1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39
40 /*
41 * Transaction states and transitions
42 *
43 * No running transaction (fs tree blocks are not modified)
44 * |
45 * | To next stage:
46 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
47 * V
48 * Transaction N [[TRANS_STATE_RUNNING]]
49 * |
50 * | New trans handles can be attached to transaction N by calling all
51 * | start_transaction() variants.
52 * |
53 * | To next stage:
54 * | Call btrfs_commit_transaction() on any trans handle attached to
55 * | transaction N
56 * V
57 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
58 * |
59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
60 * | the race and the rest will wait for the winner to commit the transaction.
61 * |
62 * | The winner will wait for previous running transaction to completely finish
63 * | if there is one.
64 * |
65 * Transaction N [[TRANS_STATE_COMMIT_START]]
66 * |
67 * | Then one of the following happens:
68 * | - Wait for all other trans handle holders to release.
69 * | The btrfs_commit_transaction() caller will do the commit work.
70 * | - Wait for current transaction to be committed by others.
71 * | Other btrfs_commit_transaction() caller will do the commit work.
72 * |
73 * | At this stage, only btrfs_join_transaction*() variants can attach
74 * | to this running transaction.
75 * | All other variants will wait for current one to finish and attach to
76 * | transaction N+1.
77 * |
78 * | To next stage:
79 * | Caller is chosen to commit transaction N, and all other trans handle
80 * | haven been released.
81 * V
82 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
83 * |
84 * | The heavy lifting transaction work is started.
85 * | From running delayed refs (modifying extent tree) to creating pending
86 * | snapshots, running qgroups.
87 * | In short, modify supporting trees to reflect modifications of subvolume
88 * | trees.
89 * |
90 * | At this stage, all start_transaction() calls will wait for this
91 * | transaction to finish and attach to transaction N+1.
92 * |
93 * | To next stage:
94 * | Until all supporting trees are updated.
95 * V
96 * Transaction N [[TRANS_STATE_UNBLOCKED]]
97 * | Transaction N+1
98 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
99 * | need to write them back to disk and update |
100 * | super blocks. |
101 * | |
102 * | At this stage, new transaction is allowed to |
103 * | start. |
104 * | All new start_transaction() calls will be |
105 * | attached to transid N+1. |
106 * | |
107 * | To next stage: |
108 * | Until all tree blocks are super blocks are |
109 * | written to block devices |
110 * V |
111 * Transaction N [[TRANS_STATE_COMPLETED]] V
112 * All tree blocks and super blocks are written. Transaction N+1
113 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
114 * data structures will be cleaned up. | Life goes on
115 */
116 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
117 [TRANS_STATE_RUNNING] = 0U,
118 [TRANS_STATE_COMMIT_PREP] = 0U,
119 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
120 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
121 __TRANS_ATTACH |
122 __TRANS_JOIN |
123 __TRANS_JOIN_NOSTART),
124 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
125 __TRANS_ATTACH |
126 __TRANS_JOIN |
127 __TRANS_JOIN_NOLOCK |
128 __TRANS_JOIN_NOSTART),
129 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
130 __TRANS_ATTACH |
131 __TRANS_JOIN |
132 __TRANS_JOIN_NOLOCK |
133 __TRANS_JOIN_NOSTART),
134 [TRANS_STATE_COMPLETED] = (__TRANS_START |
135 __TRANS_ATTACH |
136 __TRANS_JOIN |
137 __TRANS_JOIN_NOLOCK |
138 __TRANS_JOIN_NOSTART),
139 };
140
btrfs_put_transaction(struct btrfs_transaction * transaction)141 void btrfs_put_transaction(struct btrfs_transaction *transaction)
142 {
143 WARN_ON(refcount_read(&transaction->use_count) == 0);
144 if (refcount_dec_and_test(&transaction->use_count)) {
145 BUG_ON(!list_empty(&transaction->list));
146 WARN_ON(!RB_EMPTY_ROOT(
147 &transaction->delayed_refs.href_root.rb_root));
148 WARN_ON(!RB_EMPTY_ROOT(
149 &transaction->delayed_refs.dirty_extent_root));
150 if (transaction->delayed_refs.pending_csums)
151 btrfs_err(transaction->fs_info,
152 "pending csums is %llu",
153 transaction->delayed_refs.pending_csums);
154 /*
155 * If any block groups are found in ->deleted_bgs then it's
156 * because the transaction was aborted and a commit did not
157 * happen (things failed before writing the new superblock
158 * and calling btrfs_finish_extent_commit()), so we can not
159 * discard the physical locations of the block groups.
160 */
161 while (!list_empty(&transaction->deleted_bgs)) {
162 struct btrfs_block_group *cache;
163
164 cache = list_first_entry(&transaction->deleted_bgs,
165 struct btrfs_block_group,
166 bg_list);
167 list_del_init(&cache->bg_list);
168 btrfs_unfreeze_block_group(cache);
169 btrfs_put_block_group(cache);
170 }
171 WARN_ON(!list_empty(&transaction->dev_update_list));
172 kfree(transaction);
173 }
174 }
175
switch_commit_roots(struct btrfs_trans_handle * trans)176 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
177 {
178 struct btrfs_transaction *cur_trans = trans->transaction;
179 struct btrfs_fs_info *fs_info = trans->fs_info;
180 struct btrfs_root *root, *tmp;
181
182 /*
183 * At this point no one can be using this transaction to modify any tree
184 * and no one can start another transaction to modify any tree either.
185 */
186 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
187
188 down_write(&fs_info->commit_root_sem);
189
190 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
191 fs_info->last_reloc_trans = trans->transid;
192
193 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
194 dirty_list) {
195 list_del_init(&root->dirty_list);
196 free_extent_buffer(root->commit_root);
197 root->commit_root = btrfs_root_node(root);
198 extent_io_tree_release(&root->dirty_log_pages);
199 btrfs_qgroup_clean_swapped_blocks(root);
200 }
201
202 /* We can free old roots now. */
203 spin_lock(&cur_trans->dropped_roots_lock);
204 while (!list_empty(&cur_trans->dropped_roots)) {
205 root = list_first_entry(&cur_trans->dropped_roots,
206 struct btrfs_root, root_list);
207 list_del_init(&root->root_list);
208 spin_unlock(&cur_trans->dropped_roots_lock);
209 btrfs_free_log(trans, root);
210 btrfs_drop_and_free_fs_root(fs_info, root);
211 spin_lock(&cur_trans->dropped_roots_lock);
212 }
213 spin_unlock(&cur_trans->dropped_roots_lock);
214
215 up_write(&fs_info->commit_root_sem);
216 }
217
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)218 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
219 unsigned int type)
220 {
221 if (type & TRANS_EXTWRITERS)
222 atomic_inc(&trans->num_extwriters);
223 }
224
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)225 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
226 unsigned int type)
227 {
228 if (type & TRANS_EXTWRITERS)
229 atomic_dec(&trans->num_extwriters);
230 }
231
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)232 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
233 unsigned int type)
234 {
235 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
236 }
237
extwriter_counter_read(struct btrfs_transaction * trans)238 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
239 {
240 return atomic_read(&trans->num_extwriters);
241 }
242
243 /*
244 * To be called after doing the chunk btree updates right after allocating a new
245 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
246 * chunk after all chunk btree updates and after finishing the second phase of
247 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
248 * group had its chunk item insertion delayed to the second phase.
249 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)250 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
251 {
252 struct btrfs_fs_info *fs_info = trans->fs_info;
253
254 if (!trans->chunk_bytes_reserved)
255 return;
256
257 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
258 trans->chunk_bytes_reserved, NULL);
259 trans->chunk_bytes_reserved = 0;
260 }
261
262 /*
263 * either allocate a new transaction or hop into the existing one
264 */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)265 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
266 unsigned int type)
267 {
268 struct btrfs_transaction *cur_trans;
269
270 spin_lock(&fs_info->trans_lock);
271 loop:
272 /* The file system has been taken offline. No new transactions. */
273 if (BTRFS_FS_ERROR(fs_info)) {
274 spin_unlock(&fs_info->trans_lock);
275 return -EROFS;
276 }
277
278 cur_trans = fs_info->running_transaction;
279 if (cur_trans) {
280 if (TRANS_ABORTED(cur_trans)) {
281 spin_unlock(&fs_info->trans_lock);
282 return cur_trans->aborted;
283 }
284 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
285 spin_unlock(&fs_info->trans_lock);
286 return -EBUSY;
287 }
288 refcount_inc(&cur_trans->use_count);
289 atomic_inc(&cur_trans->num_writers);
290 extwriter_counter_inc(cur_trans, type);
291 spin_unlock(&fs_info->trans_lock);
292 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
293 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
294 return 0;
295 }
296 spin_unlock(&fs_info->trans_lock);
297
298 /*
299 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
300 * current transaction, and commit it. If there is no transaction, just
301 * return ENOENT.
302 */
303 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
304 return -ENOENT;
305
306 /*
307 * JOIN_NOLOCK only happens during the transaction commit, so
308 * it is impossible that ->running_transaction is NULL
309 */
310 BUG_ON(type == TRANS_JOIN_NOLOCK);
311
312 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
313 if (!cur_trans)
314 return -ENOMEM;
315
316 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
317 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
318
319 spin_lock(&fs_info->trans_lock);
320 if (fs_info->running_transaction) {
321 /*
322 * someone started a transaction after we unlocked. Make sure
323 * to redo the checks above
324 */
325 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
326 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
327 kfree(cur_trans);
328 goto loop;
329 } else if (BTRFS_FS_ERROR(fs_info)) {
330 spin_unlock(&fs_info->trans_lock);
331 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
332 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
333 kfree(cur_trans);
334 return -EROFS;
335 }
336
337 cur_trans->fs_info = fs_info;
338 atomic_set(&cur_trans->pending_ordered, 0);
339 init_waitqueue_head(&cur_trans->pending_wait);
340 atomic_set(&cur_trans->num_writers, 1);
341 extwriter_counter_init(cur_trans, type);
342 init_waitqueue_head(&cur_trans->writer_wait);
343 init_waitqueue_head(&cur_trans->commit_wait);
344 cur_trans->state = TRANS_STATE_RUNNING;
345 /*
346 * One for this trans handle, one so it will live on until we
347 * commit the transaction.
348 */
349 refcount_set(&cur_trans->use_count, 2);
350 cur_trans->flags = 0;
351 cur_trans->start_time = ktime_get_seconds();
352
353 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
354
355 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
356 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
357 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
358
359 /*
360 * although the tree mod log is per file system and not per transaction,
361 * the log must never go across transaction boundaries.
