1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 
31 #define BTRFS_ROOT_TRANS_TAG 0
32 
put_transaction(struct btrfs_transaction * transaction)33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35 	WARN_ON(atomic_read(&transaction->use_count) == 0);
36 	if (atomic_dec_and_test(&transaction->use_count)) {
37 		memset(transaction, 0, sizeof(*transaction));
38 		kmem_cache_free(btrfs_transaction_cachep, transaction);
39 	}
40 }
41 
switch_commit_root(struct btrfs_root * root)42 static noinline void switch_commit_root(struct btrfs_root *root)
43 {
44 	free_extent_buffer(root->commit_root);
45 	root->commit_root = btrfs_root_node(root);
46 }
47 
48 /*
49  * either allocate a new transaction or hop into the existing one
50  */
join_transaction(struct btrfs_root * root)51 static noinline int join_transaction(struct btrfs_root *root)
52 {
53 	struct btrfs_transaction *cur_trans;
54 	cur_trans = root->fs_info->running_transaction;
55 	if (!cur_trans) {
56 		cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
57 					     GFP_NOFS);
58 		if (!cur_trans)
59 			return -ENOMEM;
60 		root->fs_info->generation++;
61 		atomic_set(&cur_trans->num_writers, 1);
62 		cur_trans->num_joined = 0;
63 		cur_trans->transid = root->fs_info->generation;
64 		init_waitqueue_head(&cur_trans->writer_wait);
65 		init_waitqueue_head(&cur_trans->commit_wait);
66 		cur_trans->in_commit = 0;
67 		cur_trans->blocked = 0;
68 		atomic_set(&cur_trans->use_count, 1);
69 		cur_trans->commit_done = 0;
70 		cur_trans->start_time = get_seconds();
71 
72 		cur_trans->delayed_refs.root = RB_ROOT;
73 		cur_trans->delayed_refs.num_entries = 0;
74 		cur_trans->delayed_refs.num_heads_ready = 0;
75 		cur_trans->delayed_refs.num_heads = 0;
76 		cur_trans->delayed_refs.flushing = 0;
77 		cur_trans->delayed_refs.run_delayed_start = 0;
78 		spin_lock_init(&cur_trans->delayed_refs.lock);
79 
80 		INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81 		list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82 		extent_io_tree_init(&cur_trans->dirty_pages,
83 				     root->fs_info->btree_inode->i_mapping,
84 				     GFP_NOFS);
85 		spin_lock(&root->fs_info->new_trans_lock);
86 		root->fs_info->running_transaction = cur_trans;
87 		spin_unlock(&root->fs_info->new_trans_lock);
88 	} else {
89 		atomic_inc(&cur_trans->num_writers);
90 		cur_trans->num_joined++;
91 	}
92 
93 	return 0;
94 }
95 
96 /*
97  * this does all the record keeping required to make sure that a reference
98  * counted root is properly recorded in a given transaction.  This is required
99  * to make sure the old root from before we joined the transaction is deleted
100  * when the transaction commits
101  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103 					 struct btrfs_root *root)
104 {
105 	if (root->ref_cows && root->last_trans < trans->transid) {
106 		WARN_ON(root == root->fs_info->extent_root);
107 		WARN_ON(root->commit_root != root->node);
108 
109 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110 			   (unsigned long)root->root_key.objectid,
111 			   BTRFS_ROOT_TRANS_TAG);
112 		root->last_trans = trans->transid;
113 		btrfs_init_reloc_root(trans, root);
114 	}
115 	return 0;
116 }
117 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119 			       struct btrfs_root *root)
120 {
121 	if (!root->ref_cows)
122 		return 0;
123 
124 	mutex_lock(&root->fs_info->trans_mutex);
125 	if (root->last_trans == trans->transid) {
126 		mutex_unlock(&root->fs_info->trans_mutex);
127 		return 0;
128 	}
129 
130 	record_root_in_trans(trans, root);
131 	mutex_unlock(&root->fs_info->trans_mutex);
132 	return 0;
133 }
134 
135 /* wait for commit against the current transaction to become unblocked
136  * when this is done, it is safe to start a new transaction, but the current
137  * transaction might not be fully on disk.
138  */
wait_current_trans(struct btrfs_root * root)139 static void wait_current_trans(struct btrfs_root *root)
140 {
141 	struct btrfs_transaction *cur_trans;
142 
143 	cur_trans = root->fs_info->running_transaction;
144 	if (cur_trans && cur_trans->blocked) {
145 		DEFINE_WAIT(wait);
146 		atomic_inc(&cur_trans->use_count);
147 		while (1) {
148 			prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149 					TASK_UNINTERRUPTIBLE);
150 			if (!cur_trans->blocked)
151 				break;
152 			mutex_unlock(&root->fs_info->trans_mutex);
153 			schedule();
154 			mutex_lock(&root->fs_info->trans_mutex);
155 		}
156 		finish_wait(&root->fs_info->transaction_wait, &wait);
157 		put_transaction(cur_trans);
158 	}
159 }
160 
161 enum btrfs_trans_type {
162 	TRANS_START,
163 	TRANS_JOIN,
164 	TRANS_USERSPACE,
165 	TRANS_JOIN_NOLOCK,
166 };
167 
may_wait_transaction(struct btrfs_root * root,int type)168 static int may_wait_transaction(struct btrfs_root *root, int type)
169 {
170 	if (!root->fs_info->log_root_recovering &&
171 	    ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
172 	     type == TRANS_USERSPACE))
173 		return 1;
174 	return 0;
175 }
176 
start_transaction(struct btrfs_root * root,u64 num_items,int type)177 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
178 						    u64 num_items, int type)
179 {
180 	struct btrfs_trans_handle *h;
181 	struct btrfs_transaction *cur_trans;
182 	int retries = 0;
183 	int ret;
184 
185 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
186 		return ERR_PTR(-EROFS);
187 again:
188 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
189 	if (!h)
190 		return ERR_PTR(-ENOMEM);
191 
192 	if (type != TRANS_JOIN_NOLOCK)
193 		mutex_lock(&root->fs_info->trans_mutex);
194 	if (may_wait_transaction(root, type))
195 		wait_current_trans(root);
196 
197 	ret = join_transaction(root);
198 	if (ret < 0) {
199 		kmem_cache_free(btrfs_trans_handle_cachep, h);
200 		if (type != TRANS_JOIN_NOLOCK)
201 			mutex_unlock(&root->fs_info->trans_mutex);
202 		return ERR_PTR(ret);
203 	}
204 
205 	cur_trans = root->fs_info->running_transaction;
206 	atomic_inc(&cur_trans->use_count);
207 	if (type != TRANS_JOIN_NOLOCK)
208 		mutex_unlock(&root->fs_info->trans_mutex);
209 
210 	h->transid = cur_trans->transid;
211 	h->transaction = cur_trans;
212 	h->blocks_used = 0;
213 	h->block_group = 0;
214 	h->bytes_reserved = 0;
215 	h->delayed_ref_updates = 0;
216 	h->block_rsv = NULL;
217 
218 	smp_mb();
219 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
220 		btrfs_commit_transaction(h, root);
221 		goto again;
222 	}
223 
224 	if (num_items > 0) {
225 		ret = btrfs_trans_reserve_metadata(h, root, num_items);
226 		if (ret == -EAGAIN && !retries) {
227 			retries++;
228 			btrfs_commit_transaction(h, root);
229 			goto again;
230 		} else if (ret == -EAGAIN) {
231 			/*
232 			 * We have already retried and got EAGAIN, so really we
233 			 * don't have space, so set ret to -ENOSPC.
