1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 {
68 	if (fs_info->csum_shash)
69 		crypto_free_shash(fs_info->csum_shash);
70 }
71 
72 /*
73  * async submit bios are used to offload expensive checksumming
74  * onto the worker threads.  They checksum file and metadata bios
75  * just before they are sent down the IO stack.
76  */
77 struct async_submit_bio {
78 	struct inode *inode;
79 	struct bio *bio;
80 	extent_submit_bio_start_t *submit_bio_start;
81 	int mirror_num;
82 
83 	/* Optional parameter for submit_bio_start used by direct io */
84 	u64 dio_file_offset;
85 	struct btrfs_work work;
86 	blk_status_t status;
87 };
88 
89 /*
90  * Compute the csum of a btree block and store the result to provided buffer.
91  */
csum_tree_block(struct extent_buffer * buf,u8 * result)92 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
93 {
94 	struct btrfs_fs_info *fs_info = buf->fs_info;
95 	const int num_pages = num_extent_pages(buf);
96 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
97 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
98 	char *kaddr;
99 	int i;
100 
101 	shash->tfm = fs_info->csum_shash;
102 	crypto_shash_init(shash);
103 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
104 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
105 			    first_page_part - BTRFS_CSUM_SIZE);
106 
107 	for (i = 1; i < num_pages; i++) {
108 		kaddr = page_address(buf->pages[i]);
109 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
110 	}
111 	memset(result, 0, BTRFS_CSUM_SIZE);
112 	crypto_shash_final(shash, result);
113 }
114 
115 /*
116  * we can't consider a given block up to date unless the transid of the
117  * block matches the transid in the parent node's pointer.  This is how we
118  * detect blocks that either didn't get written at all or got written
119  * in the wrong place.
120  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)121 static int verify_parent_transid(struct extent_io_tree *io_tree,
122 				 struct extent_buffer *eb, u64 parent_transid,
123 				 int atomic)
124 {
125 	struct extent_state *cached_state = NULL;
126 	int ret;
127 
128 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
129 		return 0;
130 
131 	if (atomic)
132 		return -EAGAIN;
133 
134 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
135 	if (extent_buffer_uptodate(eb) &&
136 	    btrfs_header_generation(eb) == parent_transid) {
137 		ret = 0;
138 		goto out;
139 	}
140 	btrfs_err_rl(eb->fs_info,
141 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
142 			eb->start, eb->read_mirror,
143 			parent_transid, btrfs_header_generation(eb));
144 	ret = 1;
145 	clear_extent_buffer_uptodate(eb);
146 out:
147 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
148 		      &cached_state);
149 	return ret;
150 }
151 
btrfs_supported_super_csum(u16 csum_type)152 static bool btrfs_supported_super_csum(u16 csum_type)
153 {
154 	switch (csum_type) {
155 	case BTRFS_CSUM_TYPE_CRC32:
156 	case BTRFS_CSUM_TYPE_XXHASH:
157 	case BTRFS_CSUM_TYPE_SHA256:
158 	case BTRFS_CSUM_TYPE_BLAKE2:
159 		return true;
160 	default:
161 		return false;
162 	}
163 }
164 
165 /*
166  * Return 0 if the superblock checksum type matches the checksum value of that
167  * algorithm. Pass the raw disk superblock data.
168  */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)169 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
170 			   const struct btrfs_super_block *disk_sb)
171 {
172 	char result[BTRFS_CSUM_SIZE];
173 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
174 
175 	shash->tfm = fs_info->csum_shash;
176 
177 	/*
178 	 * The super_block structure does not span the whole
179 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
180 	 * filled with zeros and is included in the checksum.
181 	 */
182 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
183 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
184 
185 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
186 		return 1;
187 
188 	return 0;
189 }
190 
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)191 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
192 			   struct btrfs_key *first_key, u64 parent_transid)
193 {
194 	struct btrfs_fs_info *fs_info = eb->fs_info;
195 	int found_level;
196 	struct btrfs_key found_key;
197 	int ret;
198 
199 	found_level = btrfs_header_level(eb);
200 	if (found_level != level) {
201 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
202 		     KERN_ERR "BTRFS: tree level check failed\n");
203 		btrfs_err(fs_info,
204 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
205 			  eb->start, level, found_level);
206 		return -EIO;
207 	}
208 
209 	if (!first_key)
210 		return 0;
211 
212 	/*
213 	 * For live tree block (new tree blocks in current transaction),
214 	 * we need proper lock context to avoid race, which is impossible here.
215 	 * So we only checks tree blocks which is read from disk, whose
216 	 * generation <= fs_info->last_trans_committed.
217 	 */
218 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
219 		return 0;
220 
221 	/* We have @first_key, so this @eb must have at least one item */
222 	if (btrfs_header_nritems(eb) == 0) {
223 		btrfs_err(fs_info,
224 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
225 			  eb->start);
226 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
227 		return -EUCLEAN;
228 	}
229 
230 	if (found_level)
231 		btrfs_node_key_to_cpu(eb, &found_key, 0);
232 	else
233 		btrfs_item_key_to_cpu(eb, &found_key, 0);
234 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
235 
236 	if (ret) {
237 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
238 		     KERN_ERR "BTRFS: tree first key check failed\n");
239 		btrfs_err(fs_info,
240 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
241 			  eb->start, parent_transid, first_key->objectid,
242 			  first_key->type, first_key->offset,
243 			  found_key.objectid, found_key.type,
244 			  found_key.offset);
245 	}
246 	return ret;
247 }
248 
249 /*
250  * helper to read a given tree block, doing retries as required when
251  * the checksums don't match and we have alternate mirrors to try.
252  *
253  * @parent_transid:	expected transid, skip check if 0
254  * @level:		expected level, mandatory check
255  * @first_key:		expected key of first slot, skip check if NULL
256  */
btrfs_read_extent_buffer(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)257 int btrfs_read_extent_buffer(struct extent_buffer *eb,
258 			     u64 parent_transid, int level,
259 			     struct btrfs_key *first_key)
260 {
261 	struct btrfs_fs_info *fs_info = eb->fs_info;
262 	struct extent_io_tree *io_tree;
263 	int failed = 0;
264 	int ret;
265 	int num_copies = 0;
266 	int mirror_num = 0;
267 	int failed_mirror = 0;
268 
269 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
270 	while (1) {
271 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
272 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
273 		if (!ret) {
274 			if (verify_parent_transid(io_tree, eb,
275 						   parent_transid, 0))
276 				ret = -EIO;
277 			else if (btrfs_verify_level_key(eb, level,
278 						first_key, parent_transid))
279 				ret = -EUCLEAN;
280 			else
281 				break;
282 		}
283 
284 		num_copies = btrfs_num_copies(fs_info,
285 					      eb->start, eb->len);
286 		if (num_copies == 1)
287 			break;
288 
289 		if (!failed_mirror) {
290 			failed = 1;
291 			failed_mirror = eb->read_mirror;
292 		}
293 
294 		mirror_num++;
295 		if (mirror_num == failed_mirror)
296 			mirror_num++;
297 
298 		if (mirror_num > num_copies)
299 			break;
300 	}
301 
302 	if (failed && !ret && failed_mirror)
303 		btrfs_repair_eb_io_failure(eb, failed_mirror);
304 
305 	return ret;
306 }
307 
csum_one_extent_buffer(struct extent_buffer * eb)308 static int csum_one_extent_buffer(struct extent_buffer *eb)
309 {
310 	struct btrfs_fs_info *fs_info = eb->fs_info;
311 	u8 result[BTRFS_CSUM_SIZE];
312 	int ret;
313 
314 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
315 				    offsetof(struct btrfs_header, fsid),
316 				    BTRFS_FSID_SIZE) == 0);
317 	csum_tree_block(eb, result);
318 
319 	if (btrfs_header_level(eb))
320 		ret = btrfs_check_node(eb);
321 	else
322 		ret = btrfs_check_leaf_full(eb);
323 
324 	if (ret < 0)
325 		goto error;
326 
327 	/*
328 	 * Also check the generation, the eb reached here must be newer than
329 	 * last committed. Or something seriously wrong happened.
330 	 */
331 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
332 		ret = -EUCLEAN;
333 		btrfs_err(fs_info,
334 			"block=%llu bad generation, have %llu expect > %llu",
335 			  eb->start, btrfs_header_generation(eb),
336 			  fs_info->last_trans_committed);
337 		goto error;
338 	}
339 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
340 
341 	return 0;
342 
343 error:
344 	btrfs_print_tree(eb, 0);
345 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
346 		  eb->start);
347 	/*
348 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
349 	 * a transaction in case there's a bad log tree extent buffer, we just
350 	 * fallback to a transaction commit. Still we want to know when there is
351 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
352 	 */
353 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
354 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
355 	return ret;
356 }
357 
358 /* Checksum all dirty extent buffers in one bio_vec */
csum_dirty_subpage_buffers(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)359 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
360 				      struct bio_vec *bvec)
361 {
362 	struct page *page = bvec->bv_page;
363 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
364 	u64 cur;
365 	int ret = 0;
366 
367 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
368 	     cur += fs_info->nodesize) {
369 		struct extent_buffer *eb;
370 		bool uptodate;
371 
372 		eb = find_extent_buffer(fs_info, cur);
373 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
374 						       fs_info->nodesize);
375 
376 		/* A dirty eb shouldn't disappear from buffer_radix */
377 		if (WARN_ON(!eb))
378 			return -EUCLEAN;
379 
380 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
381 			free_extent_buffer(eb);
382 			return -EUCLEAN;
383 		}
384 		if (WARN_ON(!uptodate)) {
385 			free_extent_buffer(eb);
386 			return -EUCLEAN;
387 		}
388 
389 		ret = csum_one_extent_buffer(eb);
390 		free_extent_buffer(eb);
391 		if (ret < 0)
392 			return ret;
393 	}
394 	return ret;
395 }
396 
397 /*
398  * Checksum a dirty tree block before IO.  This has extra checks to make sure
399  * we only fill in the checksum field in the first page of a multi-page block.
400  * For subpage extent buffers we need bvec to also read the offset in the page.
401  */
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)402 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
403 {
404 	struct page *page = bvec->bv_page;
405 	u64 start = page_offset(page);
406 	u64 found_start;
407 	struct extent_buffer *eb;
408 
409 	if (fs_info->nodesize < PAGE_SIZE)
410 		return csum_dirty_subpage_buffers(fs_info, bvec);
411 
412 	eb = (struct extent_buffer *)page->private;
413 	if (page != eb->pages[0])
414 		return 0;
415 
416 	found_start = btrfs_header_bytenr(eb);
417 
418 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
419 		WARN_ON(found_start != 0);
420 		return 0;
421 	}
422 
423 	/*
424 	 * Please do not consolidate these warnings into a single if.
425 	 * It is useful to know what went wrong.
426 	 */
427 	if (WARN_ON(found_start != start))
428 		return -EUCLEAN;
429 	if (WARN_ON(!PageUptodate(page)))
430 		return -EUCLEAN;
431 
432 	return csum_one_extent_buffer(eb);
433 }
434 
check_tree_block_fsid(struct extent_buffer * eb)435 static int check_tree_block_fsid(struct extent_buffer *eb)
436 {
437 	struct btrfs_fs_info *fs_info = eb->fs_info;
438 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
439 	u8 fsid[BTRFS_FSID_SIZE];
440 	u8 *metadata_uuid;
441 
442 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
443 			   BTRFS_FSID_SIZE);
444 	/*
445 	 * Checking the incompat flag is only valid for the current fs. For
446 	 * seed devices it's forbidden to have their uuid changed so reading
447 	 * ->fsid in this case is fine
448 	 */
449 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
450 		metadata_uuid = fs_devices->metadata_uuid;
451 	else
452 		metadata_uuid = fs_devices->fsid;
453 
454 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
455 		return 0;
456 
457 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
458 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
459 			return 0;
460 
461 	return 1;
462 }
463 
464 /* Do basic extent buffer checks at read time */
validate_extent_buffer(struct extent_buffer * eb)465 static int validate_extent_buffer(struct extent_buffer *eb)
466 {
467 	struct btrfs_fs_info *fs_info = eb->fs_info;
468 	u64 found_start;
469 	const u32 csum_size = fs_info->csum_size;
470 	u8 found_level;
471 	u8 result[BTRFS_CSUM_SIZE];
472 	const u8 *header_csum;
473 	int ret = 0;
474 
475 	found_start = btrfs_header_bytenr(eb);
476 	if (found_start != eb->start) {
477 		btrfs_err_rl(fs_info,
478 			"bad tree block start, mirror %u want %llu have %llu",
479 			     eb->read_mirror, eb->start, found_start);
480 		ret = -EIO;
481 		goto out;
482 	}
483 	if (check_tree_block_fsid(eb)) {
484 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
485 			     eb->start, eb->read_mirror);
486 		ret = -EIO;
487 		goto out;
488 	}
489 	found_level = btrfs_header_level(eb);
490 	if (found_level >= BTRFS_MAX_LEVEL) {
491 		btrfs_err(fs_info,
492 			"bad tree block level, mirror %u level %d on logical %llu",
493 			eb->read_mirror, btrfs_header_level(eb), eb->start);
494 		ret = -EIO;
495 		goto out;
496 	}
497 
498 	csum_tree_block(eb, result);
499 	header_csum = page_address(eb->pages[0]) +
500 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
501 
502 	if (memcmp(result, header_csum, csum_size) != 0) {
503 		btrfs_warn_rl(fs_info,
504 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
505 			      eb->start, eb->read_mirror,
506 			      CSUM_FMT_VALUE(csum_size, header_csum),
507 			      CSUM_FMT_VALUE(csum_size, result),
508 			      btrfs_header_level(eb));
509 		ret = -EUCLEAN;
510 		goto out;
511 	}
512 
513 	/*
514 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
515 	 * that we don't try and read the other copies of this block, just
516 	 * return -EIO.
517 	 */
518 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
519 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
520 		ret = -EIO;
521 	}
522 
523 	if (found_level > 0 && btrfs_check_node(eb))
524 		ret = -EIO;
525 
526 	if (!ret)
527 		set_extent_buffer_uptodate(eb);
528 	else
529 		btrfs_err(fs_info,
530 		"read time tree block corruption detected on logical %llu mirror %u",
531 			  eb->start, eb->read_mirror);
532 out:
533 	return ret;
534 }
535 
validate_subpage_buffer(struct page * page,u64 start,u64 end,int mirror)536 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
537 				   int mirror)
538 {
539 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
540 	struct extent_buffer *eb;
541 	bool reads_done;
542 	int ret = 0;
543 
544 	/*
545 	 * We don't allow bio merge for subpage metadata read, so we should
546 	 * only get one eb for each endio hook.
547 	 */
548 	ASSERT(end == start + fs_info->nodesize - 1);
549 	ASSERT(PagePrivate(page));
550 
551 	eb = find_extent_buffer(fs_info, start);
552 	/*
553 	 * When we are reading one tree block, eb must have been inserted into
554 	 * the radix tree. If not, something is wrong.
555 	 */
556 	ASSERT(eb);
557 
558 	reads_done = atomic_dec_and_test(&eb->io_pages);
559 	/* Subpage read must finish in page read */
560 	ASSERT(reads_done);
561 
562 	eb->read_mirror = mirror;
563 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
564 		ret = -EIO;
565 		goto err;
566 	}
567 	ret = validate_extent_buffer(eb);
568 	if (ret < 0)
569 		goto err;
570 
571 	set_extent_buffer_uptodate(eb);
572 
573 	free_extent_buffer(eb);
574 	return ret;
575 err:
576 	/*
577 	 * end_bio_extent_readpage decrements io_pages in case of error,
578 	 * make sure it has something to decrement.
579 	 */
580 	atomic_inc(&eb->io_pages);
581 	clear_extent_buffer_uptodate(eb);
582 	free_extent_buffer(eb);
583 	return ret;
584 }
585 
btrfs_validate_metadata_buffer(struct btrfs_bio * bbio,struct page * page,u64 start,u64 end,int mirror)586 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
587 				   struct page *page, u64 start, u64 end,
588 				   int mirror)
589 {
590 	struct extent_buffer *eb;
591 	int ret = 0;
592 	int reads_done;
593 
594 	ASSERT(page->private);
595 
596 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
597 		return validate_subpage_buffer(page, start, end, mirror);
598 
599 	eb = (struct extent_buffer *)page->private;
600 
601 	/*
602 	 * The pending IO might have been the only thing that kept this buffer
603 	 * in memory.  Make sure we have a ref for all this other checks
604 	 */
605 	atomic_inc(&eb->refs);
606 
607 	reads_done = atomic_dec_and_test(&eb->io_pages);
608 	if (!reads_done)
609 		goto err;
610 
611 	eb->read_mirror = mirror;
612 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
613 		ret = -EIO;
614 		goto err;
615 	}
616 	ret = validate_extent_buffer(eb);
617 err:
618 	if (ret) {
619 		/*
620 		 * our io error hook is going to dec the io pages
621 		 * again, we have to make sure it has something
622 		 * to decrement
623 		 */
624 		atomic_inc(&eb->io_pages);
625 		clear_extent_buffer_uptodate(eb);
626 	}
627 	free_extent_buffer(eb);
628 
629 	return ret;
630 }
631 
run_one_async_start(struct btrfs_work * work)632 static void run_one_async_start(struct btrfs_work *work)
633 {
634 	struct async_submit_bio *async;
635 	blk_status_t ret;
636 
637 	async = container_of(work, struct  async_submit_bio, work);
638 	ret = async->submit_bio_start(async->inode, async->bio,
639 				      async->dio_file_offset);
640 	if (ret)
641 		async->status = ret;
642 }
643 
644 /*
645  * In order to insert checksums into the metadata in large chunks, we wait
646  * until bio submission time.   All the pages in the bio are checksummed and
647  * sums are attached onto the ordered extent record.
648  *
649  * At IO completion time the csums attached on the ordered extent record are
650  * inserted into the tree.
651  */
run_one_async_done(struct btrfs_work * work)652 static void run_one_async_done(struct btrfs_work *work)
653 {
654 	struct async_submit_bio *async =
655 		container_of(work, struct  async_submit_bio, work);
656 	struct inode *inode = async->inode;
657 	struct btrfs_bio *bbio = btrfs_bio(async->bio);
658 
659 	/* If an error occurred we just want to clean up the bio and move on */
660 	if (async->status) {
661 		btrfs_bio_end_io(bbio, async->status);
662 		return;
663 	}
664 
665 	/*
666 	 * All of the bios that pass through here are from async helpers.
667 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
668 	 * This changes nothing when cgroups aren't in use.
669 	 */
670 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
671 	btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
672 }
673 
run_one_async_free(struct btrfs_work * work)674 static void run_one_async_free(struct btrfs_work *work)
675 {
676 	struct async_submit_bio *async;
677 
678 	async = container_of(work, struct  async_submit_bio, work);
679 	kfree(async);
680 }
681 
682 /*
683  * Submit bio to an async queue.
684  *
685  * Retrun:
686  * - true if the work has been succesfuly submitted
687  * - false in case of error
688  */
btrfs_wq_submit_bio(struct inode * inode,struct bio * bio,int mirror_num,u64 dio_file_offset,extent_submit_bio_start_t * submit_bio_start)689 bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
690 			 u64 dio_file_offset,
691 			 extent_submit_bio_start_t *submit_bio_start)
692 {
693 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
694 	struct async_submit_bio *async;
695 
696 	async = kmalloc(sizeof(*async), GFP_NOFS);
697 	if (!async)
698 		return false;
699 
700 	async->inode = inode;
701 	async->bio = bio;
702 	async->mirror_num = mirror_num;
703 	async->submit_bio_start = submit_bio_start;
704 
705 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
706 			run_one_async_free);
707 
708 	async->dio_file_offset = dio_file_offset;
709 
710 	async->status = 0;
711 
712 	if (op_is_sync(bio->bi_opf))
713 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
714 	else
715 		btrfs_queue_work(fs_info->workers, &async->work);
716 	return true;
717 }
718 
btree_csum_one_bio(struct bio * bio)719 static blk_status_t btree_csum_one_bio(struct bio *bio)
720 {
721 	struct bio_vec *bvec;
722 	struct btrfs_root *root;
723 	int ret = 0;
724 	struct bvec_iter_all iter_all;
725 
726 	ASSERT(!bio_flagged(bio, BIO_CLONED));
727 	bio_for_each_segment_all(bvec, bio, iter_all) {
728 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
729 		ret = csum_dirty_buffer(root->fs_info, bvec);
730 		if (ret)
731 			break;
732 	}
733 
734 	return errno_to_blk_status(ret);
735 }
736 
btree_submit_bio_start(struct inode * inode,struct bio * bio,u64 dio_file_offset)737 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
738 					   u64 dio_file_offset)
739 {
740 	/*
741 	 * when we're called for a write, we're already in the async
742 	 * submission context.  Just jump into btrfs_submit_bio.
