfs_release_path(path);
2872 key.objectid = key.offset;
2873 key.offset = (u64)-1;
2874 dirid = key.objectid;
2875 }
2876
2877 memmove(args->path, ptr, total_len);
2878 args->path[total_len] = '\0';
2879 btrfs_put_root(root);
2880 root = NULL;
2881 btrfs_release_path(path);
2882 }
2883
2884 /* Get the bottom subvolume's name from ROOT_REF */
2885 key.objectid = treeid;
2886 key.type = BTRFS_ROOT_REF_KEY;
2887 key.offset = args->treeid;
2888 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2889 if (ret < 0) {
2890 goto out;
2891 } else if (ret > 0) {
2892 ret = -ENOENT;
2893 goto out;
2894 }
2895
2896 leaf = path->nodes[0];
2897 slot = path->slots[0];
2898 btrfs_item_key_to_cpu(leaf, &key, slot);
2899
2900 item_off = btrfs_item_ptr_offset(leaf, slot);
2901 item_len = btrfs_item_size(leaf, slot);
2902 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2903 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2904 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2905 ret = -EINVAL;
2906 goto out;
2907 }
2908
2909 /* Copy subvolume's name */
2910 item_off += sizeof(struct btrfs_root_ref);
2911 item_len -= sizeof(struct btrfs_root_ref);
2912 read_extent_buffer(leaf, args->name, item_off, item_len);
2913 args->name[item_len] = 0;
2914
2915 out_put:
2916 btrfs_put_root(root);
2917 out:
2918 btrfs_free_path(path);
2919 return ret;
2920 }
2921
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)2922 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2923 void __user *argp)
2924 {
2925 struct btrfs_ioctl_ino_lookup_args *args;
2926 int ret = 0;
2927
2928 args = memdup_user(argp, sizeof(*args));
2929 if (IS_ERR(args))
2930 return PTR_ERR(args);
2931
2932 /*
2933 * Unprivileged query to obtain the containing subvolume root id. The
2934 * path is reset so it's consistent with btrfs_search_path_in_tree.
2935 */
2936 if (args->treeid == 0)
2937 args->treeid = root->root_key.objectid;
2938
2939 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2940 args->name[0] = 0;
2941 goto out;
2942 }
2943
2944 if (!capable(CAP_SYS_ADMIN)) {
2945 ret = -EPERM;
2946 goto out;
2947 }
2948
2949 ret = btrfs_search_path_in_tree(root->fs_info,
2950 args->treeid, args->objectid,
2951 args->name);
2952
2953 out:
2954 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2955 ret = -EFAULT;
2956
2957 kfree(args);
2958 return ret;
2959 }
2960
2961 /*
2962 * Version of ino_lookup ioctl (unprivileged)
2963 *
2964 * The main differences from ino_lookup ioctl are:
2965 *
2966 * 1. Read + Exec permission will be checked using inode_permission() during
2967 * path construction. -EACCES will be returned in case of failure.
2968 * 2. Path construction will be stopped at the inode number which corresponds
2969 * to the fd with which this ioctl is called. If constructed path does not
2970 * exist under fd's inode, -EACCES will be returned.
2971 * 3. The name of bottom subvolume is also searched and filled.
2972 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2973 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2974 {
2975 struct btrfs_ioctl_ino_lookup_user_args *args;
2976 struct inode *inode;
2977 int ret;
2978
2979 args = memdup_user(argp, sizeof(*args));
2980 if (IS_ERR(args))
2981 return PTR_ERR(args);
2982
2983 inode = file_inode(file);
2984
2985 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2986 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2987 /*
2988 * The subvolume does not exist under fd with which this is
2989 * called
2990 */
2991 kfree(args);
2992 return -EACCES;
2993 }
2994
2995 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2996
2997 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2998 ret = -EFAULT;
2999
3000 kfree(args);
3001 return ret;
3002 }
3003
3004 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)3005 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
3006 {
3007 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
3008 struct btrfs_fs_info *fs_info;
3009 struct btrfs_root *root;
3010 struct btrfs_path *path;
3011 struct btrfs_key key;
3012 struct btrfs_root_item *root_item;
3013 struct btrfs_root_ref *rref;
3014 struct extent_buffer *leaf;
3015 unsigned long item_off;
3016 unsigned long item_len;
3017 int slot;
3018 int ret = 0;
3019
3020 path = btrfs_alloc_path();
3021 if (!path)
3022 return -ENOMEM;
3023
3024 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
3025 if (!subvol_info) {
3026 btrfs_free_path(path);
3027 return -ENOMEM;
3028 }
3029
3030 fs_info = BTRFS_I(inode)->root->fs_info;
3031
3032 /* Get root_item of inode's subvolume */
3033 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
3034 root = btrfs_get_fs_root(fs_info, key.objectid, true);
3035 if (IS_ERR(root)) {
3036 ret = PTR_ERR(root);
3037 goto out_free;
3038 }
3039 root_item = &root->root_item;
3040
3041 subvol_info->treeid = key.objectid;
3042
3043 subvol_info->generation = btrfs_root_generation(root_item);
3044 subvol_info->flags = btrfs_root_flags(root_item);
3045
3046 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
3047 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
3048 BTRFS_UUID_SIZE);
3049 memcpy(subvol_info->received_uuid, root_item->received_uuid,
3050 BTRFS_UUID_SIZE);
3051
3052 subvol_info->ctransid = btrfs_root_ctransid(root_item);
3053 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
3054 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
3055
3056 subvol_info->otransid = btrfs_root_otransid(root_item);
3057 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
3058 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
3059
3060 subvol_info->stransid = btrfs_root_stransid(root_item);
3061 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
3062 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
3063
3064 subvol_info->rtransid = btrfs_root_rtransid(root_item);
3065 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
3066 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
3067
3068 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
3069 /* Search root tree for ROOT_BACKREF of this subvolume */
3070 key.type = BTRFS_ROOT_BACKREF_KEY;
3071 key.offset = 0;
3072 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3073 if (ret < 0) {
3074 goto out;
3075 } else if (path->slots[0] >=
3076 btrfs_header_nritems(path->nodes[0])) {
3077 ret = btrfs_next_leaf(fs_info->tree_root, path);
3078 if (ret < 0) {
3079 goto out;
3080 } else if (ret > 0) {
3081 ret = -EUCLEAN;
3082 goto out;
3083 }
3084 }
3085
3086 leaf = path->nodes[0];
3087 slot = path->slots[0];
3088 btrfs_item_key_to_cpu(leaf, &key, slot);
3089 if (key.objectid == subvol_info->treeid &&
3090 key.type == BTRFS_ROOT_BACKREF_KEY) {
3091 subvol_info->parent_id = key.offset;
3092
3093 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3094 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
3095
3096 item_off = btrfs_item_ptr_offset(leaf, slot)
3097 + sizeof(struct btrfs_root_ref);
3098 item_len = btrfs_item_size(leaf, slot)
3099 - sizeof(struct btrfs_root_ref);
3100 read_extent_buffer(leaf, subvol_info->name,
3101 item_off, item_len);
3102 } else {
3103 ret = -ENOENT;
3104 goto out;
3105 }
3106 }
3107
3108 btrfs_free_path(path);
3109 path = NULL;
3110 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
3111 ret = -EFAULT;
3112
3113 out:
3114 btrfs_put_root(root);
3115 out_free:
3116 btrfs_free_path(path);
3117 kfree(subvol_info);
3118 return ret;
3119 }
3120
3121 /*
3122 * Return ROOT_REF information of the subvolume containing this inode
3123 * except the subvolume name.
3124 */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)3125 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
3126 void __user *argp)
3127 {
3128 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
3129 struct btrfs_root_ref *rref;
3130 struct btrfs_path *path;
3131 struct btrfs_key key;
3132 struct extent_buffer *leaf;
3133 u64 objectid;
3134 int slot;
3135 int ret;
3136 u8 found;
3137
3138 path = btrfs_alloc_path();
3139 if (!path)
3140 return -ENOMEM;
3141
3142 rootrefs = memdup_user(argp, sizeof(*rootrefs));
3143 if (IS_ERR(rootrefs)) {
3144 btrfs_free_path(path);
3145 return PTR_ERR(rootrefs);
3146 }
3147
3148 objectid = root->root_key.objectid;
3149 key.objectid = objectid;
3150 key.type = BTRFS_ROOT_REF_KEY;
3151 key.offset = rootrefs->min_treeid;
3152 found = 0;
3153
3154 root = root->fs_info->tree_root;
3155 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3156 if (ret < 0) {
3157 goto out;
3158 } else if (path->slots[0] >=
3159 btrfs_header_nritems(path->nodes[0])) {
3160 ret = btrfs_next_leaf(root, path);
3161 if (ret < 0) {
3162 goto out;
3163 } else if (ret > 0) {
3164 ret = -EUCLEAN;
3165 goto out;
3166 }
3167 }
3168 while (1) {
3169 leaf = path->nodes[0];
3170 slot = path->slots[0];
3171
3172 btrfs_item_key_to_cpu(leaf, &key, slot);
3173 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
3174 ret = 0;
3175 goto out;
3176 }
3177
3178 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
3179 ret = -EOVERFLOW;
3180 goto out;
3181 }
3182
3183 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3184 rootrefs->rootref[found].treeid = key.offset;
3185 rootrefs->rootref[found].dirid =
3186 btrfs_root_ref_dirid(leaf, rref);
3187 found++;
3188
3189 ret = btrfs_next_item(root, path);
3190 if (ret < 0) {
3191 goto out;
3192 } else if (ret > 0) {
3193 ret = -EUCLEAN;
3194 goto out;
3195 }
3196 }
3197
3198 out:
3199 btrfs_free_path(path);
3200
3201 if (!ret || ret == -EOVERFLOW) {
3202 rootrefs->num_items = found;
3203 /* update min_treeid for next search */
3204 if (found)
3205 rootrefs->min_treeid =
3206 rootrefs->rootref[found - 1].treeid + 1;
3207 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
3208 ret = -EFAULT;
3209 }
3210
3211 kfree(rootrefs);
3212
3213 return ret;
3214 }
3215
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)3216 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
3217 void __user *arg,
3218 bool destroy_v2)
3219 {
3220 struct dentry *parent = file->f_path.dentry;
3221 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
3222 struct dentry *dentry;
3223 struct inode *dir = d_inode(parent);
3224 struct inode *inode;
3225 struct btrfs_root *root = BTRFS_I(dir)->root;
3226 struct btrfs_root *dest = NULL;
3227 struct btrfs_ioctl_vol_args *vol_args = NULL;
3228 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
3229 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
3230 char *subvol_name, *subvol_name_ptr = NULL;
3231 int subvol_namelen;
3232 int err = 0;
3233 bool destroy_parent = false;
3234
3235 /* We don't support snapshots with extent tree v2 yet. */
3236 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3237 btrfs_err(fs_info,
3238 "extent tree v2 doesn't support snapshot deletion yet");
3239 return -EOPNOTSUPP;
3240 }
3241
3242 if (destroy_v2) {
3243 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
3244 if (IS_ERR(vol_args2))
3245 return PTR_ERR(vol_args2);
3246
3247 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
3248 err = -EOPNOTSUPP;
3249 goto out;
3250 }
3251
3252 /*
3253 * If SPEC_BY_ID is not set, we are looking for the subvolume by
3254 * name, same as v1 currently does.