362 */
363 smp_mb();
364 if (!list_empty(&fs_info->tree_mod_seq_list))
365 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
366 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
367 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
368 atomic64_set(&fs_info->tree_mod_seq, 0);
369
370 spin_lock_init(&cur_trans->delayed_refs.lock);
371
372 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
373 INIT_LIST_HEAD(&cur_trans->dev_update_list);
374 INIT_LIST_HEAD(&cur_trans->switch_commits);
375 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
376 INIT_LIST_HEAD(&cur_trans->io_bgs);
377 INIT_LIST_HEAD(&cur_trans->dropped_roots);
378 mutex_init(&cur_trans->cache_write_mutex);
379 spin_lock_init(&cur_trans->dirty_bgs_lock);
380 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
381 spin_lock_init(&cur_trans->dropped_roots_lock);
382 list_add_tail(&cur_trans->list, &fs_info->trans_list);
383 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
384 IO_TREE_TRANS_DIRTY_PAGES);
385 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
386 IO_TREE_FS_PINNED_EXTENTS);
387 fs_info->generation++;
388 cur_trans->transid = fs_info->generation;
389 fs_info->running_transaction = cur_trans;
390 cur_trans->aborted = 0;
391 spin_unlock(&fs_info->trans_lock);
392
393 return 0;
394 }
395
396 /*
397 * This does all the record keeping required to make sure that a shareable root
398 * is properly recorded in a given transaction. This is required to make sure
399 * the old root from before we joined the transaction is deleted when the
400 * transaction commits.
401 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)402 static int record_root_in_trans(struct btrfs_trans_handle *trans,
403 struct btrfs_root *root,
404 int force)
405 {
406 struct btrfs_fs_info *fs_info = root->fs_info;
407 int ret = 0;
408
409 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
410 root->last_trans < trans->transid) || force) {
411 WARN_ON(!force && root->commit_root != root->node);
412
413 /*
414 * see below for IN_TRANS_SETUP usage rules
415 * we have the reloc mutex held now, so there
416 * is only one writer in this function
417 */
418 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
419
420 /* make sure readers find IN_TRANS_SETUP before
421 * they find our root->last_trans update
422 */
423 smp_wmb();
424
425 spin_lock(&fs_info->fs_roots_radix_lock);
426 if (root->last_trans == trans->transid && !force) {
427 spin_unlock(&fs_info->fs_roots_radix_lock);
428 return 0;
429 }
430 radix_tree_tag_set(&fs_info->fs_roots_radix,
431 (unsigned long)root->root_key.objectid,
432 BTRFS_ROOT_TRANS_TAG);
433 spin_unlock(&fs_info->fs_roots_radix_lock);
434 root->last_trans = trans->transid;
435
436 /* this is pretty tricky. We don't want to
437 * take the relocation lock in btrfs_record_root_in_trans
438 * unless we're really doing the first setup for this root in
439 * this transaction.
440 *
441 * Normally we'd use root->last_trans as a flag to decide
442 * if we want to take the expensive mutex.
443 *
444 * But, we have to set root->last_trans before we
445 * init the relocation root, otherwise, we trip over warnings
446 * in ctree.c. The solution used here is to flag ourselves
447 * with root IN_TRANS_SETUP. When this is 1, we're still
448 * fixing up the reloc trees and everyone must wait.
449 *
450 * When this is zero, they can trust root->last_trans and fly
451 * through btrfs_record_root_in_trans without having to take the
452 * lock. smp_wmb() makes sure that all the writes above are
453 * done before we pop in the zero below
454 */
455 ret = btrfs_init_reloc_root(trans, root);
456 smp_mb__before_atomic();
457 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
458 }
459 return ret;
460 }
461
462
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)463 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
464 struct btrfs_root *root)
465 {
466 struct btrfs_fs_info *fs_info = root->fs_info;
467 struct btrfs_transaction *cur_trans = trans->transaction;
468
469 /* Add ourselves to the transaction dropped list */
470 spin_lock(&cur_trans->dropped_roots_lock);
471 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
472 spin_unlock(&cur_trans->dropped_roots_lock);
473
474 /* Make sure we don't try to update the root at commit time */
475 spin_lock(&fs_info->fs_roots_radix_lock);
476 radix_tree_tag_clear(&fs_info->fs_roots_radix,
477 (unsigned long)root->root_key.objectid,
478 BTRFS_ROOT_TRANS_TAG);
479 spin_unlock(&fs_info->fs_roots_radix_lock);
480 }
481
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)482 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
483 struct btrfs_root *root)
484 {
485 struct btrfs_fs_info *fs_info = root->fs_info;
486 int ret;
487
488 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
489 return 0;
490
491 /*
492 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
493 * and barriers
494 */
495 smp_rmb();
496 if (root->last_trans == trans->transid &&
497 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
498 return 0;
499
500 mutex_lock(&fs_info->reloc_mutex);
501 ret = record_root_in_trans(trans, root, 0);
502 mutex_unlock(&fs_info->reloc_mutex);
503
504 return ret;
505 }
506
is_transaction_blocked(struct btrfs_transaction * trans)507 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
508 {
509 return (trans->state >= TRANS_STATE_COMMIT_START &&
510 trans->state < TRANS_STATE_UNBLOCKED &&
511 !TRANS_ABORTED(trans));
512 }
513
514 /* wait for commit against the current transaction to become unblocked
515 * when this is done, it is safe to start a new transaction, but the current
516 * transaction might not be fully on disk.
517 */
wait_current_trans(struct btrfs_fs_info * fs_info)518 static void wait_current_trans(struct btrfs_fs_info *fs_info)
519 {
520 struct btrfs_transaction *cur_trans;
521
522 spin_lock(&fs_info->trans_lock);
523 cur_trans = fs_info->running_transaction;
524 if (cur_trans && is_transaction_blocked(cur_trans)) {
525 refcount_inc(&cur_trans->use_count);
526 spin_unlock(&fs_info->trans_lock);
527
528 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
529 wait_event(fs_info->transaction_wait,
530 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
531 TRANS_ABORTED(cur_trans));
532 btrfs_put_transaction(cur_trans);
533 } else {
534 spin_unlock(&fs_info->trans_lock);
535 }
536 }
537
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)538 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
539 {
540 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
541 return 0;
542
543 if (type == TRANS_START)
544 return 1;
545
546 return 0;
547 }
548
need_reserve_reloc_root(struct btrfs_root * root)549 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
550 {
551 struct btrfs_fs_info *fs_info = root->fs_info;
552
553 if (!fs_info->reloc_ctl ||
554 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
555 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
556 root->reloc_root)
557 return false;
558
559 return true;
560 }
561
562 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)563 start_transaction(struct btrfs_root *root, unsigned int num_items,
564 unsigned int type, enum btrfs_reserve_flush_enum flush,
565 bool enforce_qgroups)
566 {
567 struct btrfs_fs_info *fs_info = root->fs_info;
568 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
569 struct btrfs_trans_handle *h;
570 struct btrfs_transaction *cur_trans;
571 u64 num_bytes = 0;
572 u64 qgroup_reserved = 0;
573 bool reloc_reserved = false;
574 bool do_chunk_alloc = false;
575 int ret;
576
577 if (BTRFS_FS_ERROR(fs_info))
578 return ERR_PTR(-EROFS);
579
580 if (current->journal_info) {
581 WARN_ON(type & TRANS_EXTWRITERS);
582 h = current->journal_info;
583 refcount_inc(&h->use_count);
584 WARN_ON(refcount_read(&h->use_count) > 2);
585 h->orig_rsv = h->block_rsv;
586 h->block_rsv = NULL;
587 goto got_it;
588 }
589
590 /*
591 * Do the reservation before we join the transaction so we can do all
592 * the appropriate flushing if need be.
593 */
594 if (num_items && root != fs_info->chunk_root) {
595 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
596 u64 delayed_refs_bytes = 0;
597
598 qgroup_reserved = num_items * fs_info->nodesize;
599 /*
600 * Use prealloc for now, as there might be a currently running
601 * transaction that could free this reserved space prematurely
602 * by committing.
603 */
604 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
605 enforce_qgroups, false);
606 if (ret)
607 return ERR_PTR(ret);
608
609 /*
610 * We want to reserve all the bytes we may need all at once, so
611 * we only do 1 enospc flushing cycle per transaction start. We
612 * accomplish this by simply assuming we'll do num_items worth
613 * of delayed refs updates in this trans handle, and refill that
614 * amount for whatever is missing in the reserve.
615 */
616 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
617 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
618 !btrfs_block_rsv_full(delayed_refs_rsv)) {
619 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
620 num_items);
621 num_bytes += delayed_refs_bytes;
622 }
623
624 /*
625 * Do the reservation for the relocation root creation
626 */
627 if (need_reserve_reloc_root(root)) {
628 num_bytes += fs_info->nodesize;
629 reloc_reserved = true;
630 }
631
632 ret = btrfs_reserve_metadata_bytes(fs_info, rsv, num_bytes, flush);
633 if (ret)
634 goto reserve_fail;
635 if (delayed_refs_bytes) {
636 btrfs_migrate_to_delayed_refs_rsv(fs_info, delayed_refs_bytes);
637 num_bytes -= delayed_refs_bytes;
638 }
639 btrfs_block_rsv_add_bytes(rsv, num_bytes, true);
640
641 if (rsv->space_info->force_alloc)
642 do_chunk_alloc = true;
643 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
644 !btrfs_block_rsv_full(delayed_refs_rsv)) {
645 /*
646 * Some people call with btrfs_start_transaction(root, 0)
647 * because they can be throttled, but have some other mechanism
648 * for reserving space. We still want these guys to refill the
649 * delayed block_rsv so just add 1 items worth of reservation
650 * here.
651 */
652 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
653 if (ret)
654 goto reserve_fail;
655 }
656 again:
657 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
658 if (!h) {
659 ret = -ENOMEM;
660 goto alloc_fail;
661 }
662
663 /*
664 * If we are JOIN_NOLOCK we're already committing a transaction and
665 * waiting on this guy, so we don't need to do the sb_start_intwrite
666 * because we're already holding a ref. We need this because we could
667 * have raced in and did an fsync() on a file which can kick a commit
668 * and then we deadlock with somebody doing a freeze.
669 *
670 * If we are ATTACH, it means we just want to catch the current
671 * transaction and commit it, so we needn't do sb_start_intwrite().
