1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 /*
38 * control flags for do_chunk_alloc's force field
39 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40 * if we really need one.
41 *
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
47 *
48 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 *
50 */
51 enum {
52 CHUNK_ALLOC_NO_FORCE = 0,
53 CHUNK_ALLOC_LIMITED = 1,
54 CHUNK_ALLOC_FORCE = 2,
55 };
56
57 /*
58 * Control how reservations are dealt with.
59 *
60 * RESERVE_FREE - freeing a reservation.
61 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
62 * ENOSPC accounting
63 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64 * bytes_may_use as the ENOSPC accounting is done elsewhere
65 */
66 enum {
67 RESERVE_FREE = 0,
68 RESERVE_ALLOC = 1,
69 RESERVE_ALLOC_NO_ACCOUNT = 2,
70 };
71
72 static int update_block_group(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 bytenr, u64 num_bytes, int alloc);
75 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, u64 parent,
78 u64 root_objectid, u64 owner_objectid,
79 u64 owner_offset, int refs_to_drop,
80 struct btrfs_delayed_extent_op *extra_op);
81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
82 struct extent_buffer *leaf,
83 struct btrfs_extent_item *ei);
84 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
85 struct btrfs_root *root,
86 u64 parent, u64 root_objectid,
87 u64 flags, u64 owner, u64 offset,
88 struct btrfs_key *ins, int ref_mod);
89 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, struct btrfs_disk_key *key,
93 int level, struct btrfs_key *ins);
94 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
95 struct btrfs_root *extent_root, u64 alloc_bytes,
96 u64 flags, int force);
97 static int find_next_key(struct btrfs_path *path, int level,
98 struct btrfs_key *key);
99 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
100 int dump_block_groups);
101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
102 u64 num_bytes, int reserve);
103
104 static noinline int
block_group_cache_done(struct btrfs_block_group_cache * cache)105 block_group_cache_done(struct btrfs_block_group_cache *cache)
106 {
107 smp_mb();
108 return cache->cached == BTRFS_CACHE_FINISHED;
109 }
110
block_group_bits(struct btrfs_block_group_cache * cache,u64 bits)111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 {
113 return (cache->flags & bits) == bits;
114 }
115
btrfs_get_block_group(struct btrfs_block_group_cache * cache)116 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 {
118 atomic_inc(&cache->count);
119 }
120
btrfs_put_block_group(struct btrfs_block_group_cache * cache)121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 {
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
126 kfree(cache->free_space_ctl);
127 kfree(cache);
128 }
129 }
130
131 /*
132 * this adds the block group to the fs_info rb tree for the block group
133 * cache
134 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)135 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
136 struct btrfs_block_group_cache *block_group)
137 {
138 struct rb_node **p;
139 struct rb_node *parent = NULL;
140 struct btrfs_block_group_cache *cache;
141
142 spin_lock(&info->block_group_cache_lock);
143 p = &info->block_group_cache_tree.rb_node;
144
145 while (*p) {
146 parent = *p;
147 cache = rb_entry(parent, struct btrfs_block_group_cache,
148 cache_node);
149 if (block_group->key.objectid < cache->key.objectid) {
150 p = &(*p)->rb_left;
151 } else if (block_group->key.objectid > cache->key.objectid) {
152 p = &(*p)->rb_right;
153 } else {
154 spin_unlock(&info->block_group_cache_lock);
155 return -EEXIST;
156 }
157 }
158
159 rb_link_node(&block_group->cache_node, parent, p);
160 rb_insert_color(&block_group->cache_node,
161 &info->block_group_cache_tree);
162 spin_unlock(&info->block_group_cache_lock);
163
164 return 0;
165 }
166
167 /*
168 * This will return the block group at or after bytenr if contains is 0, else
169 * it will return the block group that contains the bytenr
170 */
171 static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)172 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
173 int contains)
174 {
175 struct btrfs_block_group_cache *cache, *ret = NULL;
176 struct rb_node *n;
177 u64 end, start;
178
179 spin_lock(&info->block_group_cache_lock);
180 n = info->block_group_cache_tree.rb_node;
181
182 while (n) {
183 cache = rb_entry(n, struct btrfs_block_group_cache,
184 cache_node);
185 end = cache->key.objectid + cache->key.offset - 1;
186 start = cache->key.objectid;
187
188 if (bytenr < start) {
189 if (!contains && (!ret || start < ret->key.objectid))
190 ret = cache;
191 n = n->rb_left;
192 } else if (bytenr > start) {
193 if (contains && bytenr <= end) {
194 ret = cache;
195 break;
196 }
197 n = n->rb_right;
198 } else {
199 ret = cache;
200 break;
201 }
202 }
203 if (ret)
204 btrfs_get_block_group(ret);
205 spin_unlock(&info->block_group_cache_lock);
206
207 return ret;
208 }
209
add_excluded_extent(struct btrfs_root * root,u64 start,u64 num_bytes)210 static int add_excluded_extent(struct btrfs_root *root,
211 u64 start, u64 num_bytes)
212 {
213 u64 end = start + num_bytes - 1;
214 set_extent_bits(&root->fs_info->freed_extents[0],
215 start, end, EXTENT_UPTODATE, GFP_NOFS);
216 set_extent_bits(&root->fs_info->freed_extents[1],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
218 return 0;
219 }
220
free_excluded_extents(struct btrfs_root * root,struct btrfs_block_group_cache * cache)221 static void free_excluded_extents(struct btrfs_root *root,
222 struct btrfs_block_group_cache *cache)
223 {
224 u64 start, end;
225
226 start = cache->key.objectid;
227 end = start + cache->key.offset - 1;
228
229 clear_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231 clear_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 }
234
exclude_super_stripes(struct btrfs_root * root,struct btrfs_block_group_cache * cache)235 static int exclude_super_stripes(struct btrfs_root *root,
236 struct btrfs_block_group_cache *cache)
237 {
238 u64 bytenr;
239 u64 *logical;
240 int stripe_len;
241 int i, nr, ret;
242
243 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
244 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
245 cache->bytes_super += stripe_len;
246 ret = add_excluded_extent(root, cache->key.objectid,
247 stripe_len);
248 BUG_ON(ret); /* -ENOMEM */
249 }
250
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
254 cache->key.objectid, bytenr,
255 0, &logical, &nr, &stripe_len);
256 BUG_ON(ret); /* -ENOMEM */
257
258 while (nr--) {
259 cache->bytes_super += stripe_len;
260 ret = add_excluded_extent(root, logical[nr],
261 stripe_len);
262 BUG_ON(ret); /* -ENOMEM */
263 }
264
265 kfree(logical);
266 }
267 return 0;
268 }
269
270 static struct btrfs_caching_control *
get_caching_control(struct btrfs_block_group_cache * cache)271 get_caching_control(struct btrfs_block_group_cache *cache)
272 {
273 struct btrfs_caching_control *ctl;
274
275 spin_lock(&cache->lock);
276 if (cache->cached != BTRFS_CACHE_STARTED) {
277 spin_unlock(&cache->lock);
278 return NULL;
279 }
280
281 /* We're loading it the fast way, so we don't have a caching_ctl. */
282 if (!cache->caching_ctl) {
283 spin_unlock(&cache->lock);
284 return NULL;
285 }
286
287 ctl = cache->caching_ctl;
288 atomic_inc(&ctl->count);
289 spin_unlock(&cache->lock);
290 return ctl;
291 }
292
put_caching_control(struct btrfs_caching_control * ctl)293 static void put_caching_control(struct btrfs_caching_control *ctl)
294 {
295 if (atomic_dec_and_test(&ctl->count))
296 kfree(ctl);
297 }
298
299 /*
300 * this is only called by cache_block_group, since we could have freed extents
301 * we need to check the pinned_extents for any extents that can't be used yet
302 * since their free space will be released as soon as the transaction commits.
303 */
add_new_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_fs_info * info,u64 start,u64 end)304 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
305 struct btrfs_fs_info *info, u64 start, u64 end)
306 {
307 u64 extent_start, extent_end, size, total_added = 0;
308 int ret;
309
310 while (start < end) {
311 ret = find_first_extent_bit(info->pinned_extents, start,
312 &extent_start, &extent_end,
313 EXTENT_DIRTY | EXTENT_UPTODATE);
314 if (ret)
315 break;
316
317 if (extent_start <= start) {
318 start = extent_end + 1;
319 } else if (extent_start > start && extent_start < end) {
320 size = extent_start - start;
321 total_added += size;
322 ret = btrfs_add_free_space(block_group, start,
323 size);
324 BUG_ON(ret); /* -ENOMEM or logic error */
325 start = extent_end + 1;
326 } else {
327 break;
328 }
329 }
330
331 if (start < end) {
332 size = end - start;
333 total_added += size;
334 ret = btrfs_add_free_space(block_group, start, size);
335 BUG_ON(ret); /* -ENOMEM or logic error */
336 }
337
338 return total_added;
339 }
340
caching_thread(struct btrfs_work * work)341 static noinline void caching_thread(struct btrfs_work *work)
342 {
343 struct btrfs_block_group_cache *block_group;
344 struct btrfs_fs_info *fs_info;
345 struct btrfs_caching_control *caching_ctl;
346 struct btrfs_root *extent_root;
347 struct btrfs_path *path;
348 struct extent_buffer *leaf;
349 struct btrfs_key key;
350 u64 total_found = 0;
351 u64 last = 0;
352 u32 nritems;
353 int ret = 0;
354
355 caching_ctl = container_of(work, struct btrfs_caching_control, work);
356 block_group = caching_ctl->block_group;
357 fs_info = block_group->fs_info;
358 extent_root = fs_info->extent_root;
359
360 path = btrfs_alloc_path();
361 if (!path)
362 goto out;
363
364 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
365
366 /*
367 * We don't want to deadlock with somebody trying to allocate a new
368 * extent for the extent root while also trying to search the extent
369 * root to add free space. So we skip locking and search the commit
370 * root, since its read-only
371 */
372 path->skip_locking = 1;
373 path->search_commit_root = 1;
374 path->reada = 1;
375
376 key.objectid = last;
377 key.offset = 0;
378 key.type = BTRFS_EXTENT_ITEM_KEY;
379 again:
380 mutex_lock(&caching_ctl->mutex);
381 /* need to make sure the commit_root doesn't disappear */
382 down_read(&fs_info->extent_commit_sem);
383
384 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
385 if (ret < 0)
386 goto err;
387
388 leaf = path->nodes[0];
389 nritems = btrfs_header_nritems(leaf);
390
391 while (1) {
392 if (btrfs_fs_closing(fs_info) > 1) {
393 last = (u64)-1;
394 break;
395 }
396
397 if (path->slots[0] < nritems) {
398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
399 } else {
400 ret = find_next_key(path, 0, &key);
401 if (ret)
402 break;
403
404 if (need_resched() ||
405 btrfs_next_leaf(extent_root, path)) {
406 caching_ctl->progress = last;
407 btrfs_release_path(path);
408 up_read(&fs_info->extent_commit_sem);
409 mutex_unlock(&caching_ctl->mutex);
410 cond_resched();
411 goto again;
412 }
413 leaf = path->nodes[0];
414 nritems = btrfs_header_nritems(leaf);
415 continue;
416 }
417
418 if (key.objectid < block_group->key.objectid) {
419 path->slots[0]++;
420 continue;
421 }
422
423 if (key.objectid >= block_group->key.objectid +
424 block_group->key.offset)
425 break;
426
427 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
428 total_found += add_new_free_space(block_group,
429 fs_info, last,
430 key.objectid);
431 last = key.objectid + key.offset;
432
433 if (total_found > (1024 * 1024 * 2)) {
434 total_found = 0;
435 wake_up(&caching_ctl->wait);
436 }
437 }
438 path->slots[0]++;
439 }
440 ret = 0;
441
442 total_found += add_new_free_space(block_group, fs_info, last,
443 block_group->key.objectid +
444 block_group->key.offset);
445 caching_ctl->progress = (u64)-1;
446
447 spin_lock(&block_group->lock);
448 block_group->caching_ctl = NULL;
449 block_group->cached = BTRFS_CACHE_FINISHED;
450 spin_unlock(&block_group->lock);
451
452 err:
453 btrfs_free_path(path);
454 up_read(&fs_info->extent_commit_sem);
455
456 free_excluded_extents(extent_root, block_group);
457
458 mutex_unlock(&caching_ctl->mutex);
459 out:
460 wake_up(&caching_ctl->wait);
461
462 put_caching_control(caching_ctl);
463 btrfs_put_block_group(block_group);
464 }
465
cache_block_group(struct btrfs_block_group_cache * cache,struct btrfs_trans_handle * trans,struct btrfs_root * root,int load_cache_only)466 static int cache_block_group(struct btrfs_block_group_cache *cache,
467 struct btrfs_trans_handle *trans,
468 struct btrfs_root *root,
469 int load_cache_only)
470 {
471 DEFINE_WAIT(wait);
472 struct btrfs_fs_info *fs_info = cache->fs_info;
473 struct btrfs_caching_control *caching_ctl;
474 int ret = 0;
475
476 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
477 if (!caching_ctl)
478 return -ENOMEM;
479
480 INIT_LIST_HEAD(&caching_ctl->list);
481 mutex_init(&caching_ctl->mutex);
482 init_waitqueue_head(&caching_ctl->wait);
483 caching_ctl->block_group = cache;
484 caching_ctl->progress = cache->key.objectid;
485 atomic_set(&caching_ctl->count, 1);
486 caching_ctl->work.func = caching_thread;
487
488 spin_lock(&cache->lock);
489 /*
490 * This should be a rare occasion, but this could happen I think in the
491 * case where one thread starts to load the space cache info, and then
492 * some other thread starts a transaction commit which tries to do an
493 * allocation while the other thread is still loading the space cache
494 * info. The previous loop should have kept us from choosing this block
495 * group, but if we've moved to the state where we will wait on caching
496 * block groups we need to first check if we're doing a fast load here,
497 * so we can wait for it to finish, otherwise we could end up allocating
498 * from a block group who's cache gets evicted for one reason or
499 * another.