743 	 */
744 	return btree_csum_one_bio(bio);
745 }
746 
should_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)747 static bool should_async_write(struct btrfs_fs_info *fs_info,
748 			     struct btrfs_inode *bi)
749 {
750 	if (btrfs_is_zoned(fs_info))
751 		return false;
752 	if (atomic_read(&bi->sync_writers))
753 		return false;
754 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
755 		return false;
756 	return true;
757 }
758 
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num)759 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
760 {
761 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
762 	struct btrfs_bio *bbio = btrfs_bio(bio);
763 	blk_status_t ret;
764 
765 	bio->bi_opf |= REQ_META;
766 
767 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
768 		btrfs_submit_bio(fs_info, bio, mirror_num);
769 		return;
770 	}
771 
772 	/*
773 	 * Kthread helpers are used to submit writes so that checksumming can
774 	 * happen in parallel across all CPUs.
775 	 */
776 	if (should_async_write(fs_info, BTRFS_I(inode)) &&
777 	    btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
778 		return;
779 
780 	ret = btree_csum_one_bio(bio);
781 	if (ret) {
782 		btrfs_bio_end_io(bbio, ret);
783 		return;
784 	}
785 
786 	btrfs_submit_bio(fs_info, bio, mirror_num);
787 }
788 
789 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)790 static int btree_migrate_folio(struct address_space *mapping,
791 		struct folio *dst, struct folio *src, enum migrate_mode mode)
792 {
793 	/*
794 	 * we can't safely write a btree page from here,
795 	 * we haven't done the locking hook
796 	 */
797 	if (folio_test_dirty(src))
798 		return -EAGAIN;
799 	/*
800 	 * Buffers may be managed in a filesystem specific way.
801 	 * We must have no buffers or drop them.
802 	 */
803 	if (folio_get_private(src) &&
804 	    !filemap_release_folio(src, GFP_KERNEL))
805 		return -EAGAIN;
806 	return migrate_folio(mapping, dst, src, mode);
807 }
808 #else
809 #define btree_migrate_folio NULL
810 #endif
811 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)812 static int btree_writepages(struct address_space *mapping,
813 			    struct writeback_control *wbc)
814 {
815 	struct btrfs_fs_info *fs_info;
816 	int ret;
817 
818 	if (wbc->sync_mode == WB_SYNC_NONE) {
819 
820 		if (wbc->for_kupdate)
821 			return 0;
822 
823 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
824 		/* this is a bit racy, but that's ok */
825 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
826 					     BTRFS_DIRTY_METADATA_THRESH,
827 					     fs_info->dirty_metadata_batch);
828 		if (ret < 0)
829 			return 0;
830 	}
831 	return btree_write_cache_pages(mapping, wbc);
832 }
833 
btree_release_folio(struct folio * folio,gfp_t gfp_flags)834 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
835 {
836 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
837 		return false;
838 
839 	return try_release_extent_buffer(&folio->page);
840 }
841 
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)842 static void btree_invalidate_folio(struct folio *folio, size_t offset,
843 				 size_t length)
844 {
845 	struct extent_io_tree *tree;
846 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
847 	extent_invalidate_folio(tree, folio, offset);
848 	btree_release_folio(folio, GFP_NOFS);
849 	if (folio_get_private(folio)) {
850 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
851 			   "folio private not zero on folio %llu",
852 			   (unsigned long long)folio_pos(folio));
853 		folio_detach_private(folio);
854 	}
855 }
856 
857 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)858 static bool btree_dirty_folio(struct address_space *mapping,
859 		struct folio *folio)
860 {
861 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
862 	struct btrfs_subpage *subpage;
863 	struct extent_buffer *eb;
864 	int cur_bit = 0;
865 	u64 page_start = folio_pos(folio);
866 
867 	if (fs_info->sectorsize == PAGE_SIZE) {
868 		eb = folio_get_private(folio);
869 		BUG_ON(!eb);
870 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
871 		BUG_ON(!atomic_read(&eb->refs));
872 		btrfs_assert_tree_write_locked(eb);
873 		return filemap_dirty_folio(mapping, folio);
874 	}
875 	subpage = folio_get_private(folio);
876 
877 	ASSERT(subpage->dirty_bitmap);
878 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
879 		unsigned long flags;
880 		u64 cur;
881 		u16 tmp = (1 << cur_bit);
882 
883 		spin_lock_irqsave(&subpage->lock, flags);
884 		if (!(tmp & subpage->dirty_bitmap)) {
885 			spin_unlock_irqrestore(&subpage->lock, flags);
886 			cur_bit++;
887 			continue;
888 		}
889 		spin_unlock_irqrestore(&subpage->lock, flags);
890 		cur = page_start + cur_bit * fs_info->sectorsize;
891 
892 		eb = find_extent_buffer(fs_info, cur);
893 		ASSERT(eb);
894 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
895 		ASSERT(atomic_read(&eb->refs));
896 		btrfs_assert_tree_write_locked(eb);
897 		free_extent_buffer(eb);
898 
899 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
900 	}
901 	return filemap_dirty_folio(mapping, folio);
902 }
903 #else
904 #define btree_dirty_folio filemap_dirty_folio
905 #endif
906 
907 static const struct address_space_operations btree_aops = {
908 	.writepages	= btree_writepages,
909 	.release_folio	= btree_release_folio,
910 	.invalidate_folio = btree_invalidate_folio,
911 	.migrate_folio	= btree_migrate_folio,
912 	.dirty_folio	= btree_dirty_folio,
913 };
914 
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)915 struct extent_buffer *btrfs_find_create_tree_block(
916 						struct btrfs_fs_info *fs_info,
917 						u64 bytenr, u64 owner_root,
918 						int level)
919 {
920 	if (btrfs_is_testing(fs_info))
921 		return alloc_test_extent_buffer(fs_info, bytenr);
922 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
923 }
924 
925 /*
926  * Read tree block at logical address @bytenr and do variant basic but critical
927  * verification.
928  *
929  * @owner_root:		the objectid of the root owner for this block.
930  * @parent_transid:	expected transid of this tree block, skip check if 0
931  * @level:		expected level, mandatory check
932  * @first_key:		expected key in slot 0, skip check if NULL
933  */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 parent_transid,int level,struct btrfs_key * first_key)934 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
935 				      u64 owner_root, u64 parent_transid,
936 				      int level, struct btrfs_key *first_key)
937 {
938 	struct extent_buffer *buf = NULL;
939 	int ret;
940 
941 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
942 	if (IS_ERR(buf))
943 		return buf;
944 
945 	ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
946 	if (ret) {
947 		free_extent_buffer_stale(buf);
948 		return ERR_PTR(ret);
949 	}
950 	if (btrfs_check_eb_owner(buf, owner_root)) {
951 		free_extent_buffer_stale(buf);
952 		return ERR_PTR(-EUCLEAN);
953 	}
954 	return buf;
955 
956 }
957 
btrfs_clean_tree_block(struct extent_buffer * buf)958 void btrfs_clean_tree_block(struct extent_buffer *buf)
959 {
960 	struct btrfs_fs_info *fs_info = buf->fs_info;
961 	if (btrfs_header_generation(buf) ==
962 	    fs_info->running_transaction->transid) {
963 		btrfs_assert_tree_write_locked(buf);
964 
965 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
966 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
967 						 -buf->len,
968 						 fs_info->dirty_metadata_batch);
969 			clear_extent_buffer_dirty(buf);
970 		}
971 	}
972 }
973 
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)974 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
975 			 u64 objectid)
976 {
977 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
978 
979 	memset(&root->root_key, 0, sizeof(root->root_key));
980 	memset(&root->root_item, 0, sizeof(root->root_item));
981 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
982 	root->fs_info = fs_info;
983 	root->root_key.objectid = objectid;
984 	root->node = NULL;
985 	root->commit_root = NULL;
986 	root->state = 0;
987 	RB_CLEAR_NODE(&root->rb_node);
988 
989 	root->last_trans = 0;
990 	root->free_objectid = 0;
991 	root->nr_delalloc_inodes = 0;
992 	root->nr_ordered_extents = 0;
993 	root->inode_tree = RB_ROOT;
994 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
995 
996 	btrfs_init_root_block_rsv(root);
997 
998 	INIT_LIST_HEAD(&root->dirty_list);
999 	INIT_LIST_HEAD(&root->root_list);
1000 	INIT_LIST_HEAD(&root->delalloc_inodes);
1001 	INIT_LIST_HEAD(&root->delalloc_root);
1002 	INIT_LIST_HEAD(&root->ordered_extents);
1003 	INIT_LIST_HEAD(&root->ordered_root);
1004 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1005 	INIT_LIST_HEAD(&root->logged_list[0]);
1006 	INIT_LIST_HEAD(&root->logged_list[1]);
1007 	spin_lock_init(&root->inode_lock);
1008 	spin_lock_init(&root->delalloc_lock);
1009 	spin_lock_init(&root->ordered_extent_lock);
1010 	spin_lock_init(&root->accounting_lock);
1011 	spin_lock_init(&root->log_extents_lock[0]);
1012 	spin_lock_init(&root->log_extents_lock[1]);
1013 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1014 	mutex_init(&root->objectid_mutex);
1015 	mutex_init(&root->log_mutex);
1016 	mutex_init(&root->ordered_extent_mutex);
1017 	mutex_init(&root->delalloc_mutex);
1018 	init_waitqueue_head(&root->qgroup_flush_wait);
1019 	init_waitqueue_head(&root->log_writer_wait);
1020 	init_waitqueue_head(&root->log_commit_wait[0]);
1021 	init_waitqueue_head(&root->log_commit_wait[1]);
1022 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1023 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1024 	atomic_set(&root->log_commit[0], 0);
1025 	atomic_set(&root->log_commit[1], 0);
1026 	atomic_set(&root->log_writers, 0);
1027 	atomic_set(&root->log_batch, 0);
1028 	refcount_set(&root->refs, 1);
1029 	atomic_set(&root->snapshot_force_cow, 0);
1030 	atomic_set(&root->nr_swapfiles, 0);
1031 	root->log_transid = 0;
1032 	root->log_transid_committed = -1;
1033 	root->last_log_commit = 0;
1034 	root->anon_dev = 0;
1035 	if (!dummy) {
1036 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1037 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1038 		extent_io_tree_init(fs_info, &root->log_csum_range,
1039 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1040 	}
1041 
1042 	spin_lock_init(&root->root_item_lock);
1043 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1044 #ifdef CONFIG_BTRFS_DEBUG
1045 	INIT_LIST_HEAD(&root->leak_list);
1046 	spin_lock(&fs_info->fs_roots_radix_lock);
1047 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1048 	spin_unlock(&fs_info->fs_roots_radix_lock);
1049 #endif
1050 }
1051 
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1052 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1053 					   u64 objectid, gfp_t flags)
1054 {
1055 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1056 	if (root)
1057 		__setup_root(root, fs_info, objectid);
1058 	return root;
1059 }
1060 
1061 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1062 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1063 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1064 {
1065 	struct btrfs_root *root;
1066 
1067 	if (!fs_info)
1068 		return ERR_PTR(-EINVAL);
1069 
1070 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1071 	if (!root)
1072 		return ERR_PTR(-ENOMEM);
1073 
1074 	/* We don't use the stripesize in selftest, set it as sectorsize */
1075 	root->alloc_bytenr = 0;
1076 
1077 	return root;
1078 }
1079 #endif
1080 
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)1081 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1082 {
1083 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1084 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1085 
1086 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1087 }
1088 
global_root_key_cmp(const void * k,const struct rb_node * node)1089 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1090 {
1091 	const struct btrfs_key *key = k;
1092 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1093 
1094 	return btrfs_comp_cpu_keys(key, &root->root_key);
1095 }
1096 
btrfs_global_root_insert(struct btrfs_root * root)1097 int btrfs_global_root_insert(struct btrfs_root *root)
1098 {
1099 	struct btrfs_fs_info *fs_info = root->fs_info;
1100 	struct rb_node *tmp;
1101 
1102 	write_lock(&fs_info->global_root_lock);
1103 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1104 	write_unlock(&fs_info->global_root_lock);
1105 	ASSERT(!tmp);
1106 
1107 	return tmp ? -EEXIST : 0;
1108 }
1109 
btrfs_global_root_delete(struct btrfs_root * root)1110 void btrfs_global_root_delete(struct btrfs_root *root)
1111 {
1112 	struct btrfs_fs_info *fs_info = root->fs_info;
1113 
1114 	write_lock(&fs_info->global_root_lock);
1115 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1116 	write_unlock(&fs_info->global_root_lock);
1117 }
1118 
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)1119 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1120 				     struct btrfs_key *key)
1121 {
1122 	struct rb_node *node;
1123 	struct btrfs_root *root = NULL;
1124 
1125 	read_lock(&fs_info->global_root_lock);
1126 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1127 	if (node)
1128 		root = container_of(node, struct btrfs_root, rb_node);
1129 	read_unlock(&fs_info->global_root_lock);
1130 
1131 	return root;
1132 }
1133 
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)1134 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1135 {
1136 	struct btrfs_block_group *block_group;
1137 	u64 ret;
1138 
1139 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1140 		return 0;
1141 
1142 	if (bytenr)
1143 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
1144 	else
1145 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1146 	ASSERT(block_group);
1147 	if (!block_group)
1148 		return 0;
1149 	ret = block_group->global_root_id;
1150 	btrfs_put_block_group(block_group);
1151 
1152 	return ret;
1153 }
1154 
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)1155 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1156 {
1157 	struct btrfs_key key = {
1158 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1159 		.type = BTRFS_ROOT_ITEM_KEY,
1160 		.offset = btrfs_global_root_id(fs_info, bytenr),
1161 	};
1162 
1163 	return btrfs_global_root(fs_info, &key);
1164 }
1165 
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)1166 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1167 {
1168 	struct btrfs_key key = {
1169 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1170 		.type = BTRFS_ROOT_ITEM_KEY,
1171 		.offset = btrfs_global_root_id(fs_info, bytenr),
1172 	};
1173 
1174 	return btrfs_global_root(fs_info, &key);
1175 }
1176 
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1177 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1178 				     u64 objectid)
1179 {
1180 	struct btrfs_fs_info *fs_info = trans->fs_info;
1181 	struct extent_buffer *leaf;
1182 	struct btrfs_root *tree_root = fs_info->tree_root;
1183 	struct btrfs_root *root;
1184 	struct btrfs_key key;
1185 	unsigned int nofs_flag;
1186 	int ret = 0;
1187 
1188 	/*
1189 	 * We're holding a transaction handle, so use a NOFS memory allocation
1190 	 * context to avoid deadlock if reclaim happens.
1191 	 */
1192 	nofs_flag = memalloc_nofs_save();
1193 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1194 	memalloc_nofs_restore(nofs_flag);
1195 	if (!root)
1196 		return ERR_PTR(-ENOMEM);
1197 
1198 	root->root_key.objectid = objectid;
1199 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1200 	root->root_key.offset = 0;
1201 
1202 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1203 				      BTRFS_NESTING_NORMAL);
1204 	if (IS_ERR(leaf)) {
1205 		ret = PTR_ERR(leaf);
1206 		leaf = NULL;
1207 		goto fail_unlock;
1208 	}
1209 
1210 	root->node = leaf;
1211 	btrfs_mark_buffer_dirty(leaf);
1212 
1213 	root->commit_root = btrfs_root_node(root);
1214 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1215 
1216 	btrfs_set_root_flags(&root->root_item, 0);
1217 	btrfs_set_root_limit(&root->root_item, 0);
1218 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1219 	btrfs_set_root_generation(&root->root_item, trans->transid);
1220 	btrfs_set_root_level(&root->root_item, 0);
1221 	btrfs_set_root_refs(&root->root_item, 1);
1222 	btrfs_set_root_used(&root->root_item, leaf->len);
1223 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1224 	btrfs_set_root_dirid(&root->root_item, 0);
1225 	if (is_fstree(objectid))
1226 		generate_random_guid(root->root_item.uuid);
1227 	else
1228 		export_guid(root->root_item.uuid, &guid_null);
1229 	btrfs_set_root_drop_level(&root->root_item, 0);
1230 
1231 	btrfs_tree_unlock(leaf);
1232 
1233 	key.objectid = objectid;
1234 	key.type = BTRFS_ROOT_ITEM_KEY;
1235 	key.offset = 0;
1236 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1237 	if (ret)
1238 		goto fail;
1239 
1240 	return root;
1241 
1242 fail_unlock:
1243 	if (leaf)
1244 		btrfs_tree_unlock(leaf);
1245 fail:
1246 	btrfs_put_root(root);
1247 
1248 	return ERR_PTR(ret);
1249 }
1250 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1251 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1252 					 struct btrfs_fs_info *fs_info)
1253 {
1254 	struct btrfs_root *root;
1255 
1256 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1257 	if (!root)
1258 		return ERR_PTR(-ENOMEM);
1259 
1260 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1261 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1262 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1263 
1264 	return root;
1265 }
1266 
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)1267 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1268 			      struct btrfs_root *root)
1269 {
1270 	struct extent_buffer *leaf;
1271 
1272 	/*
1273 	 * DON'T set SHAREABLE bit for log trees.
1274 	 *
1275 	 * Log trees are not exposed to user space thus can't be snapshotted,
1276 	 * and they go away before a real commit is actually done.
1277 	 *
1278 	 * They do store pointers to file data extents, and those reference
1279 	 * counts still get updated (along with back refs to the log tree).