672 */
673 if (type & __TRANS_FREEZABLE)
674 sb_start_intwrite(fs_info->sb);
675
676 if (may_wait_transaction(fs_info, type))
677 wait_current_trans(fs_info);
678
679 do {
680 ret = join_transaction(fs_info, type);
681 if (ret == -EBUSY) {
682 wait_current_trans(fs_info);
683 if (unlikely(type == TRANS_ATTACH ||
684 type == TRANS_JOIN_NOSTART))
685 ret = -ENOENT;
686 }
687 } while (ret == -EBUSY);
688
689 if (ret < 0)
690 goto join_fail;
691
692 cur_trans = fs_info->running_transaction;
693
694 h->transid = cur_trans->transid;
695 h->transaction = cur_trans;
696 refcount_set(&h->use_count, 1);
697 h->fs_info = root->fs_info;
698
699 h->type = type;
700 INIT_LIST_HEAD(&h->new_bgs);
701
702 smp_mb();
703 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
704 may_wait_transaction(fs_info, type)) {
705 current->journal_info = h;
706 btrfs_commit_transaction(h);
707 goto again;
708 }
709
710 if (num_bytes) {
711 trace_btrfs_space_reservation(fs_info, "transaction",
712 h->transid, num_bytes, 1);
713 h->block_rsv = &fs_info->trans_block_rsv;
714 h->bytes_reserved = num_bytes;
715 h->reloc_reserved = reloc_reserved;
716 }
717
718 /*
719 * Now that we have found a transaction to be a part of, convert the
720 * qgroup reservation from prealloc to pertrans. A different transaction
721 * can't race in and free our pertrans out from under us.
722 */
723 if (qgroup_reserved)
724 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
725
726 got_it:
727 if (!current->journal_info)
728 current->journal_info = h;
729
730 /*
731 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
732 * ALLOC_FORCE the first run through, and then we won't allocate for
733 * anybody else who races in later. We don't care about the return
734 * value here.
735 */
736 if (do_chunk_alloc && num_bytes) {
737 u64 flags = h->block_rsv->space_info->flags;
738
739 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
740 CHUNK_ALLOC_NO_FORCE);
741 }
742
743 /*
744 * btrfs_record_root_in_trans() needs to alloc new extents, and may
745 * call btrfs_join_transaction() while we're also starting a
746 * transaction.
747 *
748 * Thus it need to be called after current->journal_info initialized,
749 * or we can deadlock.
750 */
751 ret = btrfs_record_root_in_trans(h, root);
752 if (ret) {
753 /*
754 * The transaction handle is fully initialized and linked with
755 * other structures so it needs to be ended in case of errors,
756 * not just freed.
757 */
758 btrfs_end_transaction(h);
759 return ERR_PTR(ret);
760 }
761
762 return h;
763
764 join_fail:
765 if (type & __TRANS_FREEZABLE)
766 sb_end_intwrite(fs_info->sb);
767 kmem_cache_free(btrfs_trans_handle_cachep, h);
768 alloc_fail:
769 if (num_bytes)
770 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
771 num_bytes, NULL);
772 reserve_fail:
773 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
774 return ERR_PTR(ret);
775 }
776
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)777 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
778 unsigned int num_items)
779 {
780 return start_transaction(root, num_items, TRANS_START,
781 BTRFS_RESERVE_FLUSH_ALL, true);
782 }
783
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)784 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
785 struct btrfs_root *root,
786 unsigned int num_items)
787 {
788 return start_transaction(root, num_items, TRANS_START,
789 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
790 }
791
btrfs_join_transaction(struct btrfs_root * root)792 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
793 {
794 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
795 true);
796 }
797
btrfs_join_transaction_spacecache(struct btrfs_root * root)798 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
799 {
800 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
801 BTRFS_RESERVE_NO_FLUSH, true);
802 }
803
804 /*
805 * Similar to regular join but it never starts a transaction when none is
806 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
807 * This is similar to btrfs_attach_transaction() but it allows the join to
808 * happen if the transaction commit already started but it's not yet in the
809 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
810 */
btrfs_join_transaction_nostart(struct btrfs_root * root)811 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
812 {
813 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
814 BTRFS_RESERVE_NO_FLUSH, true);
815 }
816
817 /*
818 * btrfs_attach_transaction() - catch the running transaction
819 *
820 * It is used when we want to commit the current the transaction, but
821 * don't want to start a new one.
822 *
823 * Note: If this function return -ENOENT, it just means there is no
824 * running transaction. But it is possible that the inactive transaction
825 * is still in the memory, not fully on disk. If you hope there is no
826 * inactive transaction in the fs when -ENOENT is returned, you should
827 * invoke
828 * btrfs_attach_transaction_barrier()
829 */
btrfs_attach_transaction(struct btrfs_root * root)830 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
831 {
832 return start_transaction(root, 0, TRANS_ATTACH,
833 BTRFS_RESERVE_NO_FLUSH, true);
834 }
835
836 /*
837 * btrfs_attach_transaction_barrier() - catch the running transaction
838 *
839 * It is similar to the above function, the difference is this one
840 * will wait for all the inactive transactions until they fully
841 * complete.
842 */
843 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)844 btrfs_attach_transaction_barrier(struct btrfs_root *root)
845 {
846 struct btrfs_trans_handle *trans;
847
848 trans = start_transaction(root, 0, TRANS_ATTACH,
849 BTRFS_RESERVE_NO_FLUSH, true);
850 if (trans == ERR_PTR(-ENOENT)) {
851 int ret;
852
853 ret = btrfs_wait_for_commit(root->fs_info, 0);
854 if (ret)
855 return ERR_PTR(ret);
856 }
857
858 return trans;
859 }
860
861 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)862 static noinline void wait_for_commit(struct btrfs_transaction *commit,
863 const enum btrfs_trans_state min_state)
864 {
865 struct btrfs_fs_info *fs_info = commit->fs_info;
866 u64 transid = commit->transid;
867 bool put = false;
868
869 /*
870 * At the moment this function is called with min_state either being
871 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
872 */
873 if (min_state == TRANS_STATE_COMPLETED)
874 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
875 else
876 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
877
878 while (1) {
879 wait_event(commit->commit_wait, commit->state >= min_state);
880 if (put)
881 btrfs_put_transaction(commit);
882
883 if (min_state < TRANS_STATE_COMPLETED)
884 break;
885
886 /*
887 * A transaction isn't really completed until all of the
888 * previous transactions are completed, but with fsync we can
889 * end up with SUPER_COMMITTED transactions before a COMPLETED
890 * transaction. Wait for those.
891 */
892
893 spin_lock(&fs_info->trans_lock);
894 commit = list_first_entry_or_null(&fs_info->trans_list,
895 struct btrfs_transaction,
896 list);
897 if (!commit || commit->transid > transid) {
898 spin_unlock(&fs_info->trans_lock);
899 break;
900 }
901 refcount_inc(&commit->use_count);
902 put = true;
903 spin_unlock(&fs_info->trans_lock);
904 }
905 }
906
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)907 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
908 {
909 struct btrfs_transaction *cur_trans = NULL, *t;
910 int ret = 0;
911
912 if (transid) {
913 if (transid <= fs_info->last_trans_committed)
914 goto out;
915
916 /* find specified transaction */
917 spin_lock(&fs_info->trans_lock);
918 list_for_each_entry(t, &fs_info->trans_list, list) {
919 if (t->transid == transid) {
920 cur_trans = t;
921 refcount_inc(&cur_trans->use_count);
922 ret = 0;
923 break;
924 }
925 if (t->transid > transid) {
926 ret = 0;
927 break;
928 }
929 }
930 spin_unlock(&fs_info->trans_lock);
931
932 /*
933 * The specified transaction doesn't exist, or we
934 * raced with btrfs_commit_transaction
935 */
936 if (!cur_trans) {
937 if (transid > fs_info->last_trans_committed)
938 ret = -EINVAL;
939 goto out;
940 }
941 } else {
942 /* find newest transaction that is committing | committed */
943 spin_lock(&fs_info->trans_lock);
944 list_for_each_entry_reverse(t, &fs_info->trans_list,
945 list) {
946 if (t->state >= TRANS_STATE_COMMIT_START) {
947 if (t->state == TRANS_STATE_COMPLETED)
948 break;
949 cur_trans = t;
950 refcount_inc(&cur_trans->use_count);
951 break;
952 }
953 }
954 spin_unlock(&fs_info->trans_lock);
955 if (!cur_trans)
956 goto out; /* nothing committing|committed */
957 }
958
959 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
960 ret = cur_trans->aborted;
961 btrfs_put_transaction(cur_trans);
962 out:
963 return ret;
964 }
965
btrfs_throttle(struct btrfs_fs_info * fs_info)966 void btrfs_throttle(struct btrfs_fs_info *fs_info)
967 {
968 wait_current_trans(fs_info);
969 }
970
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)971 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
972 {
973 struct btrfs_transaction *cur_trans = trans->transaction;
974
975 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
976 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
977 return true;
978
979 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
980 return true;
981
982 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
983 }
984
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)985 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
986
987 {
988 struct btrfs_fs_info *fs_info = trans->fs_info;
989
990 if (!trans->block_rsv) {
991 ASSERT(!trans->bytes_reserved);
992 return;
993 }
994
995 if (!trans->bytes_reserved)
996 return;
997
998 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
999 trace_btrfs_space_reservation(fs_info, "transaction",
1000 trans->transid, trans->bytes_reserved, 0);
1001 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1002 trans->bytes_reserved, NULL);
1003 trans->bytes_reserved = 0;
1004 }
1005
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)1006 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1007 int throttle)
1008 {
1009 struct btrfs_fs_info *info = trans->fs_info;
1010 struct btrfs_transaction *cur_trans = trans->transaction;
1011 int err = 0;
1012
1013 if (refcount_read(&trans->use_count) > 1) {
1014 refcount_dec(&trans->use_count);
1015 trans->block_rsv = trans->orig_rsv;
1016 return 0;
1017 }
1018
1019 btrfs_trans_release_metadata(trans);
1020 trans->block_rsv = NULL;
1021
1022 btrfs_create_pending_block_groups(trans);
1023
1024 btrfs_trans_release_chunk_metadata(trans);
1025
1026 if (trans->type & __TRANS_FREEZABLE)
1027 sb_end_intwrite(info->sb);
1028
1029 WARN_ON(cur_trans != info->running_transaction);
1030 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1031 atomic_dec(&cur_trans->num_writers);
1032 extwriter_counter_dec(cur_trans, trans->type);
1033
1034 cond_wake_up(&cur_trans->writer_wait);
1035
1036 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1037 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1038
1039 btrfs_put_transaction(cur_trans);
1040
1041 if (current->journal_info == trans)
1042 current->journal_info = NULL;
1043
1044 if (throttle)
1045 btrfs_run_delayed_iputs(info);
1046
1047 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1048 wake_up_process(info->transaction_kthread);
1049 if (TRANS_ABORTED(trans))
1050 err = trans->aborted;
1051 else
1052 err = -EROFS;
1053 }
1054
1055 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1056 return err;
1057 }
1058
btrfs_end_transaction(struct btrfs_trans_handle * trans)1059 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1060 {
1061 return __btrfs_end_transaction(trans, 0);
1062 }
1063
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1064 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1065 {
1066 return __btrfs_end_transaction(trans, 1);
1067 }
1068
1069 /*
1070 * when btree blocks are allocated, they have some corresponding bits set for
1071 * them in one of two extent_io trees. This is used to make sure all of
1072 * those extents are sent to disk but does not wait on them
1073 */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1074 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1075 struct extent_io_tree *dirty_pages, int mark)
1076 {
1077 int err = 0;
1078 int werr = 0;
1079 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1080 struct extent_state *cached_state = NULL;
1081 u64 start = 0;
1082 u64 end;
1083
1084 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1085 mark, &cached_state)) {
1086 bool wait_writeback = false;
1087
1088 err = convert_extent_bit(dirty_pages, start, end,
1089 EXTENT_NEED_WAIT,
1090 mark, &cached_state);
1091 /*
1092 * convert_extent_bit can return -ENOMEM, which is most of the
1093 * time a temporary error. So when it happens, ignore the error
1094 * and wait for writeback of this range to finish - because we
1095 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1096 * to __btrfs_wait_marked_extents() would not know that
1097 * writeback for this range started and therefore wouldn't
1098 * wait for it to finish - we don't want to commit a
1099 * superblock that points to btree nodes/leafs for which
1100 * writeback hasn't finished yet (and without errors).