500 */
501 while (cache->cached == BTRFS_CACHE_FAST) {
502 struct btrfs_caching_control *ctl;
503
504 ctl = cache->caching_ctl;
505 atomic_inc(&ctl->count);
506 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
507 spin_unlock(&cache->lock);
508
509 schedule();
510
511 finish_wait(&ctl->wait, &wait);
512 put_caching_control(ctl);
513 spin_lock(&cache->lock);
514 }
515
516 if (cache->cached != BTRFS_CACHE_NO) {
517 spin_unlock(&cache->lock);
518 kfree(caching_ctl);
519 return 0;
520 }
521 WARN_ON(cache->caching_ctl);
522 cache->caching_ctl = caching_ctl;
523 cache->cached = BTRFS_CACHE_FAST;
524 spin_unlock(&cache->lock);
525
526 /*
527 * We can't do the read from on-disk cache during a commit since we need
528 * to have the normal tree locking. Also if we are currently trying to
529 * allocate blocks for the tree root we can't do the fast caching since
530 * we likely hold important locks.
531 */
532 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
533 ret = load_free_space_cache(fs_info, cache);
534
535 spin_lock(&cache->lock);
536 if (ret == 1) {
537 cache->caching_ctl = NULL;
538 cache->cached = BTRFS_CACHE_FINISHED;
539 cache->last_byte_to_unpin = (u64)-1;
540 } else {
541 if (load_cache_only) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_NO;
544 } else {
545 cache->cached = BTRFS_CACHE_STARTED;
546 }
547 }
548 spin_unlock(&cache->lock);
549 wake_up(&caching_ctl->wait);
550 if (ret == 1) {
551 put_caching_control(caching_ctl);
552 free_excluded_extents(fs_info->extent_root, cache);
553 return 0;
554 }
555 } else {
556 /*
557 * We are not going to do the fast caching, set cached to the
558 * appropriate value and wakeup any waiters.
559 */
560 spin_lock(&cache->lock);
561 if (load_cache_only) {
562 cache->caching_ctl = NULL;
563 cache->cached = BTRFS_CACHE_NO;
564 } else {
565 cache->cached = BTRFS_CACHE_STARTED;
566 }
567 spin_unlock(&cache->lock);
568 wake_up(&caching_ctl->wait);
569 }
570
571 if (load_cache_only) {
572 put_caching_control(caching_ctl);
573 return 0;
574 }
575
576 down_write(&fs_info->extent_commit_sem);
577 atomic_inc(&caching_ctl->count);
578 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
579 up_write(&fs_info->extent_commit_sem);
580
581 btrfs_get_block_group(cache);
582
583 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
584
585 return ret;
586 }
587
588 /*
589 * return the block group that starts at or after bytenr
590 */
591 static struct btrfs_block_group_cache *
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)592 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
593 {
594 struct btrfs_block_group_cache *cache;
595
596 cache = block_group_cache_tree_search(info, bytenr, 0);
597
598 return cache;
599 }
600
601 /*
602 * return the block group that contains the given bytenr
603 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)604 struct btrfs_block_group_cache *btrfs_lookup_block_group(
605 struct btrfs_fs_info *info,
606 u64 bytenr)
607 {
608 struct btrfs_block_group_cache *cache;
609
610 cache = block_group_cache_tree_search(info, bytenr, 1);
611
612 return cache;
613 }
614
__find_space_info(struct btrfs_fs_info * info,u64 flags)615 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
616 u64 flags)
617 {
618 struct list_head *head = &info->space_info;
619 struct btrfs_space_info *found;
620
621 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
622
623 rcu_read_lock();
624 list_for_each_entry_rcu(found, head, list) {
625 if (found->flags & flags) {
626 rcu_read_unlock();
627 return found;
628 }
629 }
630 rcu_read_unlock();
631 return NULL;
632 }
633
634 /*
635 * after adding space to the filesystem, we need to clear the full flags
636 * on all the space infos.
637 */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)638 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
639 {
640 struct list_head *head = &info->space_info;
641 struct btrfs_space_info *found;
642
643 rcu_read_lock();
644 list_for_each_entry_rcu(found, head, list)
645 found->full = 0;
646 rcu_read_unlock();
647 }
648
div_factor(u64 num,int factor)649 static u64 div_factor(u64 num, int factor)
650 {
651 if (factor == 10)
652 return num;
653 num *= factor;
654 do_div(num, 10);
655 return num;
656 }
657
div_factor_fine(u64 num,int factor)658 static u64 div_factor_fine(u64 num, int factor)
659 {
660 if (factor == 100)
661 return num;
662 num *= factor;
663 do_div(num, 100);
664 return num;
665 }
666
btrfs_find_block_group(struct btrfs_root * root,u64 search_start,u64 search_hint,int owner)667 u64 btrfs_find_block_group(struct btrfs_root *root,
668 u64 search_start, u64 search_hint, int owner)
669 {
670 struct btrfs_block_group_cache *cache;
671 u64 used;
672 u64 last = max(search_hint, search_start);
673 u64 group_start = 0;
674 int full_search = 0;
675 int factor = 9;
676 int wrapped = 0;
677 again:
678 while (1) {
679 cache = btrfs_lookup_first_block_group(root->fs_info, last);
680 if (!cache)
681 break;
682
683 spin_lock(&cache->lock);
684 last = cache->key.objectid + cache->key.offset;
685 used = btrfs_block_group_used(&cache->item);
686
687 if ((full_search || !cache->ro) &&
688 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
689 if (used + cache->pinned + cache->reserved <
690 div_factor(cache->key.offset, factor)) {
691 group_start = cache->key.objectid;
692 spin_unlock(&cache->lock);
693 btrfs_put_block_group(cache);
694 goto found;
695 }
696 }
697 spin_unlock(&cache->lock);
698 btrfs_put_block_group(cache);
699 cond_resched();
700 }
701 if (!wrapped) {
702 last = search_start;
703 wrapped = 1;
704 goto again;
705 }
706 if (!full_search && factor < 10) {
707 last = search_start;
708 full_search = 1;
709 factor = 10;
710 goto again;
711 }
712 found:
713 return group_start;
714 }
715
716 /* simple helper to search for an existing extent at a given offset */
btrfs_lookup_extent(struct btrfs_root * root,u64 start,u64 len)717 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
718 {
719 int ret;
720 struct btrfs_key key;
721 struct btrfs_path *path;
722
723 path = btrfs_alloc_path();
724 if (!path)
725 return -ENOMEM;
726
727 key.objectid = start;
728 key.offset = len;
729 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
730 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
731 0, 0);
732 btrfs_free_path(path);
733 return ret;
734 }
735
736 /*
737 * helper function to lookup reference count and flags of extent.
738 *
739 * the head node for delayed ref is used to store the sum of all the
740 * reference count modifications queued up in the rbtree. the head
741 * node may also store the extent flags to set. This way you can check
742 * to see what the reference count and extent flags would be if all of
743 * the delayed refs are not processed.
744 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 * refs,u64 * flags)745 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
746 struct btrfs_root *root, u64 bytenr,
747 u64 num_bytes, u64 *refs, u64 *flags)
748 {
749 struct btrfs_delayed_ref_head *head;
750 struct btrfs_delayed_ref_root *delayed_refs;
751 struct btrfs_path *path;
752 struct btrfs_extent_item *ei;
753 struct extent_buffer *leaf;
754 struct btrfs_key key;
755 u32 item_size;
756 u64 num_refs;
757 u64 extent_flags;
758 int ret;
759
760 path = btrfs_alloc_path();
761 if (!path)
762 return -ENOMEM;
763
764 key.objectid = bytenr;
765 key.type = BTRFS_EXTENT_ITEM_KEY;
766 key.offset = num_bytes;
767 if (!trans) {
768 path->skip_locking = 1;
769 path->search_commit_root = 1;
770 }
771 again:
772 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
773 &key, path, 0, 0);
774 if (ret < 0)
775 goto out_free;
776
777 if (ret == 0) {
778 leaf = path->nodes[0];
779 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
780 if (item_size >= sizeof(*ei)) {
781 ei = btrfs_item_ptr(leaf, path->slots[0],
782 struct btrfs_extent_item);
783 num_refs = btrfs_extent_refs(leaf, ei);
784 extent_flags = btrfs_extent_flags(leaf, ei);
785 } else {
786 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
787 struct btrfs_extent_item_v0 *ei0;
788 BUG_ON(item_size != sizeof(*ei0));
789 ei0 = btrfs_item_ptr(leaf, path->slots[0],
790 struct btrfs_extent_item_v0);
791 num_refs = btrfs_extent_refs_v0(leaf, ei0);
792 /* FIXME: this isn't correct for data */
793 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
794 #else
795 BUG();
796 #endif
797 }
798 BUG_ON(num_refs == 0);
799 } else {
800 num_refs = 0;
801 extent_flags = 0;
802 ret = 0;
803 }
804
805 if (!trans)
806 goto out;
807
808 delayed_refs = &trans->transaction->delayed_refs;
809 spin_lock(&delayed_refs->lock);
810 head = btrfs_find_delayed_ref_head(trans, bytenr);
811 if (head) {
812 if (!mutex_trylock(&head->mutex)) {
813 atomic_inc(&head->node.refs);
814 spin_unlock(&delayed_refs->lock);
815
816 btrfs_release_path(path);
817
818 /*
819 * Mutex was contended, block until it's released and try
820 * again
821 */
822 mutex_lock(&head->mutex);
823 mutex_unlock(&head->mutex);
824 btrfs_put_delayed_ref(&head->node);
825 goto again;
826 }
827 if (head->extent_op && head->extent_op->update_flags)
828 extent_flags |= head->extent_op->flags_to_set;
829 else
830 BUG_ON(num_refs == 0);
831
832 num_refs += head->node.ref_mod;
833 mutex_unlock(&head->mutex);
834 }
835 spin_unlock(&delayed_refs->lock);
836 out:
837 WARN_ON(num_refs == 0);
838 if (refs)
839 *refs = num_refs;
840 if (flags)
841 *flags = extent_flags;
842 out_free:
843 btrfs_free_path(path);
844 return ret;
845 }
846
847 /*
848 * Back reference rules. Back refs have three main goals:
849 *
850 * 1) differentiate between all holders of references to an extent so that
851 * when a reference is dropped we can make sure it was a valid reference
852 * before freeing the extent.
853 *
854 * 2) Provide enough information to quickly find the holders of an extent
855 * if we notice a given block is corrupted or bad.
856 *
857 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
858 * maintenance. This is actually the same as #2, but with a slightly
859 * different use case.
860 *
861 * There are two kinds of back refs. The implicit back refs is optimized
862 * for pointers in non-shared tree blocks. For a given pointer in a block,
863 * back refs of this kind provide information about the block's owner tree
864 * and the pointer's key. These information allow us to find the block by
865 * b-tree searching. The full back refs is for pointers in tree blocks not
866 * referenced by their owner trees. The location of tree block is recorded
867 * in the back refs. Actually the full back refs is generic, and can be
868 * used in all cases the implicit back refs is used. The major shortcoming
869 * of the full back refs is its overhead. Every time a tree block gets
870 * COWed, we have to update back refs entry for all pointers in it.