1280 	 */
1281 
1282 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1283 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1284 	if (IS_ERR(leaf))
1285 		return PTR_ERR(leaf);
1286 
1287 	root->node = leaf;
1288 
1289 	btrfs_mark_buffer_dirty(root->node);
1290 	btrfs_tree_unlock(root->node);
1291 
1292 	return 0;
1293 }
1294 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1295 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1296 			     struct btrfs_fs_info *fs_info)
1297 {
1298 	struct btrfs_root *log_root;
1299 
1300 	log_root = alloc_log_tree(trans, fs_info);
1301 	if (IS_ERR(log_root))
1302 		return PTR_ERR(log_root);
1303 
1304 	if (!btrfs_is_zoned(fs_info)) {
1305 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1306 
1307 		if (ret) {
1308 			btrfs_put_root(log_root);
1309 			return ret;
1310 		}
1311 	}
1312 
1313 	WARN_ON(fs_info->log_root_tree);
1314 	fs_info->log_root_tree = log_root;
1315 	return 0;
1316 }
1317 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1318 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1319 		       struct btrfs_root *root)
1320 {
1321 	struct btrfs_fs_info *fs_info = root->fs_info;
1322 	struct btrfs_root *log_root;
1323 	struct btrfs_inode_item *inode_item;
1324 	int ret;
1325 
1326 	log_root = alloc_log_tree(trans, fs_info);
1327 	if (IS_ERR(log_root))
1328 		return PTR_ERR(log_root);
1329 
1330 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1331 	if (ret) {
1332 		btrfs_put_root(log_root);
1333 		return ret;
1334 	}
1335 
1336 	log_root->last_trans = trans->transid;
1337 	log_root->root_key.offset = root->root_key.objectid;
1338 
1339 	inode_item = &log_root->root_item.inode;
1340 	btrfs_set_stack_inode_generation(inode_item, 1);
1341 	btrfs_set_stack_inode_size(inode_item, 3);
1342 	btrfs_set_stack_inode_nlink(inode_item, 1);
1343 	btrfs_set_stack_inode_nbytes(inode_item,
1344 				     fs_info->nodesize);
1345 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1346 
1347 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1348 
1349 	WARN_ON(root->log_root);
1350 	root->log_root = log_root;
1351 	root->log_transid = 0;
1352 	root->log_transid_committed = -1;
1353 	root->last_log_commit = 0;
1354 	return 0;
1355 }
1356 
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1357 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1358 					      struct btrfs_path *path,
1359 					      struct btrfs_key *key)
1360 {
1361 	struct btrfs_root *root;
1362 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1363 	u64 generation;
1364 	int ret;
1365 	int level;
1366 
1367 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1368 	if (!root)
1369 		return ERR_PTR(-ENOMEM);
1370 
1371 	ret = btrfs_find_root(tree_root, key, path,
1372 			      &root->root_item, &root->root_key);
1373 	if (ret) {
1374 		if (ret > 0)
1375 			ret = -ENOENT;
1376 		goto fail;
1377 	}
1378 
1379 	generation = btrfs_root_generation(&root->root_item);
1380 	level = btrfs_root_level(&root->root_item);
1381 	root->node = read_tree_block(fs_info,
1382 				     btrfs_root_bytenr(&root->root_item),
1383 				     key->objectid, generation, level, NULL);
1384 	if (IS_ERR(root->node)) {
1385 		ret = PTR_ERR(root->node);
1386 		root->node = NULL;
1387 		goto fail;
1388 	}
1389 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1390 		ret = -EIO;
1391 		goto fail;
1392 	}
1393 
1394 	/*
1395 	 * For real fs, and not log/reloc trees, root owner must
1396 	 * match its root node owner
1397 	 */
1398 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1399 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1400 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1401 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1402 		btrfs_crit(fs_info,
1403 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1404 			   root->root_key.objectid, root->node->start,
1405 			   btrfs_header_owner(root->node),
1406 			   root->root_key.objectid);
1407 		ret = -EUCLEAN;
1408 		goto fail;
1409 	}
1410 	root->commit_root = btrfs_root_node(root);
1411 	return root;
1412 fail:
1413 	btrfs_put_root(root);
1414 	return ERR_PTR(ret);
1415 }
1416 
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1417 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1418 					struct btrfs_key *key)
1419 {
1420 	struct btrfs_root *root;
1421 	struct btrfs_path *path;
1422 
1423 	path = btrfs_alloc_path();
1424 	if (!path)
1425 		return ERR_PTR(-ENOMEM);
1426 	root = read_tree_root_path(tree_root, path, key);
1427 	btrfs_free_path(path);
1428 
1429 	return root;
1430 }
1431 
1432 /*
1433  * Initialize subvolume root in-memory structure
1434  *
1435  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1436  */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1437 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1438 {
1439 	int ret;
1440 	unsigned int nofs_flag;
1441 
1442 	/*
1443 	 * We might be called under a transaction (e.g. indirect backref
1444 	 * resolution) which could deadlock if it triggers memory reclaim
1445 	 */
1446 	nofs_flag = memalloc_nofs_save();
1447 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1448 	memalloc_nofs_restore(nofs_flag);
1449 	if (ret)
1450 		goto fail;
1451 
1452 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1453 	    !btrfs_is_data_reloc_root(root)) {
1454 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1455 		btrfs_check_and_init_root_item(&root->root_item);
1456 	}
1457 
1458 	/*
1459 	 * Don't assign anonymous block device to roots that are not exposed to
1460 	 * userspace, the id pool is limited to 1M
1461 	 */
1462 	if (is_fstree(root->root_key.objectid) &&
1463 	    btrfs_root_refs(&root->root_item) > 0) {
1464 		if (!anon_dev) {
1465 			ret = get_anon_bdev(&root->anon_dev);
1466 			if (ret)
1467 				goto fail;
1468 		} else {
1469 			root->anon_dev = anon_dev;
1470 		}
1471 	}
1472 
1473 	mutex_lock(&root->objectid_mutex);
1474 	ret = btrfs_init_root_free_objectid(root);
1475 	if (ret) {
1476 		mutex_unlock(&root->objectid_mutex);
1477 		goto fail;
1478 	}
1479 
1480 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1481 
1482 	mutex_unlock(&root->objectid_mutex);
1483 
1484 	return 0;
1485 fail:
1486 	/* The caller is responsible to call btrfs_free_fs_root */
1487 	return ret;
1488 }
1489 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1490 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1491 					       u64 root_id)
1492 {
1493 	struct btrfs_root *root;
1494 
1495 	spin_lock(&fs_info->fs_roots_radix_lock);
1496 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1497 				 (unsigned long)root_id);
1498 	if (root)
1499 		root = btrfs_grab_root(root);
1500 	spin_unlock(&fs_info->fs_roots_radix_lock);
1501 	return root;
1502 }
1503 
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1504 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1505 						u64 objectid)
1506 {
1507 	struct btrfs_key key = {
1508 		.objectid = objectid,
1509 		.type = BTRFS_ROOT_ITEM_KEY,
1510 		.offset = 0,
1511 	};
1512 
1513 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1514 		return btrfs_grab_root(fs_info->tree_root);
1515 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1516 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1517 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1518 		return btrfs_grab_root(fs_info->chunk_root);
1519 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1520 		return btrfs_grab_root(fs_info->dev_root);
1521 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1522 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1523 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1524 		return btrfs_grab_root(fs_info->quota_root) ?
1525 			fs_info->quota_root : ERR_PTR(-ENOENT);
1526 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1527 		return btrfs_grab_root(fs_info->uuid_root) ?
1528 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1529 	if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1530 		return btrfs_grab_root(fs_info->block_group_root) ?
1531 			fs_info->block_group_root : ERR_PTR(-ENOENT);
1532 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1533 		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1534 
1535 		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1536 	}
1537 	return NULL;
1538 }
1539 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1540 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1541 			 struct btrfs_root *root)
1542 {
1543 	int ret;
1544 
1545 	ret = radix_tree_preload(GFP_NOFS);
1546 	if (ret)
1547 		return ret;
1548 
1549 	spin_lock(&fs_info->fs_roots_radix_lock);
1550 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1551 				(unsigned long)root->root_key.objectid,
1552 				root);
1553 	if (ret == 0) {
1554 		btrfs_grab_root(root);
1555 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1556 	}
1557 	spin_unlock(&fs_info->fs_roots_radix_lock);
1558 	radix_tree_preload_end();
1559 
1560 	return ret;
1561 }
1562 
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1563 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1564 {
1565 #ifdef CONFIG_BTRFS_DEBUG
1566 	struct btrfs_root *root;
1567 
1568 	while (!list_empty(&fs_info->allocated_roots)) {
1569 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1570 
1571 		root = list_first_entry(&fs_info->allocated_roots,
1572 					struct btrfs_root, leak_list);
1573 		btrfs_err(fs_info, "leaked root %s refcount %d",
1574 			  btrfs_root_name(&root->root_key, buf),
1575 			  refcount_read(&root->refs));
1576 		while (refcount_read(&root->refs) > 1)
1577 			btrfs_put_root(root);
1578 		btrfs_put_root(root);
1579 	}
1580 #endif
1581 }
1582 
free_global_roots(struct btrfs_fs_info * fs_info)1583 static void free_global_roots(struct btrfs_fs_info *fs_info)
1584 {
1585 	struct btrfs_root *root;
1586 	struct rb_node *node;
1587 
1588 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1589 		root = rb_entry(node, struct btrfs_root, rb_node);
1590 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1591 		btrfs_put_root(root);
1592 	}
1593 }
1594 
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1595 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1596 {
1597 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1598 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1599 	percpu_counter_destroy(&fs_info->ordered_bytes);
1600 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1601 	btrfs_free_csum_hash(fs_info);
1602 	btrfs_free_stripe_hash_table(fs_info);
1603 	btrfs_free_ref_cache(fs_info);
1604 	kfree(fs_info->balance_ctl);
1605 	kfree(fs_info->delayed_root);
1606 	free_global_roots(fs_info);
1607 	btrfs_put_root(fs_info->tree_root);
1608 	btrfs_put_root(fs_info->chunk_root);
1609 	btrfs_put_root(fs_info->dev_root);
1610 	btrfs_put_root(fs_info->quota_root);
1611 	btrfs_put_root(fs_info->uuid_root);
1612 	btrfs_put_root(fs_info->fs_root);
1613 	btrfs_put_root(fs_info->data_reloc_root);
1614 	btrfs_put_root(fs_info->block_group_root);
1615 	btrfs_check_leaked_roots(fs_info);
1616 	btrfs_extent_buffer_leak_debug_check(fs_info);
1617 	kfree(fs_info->super_copy);
1618 	kfree(fs_info->super_for_commit);
1619 	kfree(fs_info->subpage_info);
1620 	kvfree(fs_info);
1621 }
1622 
1623 
1624 /*
1625  * Get an in-memory reference of a root structure.
1626  *
1627  * For essential trees like root/extent tree, we grab it from fs_info directly.
1628  * For subvolume trees, we check the cached filesystem roots first. If not
1629  * found, then read it from disk and add it to cached fs roots.
1630  *
1631  * Caller should release the root by calling btrfs_put_root() after the usage.
1632  *
1633  * NOTE: Reloc and log trees can't be read by this function as they share the
1634  *	 same root objectid.
1635  *
1636  * @objectid:	root id
1637  * @anon_dev:	preallocated anonymous block device number for new roots,
1638  * 		pass 0 for new allocation.
1639  * @check_ref:	whether to check root item references, If true, return -ENOENT
1640  *		for orphan roots
1641  */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1642 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1643 					     u64 objectid, dev_t anon_dev,
1644 					     bool check_ref)
1645 {
1646 	struct btrfs_root *root;
1647 	struct btrfs_path *path;
1648 	struct btrfs_key key;
1649 	int ret;
1650 
1651 	root = btrfs_get_global_root(fs_info, objectid);
1652 	if (root)
1653 		return root;
1654 again:
1655 	root = btrfs_lookup_fs_root(fs_info, objectid);
1656 	if (root) {
1657 		/* Shouldn't get preallocated anon_dev for cached roots */
1658 		ASSERT(!anon_dev);
1659 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1660 			btrfs_put_root(root);
1661 			return ERR_PTR(-ENOENT);
1662 		}
1663 		return root;
1664 	}
1665 
1666 	key.objectid = objectid;
1667 	key.type = BTRFS_ROOT_ITEM_KEY;
1668 	key.offset = (u64)-1;
1669 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1670 	if (IS_ERR(root))
1671 		return root;
1672 
1673 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1674 		ret = -ENOENT;
1675 		goto fail;
1676 	}
1677 
1678 	ret = btrfs_init_fs_root(root, anon_dev);
1679 	if (ret)
1680 		goto fail;
1681 
1682 	path = btrfs_alloc_path();
1683 	if (!path) {
1684 		ret = -ENOMEM;
1685 		goto fail;
1686 	}
1687 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1688 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1689 	key.offset = objectid;
1690 
1691 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1692 	btrfs_free_path(path);
1693 	if (ret < 0)
1694 		goto fail;
1695 	if (ret == 0)
1696 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1697 
1698 	ret = btrfs_insert_fs_root(fs_info, root);
1699 	if (ret) {
1700 		if (ret == -EEXIST) {
1701 			btrfs_put_root(root);
1702 			goto again;
1703 		}
1704 		goto fail;
1705 	}
1706 	return root;
1707 fail:
1708 	/*
1709 	 * If our caller provided us an anonymous device, then it's his
1710 	 * responsibility to free it in case we fail. So we have to set our
1711 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1712 	 * and once again by our caller.
1713 	 */
1714 	if (anon_dev)
1715 		root->anon_dev = 0;
1716 	btrfs_put_root(root);
1717 	return ERR_PTR(ret);
1718 }
1719 
1720 /*
1721  * Get in-memory reference of a root structure
1722  *
1723  * @objectid:	tree objectid
1724  * @check_ref:	if set, verify that the tree exists and the item has at least
1725  *		one reference
1726  */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1727 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1728 				     u64 objectid, bool check_ref)
1729 {
1730 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1731 }
1732 
1733 /*
1734  * Get in-memory reference of a root structure, created as new, optionally pass
1735  * the anonymous block device id
1736  *
1737  * @objectid:	tree objectid
1738  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1739  *		parameter value
1740  */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1741 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1742 					 u64 objectid, dev_t anon_dev)
1743 {
1744 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1745 }
1746 
1747 /*
1748  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1749  * @fs_info:	the fs_info
1750  * @objectid:	the objectid we need to lookup
1751  *
1752  * This is exclusively used for backref walking, and exists specifically because
1753  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1754  * creation time, which means we may have to read the tree_root in order to look
1755  * up a fs root that is not in memory.  If the root is not in memory we will
1756  * read the tree root commit root and look up the fs root from there.  This is a
1757  * temporary root, it will not be inserted into the radix tree as it doesn't
1758  * have the most uptodate information, it'll simply be discarded once the
1759  * backref code is finished using the root.
1760  */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1761 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1762 						 struct btrfs_path *path,
1763 						 u64 objectid)
1764 {
1765 	struct btrfs_root *root;
1766 	struct btrfs_key key;
1767 
1768 	ASSERT(path->search_commit_root && path->skip_locking);
1769 
1770 	/*
1771 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1772 	 * since this is called via the backref walking code we won't be looking
1773 	 * up a root that doesn't exist, unless there's corruption.  So if root
1774 	 * != NULL just return it.
1775 	 */
1776 	root = btrfs_get_global_root(fs_info, objectid);
1777 	if (root)
1778 		return root;
1779 
1780 	root = btrfs_lookup_fs_root(fs_info, objectid);
1781 	if (root)
1782 		return root;
1783 
1784 	key.objectid = objectid;
1785 	key.type = BTRFS_ROOT_ITEM_KEY;
1786 	key.offset = (u64)-1;
1787 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1788 	btrfs_release_path(path);
1789 
1790 	return root;
1791 }
1792 
cleaner_kthread(void * arg)1793 static int cleaner_kthread(void *arg)
1794 {
1795 	struct btrfs_fs_info *fs_info = arg;
1796 	int again;
1797 
1798 	while (1) {
1799 		again = 0;
1800 
1801 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1802 
1803 		/* Make the cleaner go to sleep early. */
1804 		if (btrfs_need_cleaner_sleep(fs_info))
1805 			goto sleep;
1806 
1807 		/*
1808 		 * Do not do anything if we might cause open_ctree() to block
1809 		 * before we have finished mounting the filesystem.
1810 		 */
1811 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1812 			goto sleep;
1813 
1814 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1815 			goto sleep;
1816 
1817 		/*
1818 		 * Avoid the problem that we change the status of the fs
1819 		 * during the above check and trylock.
1820 		 */
1821 		if (btrfs_need_cleaner_sleep(fs_info)) {
1822 			mutex_unlock(&fs_info->cleaner_mutex);
1823 			goto sleep;
1824 		}
1825 
1826 		btrfs_run_delayed_iputs(fs_info);
1827 
1828 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1829 		mutex_unlock(&fs_info->cleaner_mutex);
1830 
1831 		/*
1832 		 * The defragger has dealt with the R/O remount and umount,
1833 		 * needn't do anything special here.
1834 		 */
1835 		btrfs_run_defrag_inodes(fs_info);
1836 
1837 		/*
1838 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1839 		 * with relocation (btrfs_relocate_chunk) and relocation
1840 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1841 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1842 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1843 		 * unused block groups.
1844 		 */
1845 		btrfs_delete_unused_bgs(fs_info);
1846 
1847 		/*
1848 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1849 		 * all unused block_groups. This possibly gives us some more free
1850 		 * space.
1851 		 */
1852 		btrfs_reclaim_bgs(fs_info);
1853 sleep:
1854 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1855 		if (kthread_should_park())
1856 			kthread_parkme();
1857 		if (kthread_should_stop())
1858 			return 0;
1859 		if (!again) {
1860 			set_current_state(TASK_INTERRUPTIBLE);
1861 			schedule();
1862 			__set_current_state(TASK_RUNNING);
1863 		}
1864 	}
1865 }
1866 
transaction_kthread(void * arg)1867 static int transaction_kthread(void *arg)
1868 {
1869 	struct btrfs_root *root = arg;
1870 	struct btrfs_fs_info *fs_info = root->fs_info;
1871 	struct btrfs_trans_handle *trans;
1872 	struct btrfs_transaction *cur;
1873 	u64 transid;
1874 	time64_t delta;
1875 	unsigned long delay;
1876 	bool cannot_commit;
1877 
1878 	do {
1879 		cannot_commit = false;
1880 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1881 		mutex_lock(&fs_info->transaction_kthread_mutex);
1882 
1883 		spin_lock(&fs_info->trans_lock);
1884 		cur = fs_info->running_transaction;
1885 		if (!cur) {
1886 			spin_unlock(&fs_info->trans_lock);
1887 			goto sleep;
1888 		}
1889 
1890 		delta = ktime_get_seconds() - cur->start_time;
1891 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1892 		    cur->state < TRANS_STATE_COMMIT_START &&
1893 		    delta < fs_info->commit_interval) {
1894 			spin_unlock(&fs_info->trans_lock);
1895 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1896 			delay = min(delay,
1897 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1898 			goto sleep;
1899 		}
1900 		transid = cur->transid;
1901 		spin_unlock(&fs_info->trans_lock);
1902 
1903 		/* If the file system is aborted, this will always fail. */
1904 		trans = btrfs_attach_transaction(root);
1905 		if (IS_ERR(trans)) {
1906 			if (PTR_ERR(trans) != -ENOENT)
1907 				cannot_commit = true;
1908 			goto sleep;
1909 		}
1910 		if (transid == trans->transid) {
1911 			btrfs_commit_transaction(trans);
1912 		} else {
1913 			btrfs_end_transaction(trans);
1914 		}
1915 sleep:
1916 		wake_up_process(fs_info->cleaner_kthread);
1917 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1918 
1919 		if (BTRFS_FS_ERROR(fs_info))
1920 			btrfs_cleanup_transaction(fs_info);
1921 		if (!kthread_should_stop() &&
1922 				(!btrfs_transaction_blocked(fs_info) ||
1923 				 cannot_commit))
1924 			schedule_timeout_interruptible(delay);
1925 	} while (!kthread_should_stop());
1926 	return 0;
1927 }
1928 
1929 /*
1930  * This will find the highest generation in the array of root backups.  The
1931  * index of the highest array is returned, or -EINVAL if we can't find
1932  * anything.
1933  *
1934  * We check to make sure the array is valid by comparing the
1935  * generation of the latest  root in the array with the generation
1936  * in the super block.  If they don't match we pitch it.
1937  */
find_newest_super_backup(struct btrfs_fs_info * info)1938 static int find_newest_super_backup(struct btrfs_fs_info *info)
1939 {
1940 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1941 	u64 cur;
1942 	struct btrfs_root_backup *root_backup;
1943 	int i;
1944 
1945 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1946 		root_backup = info->super_copy->super_roots + i;
1947 		cur = btrfs_backup_tree_root_gen(root_backup);
1948 		if (cur == newest_gen)
1949 			return i;
1950 	}
1951 
1952 	return -EINVAL;
1953 }
1954 
1955 /*
1956  * copy all the root pointers into the super backup array.
1957  * this will bump the backup pointer by one when it is
1958  * done
1959  */
backup_super_roots(struct btrfs_fs_info * info)1960 static void backup_super_roots(struct btrfs_fs_info *info)
1961 {
1962 	const int next_backup = info->backup_root_index;
1963 	struct btrfs_root_backup *root_backup;
1964 
1965 	root_backup = info->super_for_commit->super_roots + next_backup;
1966 
1967 	/*
1968 	 * make sure all of our padding and empty slots get zero filled
1969 	 * regardless of which ones we use today
1970 	 */
1971 	memset(root_backup, 0, sizeof(*root_backup));
1972 
1973 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1974 
1975 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1976 	btrfs_set_backup_tree_root_gen(root_backup,
1977 			       btrfs_header_generation(info->tree_root->node));
1978 
1979 	btrfs_set_backup_tree_root_level(root_backup,
1980 			       btrfs_header_level(info->tree_root->node));
1981 
1982 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1983 	btrfs_set_backup_chunk_root_gen(root_backup,
1984 			       btrfs_header_generation(info->chunk_root->node));
1985 	btrfs_set_backup_chunk_root_level(root_backup,
1986 			       btrfs_header_level(info->chunk_root->node));
1987 
1988 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1989 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1990 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1991 
1992 		btrfs_set_backup_extent_root(root_backup,
1993 					     extent_root->node->start);
1994 		btrfs_set_backup_extent_root_gen(root_backup,
1995 				btrfs_header_generation(extent_root->node));
1996 		btrfs_set_backup_extent_root_level(root_backup,
1997 					btrfs_header_level(extent_root->node));
1998 
1999 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2000 		btrfs_set_backup_csum_root_gen(root_backup,
2001 					       btrfs_header_generation(csum_root->node));
2002 		btrfs_set_backup_csum_root_level(root_backup,
2003 						 btrfs_header_level(csum_root->node));
2004 	}
2005 
2006 	/*
2007 	 * we might commit during log recovery, which happens before we set
2008 	 * the fs_root.  Make sure it is valid before we fill it in.