1101 * We cleanup any entries left in the io tree when committing
1102 * the transaction (through extent_io_tree_release()).
1103 */
1104 if (err == -ENOMEM) {
1105 err = 0;
1106 wait_writeback = true;
1107 }
1108 if (!err)
1109 err = filemap_fdatawrite_range(mapping, start, end);
1110 if (err)
1111 werr = err;
1112 else if (wait_writeback)
1113 werr = filemap_fdatawait_range(mapping, start, end);
1114 free_extent_state(cached_state);
1115 cached_state = NULL;
1116 cond_resched();
1117 start = end + 1;
1118 }
1119 return werr;
1120 }
1121
1122 /*
1123 * when btree blocks are allocated, they have some corresponding bits set for
1124 * them in one of two extent_io trees. This is used to make sure all of
1125 * those extents are on disk for transaction or log commit. We wait
1126 * on all the pages and clear them from the dirty pages state tree
1127 */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1128 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1129 struct extent_io_tree *dirty_pages)
1130 {
1131 int err = 0;
1132 int werr = 0;
1133 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1134 struct extent_state *cached_state = NULL;
1135 u64 start = 0;
1136 u64 end;
1137
1138 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1139 EXTENT_NEED_WAIT, &cached_state)) {
1140 /*
1141 * Ignore -ENOMEM errors returned by clear_extent_bit().
1142 * When committing the transaction, we'll remove any entries
1143 * left in the io tree. For a log commit, we don't remove them
1144 * after committing the log because the tree can be accessed
1145 * concurrently - we do it only at transaction commit time when
1146 * it's safe to do it (through extent_io_tree_release()).
1147 */
1148 err = clear_extent_bit(dirty_pages, start, end,
1149 EXTENT_NEED_WAIT, &cached_state);
1150 if (err == -ENOMEM)
1151 err = 0;
1152 if (!err)
1153 err = filemap_fdatawait_range(mapping, start, end);
1154 if (err)
1155 werr = err;
1156 free_extent_state(cached_state);
1157 cached_state = NULL;
1158 cond_resched();
1159 start = end + 1;
1160 }
1161 if (err)
1162 werr = err;
1163 return werr;
1164 }
1165
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1166 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1167 struct extent_io_tree *dirty_pages)
1168 {
1169 bool errors = false;
1170 int err;
1171
1172 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1173 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1174 errors = true;
1175
1176 if (errors && !err)
1177 err = -EIO;
1178 return err;
1179 }
1180
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1181 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1182 {
1183 struct btrfs_fs_info *fs_info = log_root->fs_info;
1184 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1185 bool errors = false;
1186 int err;
1187
1188 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1189
1190 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1191 if ((mark & EXTENT_DIRTY) &&
1192 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1193 errors = true;
1194
1195 if ((mark & EXTENT_NEW) &&
1196 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1197 errors = true;
1198
1199 if (errors && !err)
1200 err = -EIO;
1201 return err;
1202 }
1203
1204 /*
1205 * When btree blocks are allocated the corresponding extents are marked dirty.
1206 * This function ensures such extents are persisted on disk for transaction or
1207 * log commit.
1208 *
1209 * @trans: transaction whose dirty pages we'd like to write
1210 */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1211 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1212 {
1213 int ret;
1214 int ret2;
1215 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1216 struct btrfs_fs_info *fs_info = trans->fs_info;
1217 struct blk_plug plug;
1218
1219 blk_start_plug(&plug);
1220 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1221 blk_finish_plug(&plug);
1222 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1223
1224 extent_io_tree_release(&trans->transaction->dirty_pages);
1225
1226 if (ret)
1227 return ret;
1228 else if (ret2)
1229 return ret2;
1230 else
1231 return 0;
1232 }
1233
1234 /*
1235 * this is used to update the root pointer in the tree of tree roots.
1236 *
1237 * But, in the case of the extent allocation tree, updating the root
1238 * pointer may allocate blocks which may change the root of the extent
1239 * allocation tree.
1240 *
1241 * So, this loops and repeats and makes sure the cowonly root didn't
1242 * change while the root pointer was being updated in the metadata.
1243 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1244 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1245 struct btrfs_root *root)
1246 {
1247 int ret;
1248 u64 old_root_bytenr;
1249 u64 old_root_used;
1250 struct btrfs_fs_info *fs_info = root->fs_info;
1251 struct btrfs_root *tree_root = fs_info->tree_root;
1252
1253 old_root_used = btrfs_root_used(&root->root_item);
1254
1255 while (1) {
1256 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1257 if (old_root_bytenr == root->node->start &&
1258 old_root_used == btrfs_root_used(&root->root_item))
1259 break;
1260
1261 btrfs_set_root_node(&root->root_item, root->node);
1262 ret = btrfs_update_root(trans, tree_root,
1263 &root->root_key,
1264 &root->root_item);
1265 if (ret)
1266 return ret;
1267
1268 old_root_used = btrfs_root_used(&root->root_item);
1269 }
1270
1271 return 0;
1272 }
1273
1274 /*
1275 * update all the cowonly tree roots on disk
1276 *
1277 * The error handling in this function may not be obvious. Any of the
1278 * failures will cause the file system to go offline. We still need
1279 * to clean up the delayed refs.
1280 */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1281 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1282 {
1283 struct btrfs_fs_info *fs_info = trans->fs_info;
1284 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1285 struct list_head *io_bgs = &trans->transaction->io_bgs;
1286 struct list_head *next;
1287 struct extent_buffer *eb;
1288 int ret;
1289
1290 /*
1291 * At this point no one can be using this transaction to modify any tree
1292 * and no one can start another transaction to modify any tree either.
1293 */
1294 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1295
1296 eb = btrfs_lock_root_node(fs_info->tree_root);
1297 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1298 0, &eb, BTRFS_NESTING_COW);
1299 btrfs_tree_unlock(eb);
1300 free_extent_buffer(eb);
1301
1302 if (ret)
1303 return ret;
1304
1305 ret = btrfs_run_dev_stats(trans);
1306 if (ret)
1307 return ret;
1308 ret = btrfs_run_dev_replace(trans);
1309 if (ret)
1310 return ret;
1311 ret = btrfs_run_qgroups(trans);
1312 if (ret)
1313 return ret;
1314
1315 ret = btrfs_setup_space_cache(trans);
1316 if (ret)
1317 return ret;
1318
1319 again:
1320 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1321 struct btrfs_root *root;
1322 next = fs_info->dirty_cowonly_roots.next;
1323 list_del_init(next);
1324 root = list_entry(next, struct btrfs_root, dirty_list);
1325 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1326
1327 list_add_tail(&root->dirty_list,
1328 &trans->transaction->switch_commits);
1329 ret = update_cowonly_root(trans, root);
1330 if (ret)
1331 return ret;
1332 }
1333
1334 /* Now flush any delayed refs generated by updating all of the roots */
1335 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1336 if (ret)
1337 return ret;
1338
1339 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1340 ret = btrfs_write_dirty_block_groups(trans);
1341 if (ret)
1342 return ret;
1343
1344 /*
1345 * We're writing the dirty block groups, which could generate
1346 * delayed refs, which could generate more dirty block groups,
1347 * so we want to keep this flushing in this loop to make sure
1348 * everything gets run.
1349 */
1350 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1351 if (ret)
1352 return ret;
1353 }
1354
1355 if (!list_empty(&fs_info->dirty_cowonly_roots))
1356 goto again;
1357
1358 /* Update dev-replace pointer once everything is committed */
1359 fs_info->dev_replace.committed_cursor_left =
1360 fs_info->dev_replace.cursor_left_last_write_of_item;
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * If we had a pending drop we need to see if there are any others left in our
1367 * dead roots list, and if not clear our bit and wake any waiters.
1368 */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1369 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1370 {
1371 /*
1372 * We put the drop in progress roots at the front of the list, so if the
1373 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1374 * up.
1375 */
1376 spin_lock(&fs_info->trans_lock);
1377 if (!list_empty(&fs_info->dead_roots)) {
1378 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1379 struct btrfs_root,
1380 root_list);
1381 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1382 spin_unlock(&fs_info->trans_lock);
1383 return;
1384 }
1385 }
1386 spin_unlock(&fs_info->trans_lock);
1387
1388 btrfs_wake_unfinished_drop(fs_info);
1389 }
1390
1391 /*
1392 * dead roots are old snapshots that need to be deleted. This allocates
1393 * a dirty root struct and adds it into the list of dead roots that need to
1394 * be deleted
1395 */
btrfs_add_dead_root(struct btrfs_root * root)1396 void btrfs_add_dead_root(struct btrfs_root *root)
1397 {
1398 struct btrfs_fs_info *fs_info = root->fs_info;
1399
1400 spin_lock(&fs_info->trans_lock);
1401 if (list_empty(&root->root_list)) {
1402 btrfs_grab_root(root);
1403
1404 /* We want to process the partially complete drops first. */
1405 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1406 list_add(&root->root_list, &fs_info->dead_roots);
1407 else
1408 list_add_tail(&root->root_list, &fs_info->dead_roots);
1409 }
1410 spin_unlock(&fs_info->trans_lock);
1411 }
1412
1413 /*
1414 * Update each subvolume root and its relocation root, if it exists, in the tree
1415 * of tree roots. Also free log roots if they exist.