871 *
872 * For a newly allocated tree block, we use implicit back refs for
873 * pointers in it. This means most tree related operations only involve
874 * implicit back refs. For a tree block created in old transaction, the
875 * only way to drop a reference to it is COW it. So we can detect the
876 * event that tree block loses its owner tree's reference and do the
877 * back refs conversion.
878 *
879 * When a tree block is COW'd through a tree, there are four cases:
880 *
881 * The reference count of the block is one and the tree is the block's
882 * owner tree. Nothing to do in this case.
883 *
884 * The reference count of the block is one and the tree is not the
885 * block's owner tree. In this case, full back refs is used for pointers
886 * in the block. Remove these full back refs, add implicit back refs for
887 * every pointers in the new block.
888 *
889 * The reference count of the block is greater than one and the tree is
890 * the block's owner tree. In this case, implicit back refs is used for
891 * pointers in the block. Add full back refs for every pointers in the
892 * block, increase lower level extents' reference counts. The original
893 * implicit back refs are entailed to the new block.
894 *
895 * The reference count of the block is greater than one and the tree is
896 * not the block's owner tree. Add implicit back refs for every pointer in
897 * the new block, increase lower level extents' reference count.
898 *
899 * Back Reference Key composing:
900 *
901 * The key objectid corresponds to the first byte in the extent,
902 * The key type is used to differentiate between types of back refs.
903 * There are different meanings of the key offset for different types
904 * of back refs.
905 *
906 * File extents can be referenced by:
907 *
908 * - multiple snapshots, subvolumes, or different generations in one subvol
909 * - different files inside a single subvolume
910 * - different offsets inside a file (bookend extents in file.c)
911 *
912 * The extent ref structure for the implicit back refs has fields for:
913 *
914 * - Objectid of the subvolume root
915 * - objectid of the file holding the reference
916 * - original offset in the file
917 * - how many bookend extents
918 *
919 * The key offset for the implicit back refs is hash of the first
920 * three fields.
921 *
922 * The extent ref structure for the full back refs has field for:
923 *
924 * - number of pointers in the tree leaf
925 *
926 * The key offset for the implicit back refs is the first byte of
927 * the tree leaf
928 *
929 * When a file extent is allocated, The implicit back refs is used.
930 * the fields are filled in:
931 *
932 * (root_key.objectid, inode objectid, offset in file, 1)
933 *
934 * When a file extent is removed file truncation, we find the
935 * corresponding implicit back refs and check the following fields:
936 *
937 * (btrfs_header_owner(leaf), inode objectid, offset in file)
938 *
939 * Btree extents can be referenced by:
940 *
941 * - Different subvolumes
942 *
943 * Both the implicit back refs and the full back refs for tree blocks
944 * only consist of key. The key offset for the implicit back refs is
945 * objectid of block's owner tree. The key offset for the full back refs
946 * is the first byte of parent block.
947 *
948 * When implicit back refs is used, information about the lowest key and
949 * level of the tree block are required. These information are stored in
950 * tree block info structure.
951 */
952
953 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
convert_extent_item_v0(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 owner,u32 extra_size)954 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
955 struct btrfs_root *root,
956 struct btrfs_path *path,
957 u64 owner, u32 extra_size)
958 {
959 struct btrfs_extent_item *item;
960 struct btrfs_extent_item_v0 *ei0;
961 struct btrfs_extent_ref_v0 *ref0;
962 struct btrfs_tree_block_info *bi;
963 struct extent_buffer *leaf;
964 struct btrfs_key key;
965 struct btrfs_key found_key;
966 u32 new_size = sizeof(*item);
967 u64 refs;
968 int ret;
969
970 leaf = path->nodes[0];
971 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
972
973 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
974 ei0 = btrfs_item_ptr(leaf, path->slots[0],
975 struct btrfs_extent_item_v0);
976 refs = btrfs_extent_refs_v0(leaf, ei0);
977
978 if (owner == (u64)-1) {
979 while (1) {
980 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
981 ret = btrfs_next_leaf(root, path);
982 if (ret < 0)
983 return ret;
984 BUG_ON(ret > 0); /* Corruption */
985 leaf = path->nodes[0];
986 }
987 btrfs_item_key_to_cpu(leaf, &found_key,
988 path->slots[0]);
989 BUG_ON(key.objectid != found_key.objectid);
990 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
991 path->slots[0]++;
992 continue;
993 }
994 ref0 = btrfs_item_ptr(leaf, path->slots[0],
995 struct btrfs_extent_ref_v0);
996 owner = btrfs_ref_objectid_v0(leaf, ref0);
997 break;
998 }
999 }
1000 btrfs_release_path(path);
1001
1002 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1003 new_size += sizeof(*bi);
1004
1005 new_size -= sizeof(*ei0);
1006 ret = btrfs_search_slot(trans, root, &key, path,
1007 new_size + extra_size, 1);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret); /* Corruption */
1011
1012 btrfs_extend_item(trans, root, path, new_size);
1013
1014 leaf = path->nodes[0];
1015 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016 btrfs_set_extent_refs(leaf, item, refs);
1017 /* FIXME: get real generation */
1018 btrfs_set_extent_generation(leaf, item, 0);
1019 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1020 btrfs_set_extent_flags(leaf, item,
1021 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1022 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1023 bi = (struct btrfs_tree_block_info *)(item + 1);
1024 /* FIXME: get first key of the block */
1025 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1026 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1027 } else {
1028 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1029 }
1030 btrfs_mark_buffer_dirty(leaf);
1031 return 0;
1032 }
1033 #endif
1034
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)1035 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1036 {
1037 u32 high_crc = ~(u32)0;
1038 u32 low_crc = ~(u32)0;
1039 __le64 lenum;
1040
1041 lenum = cpu_to_le64(root_objectid);
1042 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1043 lenum = cpu_to_le64(owner);
1044 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(offset);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047
1048 return ((u64)high_crc << 31) ^ (u64)low_crc;
1049 }
1050
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)1051 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1052 struct btrfs_extent_data_ref *ref)
1053 {
1054 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1055 btrfs_extent_data_ref_objectid(leaf, ref),
1056 btrfs_extent_data_ref_offset(leaf, ref));
1057 }
1058
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)1059 static int match_extent_data_ref(struct extent_buffer *leaf,
1060 struct btrfs_extent_data_ref *ref,
1061 u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1064 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1065 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1066 return 0;
1067 return 1;
1068 }
1069
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)1070 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1071 struct btrfs_root *root,
1072 struct btrfs_path *path,
1073 u64 bytenr, u64 parent,
1074 u64 root_objectid,
1075 u64 owner, u64 offset)
1076 {
1077 struct btrfs_key key;
1078 struct btrfs_extent_data_ref *ref;
1079 struct extent_buffer *leaf;
1080 u32 nritems;
1081 int ret;
1082 int recow;
1083 int err = -ENOENT;
1084
1085 key.objectid = bytenr;
1086 if (parent) {
1087 key.type = BTRFS_SHARED_DATA_REF_KEY;
1088 key.offset = parent;
1089 } else {
1090 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1091 key.offset = hash_extent_data_ref(root_objectid,
1092 owner, offset);
1093 }
1094 again:
1095 recow = 0;
1096 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1097 if (ret < 0) {
1098 err = ret;
1099 goto fail;
1100 }
1101
1102 if (parent) {
1103 if (!ret)
1104 return 0;
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 key.type = BTRFS_EXTENT_REF_V0_KEY;
1107 btrfs_release_path(path);
1108 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1109 if (ret < 0) {
1110 err = ret;
1111 goto fail;
1112 }
1113 if (!ret)
1114 return 0;
1115 #endif
1116 goto fail;
1117 }
1118
1119 leaf = path->nodes[0];
1120 nritems = btrfs_header_nritems(leaf);
1121 while (1) {
1122 if (path->slots[0] >= nritems) {
1123 ret = btrfs_next_leaf(root, path);
1124 if (ret < 0)
1125 err = ret;
1126 if (ret)
1127 goto fail;
1128
1129 leaf = path->nodes[0];
1130 nritems = btrfs_header_nritems(leaf);
1131 recow = 1;
1132 }
1133
1134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1135 if (key.objectid != bytenr ||
1136 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1137 goto fail;
1138
1139 ref = btrfs_item_ptr(leaf, path->slots[0],
1140 struct btrfs_extent_data_ref);
1141
1142 if (match_extent_data_ref(leaf, ref, root_objectid,
1143 owner, offset)) {
1144 if (recow) {
1145 btrfs_release_path(path);
1146 goto again;
1147 }
1148 err = 0;
1149 break;
1150 }
1151 path->slots[0]++;
1152 }
1153 fail:
1154 return err;
1155 }
1156
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1157 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root,
1159 struct btrfs_path *path,
1160 u64 bytenr, u64 parent,
1161 u64 root_objectid, u64 owner,
1162 u64 offset, int refs_to_add)
1163 {
1164 struct btrfs_key key;
1165 struct extent_buffer *leaf;
1166 u32 size;
1167 u32 num_refs;
1168 int ret;
1169
1170 key.objectid = bytenr;
1171 if (parent) {
1172 key.type = BTRFS_SHARED_DATA_REF_KEY;
1173 key.offset = parent;
1174 size = sizeof(struct btrfs_shared_data_ref);
1175 } else {
1176 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177 key.offset = hash_extent_data_ref(root_objectid,
1178 owner, offset);
1179 size = sizeof(struct btrfs_extent_data_ref);
1180 }
1181
1182 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1183 if (ret && ret != -EEXIST)
1184 goto fail;
1185
1186 leaf = path->nodes[0];
1187 if (parent) {
1188 struct btrfs_shared_data_ref *ref;
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_shared_data_ref);
1191 if (ret == 0) {
1192 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1193 } else {
1194 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1195 num_refs += refs_to_add;
1196 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1197 }
1198 } else {
1199 struct btrfs_extent_data_ref *ref;
1200 while (ret == -EEXIST) {
1201 ref = btrfs_item_ptr(leaf, path->slots[0],
1202 struct btrfs_extent_data_ref);
1203 if (match_extent_data_ref(leaf, ref, root_objectid,
1204 owner, offset))
1205 break;
1206 btrfs_release_path(path);
1207 key.offset++;
1208 ret = btrfs_insert_empty_item(trans, root, path, &key,
1209 size);
1210 if (ret && ret != -EEXIST)
1211 goto fail;
1212
1213 leaf = path->nodes[0];
1214 }
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_extent_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_extent_data_ref_root(leaf, ref,
1219 root_objectid);
1220 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1221 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1222 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1223 } else {
1224 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1225 num_refs += refs_to_add;
1226 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1227 }
1228 }
1229 btrfs_mark_buffer_dirty(leaf);
1230 ret = 0;
1231 fail:
1232 btrfs_release_path(path);
1233 return ret;
1234 }
1235
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)1236 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1237 struct btrfs_root *root,
1238 struct btrfs_path *path,
1239 int refs_to_drop)
1240 {
1241 struct btrfs_key key;
1242 struct btrfs_extent_data_ref *ref1 = NULL;
1243 struct btrfs_shared_data_ref *ref2 = NULL;
1244 struct extent_buffer *leaf;
1245 u32 num_refs = 0;
1246 int ret = 0;
1247
1248 leaf = path->nodes[0];
1249 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1250
1251 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1252 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1253 struct btrfs_extent_data_ref);
1254 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1255 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1256 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_shared_data_ref);
1258 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1259 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1260 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1261 struct btrfs_extent_ref_v0 *ref0;
1262 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1263 struct btrfs_extent_ref_v0);
1264 num_refs = btrfs_ref_count_v0(leaf, ref0);
1265 #endif
1266 } else {
1267 BUG();
1268 }
1269
1270 BUG_ON(num_refs < refs_to_drop);
1271 num_refs -= refs_to_drop;
1272
1273 if (num_refs == 0) {
1274 ret = btrfs_del_item(trans, root, path);
1275 } else {
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1277 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1278 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1279 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 else {
1282 struct btrfs_extent_ref_v0 *ref0;
1283 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_ref_v0);
1285 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1286 }
1287 #endif
1288 btrfs_mark_buffer_dirty(leaf);
1289 }
1290 return ret;
1291 }
1292
extent_data_ref_count(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)1293 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1294 struct btrfs_path *path,
1295 struct btrfs_extent_inline_ref *iref)
1296 {
1297 struct btrfs_key key;
1298 struct extent_buffer *leaf;
1299 struct btrfs_extent_data_ref *ref1;
1300 struct btrfs_shared_data_ref *ref2;
1301 u32 num_refs = 0;
1302
1303 leaf = path->nodes[0];
1304 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1305 if (iref) {
1306 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1307 BTRFS_EXTENT_DATA_REF_KEY) {
1308 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1309 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1310 } else {
1311 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1313 }
1314 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1315 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1318 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1319 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_shared_data_ref);
1321 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1322 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1323 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1324 struct btrfs_extent_ref_v0 *ref0;
1325 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1326 struct btrfs_extent_ref_v0);
1327 num_refs = btrfs_ref_count_v0(leaf, ref0);
1328 #endif
1329 } else {
1330 WARN_ON(1);
1331 }
1332 return num_refs;
1333 }
1334
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1335 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1336 struct btrfs_root *root,
1337 struct btrfs_path *path,
1338 u64 bytenr, u64 parent,
1339 u64 root_objectid)
1340 {
1341 struct btrfs_key key;
1342 int ret;
1343
1344 key.objectid = bytenr;
1345 if (parent) {
1346 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1347 key.offset = parent;
1348 } else {
1349 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1350 key.offset = root_objectid;
1351 }
1352
1353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1354 if (ret > 0)
1355 ret = -ENOENT;
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 if (ret == -ENOENT && parent) {
1358 btrfs_release_path(path);
1359 key.type = BTRFS_EXTENT_REF_V0_KEY;
1360 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1361 if (ret > 0)
1362 ret = -ENOENT;
1363 }
1364 #endif
1365 return ret;
1366 }
1367
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1368 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root,
1370 struct btrfs_path *path,
1371 u64 bytenr, u64 parent,
1372 u64 root_objectid)
1373 {
1374 struct btrfs_key key;
1375 int ret;
1376
1377 key.objectid = bytenr;
1378 if (parent) {
1379 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 key.offset = parent;
1381 } else {
1382 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 key.offset = root_objectid;
1384 }
1385
1386 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1387 btrfs_release_path(path);
1388 return ret;
1389 }
1390
extent_ref_type(u64 parent,u64 owner)1391 static inline int extent_ref_type(u64 parent, u64 owner)
1392 {
1393 int type;
1394 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1395 if (parent > 0)
1396 type = BTRFS_SHARED_BLOCK_REF_KEY;
1397 else
1398 type = BTRFS_TREE_BLOCK_REF_KEY;
1399 } else {
1400 if (parent > 0)
1401 type = BTRFS_SHARED_DATA_REF_KEY;
1402 else
1403 type = BTRFS_EXTENT_DATA_REF_KEY;
1404 }
1405 return type;
1406 }
1407
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1408 static int find_next_key(struct btrfs_path *path, int level,
1409 struct btrfs_key *key)
1410
1411 {
1412 for (; level < BTRFS_MAX_LEVEL; level++) {
1413 if (!path->nodes[level])
1414 break;
1415 if (path->slots[level] + 1 >=
1416 btrfs_header_nritems(path->nodes[level]))
1417 continue;
1418 if (level == 0)
1419 btrfs_item_key_to_cpu(path->nodes[level], key,
1420 path->slots[level] + 1);
1421 else
1422 btrfs_node_key_to_cpu(path->nodes[level], key,
1423 path->slots[level] + 1);
1424 return 0;
1425 }
1426 return 1;
1427 }
1428
1429 /*
1430 * look for inline back ref. if back ref is found, *ref_ret is set
1431 * to the address of inline back ref, and 0 is returned.
