1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30
31 #define BTRFS_ROOT_TRANS_TAG 0
32
put_transaction(struct btrfs_transaction * transaction)33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35 WARN_ON(atomic_read(&transaction->use_count) == 0);
36 if (atomic_dec_and_test(&transaction->use_count)) {
37 memset(transaction, 0, sizeof(*transaction));
38 kmem_cache_free(btrfs_transaction_cachep, transaction);
39 }
40 }
41
switch_commit_root(struct btrfs_root * root)42 static noinline void switch_commit_root(struct btrfs_root *root)
43 {
44 free_extent_buffer(root->commit_root);
45 root->commit_root = btrfs_root_node(root);
46 }
47
48 /*
49 * either allocate a new transaction or hop into the existing one
50 */
join_transaction(struct btrfs_root * root)51 static noinline int join_transaction(struct btrfs_root *root)
52 {
53 struct btrfs_transaction *cur_trans;
54 cur_trans = root->fs_info->running_transaction;
55 if (!cur_trans) {
56 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
57 GFP_NOFS);
58 if (!cur_trans)
59 return -ENOMEM;
60 root->fs_info->generation++;
61 atomic_set(&cur_trans->num_writers, 1);
62 cur_trans->num_joined = 0;
63 cur_trans->transid = root->fs_info->generation;
64 init_waitqueue_head(&cur_trans->writer_wait);
65 init_waitqueue_head(&cur_trans->commit_wait);
66 cur_trans->in_commit = 0;
67 cur_trans->blocked = 0;
68 atomic_set(&cur_trans->use_count, 1);
69 cur_trans->commit_done = 0;
70 cur_trans->start_time = get_seconds();
71
72 cur_trans->delayed_refs.root = RB_ROOT;
73 cur_trans->delayed_refs.num_entries = 0;
74 cur_trans->delayed_refs.num_heads_ready = 0;
75 cur_trans->delayed_refs.num_heads = 0;
76 cur_trans->delayed_refs.flushing = 0;
77 cur_trans->delayed_refs.run_delayed_start = 0;
78 spin_lock_init(&cur_trans->delayed_refs.lock);
79
80 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82 extent_io_tree_init(&cur_trans->dirty_pages,
83 root->fs_info->btree_inode->i_mapping,
84 GFP_NOFS);
85 spin_lock(&root->fs_info->new_trans_lock);
86 root->fs_info->running_transaction = cur_trans;
87 spin_unlock(&root->fs_info->new_trans_lock);
88 } else {
89 atomic_inc(&cur_trans->num_writers);
90 cur_trans->num_joined++;
91 }
92
93 return 0;
94 }
95
96 /*
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
101 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root)
104 {
105 if (root->ref_cows && root->last_trans < trans->transid) {
106 WARN_ON(root == root->fs_info->extent_root);
107 WARN_ON(root->commit_root != root->node);
108
109 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110 (unsigned long)root->root_key.objectid,
111 BTRFS_ROOT_TRANS_TAG);
112 root->last_trans = trans->transid;
113 btrfs_init_reloc_root(trans, root);
114 }
115 return 0;
116 }
117
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119 struct btrfs_root *root)
120 {
121 if (!root->ref_cows)
122 return 0;
123
124 mutex_lock(&root->fs_info->trans_mutex);
125 if (root->last_trans == trans->transid) {
126 mutex_unlock(&root->fs_info->trans_mutex);
127 return 0;
128 }
129
130 record_root_in_trans(trans, root);
131 mutex_unlock(&root->fs_info->trans_mutex);
132 return 0;
133 }
134
135 /* wait for commit against the current transaction to become unblocked
136 * when this is done, it is safe to start a new transaction, but the current
137 * transaction might not be fully on disk.
138 */
wait_current_trans(struct btrfs_root * root)139 static void wait_current_trans(struct btrfs_root *root)
140 {
141 struct btrfs_transaction *cur_trans;
142
143 cur_trans = root->fs_info->running_transaction;
144 if (cur_trans && cur_trans->blocked) {
145 DEFINE_WAIT(wait);
146 atomic_inc(&cur_trans->use_count);
147 while (1) {
148 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149 TASK_UNINTERRUPTIBLE);
150 if (!cur_trans->blocked)
151 break;
152 mutex_unlock(&root->fs_info->trans_mutex);
153 schedule();
154 mutex_lock(&root->fs_info->trans_mutex);
155 }
156 finish_wait(&root->fs_info->transaction_wait, &wait);
157 put_transaction(cur_trans);
158 }
159 }
160
161 enum btrfs_trans_type {
162 TRANS_START,
163 TRANS_JOIN,
164 TRANS_USERSPACE,
165 TRANS_JOIN_NOLOCK,
166 };
167
may_wait_transaction(struct btrfs_root * root,int type)168 static int may_wait_transaction(struct btrfs_root *root, int type)
169 {
170 if (!root->fs_info->log_root_recovering &&
171 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
172 type == TRANS_USERSPACE))
173 return 1;
174 return 0;
175 }
176
start_transaction(struct btrfs_root * root,u64 num_items,int type)177 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
178 u64 num_items, int type)
179 {
180 struct btrfs_trans_handle *h;
181 struct btrfs_transaction *cur_trans;
182 int retries = 0;
183 int ret;
184
185 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
186 return ERR_PTR(-EROFS);
187 again:
188 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
189 if (!h)
190 return ERR_PTR(-ENOMEM);
191
192 if (type != TRANS_JOIN_NOLOCK)
193 mutex_lock(&root->fs_info->trans_mutex);
194 if (may_wait_transaction(root, type))
195 wait_current_trans(root);
196
197 ret = join_transaction(root);
198 if (ret < 0) {
199 kmem_cache_free(btrfs_trans_handle_cachep, h);
200 if (type != TRANS_JOIN_NOLOCK)
201 mutex_unlock(&root->fs_info->trans_mutex);
202 return ERR_PTR(ret);
203 }
204
205 cur_trans = root->fs_info->running_transaction;
206 atomic_inc(&cur_trans->use_count);
207 if (type != TRANS_JOIN_NOLOCK)
208 mutex_unlock(&root->fs_info->trans_mutex);
209
210 h->transid = cur_trans->transid;
211 h->transaction = cur_trans;
212 h->blocks_used = 0;
213 h->block_group = 0;
214 h->bytes_reserved = 0;
215 h->delayed_ref_updates = 0;
216 h->block_rsv = NULL;
217
218 smp_mb();
219 if (cur_trans->blocked && may_wait_transaction(root, type)) {
220 btrfs_commit_transaction(h, root);
221 goto again;
222 }
223
224 if (num_items > 0) {
225 ret = btrfs_trans_reserve_metadata(h, root, num_items);
226 if (ret == -EAGAIN && !retries) {
227 retries++;
228 btrfs_commit_transaction(h, root);
229 goto again;
230 } else if (ret == -EAGAIN) {
231 /*
232 * We have already retried and got EAGAIN, so really we
233 * don't have space, so set ret to -ENOSPC.