1416 */
commit_fs_roots(struct btrfs_trans_handle * trans)1417 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1418 {
1419 struct btrfs_fs_info *fs_info = trans->fs_info;
1420 struct btrfs_root *gang[8];
1421 int i;
1422 int ret;
1423
1424 /*
1425 * At this point no one can be using this transaction to modify any tree
1426 * and no one can start another transaction to modify any tree either.
1427 */
1428 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1429
1430 spin_lock(&fs_info->fs_roots_radix_lock);
1431 while (1) {
1432 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1433 (void **)gang, 0,
1434 ARRAY_SIZE(gang),
1435 BTRFS_ROOT_TRANS_TAG);
1436 if (ret == 0)
1437 break;
1438 for (i = 0; i < ret; i++) {
1439 struct btrfs_root *root = gang[i];
1440 int ret2;
1441
1442 /*
1443 * At this point we can neither have tasks logging inodes
1444 * from a root nor trying to commit a log tree.
1445 */
1446 ASSERT(atomic_read(&root->log_writers) == 0);
1447 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1448 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1449
1450 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1451 (unsigned long)root->root_key.objectid,
1452 BTRFS_ROOT_TRANS_TAG);
1453 spin_unlock(&fs_info->fs_roots_radix_lock);
1454
1455 btrfs_free_log(trans, root);
1456 ret2 = btrfs_update_reloc_root(trans, root);
1457 if (ret2)
1458 return ret2;
1459
1460 /* see comments in should_cow_block() */
1461 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1462 smp_mb__after_atomic();
1463
1464 if (root->commit_root != root->node) {
1465 list_add_tail(&root->dirty_list,
1466 &trans->transaction->switch_commits);
1467 btrfs_set_root_node(&root->root_item,
1468 root->node);
1469 }
1470
1471 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1472 &root->root_key,
1473 &root->root_item);
1474 if (ret2)
1475 return ret2;
1476 spin_lock(&fs_info->fs_roots_radix_lock);
1477 btrfs_qgroup_free_meta_all_pertrans(root);
1478 }
1479 }
1480 spin_unlock(&fs_info->fs_roots_radix_lock);
1481 return 0;
1482 }
1483
1484 /*
1485 * defrag a given btree.
1486 * Every leaf in the btree is read and defragged.
1487 */
btrfs_defrag_root(struct btrfs_root * root)1488 int btrfs_defrag_root(struct btrfs_root *root)
1489 {
1490 struct btrfs_fs_info *info = root->fs_info;
1491 struct btrfs_trans_handle *trans;
1492 int ret;
1493
1494 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1495 return 0;
1496
1497 while (1) {
1498 trans = btrfs_start_transaction(root, 0);
1499 if (IS_ERR(trans)) {
1500 ret = PTR_ERR(trans);
1501 break;
1502 }
1503
1504 ret = btrfs_defrag_leaves(trans, root);
1505
1506 btrfs_end_transaction(trans);
1507 btrfs_btree_balance_dirty(info);
1508 cond_resched();
1509
1510 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1511 break;
1512
1513 if (btrfs_defrag_cancelled(info)) {
1514 btrfs_debug(info, "defrag_root cancelled");
1515 ret = -EAGAIN;
1516 break;
1517 }
1518 }
1519 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1520 return ret;
1521 }
1522
1523 /*
1524 * Do all special snapshot related qgroup dirty hack.
1525 *
1526 * Will do all needed qgroup inherit and dirty hack like switch commit
1527 * roots inside one transaction and write all btree into disk, to make
1528 * qgroup works.
1529 */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1530 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1531 struct btrfs_root *src,
1532 struct btrfs_root *parent,
1533 struct btrfs_qgroup_inherit *inherit,
1534 u64 dst_objectid)
1535 {
1536 struct btrfs_fs_info *fs_info = src->fs_info;
1537 int ret;
1538
1539 /*
1540 * Save some performance in the case that qgroups are not
1541 * enabled. If this check races with the ioctl, rescan will
1542 * kick in anyway.
1543 */
1544 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1545 return 0;
1546
1547 /*
1548 * Ensure dirty @src will be committed. Or, after coming
1549 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1550 * recorded root will never be updated again, causing an outdated root
1551 * item.
1552 */
1553 ret = record_root_in_trans(trans, src, 1);
1554 if (ret)
1555 return ret;
1556
1557 /*
1558 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1559 * src root, so we must run the delayed refs here.
1560 *
1561 * However this isn't particularly fool proof, because there's no
1562 * synchronization keeping us from changing the tree after this point
1563 * before we do the qgroup_inherit, or even from making changes while
1564 * we're doing the qgroup_inherit. But that's a problem for the future,
1565 * for now flush the delayed refs to narrow the race window where the
1566 * qgroup counters could end up wrong.
1567 */
1568 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1569 if (ret) {
1570 btrfs_abort_transaction(trans, ret);
1571 return ret;
1572 }
1573
1574 ret = commit_fs_roots(trans);
1575 if (ret)
1576 goto out;
1577 ret = btrfs_qgroup_account_extents(trans);
1578 if (ret < 0)
1579 goto out;
1580
1581 /* Now qgroup are all updated, we can inherit it to new qgroups */
1582 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1583 inherit);
1584 if (ret < 0)
1585 goto out;
1586
1587 /*
1588 * Now we do a simplified commit transaction, which will:
1589 * 1) commit all subvolume and extent tree
1590 * To ensure all subvolume and extent tree have a valid
1591 * commit_root to accounting later insert_dir_item()
1592 * 2) write all btree blocks onto disk
1593 * This is to make sure later btree modification will be cowed
1594 * Or commit_root can be populated and cause wrong qgroup numbers
1595 * In this simplified commit, we don't really care about other trees
1596 * like chunk and root tree, as they won't affect qgroup.
1597 * And we don't write super to avoid half committed status.
1598 */
1599 ret = commit_cowonly_roots(trans);
1600 if (ret)
1601 goto out;
1602 switch_commit_roots(trans);
1603 ret = btrfs_write_and_wait_transaction(trans);
1604 if (ret)
1605 btrfs_handle_fs_error(fs_info, ret,
1606 "Error while writing out transaction for qgroup");
1607
1608 out:
1609 /*
1610 * Force parent root to be updated, as we recorded it before so its
1611 * last_trans == cur_transid.
1612 * Or it won't be committed again onto disk after later
1613 * insert_dir_item()
1614 */
1615 if (!ret)
1616 ret = record_root_in_trans(trans, parent, 1);
1617 return ret;
1618 }
1619
1620 /*
1621 * new snapshots need to be created at a very specific time in the
1622 * transaction commit. This does the actual creation.
1623 *
1624 * Note:
1625 * If the error which may affect the commitment of the current transaction
1626 * happens, we should return the error number. If the error which just affect
1627 * the creation of the pending snapshots, just return 0.
1628 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1629 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1630 struct btrfs_pending_snapshot *pending)
1631 {
1632
1633 struct btrfs_fs_info *fs_info = trans->fs_info;
1634 struct btrfs_key key;
1635 struct btrfs_root_item *new_root_item;
1636 struct btrfs_root *tree_root = fs_info->tree_root;
1637 struct btrfs_root *root = pending->root;
1638 struct btrfs_root *parent_root;
1639 struct btrfs_block_rsv *rsv;
1640 struct inode *parent_inode = pending->dir;
1641 struct btrfs_path *path;
1642 struct btrfs_dir_item *dir_item;
1643 struct extent_buffer *tmp;
1644 struct extent_buffer *old;
1645 struct timespec64 cur_time;
1646 int ret = 0;
1647 u64 to_reserve = 0;
1648 u64 index = 0;
1649 u64 objectid;
1650 u64 root_flags;
1651 unsigned int nofs_flags;
1652 struct fscrypt_name fname;
1653
1654 ASSERT(pending->path);
1655 path = pending->path;
1656
1657 ASSERT(pending->root_item);
1658 new_root_item = pending->root_item;
1659
1660 /*
1661 * We're inside a transaction and must make sure that any potential
1662 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1663 * filesystem.
1664 */
1665 nofs_flags = memalloc_nofs_save();
1666 pending->error = fscrypt_setup_filename(parent_inode,
1667 &pending->dentry->d_name, 0,
1668 &fname);
1669 memalloc_nofs_restore(nofs_flags);
1670 if (pending->error)
1671 goto free_pending;
1672
1673 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1674 if (pending->error)
1675 goto free_fname;
1676
1677 /*
1678 * Make qgroup to skip current new snapshot's qgroupid, as it is
1679 * accounted by later btrfs_qgroup_inherit().