1432 *
1433 * if back ref isn't found, *ref_ret is set to the address where it
1434 * should be inserted, and -ENOENT is returned.
1435 *
1436 * if insert is true and there are too many inline back refs, the path
1437 * points to the extent item, and -EAGAIN is returned.
1438 *
1439 * NOTE: inline back refs are ordered in the same way that back ref
1440 * items in the tree are ordered.
1441 */
1442 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)1443 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1444 struct btrfs_root *root,
1445 struct btrfs_path *path,
1446 struct btrfs_extent_inline_ref **ref_ret,
1447 u64 bytenr, u64 num_bytes,
1448 u64 parent, u64 root_objectid,
1449 u64 owner, u64 offset, int insert)
1450 {
1451 struct btrfs_key key;
1452 struct extent_buffer *leaf;
1453 struct btrfs_extent_item *ei;
1454 struct btrfs_extent_inline_ref *iref;
1455 u64 flags;
1456 u64 item_size;
1457 unsigned long ptr;
1458 unsigned long end;
1459 int extra_size;
1460 int type;
1461 int want;
1462 int ret;
1463 int err = 0;
1464
1465 key.objectid = bytenr;
1466 key.type = BTRFS_EXTENT_ITEM_KEY;
1467 key.offset = num_bytes;
1468
1469 want = extent_ref_type(parent, owner);
1470 if (insert) {
1471 extra_size = btrfs_extent_inline_ref_size(want);
1472 path->keep_locks = 1;
1473 } else
1474 extra_size = -1;
1475 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1476 if (ret < 0) {
1477 err = ret;
1478 goto out;
1479 }
1480 if (ret && !insert) {
1481 err = -ENOENT;
1482 goto out;
1483 }
1484 BUG_ON(ret); /* Corruption */
1485
1486 leaf = path->nodes[0];
1487 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1488 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1489 if (item_size < sizeof(*ei)) {
1490 if (!insert) {
1491 err = -ENOENT;
1492 goto out;
1493 }
1494 ret = convert_extent_item_v0(trans, root, path, owner,
1495 extra_size);
1496 if (ret < 0) {
1497 err = ret;
1498 goto out;
1499 }
1500 leaf = path->nodes[0];
1501 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1502 }
1503 #endif
1504 BUG_ON(item_size < sizeof(*ei));
1505
1506 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1507 flags = btrfs_extent_flags(leaf, ei);
1508
1509 ptr = (unsigned long)(ei + 1);
1510 end = (unsigned long)ei + item_size;
1511
1512 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1513 ptr += sizeof(struct btrfs_tree_block_info);
1514 BUG_ON(ptr > end);
1515 } else {
1516 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1517 }
1518
1519 err = -ENOENT;
1520 while (1) {
1521 if (ptr >= end) {
1522 WARN_ON(ptr > end);
1523 break;
1524 }
1525 iref = (struct btrfs_extent_inline_ref *)ptr;
1526 type = btrfs_extent_inline_ref_type(leaf, iref);
1527 if (want < type)
1528 break;
1529 if (want > type) {
1530 ptr += btrfs_extent_inline_ref_size(type);
1531 continue;
1532 }
1533
1534 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1535 struct btrfs_extent_data_ref *dref;
1536 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1537 if (match_extent_data_ref(leaf, dref, root_objectid,
1538 owner, offset)) {
1539 err = 0;
1540 break;
1541 }
1542 if (hash_extent_data_ref_item(leaf, dref) <
1543 hash_extent_data_ref(root_objectid, owner, offset))
1544 break;
1545 } else {
1546 u64 ref_offset;
1547 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1548 if (parent > 0) {
1549 if (parent == ref_offset) {
1550 err = 0;
1551 break;
1552 }
1553 if (ref_offset < parent)
1554 break;
1555 } else {
1556 if (root_objectid == ref_offset) {
1557 err = 0;
1558 break;
1559 }
1560 if (ref_offset < root_objectid)
1561 break;
1562 }
1563 }
1564 ptr += btrfs_extent_inline_ref_size(type);
1565 }
1566 if (err == -ENOENT && insert) {
1567 if (item_size + extra_size >=
1568 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1569 err = -EAGAIN;
1570 goto out;
1571 }
1572 /*
1573 * To add new inline back ref, we have to make sure
1574 * there is no corresponding back ref item.
1575 * For simplicity, we just do not add new inline back
1576 * ref if there is any kind of item for this block
1577 */
1578 if (find_next_key(path, 0, &key) == 0 &&
1579 key.objectid == bytenr &&
1580 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1581 err = -EAGAIN;
1582 goto out;
1583 }
1584 }
1585 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1586 out:
1587 if (insert) {
1588 path->keep_locks = 0;
1589 btrfs_unlock_up_safe(path, 1);
1590 }
1591 return err;
1592 }
1593
1594 /*
1595 * helper to add new inline back ref
1596 */
1597 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1598 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1599 struct btrfs_root *root,
1600 struct btrfs_path *path,
1601 struct btrfs_extent_inline_ref *iref,
1602 u64 parent, u64 root_objectid,
1603 u64 owner, u64 offset, int refs_to_add,
1604 struct btrfs_delayed_extent_op *extent_op)
1605 {
1606 struct extent_buffer *leaf;
1607 struct btrfs_extent_item *ei;
1608 unsigned long ptr;
1609 unsigned long end;
1610 unsigned long item_offset;
1611 u64 refs;
1612 int size;
1613 int type;
1614
1615 leaf = path->nodes[0];
1616 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1617 item_offset = (unsigned long)iref - (unsigned long)ei;
1618
1619 type = extent_ref_type(parent, owner);
1620 size = btrfs_extent_inline_ref_size(type);
1621
1622 btrfs_extend_item(trans, root, path, size);
1623
1624 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1625 refs = btrfs_extent_refs(leaf, ei);
1626 refs += refs_to_add;
1627 btrfs_set_extent_refs(leaf, ei, refs);
1628 if (extent_op)
1629 __run_delayed_extent_op(extent_op, leaf, ei);
1630
1631 ptr = (unsigned long)ei + item_offset;
1632 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1633 if (ptr < end - size)
1634 memmove_extent_buffer(leaf, ptr + size, ptr,
1635 end - size - ptr);
1636
1637 iref = (struct btrfs_extent_inline_ref *)ptr;
1638 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1639 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1640 struct btrfs_extent_data_ref *dref;
1641 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1642 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1643 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1644 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1645 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1646 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1647 struct btrfs_shared_data_ref *sref;
1648 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1649 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1650 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1653 } else {
1654 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1655 }
1656 btrfs_mark_buffer_dirty(leaf);
1657 }
1658
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1659 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1660 struct btrfs_root *root,
1661 struct btrfs_path *path,
1662 struct btrfs_extent_inline_ref **ref_ret,
1663 u64 bytenr, u64 num_bytes, u64 parent,
1664 u64 root_objectid, u64 owner, u64 offset)
1665 {
1666 int ret;
1667
1668 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1669 bytenr, num_bytes, parent,
1670 root_objectid, owner, offset, 0);
1671 if (ret != -ENOENT)
1672 return ret;
1673
1674 btrfs_release_path(path);
1675 *ref_ret = NULL;
1676
1677 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1678 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1679 root_objectid);
1680 } else {
1681 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1682 root_objectid, owner, offset);
1683 }
1684 return ret;
1685 }
1686
1687 /*
1688 * helper to update/remove inline back ref
1689 */
1690 static noinline_for_stack
update_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1691 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1692 struct btrfs_root *root,
1693 struct btrfs_path *path,
1694 struct btrfs_extent_inline_ref *iref,
1695 int refs_to_mod,
1696 struct btrfs_delayed_extent_op *extent_op)
1697 {
1698 struct extent_buffer *leaf;
1699 struct btrfs_extent_item *ei;
1700 struct btrfs_extent_data_ref *dref = NULL;
1701 struct btrfs_shared_data_ref *sref = NULL;
1702 unsigned long ptr;
1703 unsigned long end;
1704 u32 item_size;
1705 int size;
1706 int type;
1707 u64 refs;
1708
1709 leaf = path->nodes[0];
1710 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 refs = btrfs_extent_refs(leaf, ei);
1712 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1713 refs += refs_to_mod;
1714 btrfs_set_extent_refs(leaf, ei, refs);
1715 if (extent_op)
1716 __run_delayed_extent_op(extent_op, leaf, ei);
1717
1718 type = btrfs_extent_inline_ref_type(leaf, iref);
1719
1720 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1721 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1722 refs = btrfs_extent_data_ref_count(leaf, dref);
1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 refs = btrfs_shared_data_ref_count(leaf, sref);
1726 } else {
1727 refs = 1;
1728 BUG_ON(refs_to_mod != -1);
1729 }
1730
1731 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1732 refs += refs_to_mod;
1733
1734 if (refs > 0) {
1735 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1736 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1737 else
1738 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1739 } else {
1740 size = btrfs_extent_inline_ref_size(type);
1741 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1742 ptr = (unsigned long)iref;
1743 end = (unsigned long)ei + item_size;
1744 if (ptr + size < end)
1745 memmove_extent_buffer(leaf, ptr, ptr + size,
1746 end - ptr - size);
1747 item_size -= size;
1748 btrfs_truncate_item(trans, root, path, item_size, 1);
1749 }
1750 btrfs_mark_buffer_dirty(leaf);
1751 }
1752
1753 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1754 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1755 struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 u64 bytenr, u64 num_bytes, u64 parent,
1758 u64 root_objectid, u64 owner,
1759 u64 offset, int refs_to_add,
1760 struct btrfs_delayed_extent_op *extent_op)
1761 {
1762 struct btrfs_extent_inline_ref *iref;
1763 int ret;
1764
1765 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1766 bytenr, num_bytes, parent,
1767 root_objectid, owner, offset, 1);
1768 if (ret == 0) {
1769 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1770 update_inline_extent_backref(trans, root, path, iref,
1771 refs_to_add, extent_op);
1772 } else if (ret == -ENOENT) {
1773 setup_inline_extent_backref(trans, root, path, iref, parent,
1774 root_objectid, owner, offset,
1775 refs_to_add, extent_op);
1776 ret = 0;
1777 }
1778 return ret;
1779 }
1780
insert_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1781 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1782 struct btrfs_root *root,
1783 struct btrfs_path *path,
1784 u64 bytenr, u64 parent, u64 root_objectid,
1785 u64 owner, u64 offset, int refs_to_add)
1786 {
1787 int ret;
1788 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1789 BUG_ON(refs_to_add != 1);
1790 ret = insert_tree_block_ref(trans, root, path, bytenr,
1791 parent, root_objectid);
1792 } else {
1793 ret = insert_extent_data_ref(trans, root, path, bytenr,
1794 parent, root_objectid,
1795 owner, offset, refs_to_add);
1796 }
1797 return ret;
1798 }
1799
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1800 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref *iref,
1804 int refs_to_drop, int is_data)
1805 {
1806 int ret = 0;
1807
1808 BUG_ON(!is_data && refs_to_drop != 1);
1809 if (iref) {
1810 update_inline_extent_backref(trans, root, path, iref,
1811 -refs_to_drop, NULL);
1812 } else if (is_data) {
1813 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1814 } else {
1815 ret = btrfs_del_item(trans, root, path);
1816 }
1817 return ret;
1818 }
1819
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len)1820 static int btrfs_issue_discard(struct block_device *bdev,
1821 u64 start, u64 len)
1822 {
1823 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1824 }
1825
btrfs_discard_extent(struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1826 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1827 u64 num_bytes, u64 *actual_bytes)
1828 {
1829 int ret;
1830 u64 discarded_bytes = 0;
1831 struct btrfs_bio *bbio = NULL;
1832
1833
1834 /* Tell the block device(s) that the sectors can be discarded */
1835 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1836 bytenr, &num_bytes, &bbio, 0);
1837 /* Error condition is -ENOMEM */
1838 if (!ret) {
1839 struct btrfs_bio_stripe *stripe = bbio->stripes;
1840 int i;
1841
1842
1843 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1844 if (!stripe->dev->can_discard)
1845 continue;
1846
1847 ret = btrfs_issue_discard(stripe->dev->bdev,
1848 stripe->physical,
1849 stripe->length);
1850 if (!ret)
1851 discarded_bytes += stripe->length;
1852 else if (ret != -EOPNOTSUPP)
1853 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1854
1855 /*
1856 * Just in case we get back EOPNOTSUPP for some reason,
1857 * just ignore the return value so we don't screw up
1858 * people calling discard_extent.