234 */
235 ret = -ENOSPC;
236 }
237
238 if (ret < 0) {
239 btrfs_end_transaction(h, root);
240 return ERR_PTR(ret);
241 }
242 }
243
244 if (type != TRANS_JOIN_NOLOCK)
245 mutex_lock(&root->fs_info->trans_mutex);
246 record_root_in_trans(h, root);
247 if (type != TRANS_JOIN_NOLOCK)
248 mutex_unlock(&root->fs_info->trans_mutex);
249
250 if (!current->journal_info && type != TRANS_USERSPACE)
251 current->journal_info = h;
252 return h;
253 }
254
btrfs_start_transaction(struct btrfs_root * root,int num_items)255 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
256 int num_items)
257 {
258 return start_transaction(root, num_items, TRANS_START);
259 }
btrfs_join_transaction(struct btrfs_root * root,int num_blocks)260 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
261 int num_blocks)
262 {
263 return start_transaction(root, 0, TRANS_JOIN);
264 }
265
btrfs_join_transaction_nolock(struct btrfs_root * root,int num_blocks)266 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root,
267 int num_blocks)
268 {
269 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
270 }
271
btrfs_start_ioctl_transaction(struct btrfs_root * r,int num_blocks)272 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
273 int num_blocks)
274 {
275 return start_transaction(r, 0, TRANS_USERSPACE);
276 }
277
278 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_root * root,struct btrfs_transaction * commit)279 static noinline int wait_for_commit(struct btrfs_root *root,
280 struct btrfs_transaction *commit)
281 {
282 DEFINE_WAIT(wait);
283 mutex_lock(&root->fs_info->trans_mutex);
284 while (!commit->commit_done) {
285 prepare_to_wait(&commit->commit_wait, &wait,
286 TASK_UNINTERRUPTIBLE);
287 if (commit->commit_done)
288 break;
289 mutex_unlock(&root->fs_info->trans_mutex);
290 schedule();
291 mutex_lock(&root->fs_info->trans_mutex);
292 }
293 mutex_unlock(&root->fs_info->trans_mutex);
294 finish_wait(&commit->commit_wait, &wait);
295 return 0;
296 }
297
btrfs_wait_for_commit(struct btrfs_root * root,u64 transid)298 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
299 {
300 struct btrfs_transaction *cur_trans = NULL, *t;
301 int ret;
302
303 mutex_lock(&root->fs_info->trans_mutex);
304
305 ret = 0;
306 if (transid) {
307 if (transid <= root->fs_info->last_trans_committed)
308 goto out_unlock;
309
310 /* find specified transaction */
311 list_for_each_entry(t, &root->fs_info->trans_list, list) {
312 if (t->transid == transid) {
313 cur_trans = t;
314 break;
315 }
316 if (t->transid > transid)
317 break;
318 }
319 ret = -EINVAL;
320 if (!cur_trans)
321 goto out_unlock; /* bad transid */
322 } else {
323 /* find newest transaction that is committing | committed */
324 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
325 list) {
326 if (t->in_commit) {
327 if (t->commit_done)
328 goto out_unlock;
329 cur_trans = t;
330 break;
331 }
332 }
333 if (!cur_trans)
334 goto out_unlock; /* nothing committing|committed */
335 }
336
337 atomic_inc(&cur_trans->use_count);
338 mutex_unlock(&root->fs_info->trans_mutex);
339
340 wait_for_commit(root, cur_trans);
341
342 mutex_lock(&root->fs_info->trans_mutex);
343 put_transaction(cur_trans);
344 ret = 0;
345 out_unlock:
346 mutex_unlock(&root->fs_info->trans_mutex);
347 return ret;
348 }
349
350 #if 0
351 /*
352 * rate limit against the drop_snapshot code. This helps to slow down new
353 * operations if the drop_snapshot code isn't able to keep up.