3255 */
3256 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
3257 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
3258 subvol_name = vol_args2->name;
3259
3260 err = mnt_want_write_file(file);
3261 if (err)
3262 goto out;
3263 } else {
3264 struct inode *old_dir;
3265
3266 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
3267 err = -EINVAL;
3268 goto out;
3269 }
3270
3271 err = mnt_want_write_file(file);
3272 if (err)
3273 goto out;
3274
3275 dentry = btrfs_get_dentry(fs_info->sb,
3276 BTRFS_FIRST_FREE_OBJECTID,
3277 vol_args2->subvolid, 0, 0);
3278 if (IS_ERR(dentry)) {
3279 err = PTR_ERR(dentry);
3280 goto out_drop_write;
3281 }
3282
3283 /*
3284 * Change the default parent since the subvolume being
3285 * deleted can be outside of the current mount point.
3286 */
3287 parent = btrfs_get_parent(dentry);
3288
3289 /*
3290 * At this point dentry->d_name can point to '/' if the
3291 * subvolume we want to destroy is outsite of the
3292 * current mount point, so we need to release the
3293 * current dentry and execute the lookup to return a new
3294 * one with ->d_name pointing to the
3295 * <mount point>/subvol_name.
3296 */
3297 dput(dentry);
3298 if (IS_ERR(parent)) {
3299 err = PTR_ERR(parent);
3300 goto out_drop_write;
3301 }
3302 old_dir = dir;
3303 dir = d_inode(parent);
3304
3305 /*
3306 * If v2 was used with SPEC_BY_ID, a new parent was
3307 * allocated since the subvolume can be outside of the
3308 * current mount point. Later on we need to release this
3309 * new parent dentry.
3310 */
3311 destroy_parent = true;
3312
3313 /*
3314 * On idmapped mounts, deletion via subvolid is
3315 * restricted to subvolumes that are immediate
3316 * ancestors of the inode referenced by the file
3317 * descriptor in the ioctl. Otherwise the idmapping
3318 * could potentially be abused to delete subvolumes
3319 * anywhere in the filesystem the user wouldn't be able
3320 * to delete without an idmapped mount.
3321 */
3322 if (old_dir != dir && mnt_userns != &init_user_ns) {
3323 err = -EOPNOTSUPP;
3324 goto free_parent;
3325 }
3326
3327 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3328 fs_info, vol_args2->subvolid);
3329 if (IS_ERR(subvol_name_ptr)) {
3330 err = PTR_ERR(subvol_name_ptr);
3331 goto free_parent;
3332 }
3333 /* subvol_name_ptr is already nul terminated */
3334 subvol_name = (char *)kbasename(subvol_name_ptr);
3335 }
3336 } else {
3337 vol_args = memdup_user(arg, sizeof(*vol_args));
3338 if (IS_ERR(vol_args))
3339 return PTR_ERR(vol_args);
3340
3341 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3342 subvol_name = vol_args->name;
3343
3344 err = mnt_want_write_file(file);
3345 if (err)
3346 goto out;
3347 }
3348
3349 subvol_namelen = strlen(subvol_name);
3350
3351 if (strchr(subvol_name, '/') ||
3352 strncmp(subvol_name, "..", subvol_namelen) == 0) {
3353 err = -EINVAL;
3354 goto free_subvol_name;
3355 }
3356
3357 if (!S_ISDIR(dir->i_mode)) {
3358 err = -ENOTDIR;
3359 goto free_subvol_name;
3360 }
3361
3362 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3363 if (err == -EINTR)
3364 goto free_subvol_name;
3365 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3366 if (IS_ERR(dentry)) {
3367 err = PTR_ERR(dentry);
3368 goto out_unlock_dir;
3369 }
3370
3371 if (d_really_is_negative(dentry)) {
3372 err = -ENOENT;
3373 goto out_dput;
3374 }
3375
3376 inode = d_inode(dentry);
3377 dest = BTRFS_I(inode)->root;
3378 if (!capable(CAP_SYS_ADMIN)) {
3379 /*
3380 * Regular user. Only allow this with a special mount
3381 * option, when the user has write+exec access to the
3382 * subvol root, and when rmdir(2) would have been
3383 * allowed.
3384 *
3385 * Note that this is _not_ check that the subvol is
3386 * empty or doesn't contain data that we wouldn't
3387 * otherwise be able to delete.
3388 *
3389 * Users who want to delete empty subvols should try
3390 * rmdir(2).
3391 */
3392 err = -EPERM;
3393 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3394 goto out_dput;
3395
3396 /*
3397 * Do not allow deletion if the parent dir is the same
3398 * as the dir to be deleted. That means the ioctl
3399 * must be called on the dentry referencing the root
3400 * of the subvol, not a random directory contained
3401 * within it.
3402 */
3403 err = -EINVAL;
3404 if (root == dest)
3405 goto out_dput;
3406
3407 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3408 if (err)
3409 goto out_dput;
3410 }
3411
3412 /* check if subvolume may be deleted by a user */
3413 err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3414 if (err)
3415 goto out_dput;
3416
3417 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3418 err = -EINVAL;
3419 goto out_dput;
3420 }
3421
3422 btrfs_inode_lock(inode, 0);
3423 err = btrfs_delete_subvolume(dir, dentry);
3424 btrfs_inode_unlock(inode, 0);
3425 if (!err)
3426 d_delete_notify(dir, dentry);
3427
3428 out_dput:
3429 dput(dentry);
3430 out_unlock_dir:
3431 btrfs_inode_unlock(dir, 0);
3432 free_subvol_name:
3433 kfree(subvol_name_ptr);
3434 free_parent:
3435 if (destroy_parent)
3436 dput(parent);
3437 out_drop_write:
3438 mnt_drop_write_file(file);
3439 out:
3440 kfree(vol_args2);
3441 kfree(vol_args);
3442 return err;
3443 }
3444
btrfs_ioctl_defrag(struct file * file,void __user * argp)3445 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3446 {
3447 struct inode *inode = file_inode(file);
3448 struct btrfs_root *root = BTRFS_I(inode)->root;
3449 struct btrfs_ioctl_defrag_range_args range = {0};
3450 int ret;
3451
3452 ret = mnt_want_write_file(file);
3453 if (ret)
3454 return ret;
3455
3456 if (btrfs_root_readonly(root)) {
3457 ret = -EROFS;
3458 goto out;
3459 }
3460
3461 switch (inode->i_mode & S_IFMT) {
3462 case S_IFDIR:
3463 if (!capable(CAP_SYS_ADMIN)) {
3464 ret = -EPERM;
3465 goto out;
3466 }
3467 ret = btrfs_defrag_root(root);
3468 break;
3469 case S_IFREG:
3470 /*
3471 * Note that this does not check the file descriptor for write
3472 * access. This prevents defragmenting executables that are
3473 * running and allows defrag on files open in read-only mode.