1859 */
1860 ret = 0;
1861 }
1862 kfree(bbio);
1863 }
1864
1865 if (actual_bytes)
1866 *actual_bytes = discarded_bytes;
1867
1868
1869 return ret;
1870 }
1871
1872 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int for_cow)1873 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1874 struct btrfs_root *root,
1875 u64 bytenr, u64 num_bytes, u64 parent,
1876 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1877 {
1878 int ret;
1879 struct btrfs_fs_info *fs_info = root->fs_info;
1880
1881 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1882 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1883
1884 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1885 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1886 num_bytes,
1887 parent, root_objectid, (int)owner,
1888 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1889 } else {
1890 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1891 num_bytes,
1892 parent, root_objectid, owner, offset,
1893 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1894 }
1895 return ret;
1896 }
1897
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1898 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1899 struct btrfs_root *root,
1900 u64 bytenr, u64 num_bytes,
1901 u64 parent, u64 root_objectid,
1902 u64 owner, u64 offset, int refs_to_add,
1903 struct btrfs_delayed_extent_op *extent_op)
1904 {
1905 struct btrfs_path *path;
1906 struct extent_buffer *leaf;
1907 struct btrfs_extent_item *item;
1908 u64 refs;
1909 int ret;
1910 int err = 0;
1911
1912 path = btrfs_alloc_path();
1913 if (!path)
1914 return -ENOMEM;
1915
1916 path->reada = 1;
1917 path->leave_spinning = 1;
1918 /* this will setup the path even if it fails to insert the back ref */
1919 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1920 path, bytenr, num_bytes, parent,
1921 root_objectid, owner, offset,
1922 refs_to_add, extent_op);
1923 if (ret == 0)
1924 goto out;
1925
1926 if (ret != -EAGAIN) {
1927 err = ret;
1928 goto out;
1929 }
1930
1931 leaf = path->nodes[0];
1932 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1933 refs = btrfs_extent_refs(leaf, item);
1934 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1935 if (extent_op)
1936 __run_delayed_extent_op(extent_op, leaf, item);
1937
1938 btrfs_mark_buffer_dirty(leaf);
1939 btrfs_release_path(path);
1940
1941 path->reada = 1;
1942 path->leave_spinning = 1;
1943
1944 /* now insert the actual backref */
1945 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1946 path, bytenr, parent, root_objectid,
1947 owner, offset, refs_to_add);
1948 if (ret)
1949 btrfs_abort_transaction(trans, root, ret);
1950 out:
1951 btrfs_free_path(path);
1952 return err;
1953 }
1954
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1955 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1956 struct btrfs_root *root,
1957 struct btrfs_delayed_ref_node *node,
1958 struct btrfs_delayed_extent_op *extent_op,
1959 int insert_reserved)
1960 {
1961 int ret = 0;
1962 struct btrfs_delayed_data_ref *ref;
1963 struct btrfs_key ins;
1964 u64 parent = 0;
1965 u64 ref_root = 0;
1966 u64 flags = 0;
1967
1968 ins.objectid = node->bytenr;
1969 ins.offset = node->num_bytes;
1970 ins.type = BTRFS_EXTENT_ITEM_KEY;
1971
1972 ref = btrfs_delayed_node_to_data_ref(node);
1973 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1974 parent = ref->parent;
1975 else
1976 ref_root = ref->root;
1977
1978 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1979 if (extent_op) {
1980 BUG_ON(extent_op->update_key);
1981 flags |= extent_op->flags_to_set;
1982 }
1983 ret = alloc_reserved_file_extent(trans, root,
1984 parent, ref_root, flags,
1985 ref->objectid, ref->offset,
1986 &ins, node->ref_mod);
1987 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1988 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1989 node->num_bytes, parent,
1990 ref_root, ref->objectid,
1991 ref->offset, node->ref_mod,
1992 extent_op);
1993 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1994 ret = __btrfs_free_extent(trans, root, node->bytenr,
1995 node->num_bytes, parent,
1996 ref_root, ref->objectid,
1997 ref->offset, node->ref_mod,
1998 extent_op);
1999 } else {
2000 BUG();
2001 }
2002 return ret;
2003 }
2004
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)2005 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2006 struct extent_buffer *leaf,
2007 struct btrfs_extent_item *ei)
2008 {
2009 u64 flags = btrfs_extent_flags(leaf, ei);
2010 if (extent_op->update_flags) {
2011 flags |= extent_op->flags_to_set;
2012 btrfs_set_extent_flags(leaf, ei, flags);
2013 }
2014
2015 if (extent_op->update_key) {
2016 struct btrfs_tree_block_info *bi;
2017 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2018 bi = (struct btrfs_tree_block_info *)(ei + 1);
2019 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2020 }
2021 }
2022
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)2023 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2024 struct btrfs_root *root,
2025 struct btrfs_delayed_ref_node *node,
2026 struct btrfs_delayed_extent_op *extent_op)
2027 {
2028 struct btrfs_key key;
2029 struct btrfs_path *path;
2030 struct btrfs_extent_item *ei;
2031 struct extent_buffer *leaf;
2032 u32 item_size;
2033 int ret;
2034 int err = 0;
2035
2036 if (trans->aborted)
2037 return 0;
2038
2039 path = btrfs_alloc_path();
2040 if (!path)
2041 return -ENOMEM;
2042
2043 key.objectid = node->bytenr;
2044 key.type = BTRFS_EXTENT_ITEM_KEY;
2045 key.offset = node->num_bytes;
2046
2047 path->reada = 1;
2048 path->leave_spinning = 1;
2049 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2050 path, 0, 1);
2051 if (ret < 0) {
2052 err = ret;
2053 goto out;
2054 }
2055 if (ret > 0) {
2056 err = -EIO;
2057 goto out;
2058 }
2059
2060 leaf = path->nodes[0];
2061 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2062 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2063 if (item_size < sizeof(*ei)) {
2064 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2065 path, (u64)-1, 0);
2066 if (ret < 0) {
2067 err = ret;
2068 goto out;
2069 }
2070 leaf = path->nodes[0];
2071 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2072 }
2073 #endif
2074 BUG_ON(item_size < sizeof(*ei));
2075 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2076 __run_delayed_extent_op(extent_op, leaf, ei);
2077
2078 btrfs_mark_buffer_dirty(leaf);
2079 out:
2080 btrfs_free_path(path);
2081 return err;
2082 }
2083
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2084 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2085 struct btrfs_root *root,
2086 struct btrfs_delayed_ref_node *node,
2087 struct btrfs_delayed_extent_op *extent_op,
2088 int insert_reserved)
2089 {
2090 int ret = 0;
2091 struct btrfs_delayed_tree_ref *ref;
2092 struct btrfs_key ins;
2093 u64 parent = 0;
2094 u64 ref_root = 0;
2095
2096 ins.objectid = node->bytenr;
2097 ins.offset = node->num_bytes;
2098 ins.type = BTRFS_EXTENT_ITEM_KEY;
2099
2100 ref = btrfs_delayed_node_to_tree_ref(node);
2101 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2102 parent = ref->parent;
2103 else
2104 ref_root = ref->root;
2105
2106 BUG_ON(node->ref_mod != 1);
2107 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2108 BUG_ON(!extent_op || !extent_op->update_flags ||
2109 !extent_op->update_key);
2110 ret = alloc_reserved_tree_block(trans, root,
2111 parent, ref_root,
2112 extent_op->flags_to_set,
2113 &extent_op->key,
2114 ref->level, &ins);
2115 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2116 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2117 node->num_bytes, parent, ref_root,
2118 ref->level, 0, 1, extent_op);
2119 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2120 ret = __btrfs_free_extent(trans, root, node->bytenr,
2121 node->num_bytes, parent, ref_root,
2122 ref->level, 0, 1, extent_op);
2123 } else {
2124 BUG();
2125 }
2126 return ret;
2127 }
2128
2129 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2130 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2131 struct btrfs_root *root,
2132 struct btrfs_delayed_ref_node *node,
2133 struct btrfs_delayed_extent_op *extent_op,
2134 int insert_reserved)
2135 {
2136 int ret = 0;
2137
2138 if (trans->aborted)
2139 return 0;
2140
2141 if (btrfs_delayed_ref_is_head(node)) {
2142 struct btrfs_delayed_ref_head *head;
2143 /*
2144 * we've hit the end of the chain and we were supposed
2145 * to insert this extent into the tree. But, it got
2146 * deleted before we ever needed to insert it, so all
2147 * we have to do is clean up the accounting
2148 */
2149 BUG_ON(extent_op);
2150 head = btrfs_delayed_node_to_head(node);
2151 if (insert_reserved) {
2152 btrfs_pin_extent(root, node->bytenr,
2153 node->num_bytes, 1);
2154 if (head->is_data) {
2155 ret = btrfs_del_csums(trans, root,
2156 node->bytenr,
2157 node->num_bytes);
2158 }
2159 }
2160 mutex_unlock(&head->mutex);
2161 return ret;
2162 }
2163
2164 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2165 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2166 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2167 insert_reserved);
2168 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2169 node->type == BTRFS_SHARED_DATA_REF_KEY)
2170 ret = run_delayed_data_ref(trans, root, node, extent_op,
2171 insert_reserved);
2172 else
2173 BUG();
2174 return ret;
2175 }
2176
2177 static noinline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)2178 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2179 {
2180 struct rb_node *node;
2181 struct btrfs_delayed_ref_node *ref;
2182 int action = BTRFS_ADD_DELAYED_REF;
2183 again:
2184 /*
2185 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2186 * this prevents ref count from going down to zero when
2187 * there still are pending delayed ref.