2009 	 */
2010 	if (info->fs_root && info->fs_root->node) {
2011 		btrfs_set_backup_fs_root(root_backup,
2012 					 info->fs_root->node->start);
2013 		btrfs_set_backup_fs_root_gen(root_backup,
2014 			       btrfs_header_generation(info->fs_root->node));
2015 		btrfs_set_backup_fs_root_level(root_backup,
2016 			       btrfs_header_level(info->fs_root->node));
2017 	}
2018 
2019 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2020 	btrfs_set_backup_dev_root_gen(root_backup,
2021 			       btrfs_header_generation(info->dev_root->node));
2022 	btrfs_set_backup_dev_root_level(root_backup,
2023 				       btrfs_header_level(info->dev_root->node));
2024 
2025 	btrfs_set_backup_total_bytes(root_backup,
2026 			     btrfs_super_total_bytes(info->super_copy));
2027 	btrfs_set_backup_bytes_used(root_backup,
2028 			     btrfs_super_bytes_used(info->super_copy));
2029 	btrfs_set_backup_num_devices(root_backup,
2030 			     btrfs_super_num_devices(info->super_copy));
2031 
2032 	/*
2033 	 * if we don't copy this out to the super_copy, it won't get remembered
2034 	 * for the next commit
2035 	 */
2036 	memcpy(&info->super_copy->super_roots,
2037 	       &info->super_for_commit->super_roots,
2038 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2039 }
2040 
2041 /*
2042  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2043  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2044  *
2045  * fs_info - filesystem whose backup roots need to be read
2046  * priority - priority of backup root required
2047  *
2048  * Returns backup root index on success and -EINVAL otherwise.
2049  */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)2050 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2051 {
2052 	int backup_index = find_newest_super_backup(fs_info);
2053 	struct btrfs_super_block *super = fs_info->super_copy;
2054 	struct btrfs_root_backup *root_backup;
2055 
2056 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2057 		if (priority == 0)
2058 			return backup_index;
2059 
2060 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2061 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2062 	} else {
2063 		return -EINVAL;
2064 	}
2065 
2066 	root_backup = super->super_roots + backup_index;
2067 
2068 	btrfs_set_super_generation(super,
2069 				   btrfs_backup_tree_root_gen(root_backup));
2070 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2071 	btrfs_set_super_root_level(super,
2072 				   btrfs_backup_tree_root_level(root_backup));
2073 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2074 
2075 	/*
2076 	 * Fixme: the total bytes and num_devices need to match or we should
2077 	 * need a fsck
2078 	 */
2079 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2080 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2081 
2082 	return backup_index;
2083 }
2084 
2085 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2086 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2087 {
2088 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2089 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2090 	btrfs_destroy_workqueue(fs_info->hipri_workers);
2091 	btrfs_destroy_workqueue(fs_info->workers);
2092 	if (fs_info->endio_workers)
2093 		destroy_workqueue(fs_info->endio_workers);
2094 	if (fs_info->endio_raid56_workers)
2095 		destroy_workqueue(fs_info->endio_raid56_workers);
2096 	if (fs_info->rmw_workers)
2097 		destroy_workqueue(fs_info->rmw_workers);
2098 	if (fs_info->compressed_write_workers)
2099 		destroy_workqueue(fs_info->compressed_write_workers);
2100 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2101 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2102 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2103 	btrfs_destroy_workqueue(fs_info->caching_workers);
2104 	btrfs_destroy_workqueue(fs_info->flush_workers);
2105 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2106 	if (fs_info->discard_ctl.discard_workers)
2107 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2108 	/*
2109 	 * Now that all other work queues are destroyed, we can safely destroy
2110 	 * the queues used for metadata I/O, since tasks from those other work
2111 	 * queues can do metadata I/O operations.
2112 	 */
2113 	if (fs_info->endio_meta_workers)
2114 		destroy_workqueue(fs_info->endio_meta_workers);
2115 }
2116 
free_root_extent_buffers(struct btrfs_root * root)2117 static void free_root_extent_buffers(struct btrfs_root *root)
2118 {
2119 	if (root) {
2120 		free_extent_buffer(root->node);
2121 		free_extent_buffer(root->commit_root);
2122 		root->node = NULL;
2123 		root->commit_root = NULL;
2124 	}
2125 }
2126 
free_global_root_pointers(struct btrfs_fs_info * fs_info)2127 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2128 {
2129 	struct btrfs_root *root, *tmp;
2130 
2131 	rbtree_postorder_for_each_entry_safe(root, tmp,
2132 					     &fs_info->global_root_tree,
2133 					     rb_node)
2134 		free_root_extent_buffers(root);
2135 }
2136 
2137 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2138 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2139 {
2140 	free_root_extent_buffers(info->tree_root);
2141 
2142 	free_global_root_pointers(info);
2143 	free_root_extent_buffers(info->dev_root);
2144 	free_root_extent_buffers(info->quota_root);
2145 	free_root_extent_buffers(info->uuid_root);
2146 	free_root_extent_buffers(info->fs_root);
2147 	free_root_extent_buffers(info->data_reloc_root);
2148 	free_root_extent_buffers(info->block_group_root);
2149 	if (free_chunk_root)
2150 		free_root_extent_buffers(info->chunk_root);
2151 }
2152 
btrfs_put_root(struct btrfs_root * root)2153 void btrfs_put_root(struct btrfs_root *root)
2154 {
2155 	if (!root)
2156 		return;
2157 
2158 	if (refcount_dec_and_test(&root->refs)) {
2159 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2160 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2161 		if (root->anon_dev)
2162 			free_anon_bdev(root->anon_dev);
2163 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2164 		free_root_extent_buffers(root);
2165 #ifdef CONFIG_BTRFS_DEBUG
2166 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2167 		list_del_init(&root->leak_list);
2168 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2169 #endif
2170 		kfree(root);
2171 	}
2172 }
2173 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2174 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2175 {
2176 	int ret;
2177 	struct btrfs_root *gang[8];
2178 	int i;
2179 
2180 	while (!list_empty(&fs_info->dead_roots)) {
2181 		gang[0] = list_entry(fs_info->dead_roots.next,
2182 				     struct btrfs_root, root_list);
2183 		list_del(&gang[0]->root_list);
2184 
2185 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2186 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2187 		btrfs_put_root(gang[0]);
2188 	}
2189 
2190 	while (1) {
2191 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2192 					     (void **)gang, 0,
2193 					     ARRAY_SIZE(gang));
2194 		if (!ret)
2195 			break;
2196 		for (i = 0; i < ret; i++)
2197 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2198 	}
2199 }
2200 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2201 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2202 {
2203 	mutex_init(&fs_info->scrub_lock);
2204 	atomic_set(&fs_info->scrubs_running, 0);
2205 	atomic_set(&fs_info->scrub_pause_req, 0);
2206 	atomic_set(&fs_info->scrubs_paused, 0);
2207 	atomic_set(&fs_info->scrub_cancel_req, 0);
2208 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2209 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2210 }
2211 
btrfs_init_balance(struct btrfs_fs_info * fs_info)2212 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2213 {
2214 	spin_lock_init(&fs_info->balance_lock);
2215 	mutex_init(&fs_info->balance_mutex);
2216 	atomic_set(&fs_info->balance_pause_req, 0);
2217 	atomic_set(&fs_info->balance_cancel_req, 0);
2218 	fs_info->balance_ctl = NULL;
2219 	init_waitqueue_head(&fs_info->balance_wait_q);
2220 	atomic_set(&fs_info->reloc_cancel_req, 0);
2221 }
2222 
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2223 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2224 {
2225 	struct inode *inode = fs_info->btree_inode;
2226 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2227 					      fs_info->tree_root);
2228 
2229 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2230 	set_nlink(inode, 1);
2231 	/*
2232 	 * we set the i_size on the btree inode to the max possible int.
2233 	 * the real end of the address space is determined by all of
2234 	 * the devices in the system
2235 	 */
2236 	inode->i_size = OFFSET_MAX;
2237 	inode->i_mapping->a_ops = &btree_aops;
2238 
2239 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2240 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2241 			    IO_TREE_BTREE_INODE_IO, NULL);
2242 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2243 
2244 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2245 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2246 	BTRFS_I(inode)->location.type = 0;
2247 	BTRFS_I(inode)->location.offset = 0;
2248 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2249 	__insert_inode_hash(inode, hash);
2250 }
2251 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2252 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2253 {
2254 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2255 	init_rwsem(&fs_info->dev_replace.rwsem);
2256 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2257 }
2258 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2259 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2260 {
2261 	spin_lock_init(&fs_info->qgroup_lock);
2262 	mutex_init(&fs_info->qgroup_ioctl_lock);
2263 	fs_info->qgroup_tree = RB_ROOT;
2264 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2265 	fs_info->qgroup_seq = 1;
2266 	fs_info->qgroup_ulist = NULL;
2267 	fs_info->qgroup_rescan_running = false;
2268 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2269 	mutex_init(&fs_info->qgroup_rescan_lock);
2270 }
2271 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)2272 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2273 {
2274 	u32 max_active = fs_info->thread_pool_size;
2275 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2276 
2277 	fs_info->workers =
2278 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2279 	fs_info->hipri_workers =
2280 		btrfs_alloc_workqueue(fs_info, "worker-high",
2281 				      flags | WQ_HIGHPRI, max_active, 16);
2282 
2283 	fs_info->delalloc_workers =
2284 		btrfs_alloc_workqueue(fs_info, "delalloc",
2285 				      flags, max_active, 2);
2286 
2287 	fs_info->flush_workers =
2288 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2289 				      flags, max_active, 0);
2290 
2291 	fs_info->caching_workers =
2292 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2293 
2294 	fs_info->fixup_workers =
2295 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2296 
2297 	fs_info->endio_workers =
2298 		alloc_workqueue("btrfs-endio", flags, max_active);
2299 	fs_info->endio_meta_workers =
2300 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2301 	fs_info->endio_raid56_workers =
2302 		alloc_workqueue("btrfs-endio-raid56", flags, max_active);
2303 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2304 	fs_info->endio_write_workers =
2305 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2306 				      max_active, 2);
2307 	fs_info->compressed_write_workers =
2308 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2309 	fs_info->endio_freespace_worker =
2310 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2311 				      max_active, 0);
2312 	fs_info->delayed_workers =
2313 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2314 				      max_active, 0);
2315 	fs_info->qgroup_rescan_workers =
2316 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2317 	fs_info->discard_ctl.discard_workers =
2318 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2319 
2320 	if (!(fs_info->workers && fs_info->hipri_workers &&
2321 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2322 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2323 	      fs_info->compressed_write_workers &&
2324 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2325 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2326 	      fs_info->caching_workers && fs_info->fixup_workers &&
2327 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2328 	      fs_info->discard_ctl.discard_workers)) {
2329 		return -ENOMEM;
2330 	}
2331 
2332 	return 0;
2333 }
2334 
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2335 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2336 {
2337 	struct crypto_shash *csum_shash;
2338 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2339 
2340 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2341 
2342 	if (IS_ERR(csum_shash)) {
2343 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2344 			  csum_driver);
2345 		return PTR_ERR(csum_shash);
2346 	}
2347 
2348 	fs_info->csum_shash = csum_shash;
2349 
2350 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2351 			btrfs_super_csum_name(csum_type),
2352 			crypto_shash_driver_name(csum_shash));
2353 	return 0;
2354 }
2355 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2356 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2357 			    struct btrfs_fs_devices *fs_devices)
2358 {
2359 	int ret;
2360 	struct btrfs_root *log_tree_root;
2361 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2362 	u64 bytenr = btrfs_super_log_root(disk_super);
2363 	int level = btrfs_super_log_root_level(disk_super);
2364 
2365 	if (fs_devices->rw_devices == 0) {
2366 		btrfs_warn(fs_info, "log replay required on RO media");
2367 		return -EIO;
2368 	}
2369 
2370 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2371 					 GFP_KERNEL);
2372 	if (!log_tree_root)
2373 		return -ENOMEM;
2374 
2375 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2376 					      BTRFS_TREE_LOG_OBJECTID,
2377 					      fs_info->generation + 1, level,
2378 					      NULL);
2379 	if (IS_ERR(log_tree_root->node)) {
2380 		btrfs_warn(fs_info, "failed to read log tree");
2381 		ret = PTR_ERR(log_tree_root->node);
2382 		log_tree_root->node = NULL;
2383 		btrfs_put_root(log_tree_root);
2384 		return ret;
2385 	}
2386 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2387 		btrfs_err(fs_info, "failed to read log tree");
2388 		btrfs_put_root(log_tree_root);
2389 		return -EIO;
2390 	}
2391 
2392 	/* returns with log_tree_root freed on success */
2393 	ret = btrfs_recover_log_trees(log_tree_root);
2394 	if (ret) {
2395 		btrfs_handle_fs_error(fs_info, ret,
2396 				      "Failed to recover log tree");
2397 		btrfs_put_root(log_tree_root);
2398 		return ret;
2399 	}
2400 
2401 	if (sb_rdonly(fs_info->sb)) {
2402 		ret = btrfs_commit_super(fs_info);
2403 		if (ret)
2404 			return ret;
2405 	}
2406 
2407 	return 0;
2408 }
2409 
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2410 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2411 				      struct btrfs_path *path, u64 objectid,
2412 				      const char *name)
2413 {
2414 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2415 	struct btrfs_root *root;
2416 	u64 max_global_id = 0;
2417 	int ret;
2418 	struct btrfs_key key = {
2419 		.objectid = objectid,
2420 		.type = BTRFS_ROOT_ITEM_KEY,
2421 		.offset = 0,
2422 	};
2423 	bool found = false;
2424 
2425 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2426 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2427 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2428 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2429 		return 0;
2430 	}
2431 
2432 	while (1) {
2433 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2434 		if (ret < 0)
2435 			break;
2436 
2437 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2438 			ret = btrfs_next_leaf(tree_root, path);
2439 			if (ret) {
2440 				if (ret > 0)
2441 					ret = 0;
2442 				break;
2443 			}
2444 		}
2445 		ret = 0;
2446 
2447 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2448 		if (key.objectid != objectid)
2449 			break;
2450 		btrfs_release_path(path);
2451 
2452 		/*
2453 		 * Just worry about this for extent tree, it'll be the same for
2454 		 * everybody.
2455 		 */
2456 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2457 			max_global_id = max(max_global_id, key.offset);
2458 
2459 		found = true;
2460 		root = read_tree_root_path(tree_root, path, &key);
2461 		if (IS_ERR(root)) {
2462 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2463 				ret = PTR_ERR(root);
2464 			break;
2465 		}
2466 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2467 		ret = btrfs_global_root_insert(root);
2468 		if (ret) {
2469 			btrfs_put_root(root);
2470 			break;
2471 		}
2472 		key.offset++;
2473 	}
2474 	btrfs_release_path(path);
2475 
2476 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2477 		fs_info->nr_global_roots = max_global_id + 1;
2478 
2479 	if (!found || ret) {
2480 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2481 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2482 
2483 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2484 			ret = ret ? ret : -ENOENT;
2485 		else
2486 			ret = 0;
2487 		btrfs_err(fs_info, "failed to load root %s", name);
2488 	}
2489 	return ret;
2490 }
2491 
load_global_roots(struct btrfs_root * tree_root)2492 static int load_global_roots(struct btrfs_root *tree_root)
2493 {
2494 	struct btrfs_path *path;
2495 	int ret = 0;
2496 
2497 	path = btrfs_alloc_path();
2498 	if (!path)
2499 		return -ENOMEM;
2500 
2501 	ret = load_global_roots_objectid(tree_root, path,
2502 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2503 	if (ret)
2504 		goto out;
2505 	ret = load_global_roots_objectid(tree_root, path,
2506 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2507 	if (ret)
2508 		goto out;
2509 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2510 		goto out;
2511 	ret = load_global_roots_objectid(tree_root, path,
2512 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2513 					 "free space");
2514 out:
2515 	btrfs_free_path(path);
2516 	return ret;
2517 }
2518 
btrfs_read_roots(struct btrfs_fs_info * fs_info)2519 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2520 {
2521 	struct btrfs_root *tree_root = fs_info->tree_root;
2522 	struct btrfs_root *root;
2523 	struct btrfs_key location;
2524 	int ret;
2525 
2526 	BUG_ON(!fs_info->tree_root);
2527 
2528 	ret = load_global_roots(tree_root);
2529 	if (ret)
2530 		return ret;
2531 
2532 	location.type = BTRFS_ROOT_ITEM_KEY;
2533 	location.offset = 0;
2534 
2535 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2536 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2537 		root = btrfs_read_tree_root(tree_root, &location);
2538 		if (IS_ERR(root)) {
2539 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2540 				ret = PTR_ERR(root);
2541 				goto out;
2542 			}
2543 		} else {
2544 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2545 			fs_info->block_group_root = root;
2546 		}
2547 	}
2548 
2549 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2550 	root = btrfs_read_tree_root(tree_root, &location);
2551 	if (IS_ERR(root)) {
2552 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2553 			ret = PTR_ERR(root);
2554 			goto out;
2555 		}
2556 	} else {
2557 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2558 		fs_info->dev_root = root;
2559 	}
2560 	/* Initialize fs_info for all devices in any case */
2561 	ret = btrfs_init_devices_late(fs_info);
2562 	if (ret)
2563 		goto out;
2564 
2565 	/*
2566 	 * This tree can share blocks with some other fs tree during relocation
2567 	 * and we need a proper setup by btrfs_get_fs_root
2568 	 */
2569 	root = btrfs_get_fs_root(tree_root->fs_info,
2570 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2571 	if (IS_ERR(root)) {
2572 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2573 			ret = PTR_ERR(root);
2574 			goto out;
2575 		}
2576 	} else {
2577 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2578 		fs_info->data_reloc_root = root;
2579 	}
2580 
2581 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2582 	root = btrfs_read_tree_root(tree_root, &location);
2583 	if (!IS_ERR(root)) {
2584 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2585 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2586 		fs_info->quota_root = root;
2587 	}
2588 
2589 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2590 	root = btrfs_read_tree_root(tree_root, &location);
2591 	if (IS_ERR(root)) {
2592 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2593 			ret = PTR_ERR(root);
2594 			if (ret != -ENOENT)
2595 				goto out;
2596 		}
2597 	} else {
2598 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2599 		fs_info->uuid_root = root;
2600 	}
2601 
2602 	return 0;
2603 out:
2604 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2605 		   location.objectid, ret);
2606 	return ret;
2607 }
2608 
2609 /*
2610  * Real super block validation
2611  * NOTE: super csum type and incompat features will not be checked here.
2612  *
2613  * @sb:		super block to check
2614  * @mirror_num:	the super block number to check its bytenr:
2615  * 		0	the primary (1st) sb
2616  * 		1, 2	2nd and 3rd backup copy
2617  * 	       -1	skip bytenr check
2618  */
btrfs_validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2619 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2620 			 struct btrfs_super_block *sb, int mirror_num)
2621 {
2622 	u64 nodesize = btrfs_super_nodesize(sb);
2623 	u64 sectorsize = btrfs_super_sectorsize(sb);
2624 	int ret = 0;
2625 
2626 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2627 		btrfs_err(fs_info, "no valid FS found");
2628 		ret = -EINVAL;
2629 	}
2630 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2631 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2632 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2633 		ret = -EINVAL;
2634 	}
2635 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2636 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2637 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2638 		ret = -EINVAL;
2639 	}
2640 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2641 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2642 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2643 		ret = -EINVAL;
2644 	}
2645 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2646 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2647 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2648 		ret = -EINVAL;
2649 	}
2650 
2651 	/*
2652 	 * Check sectorsize and nodesize first, other check will need it.
2653 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2654 	 */
2655 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2656 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2657 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2658 		ret = -EINVAL;
2659 	}
2660 
2661 	/*
2662 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2663 	 *
2664 	 * We can support 16K sectorsize with 64K page size without problem,
2665 	 * but such sectorsize/pagesize combination doesn't make much sense.
2666 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2667 	 * beginning.