234 			 */
235 			ret = -ENOSPC;
236 		}
237 
238 		if (ret < 0) {
239 			btrfs_end_transaction(h, root);
240 			return ERR_PTR(ret);
241 		}
242 	}
243 
244 	if (type != TRANS_JOIN_NOLOCK)
245 		mutex_lock(&root->fs_info->trans_mutex);
246 	record_root_in_trans(h, root);
247 	if (type != TRANS_JOIN_NOLOCK)
248 		mutex_unlock(&root->fs_info->trans_mutex);
249 
250 	if (!current->journal_info && type != TRANS_USERSPACE)
251 		current->journal_info = h;
252 	return h;
253 }
254 
btrfs_start_transaction(struct btrfs_root * root,int num_items)255 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
256 						   int num_items)
257 {
258 	return start_transaction(root, num_items, TRANS_START);
259 }
btrfs_join_transaction(struct btrfs_root * root,int num_blocks)260 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
261 						   int num_blocks)
262 {
263 	return start_transaction(root, 0, TRANS_JOIN);
264 }
265 
btrfs_join_transaction_nolock(struct btrfs_root * root,int num_blocks)266 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root,
267 							  int num_blocks)
268 {
269 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
270 }
271 
btrfs_start_ioctl_transaction(struct btrfs_root * r,int num_blocks)272 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
273 							 int num_blocks)
274 {
275 	return start_transaction(r, 0, TRANS_USERSPACE);
276 }
277 
278 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_root * root,struct btrfs_transaction * commit)279 static noinline int wait_for_commit(struct btrfs_root *root,
280 				    struct btrfs_transaction *commit)
281 {
282 	DEFINE_WAIT(wait);
283 	mutex_lock(&root->fs_info->trans_mutex);
284 	while (!commit->commit_done) {
285 		prepare_to_wait(&commit->commit_wait, &wait,
286 				TASK_UNINTERRUPTIBLE);
287 		if (commit->commit_done)
288 			break;
289 		mutex_unlock(&root->fs_info->trans_mutex);
290 		schedule();
291 		mutex_lock(&root->fs_info->trans_mutex);
292 	}
293 	mutex_unlock(&root->fs_info->trans_mutex);
294 	finish_wait(&commit->commit_wait, &wait);
295 	return 0;
296 }
297 
btrfs_wait_for_commit(struct btrfs_root * root,u64 transid)298 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
299 {
300 	struct btrfs_transaction *cur_trans = NULL, *t;
301 	int ret;
302 
303 	mutex_lock(&root->fs_info->trans_mutex);
304 
305 	ret = 0;
306 	if (transid) {
307 		if (transid <= root->fs_info->last_trans_committed)
308 			goto out_unlock;
309 
310 		/* find specified transaction */
311 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
312 			if (t->transid == transid) {
313 				cur_trans = t;
314 				break;
315 			}
316 			if (t->transid > transid)
317 				break;
318 		}
319 		ret = -EINVAL;
320 		if (!cur_trans)
321 			goto out_unlock;  /* bad transid */
322 	} else {
323 		/* find newest transaction that is committing | committed */
324 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
325 					    list) {
326 			if (t->in_commit) {
327 				if (t->commit_done)
328 					goto out_unlock;
329 				cur_trans = t;
330 				break;
331 			}
332 		}
333 		if (!cur_trans)
334 			goto out_unlock;  /* nothing committing|committed */
335 	}
336 
337 	atomic_inc(&cur_trans->use_count);
338 	mutex_unlock(&root->fs_info->trans_mutex);
339 
340 	wait_for_commit(root, cur_trans);
341 
342 	mutex_lock(&root->fs_info->trans_mutex);
343 	put_transaction(cur_trans);
344 	ret = 0;
345 out_unlock:
346 	mutex_unlock(&root->fs_info->trans_mutex);
347 	return ret;
348 }
349 
350 #if 0
351 /*
352  * rate limit against the drop_snapshot code.  This helps to slow down new
353  * operations if the drop_snapshot code isn't able to keep up.