2188 */
2189 node = rb_prev(&head->node.rb_node);
2190 while (1) {
2191 if (!node)
2192 break;
2193 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2194 rb_node);
2195 if (ref->bytenr != head->node.bytenr)
2196 break;
2197 if (ref->action == action)
2198 return ref;
2199 node = rb_prev(node);
2200 }
2201 if (action == BTRFS_ADD_DELAYED_REF) {
2202 action = BTRFS_DROP_DELAYED_REF;
2203 goto again;
2204 }
2205 return NULL;
2206 }
2207
2208 /*
2209 * Returns 0 on success or if called with an already aborted transaction.
2210 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2211 */
run_clustered_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct list_head * cluster)2212 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2213 struct btrfs_root *root,
2214 struct list_head *cluster)
2215 {
2216 struct btrfs_delayed_ref_root *delayed_refs;
2217 struct btrfs_delayed_ref_node *ref;
2218 struct btrfs_delayed_ref_head *locked_ref = NULL;
2219 struct btrfs_delayed_extent_op *extent_op;
2220 int ret;
2221 int count = 0;
2222 int must_insert_reserved = 0;
2223
2224 delayed_refs = &trans->transaction->delayed_refs;
2225 while (1) {
2226 if (!locked_ref) {
2227 /* pick a new head ref from the cluster list */
2228 if (list_empty(cluster))
2229 break;
2230
2231 locked_ref = list_entry(cluster->next,
2232 struct btrfs_delayed_ref_head, cluster);
2233
2234 /* grab the lock that says we are going to process
2235 * all the refs for this head */
2236 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2237
2238 /*
2239 * we may have dropped the spin lock to get the head
2240 * mutex lock, and that might have given someone else
2241 * time to free the head. If that's true, it has been
2242 * removed from our list and we can move on.
2243 */
2244 if (ret == -EAGAIN) {
2245 locked_ref = NULL;
2246 count++;
2247 continue;
2248 }
2249 }
2250
2251 /*
2252 * locked_ref is the head node, so we have to go one
2253 * node back for any delayed ref updates
2254 */
2255 ref = select_delayed_ref(locked_ref);
2256
2257 if (ref && ref->seq &&
2258 btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2259 /*
2260 * there are still refs with lower seq numbers in the
2261 * process of being added. Don't run this ref yet.
2262 */
2263 list_del_init(&locked_ref->cluster);
2264 mutex_unlock(&locked_ref->mutex);
2265 locked_ref = NULL;
2266 delayed_refs->num_heads_ready++;
2267 spin_unlock(&delayed_refs->lock);
2268 cond_resched();
2269 spin_lock(&delayed_refs->lock);
2270 continue;
2271 }
2272
2273 /*
2274 * record the must insert reserved flag before we
2275 * drop the spin lock.
2276 */
2277 must_insert_reserved = locked_ref->must_insert_reserved;
2278 locked_ref->must_insert_reserved = 0;
2279
2280 extent_op = locked_ref->extent_op;
2281 locked_ref->extent_op = NULL;
2282
2283 if (!ref) {
2284 /* All delayed refs have been processed, Go ahead
2285 * and send the head node to run_one_delayed_ref,
2286 * so that any accounting fixes can happen
2287 */
2288 ref = &locked_ref->node;
2289
2290 if (extent_op && must_insert_reserved) {
2291 kfree(extent_op);
2292 extent_op = NULL;
2293 }
2294
2295 if (extent_op) {
2296 spin_unlock(&delayed_refs->lock);
2297
2298 ret = run_delayed_extent_op(trans, root,
2299 ref, extent_op);
2300 kfree(extent_op);
2301
2302 if (ret) {
2303 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2304 spin_lock(&delayed_refs->lock);
2305 return ret;
2306 }
2307
2308 goto next;
2309 }
2310
2311 list_del_init(&locked_ref->cluster);
2312 locked_ref = NULL;
2313 }
2314
2315 ref->in_tree = 0;
2316 rb_erase(&ref->rb_node, &delayed_refs->root);
2317 delayed_refs->num_entries--;
2318 /*
2319 * we modified num_entries, but as we're currently running
2320 * delayed refs, skip
2321 * wake_up(&delayed_refs->seq_wait);
2322 * here.
2323 */
2324 spin_unlock(&delayed_refs->lock);
2325
2326 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2327 must_insert_reserved);
2328
2329 btrfs_put_delayed_ref(ref);
2330 kfree(extent_op);
2331 count++;
2332
2333 if (ret) {
2334 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2335 spin_lock(&delayed_refs->lock);
2336 return ret;
2337 }
2338
2339 next:
2340 do_chunk_alloc(trans, root->fs_info->extent_root,
2341 2 * 1024 * 1024,
2342 btrfs_get_alloc_profile(root, 0),
2343 CHUNK_ALLOC_NO_FORCE);
2344 cond_resched();
2345 spin_lock(&delayed_refs->lock);
2346 }
2347 return count;
2348 }
2349
2350
wait_for_more_refs(struct btrfs_delayed_ref_root * delayed_refs,unsigned long num_refs)2351 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2352 unsigned long num_refs)
2353 {
2354 struct list_head *first_seq = delayed_refs->seq_head.next;
2355
2356 spin_unlock(&delayed_refs->lock);
2357 pr_debug("waiting for more refs (num %ld, first %p)\n",
2358 num_refs, first_seq);
2359 wait_event(delayed_refs->seq_wait,
2360 num_refs != delayed_refs->num_entries ||
2361 delayed_refs->seq_head.next != first_seq);
2362 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2363 delayed_refs->num_entries, delayed_refs->seq_head.next);
2364 spin_lock(&delayed_refs->lock);
2365 }
2366
2367 /*
2368 * this starts processing the delayed reference count updates and
2369 * extent insertions we have queued up so far. count can be
2370 * 0, which means to process everything in the tree at the start
2371 * of the run (but not newly added entries), or it can be some target
2372 * number you'd like to process.
2373 *
2374 * Returns 0 on success or if called with an aborted transaction
2375 * Returns <0 on error and aborts the transaction
2376 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long count)2377 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2378 struct btrfs_root *root, unsigned long count)
2379 {
2380 struct rb_node *node;
2381 struct btrfs_delayed_ref_root *delayed_refs;
2382 struct btrfs_delayed_ref_node *ref;
2383 struct list_head cluster;
2384 int ret;
2385 u64 delayed_start;
2386 int run_all = count == (unsigned long)-1;
2387 int run_most = 0;
2388 unsigned long num_refs = 0;
2389 int consider_waiting;
2390
2391 /* We'll clean this up in btrfs_cleanup_transaction */
2392 if (trans->aborted)
2393 return 0;
2394
2395 if (root == root->fs_info->extent_root)
2396 root = root->fs_info->tree_root;
2397
2398 do_chunk_alloc(trans, root->fs_info->extent_root,
2399 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2400 CHUNK_ALLOC_NO_FORCE);
2401
2402 delayed_refs = &trans->transaction->delayed_refs;
2403 INIT_LIST_HEAD(&cluster);
2404 again:
2405 consider_waiting = 0;
2406 spin_lock(&delayed_refs->lock);
2407 if (count == 0) {
2408 count = delayed_refs->num_entries * 2;
2409 run_most = 1;
2410 }
2411 while (1) {
2412 if (!(run_all || run_most) &&
2413 delayed_refs->num_heads_ready < 64)
2414 break;
2415
2416 /*
2417 * go find something we can process in the rbtree. We start at
2418 * the beginning of the tree, and then build a cluster
2419 * of refs to process starting at the first one we are able to
2420 * lock
2421 */
2422 delayed_start = delayed_refs->run_delayed_start;
2423 ret = btrfs_find_ref_cluster(trans, &cluster,
2424 delayed_refs->run_delayed_start);
2425 if (ret)
2426 break;
2427
2428 if (delayed_start >= delayed_refs->run_delayed_start) {
2429 if (consider_waiting == 0) {
2430 /*
2431 * btrfs_find_ref_cluster looped. let's do one
2432 * more cycle. if we don't run any delayed ref
2433 * during that cycle (because we can't because
2434 * all of them are blocked) and if the number of
2435 * refs doesn't change, we avoid busy waiting.
2436 */
2437 consider_waiting = 1;
2438 num_refs = delayed_refs->num_entries;
2439 } else {
2440 wait_for_more_refs(delayed_refs, num_refs);
2441 /*
2442 * after waiting, things have changed. we
2443 * dropped the lock and someone else might have
2444 * run some refs, built new clusters and so on.
2445 * therefore, we restart staleness detection.
2446 */
2447 consider_waiting = 0;
2448 }
2449 }
2450
2451 ret = run_clustered_refs(trans, root, &cluster);
2452 if (ret < 0) {
2453 spin_unlock(&delayed_refs->lock);
2454 btrfs_abort_transaction(trans, root, ret);
2455 return ret;
2456 }
2457
2458 count -= min_t(unsigned long, ret, count);
2459
2460 if (count == 0)
2461 break;
2462
2463 if (ret || delayed_refs->run_delayed_start == 0) {
2464 /* refs were run, let's reset staleness detection */
2465 consider_waiting = 0;
2466 }
2467 }
2468
2469 if (run_all) {
2470 node = rb_first(&delayed_refs->root);
2471 if (!node)
2472 goto out;
2473 count = (unsigned long)-1;
2474
2475 while (node) {
2476 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2477 rb_node);
2478 if (btrfs_delayed_ref_is_head(ref)) {
2479 struct btrfs_delayed_ref_head *head;
2480
2481 head = btrfs_delayed_node_to_head(ref);
2482 atomic_inc(&ref->refs);
2483
2484 spin_unlock(&delayed_refs->lock);
2485 /*
2486 * Mutex was contended, block until it's
2487 * released and try again
2488 */
2489 mutex_lock(&head->mutex);
2490 mutex_unlock(&head->mutex);
2491
2492 btrfs_put_delayed_ref(ref);
2493 cond_resched();
2494 goto again;
2495 }
2496 node = rb_next(node);
2497 }
2498 spin_unlock(&delayed_refs->lock);
2499 schedule_timeout(1);
2500 goto again;
2501 }
2502 out:
2503 spin_unlock(&delayed_refs->lock);
2504 return 0;
2505 }
2506
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 flags,int is_data)2507 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2508 struct btrfs_root *root,
2509 u64 bytenr, u64 num_bytes, u64 flags,
2510 int is_data)
2511 {
2512 struct btrfs_delayed_extent_op *extent_op;
2513 int ret;
2514
2515 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2516 if (!extent_op)
2517 return -ENOMEM;
2518
2519 extent_op->flags_to_set = flags;
2520 extent_op->update_flags = 1;
2521 extent_op->update_key = 0;
2522 extent_op->is_data = is_data ? 1 : 0;
2523
2524 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2525 num_bytes, extent_op);
2526 if (ret)
2527 kfree(extent_op);
2528 return ret;
2529 }
2530
check_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2531 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2532 struct btrfs_root *root,
2533 struct btrfs_path *path,
2534 u64 objectid, u64 offset, u64 bytenr)
2535 {
2536 struct btrfs_delayed_ref_head *head;
2537 struct btrfs_delayed_ref_node *ref;
2538 struct btrfs_delayed_data_ref *data_ref;
2539 struct btrfs_delayed_ref_root *delayed_refs;
2540 struct rb_node *node;
2541 int ret = 0;
2542
2543 ret = -ENOENT;
2544 delayed_refs = &trans->transaction->delayed_refs;
2545 spin_lock(&delayed_refs->lock);
2546 head = btrfs_find_delayed_ref_head(trans, bytenr);
2547 if (!head)
2548 goto out;
2549
2550 if (!mutex_trylock(&head->mutex)) {
2551 atomic_inc(&head->node.refs);
2552 spin_unlock(&delayed_refs->lock);
2553
2554 btrfs_release_path(path);
2555
2556 /*
2557 * Mutex was contended, block until it's released and let
2558 * caller try again
2559 */
2560 mutex_lock(&head->mutex);
2561 mutex_unlock(&head->mutex);
2562 btrfs_put_delayed_ref(&head->node);
2563 return -EAGAIN;
2564 }
2565
2566 node = rb_prev(&head->node.rb_node);
2567 if (!node)
2568 goto out_unlock;
2569
2570 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2571
2572 if (ref->bytenr != bytenr)
2573 goto out_unlock;
2574
2575 ret = 1;
2576 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2577 goto out_unlock;
2578
2579 data_ref = btrfs_delayed_node_to_data_ref(ref);
2580
2581 node = rb_prev(node);
2582 if (node) {
2583 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2584 if (ref->bytenr == bytenr)
2585 goto out_unlock;
2586 }
2587
2588 if (data_ref->root != root->root_key.objectid ||
2589 data_ref->objectid != objectid || data_ref->offset != offset)
2590 goto out_unlock;
2591
2592 ret = 0;
2593 out_unlock:
2594 mutex_unlock(&head->mutex);
2595 out:
2596 spin_unlock(&delayed_refs->lock);
2597 return ret;
2598 }
2599
check_committed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2600 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2601 struct btrfs_root *root,
2602 struct btrfs_path *path,