2668 	 */
2669 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2670 		btrfs_err(fs_info,
2671 			"sectorsize %llu not yet supported for page size %lu",
2672 			sectorsize, PAGE_SIZE);
2673 		ret = -EINVAL;
2674 	}
2675 
2676 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2677 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2678 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2679 		ret = -EINVAL;
2680 	}
2681 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2682 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2683 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2684 		ret = -EINVAL;
2685 	}
2686 
2687 	/* Root alignment check */
2688 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2689 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2690 			   btrfs_super_root(sb));
2691 		ret = -EINVAL;
2692 	}
2693 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2694 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2695 			   btrfs_super_chunk_root(sb));
2696 		ret = -EINVAL;
2697 	}
2698 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2699 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2700 			   btrfs_super_log_root(sb));
2701 		ret = -EINVAL;
2702 	}
2703 
2704 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2705 		   BTRFS_FSID_SIZE)) {
2706 		btrfs_err(fs_info,
2707 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2708 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2709 		ret = -EINVAL;
2710 	}
2711 
2712 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2713 	    memcmp(fs_info->fs_devices->metadata_uuid,
2714 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2715 		btrfs_err(fs_info,
2716 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2717 			fs_info->super_copy->metadata_uuid,
2718 			fs_info->fs_devices->metadata_uuid);
2719 		ret = -EINVAL;
2720 	}
2721 
2722 	/*
2723 	 * Artificial requirement for block-group-tree to force newer features
2724 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2725 	 */
2726 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2727 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2728 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2729 		btrfs_err(fs_info,
2730 		"block-group-tree feature requires fres-space-tree and no-holes");
2731 		ret = -EINVAL;
2732 	}
2733 
2734 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2735 		   BTRFS_FSID_SIZE) != 0) {
2736 		btrfs_err(fs_info,
2737 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2738 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2739 		ret = -EINVAL;
2740 	}
2741 
2742 	/*
2743 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2744 	 * done later
2745 	 */
2746 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2747 		btrfs_err(fs_info, "bytes_used is too small %llu",
2748 			  btrfs_super_bytes_used(sb));
2749 		ret = -EINVAL;
2750 	}
2751 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2752 		btrfs_err(fs_info, "invalid stripesize %u",
2753 			  btrfs_super_stripesize(sb));
2754 		ret = -EINVAL;
2755 	}
2756 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2757 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2758 			   btrfs_super_num_devices(sb));
2759 	if (btrfs_super_num_devices(sb) == 0) {
2760 		btrfs_err(fs_info, "number of devices is 0");
2761 		ret = -EINVAL;
2762 	}
2763 
2764 	if (mirror_num >= 0 &&
2765 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2766 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2767 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2768 		ret = -EINVAL;
2769 	}
2770 
2771 	/*
2772 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2773 	 * and one chunk
2774 	 */
2775 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2776 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2777 			  btrfs_super_sys_array_size(sb),
2778 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2779 		ret = -EINVAL;
2780 	}
2781 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2782 			+ sizeof(struct btrfs_chunk)) {
2783 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2784 			  btrfs_super_sys_array_size(sb),
2785 			  sizeof(struct btrfs_disk_key)
2786 			  + sizeof(struct btrfs_chunk));
2787 		ret = -EINVAL;
2788 	}
2789 
2790 	/*
2791 	 * The generation is a global counter, we'll trust it more than the others
2792 	 * but it's still possible that it's the one that's wrong.
2793 	 */
2794 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2795 		btrfs_warn(fs_info,
2796 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2797 			btrfs_super_generation(sb),
2798 			btrfs_super_chunk_root_generation(sb));
2799 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2800 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2801 		btrfs_warn(fs_info,
2802 			"suspicious: generation < cache_generation: %llu < %llu",
2803 			btrfs_super_generation(sb),
2804 			btrfs_super_cache_generation(sb));
2805 
2806 	return ret;
2807 }
2808 
2809 /*
2810  * Validation of super block at mount time.
2811  * Some checks already done early at mount time, like csum type and incompat
2812  * flags will be skipped.
2813  */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2814 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2815 {
2816 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2817 }
2818 
2819 /*
2820  * Validation of super block at write time.
2821  * Some checks like bytenr check will be skipped as their values will be
2822  * overwritten soon.
2823  * Extra checks like csum type and incompat flags will be done here.
2824  */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2825 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2826 				      struct btrfs_super_block *sb)
2827 {
2828 	int ret;
2829 
2830 	ret = btrfs_validate_super(fs_info, sb, -1);
2831 	if (ret < 0)
2832 		goto out;
2833 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2834 		ret = -EUCLEAN;
2835 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2836 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2837 		goto out;
2838 	}
2839 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2840 		ret = -EUCLEAN;
2841 		btrfs_err(fs_info,
2842 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2843 			  btrfs_super_incompat_flags(sb),
2844 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2845 		goto out;
2846 	}
2847 out:
2848 	if (ret < 0)
2849 		btrfs_err(fs_info,
2850 		"super block corruption detected before writing it to disk");
2851 	return ret;
2852 }
2853 
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2854 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2855 {
2856 	int ret = 0;
2857 
2858 	root->node = read_tree_block(root->fs_info, bytenr,
2859 				     root->root_key.objectid, gen, level, NULL);
2860 	if (IS_ERR(root->node)) {
2861 		ret = PTR_ERR(root->node);
2862 		root->node = NULL;
2863 		return ret;
2864 	}
2865 	if (!extent_buffer_uptodate(root->node)) {
2866 		free_extent_buffer(root->node);
2867 		root->node = NULL;
2868 		return -EIO;
2869 	}
2870 
2871 	btrfs_set_root_node(&root->root_item, root->node);
2872 	root->commit_root = btrfs_root_node(root);
2873 	btrfs_set_root_refs(&root->root_item, 1);
2874 	return ret;
2875 }
2876 
load_important_roots(struct btrfs_fs_info * fs_info)2877 static int load_important_roots(struct btrfs_fs_info *fs_info)
2878 {
2879 	struct btrfs_super_block *sb = fs_info->super_copy;
2880 	u64 gen, bytenr;
2881 	int level, ret;
2882 
2883 	bytenr = btrfs_super_root(sb);
2884 	gen = btrfs_super_generation(sb);
2885 	level = btrfs_super_root_level(sb);
2886 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2887 	if (ret) {
2888 		btrfs_warn(fs_info, "couldn't read tree root");
2889 		return ret;
2890 	}
2891 	return 0;
2892 }
2893 
init_tree_roots(struct btrfs_fs_info * fs_info)2894 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2895 {
2896 	int backup_index = find_newest_super_backup(fs_info);
2897 	struct btrfs_super_block *sb = fs_info->super_copy;
2898 	struct btrfs_root *tree_root = fs_info->tree_root;
2899 	bool handle_error = false;
2900 	int ret = 0;
2901 	int i;
2902 
2903 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2904 		if (handle_error) {
2905 			if (!IS_ERR(tree_root->node))
2906 				free_extent_buffer(tree_root->node);
2907 			tree_root->node = NULL;
2908 
2909 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2910 				break;
2911 
2912 			free_root_pointers(fs_info, 0);
2913 
2914 			/*
2915 			 * Don't use the log in recovery mode, it won't be
2916 			 * valid
2917 			 */
2918 			btrfs_set_super_log_root(sb, 0);
2919 
2920 			/* We can't trust the free space cache either */
2921 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2922 
2923 			ret = read_backup_root(fs_info, i);
2924 			backup_index = ret;
2925 			if (ret < 0)
2926 				return ret;
2927 		}
2928 
2929 		ret = load_important_roots(fs_info);
2930 		if (ret) {
2931 			handle_error = true;
2932 			continue;
2933 		}
2934 
2935 		/*
2936 		 * No need to hold btrfs_root::objectid_mutex since the fs
2937 		 * hasn't been fully initialised and we are the only user
2938 		 */
2939 		ret = btrfs_init_root_free_objectid(tree_root);
2940 		if (ret < 0) {
2941 			handle_error = true;
2942 			continue;
2943 		}
2944 
2945 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2946 
2947 		ret = btrfs_read_roots(fs_info);
2948 		if (ret < 0) {
2949 			handle_error = true;
2950 			continue;
2951 		}
2952 
2953 		/* All successful */
2954 		fs_info->generation = btrfs_header_generation(tree_root->node);
2955 		fs_info->last_trans_committed = fs_info->generation;
2956 		fs_info->last_reloc_trans = 0;
2957 
2958 		/* Always begin writing backup roots after the one being used */
2959 		if (backup_index < 0) {
2960 			fs_info->backup_root_index = 0;
2961 		} else {
2962 			fs_info->backup_root_index = backup_index + 1;
2963 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2964 		}
2965 		break;
2966 	}
2967 
2968 	return ret;
2969 }
2970 
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2971 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2972 {
2973 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2974 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2975 	INIT_LIST_HEAD(&fs_info->trans_list);
2976 	INIT_LIST_HEAD(&fs_info->dead_roots);
2977 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2978 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2979 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2980 	spin_lock_init(&fs_info->delalloc_root_lock);
2981 	spin_lock_init(&fs_info->trans_lock);
2982 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2983 	spin_lock_init(&fs_info->delayed_iput_lock);
2984 	spin_lock_init(&fs_info->defrag_inodes_lock);
2985 	spin_lock_init(&fs_info->super_lock);
2986 	spin_lock_init(&fs_info->buffer_lock);
2987 	spin_lock_init(&fs_info->unused_bgs_lock);
2988 	spin_lock_init(&fs_info->treelog_bg_lock);
2989 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2990 	spin_lock_init(&fs_info->relocation_bg_lock);
2991 	rwlock_init(&fs_info->tree_mod_log_lock);
2992 	rwlock_init(&fs_info->global_root_lock);
2993 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2994 	mutex_init(&fs_info->reclaim_bgs_lock);
2995 	mutex_init(&fs_info->reloc_mutex);
2996 	mutex_init(&fs_info->delalloc_root_mutex);
2997 	mutex_init(&fs_info->zoned_meta_io_lock);
2998 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2999 	seqlock_init(&fs_info->profiles_lock);
3000 
3001 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
3002 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
3003 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
3004 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3005 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
3006 				     BTRFS_LOCKDEP_TRANS_COMMIT_START);
3007 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3008 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3009 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3010 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3011 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3012 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
3013 
3014 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3015 	INIT_LIST_HEAD(&fs_info->space_info);
3016 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3017 	INIT_LIST_HEAD(&fs_info->unused_bgs);
3018 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3019 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3020 #ifdef CONFIG_BTRFS_DEBUG
3021 	INIT_LIST_HEAD(&fs_info->allocated_roots);
3022 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
3023 	spin_lock_init(&fs_info->eb_leak_lock);
3024 #endif
3025 	extent_map_tree_init(&fs_info->mapping_tree);
3026 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
3027 			     BTRFS_BLOCK_RSV_GLOBAL);
3028 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3029 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3030 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3031 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3032 			     BTRFS_BLOCK_RSV_DELOPS);
3033 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3034 			     BTRFS_BLOCK_RSV_DELREFS);
3035 
3036 	atomic_set(&fs_info->async_delalloc_pages, 0);
3037 	atomic_set(&fs_info->defrag_running, 0);
3038 	atomic_set(&fs_info->nr_delayed_iputs, 0);
3039 	atomic64_set(&fs_info->tree_mod_seq, 0);
3040 	fs_info->global_root_tree = RB_ROOT;
3041 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3042 	fs_info->metadata_ratio = 0;
3043 	fs_info->defrag_inodes = RB_ROOT;
3044 	atomic64_set(&fs_info->free_chunk_space, 0);
3045 	fs_info->tree_mod_log = RB_ROOT;
3046 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3047 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3048 	btrfs_init_ref_verify(fs_info);
3049 
3050 	fs_info->thread_pool_size = min_t(unsigned long,
3051 					  num_online_cpus() + 2, 8);
3052 
3053 	INIT_LIST_HEAD(&fs_info->ordered_roots);
3054 	spin_lock_init(&fs_info->ordered_root_lock);
3055 
3056 	btrfs_init_scrub(fs_info);
3057 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3058 	fs_info->check_integrity_print_mask = 0;
3059 #endif
3060 	btrfs_init_balance(fs_info);
3061 	btrfs_init_async_reclaim_work(fs_info);
3062 
3063 	rwlock_init(&fs_info->block_group_cache_lock);
3064 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3065 
3066 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3067 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3068 
3069 	mutex_init(&fs_info->ordered_operations_mutex);
3070 	mutex_init(&fs_info->tree_log_mutex);
3071 	mutex_init(&fs_info->chunk_mutex);
3072 	mutex_init(&fs_info->transaction_kthread_mutex);
3073 	mutex_init(&fs_info->cleaner_mutex);
3074 	mutex_init(&fs_info->ro_block_group_mutex);
3075 	init_rwsem(&fs_info->commit_root_sem);
3076 	init_rwsem(&fs_info->cleanup_work_sem);
3077 	init_rwsem(&fs_info->subvol_sem);
3078 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3079 
3080 	btrfs_init_dev_replace_locks(fs_info);
3081 	btrfs_init_qgroup(fs_info);
3082 	btrfs_discard_init(fs_info);
3083 
3084 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3085 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3086 
3087 	init_waitqueue_head(&fs_info->transaction_throttle);
3088 	init_waitqueue_head(&fs_info->transaction_wait);
3089 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3090 	init_waitqueue_head(&fs_info->async_submit_wait);
3091 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3092 
3093 	/* Usable values until the real ones are cached from the superblock */
3094 	fs_info->nodesize = 4096;
3095 	fs_info->sectorsize = 4096;
3096 	fs_info->sectorsize_bits = ilog2(4096);
3097 	fs_info->stripesize = 4096;
3098 
3099 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3100 
3101 	spin_lock_init(&fs_info->swapfile_pins_lock);
3102 	fs_info->swapfile_pins = RB_ROOT;
3103 
3104 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3105 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3106 }
3107 
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)3108 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3109 {
3110 	int ret;
3111 
3112 	fs_info->sb = sb;
3113 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3114 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3115 
3116 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3117 	if (ret)
3118 		return ret;
3119 
3120 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3121 	if (ret)
3122 		return ret;
3123 
3124 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3125 					(1 + ilog2(nr_cpu_ids));
3126 
3127 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3128 	if (ret)
3129 		return ret;
3130 
3131 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3132 			GFP_KERNEL);
3133 	if (ret)
3134 		return ret;
3135 
3136 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3137 					GFP_KERNEL);
3138 	if (!fs_info->delayed_root)
3139 		return -ENOMEM;
3140 	btrfs_init_delayed_root(fs_info->delayed_root);
3141 
3142 	if (sb_rdonly(sb))
3143 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3144 
3145 	return btrfs_alloc_stripe_hash_table(fs_info);
3146 }
3147 
btrfs_uuid_rescan_kthread(void * data)3148 static int btrfs_uuid_rescan_kthread(void *data)
3149 {
3150 	struct btrfs_fs_info *fs_info = data;
3151 	int ret;
3152 
3153 	/*
3154 	 * 1st step is to iterate through the existing UUID tree and
3155 	 * to delete all entries that contain outdated data.
3156 	 * 2nd step is to add all missing entries to the UUID tree.
3157 	 */
3158 	ret = btrfs_uuid_tree_iterate(fs_info);
3159 	if (ret < 0) {
3160 		if (ret != -EINTR)
3161 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3162 				   ret);
3163 		up(&fs_info->uuid_tree_rescan_sem);
3164 		return ret;
3165 	}
3166 	return btrfs_uuid_scan_kthread(data);
3167 }
3168 
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)3169 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3170 {
3171 	struct task_struct *task;
3172 
3173 	down(&fs_info->uuid_tree_rescan_sem);
3174 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3175 	if (IS_ERR(task)) {
3176 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3177 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3178 		up(&fs_info->uuid_tree_rescan_sem);
3179 		return PTR_ERR(task);
3180 	}
3181 
3182 	return 0;
3183 }
3184 
3185 /*
3186  * Some options only have meaning at mount time and shouldn't persist across
3187  * remounts, or be displayed. Clear these at the end of mount and remount
3188  * code paths.
3189  */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)3190 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3191 {
3192 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3193 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3194 }
3195 
3196 /*
3197  * Mounting logic specific to read-write file systems. Shared by open_ctree
3198  * and btrfs_remount when remounting from read-only to read-write.
3199  */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3200 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3201 {
3202 	int ret;
3203 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3204 	bool clear_free_space_tree = false;
3205 
3206 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3207 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3208 		clear_free_space_tree = true;
3209 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3210 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3211 		btrfs_warn(fs_info, "free space tree is invalid");
3212 		clear_free_space_tree = true;
3213 	}
3214 
3215 	if (clear_free_space_tree) {
3216 		btrfs_info(fs_info, "clearing free space tree");
3217 		ret = btrfs_clear_free_space_tree(fs_info);
3218 		if (ret) {
3219 			btrfs_warn(fs_info,
3220 				   "failed to clear free space tree: %d", ret);
3221 			goto out;
3222 		}
3223 	}
3224 
3225 	/*
3226 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3227 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3228 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3229 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3230 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3231 	 * item before the root's tree is deleted - this means that if we unmount
3232 	 * or crash before the deletion completes, on the next mount we will not
3233 	 * delete what remains of the tree because the orphan item does not
3234 	 * exists anymore, which is what tells us we have a pending deletion.
3235 	 */
3236 	ret = btrfs_find_orphan_roots(fs_info);
3237 	if (ret)
3238 		goto out;
3239 
3240 	ret = btrfs_cleanup_fs_roots(fs_info);
3241 	if (ret)
3242 		goto out;
3243 
3244 	down_read(&fs_info->cleanup_work_sem);
3245 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3246 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3247 		up_read(&fs_info->cleanup_work_sem);
3248 		goto out;
3249 	}
3250 	up_read(&fs_info->cleanup_work_sem);
3251 
3252 	mutex_lock(&fs_info->cleaner_mutex);
3253 	ret = btrfs_recover_relocation(fs_info);
3254 	mutex_unlock(&fs_info->cleaner_mutex);
3255 	if (ret < 0) {
3256 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3257 		goto out;
3258 	}
3259 
3260 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3261 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3262 		btrfs_info(fs_info, "creating free space tree");
3263 		ret = btrfs_create_free_space_tree(fs_info);
3264 		if (ret) {
3265 			btrfs_warn(fs_info,
3266 				"failed to create free space tree: %d", ret);
3267 			goto out;
3268 		}
3269 	}
3270 
3271 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3272 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3273 		if (ret)
3274 			goto out;
3275 	}
3276 
3277 	ret = btrfs_resume_balance_async(fs_info);
3278 	if (ret)
3279 		goto out;
3280 
3281 	ret = btrfs_resume_dev_replace_async(fs_info);
3282 	if (ret) {
3283 		btrfs_warn(fs_info, "failed to resume dev_replace");
3284 		goto out;
3285 	}
3286 
3287 	btrfs_qgroup_rescan_resume(fs_info);
3288 
3289 	if (!fs_info->uuid_root) {
3290 		btrfs_info(fs_info, "creating UUID tree");
3291 		ret = btrfs_create_uuid_tree(fs_info);
3292 		if (ret) {
3293 			btrfs_warn(fs_info,
3294 				   "failed to create the UUID tree %d", ret);
3295 			goto out;
3296 		}
3297 	}
3298 
3299 out:
3300 	return ret;
3301 }
3302 
3303 /*
3304  * Do various sanity and dependency checks of different features.
3305  *
3306  * @is_rw_mount:	If the mount is read-write.
3307  *
3308  * This is the place for less strict checks (like for subpage or artificial
3309  * feature dependencies).
3310  *
3311  * For strict checks or possible corruption detection, see
3312  * btrfs_validate_super().
3313  *
3314  * This should be called after btrfs_parse_options(), as some mount options
3315  * (space cache related) can modify on-disk format like free space tree and
3316  * screw up certain feature dependencies.
3317  */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3318 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3319 {
3320 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3321 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3322 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3323 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3324 
3325 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3326 		btrfs_err(fs_info,
3327 		"cannot mount because of unknown incompat features (0x%llx)",
3328 		    incompat);
3329 		return -EINVAL;
3330 	}
3331 
3332 	/* Runtime limitation for mixed block groups. */
3333 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3334 	    (fs_info->sectorsize != fs_info->nodesize)) {
3335 		btrfs_err(fs_info,
3336 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3337 			fs_info->nodesize, fs_info->sectorsize);
3338 		return -EINVAL;
3339 	}
3340 
3341 	/* Mixed backref is an always-enabled feature. */
3342 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3343 
3344 	/* Set compression related flags just in case. */
3345 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3346 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3347 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3348 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3349 
3350 	/*
3351 	 * An ancient flag, which should really be marked deprecated.
3352 	 * Such runtime limitation doesn't really need a incompat flag.
3353 	 */
3354 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3355 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3356 
3357 	if (compat_ro_unsupp && is_rw_mount) {
3358 		btrfs_err(fs_info,
3359 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3360 		       compat_ro);
3361 		return -EINVAL;
3362 	}
3363 
3364 	/*
3365 	 * We have unsupported RO compat features, although RO mounted, we
3366 	 * should not cause any metadata writes, including log replay.
3367 	 * Or we could screw up whatever the new feature requires.
3368 	 */
3369 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3370 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3371 		btrfs_err(fs_info,
3372 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3373 			  compat_ro);
3374 		return -EINVAL;
3375 	}
3376 
3377 	/*
3378 	 * Artificial limitations for block group tree, to force
3379 	 * block-group-tree to rely on no-holes and free-space-tree.