1680 */
1681 btrfs_set_skip_qgroup(trans, objectid);
1682
1683 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1684
1685 if (to_reserve > 0) {
1686 pending->error = btrfs_block_rsv_add(fs_info,
1687 &pending->block_rsv,
1688 to_reserve,
1689 BTRFS_RESERVE_NO_FLUSH);
1690 if (pending->error)
1691 goto clear_skip_qgroup;
1692 }
1693
1694 key.objectid = objectid;
1695 key.offset = (u64)-1;
1696 key.type = BTRFS_ROOT_ITEM_KEY;
1697
1698 rsv = trans->block_rsv;
1699 trans->block_rsv = &pending->block_rsv;
1700 trans->bytes_reserved = trans->block_rsv->reserved;
1701 trace_btrfs_space_reservation(fs_info, "transaction",
1702 trans->transid,
1703 trans->bytes_reserved, 1);
1704 parent_root = BTRFS_I(parent_inode)->root;
1705 ret = record_root_in_trans(trans, parent_root, 0);
1706 if (ret)
1707 goto fail;
1708 cur_time = current_time(parent_inode);
1709
1710 /*
1711 * insert the directory item
1712 */
1713 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1714 if (ret) {
1715 btrfs_abort_transaction(trans, ret);
1716 goto fail;
1717 }
1718
1719 /* check if there is a file/dir which has the same name. */
1720 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1721 btrfs_ino(BTRFS_I(parent_inode)),
1722 &fname.disk_name, 0);
1723 if (dir_item != NULL && !IS_ERR(dir_item)) {
1724 pending->error = -EEXIST;
1725 goto dir_item_existed;
1726 } else if (IS_ERR(dir_item)) {
1727 ret = PTR_ERR(dir_item);
1728 btrfs_abort_transaction(trans, ret);
1729 goto fail;
1730 }
1731 btrfs_release_path(path);
1732
1733 /*
1734 * pull in the delayed directory update
1735 * and the delayed inode item
1736 * otherwise we corrupt the FS during
1737 * snapshot
1738 */
1739 ret = btrfs_run_delayed_items(trans);
1740 if (ret) { /* Transaction aborted */
1741 btrfs_abort_transaction(trans, ret);
1742 goto fail;
1743 }
1744
1745 ret = record_root_in_trans(trans, root, 0);
1746 if (ret) {
1747 btrfs_abort_transaction(trans, ret);
1748 goto fail;
1749 }
1750 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1751 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1752 btrfs_check_and_init_root_item(new_root_item);
1753
1754 root_flags = btrfs_root_flags(new_root_item);
1755 if (pending->readonly)
1756 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1757 else
1758 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1759 btrfs_set_root_flags(new_root_item, root_flags);
1760
1761 btrfs_set_root_generation_v2(new_root_item,
1762 trans->transid);
1763 generate_random_guid(new_root_item->uuid);
1764 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1765 BTRFS_UUID_SIZE);
1766 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1767 memset(new_root_item->received_uuid, 0,
1768 sizeof(new_root_item->received_uuid));
1769 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1770 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1771 btrfs_set_root_stransid(new_root_item, 0);
1772 btrfs_set_root_rtransid(new_root_item, 0);
1773 }
1774 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1775 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1776 btrfs_set_root_otransid(new_root_item, trans->transid);
1777
1778 old = btrfs_lock_root_node(root);
1779 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1780 BTRFS_NESTING_COW);
1781 if (ret) {
1782 btrfs_tree_unlock(old);
1783 free_extent_buffer(old);
1784 btrfs_abort_transaction(trans, ret);
1785 goto fail;
1786 }
1787
1788 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1789 /* clean up in any case */
1790 btrfs_tree_unlock(old);
1791 free_extent_buffer(old);
1792 if (ret) {
1793 btrfs_abort_transaction(trans, ret);
1794 goto fail;
1795 }
1796 /* see comments in should_cow_block() */
1797 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1798 smp_wmb();
1799
1800 btrfs_set_root_node(new_root_item, tmp);
1801 /* record when the snapshot was created in key.offset */
1802 key.offset = trans->transid;
1803 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1804 btrfs_tree_unlock(tmp);
1805 free_extent_buffer(tmp);
1806 if (ret) {
1807 btrfs_abort_transaction(trans, ret);
1808 goto fail;
1809 }
1810
1811 /*
1812 * insert root back/forward references
1813 */
1814 ret = btrfs_add_root_ref(trans, objectid,
1815 parent_root->root_key.objectid,
1816 btrfs_ino(BTRFS_I(parent_inode)), index,
1817 &fname.disk_name);
1818 if (ret) {
1819 btrfs_abort_transaction(trans, ret);
1820 goto fail;
1821 }
1822
1823 key.offset = (u64)-1;
1824 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1825 if (IS_ERR(pending->snap)) {
1826 ret = PTR_ERR(pending->snap);
1827 pending->snap = NULL;
1828 btrfs_abort_transaction(trans, ret);
1829 goto fail;
1830 }
1831
1832 ret = btrfs_reloc_post_snapshot(trans, pending);
1833 if (ret) {
1834 btrfs_abort_transaction(trans, ret);
1835 goto fail;
1836 }
1837
1838 /*
1839 * Do special qgroup accounting for snapshot, as we do some qgroup
1840 * snapshot hack to do fast snapshot.
1841 * To co-operate with that hack, we do hack again.
1842 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1843 */
1844 ret = qgroup_account_snapshot(trans, root, parent_root,
1845 pending->inherit, objectid);
1846 if (ret < 0)
1847 goto fail;
1848
1849 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1850 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1851 index);
1852 /* We have check then name at the beginning, so it is impossible. */
1853 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1854 if (ret) {
1855 btrfs_abort_transaction(trans, ret);
1856 goto fail;
1857 }
1858
1859 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1860 fname.disk_name.len * 2);
1861 parent_inode->i_mtime = inode_set_ctime_current(parent_inode);
1862 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1863 if (ret) {
1864 btrfs_abort_transaction(trans, ret);
1865 goto fail;
1866 }
1867 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1868 BTRFS_UUID_KEY_SUBVOL,
1869 objectid);
1870 if (ret) {
1871 btrfs_abort_transaction(trans, ret);
1872 goto fail;
1873 }
1874 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1875 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1876 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1877 objectid);
1878 if (ret && ret != -EEXIST) {
1879 btrfs_abort_transaction(trans, ret);
1880 goto fail;
1881 }
1882 }
1883
1884 fail:
1885 pending->error = ret;
1886 dir_item_existed:
1887 trans->block_rsv = rsv;
1888 trans->bytes_reserved = 0;
1889 clear_skip_qgroup:
1890 btrfs_clear_skip_qgroup(trans);
1891 free_fname:
1892 fscrypt_free_filename(&fname);
1893 free_pending:
1894 kfree(new_root_item);
1895 pending->root_item = NULL;
1896 btrfs_free_path(path);
1897 pending->path = NULL;
1898
1899 return ret;
1900 }
1901
1902 /*
1903 * create all the snapshots we've scheduled for creation
1904 */
create_pending_snapshots(struct btrfs_trans_handle * trans)1905 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1906 {
1907 struct btrfs_pending_snapshot *pending, *next;
1908 struct list_head *head = &trans->transaction->pending_snapshots;
1909 int ret = 0;
1910
1911 list_for_each_entry_safe(pending, next, head, list) {
1912 list_del(&pending->list);
1913 ret = create_pending_snapshot(trans, pending);
1914 if (ret)
1915 break;
1916 }
1917 return ret;
1918 }
1919
update_super_roots(struct btrfs_fs_info * fs_info)1920 static void update_super_roots(struct btrfs_fs_info *fs_info)
1921 {
1922 struct btrfs_root_item *root_item;
1923 struct btrfs_super_block *super;
1924
1925 super = fs_info->super_copy;
1926
1927 root_item = &fs_info->chunk_root->root_item;
1928 super->chunk_root = root_item->bytenr;
1929 super->chunk_root_generation = root_item->generation;
1930 super->chunk_root_level = root_item->level;
1931
1932 root_item = &fs_info->tree_root->root_item;
1933 super->root = root_item->bytenr;
1934 super->generation = root_item->generation;
1935 super->root_level = root_item->level;
1936 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1937 super->cache_generation = root_item->generation;
1938 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1939 super->cache_generation = 0;
1940 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1941 super->uuid_tree_generation = root_item->generation;
1942 }
1943
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1944 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1945 {
1946 struct btrfs_transaction *trans;
1947 int ret = 0;
1948
1949 spin_lock(&info->trans_lock);
1950 trans = info->running_transaction;
1951 if (trans)
1952 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1953 spin_unlock(&info->trans_lock);
1954 return ret;
1955 }
1956
btrfs_transaction_blocked(struct btrfs_fs_info * info)1957 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1958 {
1959 struct btrfs_transaction *trans;
1960 int ret = 0;
1961
1962 spin_lock(&info->trans_lock);
1963 trans = info->running_transaction;
1964 if (trans)
1965 ret = is_transaction_blocked(trans);
1966 spin_unlock(&info->trans_lock);
1967 return ret;
1968 }
1969
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1970 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1971 {
1972 struct btrfs_fs_info *fs_info = trans->fs_info;
1973 struct btrfs_transaction *cur_trans;
1974
1975 /* Kick the transaction kthread. */
1976 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1977 wake_up_process(fs_info->transaction_kthread);
1978
1979 /* take transaction reference */
1980 cur_trans = trans->transaction;
1981 refcount_inc(&cur_trans->use_count);
1982
1983 btrfs_end_transaction(trans);
1984
1985 /*
1986 * Wait for the current transaction commit to start and block
1987 * subsequent transaction joins
1988 */
1989 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1990 wait_event(fs_info->transaction_blocked_wait,
1991 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1992 TRANS_ABORTED(cur_trans));
1993 btrfs_put_transaction(cur_trans);
1994 }
1995
cleanup_transaction(struct btrfs_trans_handle * trans,int err)1996 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1997 {
1998 struct btrfs_fs_info *fs_info = trans->fs_info;
1999 struct btrfs_transaction *cur_trans = trans->transaction;
2000
2001 WARN_ON(refcount_read(&trans->use_count) > 1);
2002
2003 btrfs_abort_transaction(trans, err);
2004
2005 spin_lock(&fs_info->trans_lock);
2006
2007 /*
2008 * If the transaction is removed from the list, it means this
2009 * transaction has been committed successfully, so it is impossible
2010 * to call the cleanup function.
2011 */
2012 BUG_ON(list_empty(&cur_trans->list));
2013
2014 if (cur_trans == fs_info->running_transaction) {
2015 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2016 spin_unlock(&fs_info->trans_lock);
2017
2018 /*
2019 * The thread has already released the lockdep map as reader
2020 * already in btrfs_commit_transaction().
2021 */
2022 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2023 wait_event(cur_trans->writer_wait,
2024 atomic_read(&cur_trans->num_writers) == 1);
2025
2026 spin_lock(&fs_info->trans_lock);
2027 }
2028
2029 /*
2030 * Now that we know no one else is still using the transaction we can
2031 * remove the transaction from the list of transactions. This avoids
2032 * the transaction kthread from cleaning up the transaction while some
2033 * other task is still using it, which could result in a use-after-free
2034 * on things like log trees, as it forces the transaction kthread to
2035 * wait for this transaction to be cleaned up by us.