3474 */
3475 if (!capable(CAP_SYS_ADMIN) &&
3476 inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3477 ret = -EPERM;
3478 goto out;
3479 }
3480
3481 if (argp) {
3482 if (copy_from_user(&range, argp, sizeof(range))) {
3483 ret = -EFAULT;
3484 goto out;
3485 }
3486 /* compression requires us to start the IO */
3487 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3488 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3489 range.extent_thresh = (u32)-1;
3490 }
3491 } else {
3492 /* the rest are all set to zero by kzalloc */
3493 range.len = (u64)-1;
3494 }
3495 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3496 &range, BTRFS_OLDEST_GENERATION, 0);
3497 if (ret > 0)
3498 ret = 0;
3499 break;
3500 default:
3501 ret = -EINVAL;
3502 }
3503 out:
3504 mnt_drop_write_file(file);
3505 return ret;
3506 }
3507
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3508 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3509 {
3510 struct btrfs_ioctl_vol_args *vol_args;
3511 bool restore_op = false;
3512 int ret;
3513
3514 if (!capable(CAP_SYS_ADMIN))
3515 return -EPERM;
3516
3517 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3518 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
3519 return -EINVAL;
3520 }
3521
3522 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3523 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3524 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3525
3526 /*
3527 * We can do the device add because we have a paused balanced,
3528 * change the exclusive op type and remember we should bring
3529 * back the paused balance
3530 */
3531 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3532 btrfs_exclop_start_unlock(fs_info);
3533 restore_op = true;
3534 }
3535
3536 vol_args = memdup_user(arg, sizeof(*vol_args));
3537 if (IS_ERR(vol_args)) {
3538 ret = PTR_ERR(vol_args);
3539 goto out;
3540 }
3541
3542 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3543 ret = btrfs_init_new_device(fs_info, vol_args->name);
3544
3545 if (!ret)
3546 btrfs_info(fs_info, "disk added %s", vol_args->name);
3547
3548 kfree(vol_args);
3549 out:
3550 if (restore_op)
3551 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3552 else
3553 btrfs_exclop_finish(fs_info);
3554 return ret;
3555 }
3556
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3557 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3558 {
3559 BTRFS_DEV_LOOKUP_ARGS(args);
3560 struct inode *inode = file_inode(file);
3561 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3562 struct btrfs_ioctl_vol_args_v2 *vol_args;
3563 struct block_device *bdev = NULL;
3564 fmode_t mode;
3565 int ret;
3566 bool cancel = false;
3567
3568 if (!capable(CAP_SYS_ADMIN))
3569 return -EPERM;
3570
3571 vol_args = memdup_user(arg, sizeof(*vol_args));
3572 if (IS_ERR(vol_args))
3573 return PTR_ERR(vol_args);
3574
3575 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3576 ret = -EOPNOTSUPP;
3577 goto out;
3578 }
3579
3580 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3581 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3582 args.devid = vol_args->devid;
3583 } else if (!strcmp("cancel", vol_args->name)) {
3584 cancel = true;
3585 } else {
3586 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3587 if (ret)
3588 goto out;
3589 }
3590
3591 ret = mnt_want_write_file(file);
3592 if (ret)
3593 goto out;
3594
3595 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3596 cancel);
3597 if (ret)
3598 goto err_drop;
3599
3600 /* Exclusive operation is now claimed */
3601 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3602
3603 btrfs_exclop_finish(fs_info);
3604
3605 if (!ret) {
3606 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3607 btrfs_info(fs_info, "device deleted: id %llu",
3608 vol_args->devid);
3609 else
3610 btrfs_info(fs_info, "device deleted: %s",
3611 vol_args->name);
3612 }
3613 err_drop:
3614 mnt_drop_write_file(file);
3615 if (bdev)
3616 blkdev_put(bdev, mode);
3617 out:
3618 btrfs_put_dev_args_from_path(&args);
3619 kfree(vol_args);
3620 return ret;
3621 }
3622
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3623 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3624 {
3625 BTRFS_DEV_LOOKUP_ARGS(args);
3626 struct inode *inode = file_inode(file);
3627 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3628 struct btrfs_ioctl_vol_args *vol_args;
3629 struct block_device *bdev = NULL;
3630 fmode_t mode;
3631 int ret;
3632 bool cancel = false;
3633
3634 if (!capable(CAP_SYS_ADMIN))
3635 return -EPERM;
3636
3637 vol_args = memdup_user(arg, sizeof(*vol_args));
3638 if (IS_ERR(vol_args))
3639 return PTR_ERR(vol_args);
3640
3641 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3642 if (!strcmp("cancel", vol_args->name)) {
3643 cancel = true;
3644 } else {
3645 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3646 if (ret)
3647 goto out;
3648 }
3649
3650 ret = mnt_want_write_file(file);
3651 if (ret)
3652 goto out;
3653
3654 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3655 cancel);
3656 if (ret == 0) {
3657 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3658 if (!ret)
3659 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3660 btrfs_exclop_finish(fs_info);
3661 }
3662
3663 mnt_drop_write_file(file);
3664 if (bdev)
3665 blkdev_put(bdev, mode);
3666 out:
3667 btrfs_put_dev_args_from_path(&args);
3668 kfree(vol_args);
3669 return ret;
3670 }
3671
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3672 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3673 void __user *arg)
3674 {
3675 struct btrfs_ioctl_fs_info_args *fi_args;
3676 struct btrfs_device *device;
3677 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3678 u64 flags_in;
3679 int ret = 0;
3680
3681 fi_args = memdup_user(arg, sizeof(*fi_args));
3682 if (IS_ERR(fi_args))
3683 return PTR_ERR(fi_args);
3684
3685 flags_in = fi_args->flags;
3686 memset(fi_args, 0, sizeof(*fi_args));
3687
3688 rcu_read_lock();
3689 fi_args->num_devices = fs_devices->num_devices;
3690
3691 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3692 if (device->devid > fi_args->max_id)
3693 fi_args->max_id = device->devid;
3694 }
3695 rcu_read_unlock();
3696
3697 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3698 fi_args->nodesize = fs_info->nodesize;
3699 fi_args->sectorsize = fs_info->sectorsize;
3700 fi_args->clone_alignment = fs_info->sectorsize;
3701
3702 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3703 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3704 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3705 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3706 }
3707
3708 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3709 fi_args->generation = fs_info->generation;
3710 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3711 }
3712
3713 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3714 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3715 sizeof(fi_args->metadata_uuid));
3716 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3717 }
3718
3719 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3720 ret = -EFAULT;
3721
3722 kfree(fi_args);
3723 return ret;
3724 }
3725
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3726 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3727 void __user *arg)
3728 {
3729 BTRFS_DEV_LOOKUP_ARGS(args);
3730 struct btrfs_ioctl_dev_info_args *di_args;
3731 struct btrfs_device *dev;
3732 int ret = 0;
3733
3734 di_args = memdup_user(arg, sizeof(*di_args));
3735 if (IS_ERR(di_args))
3736 return PTR_ERR(di_args);
3737
3738 args.devid = di_args->devid;
3739 if (!btrfs_is_empty_uuid(di_args->uuid))
3740 args.uuid = di_args->uuid;
3741
3742 rcu_read_lock();
3743 dev = btrfs_find_device(fs_info->fs_devices, &args);
3744 if (!dev) {
3745 ret = -ENODEV;
3746 goto out;
3747 }
3748
3749 di_args->devid = dev->devid;
3750 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3751 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3752 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3753 if (dev->name)
3754 strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path));
3755 else
3756 di_args->path[0] = '\0';
3757
3758 out:
3759 rcu_read_unlock();
3760 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3761 ret = -EFAULT;
3762
3763 kfree(di_args);
3764 return ret;
3765 }
3766
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3767 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3768 {
3769 struct inode *inode = file_inode(file);
3770 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3771 struct btrfs_root *root = BTRFS_I(inode)->root;
3772 struct btrfs_root *new_root;
3773 struct btrfs_dir_item *di;
3774 struct btrfs_trans_handle *trans;
3775 struct btrfs_path *path = NULL;
3776 struct btrfs_disk_key disk_key;
3777 u64 objectid = 0;
3778 u64 dir_id;
3779 int ret;
3780
3781 if (!capable(CAP_SYS_ADMIN))
3782 return -EPERM;
3783
3784 ret = mnt_want_write_file(file);
3785 if (ret)
3786 return ret;
3787
3788 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3789 ret = -EFAULT;
3790 goto out;
3791 }
3792
3793 if (!objectid)
3794 objectid = BTRFS_FS_TREE_OBJECTID;
3795
3796 new_root = btrfs_get_fs_root(fs_info, objectid, true);
3797 if (IS_ERR(new_root)) {
3798 ret = PTR_ERR(new_root);
3799 goto out;
3800 }
3801 if (!is_fstree(new_root->root_key.objectid)) {
3802 ret = -ENOENT;
3803 goto out_free;
3804 }
3805
3806 path = btrfs_alloc_path();
3807 if (!path) {
3808 ret = -ENOMEM;
3809 goto out_free;
3810 }
3811
3812 trans = btrfs_start_transaction(root, 1);
3813 if (IS_ERR(trans)) {
3814 ret = PTR_ERR(trans);
3815 goto out_free;
3816 }
3817
3818 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3819 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3820 dir_id, "default", 7, 1);
3821 if (IS_ERR_OR_NULL(di)) {
3822 btrfs_release_path(path);
3823 btrfs_end_transaction(trans);
3824 btrfs_err(fs_info,
3825 "Umm, you don't have the default diritem, this isn't going to work");
3826 ret = -ENOENT;
3827 goto out_free;
3828 }
3829
3830 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3831 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3832 btrfs_mark_buffer_dirty(path->nodes[0]);
3833 btrfs_release_path(path);
3834
3835 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3836 btrfs_end_transaction(trans);
3837 out_free:
3838 btrfs_put_root(new_root);
3839 btrfs_free_path(path);
3840 out:
3841 mnt_drop_write_file(file);
3842 return ret;
3843 }
3844
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3845 static void get_block_group_info(struct list_head *groups_list,
3846 struct btrfs_ioctl_space_info *space)
3847 {
3848 struct btrfs_block_group *block_group;
3849
3850 space->total_bytes = 0;
3851 space->used_bytes = 0;
3852 space->flags = 0;
3853 list_for_each_entry(block_group, groups_list, list) {
3854 space->flags = block_group->flags;
3855 space->total_bytes += block_group->length;
3856 space->used_bytes += block_group->used;
3857 }
3858 }
3859
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3860 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3861 void __user *arg)
3862 {
3863 struct btrfs_ioctl_space_args space_args;
3864 struct btrfs_ioctl_space_info space;
3865 struct btrfs_ioctl_space_info *dest;
3866 struct btrfs_ioctl_space_info *dest_orig;
3867 struct btrfs_ioctl_space_info __user *user_dest;
3868 struct btrfs_space_info *info;
3869 static const u64 types[] = {
3870 BTRFS_BLOCK_GROUP_DATA,
3871 BTRFS_BLOCK_GROUP_SYSTEM,
3872 BTRFS_BLOCK_GROUP_METADATA,
3873 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3874 };
3875 int num_types = 4;
3876 int alloc_size;
3877 int ret = 0;
3878 u64 slot_count = 0;
3879 int i, c;
3880
3881 if (copy_from_user(&space_args,
3882 (struct btrfs_ioctl_space_args __user *)arg,
3883 sizeof(space_args)))
3884 return -EFAULT;
3885
3886 for (i = 0; i < num_types; i++) {
3887 struct btrfs_space_info *tmp;
3888
3889 info = NULL;
3890 list_for_each_entry(tmp, &fs_info->space_info, list) {
3891 if (tmp->flags == types[i]) {
3892 info = tmp;
3893 break;
3894 }
3895 }
3896
3897 if (!info)