354 */
355 static void throttle_on_drops(struct btrfs_root *root)
356 {
357 struct btrfs_fs_info *info = root->fs_info;
358 int harder_count = 0;
359
360 harder:
361 if (atomic_read(&info->throttles)) {
362 DEFINE_WAIT(wait);
363 int thr;
364 thr = atomic_read(&info->throttle_gen);
365
366 do {
367 prepare_to_wait(&info->transaction_throttle,
368 &wait, TASK_UNINTERRUPTIBLE);
369 if (!atomic_read(&info->throttles)) {
370 finish_wait(&info->transaction_throttle, &wait);
371 break;
372 }
373 schedule();
374 finish_wait(&info->transaction_throttle, &wait);
375 } while (thr == atomic_read(&info->throttle_gen));
376 harder_count++;
377
378 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
379 harder_count < 2)
380 goto harder;
381
382 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
383 harder_count < 10)
384 goto harder;
385
386 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
387 harder_count < 20)
388 goto harder;
389 }
390 }
391 #endif
392
btrfs_throttle(struct btrfs_root * root)393 void btrfs_throttle(struct btrfs_root *root)
394 {
395 mutex_lock(&root->fs_info->trans_mutex);
396 if (!root->fs_info->open_ioctl_trans)
397 wait_current_trans(root);
398 mutex_unlock(&root->fs_info->trans_mutex);
399 }
400
should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)401 static int should_end_transaction(struct btrfs_trans_handle *trans,
402 struct btrfs_root *root)
403 {
404 int ret;
405 ret = btrfs_block_rsv_check(trans, root,
406 &root->fs_info->global_block_rsv, 0, 5);
407 return ret ? 1 : 0;
408 }
409
btrfs_should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)410 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
411 struct btrfs_root *root)
412 {
413 struct btrfs_transaction *cur_trans = trans->transaction;
414 int updates;
415
416 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
417 return 1;
418
419 updates = trans->delayed_ref_updates;
420 trans->delayed_ref_updates = 0;
421 if (updates)
422 btrfs_run_delayed_refs(trans, root, updates);
423
424 return should_end_transaction(trans, root);
425 }
426
__btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int throttle,int lock)427 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
428 struct btrfs_root *root, int throttle, int lock)
429 {
430 struct btrfs_transaction *cur_trans = trans->transaction;
431 struct btrfs_fs_info *info = root->fs_info;
432 int count = 0;
433
434 while (count < 4) {
435 unsigned long cur = trans->delayed_ref_updates;
436 trans->delayed_ref_updates = 0;
437 if (cur &&
438 trans->transaction->delayed_refs.num_heads_ready > 64) {
439 trans->delayed_ref_updates = 0;
440
441 /*
442 * do a full flush if the transaction is trying
443 * to close
444 */
445 if (trans->transaction->delayed_refs.flushing)
446 cur = 0;
447 btrfs_run_delayed_refs(trans, root, cur);
448 } else {
449 break;
450 }
451 count++;
452 }
453
454 btrfs_trans_release_metadata(trans, root);
455
456 if (lock && !root->fs_info->open_ioctl_trans &&
457 should_end_transaction(trans, root))
458 trans->transaction->blocked = 1;
459
460 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
461 if (throttle)
462 return btrfs_commit_transaction(trans, root);
463 else
464 wake_up_process(info->transaction_kthread);
465 }
466
467 WARN_ON(cur_trans != info->running_transaction);
468 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
469 atomic_dec(&cur_trans->num_writers);
470
471 smp_mb();
472 if (waitqueue_active(&cur_trans->writer_wait))
473 wake_up(&cur_trans->writer_wait);
474 put_transaction(cur_trans);
475
476 if (current->journal_info == trans)
477 current->journal_info = NULL;
478 memset(trans, 0, sizeof(*trans));
479 kmem_cache_free(btrfs_trans_handle_cachep, trans);
480
481 if (throttle)
482 btrfs_run_delayed_iputs(root);
483
484 return 0;
485 }
486
btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)487 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
488 struct btrfs_root *root)
489 {
490 return __btrfs_end_transaction(trans, root, 0, 1);
491 }
492
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans,struct btrfs_root * root)493 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
494 struct btrfs_root *root)
495 {
496 return __btrfs_end_transaction(trans, root, 1, 1);
497 }
498
btrfs_end_transaction_nolock(struct btrfs_trans_handle * trans,struct btrfs_root * root)499 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
500 struct btrfs_root *root)
501 {
502 return __btrfs_end_transaction(trans, root, 0, 0);
503 }
504
505 /*
506 * when btree blocks are allocated, they have some corresponding bits set for
507 * them in one of two extent_io trees. This is used to make sure all of
508 * those extents are sent to disk but does not wait on them
509 */
btrfs_write_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)510 int btrfs_write_marked_extents(struct btrfs_root *root,
511 struct extent_io_tree *dirty_pages, int mark)
512 {
513 int ret;
514 int err = 0;
515 int werr = 0;
516 struct page *page;
517 struct inode *btree_inode = root->fs_info->btree_inode;
518 u64 start = 0;
519 u64 end;
520 unsigned long index;
521
522 while (1) {
523 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
524 mark);
525 if (ret)
526 break;
527 while (start <= end) {
528 cond_resched();
529
530 index = start >> PAGE_CACHE_SHIFT;
531 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
532 page = find_get_page(btree_inode->i_mapping, index);
533 if (!page)
534 continue;
535
536 btree_lock_page_hook(page);
537 if (!page->mapping) {
538 unlock_page(page);
539 page_cache_release(page);
540 continue;
541 }
542
543 if (PageWriteback(page)) {
544 if (PageDirty(page))
545 wait_on_page_writeback(page);
546 else {
547 unlock_page(page);
548 page_cache_release(page);
549 continue;
550 }
551 }
552 err = write_one_page(page, 0);
553 if (err)
554 werr = err;
555 page_cache_release(page);
556 }
557 }
558 if (err)
559 werr = err;
560 return werr;
561 }
562
563 /*
564 * when btree blocks are allocated, they have some corresponding bits set for
565 * them in one of two extent_io trees. This is used to make sure all of
566 * those extents are on disk for transaction or log commit. We wait
567 * on all the pages and clear them from the dirty pages state tree
568 */