354  */
355 static void throttle_on_drops(struct btrfs_root *root)
356 {
357 	struct btrfs_fs_info *info = root->fs_info;
358 	int harder_count = 0;
359 
360 harder:
361 	if (atomic_read(&info->throttles)) {
362 		DEFINE_WAIT(wait);
363 		int thr;
364 		thr = atomic_read(&info->throttle_gen);
365 
366 		do {
367 			prepare_to_wait(&info->transaction_throttle,
368 					&wait, TASK_UNINTERRUPTIBLE);
369 			if (!atomic_read(&info->throttles)) {
370 				finish_wait(&info->transaction_throttle, &wait);
371 				break;
372 			}
373 			schedule();
374 			finish_wait(&info->transaction_throttle, &wait);
375 		} while (thr == atomic_read(&info->throttle_gen));
376 		harder_count++;
377 
378 		if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
379 		    harder_count < 2)
380 			goto harder;
381 
382 		if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
383 		    harder_count < 10)
384 			goto harder;
385 
386 		if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
387 		    harder_count < 20)
388 			goto harder;
389 	}
390 }
391 #endif
392 
btrfs_throttle(struct btrfs_root * root)393 void btrfs_throttle(struct btrfs_root *root)
394 {
395 	mutex_lock(&root->fs_info->trans_mutex);
396 	if (!root->fs_info->open_ioctl_trans)
397 		wait_current_trans(root);
398 	mutex_unlock(&root->fs_info->trans_mutex);
399 }
400 
should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)401 static int should_end_transaction(struct btrfs_trans_handle *trans,
402 				  struct btrfs_root *root)
403 {
404 	int ret;
405 	ret = btrfs_block_rsv_check(trans, root,
406 				    &root->fs_info->global_block_rsv, 0, 5);
407 	return ret ? 1 : 0;
408 }
409 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)410 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
411 				 struct btrfs_root *root)
412 {
413 	struct btrfs_transaction *cur_trans = trans->transaction;
414 	int updates;
415 
416 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
417 		return 1;
418 
419 	updates = trans->delayed_ref_updates;
420 	trans->delayed_ref_updates = 0;
421 	if (updates)
422 		btrfs_run_delayed_refs(trans, root, updates);
423 
424 	return should_end_transaction(trans, root);
425 }
426 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int throttle,int lock)427 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
428 			  struct btrfs_root *root, int throttle, int lock)
429 {
430 	struct btrfs_transaction *cur_trans = trans->transaction;
431 	struct btrfs_fs_info *info = root->fs_info;
432 	int count = 0;
433 
434 	while (count < 4) {
435 		unsigned long cur = trans->delayed_ref_updates;
436 		trans->delayed_ref_updates = 0;
437 		if (cur &&
438 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
439 			trans->delayed_ref_updates = 0;
440 
441 			/*
442 			 * do a full flush if the transaction is trying
443 			 * to close
444 			 */
445 			if (trans->transaction->delayed_refs.flushing)
446 				cur = 0;
447 			btrfs_run_delayed_refs(trans, root, cur);
448 		} else {
449 			break;
450 		}
451 		count++;
452 	}
453 
454 	btrfs_trans_release_metadata(trans, root);
455 
456 	if (lock && !root->fs_info->open_ioctl_trans &&
457 	    should_end_transaction(trans, root))
458 		trans->transaction->blocked = 1;
459 
460 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
461 		if (throttle)
462 			return btrfs_commit_transaction(trans, root);
463 		else
464 			wake_up_process(info->transaction_kthread);
465 	}
466 
467 	WARN_ON(cur_trans != info->running_transaction);
468 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
469 	atomic_dec(&cur_trans->num_writers);
470 
471 	smp_mb();
472 	if (waitqueue_active(&cur_trans->writer_wait))
473 		wake_up(&cur_trans->writer_wait);
474 	put_transaction(cur_trans);
475 
476 	if (current->journal_info == trans)
477 		current->journal_info = NULL;
478 	memset(trans, 0, sizeof(*trans));
479 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
480 
481 	if (throttle)
482 		btrfs_run_delayed_iputs(root);
483 
484 	return 0;
485 }
486 
btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)487 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
488 			  struct btrfs_root *root)
489 {
490 	return __btrfs_end_transaction(trans, root, 0, 1);
491 }
492 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans,struct btrfs_root * root)493 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
494 				   struct btrfs_root *root)
495 {
496 	return __btrfs_end_transaction(trans, root, 1, 1);
497 }
498 
btrfs_end_transaction_nolock(struct btrfs_trans_handle * trans,struct btrfs_root * root)499 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
500 				 struct btrfs_root *root)
501 {
502 	return __btrfs_end_transaction(trans, root, 0, 0);
503 }
504 
505 /*
506  * when btree blocks are allocated, they have some corresponding bits set for
507  * them in one of two extent_io trees.  This is used to make sure all of
508  * those extents are sent to disk but does not wait on them
509  */
btrfs_write_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)510 int btrfs_write_marked_extents(struct btrfs_root *root,
511 			       struct extent_io_tree *dirty_pages, int mark)
512 {
513 	int ret;
514 	int err = 0;
515 	int werr = 0;
516 	struct page *page;
517 	struct inode *btree_inode = root->fs_info->btree_inode;
518 	u64 start = 0;
519 	u64 end;
520 	unsigned long index;
521 
522 	while (1) {
523 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
524 					    mark);
525 		if (ret)
526 			break;
527 		while (start <= end) {
528 			cond_resched();
529 
530 			index = start >> PAGE_CACHE_SHIFT;
531 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
532 			page = find_get_page(btree_inode->i_mapping, index);
533 			if (!page)
534 				continue;
535 
536 			btree_lock_page_hook(page);
537 			if (!page->mapping) {
538 				unlock_page(page);
539 				page_cache_release(page);
540 				continue;
541 			}
542 
543 			if (PageWriteback(page)) {
544 				if (PageDirty(page))
545 					wait_on_page_writeback(page);
546 				else {
547 					unlock_page(page);
548 					page_cache_release(page);
549 					continue;
550 				}
551 			}
552 			err = write_one_page(page, 0);
553 			if (err)
554 				werr = err;
555 			page_cache_release(page);
556 		}
557 	}
558 	if (err)
559 		werr = err;
560 	return werr;
561 }
562 
563 /*
564  * when btree blocks are allocated, they have some corresponding bits set for
565  * them in one of two extent_io trees.  This is used to make sure all of
566  * those extents are on disk for transaction or log commit.  We wait
567  * on all the pages and clear them from the dirty pages state tree
568  */