3898 continue;
3899
3900 down_read(&info->groups_sem);
3901 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3902 if (!list_empty(&info->block_groups[c]))
3903 slot_count++;
3904 }
3905 up_read(&info->groups_sem);
3906 }
3907
3908 /*
3909 * Global block reserve, exported as a space_info
3910 */
3911 slot_count++;
3912
3913 /* space_slots == 0 means they are asking for a count */
3914 if (space_args.space_slots == 0) {
3915 space_args.total_spaces = slot_count;
3916 goto out;
3917 }
3918
3919 slot_count = min_t(u64, space_args.space_slots, slot_count);
3920
3921 alloc_size = sizeof(*dest) * slot_count;
3922
3923 /* we generally have at most 6 or so space infos, one for each raid
3924 * level. So, a whole page should be more than enough for everyone
3925 */
3926 if (alloc_size > PAGE_SIZE)
3927 return -ENOMEM;
3928
3929 space_args.total_spaces = 0;
3930 dest = kmalloc(alloc_size, GFP_KERNEL);
3931 if (!dest)
3932 return -ENOMEM;
3933 dest_orig = dest;
3934
3935 /* now we have a buffer to copy into */
3936 for (i = 0; i < num_types; i++) {
3937 struct btrfs_space_info *tmp;
3938
3939 if (!slot_count)
3940 break;
3941
3942 info = NULL;
3943 list_for_each_entry(tmp, &fs_info->space_info, list) {
3944 if (tmp->flags == types[i]) {
3945 info = tmp;
3946 break;
3947 }
3948 }
3949
3950 if (!info)
3951 continue;
3952 down_read(&info->groups_sem);
3953 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3954 if (!list_empty(&info->block_groups[c])) {
3955 get_block_group_info(&info->block_groups[c],
3956 &space);
3957 memcpy(dest, &space, sizeof(space));
3958 dest++;
3959 space_args.total_spaces++;
3960 slot_count--;
3961 }
3962 if (!slot_count)
3963 break;
3964 }
3965 up_read(&info->groups_sem);
3966 }
3967
3968 /*
3969 * Add global block reserve
3970 */
3971 if (slot_count) {
3972 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3973
3974 spin_lock(&block_rsv->lock);
3975 space.total_bytes = block_rsv->size;
3976 space.used_bytes = block_rsv->size - block_rsv->reserved;
3977 spin_unlock(&block_rsv->lock);
3978 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3979 memcpy(dest, &space, sizeof(space));
3980 space_args.total_spaces++;
3981 }
3982
3983 user_dest = (struct btrfs_ioctl_space_info __user *)
3984 (arg + sizeof(struct btrfs_ioctl_space_args));
3985
3986 if (copy_to_user(user_dest, dest_orig, alloc_size))
3987 ret = -EFAULT;
3988
3989 kfree(dest_orig);
3990 out:
3991 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3992 ret = -EFAULT;
3993
3994 return ret;
3995 }
3996
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3997 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3998 void __user *argp)
3999 {
4000 struct btrfs_trans_handle *trans;
4001 u64 transid;
4002
4003 trans = btrfs_attach_transaction_barrier(root);
4004 if (IS_ERR(trans)) {
4005 if (PTR_ERR(trans) != -ENOENT)
4006 return PTR_ERR(trans);
4007
4008 /* No running transaction, don't bother */
4009 transid = root->fs_info->last_trans_committed;
4010 goto out;
4011 }
4012 transid = trans->transid;
4013 btrfs_commit_transaction_async(trans);
4014 out:
4015 if (argp)
4016 if (copy_to_user(argp, &transid, sizeof(transid)))
4017 return -EFAULT;
4018 return 0;
4019 }
4020
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)4021 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4022 void __user *argp)
4023 {
4024 u64 transid;
4025
4026 if (argp) {
4027 if (copy_from_user(&transid, argp, sizeof(transid)))
4028 return -EFAULT;
4029 } else {
4030 transid = 0; /* current trans */
4031 }
4032 return btrfs_wait_for_commit(fs_info, transid);
4033 }
4034
btrfs_ioctl_scrub(struct file * file,void __user * arg)4035 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4036 {
4037 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4038 struct btrfs_ioctl_scrub_args *sa;
4039 int ret;
4040
4041 if (!capable(CAP_SYS_ADMIN))
4042 return -EPERM;
4043
4044 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4045 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
4046 return -EINVAL;
4047 }
4048
4049 sa = memdup_user(arg, sizeof(*sa));
4050 if (IS_ERR(sa))
4051 return PTR_ERR(sa);
4052
4053 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4054 ret = mnt_want_write_file(file);
4055 if (ret)
4056 goto out;
4057 }
4058
4059 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4060 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4061 0);
4062
4063 /*
4064 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4065 * error. This is important as it allows user space to know how much
4066 * progress scrub has done. For example, if scrub is canceled we get
4067 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4068 * space. Later user space can inspect the progress from the structure
4069 * btrfs_ioctl_scrub_args and resume scrub from where it left off
4070 * previously (btrfs-progs does this).
4071 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4072 * then return -EFAULT to signal the structure was not copied or it may
4073 * be corrupt and unreliable due to a partial copy.
4074 */
4075 if (copy_to_user(arg, sa, sizeof(*sa)))
4076 ret = -EFAULT;
4077
4078 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4079 mnt_drop_write_file(file);
4080 out:
4081 kfree(sa);
4082 return ret;
4083 }
4084
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)4085 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4086 {
4087 if (!capable(CAP_SYS_ADMIN))
4088 return -EPERM;
4089
4090 return btrfs_scrub_cancel(fs_info);
4091 }
4092
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)4093 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4094 void __user *arg)
4095 {
4096 struct btrfs_ioctl_scrub_args *sa;
4097 int ret;
4098
4099 if (!capable(CAP_SYS_ADMIN))
4100 return -EPERM;
4101
4102 sa = memdup_user(arg, sizeof(*sa));
4103 if (IS_ERR(sa))
4104 return PTR_ERR(sa);
4105
4106 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4107
4108 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4109 ret = -EFAULT;
4110
4111 kfree(sa);
4112 return ret;
4113 }
4114
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)4115 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4116 void __user *arg)
4117 {
4118 struct btrfs_ioctl_get_dev_stats *sa;
4119 int ret;
4120
4121 sa = memdup_user(arg, sizeof(*sa));
4122 if (IS_ERR(sa))
4123 return PTR_ERR(sa);
4124
4125 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4126 kfree(sa);
4127 return -EPERM;
4128 }
4129
4130 ret = btrfs_get_dev_stats(fs_info, sa);
4131
4132 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4133 ret = -EFAULT;
4134
4135 kfree(sa);
4136 return ret;
4137 }
4138
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)4139 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4140 void __user *arg)
4141 {
4142 struct btrfs_ioctl_dev_replace_args *p;
4143 int ret;
4144
4145 if (!capable(CAP_SYS_ADMIN))
4146 return -EPERM;
4147
4148 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4149 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
4150 return -EINVAL;
4151 }
4152
4153 p = memdup_user(arg, sizeof(*p));
4154 if (IS_ERR(p))
4155 return PTR_ERR(p);
4156
4157 switch (p->cmd) {
4158 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4159 if (sb_rdonly(fs_info->sb)) {
4160 ret = -EROFS;
4161 goto out;
4162 }
4163 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
4164 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4165 } else {
4166 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4167 btrfs_exclop_finish(fs_info);
4168 }
4169 break;
4170 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4171 btrfs_dev_replace_status(fs_info, p);
4172 ret = 0;
4173 break;
4174 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4175 p->result = btrfs_dev_replace_cancel(fs_info);
4176 ret = 0;
4177 break;
4178 default:
4179 ret = -EINVAL;
4180 break;
4181 }
4182
4183 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4184 ret = -EFAULT;
4185 out:
4186 kfree(p);
4187 return ret;
4188 }
4189
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4190 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4191 {
4192 int ret = 0;
4193 int i;
4194 u64 rel_ptr;
4195 int size;
4196 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4197 struct inode_fs_paths *ipath = NULL;
4198 struct btrfs_path *path;
4199
4200 if (!capable(CAP_DAC_READ_SEARCH))
4201 return -EPERM;
4202
4203 path = btrfs_alloc_path();
4204 if (!path) {
4205 ret = -ENOMEM;
4206 goto out;
4207 }
4208
4209 ipa = memdup_user(arg, sizeof(*ipa));
4210 if (IS_ERR(ipa)) {
4211 ret = PTR_ERR(ipa);
4212 ipa = NULL;
4213 goto out;
4214 }
4215
4216 size = min_t(u32, ipa->size, 4096);
4217 ipath = init_ipath(size, root, path);
4218 if (IS_ERR(ipath)) {
4219 ret = PTR_ERR(ipath);
4220 ipath = NULL;
4221 goto out;
4222 }
4223
4224 ret = paths_from_inode(ipa->inum, ipath);
4225 if (ret < 0)
4226 goto out;
4227
4228 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4229 rel_ptr = ipath->fspath->val[i] -
4230 (u64)(unsigned long)ipath->fspath->val;
4231 ipath->fspath->val[i] = rel_ptr;
4232 }
4233
4234 btrfs_free_path(path);
4235 path = NULL;
4236 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4237 ipath->fspath, size);
4238 if (ret) {
4239 ret = -EFAULT;
4240 goto out;
4241 }
4242
4243 out:
4244 btrfs_free_path(path);
4245 free_ipath(ipath);
4246 kfree(ipa);
4247
4248 return ret;
4249 }
4250
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)4251 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4252 void __user *arg, int version)
4253 {
4254 int ret = 0;
4255 int size;
4256 struct btrfs_ioctl_logical_ino_args *loi;
4257 struct btrfs_data_container *inodes = NULL;
4258 struct btrfs_path *path = NULL;
4259 bool ignore_offset;
4260
4261 if (!capable(CAP_SYS_ADMIN))
4262 return -EPERM;
4263
4264 loi = memdup_user(arg, sizeof(*loi));
4265 if (IS_ERR(loi))
4266 return PTR_ERR(loi);
4267
4268 if (version == 1) {
4269 ignore_offset = false;
4270 size = min_t(u32, loi->size, SZ_64K);
4271 } else {
4272 /* All reserved bits must be 0 for now */
4273 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4274 ret = -EINVAL;
4275 goto out_loi;
4276 }
4277 /* Only accept flags we have defined so far */
4278 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4279 ret = -EINVAL;
4280 goto out_loi;
4281 }
4282 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4283 size = min_t(u32, loi->size, SZ_16M);
4284 }
4285
4286 inodes = init_data_container(size);
4287 if (IS_ERR(inodes)) {
4288 ret = PTR_ERR(inodes);
4289 goto out_loi;
4290 }
4291
4292 path = btrfs_alloc_path();
4293 if (!path) {
4294 ret = -ENOMEM;
4295 goto out;
4296 }
4297 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4298 inodes, ignore_offset);
4299 btrfs_free_path(path);
4300 if (ret == -EINVAL)
4301 ret = -ENOENT;
4302 if (ret < 0)
4303 goto out;
4304
4305 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4306 size);
4307 if (ret)
4308 ret = -EFAULT;
4309
4310 out:
4311 kvfree(inodes);
4312 out_loi:
4313 kfree(loi);
4314
4315 return ret;
4316 }
4317
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)4318 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4319 struct btrfs_ioctl_balance_args *bargs)
4320 {
4321 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4322
4323 bargs->flags = bctl->flags;
4324
4325 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4326 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4327 if (atomic_read(&fs_info->balance_pause_req))
4328 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4329 if (atomic_read(&fs_info->balance_cancel_req))
4330 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4331
4332 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4333 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4334 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4335
4336 spin_lock(&fs_info->balance_lock);
4337 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4338 spin_unlock(&fs_info->balance_lock);
4339 }
4340
4341 /**
4342 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
4343 * required.