btrfs_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)569 int btrfs_wait_marked_extents(struct btrfs_root *root,
570 struct extent_io_tree *dirty_pages, int mark)
571 {
572 int ret;
573 int err = 0;
574 int werr = 0;
575 struct page *page;
576 struct inode *btree_inode = root->fs_info->btree_inode;
577 u64 start = 0;
578 u64 end;
579 unsigned long index;
580
581 while (1) {
582 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
583 mark);
584 if (ret)
585 break;
586
587 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
588 while (start <= end) {
589 index = start >> PAGE_CACHE_SHIFT;
590 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
591 page = find_get_page(btree_inode->i_mapping, index);
592 if (!page)
593 continue;
594 if (PageDirty(page)) {
595 btree_lock_page_hook(page);
596 wait_on_page_writeback(page);
597 err = write_one_page(page, 0);
598 if (err)
599 werr = err;
600 }
601 wait_on_page_writeback(page);
602 page_cache_release(page);
603 cond_resched();
604 }
605 }
606 if (err)
607 werr = err;
608 return werr;
609 }
610
611 /*
612 * when btree blocks are allocated, they have some corresponding bits set for
613 * them in one of two extent_io trees. This is used to make sure all of
614 * those extents are on disk for transaction or log commit
615 */
btrfs_write_and_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)616 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
617 struct extent_io_tree *dirty_pages, int mark)
618 {
619 int ret;
620 int ret2;
621
622 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
623 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
624 return ret || ret2;
625 }
626
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)627 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
628 struct btrfs_root *root)
629 {
630 if (!trans || !trans->transaction) {
631 struct inode *btree_inode;
632 btree_inode = root->fs_info->btree_inode;
633 return filemap_write_and_wait(btree_inode->i_mapping);
634 }
635 return btrfs_write_and_wait_marked_extents(root,
636 &trans->transaction->dirty_pages,
637 EXTENT_DIRTY);
638 }
639
640 /*
641 * this is used to update the root pointer in the tree of tree roots.
642 *
643 * But, in the case of the extent allocation tree, updating the root
644 * pointer may allocate blocks which may change the root of the extent
645 * allocation tree.
646 *
647 * So, this loops and repeats and makes sure the cowonly root didn't
648 * change while the root pointer was being updated in the metadata.
649 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)650 static int update_cowonly_root(struct btrfs_trans_handle *trans,
651 struct btrfs_root *root)
652 {
653 int ret;
654 u64 old_root_bytenr;
655 u64 old_root_used;
656 struct btrfs_root *tree_root = root->fs_info->tree_root;
657
658 old_root_used = btrfs_root_used(&root->root_item);
659 btrfs_write_dirty_block_groups(trans, root);
660
661 while (1) {
662 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
663 if (old_root_bytenr == root->node->start &&
664 old_root_used == btrfs_root_used(&root->root_item))
665 break;
666
667 btrfs_set_root_node(&root->root_item, root->node);
668 ret = btrfs_update_root(trans, tree_root,
669 &root->root_key,
670 &root->root_item);
671 BUG_ON(ret);
672
673 old_root_used = btrfs_root_used(&root->root_item);
674 ret = btrfs_write_dirty_block_groups(trans, root);
675 BUG_ON(ret);
676 }
677
678 if (root != root->fs_info->extent_root)
679 switch_commit_root(root);
680
681 return 0;
682 }
683
684 /*
685 * update all the cowonly tree roots on disk
686 */
commit_cowonly_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)687 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
688 struct btrfs_root *root)
689 {
690 struct btrfs_fs_info *fs_info = root->fs_info;
691 struct list_head *next;
692 struct extent_buffer *eb;
693 int ret;
694
695 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
696 BUG_ON(ret);
697
698 eb = btrfs_lock_root_node(fs_info->tree_root);
699 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
700 btrfs_tree_unlock(eb);
701 free_extent_buffer(eb);
702
703 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
704 BUG_ON(ret);
705
706 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
707 next = fs_info->dirty_cowonly_roots.next;
708 list_del_init(next);
709 root = list_entry(next, struct btrfs_root, dirty_list);
710
711 update_cowonly_root(trans, root);
712 }
713
714 down_write(&fs_info->extent_commit_sem);
715 switch_commit_root(fs_info->extent_root);
716 up_write(&fs_info->extent_commit_sem);
717
718 return 0;
719 }
720
721 /*
722 * dead roots are old snapshots that need to be deleted. This allocates
723 * a dirty root struct and adds it into the list of dead roots that need to
724 * be deleted
725 */
btrfs_add_dead_root(struct btrfs_root * root)726 int btrfs_add_dead_root(struct btrfs_root *root)
727 {
728 mutex_lock(&root->fs_info->trans_mutex);
729 list_add(&root->root_list, &root->fs_info->dead_roots);
730 mutex_unlock(&root->fs_info->trans_mutex);
731 return 0;
732 }
733
734 /*
735 * update all the cowonly tree roots on disk
736 */
commit_fs_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)737 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
738 struct btrfs_root *root)
739 {
740 struct btrfs_root *gang[8];
741 struct btrfs_fs_info *fs_info = root->fs_info;
742 int i;
743 int ret;
744 int err = 0;
745
746 while (1) {
747 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
748 (void **)gang, 0,
749 ARRAY_SIZE(gang),
750 BTRFS_ROOT_TRANS_TAG);
751 if (ret == 0)
752 break;
753 for (i = 0; i < ret; i++) {
754 root = gang[i];
755 radix_tree_tag_clear(&fs_info->fs_roots_radix,
756 (unsigned long)root->root_key.objectid,
757 BTRFS_ROOT_TRANS_TAG);
758
759 btrfs_free_log(trans, root);
760 btrfs_update_reloc_root(trans, root);
761 btrfs_orphan_commit_root(trans, root);
762
763 if (root->commit_root != root->node) {
764 switch_commit_root(root);
765 btrfs_set_root_node(&root->root_item,
766 root->node);
767 }
768
769 err = btrfs_update_root(trans, fs_info->tree_root,
770 &root->root_key,
771 &root->root_item);
772 if (err)
773 break;
774 }
775 }
776 return err;
777 }
778
779 /*
780 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
781 * otherwise every leaf in the btree is read and defragged.