btrfs_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)569 int btrfs_wait_marked_extents(struct btrfs_root *root,
570 			      struct extent_io_tree *dirty_pages, int mark)
571 {
572 	int ret;
573 	int err = 0;
574 	int werr = 0;
575 	struct page *page;
576 	struct inode *btree_inode = root->fs_info->btree_inode;
577 	u64 start = 0;
578 	u64 end;
579 	unsigned long index;
580 
581 	while (1) {
582 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
583 					    mark);
584 		if (ret)
585 			break;
586 
587 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
588 		while (start <= end) {
589 			index = start >> PAGE_CACHE_SHIFT;
590 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
591 			page = find_get_page(btree_inode->i_mapping, index);
592 			if (!page)
593 				continue;
594 			if (PageDirty(page)) {
595 				btree_lock_page_hook(page);
596 				wait_on_page_writeback(page);
597 				err = write_one_page(page, 0);
598 				if (err)
599 					werr = err;
600 			}
601 			wait_on_page_writeback(page);
602 			page_cache_release(page);
603 			cond_resched();
604 		}
605 	}
606 	if (err)
607 		werr = err;
608 	return werr;
609 }
610 
611 /*
612  * when btree blocks are allocated, they have some corresponding bits set for
613  * them in one of two extent_io trees.  This is used to make sure all of
614  * those extents are on disk for transaction or log commit
615  */
btrfs_write_and_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)616 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
617 				struct extent_io_tree *dirty_pages, int mark)
618 {
619 	int ret;
620 	int ret2;
621 
622 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
623 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
624 	return ret || ret2;
625 }
626 
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)627 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
628 				     struct btrfs_root *root)
629 {
630 	if (!trans || !trans->transaction) {
631 		struct inode *btree_inode;
632 		btree_inode = root->fs_info->btree_inode;
633 		return filemap_write_and_wait(btree_inode->i_mapping);
634 	}
635 	return btrfs_write_and_wait_marked_extents(root,
636 					   &trans->transaction->dirty_pages,
637 					   EXTENT_DIRTY);
638 }
639 
640 /*
641  * this is used to update the root pointer in the tree of tree roots.
642  *
643  * But, in the case of the extent allocation tree, updating the root
644  * pointer may allocate blocks which may change the root of the extent
645  * allocation tree.
646  *
647  * So, this loops and repeats and makes sure the cowonly root didn't
648  * change while the root pointer was being updated in the metadata.
649  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)650 static int update_cowonly_root(struct btrfs_trans_handle *trans,
651 			       struct btrfs_root *root)
652 {
653 	int ret;
654 	u64 old_root_bytenr;
655 	u64 old_root_used;
656 	struct btrfs_root *tree_root = root->fs_info->tree_root;
657 
658 	old_root_used = btrfs_root_used(&root->root_item);
659 	btrfs_write_dirty_block_groups(trans, root);
660 
661 	while (1) {
662 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
663 		if (old_root_bytenr == root->node->start &&
664 		    old_root_used == btrfs_root_used(&root->root_item))
665 			break;
666 
667 		btrfs_set_root_node(&root->root_item, root->node);
668 		ret = btrfs_update_root(trans, tree_root,
669 					&root->root_key,
670 					&root->root_item);
671 		BUG_ON(ret);
672 
673 		old_root_used = btrfs_root_used(&root->root_item);
674 		ret = btrfs_write_dirty_block_groups(trans, root);
675 		BUG_ON(ret);
676 	}
677 
678 	if (root != root->fs_info->extent_root)
679 		switch_commit_root(root);
680 
681 	return 0;
682 }
683 
684 /*
685  * update all the cowonly tree roots on disk
686  */
commit_cowonly_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)687 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
688 					 struct btrfs_root *root)
689 {
690 	struct btrfs_fs_info *fs_info = root->fs_info;
691 	struct list_head *next;
692 	struct extent_buffer *eb;
693 	int ret;
694 
695 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
696 	BUG_ON(ret);
697 
698 	eb = btrfs_lock_root_node(fs_info->tree_root);
699 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
700 	btrfs_tree_unlock(eb);
701 	free_extent_buffer(eb);
702 
703 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
704 	BUG_ON(ret);
705 
706 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
707 		next = fs_info->dirty_cowonly_roots.next;
708 		list_del_init(next);
709 		root = list_entry(next, struct btrfs_root, dirty_list);
710 
711 		update_cowonly_root(trans, root);
712 	}
713 
714 	down_write(&fs_info->extent_commit_sem);
715 	switch_commit_root(fs_info->extent_root);
716 	up_write(&fs_info->extent_commit_sem);
717 
718 	return 0;
719 }
720 
721 /*
722  * dead roots are old snapshots that need to be deleted.  This allocates
723  * a dirty root struct and adds it into the list of dead roots that need to
724  * be deleted
725  */
btrfs_add_dead_root(struct btrfs_root * root)726 int btrfs_add_dead_root(struct btrfs_root *root)
727 {
728 	mutex_lock(&root->fs_info->trans_mutex);
729 	list_add(&root->root_list, &root->fs_info->dead_roots);
730 	mutex_unlock(&root->fs_info->trans_mutex);
731 	return 0;
732 }
733 
734 /*
735  * update all the cowonly tree roots on disk
736  */
commit_fs_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)737 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
738 				    struct btrfs_root *root)
739 {
740 	struct btrfs_root *gang[8];
741 	struct btrfs_fs_info *fs_info = root->fs_info;
742 	int i;
743 	int ret;
744 	int err = 0;
745 
746 	while (1) {
747 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
748 						 (void **)gang, 0,
749 						 ARRAY_SIZE(gang),
750 						 BTRFS_ROOT_TRANS_TAG);
751 		if (ret == 0)
752 			break;
753 		for (i = 0; i < ret; i++) {
754 			root = gang[i];
755 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
756 					(unsigned long)root->root_key.objectid,
757 					BTRFS_ROOT_TRANS_TAG);
758 
759 			btrfs_free_log(trans, root);
760 			btrfs_update_reloc_root(trans, root);
761 			btrfs_orphan_commit_root(trans, root);
762 
763 			if (root->commit_root != root->node) {
764 				switch_commit_root(root);
765 				btrfs_set_root_node(&root->root_item,
766 						    root->node);
767 			}
768 
769 			err = btrfs_update_root(trans, fs_info->tree_root,
770 						&root->root_key,
771 						&root->root_item);
772 			if (err)
773 				break;
774 		}
775 	}
776 	return err;
777 }
778 
779 /*
780  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
781  * otherwise every leaf in the btree is read and defragged.