4344 *
4345 * @fs_info: the filesystem
4346 * @excl_acquired: ptr to boolean value which is set to false in case balance
4347 * is being resumed
4348 *
4349 * Return 0 on success in which case both fs_info::balance is acquired as well
4350 * as exclusive ops are blocked. In case of failure return an error code.
4351 */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)4352 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
4353 {
4354 int ret;
4355
4356 /*
4357 * Exclusive operation is locked. Three possibilities:
4358 * (1) some other op is running
4359 * (2) balance is running
4360 * (3) balance is paused -- special case (think resume)
4361 */
4362 while (1) {
4363 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4364 *excl_acquired = true;
4365 mutex_lock(&fs_info->balance_mutex);
4366 return 0;
4367 }
4368
4369 mutex_lock(&fs_info->balance_mutex);
4370 if (fs_info->balance_ctl) {
4371 /* This is either (2) or (3) */
4372 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4373 /* This is (2) */
4374 ret = -EINPROGRESS;
4375 goto out_failure;
4376
4377 } else {
4378 mutex_unlock(&fs_info->balance_mutex);
4379 /*
4380 * Lock released to allow other waiters to
4381 * continue, we'll reexamine the status again.
4382 */
4383 mutex_lock(&fs_info->balance_mutex);
4384
4385 if (fs_info->balance_ctl &&
4386 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4387 /* This is (3) */
4388 *excl_acquired = false;
4389 return 0;
4390 }
4391 }
4392 } else {
4393 /* This is (1) */
4394 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4395 goto out_failure;
4396 }
4397
4398 mutex_unlock(&fs_info->balance_mutex);
4399 }
4400
4401 out_failure:
4402 mutex_unlock(&fs_info->balance_mutex);
4403 *excl_acquired = false;
4404 return ret;
4405 }
4406
btrfs_ioctl_balance(struct file * file,void __user * arg)4407 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4408 {
4409 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4410 struct btrfs_fs_info *fs_info = root->fs_info;
4411 struct btrfs_ioctl_balance_args *bargs;
4412 struct btrfs_balance_control *bctl;
4413 bool need_unlock = true;
4414 int ret;
4415
4416 if (!capable(CAP_SYS_ADMIN))
4417 return -EPERM;
4418
4419 ret = mnt_want_write_file(file);
4420 if (ret)
4421 return ret;
4422
4423 bargs = memdup_user(arg, sizeof(*bargs));
4424 if (IS_ERR(bargs)) {
4425 ret = PTR_ERR(bargs);
4426 bargs = NULL;
4427 goto out;
4428 }
4429
4430 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
4431 if (ret)
4432 goto out;
4433
4434 lockdep_assert_held(&fs_info->balance_mutex);
4435
4436 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4437 if (!fs_info->balance_ctl) {
4438 ret = -ENOTCONN;
4439 goto out_unlock;
4440 }
4441
4442 bctl = fs_info->balance_ctl;
4443 spin_lock(&fs_info->balance_lock);
4444 bctl->flags |= BTRFS_BALANCE_RESUME;
4445 spin_unlock(&fs_info->balance_lock);
4446 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4447
4448 goto do_balance;
4449 }
4450
4451 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4452 ret = -EINVAL;
4453 goto out_unlock;
4454 }
4455
4456 if (fs_info->balance_ctl) {
4457 ret = -EINPROGRESS;
4458 goto out_unlock;
4459 }
4460
4461 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4462 if (!bctl) {
4463 ret = -ENOMEM;
4464 goto out_unlock;
4465 }
4466
4467 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4468 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4469 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4470
4471 bctl->flags = bargs->flags;
4472 do_balance:
4473 /*
4474 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4475 * bctl is freed in reset_balance_state, or, if restriper was paused
4476 * all the way until unmount, in free_fs_info. The flag should be
4477 * cleared after reset_balance_state.
4478 */
4479 need_unlock = false;
4480
4481 ret = btrfs_balance(fs_info, bctl, bargs);
4482 bctl = NULL;
4483
4484 if (ret == 0 || ret == -ECANCELED) {
4485 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4486 ret = -EFAULT;
4487 }
4488
4489 kfree(bctl);
4490 out_unlock:
4491 mutex_unlock(&fs_info->balance_mutex);
4492 if (need_unlock)
4493 btrfs_exclop_finish(fs_info);
4494 out:
4495 mnt_drop_write_file(file);
4496 kfree(bargs);
4497 return ret;
4498 }
4499
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4500 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4501 {
4502 if (!capable(CAP_SYS_ADMIN))
4503 return -EPERM;
4504
4505 switch (cmd) {
4506 case BTRFS_BALANCE_CTL_PAUSE:
4507 return btrfs_pause_balance(fs_info);
4508 case BTRFS_BALANCE_CTL_CANCEL:
4509 return btrfs_cancel_balance(fs_info);
4510 }
4511
4512 return -EINVAL;
4513 }
4514
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4515 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4516 void __user *arg)
4517 {
4518 struct btrfs_ioctl_balance_args *bargs;
4519 int ret = 0;
4520
4521 if (!capable(CAP_SYS_ADMIN))
4522 return -EPERM;
4523
4524 mutex_lock(&fs_info->balance_mutex);
4525 if (!fs_info->balance_ctl) {
4526 ret = -ENOTCONN;
4527 goto out;
4528 }
4529
4530 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4531 if (!bargs) {
4532 ret = -ENOMEM;
4533 goto out;
4534 }
4535
4536 btrfs_update_ioctl_balance_args(fs_info, bargs);
4537
4538 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4539 ret = -EFAULT;
4540
4541 kfree(bargs);
4542 out:
4543 mutex_unlock(&fs_info->balance_mutex);
4544 return ret;
4545 }
4546
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4547 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4548 {
4549 struct inode *inode = file_inode(file);
4550 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4551 struct btrfs_ioctl_quota_ctl_args *sa;
4552 int ret;
4553
4554 if (!capable(CAP_SYS_ADMIN))
4555 return -EPERM;
4556
4557 ret = mnt_want_write_file(file);
4558 if (ret)
4559 return ret;
4560
4561 sa = memdup_user(arg, sizeof(*sa));
4562 if (IS_ERR(sa)) {
4563 ret = PTR_ERR(sa);
4564 goto drop_write;
4565 }
4566
4567 down_write(&fs_info->subvol_sem);
4568
4569 switch (sa->cmd) {
4570 case BTRFS_QUOTA_CTL_ENABLE:
4571 ret = btrfs_quota_enable(fs_info);
4572 break;
4573 case BTRFS_QUOTA_CTL_DISABLE:
4574 ret = btrfs_quota_disable(fs_info);
4575 break;
4576 default:
4577 ret = -EINVAL;
4578 break;
4579 }
4580
4581 kfree(sa);
4582 up_write(&fs_info->subvol_sem);
4583 drop_write:
4584 mnt_drop_write_file(file);
4585 return ret;
4586 }
4587
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4588 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4589 {
4590 struct inode *inode = file_inode(file);
4591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4592 struct btrfs_root *root = BTRFS_I(inode)->root;
4593 struct btrfs_ioctl_qgroup_assign_args *sa;
4594 struct btrfs_trans_handle *trans;
4595 int ret;
4596 int err;
4597
4598 if (!capable(CAP_SYS_ADMIN))
4599 return -EPERM;
4600
4601 ret = mnt_want_write_file(file);
4602 if (ret)
4603 return ret;
4604
4605 sa = memdup_user(arg, sizeof(*sa));
4606 if (IS_ERR(sa)) {
4607 ret = PTR_ERR(sa);
4608 goto drop_write;
4609 }
4610
4611 trans = btrfs_join_transaction(root);
4612 if (IS_ERR(trans)) {
4613 ret = PTR_ERR(trans);
4614 goto out;
4615 }
4616
4617 if (sa->assign) {
4618 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4619 } else {
4620 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4621 }
4622
4623 /* update qgroup status and info */
4624 err = btrfs_run_qgroups(trans);
4625 if (err < 0)
4626 btrfs_handle_fs_error(fs_info, err,
4627 "failed to update qgroup status and info");
4628 err = btrfs_end_transaction(trans);
4629 if (err && !ret)
4630 ret = err;
4631
4632 out:
4633 kfree(sa);
4634 drop_write:
4635 mnt_drop_write_file(file);
4636 return ret;
4637 }
4638
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4639 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4640 {
4641 struct inode *inode = file_inode(file);
4642 struct btrfs_root *root = BTRFS_I(inode)->root;
4643 struct btrfs_ioctl_qgroup_create_args *sa;
4644 struct btrfs_trans_handle *trans;
4645 int ret;
4646 int err;
4647
4648 if (!capable(CAP_SYS_ADMIN))
4649 return -EPERM;
4650
4651 ret = mnt_want_write_file(file);
4652 if (ret)
4653 return ret;
4654
4655 sa = memdup_user(arg, sizeof(*sa));
4656 if (IS_ERR(sa)) {
4657 ret = PTR_ERR(sa);
4658 goto drop_write;
4659 }
4660
4661 if (!sa->qgroupid) {
4662 ret = -EINVAL;
4663 goto out;
4664 }
4665
4666 trans = btrfs_join_transaction(root);
4667 if (IS_ERR(trans)) {
4668 ret = PTR_ERR(trans);
4669 goto out;
4670 }
4671
4672 if (sa->create) {
4673 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4674 } else {
4675 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4676 }
4677
4678 err = btrfs_end_transaction(trans);
4679 if (err && !ret)
4680 ret = err;
4681
4682 out:
4683 kfree(sa);
4684 drop_write:
4685 mnt_drop_write_file(file);
4686 return ret;
4687 }
4688
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4689 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4690 {
4691 struct inode *inode = file_inode(file);
4692 struct btrfs_root *root = BTRFS_I(inode)->root;
4693 struct btrfs_ioctl_qgroup_limit_args *sa;
4694 struct btrfs_trans_handle *trans;