2036 */
2037 list_del_init(&cur_trans->list);
2038
2039 spin_unlock(&fs_info->trans_lock);
2040
2041 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2042
2043 spin_lock(&fs_info->trans_lock);
2044 if (cur_trans == fs_info->running_transaction)
2045 fs_info->running_transaction = NULL;
2046 spin_unlock(&fs_info->trans_lock);
2047
2048 if (trans->type & __TRANS_FREEZABLE)
2049 sb_end_intwrite(fs_info->sb);
2050 btrfs_put_transaction(cur_trans);
2051 btrfs_put_transaction(cur_trans);
2052
2053 trace_btrfs_transaction_commit(fs_info);
2054
2055 if (current->journal_info == trans)
2056 current->journal_info = NULL;
2057
2058 /*
2059 * If relocation is running, we can't cancel scrub because that will
2060 * result in a deadlock. Before relocating a block group, relocation
2061 * pauses scrub, then starts and commits a transaction before unpausing
2062 * scrub. If the transaction commit is being done by the relocation
2063 * task or triggered by another task and the relocation task is waiting
2064 * for the commit, and we end up here due to an error in the commit
2065 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2066 * asking for scrub to stop while having it asked to be paused higher
2067 * above in relocation code.
2068 */
2069 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2070 btrfs_scrub_cancel(fs_info);
2071
2072 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2073 }
2074
2075 /*
2076 * Release reserved delayed ref space of all pending block groups of the
2077 * transaction and remove them from the list
2078 */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2079 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2080 {
2081 struct btrfs_fs_info *fs_info = trans->fs_info;
2082 struct btrfs_block_group *block_group, *tmp;
2083
2084 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2085 btrfs_delayed_refs_rsv_release(fs_info, 1);
2086 list_del_init(&block_group->bg_list);
2087 }
2088 }
2089
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2090 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2091 {
2092 /*
2093 * We use try_to_writeback_inodes_sb() here because if we used
2094 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2095 * Currently are holding the fs freeze lock, if we do an async flush
2096 * we'll do btrfs_join_transaction() and deadlock because we need to
2097 * wait for the fs freeze lock. Using the direct flushing we benefit
2098 * from already being in a transaction and our join_transaction doesn't
2099 * have to re-take the fs freeze lock.
2100 *
2101 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2102 * if it can read lock sb->s_umount. It will always be able to lock it,
2103 * except when the filesystem is being unmounted or being frozen, but in
2104 * those cases sync_filesystem() is called, which results in calling
2105 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2106 * Note that we don't call writeback_inodes_sb() directly, because it
2107 * will emit a warning if sb->s_umount is not locked.
2108 */
2109 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2110 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2111 return 0;
2112 }
2113
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2114 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2115 {
2116 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2117 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2118 }
2119
2120 /*
2121 * Add a pending snapshot associated with the given transaction handle to the
2122 * respective handle. This must be called after the transaction commit started
2123 * and while holding fs_info->trans_lock.
2124 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2125 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2126 * returns an error.
2127 */
add_pending_snapshot(struct btrfs_trans_handle * trans)2128 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2129 {
2130 struct btrfs_transaction *cur_trans = trans->transaction;
2131
2132 if (!trans->pending_snapshot)
2133 return;
2134
2135 lockdep_assert_held(&trans->fs_info->trans_lock);
2136 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2137
2138 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2139 }
2140
update_commit_stats(struct btrfs_fs_info * fs_info,ktime_t interval)2141 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2142 {
2143 fs_info->commit_stats.commit_count++;
2144 fs_info->commit_stats.last_commit_dur = interval;
2145 fs_info->commit_stats.max_commit_dur =
2146 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2147 fs_info->commit_stats.total_commit_dur += interval;
2148 }
2149
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2150 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2151 {
2152 struct btrfs_fs_info *fs_info = trans->fs_info;
2153 struct btrfs_transaction *cur_trans = trans->transaction;
2154 struct btrfs_transaction *prev_trans = NULL;
2155 int ret;
2156 ktime_t start_time;
2157 ktime_t interval;
2158
2159 ASSERT(refcount_read(&trans->use_count) == 1);
2160 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2161
2162 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2163
2164 /* Stop the commit early if ->aborted is set */
2165 if (TRANS_ABORTED(cur_trans)) {
2166 ret = cur_trans->aborted;
2167 goto lockdep_trans_commit_start_release;
2168 }
2169
2170 btrfs_trans_release_metadata(trans);
2171 trans->block_rsv = NULL;
2172
2173 /*
2174 * We only want one transaction commit doing the flushing so we do not
2175 * waste a bunch of time on lock contention on the extent root node.
2176 */
2177 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2178 &cur_trans->delayed_refs.flags)) {
2179 /*
2180 * Make a pass through all the delayed refs we have so far.
2181 * Any running threads may add more while we are here.
2182 */
2183 ret = btrfs_run_delayed_refs(trans, 0);
2184 if (ret)
2185 goto lockdep_trans_commit_start_release;
2186 }
2187
2188 btrfs_create_pending_block_groups(trans);
2189
2190 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2191 int run_it = 0;
2192
2193 /* this mutex is also taken before trying to set
2194 * block groups readonly. We need to make sure
2195 * that nobody has set a block group readonly
2196 * after a extents from that block group have been
2197 * allocated for cache files. btrfs_set_block_group_ro
2198 * will wait for the transaction to commit if it
2199 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2200 *
2201 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2202 * only one process starts all the block group IO. It wouldn't
2203 * hurt to have more than one go through, but there's no
2204 * real advantage to it either.
2205 */
2206 mutex_lock(&fs_info->ro_block_group_mutex);
2207 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2208 &cur_trans->flags))
2209 run_it = 1;
2210 mutex_unlock(&fs_info->ro_block_group_mutex);
2211
2212 if (run_it) {
2213 ret = btrfs_start_dirty_block_groups(trans);
2214 if (ret)
2215 goto lockdep_trans_commit_start_release;
2216 }
2217 }
2218
2219 spin_lock(&fs_info->trans_lock);
2220 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2221 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2222
2223 add_pending_snapshot(trans);
2224
2225 spin_unlock(&fs_info->trans_lock);
2226 refcount_inc(&cur_trans->use_count);
2227
2228 if (trans->in_fsync)
2229 want_state = TRANS_STATE_SUPER_COMMITTED;
2230
2231 btrfs_trans_state_lockdep_release(fs_info,
2232 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2233 ret = btrfs_end_transaction(trans);
2234 wait_for_commit(cur_trans, want_state);
2235
2236 if (TRANS_ABORTED(cur_trans))
2237 ret = cur_trans->aborted;
2238
2239 btrfs_put_transaction(cur_trans);
2240
2241 return ret;
2242 }
2243
2244 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2245 wake_up(&fs_info->transaction_blocked_wait);
2246 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2247
2248 if (cur_trans->list.prev != &fs_info->trans_list) {
2249 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2250
2251 if (trans->in_fsync)
2252 want_state = TRANS_STATE_SUPER_COMMITTED;
2253
2254 prev_trans = list_entry(cur_trans->list.prev,
2255 struct btrfs_transaction, list);
2256 if (prev_trans->state < want_state) {
2257 refcount_inc(&prev_trans->use_count);
2258 spin_unlock(&fs_info->trans_lock);
2259
2260 wait_for_commit(prev_trans, want_state);
2261
2262 ret = READ_ONCE(prev_trans->aborted);
2263
2264 btrfs_put_transaction(prev_trans);
2265 if (ret)
2266 goto lockdep_release;
2267 spin_lock(&fs_info->trans_lock);
2268 }
2269 } else {
2270 /*
2271 * The previous transaction was aborted and was already removed
2272 * from the list of transactions at fs_info->trans_list. So we
2273 * abort to prevent writing a new superblock that reflects a
2274 * corrupt state (pointing to trees with unwritten nodes/leafs).
2275 */
2276 if (BTRFS_FS_ERROR(fs_info)) {
2277 spin_unlock(&fs_info->trans_lock);
2278 ret = -EROFS;
2279 goto lockdep_release;
2280 }
2281 }
2282
2283 cur_trans->state = TRANS_STATE_COMMIT_START;
2284 wake_up(&fs_info->transaction_blocked_wait);
2285 spin_unlock(&fs_info->trans_lock);
2286
2287 /*
2288 * Get the time spent on the work done by the commit thread and not
2289 * the time spent waiting on a previous commit
2290 */
2291 start_time = ktime_get_ns();
2292
2293 extwriter_counter_dec(cur_trans, trans->type);
2294
2295 ret = btrfs_start_delalloc_flush(fs_info);
2296 if (ret)
2297 goto lockdep_release;
2298
2299 ret = btrfs_run_delayed_items(trans);
2300 if (ret)
2301 goto lockdep_release;
2302
2303 /*
2304 * The thread has started/joined the transaction thus it holds the
2305 * lockdep map as a reader. It has to release it before acquiring the
2306 * lockdep map as a writer.
2307 */
2308 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2309 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2310 wait_event(cur_trans->writer_wait,
2311 extwriter_counter_read(cur_trans) == 0);
2312
2313 /* some pending stuffs might be added after the previous flush. */
2314 ret = btrfs_run_delayed_items(trans);
2315 if (ret) {
2316 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2317 goto cleanup_transaction;
2318 }
2319
2320 btrfs_wait_delalloc_flush(fs_info);
2321
2322 /*
2323 * Wait for all ordered extents started by a fast fsync that joined this
2324 * transaction. Otherwise if this transaction commits before the ordered
2325 * extents complete we lose logged data after a power failure.
2326 */
2327 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2328 wait_event(cur_trans->pending_wait,
2329 atomic_read(&cur_trans->pending_ordered) == 0);
2330
2331 btrfs_scrub_pause(fs_info);
2332 /*
2333 * Ok now we need to make sure to block out any other joins while we
2334 * commit the transaction. We could have started a join before setting
2335 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2336 */
2337 spin_lock(&fs_info->trans_lock);
2338 add_pending_snapshot(trans);
2339 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2340 spin_unlock(&fs_info->trans_lock);
2341
2342 /*
2343 * The thread has started/joined the transaction thus it holds the
2344 * lockdep map as a reader. It has to release it before acquiring the
2345 * lockdep map as a writer.
2346 */
2347 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2348 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2349 wait_event(cur_trans->writer_wait,
2350 atomic_read(&cur_trans->num_writers) == 1);
2351
2352 /*
2353 * Make lockdep happy by acquiring the state locks after
2354 * btrfs_trans_num_writers is released. If we acquired the state locks
2355 * before releasing the btrfs_trans_num_writers lock then lockdep would
2356 * complain because we did not follow the reverse order unlocking rule.
2357 */
2358 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2359 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2360 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2361
2362 /*
2363 * We've started the commit, clear the flag in case we were triggered to
2364 * do an async commit but somebody else started before the transaction
2365 * kthread could do the work.