782  */
btrfs_defrag_root(struct btrfs_root * root,int cacheonly)783 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
784 {
785 	struct btrfs_fs_info *info = root->fs_info;
786 	struct btrfs_trans_handle *trans;
787 	int ret;
788 	unsigned long nr;
789 
790 	if (xchg(&root->defrag_running, 1))
791 		return 0;
792 
793 	while (1) {
794 		trans = btrfs_start_transaction(root, 0);
795 		if (IS_ERR(trans))
796 			return PTR_ERR(trans);
797 
798 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
799 
800 		nr = trans->blocks_used;
801 		btrfs_end_transaction(trans, root);
802 		btrfs_btree_balance_dirty(info->tree_root, nr);
803 		cond_resched();
804 
805 		if (root->fs_info->closing || ret != -EAGAIN)
806 			break;
807 	}
808 	root->defrag_running = 0;
809 	return ret;
810 }
811 
812 #if 0
813 /*
814  * when dropping snapshots, we generate a ton of delayed refs, and it makes
815  * sense not to join the transaction while it is trying to flush the current
816  * queue of delayed refs out.
817  *
818  * This is used by the drop snapshot code only
819  */
820 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
821 {
822 	DEFINE_WAIT(wait);
823 
824 	mutex_lock(&info->trans_mutex);
825 	while (info->running_transaction &&
826 	       info->running_transaction->delayed_refs.flushing) {
827 		prepare_to_wait(&info->transaction_wait, &wait,
828 				TASK_UNINTERRUPTIBLE);
829 		mutex_unlock(&info->trans_mutex);
830 
831 		schedule();
832 
833 		mutex_lock(&info->trans_mutex);
834 		finish_wait(&info->transaction_wait, &wait);
835 	}
836 	mutex_unlock(&info->trans_mutex);
837 	return 0;
838 }
839 
840 /*
841  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
842  * all of them
843  */
844 int btrfs_drop_dead_root(struct btrfs_root *root)
845 {
846 	struct btrfs_trans_handle *trans;
847 	struct btrfs_root *tree_root = root->fs_info->tree_root;
848 	unsigned long nr;
849 	int ret;
850 
851 	while (1) {
852 		/*
853 		 * we don't want to jump in and create a bunch of
854 		 * delayed refs if the transaction is starting to close
855 		 */
856 		wait_transaction_pre_flush(tree_root->fs_info);
857 		trans = btrfs_start_transaction(tree_root, 1);
858 
859 		/*
860 		 * we've joined a transaction, make sure it isn't
861 		 * closing right now
862 		 */
863 		if (trans->transaction->delayed_refs.flushing) {
864 			btrfs_end_transaction(trans, tree_root);
865 			continue;
866 		}
867 
868 		ret = btrfs_drop_snapshot(trans, root);
869 		if (ret != -EAGAIN)
870 			break;
871 
872 		ret = btrfs_update_root(trans, tree_root,
873 					&root->root_key,
874 					&root->root_item);
875 		if (ret)
876 			break;
877 
878 		nr = trans->blocks_used;
879 		ret = btrfs_end_transaction(trans, tree_root);
880 		BUG_ON(ret);
881 
882 		btrfs_btree_balance_dirty(tree_root, nr);
883 		cond_resched();
884 	}
885 	BUG_ON(ret);
886 
887 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
888 	BUG_ON(ret);
889 
890 	nr = trans->blocks_used;
891 	ret = btrfs_end_transaction(trans, tree_root);
892 	BUG_ON(ret);
893 
894 	free_extent_buffer(root->node);
895 	free_extent_buffer(root->commit_root);
896 	kfree(root);
897 
898 	btrfs_btree_balance_dirty(tree_root, nr);
899 	return ret;
900 }
901 #endif
902 
903 /*
904  * new snapshots need to be created at a very specific time in the
905  * transaction commit.  This does the actual creation
906  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_pending_snapshot * pending)907 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
908 				   struct btrfs_fs_info *fs_info,
909 				   struct btrfs_pending_snapshot *pending)
910 {
911 	struct btrfs_key key;
912 	struct btrfs_root_item *new_root_item;
913 	struct btrfs_root *tree_root = fs_info->tree_root;
914 	struct btrfs_root *root = pending->root;
915 	struct btrfs_root *parent_root;
916 	struct inode *parent_inode;
917 	struct dentry *parent;
918 	struct dentry *dentry;
919 	struct extent_buffer *tmp;
920 	struct extent_buffer *old;
921 	int ret;
922 	u64 to_reserve = 0;
923 	u64 index = 0;
924 	u64 objectid;
925 	u64 root_flags;
926 
927 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
928 	if (!new_root_item) {
929 		pending->error = -ENOMEM;
930 		goto fail;
931 	}
932 
933 	ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
934 	if (ret) {
935 		pending->error = ret;
936 		goto fail;
937 	}
938 
939 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
940 	btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
941 
942 	if (to_reserve > 0) {
943 		ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
944 					  to_reserve);
945 		if (ret) {
946 			pending->error = ret;
947 			goto fail;
948 		}
949 	}
950 
951 	key.objectid = objectid;
952 	key.offset = (u64)-1;
953 	key.type = BTRFS_ROOT_ITEM_KEY;
954 
955 	trans->block_rsv = &pending->block_rsv;
956 
957 	dentry = pending->dentry;
958 	parent = dget_parent(dentry);
959 	parent_inode = parent->d_inode;
960 	parent_root = BTRFS_I(parent_inode)->root;
961 	record_root_in_trans(trans, parent_root);
962 
963 	/*
964 	 * insert the directory item
965 	 */