2603 u64 objectid, u64 offset, u64 bytenr)
2604 {
2605 struct btrfs_root *extent_root = root->fs_info->extent_root;
2606 struct extent_buffer *leaf;
2607 struct btrfs_extent_data_ref *ref;
2608 struct btrfs_extent_inline_ref *iref;
2609 struct btrfs_extent_item *ei;
2610 struct btrfs_key key;
2611 u32 item_size;
2612 int ret;
2613
2614 key.objectid = bytenr;
2615 key.offset = (u64)-1;
2616 key.type = BTRFS_EXTENT_ITEM_KEY;
2617
2618 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2619 if (ret < 0)
2620 goto out;
2621 BUG_ON(ret == 0); /* Corruption */
2622
2623 ret = -ENOENT;
2624 if (path->slots[0] == 0)
2625 goto out;
2626
2627 path->slots[0]--;
2628 leaf = path->nodes[0];
2629 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2630
2631 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2632 goto out;
2633
2634 ret = 1;
2635 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2636 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2637 if (item_size < sizeof(*ei)) {
2638 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2639 goto out;
2640 }
2641 #endif
2642 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2643
2644 if (item_size != sizeof(*ei) +
2645 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2646 goto out;
2647
2648 if (btrfs_extent_generation(leaf, ei) <=
2649 btrfs_root_last_snapshot(&root->root_item))
2650 goto out;
2651
2652 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2653 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2654 BTRFS_EXTENT_DATA_REF_KEY)
2655 goto out;
2656
2657 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2658 if (btrfs_extent_refs(leaf, ei) !=
2659 btrfs_extent_data_ref_count(leaf, ref) ||
2660 btrfs_extent_data_ref_root(leaf, ref) !=
2661 root->root_key.objectid ||
2662 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2663 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2664 goto out;
2665
2666 ret = 0;
2667 out:
2668 return ret;
2669 }
2670
btrfs_cross_ref_exist(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr)2671 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2672 struct btrfs_root *root,
2673 u64 objectid, u64 offset, u64 bytenr)
2674 {
2675 struct btrfs_path *path;
2676 int ret;
2677 int ret2;
2678
2679 path = btrfs_alloc_path();
2680 if (!path)
2681 return -ENOENT;
2682
2683 do {
2684 ret = check_committed_ref(trans, root, path, objectid,
2685 offset, bytenr);
2686 if (ret && ret != -ENOENT)
2687 goto out;
2688
2689 ret2 = check_delayed_ref(trans, root, path, objectid,
2690 offset, bytenr);
2691 } while (ret2 == -EAGAIN);
2692
2693 if (ret2 && ret2 != -ENOENT) {
2694 ret = ret2;
2695 goto out;
2696 }
2697
2698 if (ret != -ENOENT || ret2 != -ENOENT)
2699 ret = 0;
2700 out:
2701 btrfs_free_path(path);
2702 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2703 WARN_ON(ret > 0);
2704 return ret;
2705 }
2706
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc,int for_cow)2707 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2708 struct btrfs_root *root,
2709 struct extent_buffer *buf,
2710 int full_backref, int inc, int for_cow)
2711 {
2712 u64 bytenr;
2713 u64 num_bytes;
2714 u64 parent;
2715 u64 ref_root;
2716 u32 nritems;
2717 struct btrfs_key key;
2718 struct btrfs_file_extent_item *fi;
2719 int i;
2720 int level;
2721 int ret = 0;
2722 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2723 u64, u64, u64, u64, u64, u64, int);
2724
2725 ref_root = btrfs_header_owner(buf);
2726 nritems = btrfs_header_nritems(buf);
2727 level = btrfs_header_level(buf);
2728
2729 if (!root->ref_cows && level == 0)
2730 return 0;
2731
2732 if (inc)
2733 process_func = btrfs_inc_extent_ref;
2734 else
2735 process_func = btrfs_free_extent;
2736
2737 if (full_backref)
2738 parent = buf->start;
2739 else
2740 parent = 0;
2741
2742 for (i = 0; i < nritems; i++) {
2743 if (level == 0) {
2744 btrfs_item_key_to_cpu(buf, &key, i);
2745 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2746 continue;
2747 fi = btrfs_item_ptr(buf, i,
2748 struct btrfs_file_extent_item);
2749 if (btrfs_file_extent_type(buf, fi) ==
2750 BTRFS_FILE_EXTENT_INLINE)
2751 continue;
2752 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2753 if (bytenr == 0)
2754 continue;
2755
2756 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2757 key.offset -= btrfs_file_extent_offset(buf, fi);
2758 ret = process_func(trans, root, bytenr, num_bytes,
2759 parent, ref_root, key.objectid,
2760 key.offset, for_cow);
2761 if (ret)
2762 goto fail;
2763 } else {
2764 bytenr = btrfs_node_blockptr(buf, i);
2765 num_bytes = btrfs_level_size(root, level - 1);
2766 ret = process_func(trans, root, bytenr, num_bytes,
2767 parent, ref_root, level - 1, 0,
2768 for_cow);
2769 if (ret)
2770 goto fail;
2771 }
2772 }
2773 return 0;
2774 fail:
2775 return ret;
2776 }
2777
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int for_cow)2778 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2779 struct extent_buffer *buf, int full_backref, int for_cow)
2780 {
2781 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2782 }
2783
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int for_cow)2784 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2785 struct extent_buffer *buf, int full_backref, int for_cow)
2786 {
2787 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2788 }
2789
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_block_group_cache * cache)2790 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2791 struct btrfs_root *root,
2792 struct btrfs_path *path,
2793 struct btrfs_block_group_cache *cache)
2794 {
2795 int ret;
2796 struct btrfs_root *extent_root = root->fs_info->extent_root;
2797 unsigned long bi;
2798 struct extent_buffer *leaf;
2799
2800 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2801 if (ret < 0)
2802 goto fail;
2803 BUG_ON(ret); /* Corruption */
2804
2805 leaf = path->nodes[0];
2806 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2807 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2808 btrfs_mark_buffer_dirty(leaf);
2809 btrfs_release_path(path);
2810 fail:
2811 if (ret) {
2812 btrfs_abort_transaction(trans, root, ret);
2813 return ret;
2814 }
2815 return 0;
2816
2817 }
2818
2819 static struct btrfs_block_group_cache *
next_block_group(struct btrfs_root * root,struct btrfs_block_group_cache * cache)2820 next_block_group(struct btrfs_root *root,
2821 struct btrfs_block_group_cache *cache)
2822 {
2823 struct rb_node *node;
2824 spin_lock(&root->fs_info->block_group_cache_lock);
2825 node = rb_next(&cache->cache_node);
2826 btrfs_put_block_group(cache);
2827 if (node) {
2828 cache = rb_entry(node, struct btrfs_block_group_cache,
2829 cache_node);
2830 btrfs_get_block_group(cache);
2831 } else
2832 cache = NULL;
2833 spin_unlock(&root->fs_info->block_group_cache_lock);
2834 return cache;
2835 }
2836
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)2837 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2838 struct btrfs_trans_handle *trans,
2839 struct btrfs_path *path)
2840 {
2841 struct btrfs_root *root = block_group->fs_info->tree_root;
2842 struct inode *inode = NULL;
2843 u64 alloc_hint = 0;
2844 int dcs = BTRFS_DC_ERROR;
2845 int num_pages = 0;
2846 int retries = 0;
2847 int ret = 0;
2848
2849 /*
2850 * If this block group is smaller than 100 megs don't bother caching the
2851 * block group.
2852 */
2853 if (block_group->key.offset < (100 * 1024 * 1024)) {
2854 spin_lock(&block_group->lock);
2855 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2856 spin_unlock(&block_group->lock);
2857 return 0;
2858 }
2859
2860 again:
2861 inode = lookup_free_space_inode(root, block_group, path);
2862 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2863 ret = PTR_ERR(inode);
2864 btrfs_release_path(path);
2865 goto out;
2866 }
2867
2868 if (IS_ERR(inode)) {
2869 BUG_ON(retries);
2870 retries++;
2871
2872 if (block_group->ro)
2873 goto out_free;
2874
2875 ret = create_free_space_inode(root, trans, block_group, path);
2876 if (ret)
2877 goto out_free;
2878 goto again;
2879 }
2880
2881 /* We've already setup this transaction, go ahead and exit */
2882 if (block_group->cache_generation == trans->transid &&
2883 i_size_read(inode)) {
2884 dcs = BTRFS_DC_SETUP;
2885 goto out_put;
2886 }
2887
2888 /*
2889 * We want to set the generation to 0, that way if anything goes wrong
2890 * from here on out we know not to trust this cache when we load up next
2891 * time.
2892 */
2893 BTRFS_I(inode)->generation = 0;
2894 ret = btrfs_update_inode(trans, root, inode);
2895 WARN_ON(ret);
2896
2897 if (i_size_read(inode) > 0) {
2898 ret = btrfs_truncate_free_space_cache(root, trans, path,
2899 inode);
2900 if (ret)
2901 goto out_put;
2902 }
2903
2904 spin_lock(&block_group->lock);
2905 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2906 /* We're not cached, don't bother trying to write stuff out */
2907 dcs = BTRFS_DC_WRITTEN;
2908 spin_unlock(&block_group->lock);
2909 goto out_put;
2910 }
2911 spin_unlock(&block_group->lock);
2912
2913 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2914 if (!num_pages)
2915 num_pages = 1;
2916
2917 /*
2918 * Just to make absolutely sure we have enough space, we're going to
2919 * preallocate 12 pages worth of space for each block group. In
2920 * practice we ought to use at most 8, but we need extra space so we can
2921 * add our header and have a terminator between the extents and the
2922 * bitmaps.
2923 */
2924 num_pages *= 16;
2925 num_pages *= PAGE_CACHE_SIZE;
2926
2927 ret = btrfs_check_data_free_space(inode, num_pages);
2928 if (ret)
2929 goto out_put;
2930
2931 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2932 num_pages, num_pages,
2933 &alloc_hint);
2934 if (!ret)
2935 dcs = BTRFS_DC_SETUP;
2936 btrfs_free_reserved_data_space(inode, num_pages);
2937
2938 out_put:
2939 iput(inode);
2940 out_free:
2941 btrfs_release_path(path);
2942 out:
2943 spin_lock(&block_group->lock);
2944 if (!ret && dcs == BTRFS_DC_SETUP)
2945 block_group->cache_generation = trans->transid;
2946 block_group->disk_cache_state = dcs;
2947 spin_unlock(&block_group->lock);
2948
2949 return ret;
2950 }
2951
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)2952 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2953 struct btrfs_root *root)
2954 {
2955 struct btrfs_block_group_cache *cache;
2956 int err = 0;
2957 struct btrfs_path *path;
2958 u64 last = 0;
2959
2960 path = btrfs_alloc_path();
2961 if (!path)
2962 return -ENOMEM;
2963
2964 again:
2965 while (1) {
2966 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2967 while (cache) {
2968 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2969 break;
2970 cache = next_block_group(root, cache);
2971 }
2972 if (!cache) {
2973 if (last == 0)
2974 break;
2975 last = 0;
2976 continue;
2977 }
2978 err = cache_save_setup(cache, trans, path);
2979 last = cache->key.objectid + cache->key.offset;
2980 btrfs_put_block_group(cache);
2981 }
2982
2983 while (1) {
2984 if (last == 0) {
2985 err = btrfs_run_delayed_refs(trans, root,
2986 (unsigned long)-1);
2987 if (err) /* File system offline */
2988 goto out;
2989 }
2990
2991 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2992 while (cache) {
2993 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2994 btrfs_put_block_group(cache);
2995 goto again;
2996 }
2997
2998 if (cache->dirty)
2999 break;
3000 cache = next_block_group(root, cache);
3001 }
3002 if (!cache) {
3003 if (last == 0)
3004 break;
3005 last = 0;
3006 continue;
3007 }
3008
3009 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3010 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3011 cache->dirty = 0;
3012 last = cache->key.objectid + cache->key.offset;
3013
3014 err = write_one_cache_group(trans, root, path, cache);
3015 if (err) /* File system offline */
3016 goto out;
3017
3018 btrfs_put_block_group(cache);
3019 }
3020
3021 while (1) {
3022 /*
3023 * I don't think this is needed since we're just marking our
3024 * preallocated extent as written, but just in case it can't
3025 * hurt.