782 */
btrfs_defrag_root(struct btrfs_root * root,int cacheonly)783 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
784 {
785 struct btrfs_fs_info *info = root->fs_info;
786 struct btrfs_trans_handle *trans;
787 int ret;
788 unsigned long nr;
789
790 if (xchg(&root->defrag_running, 1))
791 return 0;
792
793 while (1) {
794 trans = btrfs_start_transaction(root, 0);
795 if (IS_ERR(trans))
796 return PTR_ERR(trans);
797
798 ret = btrfs_defrag_leaves(trans, root, cacheonly);
799
800 nr = trans->blocks_used;
801 btrfs_end_transaction(trans, root);
802 btrfs_btree_balance_dirty(info->tree_root, nr);
803 cond_resched();
804
805 if (root->fs_info->closing || ret != -EAGAIN)
806 break;
807 }
808 root->defrag_running = 0;
809 return ret;
810 }
811
812 #if 0
813 /*
814 * when dropping snapshots, we generate a ton of delayed refs, and it makes
815 * sense not to join the transaction while it is trying to flush the current
816 * queue of delayed refs out.
817 *
818 * This is used by the drop snapshot code only
819 */
820 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
821 {
822 DEFINE_WAIT(wait);
823
824 mutex_lock(&info->trans_mutex);
825 while (info->running_transaction &&
826 info->running_transaction->delayed_refs.flushing) {
827 prepare_to_wait(&info->transaction_wait, &wait,
828 TASK_UNINTERRUPTIBLE);
829 mutex_unlock(&info->trans_mutex);
830
831 schedule();
832
833 mutex_lock(&info->trans_mutex);
834 finish_wait(&info->transaction_wait, &wait);
835 }
836 mutex_unlock(&info->trans_mutex);
837 return 0;
838 }
839
840 /*
841 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
842 * all of them
843 */
844 int btrfs_drop_dead_root(struct btrfs_root *root)
845 {
846 struct btrfs_trans_handle *trans;
847 struct btrfs_root *tree_root = root->fs_info->tree_root;
848 unsigned long nr;
849 int ret;
850
851 while (1) {
852 /*
853 * we don't want to jump in and create a bunch of
854 * delayed refs if the transaction is starting to close
855 */
856 wait_transaction_pre_flush(tree_root->fs_info);
857 trans = btrfs_start_transaction(tree_root, 1);
858
859 /*
860 * we've joined a transaction, make sure it isn't
861 * closing right now
862 */
863 if (trans->transaction->delayed_refs.flushing) {
864 btrfs_end_transaction(trans, tree_root);
865 continue;
866 }
867
868 ret = btrfs_drop_snapshot(trans, root);
869 if (ret != -EAGAIN)
870 break;
871
872 ret = btrfs_update_root(trans, tree_root,
873 &root->root_key,
874 &root->root_item);
875 if (ret)
876 break;
877
878 nr = trans->blocks_used;
879 ret = btrfs_end_transaction(trans, tree_root);
880 BUG_ON(ret);
881
882 btrfs_btree_balance_dirty(tree_root, nr);
883 cond_resched();
884 }
885 BUG_ON(ret);
886
887 ret = btrfs_del_root(trans, tree_root, &root->root_key);
888 BUG_ON(ret);
889
890 nr = trans->blocks_used;
891 ret = btrfs_end_transaction(trans, tree_root);
892 BUG_ON(ret);
893
894 free_extent_buffer(root->node);
895 free_extent_buffer(root->commit_root);
896 kfree(root);
897
898 btrfs_btree_balance_dirty(tree_root, nr);
899 return ret;
900 }
901 #endif
902
903 /*
904 * new snapshots need to be created at a very specific time in the
905 * transaction commit. This does the actual creation
906 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_pending_snapshot * pending)907 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
908 struct btrfs_fs_info *fs_info,
909 struct btrfs_pending_snapshot *pending)
910 {
911 struct btrfs_key key;
912 struct btrfs_root_item *new_root_item;
913 struct btrfs_root *tree_root = fs_info->tree_root;
914 struct btrfs_root *root = pending->root;
915 struct btrfs_root *parent_root;
916 struct inode *parent_inode;
917 struct dentry *parent;
918 struct dentry *dentry;
919 struct extent_buffer *tmp;
920 struct extent_buffer *old;
921 int ret;
922 u64 to_reserve = 0;
923 u64 index = 0;
924 u64 objectid;
925 u64 root_flags;
926
927 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
928 if (!new_root_item) {
929 pending->error = -ENOMEM;
930 goto fail;
931 }
932
933 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
934 if (ret) {
935 pending->error = ret;
936 goto fail;
937 }
938
939 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
940 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
941
942 if (to_reserve > 0) {
943 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
944 to_reserve);
945 if (ret) {
946 pending->error = ret;
947 goto fail;
948 }
949 }
950
951 key.objectid = objectid;
952 key.offset = (u64)-1;
953 key.type = BTRFS_ROOT_ITEM_KEY;
954
955 trans->block_rsv = &pending->block_rsv;
956
957 dentry = pending->dentry;
958 parent = dget_parent(dentry);
959 parent_inode = parent->d_inode;
960 parent_root = BTRFS_I(parent_inode)->root;
961 record_root_in_trans(trans, parent_root);
962
963 /*
964 * insert the directory item
965 */
966 ret = btrfs_set_inode_index(parent_inode, &index);