2366 */
2367 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2368
2369 if (TRANS_ABORTED(cur_trans)) {
2370 ret = cur_trans->aborted;
2371 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2372 goto scrub_continue;
2373 }
2374 /*
2375 * the reloc mutex makes sure that we stop
2376 * the balancing code from coming in and moving
2377 * extents around in the middle of the commit
2378 */
2379 mutex_lock(&fs_info->reloc_mutex);
2380
2381 /*
2382 * We needn't worry about the delayed items because we will
2383 * deal with them in create_pending_snapshot(), which is the
2384 * core function of the snapshot creation.
2385 */
2386 ret = create_pending_snapshots(trans);
2387 if (ret)
2388 goto unlock_reloc;
2389
2390 /*
2391 * We insert the dir indexes of the snapshots and update the inode
2392 * of the snapshots' parents after the snapshot creation, so there
2393 * are some delayed items which are not dealt with. Now deal with
2394 * them.
2395 *
2396 * We needn't worry that this operation will corrupt the snapshots,
2397 * because all the tree which are snapshoted will be forced to COW
2398 * the nodes and leaves.
2399 */
2400 ret = btrfs_run_delayed_items(trans);
2401 if (ret)
2402 goto unlock_reloc;
2403
2404 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2405 if (ret)
2406 goto unlock_reloc;
2407
2408 /*
2409 * make sure none of the code above managed to slip in a
2410 * delayed item
2411 */
2412 btrfs_assert_delayed_root_empty(fs_info);
2413
2414 WARN_ON(cur_trans != trans->transaction);
2415
2416 ret = commit_fs_roots(trans);
2417 if (ret)
2418 goto unlock_reloc;
2419
2420 /* commit_fs_roots gets rid of all the tree log roots, it is now
2421 * safe to free the root of tree log roots
2422 */
2423 btrfs_free_log_root_tree(trans, fs_info);
2424
2425 /*
2426 * Since fs roots are all committed, we can get a quite accurate
2427 * new_roots. So let's do quota accounting.
2428 */
2429 ret = btrfs_qgroup_account_extents(trans);
2430 if (ret < 0)
2431 goto unlock_reloc;
2432
2433 ret = commit_cowonly_roots(trans);
2434 if (ret)
2435 goto unlock_reloc;
2436
2437 /*
2438 * The tasks which save the space cache and inode cache may also
2439 * update ->aborted, check it.
2440 */
2441 if (TRANS_ABORTED(cur_trans)) {
2442 ret = cur_trans->aborted;
2443 goto unlock_reloc;
2444 }
2445
2446 cur_trans = fs_info->running_transaction;
2447
2448 btrfs_set_root_node(&fs_info->tree_root->root_item,
2449 fs_info->tree_root->node);
2450 list_add_tail(&fs_info->tree_root->dirty_list,
2451 &cur_trans->switch_commits);
2452
2453 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2454 fs_info->chunk_root->node);
2455 list_add_tail(&fs_info->chunk_root->dirty_list,
2456 &cur_trans->switch_commits);
2457
2458 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2459 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2460 fs_info->block_group_root->node);
2461 list_add_tail(&fs_info->block_group_root->dirty_list,
2462 &cur_trans->switch_commits);
2463 }
2464
2465 switch_commit_roots(trans);
2466
2467 ASSERT(list_empty(&cur_trans->dirty_bgs));
2468 ASSERT(list_empty(&cur_trans->io_bgs));
2469 update_super_roots(fs_info);
2470
2471 btrfs_set_super_log_root(fs_info->super_copy, 0);
2472 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2473 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2474 sizeof(*fs_info->super_copy));
2475
2476 btrfs_commit_device_sizes(cur_trans);
2477
2478 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2479 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2480
2481 btrfs_trans_release_chunk_metadata(trans);
2482
2483 /*
2484 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2485 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2486 * make sure that before we commit our superblock, no other task can
2487 * start a new transaction and commit a log tree before we commit our
2488 * superblock. Anyone trying to commit a log tree locks this mutex before
2489 * writing its superblock.
2490 */
2491 mutex_lock(&fs_info->tree_log_mutex);
2492
2493 spin_lock(&fs_info->trans_lock);
2494 cur_trans->state = TRANS_STATE_UNBLOCKED;
2495 fs_info->running_transaction = NULL;
2496 spin_unlock(&fs_info->trans_lock);
2497 mutex_unlock(&fs_info->reloc_mutex);
2498
2499 wake_up(&fs_info->transaction_wait);
2500 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2501
2502 /* If we have features changed, wake up the cleaner to update sysfs. */
2503 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2504 fs_info->cleaner_kthread)
2505 wake_up_process(fs_info->cleaner_kthread);
2506
2507 ret = btrfs_write_and_wait_transaction(trans);
2508 if (ret) {
2509 btrfs_handle_fs_error(fs_info, ret,
2510 "Error while writing out transaction");
2511 mutex_unlock(&fs_info->tree_log_mutex);
2512 goto scrub_continue;
2513 }
2514
2515 ret = write_all_supers(fs_info, 0);
2516 /*
2517 * the super is written, we can safely allow the tree-loggers
2518 * to go about their business
2519 */
2520 mutex_unlock(&fs_info->tree_log_mutex);
2521 if (ret)
2522 goto scrub_continue;
2523
2524 /*
2525 * We needn't acquire the lock here because there is no other task
2526 * which can change it.
2527 */
2528 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2529 wake_up(&cur_trans->commit_wait);
2530 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2531
2532 btrfs_finish_extent_commit(trans);
2533
2534 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2535 btrfs_clear_space_info_full(fs_info);
2536
2537 fs_info->last_trans_committed = cur_trans->transid;
2538 /*
2539 * We needn't acquire the lock here because there is no other task
2540 * which can change it.
2541 */
2542 cur_trans->state = TRANS_STATE_COMPLETED;
2543 wake_up(&cur_trans->commit_wait);
2544 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2545
2546 spin_lock(&fs_info->trans_lock);
2547 list_del_init(&cur_trans->list);
2548 spin_unlock(&fs_info->trans_lock);
2549
2550 btrfs_put_transaction(cur_trans);
2551 btrfs_put_transaction(cur_trans);
2552
2553 if (trans->type & __TRANS_FREEZABLE)
2554 sb_end_intwrite(fs_info->sb);
2555
2556 trace_btrfs_transaction_commit(fs_info);
2557
2558 interval = ktime_get_ns() - start_time;
2559
2560 btrfs_scrub_continue(fs_info);
2561
2562 if (current->journal_info == trans)
2563 current->journal_info = NULL;
2564
2565 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2566
2567 update_commit_stats(fs_info, interval);
2568
2569 return ret;
2570
2571 unlock_reloc:
2572 mutex_unlock(&fs_info->reloc_mutex);
2573 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2574 scrub_continue:
2575 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2576 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2577 btrfs_scrub_continue(fs_info);
2578 cleanup_transaction:
2579 btrfs_trans_release_metadata(trans);
2580 btrfs_cleanup_pending_block_groups(trans);
2581 btrfs_trans_release_chunk_metadata(trans);
2582 trans->block_rsv = NULL;
2583 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2584 if (current->journal_info == trans)
2585 current->journal_info = NULL;
2586 cleanup_transaction(trans, ret);
2587
2588 return ret;
2589
2590 lockdep_release:
2591 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2592 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2593 goto cleanup_transaction;
2594
2595 lockdep_trans_commit_start_release:
2596 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2597 btrfs_end_transaction(trans);
2598 return ret;
2599 }
2600
2601 /*
2602 * return < 0 if error
2603 * 0 if there are no more dead_roots at the time of call
2604 * 1 there are more to be processed, call me again
2605 *
2606 * The return value indicates there are certainly more snapshots to delete, but
2607 * if there comes a new one during processing, it may return 0. We don't mind,
2608 * because btrfs_commit_super will poke cleaner thread and it will process it a
2609 * few seconds later.
2610 */
btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info * fs_info)2611 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2612 {
2613 struct btrfs_root *root;
2614 int ret;
2615
2616 spin_lock(&fs_info->trans_lock);
2617 if (list_empty(&fs_info->dead_roots)) {
2618 spin_unlock(&fs_info->trans_lock);
2619 return 0;
2620 }
2621 root = list_first_entry(&fs_info->dead_roots,
2622 struct btrfs_root, root_list);
2623 list_del_init(&root->root_list);
2624 spin_unlock(&fs_info->trans_lock);
2625
2626 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2627
2628 btrfs_kill_all_delayed_nodes(root);
2629
2630 if (btrfs_header_backref_rev(root->node) <
2631 BTRFS_MIXED_BACKREF_REV)
2632 ret = btrfs_drop_snapshot(root, 0, 0);
2633 else
2634 ret = btrfs_drop_snapshot(root, 1, 0);
2635
2636 btrfs_put_root(root);
2637 return (ret < 0) ? 0 : 1;
2638 }
2639
2640 /*
2641 * We only mark the transaction aborted and then set the file system read-only.
2642 * This will prevent new transactions from starting or trying to join this
2643 * one.
2644 *
2645 * This means that error recovery at the call site is limited to freeing
2646 * any local memory allocations and passing the error code up without
2647 * further cleanup. The transaction should complete as it normally would
2648 * in the call path but will return -EIO.
2649 *
2650 * We'll complete the cleanup in btrfs_end_transaction and
2651 * btrfs_commit_transaction.
2652 */
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int errno,bool first_hit)2653 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2654 const char *function,
2655 unsigned int line, int errno, bool first_hit)
2656 {
2657 struct btrfs_fs_info *fs_info = trans->fs_info;
2658
2659 WRITE_ONCE(trans->aborted, errno);
2660 WRITE_ONCE(trans->transaction->aborted, errno);
2661 if (first_hit && errno == -ENOSPC)
2662 btrfs_dump_space_info_for_trans_abort(fs_info);
2663 /* Wake up anybody who may be waiting on this transaction */
2664 wake_up(&fs_info->transaction_wait);
2665 wake_up(&fs_info->transaction_blocked_wait);
2666 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2667 }
2668
btrfs_transaction_init(void)2669 int __init btrfs_transaction_init(void)
2670 {
2671 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2672 sizeof(struct btrfs_trans_handle), 0,
2673 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2674 if (!btrfs_trans_handle_cachep)
2675 return -ENOMEM;
2676 return 0;
2677 }
2678
btrfs_transaction_exit(void)2679 void __cold btrfs_transaction_exit(void)
2680 {
2681 kmem_cache_destroy(btrfs_trans_handle_cachep);
2682 }
2683