4695 int ret;
4696 int err;
4697 u64 qgroupid;
4698
4699 if (!capable(CAP_SYS_ADMIN))
4700 return -EPERM;
4701
4702 ret = mnt_want_write_file(file);
4703 if (ret)
4704 return ret;
4705
4706 sa = memdup_user(arg, sizeof(*sa));
4707 if (IS_ERR(sa)) {
4708 ret = PTR_ERR(sa);
4709 goto drop_write;
4710 }
4711
4712 trans = btrfs_join_transaction(root);
4713 if (IS_ERR(trans)) {
4714 ret = PTR_ERR(trans);
4715 goto out;
4716 }
4717
4718 qgroupid = sa->qgroupid;
4719 if (!qgroupid) {
4720 /* take the current subvol as qgroup */
4721 qgroupid = root->root_key.objectid;
4722 }
4723
4724 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4725
4726 err = btrfs_end_transaction(trans);
4727 if (err && !ret)
4728 ret = err;
4729
4730 out:
4731 kfree(sa);
4732 drop_write:
4733 mnt_drop_write_file(file);
4734 return ret;
4735 }
4736
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4737 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4738 {
4739 struct inode *inode = file_inode(file);
4740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4741 struct btrfs_ioctl_quota_rescan_args *qsa;
4742 int ret;
4743
4744 if (!capable(CAP_SYS_ADMIN))
4745 return -EPERM;
4746
4747 ret = mnt_want_write_file(file);
4748 if (ret)
4749 return ret;
4750
4751 qsa = memdup_user(arg, sizeof(*qsa));
4752 if (IS_ERR(qsa)) {
4753 ret = PTR_ERR(qsa);
4754 goto drop_write;
4755 }
4756
4757 if (qsa->flags) {
4758 ret = -EINVAL;
4759 goto out;
4760 }
4761
4762 ret = btrfs_qgroup_rescan(fs_info);
4763
4764 out:
4765 kfree(qsa);
4766 drop_write:
4767 mnt_drop_write_file(file);
4768 return ret;
4769 }
4770
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)4771 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4772 void __user *arg)
4773 {
4774 struct btrfs_ioctl_quota_rescan_args qsa = {0};
4775
4776 if (!capable(CAP_SYS_ADMIN))
4777 return -EPERM;
4778
4779 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4780 qsa.flags = 1;
4781 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4782 }
4783
4784 if (copy_to_user(arg, &qsa, sizeof(qsa)))
4785 return -EFAULT;
4786
4787 return 0;
4788 }
4789
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)4790 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4791 void __user *arg)
4792 {
4793 if (!capable(CAP_SYS_ADMIN))
4794 return -EPERM;
4795
4796 return btrfs_qgroup_wait_for_completion(fs_info, true);
4797 }
4798
_btrfs_ioctl_set_received_subvol(struct file * file,struct user_namespace * mnt_userns,struct btrfs_ioctl_received_subvol_args * sa)4799 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4800 struct user_namespace *mnt_userns,
4801 struct btrfs_ioctl_received_subvol_args *sa)
4802 {
4803 struct inode *inode = file_inode(file);
4804 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4805 struct btrfs_root *root = BTRFS_I(inode)->root;
4806 struct btrfs_root_item *root_item = &root->root_item;
4807 struct btrfs_trans_handle *trans;
4808 struct timespec64 ct = current_time(inode);
4809 int ret = 0;
4810 int received_uuid_changed;
4811
4812 if (!inode_owner_or_capable(mnt_userns, inode))
4813 return -EPERM;
4814
4815 ret = mnt_want_write_file(file);
4816 if (ret < 0)
4817 return ret;
4818
4819 down_write(&fs_info->subvol_sem);
4820
4821 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4822 ret = -EINVAL;
4823 goto out;
4824 }
4825
4826 if (btrfs_root_readonly(root)) {
4827 ret = -EROFS;
4828 goto out;
4829 }
4830
4831 /*
4832 * 1 - root item
4833 * 2 - uuid items (received uuid + subvol uuid)
4834 */
4835 trans = btrfs_start_transaction(root, 3);
4836 if (IS_ERR(trans)) {
4837 ret = PTR_ERR(trans);
4838 trans = NULL;
4839 goto out;
4840 }
4841
4842 sa->rtransid = trans->transid;
4843 sa->rtime.sec = ct.tv_sec;
4844 sa->rtime.nsec = ct.tv_nsec;
4845
4846 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4847 BTRFS_UUID_SIZE);
4848 if (received_uuid_changed &&
4849 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4850 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4851 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4852 root->root_key.objectid);
4853 if (ret && ret != -ENOENT) {
4854 btrfs_abort_transaction(trans, ret);
4855 btrfs_end_transaction(trans);
4856 goto out;
4857 }
4858 }
4859 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4860 btrfs_set_root_stransid(root_item, sa->stransid);
4861 btrfs_set_root_rtransid(root_item, sa->rtransid);
4862 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4863 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4864 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4865 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4866
4867 ret = btrfs_update_root(trans, fs_info->tree_root,
4868 &root->root_key, &root->root_item);
4869 if (ret < 0) {
4870 btrfs_end_transaction(trans);
4871 goto out;
4872 }
4873 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4874 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4875 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4876 root->root_key.objectid);
4877 if (ret < 0 && ret != -EEXIST) {
4878 btrfs_abort_transaction(trans, ret);
4879 btrfs_end_transaction(trans);
4880 goto out;
4881 }
4882 }
4883 ret = btrfs_commit_transaction(trans);
4884 out:
4885 up_write(&fs_info->subvol_sem);
4886 mnt_drop_write_file(file);
4887 return ret;
4888 }
4889
4890 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4891 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4892 void __user *arg)
4893 {
4894 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4895 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4896 int ret = 0;
4897
4898 args32 = memdup_user(arg, sizeof(*args32));
4899 if (IS_ERR(args32))
4900 return PTR_ERR(args32);
4901
4902 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4903 if (!args64) {
4904 ret = -ENOMEM;
4905 goto out;
4906 }
4907
4908 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4909 args64->stransid = args32->stransid;
4910 args64->rtransid = args32->rtransid;
4911 args64->stime.sec = args32->stime.sec;
4912 args64->stime.nsec = args32->stime.nsec;
4913 args64->rtime.sec = args32->rtime.sec;
4914 args64->rtime.nsec = args32->rtime.nsec;
4915 args64->flags = args32->flags;
4916
4917 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4918 if (ret)
4919 goto out;
4920
4921 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4922 args32->stransid = args64->stransid;
4923 args32->rtransid = args64->rtransid;
4924 args32->stime.sec = args64->stime.sec;
4925 args32->stime.nsec = args64->stime.nsec;
4926 args32->rtime.sec = args64->rtime.sec;
4927 args32->rtime.nsec = args64->rtime.nsec;
4928 args32->flags = args64->flags;
4929
4930 ret = copy_to_user(arg, args32, sizeof(*args32));
4931 if (ret)
4932 ret = -EFAULT;
4933
4934 out:
4935 kfree(args32);
4936 kfree(args64);
4937 return ret;
4938 }
4939 #endif
4940
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4941 static long btrfs_ioctl_set_received_subvol(struct file *file,
4942 void __user *arg)
4943 {
4944 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4945 int ret = 0;
4946
4947 sa = memdup_user(arg, sizeof(*sa));
4948 if (IS_ERR(sa))
4949 return PTR_ERR(sa);
4950
4951 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4952
4953 if (ret)
4954 goto out;
4955
4956 ret = copy_to_user(arg, sa, sizeof(*sa));
4957 if (ret)
4958 ret = -EFAULT;
4959
4960 out:
4961 kfree(sa);
4962 return ret;
4963 }
4964
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4965 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4966 void __user *arg)
4967 {
4968 size_t len;
4969 int ret;
4970 char label[BTRFS_LABEL_SIZE];
4971
4972 spin_lock(&fs_info->super_lock);
4973 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4974 spin_unlock(&fs_info->super_lock);
4975
4976 len = strnlen(label, BTRFS_LABEL_SIZE);
4977
4978 if (len == BTRFS_LABEL_SIZE) {
4979 btrfs_warn(fs_info,
4980 "label is too long, return the first %zu bytes",
4981 --len);
4982 }
4983
4984 ret = copy_to_user(arg, label, len);
4985
4986 return ret ? -EFAULT : 0;
4987 }
4988
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4989 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4990 {
4991 struct inode *inode = file_inode(file);
4992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4993 struct btrfs_root *root = BTRFS_I(inode)->root;
4994 struct btrfs_super_block *super_block = fs_info->super_copy;
4995 struct btrfs_trans_handle *trans;
4996 char label[BTRFS_LABEL_SIZE];
4997 int ret;
4998
4999 if (!capable(CAP_SYS_ADMIN))
5000 return -EPERM;
5001
5002 if (copy_from_user(label, arg, sizeof(label)))
5003 return -EFAULT;
5004
5005 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5006 btrfs_err(fs_info,
5007 "unable to set label with more than %d bytes",
5008 BTRFS_LABEL_SIZE - 1);
5009 return -EINVAL;
5010 }
5011
5012 ret = mnt_want_write_file(file);
5013 if (ret)
5014 return ret;
5015
5016 trans = btrfs_start_transaction(root, 0);
5017 if (IS_ERR(trans)) {
5018 ret = PTR_ERR(trans);
5019 goto out_unlock;
5020 }
5021
5022 spin_lock(&fs_info->super_lock);
5023 strcpy(super_block->label, label);
5024 spin_unlock(&fs_info->super_lock);