3380 	 */
3381 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3382 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3383 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3384 		btrfs_err(fs_info,
3385 "block-group-tree feature requires no-holes and free-space-tree features");
3386 		return -EINVAL;
3387 	}
3388 
3389 	/*
3390 	 * Subpage runtime limitation on v1 cache.
3391 	 *
3392 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3393 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3394 	 * going to be deprecated anyway.
3395 	 */
3396 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3397 		btrfs_warn(fs_info,
3398 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3399 			   PAGE_SIZE, fs_info->sectorsize);
3400 		return -EINVAL;
3401 	}
3402 
3403 	/* This can be called by remount, we need to protect the super block. */
3404 	spin_lock(&fs_info->super_lock);
3405 	btrfs_set_super_incompat_flags(disk_super, incompat);
3406 	spin_unlock(&fs_info->super_lock);
3407 
3408 	return 0;
3409 }
3410 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)3411 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3412 		      char *options)
3413 {
3414 	u32 sectorsize;
3415 	u32 nodesize;
3416 	u32 stripesize;
3417 	u64 generation;
3418 	u64 features;
3419 	u16 csum_type;
3420 	struct btrfs_super_block *disk_super;
3421 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3422 	struct btrfs_root *tree_root;
3423 	struct btrfs_root *chunk_root;
3424 	int ret;
3425 	int err = -EINVAL;
3426 	int level;
3427 
3428 	ret = init_mount_fs_info(fs_info, sb);
3429 	if (ret) {
3430 		err = ret;
3431 		goto fail;
3432 	}
3433 
3434 	/* These need to be init'ed before we start creating inodes and such. */
3435 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3436 				     GFP_KERNEL);
3437 	fs_info->tree_root = tree_root;
3438 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3439 				      GFP_KERNEL);
3440 	fs_info->chunk_root = chunk_root;
3441 	if (!tree_root || !chunk_root) {
3442 		err = -ENOMEM;
3443 		goto fail;
3444 	}
3445 
3446 	fs_info->btree_inode = new_inode(sb);
3447 	if (!fs_info->btree_inode) {
3448 		err = -ENOMEM;
3449 		goto fail;
3450 	}
3451 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3452 	btrfs_init_btree_inode(fs_info);
3453 
3454 	invalidate_bdev(fs_devices->latest_dev->bdev);
3455 
3456 	/*
3457 	 * Read super block and check the signature bytes only
3458 	 */
3459 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3460 	if (IS_ERR(disk_super)) {
3461 		err = PTR_ERR(disk_super);
3462 		goto fail_alloc;
3463 	}
3464 
3465 	/*
3466 	 * Verify the type first, if that or the checksum value are
3467 	 * corrupted, we'll find out
3468 	 */
3469 	csum_type = btrfs_super_csum_type(disk_super);
3470 	if (!btrfs_supported_super_csum(csum_type)) {
3471 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3472 			  csum_type);
3473 		err = -EINVAL;
3474 		btrfs_release_disk_super(disk_super);
3475 		goto fail_alloc;
3476 	}
3477 
3478 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3479 
3480 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3481 	if (ret) {
3482 		err = ret;
3483 		btrfs_release_disk_super(disk_super);
3484 		goto fail_alloc;
3485 	}
3486 
3487 	/*
3488 	 * We want to check superblock checksum, the type is stored inside.
3489 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3490 	 */
3491 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3492 		btrfs_err(fs_info, "superblock checksum mismatch");
3493 		err = -EINVAL;
3494 		btrfs_release_disk_super(disk_super);
3495 		goto fail_alloc;
3496 	}
3497 
3498 	/*
3499 	 * super_copy is zeroed at allocation time and we never touch the
3500 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3501 	 * the whole block of INFO_SIZE
3502 	 */
3503 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3504 	btrfs_release_disk_super(disk_super);
3505 
3506 	disk_super = fs_info->super_copy;
3507 
3508 
3509 	features = btrfs_super_flags(disk_super);
3510 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3511 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3512 		btrfs_set_super_flags(disk_super, features);
3513 		btrfs_info(fs_info,
3514 			"found metadata UUID change in progress flag, clearing");
3515 	}
3516 
3517 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3518 	       sizeof(*fs_info->super_for_commit));
3519 
3520 	ret = btrfs_validate_mount_super(fs_info);
3521 	if (ret) {
3522 		btrfs_err(fs_info, "superblock contains fatal errors");
3523 		err = -EINVAL;
3524 		goto fail_alloc;
3525 	}
3526 
3527 	if (!btrfs_super_root(disk_super))
3528 		goto fail_alloc;
3529 
3530 	/* check FS state, whether FS is broken. */
3531 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3532 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3533 
3534 	/*
3535 	 * In the long term, we'll store the compression type in the super
3536 	 * block, and it'll be used for per file compression control.
3537 	 */
3538 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3539 
3540 
3541 	/* Set up fs_info before parsing mount options */
3542 	nodesize = btrfs_super_nodesize(disk_super);
3543 	sectorsize = btrfs_super_sectorsize(disk_super);
3544 	stripesize = sectorsize;
3545 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3546 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3547 
3548 	fs_info->nodesize = nodesize;
3549 	fs_info->sectorsize = sectorsize;
3550 	fs_info->sectorsize_bits = ilog2(sectorsize);
3551 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3552 	fs_info->stripesize = stripesize;
3553 
3554 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3555 	if (ret) {
3556 		err = ret;
3557 		goto fail_alloc;
3558 	}
3559 
3560 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3561 	if (ret < 0) {
3562 		err = ret;
3563 		goto fail_alloc;
3564 	}
3565 
3566 	if (sectorsize < PAGE_SIZE) {
3567 		struct btrfs_subpage_info *subpage_info;
3568 
3569 		/*
3570 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3571 		 * going to be deprecated.
3572 		 *
3573 		 * Force to use v2 cache for subpage case.
3574 		 */
3575 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3576 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3577 			"forcing free space tree for sector size %u with page size %lu",
3578 			sectorsize, PAGE_SIZE);
3579 
3580 		btrfs_warn(fs_info,
3581 		"read-write for sector size %u with page size %lu is experimental",
3582 			   sectorsize, PAGE_SIZE);
3583 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3584 		if (!subpage_info)
3585 			goto fail_alloc;
3586 		btrfs_init_subpage_info(subpage_info, sectorsize);
3587 		fs_info->subpage_info = subpage_info;
3588 	}
3589 
3590 	ret = btrfs_init_workqueues(fs_info);
3591 	if (ret) {
3592 		err = ret;
3593 		goto fail_sb_buffer;
3594 	}
3595 
3596 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3597 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3598 
3599 	sb->s_blocksize = sectorsize;
3600 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3601 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3602 
3603 	mutex_lock(&fs_info->chunk_mutex);
3604 	ret = btrfs_read_sys_array(fs_info);
3605 	mutex_unlock(&fs_info->chunk_mutex);
3606 	if (ret) {
3607 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3608 		goto fail_sb_buffer;
3609 	}
3610 
3611 	generation = btrfs_super_chunk_root_generation(disk_super);
3612 	level = btrfs_super_chunk_root_level(disk_super);
3613 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3614 			      generation, level);
3615 	if (ret) {
3616 		btrfs_err(fs_info, "failed to read chunk root");
3617 		goto fail_tree_roots;
3618 	}
3619 
3620 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3621 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3622 			   BTRFS_UUID_SIZE);
3623 
3624 	ret = btrfs_read_chunk_tree(fs_info);
3625 	if (ret) {
3626 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3627 		goto fail_tree_roots;
3628 	}
3629 
3630 	/*
3631 	 * At this point we know all the devices that make this filesystem,
3632 	 * including the seed devices but we don't know yet if the replace
3633 	 * target is required. So free devices that are not part of this
3634 	 * filesystem but skip the replace target device which is checked
3635 	 * below in btrfs_init_dev_replace().
3636 	 */
3637 	btrfs_free_extra_devids(fs_devices);
3638 	if (!fs_devices->latest_dev->bdev) {
3639 		btrfs_err(fs_info, "failed to read devices");
3640 		goto fail_tree_roots;
3641 	}
3642 
3643 	ret = init_tree_roots(fs_info);
3644 	if (ret)
3645 		goto fail_tree_roots;
3646 
3647 	/*
3648 	 * Get zone type information of zoned block devices. This will also
3649 	 * handle emulation of a zoned filesystem if a regular device has the
3650 	 * zoned incompat feature flag set.
3651 	 */
3652 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3653 	if (ret) {
3654 		btrfs_err(fs_info,
3655 			  "zoned: failed to read device zone info: %d",
3656 			  ret);
3657 		goto fail_block_groups;
3658 	}
3659 
3660 	/*
3661 	 * If we have a uuid root and we're not being told to rescan we need to
3662 	 * check the generation here so we can set the
3663 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3664 	 * transaction during a balance or the log replay without updating the
3665 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3666 	 * even though it was perfectly fine.
3667 	 */
3668 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3669 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3670 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3671 
3672 	ret = btrfs_verify_dev_extents(fs_info);
3673 	if (ret) {
3674 		btrfs_err(fs_info,
3675 			  "failed to verify dev extents against chunks: %d",
3676 			  ret);
3677 		goto fail_block_groups;
3678 	}
3679 	ret = btrfs_recover_balance(fs_info);
3680 	if (ret) {
3681 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3682 		goto fail_block_groups;
3683 	}
3684 
3685 	ret = btrfs_init_dev_stats(fs_info);
3686 	if (ret) {
3687 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3688 		goto fail_block_groups;
3689 	}
3690 
3691 	ret = btrfs_init_dev_replace(fs_info);
3692 	if (ret) {
3693 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3694 		goto fail_block_groups;
3695 	}
3696 
3697 	ret = btrfs_check_zoned_mode(fs_info);
3698 	if (ret) {
3699 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3700 			  ret);
3701 		goto fail_block_groups;
3702 	}
3703 
3704 	ret = btrfs_sysfs_add_fsid(fs_devices);
3705 	if (ret) {
3706 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3707 				ret);
3708 		goto fail_block_groups;
3709 	}
3710 
3711 	ret = btrfs_sysfs_add_mounted(fs_info);
3712 	if (ret) {
3713 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3714 		goto fail_fsdev_sysfs;
3715 	}
3716 
3717 	ret = btrfs_init_space_info(fs_info);
3718 	if (ret) {
3719 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3720 		goto fail_sysfs;
3721 	}
3722 
3723 	ret = btrfs_read_block_groups(fs_info);
3724 	if (ret) {
3725 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3726 		goto fail_sysfs;
3727 	}
3728 
3729 	btrfs_free_zone_cache(fs_info);
3730 
3731 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3732 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3733 		btrfs_warn(fs_info,
3734 		"writable mount is not allowed due to too many missing devices");
3735 		goto fail_sysfs;
3736 	}
3737 
3738 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3739 					       "btrfs-cleaner");
3740 	if (IS_ERR(fs_info->cleaner_kthread))
3741 		goto fail_sysfs;
3742 
3743 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3744 						   tree_root,
3745 						   "btrfs-transaction");
3746 	if (IS_ERR(fs_info->transaction_kthread))
3747 		goto fail_cleaner;
3748 
3749 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3750 	    !fs_info->fs_devices->rotating) {
3751 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3752 	}
3753 
3754 	/*
3755 	 * Mount does not set all options immediately, we can do it now and do
3756 	 * not have to wait for transaction commit
3757 	 */
3758 	btrfs_apply_pending_changes(fs_info);
3759 
3760 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3761 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3762 		ret = btrfsic_mount(fs_info, fs_devices,
3763 				    btrfs_test_opt(fs_info,
3764 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3765 				    fs_info->check_integrity_print_mask);
3766 		if (ret)
3767 			btrfs_warn(fs_info,
3768 				"failed to initialize integrity check module: %d",
3769 				ret);
3770 	}
3771 #endif
3772 	ret = btrfs_read_qgroup_config(fs_info);
3773 	if (ret)
3774 		goto fail_trans_kthread;
3775 
3776 	if (btrfs_build_ref_tree(fs_info))
3777 		btrfs_err(fs_info, "couldn't build ref tree");
3778 
3779 	/* do not make disk changes in broken FS or nologreplay is given */
3780 	if (btrfs_super_log_root(disk_super) != 0 &&
3781 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3782 		btrfs_info(fs_info, "start tree-log replay");
3783 		ret = btrfs_replay_log(fs_info, fs_devices);
3784 		if (ret) {
3785 			err = ret;
3786 			goto fail_qgroup;
3787 		}
3788 	}
3789 
3790 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3791 	if (IS_ERR(fs_info->fs_root)) {
3792 		err = PTR_ERR(fs_info->fs_root);
3793 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3794 		fs_info->fs_root = NULL;
3795 		goto fail_qgroup;
3796 	}
3797 
3798 	if (sb_rdonly(sb))
3799 		goto clear_oneshot;
3800 
3801 	ret = btrfs_start_pre_rw_mount(fs_info);
3802 	if (ret) {
3803 		close_ctree(fs_info);
3804 		return ret;
3805 	}
3806 	btrfs_discard_resume(fs_info);
3807 
3808 	if (fs_info->uuid_root &&
3809 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3810 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3811 		btrfs_info(fs_info, "checking UUID tree");
3812 		ret = btrfs_check_uuid_tree(fs_info);
3813 		if (ret) {
3814 			btrfs_warn(fs_info,
3815 				"failed to check the UUID tree: %d", ret);
3816 			close_ctree(fs_info);
3817 			return ret;
3818 		}
3819 	}
3820 
3821 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3822 
3823 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3824 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3825 		wake_up_process(fs_info->cleaner_kthread);
3826 
3827 clear_oneshot:
3828 	btrfs_clear_oneshot_options(fs_info);
3829 	return 0;
3830 
3831 fail_qgroup:
3832 	btrfs_free_qgroup_config(fs_info);
3833 fail_trans_kthread:
3834 	kthread_stop(fs_info->transaction_kthread);
3835 	btrfs_cleanup_transaction(fs_info);
3836 	btrfs_free_fs_roots(fs_info);
3837 fail_cleaner:
3838 	kthread_stop(fs_info->cleaner_kthread);
3839 
3840 	/*
3841 	 * make sure we're done with the btree inode before we stop our
3842 	 * kthreads
3843 	 */
3844 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3845 
3846 fail_sysfs:
3847 	btrfs_sysfs_remove_mounted(fs_info);
3848 
3849 fail_fsdev_sysfs:
3850 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3851 
3852 fail_block_groups:
3853 	btrfs_put_block_group_cache(fs_info);
3854 
3855 fail_tree_roots:
3856 	if (fs_info->data_reloc_root)
3857 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3858 	free_root_pointers(fs_info, true);
3859 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3860 
3861 fail_sb_buffer:
3862 	btrfs_stop_all_workers(fs_info);
3863 	btrfs_free_block_groups(fs_info);
3864 fail_alloc:
3865 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3866 
3867 	iput(fs_info->btree_inode);
3868 fail:
3869 	btrfs_close_devices(fs_info->fs_devices);
3870 	return err;
3871 }
3872 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3873 
btrfs_end_super_write(struct bio * bio)3874 static void btrfs_end_super_write(struct bio *bio)
3875 {
3876 	struct btrfs_device *device = bio->bi_private;
3877 	struct bio_vec *bvec;
3878 	struct bvec_iter_all iter_all;
3879 	struct page *page;
3880 
3881 	bio_for_each_segment_all(bvec, bio, iter_all) {
3882 		page = bvec->bv_page;
3883 
3884 		if (bio->bi_status) {
3885 			btrfs_warn_rl_in_rcu(device->fs_info,
3886 				"lost page write due to IO error on %s (%d)",
3887 				rcu_str_deref(device->name),
3888 				blk_status_to_errno(bio->bi_status));
3889 			ClearPageUptodate(page);
3890 			SetPageError(page);
3891 			btrfs_dev_stat_inc_and_print(device,
3892 						     BTRFS_DEV_STAT_WRITE_ERRS);
3893 		} else {
3894 			SetPageUptodate(page);
3895 		}
3896 
3897 		put_page(page);
3898 		unlock_page(page);
3899 	}
3900 
3901 	bio_put(bio);
3902 }
3903 
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3904 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3905 						   int copy_num, bool drop_cache)
3906 {
3907 	struct btrfs_super_block *super;
3908 	struct page *page;
3909 	u64 bytenr, bytenr_orig;
3910 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3911 	int ret;
3912 
3913 	bytenr_orig = btrfs_sb_offset(copy_num);
3914 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3915 	if (ret == -ENOENT)
3916 		return ERR_PTR(-EINVAL);
3917 	else if (ret)
3918 		return ERR_PTR(ret);
3919 
3920 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3921 		return ERR_PTR(-EINVAL);
3922 
3923 	if (drop_cache) {
3924 		/* This should only be called with the primary sb. */
3925 		ASSERT(copy_num == 0);
3926 
3927 		/*
3928 		 * Drop the page of the primary superblock, so later read will
3929 		 * always read from the device.
3930 		 */
3931 		invalidate_inode_pages2_range(mapping,
3932 				bytenr >> PAGE_SHIFT,
3933 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3934 	}
3935 
3936 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3937 	if (IS_ERR(page))
3938 		return ERR_CAST(page);
3939 
3940 	super = page_address(page);
3941 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3942 		btrfs_release_disk_super(super);
3943 		return ERR_PTR(-ENODATA);
3944 	}
3945 
3946 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3947 		btrfs_release_disk_super(super);
3948 		return ERR_PTR(-EINVAL);
3949 	}
3950 
3951 	return super;
3952 }
3953 
3954 
btrfs_read_dev_super(struct block_device * bdev)3955 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3956 {
3957 	struct btrfs_super_block *super, *latest = NULL;
3958 	int i;
3959 	u64 transid = 0;
3960 
3961 	/* we would like to check all the supers, but that would make
3962 	 * a btrfs mount succeed after a mkfs from a different FS.
3963 	 * So, we need to add a special mount option to scan for
3964 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3965 	 */
3966 	for (i = 0; i < 1; i++) {
3967 		super = btrfs_read_dev_one_super(bdev, i, false);
3968 		if (IS_ERR(super))
3969 			continue;
3970 
3971 		if (!latest || btrfs_super_generation(super) > transid) {
3972 			if (latest)
3973 				btrfs_release_disk_super(super);
3974 
3975 			latest = super;
3976 			transid = btrfs_super_generation(super);
3977 		}
3978 	}
3979 
3980 	return super;
3981 }
3982 
3983 /*
3984  * Write superblock @sb to the @device. Do not wait for completion, all the
3985  * pages we use for writing are locked.
3986  *
3987  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3988  * the expected device size at commit time. Note that max_mirrors must be
3989  * same for write and wait phases.
3990  *
3991  * Return number of errors when page is not found or submission fails.
3992  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3993 static int write_dev_supers(struct btrfs_device *device,
3994 			    struct btrfs_super_block *sb, int max_mirrors)
3995 {
3996 	struct btrfs_fs_info *fs_info = device->fs_info;
3997 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3998 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3999 	int i;
4000 	int errors = 0;
4001 	int ret;
4002 	u64 bytenr, bytenr_orig;
4003 
4004 	if (max_mirrors == 0)
4005 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4006 
4007 	shash->tfm = fs_info->csum_shash;
4008 
4009 	for (i = 0; i < max_mirrors; i++) {
4010 		struct page *page;
4011 		struct bio *bio;
4012 		struct btrfs_super_block *disk_super;
4013 
4014 		bytenr_orig = btrfs_sb_offset(i);
4015 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4016 		if (ret == -ENOENT) {
4017 			continue;
4018 		} else if (ret < 0) {
4019 			btrfs_err(device->fs_info,
4020 				"couldn't get super block location for mirror %d",
4021 				i);
4022 			errors++;
4023 			continue;
4024 		}
4025 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4026 		    device->commit_total_bytes)
4027 			break;
4028 
4029 		btrfs_set_super_bytenr(sb, bytenr_orig);
4030 
4031 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4032 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4033 				    sb->csum);
4034 
4035 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4036 					   GFP_NOFS);
4037 		if (!page) {
4038 			btrfs_err(device->fs_info,
4039 			    "couldn't get super block page for bytenr %llu",
4040 			    bytenr);
4041 			errors++;
4042 			continue;
4043 		}
4044 
4045 		/* Bump the refcount for wait_dev_supers() */
4046 		get_page(page);
4047 
4048 		disk_super = page_address(page);
4049 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4050 
4051 		/*
4052 		 * Directly use bios here instead of relying on the page cache
4053 		 * to do I/O, so we don't lose the ability to do integrity
4054 		 * checking.