967 BUG_ON(ret);
968 ret = btrfs_insert_dir_item(trans, parent_root,
969 dentry->d_name.name, dentry->d_name.len,
970 parent_inode->i_ino, &key,
971 BTRFS_FT_DIR, index);
972 BUG_ON(ret);
973
974 btrfs_i_size_write(parent_inode, parent_inode->i_size +
975 dentry->d_name.len * 2);
976 ret = btrfs_update_inode(trans, parent_root, parent_inode);
977 BUG_ON(ret);
978
979 record_root_in_trans(trans, root);
980 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
981 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
982 btrfs_check_and_init_root_item(new_root_item);
983
984 root_flags = btrfs_root_flags(new_root_item);
985 if (pending->readonly)
986 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
987 else
988 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
989 btrfs_set_root_flags(new_root_item, root_flags);
990
991 old = btrfs_lock_root_node(root);
992 btrfs_cow_block(trans, root, old, NULL, 0, &old);
993 btrfs_set_lock_blocking(old);
994
995 btrfs_copy_root(trans, root, old, &tmp, objectid);
996 btrfs_tree_unlock(old);
997 free_extent_buffer(old);
998
999 btrfs_set_root_node(new_root_item, tmp);
1000 /* record when the snapshot was created in key.offset */
1001 key.offset = trans->transid;
1002 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1003 btrfs_tree_unlock(tmp);
1004 free_extent_buffer(tmp);
1005 BUG_ON(ret);
1006
1007 /*
1008 * insert root back/forward references
1009 */
1010 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1011 parent_root->root_key.objectid,
1012 parent_inode->i_ino, index,
1013 dentry->d_name.name, dentry->d_name.len);
1014 BUG_ON(ret);
1015 dput(parent);
1016
1017 key.offset = (u64)-1;
1018 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1019 BUG_ON(IS_ERR(pending->snap));
1020
1021 btrfs_reloc_post_snapshot(trans, pending);
1022 btrfs_orphan_post_snapshot(trans, pending);
1023 fail:
1024 kfree(new_root_item);
1025 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1026 return 0;
1027 }
1028
1029 /*
1030 * create all the snapshots we've scheduled for creation
1031 */
create_pending_snapshots(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1032 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1033 struct btrfs_fs_info *fs_info)
1034 {
1035 struct btrfs_pending_snapshot *pending;
1036 struct list_head *head = &trans->transaction->pending_snapshots;
1037 int ret;
1038
1039 list_for_each_entry(pending, head, list) {
1040 ret = create_pending_snapshot(trans, fs_info, pending);
1041 BUG_ON(ret);
1042 }
1043 return 0;
1044 }
1045
update_super_roots(struct btrfs_root * root)1046 static void update_super_roots(struct btrfs_root *root)
1047 {
1048 struct btrfs_root_item *root_item;
1049 struct btrfs_super_block *super;
1050
1051 super = &root->fs_info->super_copy;
1052
1053 root_item = &root->fs_info->chunk_root->root_item;
1054 super->chunk_root = root_item->bytenr;
1055 super->chunk_root_generation = root_item->generation;
1056 super->chunk_root_level = root_item->level;
1057
1058 root_item = &root->fs_info->tree_root->root_item;
1059 super->root = root_item->bytenr;
1060 super->generation = root_item->generation;
1061 super->root_level = root_item->level;
1062 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1063 super->cache_generation = root_item->generation;
1064 }
1065
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1066 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1067 {
1068 int ret = 0;
1069 spin_lock(&info->new_trans_lock);
1070 if (info->running_transaction)
1071 ret = info->running_transaction->in_commit;
1072 spin_unlock(&info->new_trans_lock);
1073 return ret;
1074 }
1075
btrfs_transaction_blocked(struct btrfs_fs_info * info)1076 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1077 {
1078 int ret = 0;
1079 spin_lock(&info->new_trans_lock);
1080 if (info->running_transaction)
1081 ret = info->running_transaction->blocked;
1082 spin_unlock(&info->new_trans_lock);
1083 return ret;
1084 }
1085
1086 /*
1087 * wait for the current transaction commit to start and block subsequent
1088 * transaction joins
1089 */
wait_current_trans_commit_start(struct btrfs_root * root,struct btrfs_transaction * trans)1090 static void wait_current_trans_commit_start(struct btrfs_root *root,
1091 struct btrfs_transaction *trans)
1092 {
1093 DEFINE_WAIT(wait);
1094
1095 if (trans->in_commit)
1096 return;
1097
1098 while (1) {
1099 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1100 TASK_UNINTERRUPTIBLE);
1101 if (trans->in_commit) {
1102 finish_wait(&root->fs_info->transaction_blocked_wait,
1103 &wait);
1104 break;
1105 }
1106 mutex_unlock(&root->fs_info->trans_mutex);
1107 schedule();
1108 mutex_lock(&root->fs_info->trans_mutex);
1109 finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1110 }
1111 }
1112
1113 /*
1114 * wait for the current transaction to start and then become unblocked.
1115 * caller holds ref.