966 	ret = btrfs_set_inode_index(parent_inode, &index);
967 	BUG_ON(ret);
968 	ret = btrfs_insert_dir_item(trans, parent_root,
969 				dentry->d_name.name, dentry->d_name.len,
970 				parent_inode->i_ino, &key,
971 				BTRFS_FT_DIR, index);
972 	BUG_ON(ret);
973 
974 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
975 					 dentry->d_name.len * 2);
976 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
977 	BUG_ON(ret);
978 
979 	record_root_in_trans(trans, root);
980 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
981 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
982 	btrfs_check_and_init_root_item(new_root_item);
983 
984 	root_flags = btrfs_root_flags(new_root_item);
985 	if (pending->readonly)
986 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
987 	else
988 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
989 	btrfs_set_root_flags(new_root_item, root_flags);
990 
991 	old = btrfs_lock_root_node(root);
992 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
993 	btrfs_set_lock_blocking(old);
994 
995 	btrfs_copy_root(trans, root, old, &tmp, objectid);
996 	btrfs_tree_unlock(old);
997 	free_extent_buffer(old);
998 
999 	btrfs_set_root_node(new_root_item, tmp);
1000 	/* record when the snapshot was created in key.offset */
1001 	key.offset = trans->transid;
1002 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1003 	btrfs_tree_unlock(tmp);
1004 	free_extent_buffer(tmp);
1005 	BUG_ON(ret);
1006 
1007 	/*
1008 	 * insert root back/forward references
1009 	 */
1010 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1011 				 parent_root->root_key.objectid,
1012 				 parent_inode->i_ino, index,
1013 				 dentry->d_name.name, dentry->d_name.len);
1014 	BUG_ON(ret);
1015 	dput(parent);
1016 
1017 	key.offset = (u64)-1;
1018 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1019 	BUG_ON(IS_ERR(pending->snap));
1020 
1021 	btrfs_reloc_post_snapshot(trans, pending);
1022 	btrfs_orphan_post_snapshot(trans, pending);
1023 fail:
1024 	kfree(new_root_item);
1025 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1026 	return 0;
1027 }
1028 
1029 /*
1030  * create all the snapshots we've scheduled for creation
1031  */
create_pending_snapshots(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1032 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1033 					     struct btrfs_fs_info *fs_info)
1034 {
1035 	struct btrfs_pending_snapshot *pending;
1036 	struct list_head *head = &trans->transaction->pending_snapshots;
1037 	int ret;
1038 
1039 	list_for_each_entry(pending, head, list) {
1040 		ret = create_pending_snapshot(trans, fs_info, pending);
1041 		BUG_ON(ret);
1042 	}
1043 	return 0;
1044 }
1045 
update_super_roots(struct btrfs_root * root)1046 static void update_super_roots(struct btrfs_root *root)
1047 {
1048 	struct btrfs_root_item *root_item;
1049 	struct btrfs_super_block *super;
1050 
1051 	super = &root->fs_info->super_copy;
1052 
1053 	root_item = &root->fs_info->chunk_root->root_item;
1054 	super->chunk_root = root_item->bytenr;
1055 	super->chunk_root_generation = root_item->generation;
1056 	super->chunk_root_level = root_item->level;
1057 
1058 	root_item = &root->fs_info->tree_root->root_item;
1059 	super->root = root_item->bytenr;
1060 	super->generation = root_item->generation;
1061 	super->root_level = root_item->level;
1062 	if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1063 		super->cache_generation = root_item->generation;
1064 }
1065 
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1066 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1067 {
1068 	int ret = 0;
1069 	spin_lock(&info->new_trans_lock);
1070 	if (info->running_transaction)
1071 		ret = info->running_transaction->in_commit;
1072 	spin_unlock(&info->new_trans_lock);
1073 	return ret;
1074 }
1075 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1076 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1077 {
1078 	int ret = 0;
1079 	spin_lock(&info->new_trans_lock);
1080 	if (info->running_transaction)
1081 		ret = info->running_transaction->blocked;
1082 	spin_unlock(&info->new_trans_lock);
1083 	return ret;
1084 }
1085 
1086 /*
1087  * wait for the current transaction commit to start and block subsequent
1088  * transaction joins
1089  */
wait_current_trans_commit_start(struct btrfs_root * root,struct btrfs_transaction * trans)1090 static void wait_current_trans_commit_start(struct btrfs_root *root,
1091 					    struct btrfs_transaction *trans)
1092 {
1093 	DEFINE_WAIT(wait);
1094 
1095 	if (trans->in_commit)
1096 		return;
1097 
1098 	while (1) {
1099 		prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1100 				TASK_UNINTERRUPTIBLE);
1101 		if (trans->in_commit) {
1102 			finish_wait(&root->fs_info->transaction_blocked_wait,
1103 				    &wait);
1104 			break;
1105 		}
1106 		mutex_unlock(&root->fs_info->trans_mutex);
1107 		schedule();
1108 		mutex_lock(&root->fs_info->trans_mutex);
1109 		finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1110 	}
1111 }
1112 
1113 /*
1114  * wait for the current transaction to start and then become unblocked.
1115  * caller holds ref.