4055 		 */
4056 		bio = bio_alloc(device->bdev, 1,
4057 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4058 				GFP_NOFS);
4059 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4060 		bio->bi_private = device;
4061 		bio->bi_end_io = btrfs_end_super_write;
4062 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4063 			       offset_in_page(bytenr));
4064 
4065 		/*
4066 		 * We FUA only the first super block.  The others we allow to
4067 		 * go down lazy and there's a short window where the on-disk
4068 		 * copies might still contain the older version.
4069 		 */
4070 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4071 			bio->bi_opf |= REQ_FUA;
4072 
4073 		btrfsic_check_bio(bio);
4074 		submit_bio(bio);
4075 
4076 		if (btrfs_advance_sb_log(device, i))
4077 			errors++;
4078 	}
4079 	return errors < i ? 0 : -1;
4080 }
4081 
4082 /*
4083  * Wait for write completion of superblocks done by write_dev_supers,
4084  * @max_mirrors same for write and wait phases.
4085  *
4086  * Return number of errors when page is not found or not marked up to
4087  * date.
4088  */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)4089 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4090 {
4091 	int i;
4092 	int errors = 0;
4093 	bool primary_failed = false;
4094 	int ret;
4095 	u64 bytenr;
4096 
4097 	if (max_mirrors == 0)
4098 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4099 
4100 	for (i = 0; i < max_mirrors; i++) {
4101 		struct page *page;
4102 
4103 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4104 		if (ret == -ENOENT) {
4105 			break;
4106 		} else if (ret < 0) {
4107 			errors++;
4108 			if (i == 0)
4109 				primary_failed = true;
4110 			continue;
4111 		}
4112 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4113 		    device->commit_total_bytes)
4114 			break;
4115 
4116 		page = find_get_page(device->bdev->bd_inode->i_mapping,
4117 				     bytenr >> PAGE_SHIFT);
4118 		if (!page) {
4119 			errors++;
4120 			if (i == 0)
4121 				primary_failed = true;
4122 			continue;
4123 		}
4124 		/* Page is submitted locked and unlocked once the IO completes */
4125 		wait_on_page_locked(page);
4126 		if (PageError(page)) {
4127 			errors++;
4128 			if (i == 0)
4129 				primary_failed = true;
4130 		}
4131 
4132 		/* Drop our reference */
4133 		put_page(page);
4134 
4135 		/* Drop the reference from the writing run */
4136 		put_page(page);
4137 	}
4138 
4139 	/* log error, force error return */
4140 	if (primary_failed) {
4141 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4142 			  device->devid);
4143 		return -1;
4144 	}
4145 
4146 	return errors < i ? 0 : -1;
4147 }
4148 
4149 /*
4150  * endio for the write_dev_flush, this will wake anyone waiting
4151  * for the barrier when it is done
4152  */
btrfs_end_empty_barrier(struct bio * bio)4153 static void btrfs_end_empty_barrier(struct bio *bio)
4154 {
4155 	bio_uninit(bio);
4156 	complete(bio->bi_private);
4157 }
4158 
4159 /*
4160  * Submit a flush request to the device if it supports it. Error handling is
4161  * done in the waiting counterpart.
4162  */
write_dev_flush(struct btrfs_device * device)4163 static void write_dev_flush(struct btrfs_device *device)
4164 {
4165 	struct bio *bio = &device->flush_bio;
4166 
4167 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4168 	/*
4169 	 * When a disk has write caching disabled, we skip submission of a bio
4170 	 * with flush and sync requests before writing the superblock, since
4171 	 * it's not needed. However when the integrity checker is enabled, this
4172 	 * results in reports that there are metadata blocks referred by a
4173 	 * superblock that were not properly flushed. So don't skip the bio
4174 	 * submission only when the integrity checker is enabled for the sake
4175 	 * of simplicity, since this is a debug tool and not meant for use in
4176 	 * non-debug builds.
4177 	 */
4178 	if (!bdev_write_cache(device->bdev))
4179 		return;
4180 #endif
4181 
4182 	bio_init(bio, device->bdev, NULL, 0,
4183 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4184 	bio->bi_end_io = btrfs_end_empty_barrier;
4185 	init_completion(&device->flush_wait);
4186 	bio->bi_private = &device->flush_wait;
4187 
4188 	btrfsic_check_bio(bio);
4189 	submit_bio(bio);
4190 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4191 }
4192 
4193 /*
4194  * If the flush bio has been submitted by write_dev_flush, wait for it.
4195  */
wait_dev_flush(struct btrfs_device * device)4196 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4197 {
4198 	struct bio *bio = &device->flush_bio;
4199 
4200 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4201 		return BLK_STS_OK;
4202 
4203 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4204 	wait_for_completion_io(&device->flush_wait);
4205 
4206 	return bio->bi_status;
4207 }
4208 
check_barrier_error(struct btrfs_fs_info * fs_info)4209 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4210 {
4211 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4212 		return -EIO;
4213 	return 0;
4214 }
4215 
4216 /*
4217  * send an empty flush down to each device in parallel,
4218  * then wait for them
4219  */
barrier_all_devices(struct btrfs_fs_info * info)4220 static int barrier_all_devices(struct btrfs_fs_info *info)
4221 {
4222 	struct list_head *head;
4223 	struct btrfs_device *dev;
4224 	int errors_wait = 0;
4225 	blk_status_t ret;
4226 
4227 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4228 	/* send down all the barriers */
4229 	head = &info->fs_devices->devices;
4230 	list_for_each_entry(dev, head, dev_list) {
4231 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4232 			continue;
4233 		if (!dev->bdev)
4234 			continue;
4235 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4236 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4237 			continue;
4238 
4239 		write_dev_flush(dev);
4240 		dev->last_flush_error = BLK_STS_OK;
4241 	}
4242 
4243 	/* wait for all the barriers */
4244 	list_for_each_entry(dev, head, dev_list) {
4245 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4246 			continue;
4247 		if (!dev->bdev) {
4248 			errors_wait++;
4249 			continue;
4250 		}
4251 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4252 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4253 			continue;
4254 
4255 		ret = wait_dev_flush(dev);
4256 		if (ret) {
4257 			dev->last_flush_error = ret;
4258 			btrfs_dev_stat_inc_and_print(dev,
4259 					BTRFS_DEV_STAT_FLUSH_ERRS);
4260 			errors_wait++;
4261 		}
4262 	}
4263 
4264 	if (errors_wait) {
4265 		/*
4266 		 * At some point we need the status of all disks
4267 		 * to arrive at the volume status. So error checking
4268 		 * is being pushed to a separate loop.
4269 		 */
4270 		return check_barrier_error(info);
4271 	}
4272 	return 0;
4273 }
4274 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)4275 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4276 {
4277 	int raid_type;
4278 	int min_tolerated = INT_MAX;
4279 
4280 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4281 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4282 		min_tolerated = min_t(int, min_tolerated,
4283 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4284 				    tolerated_failures);
4285 
4286 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4287 		if (raid_type == BTRFS_RAID_SINGLE)
4288 			continue;
4289 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4290 			continue;
4291 		min_tolerated = min_t(int, min_tolerated,
4292 				    btrfs_raid_array[raid_type].
4293 				    tolerated_failures);
4294 	}
4295 
4296 	if (min_tolerated == INT_MAX) {
4297 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4298 		min_tolerated = 0;
4299 	}
4300 
4301 	return min_tolerated;
4302 }
4303 
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4304 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4305 {
4306 	struct list_head *head;
4307 	struct btrfs_device *dev;
4308 	struct btrfs_super_block *sb;
4309 	struct btrfs_dev_item *dev_item;
4310 	int ret;
4311 	int do_barriers;
4312 	int max_errors;
4313 	int total_errors = 0;
4314 	u64 flags;
4315 
4316 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4317 
4318 	/*
4319 	 * max_mirrors == 0 indicates we're from commit_transaction,
4320 	 * not from fsync where the tree roots in fs_info have not
4321 	 * been consistent on disk.
4322 	 */
4323 	if (max_mirrors == 0)
4324 		backup_super_roots(fs_info);
4325 
4326 	sb = fs_info->super_for_commit;
4327 	dev_item = &sb->dev_item;
4328 
4329 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4330 	head = &fs_info->fs_devices->devices;
4331 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4332 
4333 	if (do_barriers) {
4334 		ret = barrier_all_devices(fs_info);
4335 		if (ret) {
4336 			mutex_unlock(
4337 				&fs_info->fs_devices->device_list_mutex);
4338 			btrfs_handle_fs_error(fs_info, ret,
4339 					      "errors while submitting device barriers.");
4340 			return ret;
4341 		}
4342 	}
4343 
4344 	list_for_each_entry(dev, head, dev_list) {
4345 		if (!dev->bdev) {
4346 			total_errors++;
4347 			continue;
4348 		}
4349 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4350 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4351 			continue;
4352 
4353 		btrfs_set_stack_device_generation(dev_item, 0);
4354 		btrfs_set_stack_device_type(dev_item, dev->type);
4355 		btrfs_set_stack_device_id(dev_item, dev->devid);
4356 		btrfs_set_stack_device_total_bytes(dev_item,
4357 						   dev->commit_total_bytes);
4358 		btrfs_set_stack_device_bytes_used(dev_item,
4359 						  dev->commit_bytes_used);
4360 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4361 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4362 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4363 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4364 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4365 		       BTRFS_FSID_SIZE);
4366 
4367 		flags = btrfs_super_flags(sb);
4368 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4369 
4370 		ret = btrfs_validate_write_super(fs_info, sb);
4371 		if (ret < 0) {
4372 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4373 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4374 				"unexpected superblock corruption detected");
4375 			return -EUCLEAN;
4376 		}
4377 
4378 		ret = write_dev_supers(dev, sb, max_mirrors);
4379 		if (ret)
4380 			total_errors++;
4381 	}
4382 	if (total_errors > max_errors) {
4383 		btrfs_err(fs_info, "%d errors while writing supers",
4384 			  total_errors);
4385 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4386 
4387 		/* FUA is masked off if unsupported and can't be the reason */
4388 		btrfs_handle_fs_error(fs_info, -EIO,
4389 				      "%d errors while writing supers",
4390 				      total_errors);
4391 		return -EIO;
4392 	}
4393 
4394 	total_errors = 0;
4395 	list_for_each_entry(dev, head, dev_list) {
4396 		if (!dev->bdev)
4397 			continue;
4398 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4399 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4400 			continue;
4401 
4402 		ret = wait_dev_supers(dev, max_mirrors);
4403 		if (ret)
4404 			total_errors++;
4405 	}
4406 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4407 	if (total_errors > max_errors) {
4408 		btrfs_handle_fs_error(fs_info, -EIO,
4409 				      "%d errors while writing supers",
4410 				      total_errors);
4411 		return -EIO;
4412 	}
4413 	return 0;
4414 }
4415 
4416 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4417 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4418 				  struct btrfs_root *root)
4419 {
4420 	bool drop_ref = false;
4421 
4422 	spin_lock(&fs_info->fs_roots_radix_lock);
4423 	radix_tree_delete(&fs_info->fs_roots_radix,
4424 			  (unsigned long)root->root_key.objectid);
4425 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4426 		drop_ref = true;
4427 	spin_unlock(&fs_info->fs_roots_radix_lock);
4428 
4429 	if (BTRFS_FS_ERROR(fs_info)) {
4430 		ASSERT(root->log_root == NULL);
4431 		if (root->reloc_root) {
4432 			btrfs_put_root(root->reloc_root);
4433 			root->reloc_root = NULL;
4434 		}
4435 	}
4436 
4437 	if (drop_ref)
4438 		btrfs_put_root(root);
4439 }
4440 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)4441 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4442 {
4443 	u64 root_objectid = 0;
4444 	struct btrfs_root *gang[8];
4445 	int i = 0;
4446 	int err = 0;
4447 	unsigned int ret = 0;
4448 
4449 	while (1) {
4450 		spin_lock(&fs_info->fs_roots_radix_lock);
4451 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4452 					     (void **)gang, root_objectid,
4453 					     ARRAY_SIZE(gang));
4454 		if (!ret) {
4455 			spin_unlock(&fs_info->fs_roots_radix_lock);
4456 			break;
4457 		}
4458 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4459 
4460 		for (i = 0; i < ret; i++) {
4461 			/* Avoid to grab roots in dead_roots */
4462 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4463 				gang[i] = NULL;
4464 				continue;
4465 			}
4466 			/* grab all the search result for later use */
4467 			gang[i] = btrfs_grab_root(gang[i]);
4468 		}
4469 		spin_unlock(&fs_info->fs_roots_radix_lock);
4470 
4471 		for (i = 0; i < ret; i++) {
4472 			if (!gang[i])
4473 				continue;
4474 			root_objectid = gang[i]->root_key.objectid;
4475 			err = btrfs_orphan_cleanup(gang[i]);
4476 			if (err)
4477 				break;
4478 			btrfs_put_root(gang[i]);
4479 		}
4480 		root_objectid++;
4481 	}
4482 
4483 	/* release the uncleaned roots due to error */
4484 	for (; i < ret; i++) {
4485 		if (gang[i])
4486 			btrfs_put_root(gang[i]);
4487 	}
4488 	return err;
4489 }
4490 
btrfs_commit_super(struct btrfs_fs_info * fs_info)4491 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4492 {
4493 	struct btrfs_root *root = fs_info->tree_root;
4494 	struct btrfs_trans_handle *trans;
4495 
4496 	mutex_lock(&fs_info->cleaner_mutex);
4497 	btrfs_run_delayed_iputs(fs_info);
4498 	mutex_unlock(&fs_info->cleaner_mutex);
4499 	wake_up_process(fs_info->cleaner_kthread);
4500 
4501 	/* wait until ongoing cleanup work done */
4502 	down_write(&fs_info->cleanup_work_sem);
4503 	up_write(&fs_info->cleanup_work_sem);
4504 
4505 	trans = btrfs_join_transaction(root);
4506 	if (IS_ERR(trans))
4507 		return PTR_ERR(trans);
4508 	return btrfs_commit_transaction(trans);
4509 }
4510 
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4511 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4512 {
4513 	struct btrfs_transaction *trans;
4514 	struct btrfs_transaction *tmp;
4515 	bool found = false;
4516 
4517 	if (list_empty(&fs_info->trans_list))
4518 		return;
4519 
4520 	/*
4521 	 * This function is only called at the very end of close_ctree(),
4522 	 * thus no other running transaction, no need to take trans_lock.
4523 	 */
4524 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4525 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4526 		struct extent_state *cached = NULL;
4527 		u64 dirty_bytes = 0;
4528 		u64 cur = 0;
4529 		u64 found_start;
4530 		u64 found_end;
4531 
4532 		found = true;
4533 		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4534 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4535 			dirty_bytes += found_end + 1 - found_start;
4536 			cur = found_end + 1;
4537 		}
4538 		btrfs_warn(fs_info,
4539 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4540 			   trans->transid, dirty_bytes);
4541 		btrfs_cleanup_one_transaction(trans, fs_info);
4542 
4543 		if (trans == fs_info->running_transaction)
4544 			fs_info->running_transaction = NULL;
4545 		list_del_init(&trans->list);
4546 
4547 		btrfs_put_transaction(trans);
4548 		trace_btrfs_transaction_commit(fs_info);
4549 	}
4550 	ASSERT(!found);
4551 }
4552 
close_ctree(struct btrfs_fs_info * fs_info)4553 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4554 {
4555 	int ret;
4556 
4557 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4558 
4559 	/*
4560 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4561 	 * clear that bit and wake up relocation so it can stop.
4562 	 * We must do this before stopping the block group reclaim task, because
4563 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4564 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4565 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4566 	 * return 1.
4567 	 */
4568 	btrfs_wake_unfinished_drop(fs_info);
4569 
4570 	/*
4571 	 * We may have the reclaim task running and relocating a data block group,
4572 	 * in which case it may create delayed iputs. So stop it before we park
4573 	 * the cleaner kthread otherwise we can get new delayed iputs after
4574 	 * parking the cleaner, and that can make the async reclaim task to hang
4575 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4576 	 * parked and can not run delayed iputs - this will make us hang when
4577 	 * trying to stop the async reclaim task.
4578 	 */
4579 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4580 	/*
4581 	 * We don't want the cleaner to start new transactions, add more delayed
4582 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4583 	 * because that frees the task_struct, and the transaction kthread might
4584 	 * still try to wake up the cleaner.
4585 	 */
4586 	kthread_park(fs_info->cleaner_kthread);
4587 
4588 	/* wait for the qgroup rescan worker to stop */
4589 	btrfs_qgroup_wait_for_completion(fs_info, false);
4590 
4591 	/* wait for the uuid_scan task to finish */
4592 	down(&fs_info->uuid_tree_rescan_sem);
4593 	/* avoid complains from lockdep et al., set sem back to initial state */
4594 	up(&fs_info->uuid_tree_rescan_sem);
4595 
4596 	/* pause restriper - we want to resume on mount */
4597 	btrfs_pause_balance(fs_info);
4598 
4599 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4600 
4601 	btrfs_scrub_cancel(fs_info);
4602 
4603 	/* wait for any defraggers to finish */
4604 	wait_event(fs_info->transaction_wait,
4605 		   (atomic_read(&fs_info->defrag_running) == 0));
4606 
4607 	/* clear out the rbtree of defraggable inodes */
4608 	btrfs_cleanup_defrag_inodes(fs_info);
4609 
4610 	/*
4611 	 * After we parked the cleaner kthread, ordered extents may have
4612 	 * completed and created new delayed iputs. If one of the async reclaim
4613 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4614 	 * can hang forever trying to stop it, because if a delayed iput is
4615 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4616 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4617 	 * no one else to run iputs.
4618 	 *
4619 	 * So wait for all ongoing ordered extents to complete and then run
4620 	 * delayed iputs. This works because once we reach this point no one
4621 	 * can either create new ordered extents nor create delayed iputs
4622 	 * through some other means.
4623 	 *
4624 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4625 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4626 	 * but the delayed iput for the respective inode is made only when doing
4627 	 * the final btrfs_put_ordered_extent() (which must happen at
4628 	 * btrfs_finish_ordered_io() when we are unmounting).
4629 	 */
4630 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4631 	/* Ordered extents for free space inodes. */
4632 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4633 	btrfs_run_delayed_iputs(fs_info);
4634 
4635 	cancel_work_sync(&fs_info->async_reclaim_work);
4636 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4637 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4638 
4639 	/* Cancel or finish ongoing discard work */
4640 	btrfs_discard_cleanup(fs_info);
4641 
4642 	if (!sb_rdonly(fs_info->sb)) {
4643 		/*
4644 		 * The cleaner kthread is stopped, so do one final pass over
4645 		 * unused block groups.
4646 		 */
4647 		btrfs_delete_unused_bgs(fs_info);
4648 
4649 		/*
4650 		 * There might be existing delayed inode workers still running
4651 		 * and holding an empty delayed inode item. We must wait for
4652 		 * them to complete first because they can create a transaction.
4653 		 * This happens when someone calls btrfs_balance_delayed_items()
4654 		 * and then a transaction commit runs the same delayed nodes
4655 		 * before any delayed worker has done something with the nodes.
4656 		 * We must wait for any worker here and not at transaction
4657 		 * commit time since that could cause a deadlock.
4658 		 * This is a very rare case.
4659 		 */
4660 		btrfs_flush_workqueue(fs_info->delayed_workers);
4661 
4662 		ret = btrfs_commit_super(fs_info);
4663 		if (ret)
4664 			btrfs_err(fs_info, "commit super ret %d", ret);
4665 	}
4666 
4667 	if (BTRFS_FS_ERROR(fs_info))
4668 		btrfs_error_commit_super(fs_info);
4669 
4670 	kthread_stop(fs_info->transaction_kthread);
4671 	kthread_stop(fs_info->cleaner_kthread);
4672 
4673 	ASSERT(list_empty(&fs_info->delayed_iputs));
4674 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4675 
4676 	if (btrfs_check_quota_leak(fs_info)) {
4677 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4678 		btrfs_err(fs_info, "qgroup reserved space leaked");
4679 	}
4680 
4681 	btrfs_free_qgroup_config(fs_info);
4682 	ASSERT(list_empty(&fs_info->delalloc_roots));
4683 
4684 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4685 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4686 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4687 	}
4688 
4689 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4690 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4691 			   percpu_counter_sum(&fs_info->ordered_bytes));
4692 
4693 	btrfs_sysfs_remove_mounted(fs_info);
4694 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4695 
4696 	btrfs_put_block_group_cache(fs_info);
4697 
4698 	/*
4699 	 * we must make sure there is not any read request to
4700 	 * submit after we stopping all workers.