1116 */
wait_current_trans_commit_start_and_unblock(struct btrfs_root * root,struct btrfs_transaction * trans)1117 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1118 struct btrfs_transaction *trans)
1119 {
1120 DEFINE_WAIT(wait);
1121
1122 if (trans->commit_done || (trans->in_commit && !trans->blocked))
1123 return;
1124
1125 while (1) {
1126 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1127 TASK_UNINTERRUPTIBLE);
1128 if (trans->commit_done ||
1129 (trans->in_commit && !trans->blocked)) {
1130 finish_wait(&root->fs_info->transaction_wait,
1131 &wait);
1132 break;
1133 }
1134 mutex_unlock(&root->fs_info->trans_mutex);
1135 schedule();
1136 mutex_lock(&root->fs_info->trans_mutex);
1137 finish_wait(&root->fs_info->transaction_wait,
1138 &wait);
1139 }
1140 }
1141
1142 /*
1143 * commit transactions asynchronously. once btrfs_commit_transaction_async
1144 * returns, any subsequent transaction will not be allowed to join.
1145 */
1146 struct btrfs_async_commit {
1147 struct btrfs_trans_handle *newtrans;
1148 struct btrfs_root *root;
1149 struct delayed_work work;
1150 };
1151
do_async_commit(struct work_struct * work)1152 static void do_async_commit(struct work_struct *work)
1153 {
1154 struct btrfs_async_commit *ac =
1155 container_of(work, struct btrfs_async_commit, work.work);
1156
1157 btrfs_commit_transaction(ac->newtrans, ac->root);
1158 kfree(ac);
1159 }
1160
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,struct btrfs_root * root,int wait_for_unblock)1161 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1162 struct btrfs_root *root,
1163 int wait_for_unblock)
1164 {
1165 struct btrfs_async_commit *ac;
1166 struct btrfs_transaction *cur_trans;
1167
1168 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1169 if (!ac)
1170 return -ENOMEM;
1171
1172 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1173 ac->root = root;
1174 ac->newtrans = btrfs_join_transaction(root, 0);
1175 if (IS_ERR(ac->newtrans)) {
1176 int err = PTR_ERR(ac->newtrans);
1177 kfree(ac);
1178 return err;
1179 }
1180
1181 /* take transaction reference */
1182 mutex_lock(&root->fs_info->trans_mutex);
1183 cur_trans = trans->transaction;
1184 atomic_inc(&cur_trans->use_count);
1185 mutex_unlock(&root->fs_info->trans_mutex);
1186
1187 btrfs_end_transaction(trans, root);
1188 schedule_delayed_work(&ac->work, 0);
1189
1190 /* wait for transaction to start and unblock */
1191 mutex_lock(&root->fs_info->trans_mutex);
1192 if (wait_for_unblock)
1193 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1194 else
1195 wait_current_trans_commit_start(root, cur_trans);
1196 put_transaction(cur_trans);
1197 mutex_unlock(&root->fs_info->trans_mutex);
1198
1199 return 0;
1200 }
1201
1202 /*
1203 * btrfs_transaction state sequence:
1204 * in_commit = 0, blocked = 0 (initial)
1205 * in_commit = 1, blocked = 1
1206 * blocked = 0
1207 * commit_done = 1
1208 */
btrfs_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1209 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1210 struct btrfs_root *root)
1211 {
1212 unsigned long joined = 0;
1213 struct btrfs_transaction *cur_trans;
1214 struct btrfs_transaction *prev_trans = NULL;
1215 DEFINE_WAIT(wait);
1216 int ret;
1217 int should_grow = 0;
1218 unsigned long now = get_seconds();
1219 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1220
1221 btrfs_run_ordered_operations(root, 0);
1222
1223 /* make a pass through all the delayed refs we have so far
1224 * any runnings procs may add more while we are here
1225 */
1226 ret = btrfs_run_delayed_refs(trans, root, 0);
1227 BUG_ON(ret);
1228
1229 btrfs_trans_release_metadata(trans, root);
1230
1231 cur_trans = trans->transaction;
1232 /*
1233 * set the flushing flag so procs in this transaction have to
1234 * start sending their work down.
1235 */
1236 cur_trans->delayed_refs.flushing = 1;
1237
1238 ret = btrfs_run_delayed_refs(trans, root, 0);
1239 BUG_ON(ret);
1240
1241 mutex_lock(&root->fs_info->trans_mutex);
1242 if (cur_trans->in_commit) {
1243 atomic_inc(&cur_trans->use_count);
1244 mutex_unlock(&root->fs_info->trans_mutex);
1245 btrfs_end_transaction(trans, root);
1246
1247 ret = wait_for_commit(root, cur_trans);
1248 BUG_ON(ret);
1249
1250 mutex_lock(&root->fs_info->trans_mutex);
1251 put_transaction(cur_trans);
1252 mutex_unlock(&root->fs_info->trans_mutex);
1253
1254 return 0;
1255 }
1256
1257 trans->transaction->in_commit = 1;
1258 trans->transaction->blocked = 1;
1259 wake_up(&root->fs_info->transaction_blocked_wait);
1260
1261 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1262 prev_trans = list_entry(cur_trans->list.prev,
1263 struct btrfs_transaction, list);
1264 if (!prev_trans->commit_done) {
1265 atomic_inc(&prev_trans->use_count);
1266 mutex_unlock(&root->fs_info->trans_mutex);
1267
1268 wait_for_commit(root, prev_trans);
1269
1270 mutex_lock(&root->fs_info->trans_mutex);
1271 put_transaction(prev_trans);
1272 }
1273 }
1274
1275 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1276 should_grow = 1;
1277
1278 do {
1279 int snap_pending = 0;
1280 joined = cur_trans->num_joined;
1281 if (!list_empty(&trans->transaction->pending_snapshots))