1116  */
wait_current_trans_commit_start_and_unblock(struct btrfs_root * root,struct btrfs_transaction * trans)1117 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1118 					 struct btrfs_transaction *trans)
1119 {
1120 	DEFINE_WAIT(wait);
1121 
1122 	if (trans->commit_done || (trans->in_commit && !trans->blocked))
1123 		return;
1124 
1125 	while (1) {
1126 		prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1127 				TASK_UNINTERRUPTIBLE);
1128 		if (trans->commit_done ||
1129 		    (trans->in_commit && !trans->blocked)) {
1130 			finish_wait(&root->fs_info->transaction_wait,
1131 				    &wait);
1132 			break;
1133 		}
1134 		mutex_unlock(&root->fs_info->trans_mutex);
1135 		schedule();
1136 		mutex_lock(&root->fs_info->trans_mutex);
1137 		finish_wait(&root->fs_info->transaction_wait,
1138 			    &wait);
1139 	}
1140 }
1141 
1142 /*
1143  * commit transactions asynchronously. once btrfs_commit_transaction_async
1144  * returns, any subsequent transaction will not be allowed to join.
1145  */
1146 struct btrfs_async_commit {
1147 	struct btrfs_trans_handle *newtrans;
1148 	struct btrfs_root *root;
1149 	struct delayed_work work;
1150 };
1151 
do_async_commit(struct work_struct * work)1152 static void do_async_commit(struct work_struct *work)
1153 {
1154 	struct btrfs_async_commit *ac =
1155 		container_of(work, struct btrfs_async_commit, work.work);
1156 
1157 	btrfs_commit_transaction(ac->newtrans, ac->root);
1158 	kfree(ac);
1159 }
1160 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,struct btrfs_root * root,int wait_for_unblock)1161 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1162 				   struct btrfs_root *root,
1163 				   int wait_for_unblock)
1164 {
1165 	struct btrfs_async_commit *ac;
1166 	struct btrfs_transaction *cur_trans;
1167 
1168 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1169 	if (!ac)
1170 		return -ENOMEM;
1171 
1172 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1173 	ac->root = root;
1174 	ac->newtrans = btrfs_join_transaction(root, 0);
1175 	if (IS_ERR(ac->newtrans)) {
1176 		int err = PTR_ERR(ac->newtrans);
1177 		kfree(ac);
1178 		return err;
1179 	}
1180 
1181 	/* take transaction reference */
1182 	mutex_lock(&root->fs_info->trans_mutex);
1183 	cur_trans = trans->transaction;
1184 	atomic_inc(&cur_trans->use_count);
1185 	mutex_unlock(&root->fs_info->trans_mutex);
1186 
1187 	btrfs_end_transaction(trans, root);
1188 	schedule_delayed_work(&ac->work, 0);
1189 
1190 	/* wait for transaction to start and unblock */
1191 	mutex_lock(&root->fs_info->trans_mutex);
1192 	if (wait_for_unblock)
1193 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1194 	else
1195 		wait_current_trans_commit_start(root, cur_trans);
1196 	put_transaction(cur_trans);
1197 	mutex_unlock(&root->fs_info->trans_mutex);
1198 
1199 	return 0;
1200 }
1201 
1202 /*
1203  * btrfs_transaction state sequence:
1204  *    in_commit = 0, blocked = 0  (initial)
1205  *    in_commit = 1, blocked = 1
1206  *    blocked = 0
1207  *    commit_done = 1
1208  */
btrfs_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1209 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1210 			     struct btrfs_root *root)
1211 {
1212 	unsigned long joined = 0;
1213 	struct btrfs_transaction *cur_trans;
1214 	struct btrfs_transaction *prev_trans = NULL;
1215 	DEFINE_WAIT(wait);
1216 	int ret;
1217 	int should_grow = 0;
1218 	unsigned long now = get_seconds();
1219 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1220 
1221 	btrfs_run_ordered_operations(root, 0);
1222 
1223 	/* make a pass through all the delayed refs we have so far
1224 	 * any runnings procs may add more while we are here
1225 	 */
1226 	ret = btrfs_run_delayed_refs(trans, root, 0);
1227 	BUG_ON(ret);
1228 
1229 	btrfs_trans_release_metadata(trans, root);
1230 
1231 	cur_trans = trans->transaction;
1232 	/*
1233 	 * set the flushing flag so procs in this transaction have to
1234 	 * start sending their work down.
1235 	 */
1236 	cur_trans->delayed_refs.flushing = 1;
1237 
1238 	ret = btrfs_run_delayed_refs(trans, root, 0);
1239 	BUG_ON(ret);
1240 
1241 	mutex_lock(&root->fs_info->trans_mutex);
1242 	if (cur_trans->in_commit) {
1243 		atomic_inc(&cur_trans->use_count);
1244 		mutex_unlock(&root->fs_info->trans_mutex);
1245 		btrfs_end_transaction(trans, root);
1246 
1247 		ret = wait_for_commit(root, cur_trans);
1248 		BUG_ON(ret);
1249 
1250 		mutex_lock(&root->fs_info->trans_mutex);
1251 		put_transaction(cur_trans);
1252 		mutex_unlock(&root->fs_info->trans_mutex);
1253 
1254 		return 0;
1255 	}
1256 
1257 	trans->transaction->in_commit = 1;
1258 	trans->transaction->blocked = 1;
1259 	wake_up(&root->fs_info->transaction_blocked_wait);
1260 
1261 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1262 		prev_trans = list_entry(cur_trans->list.prev,
1263 					struct btrfs_transaction, list);
1264 		if (!prev_trans->commit_done) {
1265 			atomic_inc(&prev_trans->use_count);
1266 			mutex_unlock(&root->fs_info->trans_mutex);
1267 
1268 			wait_for_commit(root, prev_trans);
1269 
1270 			mutex_lock(&root->fs_info->trans_mutex);
1271 			put_transaction(prev_trans);
1272 		}
1273 	}
1274 
1275 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1276 		should_grow = 1;
1277 
1278 	do {
1279 		int snap_pending = 0;
1280 		joined = cur_trans->num_joined;
1281 		if (!list_empty(&trans->transaction->pending_snapshots))