4701 	 */
4702 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4703 	btrfs_stop_all_workers(fs_info);
4704 
4705 	/* We shouldn't have any transaction open at this point */
4706 	warn_about_uncommitted_trans(fs_info);
4707 
4708 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4709 	free_root_pointers(fs_info, true);
4710 	btrfs_free_fs_roots(fs_info);
4711 
4712 	/*
4713 	 * We must free the block groups after dropping the fs_roots as we could
4714 	 * have had an IO error and have left over tree log blocks that aren't
4715 	 * cleaned up until the fs roots are freed.  This makes the block group
4716 	 * accounting appear to be wrong because there's pending reserved bytes,
4717 	 * so make sure we do the block group cleanup afterwards.
4718 	 */
4719 	btrfs_free_block_groups(fs_info);
4720 
4721 	iput(fs_info->btree_inode);
4722 
4723 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4724 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4725 		btrfsic_unmount(fs_info->fs_devices);
4726 #endif
4727 
4728 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4729 	btrfs_close_devices(fs_info->fs_devices);
4730 }
4731 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4732 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4733 			  int atomic)
4734 {
4735 	int ret;
4736 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4737 
4738 	ret = extent_buffer_uptodate(buf);
4739 	if (!ret)
4740 		return ret;
4741 
4742 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4743 				    parent_transid, atomic);
4744 	if (ret == -EAGAIN)
4745 		return ret;
4746 	return !ret;
4747 }
4748 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4749 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4750 {
4751 	struct btrfs_fs_info *fs_info = buf->fs_info;
4752 	u64 transid = btrfs_header_generation(buf);
4753 	int was_dirty;
4754 
4755 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4756 	/*
4757 	 * This is a fast path so only do this check if we have sanity tests
4758 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4759 	 * outside of the sanity tests.
4760 	 */
4761 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4762 		return;
4763 #endif
4764 	btrfs_assert_tree_write_locked(buf);
4765 	if (transid != fs_info->generation)
4766 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4767 			buf->start, transid, fs_info->generation);
4768 	was_dirty = set_extent_buffer_dirty(buf);
4769 	if (!was_dirty)
4770 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4771 					 buf->len,
4772 					 fs_info->dirty_metadata_batch);
4773 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4774 	/*
4775 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4776 	 * but item data not updated.
4777 	 * So here we should only check item pointers, not item data.
4778 	 */
4779 	if (btrfs_header_level(buf) == 0 &&
4780 	    btrfs_check_leaf_relaxed(buf)) {
4781 		btrfs_print_leaf(buf);
4782 		ASSERT(0);
4783 	}
4784 #endif
4785 }
4786 
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4787 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4788 					int flush_delayed)
4789 {
4790 	/*
4791 	 * looks as though older kernels can get into trouble with
4792 	 * this code, they end up stuck in balance_dirty_pages forever
4793 	 */
4794 	int ret;
4795 
4796 	if (current->flags & PF_MEMALLOC)
4797 		return;
4798 
4799 	if (flush_delayed)
4800 		btrfs_balance_delayed_items(fs_info);
4801 
4802 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4803 				     BTRFS_DIRTY_METADATA_THRESH,
4804 				     fs_info->dirty_metadata_batch);
4805 	if (ret > 0) {
4806 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4807 	}
4808 }
4809 
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4810 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4811 {
4812 	__btrfs_btree_balance_dirty(fs_info, 1);
4813 }
4814 
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4815 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4816 {
4817 	__btrfs_btree_balance_dirty(fs_info, 0);
4818 }
4819 
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4820 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4821 {
4822 	/* cleanup FS via transaction */
4823 	btrfs_cleanup_transaction(fs_info);
4824 
4825 	mutex_lock(&fs_info->cleaner_mutex);
4826 	btrfs_run_delayed_iputs(fs_info);
4827 	mutex_unlock(&fs_info->cleaner_mutex);
4828 
4829 	down_write(&fs_info->cleanup_work_sem);
4830 	up_write(&fs_info->cleanup_work_sem);
4831 }
4832 
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4833 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4834 {
4835 	struct btrfs_root *gang[8];
4836 	u64 root_objectid = 0;
4837 	int ret;
4838 
4839 	spin_lock(&fs_info->fs_roots_radix_lock);
4840 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4841 					     (void **)gang, root_objectid,
4842 					     ARRAY_SIZE(gang))) != 0) {
4843 		int i;
4844 
4845 		for (i = 0; i < ret; i++)
4846 			gang[i] = btrfs_grab_root(gang[i]);
4847 		spin_unlock(&fs_info->fs_roots_radix_lock);
4848 
4849 		for (i = 0; i < ret; i++) {
4850 			if (!gang[i])
4851 				continue;
4852 			root_objectid = gang[i]->root_key.objectid;
4853 			btrfs_free_log(NULL, gang[i]);
4854 			btrfs_put_root(gang[i]);
4855 		}
4856 		root_objectid++;
4857 		spin_lock(&fs_info->fs_roots_radix_lock);
4858 	}
4859 	spin_unlock(&fs_info->fs_roots_radix_lock);
4860 	btrfs_free_log_root_tree(NULL, fs_info);
4861 }
4862 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4863 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4864 {
4865 	struct btrfs_ordered_extent *ordered;
4866 
4867 	spin_lock(&root->ordered_extent_lock);
4868 	/*
4869 	 * This will just short circuit the ordered completion stuff which will
4870 	 * make sure the ordered extent gets properly cleaned up.
4871 	 */
4872 	list_for_each_entry(ordered, &root->ordered_extents,
4873 			    root_extent_list)
4874 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4875 	spin_unlock(&root->ordered_extent_lock);
4876 }
4877 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4878 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4879 {
4880 	struct btrfs_root *root;
4881 	struct list_head splice;
4882 
4883 	INIT_LIST_HEAD(&splice);
4884 
4885 	spin_lock(&fs_info->ordered_root_lock);
4886 	list_splice_init(&fs_info->ordered_roots, &splice);
4887 	while (!list_empty(&splice)) {
4888 		root = list_first_entry(&splice, struct btrfs_root,
4889 					ordered_root);
4890 		list_move_tail(&root->ordered_root,
4891 			       &fs_info->ordered_roots);
4892 
4893 		spin_unlock(&fs_info->ordered_root_lock);
4894 		btrfs_destroy_ordered_extents(root);
4895 
4896 		cond_resched();
4897 		spin_lock(&fs_info->ordered_root_lock);
4898 	}
4899 	spin_unlock(&fs_info->ordered_root_lock);
4900 
4901 	/*
4902 	 * We need this here because if we've been flipped read-only we won't
4903 	 * get sync() from the umount, so we need to make sure any ordered
4904 	 * extents that haven't had their dirty pages IO start writeout yet
4905 	 * actually get run and error out properly.
4906 	 */
4907 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4908 }
4909 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4910 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4911 				      struct btrfs_fs_info *fs_info)
4912 {
4913 	struct rb_node *node;
4914 	struct btrfs_delayed_ref_root *delayed_refs;
4915 	struct btrfs_delayed_ref_node *ref;
4916 	int ret = 0;
4917 
4918 	delayed_refs = &trans->delayed_refs;
4919 
4920 	spin_lock(&delayed_refs->lock);
4921 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4922 		spin_unlock(&delayed_refs->lock);
4923 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4924 		return ret;
4925 	}
4926 
4927 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4928 		struct btrfs_delayed_ref_head *head;
4929 		struct rb_node *n;
4930 		bool pin_bytes = false;
4931 
4932 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4933 				href_node);
4934 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4935 			continue;
4936 
4937 		spin_lock(&head->lock);
4938 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4939 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4940 				       ref_node);
4941 			ref->in_tree = 0;
4942 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4943 			RB_CLEAR_NODE(&ref->ref_node);
4944 			if (!list_empty(&ref->add_list))
4945 				list_del(&ref->add_list);
4946 			atomic_dec(&delayed_refs->num_entries);
4947 			btrfs_put_delayed_ref(ref);
4948 		}
4949 		if (head->must_insert_reserved)
4950 			pin_bytes = true;
4951 		btrfs_free_delayed_extent_op(head->extent_op);
4952 		btrfs_delete_ref_head(delayed_refs, head);
4953 		spin_unlock(&head->lock);
4954 		spin_unlock(&delayed_refs->lock);
4955 		mutex_unlock(&head->mutex);
4956 
4957 		if (pin_bytes) {
4958 			struct btrfs_block_group *cache;
4959 
4960 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4961 			BUG_ON(!cache);
4962 
4963 			spin_lock(&cache->space_info->lock);
4964 			spin_lock(&cache->lock);
4965 			cache->pinned += head->num_bytes;
4966 			btrfs_space_info_update_bytes_pinned(fs_info,
4967 				cache->space_info, head->num_bytes);
4968 			cache->reserved -= head->num_bytes;
4969 			cache->space_info->bytes_reserved -= head->num_bytes;
4970 			spin_unlock(&cache->lock);
4971 			spin_unlock(&cache->space_info->lock);
4972 
4973 			btrfs_put_block_group(cache);
4974 
4975 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4976 				head->bytenr + head->num_bytes - 1);
4977 		}
4978 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4979 		btrfs_put_delayed_ref_head(head);
4980 		cond_resched();
4981 		spin_lock(&delayed_refs->lock);
4982 	}
4983 	btrfs_qgroup_destroy_extent_records(trans);
4984 
4985 	spin_unlock(&delayed_refs->lock);
4986 
4987 	return ret;
4988 }
4989 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4990 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4991 {
4992 	struct btrfs_inode *btrfs_inode;
4993 	struct list_head splice;
4994 
4995 	INIT_LIST_HEAD(&splice);
4996 
4997 	spin_lock(&root->delalloc_lock);
4998 	list_splice_init(&root->delalloc_inodes, &splice);
4999 
5000 	while (!list_empty(&splice)) {
5001 		struct inode *inode = NULL;
5002 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5003 					       delalloc_inodes);
5004 		__btrfs_del_delalloc_inode(root, btrfs_inode);
5005 		spin_unlock(&root->delalloc_lock);
5006 
5007 		/*
5008 		 * Make sure we get a live inode and that it'll not disappear
5009 		 * meanwhile.
5010 		 */
5011 		inode = igrab(&btrfs_inode->vfs_inode);
5012 		if (inode) {
5013 			invalidate_inode_pages2(inode->i_mapping);
5014 			iput(inode);
5015 		}
5016 		spin_lock(&root->delalloc_lock);
5017 	}
5018 	spin_unlock(&root->delalloc_lock);
5019 }
5020 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)5021 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5022 {
5023 	struct btrfs_root *root;
5024 	struct list_head splice;
5025 
5026 	INIT_LIST_HEAD(&splice);
5027 
5028 	spin_lock(&fs_info->delalloc_root_lock);
5029 	list_splice_init(&fs_info->delalloc_roots, &splice);
5030 	while (!list_empty(&splice)) {
5031 		root = list_first_entry(&splice, struct btrfs_root,
5032 					 delalloc_root);
5033 		root = btrfs_grab_root(root);
5034 		BUG_ON(!root);
5035 		spin_unlock(&fs_info->delalloc_root_lock);
5036 
5037 		btrfs_destroy_delalloc_inodes(root);
5038 		btrfs_put_root(root);
5039 
5040 		spin_lock(&fs_info->delalloc_root_lock);
5041 	}
5042 	spin_unlock(&fs_info->delalloc_root_lock);
5043 }
5044 
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)5045 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5046 					struct extent_io_tree *dirty_pages,
5047 					int mark)
5048 {
5049 	int ret;
5050 	struct extent_buffer *eb;
5051 	u64 start = 0;
5052 	u64 end;
5053 
5054 	while (1) {
5055 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5056 					    mark, NULL);
5057 		if (ret)
5058 			break;
5059 
5060 		clear_extent_bits(dirty_pages, start, end, mark);
5061 		while (start <= end) {
5062 			eb = find_extent_buffer(fs_info, start);
5063 			start += fs_info->nodesize;
5064 			if (!eb)
5065 				continue;
5066 			wait_on_extent_buffer_writeback(eb);
5067 
5068 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5069 					       &eb->bflags))
5070 				clear_extent_buffer_dirty(eb);
5071 			free_extent_buffer_stale(eb);
5072 		}
5073 	}
5074 
5075 	return ret;
5076 }
5077 
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)5078 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5079 				       struct extent_io_tree *unpin)
5080 {
5081 	u64 start;
5082 	u64 end;
5083 	int ret;
5084 
5085 	while (1) {
5086 		struct extent_state *cached_state = NULL;
5087 
5088 		/*
5089 		 * The btrfs_finish_extent_commit() may get the same range as
5090 		 * ours between find_first_extent_bit and clear_extent_dirty.
5091 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5092 		 * the same extent range.
5093 		 */
5094 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5095 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5096 					    EXTENT_DIRTY, &cached_state);
5097 		if (ret) {
5098 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5099 			break;
5100 		}
5101 
5102 		clear_extent_dirty(unpin, start, end, &cached_state);
5103 		free_extent_state(cached_state);
5104 		btrfs_error_unpin_extent_range(fs_info, start, end);
5105 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5106 		cond_resched();
5107 	}
5108 
5109 	return 0;
5110 }
5111 
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)5112 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5113 {
5114 	struct inode *inode;
5115 
5116 	inode = cache->io_ctl.inode;
5117 	if (inode) {
5118 		invalidate_inode_pages2(inode->i_mapping);
5119 		BTRFS_I(inode)->generation = 0;
5120 		cache->io_ctl.inode = NULL;
5121 		iput(inode);
5122 	}
5123 	ASSERT(cache->io_ctl.pages == NULL);
5124 	btrfs_put_block_group(cache);
5125 }
5126 
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)5127 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5128 			     struct btrfs_fs_info *fs_info)
5129 {
5130 	struct btrfs_block_group *cache;
5131 
5132 	spin_lock(&cur_trans->dirty_bgs_lock);
5133 	while (!list_empty(&cur_trans->dirty_bgs)) {
5134 		cache = list_first_entry(&cur_trans->dirty_bgs,
5135 					 struct btrfs_block_group,
5136 					 dirty_list);
5137 
5138 		if (!list_empty(&cache->io_list)) {
5139 			spin_unlock(&cur_trans->dirty_bgs_lock);
5140 			list_del_init(&cache->io_list);
5141 			btrfs_cleanup_bg_io(cache);
5142 			spin_lock(&cur_trans->dirty_bgs_lock);
5143 		}
5144 
5145 		list_del_init(&cache->dirty_list);
5146 		spin_lock(&cache->lock);
5147 		cache->disk_cache_state = BTRFS_DC_ERROR;
5148 		spin_unlock(&cache->lock);
5149 
5150 		spin_unlock(&cur_trans->dirty_bgs_lock);
5151 		btrfs_put_block_group(cache);
5152 		btrfs_delayed_refs_rsv_release(fs_info, 1);
5153 		spin_lock(&cur_trans->dirty_bgs_lock);
5154 	}
5155 	spin_unlock(&cur_trans->dirty_bgs_lock);
5156 
5157 	/*
5158 	 * Refer to the definition of io_bgs member for details why it's safe
5159 	 * to use it without any locking
5160 	 */
5161 	while (!list_empty(&cur_trans->io_bgs)) {
5162 		cache = list_first_entry(&cur_trans->io_bgs,
5163 					 struct btrfs_block_group,
5164 					 io_list);
5165 
5166 		list_del_init(&cache->io_list);
5167 		spin_lock(&cache->lock);
5168 		cache->disk_cache_state = BTRFS_DC_ERROR;
5169 		spin_unlock(&cache->lock);
5170 		btrfs_cleanup_bg_io(cache);
5171 	}
5172 }
5173 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)5174 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5175 				   struct btrfs_fs_info *fs_info)
5176 {
5177 	struct btrfs_device *dev, *tmp;
5178 
5179 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5180 	ASSERT(list_empty(&cur_trans->dirty_bgs));
5181 	ASSERT(list_empty(&cur_trans->io_bgs));
5182 
5183 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5184 				 post_commit_list) {
5185 		list_del_init(&dev->post_commit_list);
5186 	}
5187 
5188 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5189 
5190 	cur_trans->state = TRANS_STATE_COMMIT_START;
5191 	wake_up(&fs_info->transaction_blocked_wait);
5192 
5193 	cur_trans->state = TRANS_STATE_UNBLOCKED;
5194 	wake_up(&fs_info->transaction_wait);
5195 
5196 	btrfs_destroy_delayed_inodes(fs_info);
5197 
5198 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5199 				     EXTENT_DIRTY);
5200 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5201 
5202 	btrfs_free_redirty_list(cur_trans);
5203 
5204 	cur_trans->state =TRANS_STATE_COMPLETED;
5205 	wake_up(&cur_trans->commit_wait);
5206 }
5207 
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)5208 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5209 {
5210 	struct btrfs_transaction *t;
5211 
5212 	mutex_lock(&fs_info->transaction_kthread_mutex);
5213 
5214 	spin_lock(&fs_info->trans_lock);
5215 	while (!list_empty(&fs_info->trans_list)) {
5216 		t = list_first_entry(&fs_info->trans_list,
5217 				     struct btrfs_transaction, list);
5218 		if (t->state >= TRANS_STATE_COMMIT_START) {
5219 			refcount_inc(&t->use_count);
5220 			spin_unlock(&fs_info->trans_lock);
5221 			btrfs_wait_for_commit(fs_info, t->transid);
5222 			btrfs_put_transaction(t);
5223 			spin_lock(&fs_info->trans_lock);
5224 			continue;
5225 		}
5226 		if (t == fs_info->running_transaction) {
5227 			t->state = TRANS_STATE_COMMIT_DOING;
5228 			spin_unlock(&fs_info->trans_lock);
5229 			/*
5230 			 * We wait for 0 num_writers since we don't hold a trans
5231 			 * handle open currently for this transaction.
5232 			 */
5233 			wait_event(t->writer_wait,
5234 				   atomic_read(&t->num_writers) == 0);
5235 		} else {
5236 			spin_unlock(&fs_info->trans_lock);
5237 		}
5238 		btrfs_cleanup_one_transaction(t, fs_info);
5239 
5240 		spin_lock(&fs_info->trans_lock);
5241 		if (t == fs_info->running_transaction)
5242 			fs_info->running_transaction = NULL;
5243 		list_del_init(&t->list);
5244 		spin_unlock(&fs_info->trans_lock);
5245 
5246 		btrfs_put_transaction(t);
5247 		trace_btrfs_transaction_commit(fs_info);
5248 		spin_lock(&fs_info->trans_lock);
5249 	}
5250 	spin_unlock(&fs_info->trans_lock);
5251 	btrfs_destroy_all_ordered_extents(fs_info);
5252 	btrfs_destroy_delayed_inodes(fs_info);
5253 	btrfs_assert_delayed_root_empty(fs_info);
5254 	btrfs_destroy_all_delalloc_inodes(fs_info);
5255 	btrfs_drop_all_logs(fs_info);
5256 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5257 
5258 	return 0;
5259 }
5260 
btrfs_init_root_free_objectid(struct btrfs_root * root)5261 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5262 {
5263 	struct btrfs_path *path;
5264 	int ret;
5265 	struct extent_buffer *l;
5266 	struct btrfs_key search_key;
5267 	struct btrfs_key found_key;
5268 	int slot;
5269 
5270 	path = btrfs_alloc_path();
5271 	if (!path)
5272 		return -ENOMEM;
5273 
5274 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5275 	search_key.type = -1;
5276 	search_key.offset = (u64)-1;
5277 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5278 	if (ret < 0)
5279 		goto error;
5280 	BUG_ON(ret == 0); /* Corruption */
5281 	if (path->slots[0] > 0) {
5282 		slot = path->slots[0] - 1;
5283 		l = path->nodes[0];
5284 		btrfs_item_key_to_cpu(l, &found_key, slot);
5285 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5286 					    BTRFS_FIRST_FREE_OBJECTID);
5287 	} else {
5288 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5289 	}
5290 	ret = 0;
5291 error:
5292 	btrfs_free_path(path);
5293 	return ret;
5294 }
5295 
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)5296 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5297 {
5298 	int ret;
5299 	mutex_lock(&root->objectid_mutex);
5300 
5301 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5302 		btrfs_warn(root->fs_info,
5303 			   "the objectid of root %llu reaches its highest value",
5304 			   root->root_key.objectid);
5305 		ret = -ENOSPC;
5306 		goto out;
5307 	}
5308 
5309 	*objectid = root->free_objectid++;
5310 	ret = 0;
5311 out:
5312 	mutex_unlock(&root->objectid_mutex);
5313 	return ret;
5314 }
5315