5025 ret = btrfs_commit_transaction(trans);
5026
5027 out_unlock:
5028 mnt_drop_write_file(file);
5029 return ret;
5030 }
5031
5032 #define INIT_FEATURE_FLAGS(suffix) \
5033 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5034 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5035 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5036
btrfs_ioctl_get_supported_features(void __user * arg)5037 int btrfs_ioctl_get_supported_features(void __user *arg)
5038 {
5039 static const struct btrfs_ioctl_feature_flags features[3] = {
5040 INIT_FEATURE_FLAGS(SUPP),
5041 INIT_FEATURE_FLAGS(SAFE_SET),
5042 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5043 };
5044
5045 if (copy_to_user(arg, &features, sizeof(features)))
5046 return -EFAULT;
5047
5048 return 0;
5049 }
5050
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)5051 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
5052 void __user *arg)
5053 {
5054 struct btrfs_super_block *super_block = fs_info->super_copy;
5055 struct btrfs_ioctl_feature_flags features;
5056
5057 features.compat_flags = btrfs_super_compat_flags(super_block);
5058 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5059 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5060
5061 if (copy_to_user(arg, &features, sizeof(features)))
5062 return -EFAULT;
5063
5064 return 0;
5065 }
5066
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5067 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5068 enum btrfs_feature_set set,
5069 u64 change_mask, u64 flags, u64 supported_flags,
5070 u64 safe_set, u64 safe_clear)
5071 {
5072 const char *type = btrfs_feature_set_name(set);
5073 char *names;
5074 u64 disallowed, unsupported;
5075 u64 set_mask = flags & change_mask;
5076 u64 clear_mask = ~flags & change_mask;
5077
5078 unsupported = set_mask & ~supported_flags;
5079 if (unsupported) {
5080 names = btrfs_printable_features(set, unsupported);
5081 if (names) {
5082 btrfs_warn(fs_info,
5083 "this kernel does not support the %s feature bit%s",
5084 names, strchr(names, ',') ? "s" : "");
5085 kfree(names);
5086 } else
5087 btrfs_warn(fs_info,
5088 "this kernel does not support %s bits 0x%llx",
5089 type, unsupported);
5090 return -EOPNOTSUPP;
5091 }
5092
5093 disallowed = set_mask & ~safe_set;
5094 if (disallowed) {
5095 names = btrfs_printable_features(set, disallowed);
5096 if (names) {
5097 btrfs_warn(fs_info,
5098 "can't set the %s feature bit%s while mounted",
5099 names, strchr(names, ',') ? "s" : "");
5100 kfree(names);
5101 } else
5102 btrfs_warn(fs_info,
5103 "can't set %s bits 0x%llx while mounted",
5104 type, disallowed);
5105 return -EPERM;
5106 }
5107
5108 disallowed = clear_mask & ~safe_clear;
5109 if (disallowed) {
5110 names = btrfs_printable_features(set, disallowed);
5111 if (names) {
5112 btrfs_warn(fs_info,
5113 "can't clear the %s feature bit%s while mounted",
5114 names, strchr(names, ',') ? "s" : "");
5115 kfree(names);
5116 } else
5117 btrfs_warn(fs_info,
5118 "can't clear %s bits 0x%llx while mounted",
5119 type, disallowed);
5120 return -EPERM;
5121 }
5122
5123 return 0;
5124 }
5125
5126 #define check_feature(fs_info, change_mask, flags, mask_base) \
5127 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5128 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5129 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5130 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5131
btrfs_ioctl_set_features(struct file * file,void __user * arg)5132 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5133 {
5134 struct inode *inode = file_inode(file);
5135 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5136 struct btrfs_root *root = BTRFS_I(inode)->root;
5137 struct btrfs_super_block *super_block = fs_info->super_copy;
5138 struct btrfs_ioctl_feature_flags flags[2];
5139 struct btrfs_trans_handle *trans;
5140 u64 newflags;
5141 int ret;
5142
5143 if (!capable(CAP_SYS_ADMIN))
5144 return -EPERM;
5145
5146 if (copy_from_user(flags, arg, sizeof(flags)))
5147 return -EFAULT;
5148
5149 /* Nothing to do */
5150 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5151 !flags[0].incompat_flags)
5152 return 0;
5153
5154 ret = check_feature(fs_info, flags[0].compat_flags,
5155 flags[1].compat_flags, COMPAT);
5156 if (ret)
5157 return ret;
5158
5159 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5160 flags[1].compat_ro_flags, COMPAT_RO);
5161 if (ret)
5162 return ret;
5163
5164 ret = check_feature(fs_info, flags[0].incompat_flags,
5165 flags[1].incompat_flags, INCOMPAT);
5166 if (ret)
5167 return ret;
5168
5169 ret = mnt_want_write_file(file);
5170 if (ret)
5171 return ret;
5172
5173 trans = btrfs_start_transaction(root, 0);
5174 if (IS_ERR(trans)) {
5175 ret = PTR_ERR(trans);
5176 goto out_drop_write;
5177 }
5178
5179 spin_lock(&fs_info->super_lock);
5180 newflags = btrfs_super_compat_flags(super_block);
5181 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5182 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5183 btrfs_set_super_compat_flags(super_block, newflags);
5184
5185 newflags = btrfs_super_compat_ro_flags(super_block);
5186 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5187 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5188 btrfs_set_super_compat_ro_flags(super_block, newflags);
5189
5190 newflags = btrfs_super_incompat_flags(super_block);
5191 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5192 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5193 btrfs_set_super_incompat_flags(super_block, newflags);
5194 spin_unlock(&fs_info->super_lock);
5195
5196 ret = btrfs_commit_transaction(trans);
5197 out_drop_write:
5198 mnt_drop_write_file(file);
5199
5200 return ret;
5201 }
5202
_btrfs_ioctl_send(struct inode * inode,void __user * argp,bool compat)5203 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
5204 {
5205 struct btrfs_ioctl_send_args *arg;
5206 int ret;
5207
5208 if (compat) {
5209 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5210 struct btrfs_ioctl_send_args_32 args32;
5211
5212 ret = copy_from_user(&args32, argp, sizeof(args32));
5213 if (ret)
5214 return -EFAULT;
5215 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5216 if (!arg)
5217 return -ENOMEM;
5218 arg->send_fd = args32.send_fd;
5219 arg->clone_sources_count = args32.clone_sources_count;
5220 arg->clone_sources = compat_ptr(args32.clone_sources);
5221 arg->parent_root = args32.parent_root;
5222 arg->flags = args32.flags;
5223 memcpy(arg->reserved, args32.reserved,
5224 sizeof(args32.reserved));
5225 #else
5226 return -ENOTTY;
5227 #endif
5228 } else {
5229 arg = memdup_user(argp, sizeof(*arg));
5230 if (IS_ERR(arg))
5231 return PTR_ERR(arg);
5232 }
5233 ret = btrfs_ioctl_send(inode, arg);
5234 kfree(arg);
5235 return ret;
5236 }
5237
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)5238 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
5239 bool compat)
5240 {
5241 struct btrfs_ioctl_encoded_io_args args = { 0 };
5242 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
5243 flags);
5244 size_t copy_end;
5245 struct iovec iovstack[UIO_FASTIOV];
5246 struct iovec *iov = iovstack;
5247 struct iov_iter iter;
5248 loff_t pos;
5249 struct kiocb kiocb;
5250 ssize_t ret;
5251
5252 if (!capable(CAP_SYS_ADMIN)) {
5253 ret = -EPERM;
5254 goto out_acct;
5255 }
5256
5257 if (compat) {
5258 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5259 struct btrfs_ioctl_encoded_io_args_32 args32;
5260
5261 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
5262 flags);
5263 if (copy_from_user(&args32, argp, copy_end)) {
5264 ret = -EFAULT;
5265 goto out_acct;
5266 }
5267 args.iov = compat_ptr(args32.iov);
5268 args.iovcnt = args32.iovcnt;
5269 args.offset = args32.offset;
5270 args.flags = args32.flags;
5271 #else
5272 return -ENOTTY;
5273 #endif
5274 } else {
5275 copy_end = copy_end_kernel;
5276 if (copy_from_user(&args, argp, copy_end)) {
5277 ret = -EFAULT;
5278 goto out_acct;
5279 }
5280 }
5281 if (args.flags != 0) {
5282 ret = -EINVAL;
5283 goto out_acct;
5284 }
5285
5286 ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5287 &iov, &iter);
5288 if (ret < 0)
5289 goto out_acct;
5290
5291 if (iov_iter_count(&iter) == 0) {
5292 ret = 0;
5293 goto out_iov;
5294 }
5295 pos = args.offset;
5296 ret = rw_verify_area(READ, file, &pos, args.len);
5297 if (ret < 0)
5298 goto out_iov;
5299
5300 init_sync_kiocb(&kiocb, file);
5301 kiocb.ki_pos = pos;
5302
5303 ret = btrfs_encoded_read(&kiocb, &iter, &args);
5304 if (ret >= 0) {
5305 fsnotify_access(file);
5306 if (copy_to_user(argp + copy_end,
5307 (char *)&args + copy_end_kernel,
5308 sizeof(args) - copy_end_kernel))
5309 ret = -EFAULT;
5310 }
5311
5312 out_iov:
5313 kfree(iov);
5314 out_acct:
5315 if (ret > 0)
5316 add_rchar(current, ret);
5317 inc_syscr(current);
5318 return ret;
5319 }
5320
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)5321 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
5322 {
5323 struct btrfs_ioctl_encoded_io_args args;
5324 struct iovec iovstack[UIO_FASTIOV];
5325 struct iovec *iov = iovstack;
5326 struct iov_iter iter;
5327 loff_t pos;
5328 struct kiocb kiocb;
5329 ssize_t ret;
5330
5331 if (!capable(CAP_SYS_ADMIN)) {