1282 snap_pending = 1;
1283
1284 WARN_ON(cur_trans != trans->transaction);
1285 mutex_unlock(&root->fs_info->trans_mutex);
1286
1287 if (flush_on_commit || snap_pending) {
1288 btrfs_start_delalloc_inodes(root, 1);
1289 ret = btrfs_wait_ordered_extents(root, 0, 1);
1290 BUG_ON(ret);
1291 }
1292
1293 /*
1294 * rename don't use btrfs_join_transaction, so, once we
1295 * set the transaction to blocked above, we aren't going
1296 * to get any new ordered operations. We can safely run
1297 * it here and no for sure that nothing new will be added
1298 * to the list
1299 */
1300 btrfs_run_ordered_operations(root, 1);
1301
1302 prepare_to_wait(&cur_trans->writer_wait, &wait,
1303 TASK_UNINTERRUPTIBLE);
1304
1305 smp_mb();
1306 if (atomic_read(&cur_trans->num_writers) > 1)
1307 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1308 else if (should_grow)
1309 schedule_timeout(1);
1310
1311 mutex_lock(&root->fs_info->trans_mutex);
1312 finish_wait(&cur_trans->writer_wait, &wait);
1313 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1314 (should_grow && cur_trans->num_joined != joined));
1315
1316 ret = create_pending_snapshots(trans, root->fs_info);
1317 BUG_ON(ret);
1318
1319 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1320 BUG_ON(ret);
1321
1322 WARN_ON(cur_trans != trans->transaction);
1323
1324 /* btrfs_commit_tree_roots is responsible for getting the
1325 * various roots consistent with each other. Every pointer
1326 * in the tree of tree roots has to point to the most up to date
1327 * root for every subvolume and other tree. So, we have to keep
1328 * the tree logging code from jumping in and changing any
1329 * of the trees.
1330 *
1331 * At this point in the commit, there can't be any tree-log
1332 * writers, but a little lower down we drop the trans mutex
1333 * and let new people in. By holding the tree_log_mutex
1334 * from now until after the super is written, we avoid races
1335 * with the tree-log code.
1336 */
1337 mutex_lock(&root->fs_info->tree_log_mutex);
1338
1339 ret = commit_fs_roots(trans, root);
1340 BUG_ON(ret);
1341
1342 /* commit_fs_roots gets rid of all the tree log roots, it is now
1343 * safe to free the root of tree log roots
1344 */
1345 btrfs_free_log_root_tree(trans, root->fs_info);
1346
1347 ret = commit_cowonly_roots(trans, root);
1348 BUG_ON(ret);
1349
1350 btrfs_prepare_extent_commit(trans, root);
1351
1352 cur_trans = root->fs_info->running_transaction;
1353 spin_lock(&root->fs_info->new_trans_lock);
1354 root->fs_info->running_transaction = NULL;
1355 spin_unlock(&root->fs_info->new_trans_lock);
1356
1357 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1358 root->fs_info->tree_root->node);
1359 switch_commit_root(root->fs_info->tree_root);
1360
1361 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1362 root->fs_info->chunk_root->node);
1363 switch_commit_root(root->fs_info->chunk_root);
1364
1365 update_super_roots(root);
1366
1367 if (!root->fs_info->log_root_recovering) {
1368 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1369 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1370 }
1371
1372 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1373 sizeof(root->fs_info->super_copy));
1374
1375 trans->transaction->blocked = 0;
1376
1377 wake_up(&root->fs_info->transaction_wait);
1378
1379 mutex_unlock(&root->fs_info->trans_mutex);
1380 ret = btrfs_write_and_wait_transaction(trans, root);
1381 BUG_ON(ret);
1382 write_ctree_super(trans, root, 0);
1383
1384 /*
1385 * the super is written, we can safely allow the tree-loggers
1386 * to go about their business
1387 */
1388 mutex_unlock(&root->fs_info->tree_log_mutex);
1389
1390 btrfs_finish_extent_commit(trans, root);
1391
1392 mutex_lock(&root->fs_info->trans_mutex);
1393
1394 cur_trans->commit_done = 1;
1395
1396 root->fs_info->last_trans_committed = cur_trans->transid;
1397
1398 wake_up(&cur_trans->commit_wait);
1399
1400 list_del_init(&cur_trans->list);
1401 put_transaction(cur_trans);
1402 put_transaction(cur_trans);
1403
1404 trace_btrfs_transaction_commit(root);
1405
1406 mutex_unlock(&root->fs_info->trans_mutex);
1407
1408 if (current->journal_info == trans)
1409 current->journal_info = NULL;
1410
1411 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1412
1413 if (current != root->fs_info->transaction_kthread)
1414 btrfs_run_delayed_iputs(root);
1415
1416 return ret;
1417 }
1418
1419 /*
1420 * interface function to delete all the snapshots we have scheduled for deletion
1421 */
btrfs_clean_old_snapshots(struct btrfs_root * root)1422 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1423 {
1424 LIST_HEAD(list);
1425 struct btrfs_fs_info *fs_info = root->fs_info;
1426
1427 mutex_lock(&fs_info->trans_mutex);
1428 list_splice_init(&fs_info->dead_roots, &list);
1429 mutex_unlock(&fs_info->trans_mutex);
1430
1431 while (!list_empty(&list)) {
1432 root = list_entry(list.next, struct btrfs_root, root_list);
1433 list_del(&root->root_list);
1434
1435 if (btrfs_header_backref_rev(root->node) <
1436 BTRFS_MIXED_BACKREF_REV)
1437 btrfs_drop_snapshot(root, NULL, 0);
1438 else
1439 btrfs_drop_snapshot(root, NULL, 1);
1440 }
1441 return 0;
1442 }
1443