1282 			snap_pending = 1;
1283 
1284 		WARN_ON(cur_trans != trans->transaction);
1285 		mutex_unlock(&root->fs_info->trans_mutex);
1286 
1287 		if (flush_on_commit || snap_pending) {
1288 			btrfs_start_delalloc_inodes(root, 1);
1289 			ret = btrfs_wait_ordered_extents(root, 0, 1);
1290 			BUG_ON(ret);
1291 		}
1292 
1293 		/*
1294 		 * rename don't use btrfs_join_transaction, so, once we
1295 		 * set the transaction to blocked above, we aren't going
1296 		 * to get any new ordered operations.  We can safely run
1297 		 * it here and no for sure that nothing new will be added
1298 		 * to the list
1299 		 */
1300 		btrfs_run_ordered_operations(root, 1);
1301 
1302 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1303 				TASK_UNINTERRUPTIBLE);
1304 
1305 		smp_mb();
1306 		if (atomic_read(&cur_trans->num_writers) > 1)
1307 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1308 		else if (should_grow)
1309 			schedule_timeout(1);
1310 
1311 		mutex_lock(&root->fs_info->trans_mutex);
1312 		finish_wait(&cur_trans->writer_wait, &wait);
1313 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1314 		 (should_grow && cur_trans->num_joined != joined));
1315 
1316 	ret = create_pending_snapshots(trans, root->fs_info);
1317 	BUG_ON(ret);
1318 
1319 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1320 	BUG_ON(ret);
1321 
1322 	WARN_ON(cur_trans != trans->transaction);
1323 
1324 	/* btrfs_commit_tree_roots is responsible for getting the
1325 	 * various roots consistent with each other.  Every pointer
1326 	 * in the tree of tree roots has to point to the most up to date
1327 	 * root for every subvolume and other tree.  So, we have to keep
1328 	 * the tree logging code from jumping in and changing any
1329 	 * of the trees.
1330 	 *
1331 	 * At this point in the commit, there can't be any tree-log
1332 	 * writers, but a little lower down we drop the trans mutex
1333 	 * and let new people in.  By holding the tree_log_mutex
1334 	 * from now until after the super is written, we avoid races
1335 	 * with the tree-log code.
1336 	 */
1337 	mutex_lock(&root->fs_info->tree_log_mutex);
1338 
1339 	ret = commit_fs_roots(trans, root);
1340 	BUG_ON(ret);
1341 
1342 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1343 	 * safe to free the root of tree log roots
1344 	 */
1345 	btrfs_free_log_root_tree(trans, root->fs_info);
1346 
1347 	ret = commit_cowonly_roots(trans, root);
1348 	BUG_ON(ret);
1349 
1350 	btrfs_prepare_extent_commit(trans, root);
1351 
1352 	cur_trans = root->fs_info->running_transaction;
1353 	spin_lock(&root->fs_info->new_trans_lock);
1354 	root->fs_info->running_transaction = NULL;
1355 	spin_unlock(&root->fs_info->new_trans_lock);
1356 
1357 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1358 			    root->fs_info->tree_root->node);
1359 	switch_commit_root(root->fs_info->tree_root);
1360 
1361 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1362 			    root->fs_info->chunk_root->node);
1363 	switch_commit_root(root->fs_info->chunk_root);
1364 
1365 	update_super_roots(root);
1366 
1367 	if (!root->fs_info->log_root_recovering) {
1368 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1369 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1370 	}
1371 
1372 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1373 	       sizeof(root->fs_info->super_copy));
1374 
1375 	trans->transaction->blocked = 0;
1376 
1377 	wake_up(&root->fs_info->transaction_wait);
1378 
1379 	mutex_unlock(&root->fs_info->trans_mutex);
1380 	ret = btrfs_write_and_wait_transaction(trans, root);
1381 	BUG_ON(ret);
1382 	write_ctree_super(trans, root, 0);
1383 
1384 	/*
1385 	 * the super is written, we can safely allow the tree-loggers
1386 	 * to go about their business
1387 	 */
1388 	mutex_unlock(&root->fs_info->tree_log_mutex);
1389 
1390 	btrfs_finish_extent_commit(trans, root);
1391 
1392 	mutex_lock(&root->fs_info->trans_mutex);
1393 
1394 	cur_trans->commit_done = 1;
1395 
1396 	root->fs_info->last_trans_committed = cur_trans->transid;
1397 
1398 	wake_up(&cur_trans->commit_wait);
1399 
1400 	list_del_init(&cur_trans->list);
1401 	put_transaction(cur_trans);
1402 	put_transaction(cur_trans);
1403 
1404 	trace_btrfs_transaction_commit(root);
1405 
1406 	mutex_unlock(&root->fs_info->trans_mutex);
1407 
1408 	if (current->journal_info == trans)
1409 		current->journal_info = NULL;
1410 
1411 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1412 
1413 	if (current != root->fs_info->transaction_kthread)
1414 		btrfs_run_delayed_iputs(root);
1415 
1416 	return ret;
1417 }
1418 
1419 /*
1420  * interface function to delete all the snapshots we have scheduled for deletion
1421  */
btrfs_clean_old_snapshots(struct btrfs_root * root)1422 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1423 {
1424 	LIST_HEAD(list);
1425 	struct btrfs_fs_info *fs_info = root->fs_info;
1426 
1427 	mutex_lock(&fs_info->trans_mutex);
1428 	list_splice_init(&fs_info->dead_roots, &list);
1429 	mutex_unlock(&fs_info->trans_mutex);
1430 
1431 	while (!list_empty(&list)) {
1432 		root = list_entry(list.next, struct btrfs_root, root_list);
1433 		list_del(&root->root_list);
1434 
1435 		if (btrfs_header_backref_rev(root->node) <
1436 		    BTRFS_MIXED_BACKREF_REV)
1437 			btrfs_drop_snapshot(root, NULL, 0);
1438 		else
1439 			btrfs_drop_snapshot(root, NULL, 1);
1440 	}
1441 	return 0;
1442 }
1443