5332 ret = -EPERM;
5333 goto out_acct;
5334 }
5335
5336 if (!(file->f_mode & FMODE_WRITE)) {
5337 ret = -EBADF;
5338 goto out_acct;
5339 }
5340
5341 if (compat) {
5342 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5343 struct btrfs_ioctl_encoded_io_args_32 args32;
5344
5345 if (copy_from_user(&args32, argp, sizeof(args32))) {
5346 ret = -EFAULT;
5347 goto out_acct;
5348 }
5349 args.iov = compat_ptr(args32.iov);
5350 args.iovcnt = args32.iovcnt;
5351 args.offset = args32.offset;
5352 args.flags = args32.flags;
5353 args.len = args32.len;
5354 args.unencoded_len = args32.unencoded_len;
5355 args.unencoded_offset = args32.unencoded_offset;
5356 args.compression = args32.compression;
5357 args.encryption = args32.encryption;
5358 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
5359 #else
5360 return -ENOTTY;
5361 #endif
5362 } else {
5363 if (copy_from_user(&args, argp, sizeof(args))) {
5364 ret = -EFAULT;
5365 goto out_acct;
5366 }
5367 }
5368
5369 ret = -EINVAL;
5370 if (args.flags != 0)
5371 goto out_acct;
5372 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
5373 goto out_acct;
5374 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5375 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5376 goto out_acct;
5377 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5378 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5379 goto out_acct;
5380 if (args.unencoded_offset > args.unencoded_len)
5381 goto out_acct;
5382 if (args.len > args.unencoded_len - args.unencoded_offset)
5383 goto out_acct;
5384
5385 ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5386 &iov, &iter);
5387 if (ret < 0)
5388 goto out_acct;
5389
5390 file_start_write(file);
5391
5392 if (iov_iter_count(&iter) == 0) {
5393 ret = 0;
5394 goto out_end_write;
5395 }
5396 pos = args.offset;
5397 ret = rw_verify_area(WRITE, file, &pos, args.len);
5398 if (ret < 0)
5399 goto out_end_write;
5400
5401 init_sync_kiocb(&kiocb, file);
5402 ret = kiocb_set_rw_flags(&kiocb, 0);
5403 if (ret)
5404 goto out_end_write;
5405 kiocb.ki_pos = pos;
5406
5407 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
5408 if (ret > 0)
5409 fsnotify_modify(file);
5410
5411 out_end_write:
5412 file_end_write(file);
5413 kfree(iov);
5414 out_acct:
5415 if (ret > 0)
5416 add_wchar(current, ret);
5417 inc_syscw(current);
5418 return ret;
5419 }
5420
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5421 long btrfs_ioctl(struct file *file, unsigned int
5422 cmd, unsigned long arg)
5423 {
5424 struct inode *inode = file_inode(file);
5425 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5426 struct btrfs_root *root = BTRFS_I(inode)->root;
5427 void __user *argp = (void __user *)arg;
5428
5429 switch (cmd) {
5430 case FS_IOC_GETVERSION:
5431 return btrfs_ioctl_getversion(inode, argp);
5432 case FS_IOC_GETFSLABEL:
5433 return btrfs_ioctl_get_fslabel(fs_info, argp);
5434 case FS_IOC_SETFSLABEL:
5435 return btrfs_ioctl_set_fslabel(file, argp);
5436 case FITRIM:
5437 return btrfs_ioctl_fitrim(fs_info, argp);
5438 case BTRFS_IOC_SNAP_CREATE:
5439 return btrfs_ioctl_snap_create(file, argp, 0);
5440 case BTRFS_IOC_SNAP_CREATE_V2:
5441 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5442 case BTRFS_IOC_SUBVOL_CREATE:
5443 return btrfs_ioctl_snap_create(file, argp, 1);
5444 case BTRFS_IOC_SUBVOL_CREATE_V2:
5445 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5446 case BTRFS_IOC_SNAP_DESTROY:
5447 return btrfs_ioctl_snap_destroy(file, argp, false);
5448 case BTRFS_IOC_SNAP_DESTROY_V2:
5449 return btrfs_ioctl_snap_destroy(file, argp, true);
5450 case BTRFS_IOC_SUBVOL_GETFLAGS:
5451 return btrfs_ioctl_subvol_getflags(inode, argp);
5452 case BTRFS_IOC_SUBVOL_SETFLAGS:
5453 return btrfs_ioctl_subvol_setflags(file, argp);
5454 case BTRFS_IOC_DEFAULT_SUBVOL:
5455 return btrfs_ioctl_default_subvol(file, argp);
5456 case BTRFS_IOC_DEFRAG:
5457 return btrfs_ioctl_defrag(file, NULL);
5458 case BTRFS_IOC_DEFRAG_RANGE:
5459 return btrfs_ioctl_defrag(file, argp);
5460 case BTRFS_IOC_RESIZE:
5461 return btrfs_ioctl_resize(file, argp);
5462 case BTRFS_IOC_ADD_DEV:
5463 return btrfs_ioctl_add_dev(fs_info, argp);
5464 case BTRFS_IOC_RM_DEV:
5465 return btrfs_ioctl_rm_dev(file, argp);
5466 case BTRFS_IOC_RM_DEV_V2:
5467 return btrfs_ioctl_rm_dev_v2(file, argp);
5468 case BTRFS_IOC_FS_INFO:
5469 return btrfs_ioctl_fs_info(fs_info, argp);
5470 case BTRFS_IOC_DEV_INFO:
5471 return btrfs_ioctl_dev_info(fs_info, argp);
5472 case BTRFS_IOC_TREE_SEARCH:
5473 return btrfs_ioctl_tree_search(inode, argp);
5474 case BTRFS_IOC_TREE_SEARCH_V2:
5475 return btrfs_ioctl_tree_search_v2(inode, argp);
5476 case BTRFS_IOC_INO_LOOKUP:
5477 return btrfs_ioctl_ino_lookup(root, argp);
5478 case BTRFS_IOC_INO_PATHS:
5479 return btrfs_ioctl_ino_to_path(root, argp);
5480 case BTRFS_IOC_LOGICAL_INO:
5481 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5482 case BTRFS_IOC_LOGICAL_INO_V2:
5483 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5484 case BTRFS_IOC_SPACE_INFO:
5485 return btrfs_ioctl_space_info(fs_info, argp);
5486 case BTRFS_IOC_SYNC: {
5487 int ret;
5488
5489 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5490 if (ret)
5491 return ret;
5492 ret = btrfs_sync_fs(inode->i_sb, 1);
5493 /*
5494 * The transaction thread may want to do more work,
5495 * namely it pokes the cleaner kthread that will start
5496 * processing uncleaned subvols.
5497 */
5498 wake_up_process(fs_info->transaction_kthread);
5499 return ret;
5500 }
5501 case BTRFS_IOC_START_SYNC:
5502 return btrfs_ioctl_start_sync(root, argp);
5503 case BTRFS_IOC_WAIT_SYNC:
5504 return btrfs_ioctl_wait_sync(fs_info, argp);
5505 case BTRFS_IOC_SCRUB:
5506 return btrfs_ioctl_scrub(file, argp);
5507 case BTRFS_IOC_SCRUB_CANCEL:
5508 return btrfs_ioctl_scrub_cancel(fs_info);
5509 case BTRFS_IOC_SCRUB_PROGRESS:
5510 return btrfs_ioctl_scrub_progress(fs_info, argp);
5511 case BTRFS_IOC_BALANCE_V2:
5512 return btrfs_ioctl_balance(file, argp);
5513 case BTRFS_IOC_BALANCE_CTL:
5514 return btrfs_ioctl_balance_ctl(fs_info, arg);
5515 case BTRFS_IOC_BALANCE_PROGRESS:
5516 return btrfs_ioctl_balance_progress(fs_info, argp);
5517 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5518 return btrfs_ioctl_set_received_subvol(file, argp);
5519 #ifdef CONFIG_64BIT
5520 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5521 return btrfs_ioctl_set_received_subvol_32(file, argp);
5522 #endif
5523 case BTRFS_IOC_SEND:
5524 return _btrfs_ioctl_send(inode, argp, false);
5525 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5526 case BTRFS_IOC_SEND_32:
5527 return _btrfs_ioctl_send(inode, argp, true);
5528 #endif
5529 case BTRFS_IOC_GET_DEV_STATS:
5530 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5531 case BTRFS_IOC_QUOTA_CTL:
5532 return btrfs_ioctl_quota_ctl(file, argp);
5533 case BTRFS_IOC_QGROUP_ASSIGN:
5534 return btrfs_ioctl_qgroup_assign(file, argp);
5535 case BTRFS_IOC_QGROUP_CREATE:
5536 return btrfs_ioctl_qgroup_create(file, argp);
5537 case BTRFS_IOC_QGROUP_LIMIT:
5538 return btrfs_ioctl_qgroup_limit(file, argp);
5539 case BTRFS_IOC_QUOTA_RESCAN:
5540 return btrfs_ioctl_quota_rescan(file, argp);
5541 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5542 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5543 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5544 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5545 case BTRFS_IOC_DEV_REPLACE:
5546 return btrfs_ioctl_dev_replace(fs_info, argp);
5547 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5548 return btrfs_ioctl_get_supported_features(argp);
5549 case BTRFS_IOC_GET_FEATURES:
5550 return btrfs_ioctl_get_features(fs_info, argp);
5551 case BTRFS_IOC_SET_FEATURES:
5552 return btrfs_ioctl_set_features(file, argp);
5553 case BTRFS_IOC_GET_SUBVOL_INFO:
5554 return btrfs_ioctl_get_subvol_info(inode, argp);
5555 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5556 return btrfs_ioctl_get_subvol_rootref(root, argp);
5557 case BTRFS_IOC_INO_LOOKUP_USER:
5558 return btrfs_ioctl_ino_lookup_user(file, argp);
5559 case FS_IOC_ENABLE_VERITY:
5560 return fsverity_ioctl_enable(file, (const void __user *)argp);
5561 case FS_IOC_MEASURE_VERITY:
5562 return fsverity_ioctl_measure(file, argp);
5563 case BTRFS_IOC_ENCODED_READ:
5564 return btrfs_ioctl_encoded_read(file, argp, false);
5565 case BTRFS_IOC_ENCODED_WRITE:
5566 return btrfs_ioctl_encoded_write(file, argp, false);
5567 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5568 case BTRFS_IOC_ENCODED_READ_32:
5569 return btrfs_ioctl_encoded_read(file, argp, true);
5570 case BTRFS_IOC_ENCODED_WRITE_32:
5571 return btrfs_ioctl_encoded_write(file, argp, true);
5572 #endif
5573 }
5574
5575 return -ENOTTY;
5576 }
5577
5578 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5579 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5580 {
5581 /*
5582 * These all access 32-bit values anyway so no further
5583 * handling is necessary.
5584 */
5585 switch (cmd) {
5586 case FS_IOC32_GETVERSION:
5587 cmd = FS_IOC_GETVERSION;
5588 break;
5589 }
5590
5591 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5592 }
5593 #endif
5594