3026 */
3027 if (last == 0) {
3028 err = btrfs_run_delayed_refs(trans, root,
3029 (unsigned long)-1);
3030 if (err) /* File system offline */
3031 goto out;
3032 }
3033
3034 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3035 while (cache) {
3036 /*
3037 * Really this shouldn't happen, but it could if we
3038 * couldn't write the entire preallocated extent and
3039 * splitting the extent resulted in a new block.
3040 */
3041 if (cache->dirty) {
3042 btrfs_put_block_group(cache);
3043 goto again;
3044 }
3045 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3046 break;
3047 cache = next_block_group(root, cache);
3048 }
3049 if (!cache) {
3050 if (last == 0)
3051 break;
3052 last = 0;
3053 continue;
3054 }
3055
3056 err = btrfs_write_out_cache(root, trans, cache, path);
3057
3058 /*
3059 * If we didn't have an error then the cache state is still
3060 * NEED_WRITE, so we can set it to WRITTEN.
3061 */
3062 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3063 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3064 last = cache->key.objectid + cache->key.offset;
3065 btrfs_put_block_group(cache);
3066 }
3067 out:
3068
3069 btrfs_free_path(path);
3070 return err;
3071 }
3072
btrfs_extent_readonly(struct btrfs_root * root,u64 bytenr)3073 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3074 {
3075 struct btrfs_block_group_cache *block_group;
3076 int readonly = 0;
3077
3078 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3079 if (!block_group || block_group->ro)
3080 readonly = 1;
3081 if (block_group)
3082 btrfs_put_block_group(block_group);
3083 return readonly;
3084 }
3085
update_space_info(struct btrfs_fs_info * info,u64 flags,u64 total_bytes,u64 bytes_used,struct btrfs_space_info ** space_info)3086 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3087 u64 total_bytes, u64 bytes_used,
3088 struct btrfs_space_info **space_info)
3089 {
3090 struct btrfs_space_info *found;
3091 int i;
3092 int factor;
3093
3094 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3095 BTRFS_BLOCK_GROUP_RAID10))
3096 factor = 2;
3097 else
3098 factor = 1;
3099
3100 found = __find_space_info(info, flags);
3101 if (found) {
3102 spin_lock(&found->lock);
3103 found->total_bytes += total_bytes;
3104 found->disk_total += total_bytes * factor;
3105 found->bytes_used += bytes_used;
3106 found->disk_used += bytes_used * factor;
3107 found->full = 0;
3108 spin_unlock(&found->lock);
3109 *space_info = found;
3110 return 0;
3111 }
3112 found = kzalloc(sizeof(*found), GFP_NOFS);
3113 if (!found)
3114 return -ENOMEM;
3115
3116 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3117 INIT_LIST_HEAD(&found->block_groups[i]);
3118 init_rwsem(&found->groups_sem);
3119 spin_lock_init(&found->lock);
3120 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3121 found->total_bytes = total_bytes;
3122 found->disk_total = total_bytes * factor;
3123 found->bytes_used = bytes_used;
3124 found->disk_used = bytes_used * factor;
3125 found->bytes_pinned = 0;
3126 found->bytes_reserved = 0;
3127 found->bytes_readonly = 0;
3128 found->bytes_may_use = 0;
3129 found->full = 0;
3130 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3131 found->chunk_alloc = 0;
3132 found->flush = 0;
3133 init_waitqueue_head(&found->wait);
3134 *space_info = found;
3135 list_add_rcu(&found->list, &info->space_info);
3136 return 0;
3137 }
3138
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)3139 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3140 {
3141 u64 extra_flags = chunk_to_extended(flags) &
3142 BTRFS_EXTENDED_PROFILE_MASK;
3143
3144 if (flags & BTRFS_BLOCK_GROUP_DATA)
3145 fs_info->avail_data_alloc_bits |= extra_flags;
3146 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3147 fs_info->avail_metadata_alloc_bits |= extra_flags;
3148 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3149 fs_info->avail_system_alloc_bits |= extra_flags;
3150 }
3151
3152 /*
3153 * returns target flags in extended format or 0 if restripe for this
3154 * chunk_type is not in progress
3155 *
3156 * should be called with either volume_mutex or balance_lock held
3157 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)3158 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3159 {
3160 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3161 u64 target = 0;
3162
3163 if (!bctl)
3164 return 0;
3165
3166 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3167 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3168 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3169 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3170 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3171 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3172 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3173 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3174 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3175 }
3176
3177 return target;
3178 }
3179
3180 /*
3181 * @flags: available profiles in extended format (see ctree.h)
3182 *
3183 * Returns reduced profile in chunk format. If profile changing is in
3184 * progress (either running or paused) picks the target profile (if it's
3185 * already available), otherwise falls back to plain reducing.
3186 */
btrfs_reduce_alloc_profile(struct btrfs_root * root,u64 flags)3187 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3188 {
3189 /*
3190 * we add in the count of missing devices because we want
3191 * to make sure that any RAID levels on a degraded FS
3192 * continue to be honored.
3193 */
3194 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3195 root->fs_info->fs_devices->missing_devices;
3196 u64 target;
3197
3198 /*
3199 * see if restripe for this chunk_type is in progress, if so
3200 * try to reduce to the target profile
3201 */
3202 spin_lock(&root->fs_info->balance_lock);
3203 target = get_restripe_target(root->fs_info, flags);
3204 if (target) {
3205 /* pick target profile only if it's already available */
3206 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3207 spin_unlock(&root->fs_info->balance_lock);
3208 return extended_to_chunk(target);
3209 }
3210 }
3211 spin_unlock(&root->fs_info->balance_lock);
3212
3213 if (num_devices == 1)
3214 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3215 if (num_devices < 4)
3216 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3217
3218 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3219 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3220 BTRFS_BLOCK_GROUP_RAID10))) {
3221 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3222 }
3223
3224 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3225 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3226 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3227 }
3228
3229 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3230 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3231 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3232 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3233 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3234 }
3235
3236 return extended_to_chunk(flags);
3237 }
3238
get_alloc_profile(struct btrfs_root * root,u64 flags)3239 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3240 {
3241 if (flags & BTRFS_BLOCK_GROUP_DATA)
3242 flags |= root->fs_info->avail_data_alloc_bits;
3243 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3244 flags |= root->fs_info->avail_system_alloc_bits;
3245 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3246 flags |= root->fs_info->avail_metadata_alloc_bits;
3247
3248 return btrfs_reduce_alloc_profile(root, flags);
3249 }
3250
btrfs_get_alloc_profile(struct btrfs_root * root,int data)3251 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3252 {
3253 u64 flags;
3254
3255 if (data)
3256 flags = BTRFS_BLOCK_GROUP_DATA;
3257 else if (root == root->fs_info->chunk_root)
3258 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3259 else
3260 flags = BTRFS_BLOCK_GROUP_METADATA;
3261
3262 return get_alloc_profile(root, flags);
3263 }
3264
btrfs_set_inode_space_info(struct btrfs_root * root,struct inode * inode)3265 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3266 {
3267 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3268 BTRFS_BLOCK_GROUP_DATA);
3269 }
3270
3271 /*
3272 * This will check the space that the inode allocates from to make sure we have
3273 * enough space for bytes.
3274 */
btrfs_check_data_free_space(struct inode * inode,u64 bytes)3275 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3276 {
3277 struct btrfs_space_info *data_sinfo;
3278 struct btrfs_root *root = BTRFS_I(inode)->root;
3279 u64 used;
3280 int ret = 0, committed = 0, alloc_chunk = 1;
3281
3282 /* make sure bytes are sectorsize aligned */
3283 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3284
3285 if (root == root->fs_info->tree_root ||
3286 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3287 alloc_chunk = 0;
3288 committed = 1;
3289 }
3290
3291 data_sinfo = BTRFS_I(inode)->space_info;
3292 if (!data_sinfo)
3293 goto alloc;
3294
3295 again:
3296 /* make sure we have enough space to handle the data first */
3297 spin_lock(&data_sinfo->lock);
3298 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3299 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3300 data_sinfo->bytes_may_use;
3301
3302 if (used + bytes > data_sinfo->total_bytes) {
3303 struct btrfs_trans_handle *trans;
3304
3305 /*
3306 * if we don't have enough free bytes in this space then we need
3307 * to alloc a new chunk.
3308 */
3309 if (!data_sinfo->full && alloc_chunk) {
3310 u64 alloc_target;
3311
3312 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3313 spin_unlock(&data_sinfo->lock);
3314 alloc:
3315 alloc_target = btrfs_get_alloc_profile(root, 1);
3316 trans = btrfs_join_transaction(root);
3317 if (IS_ERR(trans))
3318 return PTR_ERR(trans);
3319
3320 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3321 bytes + 2 * 1024 * 1024,
3322 alloc_target,
3323 CHUNK_ALLOC_NO_FORCE);
3324 btrfs_end_transaction(trans, root);
3325 if (ret < 0) {
3326 if (ret != -ENOSPC)
3327 return ret;
3328 else
3329 goto commit_trans;
3330 }
3331
3332 if (!data_sinfo) {
3333 btrfs_set_inode_space_info(root, inode);
3334 data_sinfo = BTRFS_I(inode)->space_info;
3335 }
3336 goto again;
3337 }
3338
3339 /*
3340 * If we have less pinned bytes than we want to allocate then
3341 * don't bother committing the transaction, it won't help us.
3342 */
3343 if (data_sinfo->bytes_pinned < bytes)
3344 committed = 1;
3345 spin_unlock(&data_sinfo->lock);
3346
3347 /* commit the current transaction and try again */
3348 commit_trans:
3349 if (!committed &&
3350 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3351 committed = 1;
3352 trans = btrfs_join_transaction(root);
3353 if (IS_ERR(trans))
3354 return PTR_ERR(trans);
3355 ret = btrfs_commit_transaction(trans, root);
3356 if (ret)
3357 return ret;
3358 goto again;
3359 }
3360
3361 return -ENOSPC;
3362 }
3363 data_sinfo->bytes_may_use += bytes;
3364 trace_btrfs_space_reservation(root->fs_info, "space_info",
3365 data_sinfo->flags, bytes, 1);
3366 spin_unlock(&data_sinfo->lock);
3367
3368 return 0;
3369 }
3370
3371 /*
3372 * Called if we need to clear a data reservation for this inode.
3373 */
btrfs_free_reserved_data_space(struct inode * inode,u64 bytes)3374 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3375 {
3376 struct btrfs_root *root = BTRFS_I(inode)->root;
3377 struct btrfs_space_info *data_sinfo;
3378
3379 /* make sure bytes are sectorsize aligned */
3380 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3381
3382 data_sinfo = BTRFS_I(inode)->space_info;
3383 spin_lock(&data_sinfo->lock);
3384 data_sinfo->bytes_may_use -= bytes;
3385 trace_btrfs_space_reservation(root->fs_info, "space_info",
3386 data_sinfo->flags, bytes, 0);
3387 spin_unlock(&data_sinfo->lock);
3388 }
3389
force_metadata_allocation(struct btrfs_fs_info * info)3390 static void force_metadata_allocation(struct btrfs_fs_info *info)
3391 {
3392 struct list_head *head = &info->space_info;
3393 struct btrfs_space_info *found;
3394
3395 rcu_read_lock();
3396 list_for_each_entry_rcu(found, head, list) {
3397 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3398 found->force_alloc = CHUNK_ALLOC_FORCE;
3399 }
3400 rcu_read_unlock();
3401 }
3402
should_alloc_chunk(struct btrfs_root * root,struct btrfs_space_info * sinfo,u64 alloc_bytes,int force)3403 static int should_alloc_chunk(struct btrfs_root *root,
3404 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3405 int force)
3406 {
3407 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3408 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3409 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3410 u64 thresh;
3411
3412 if (force == CHUNK_ALLOC_FORCE)
3413 return 1;
3414
3415 /*
3416 * We need to take into account the global rsv because for all intents
3417 * and purposes it's used space. Don't worry about locking the
3418 * global_rsv, it doesn't change except when the transaction commits.
3419 */
3420 num_allocated += global_rsv->size;
3421
3422 /*
3423 * in limited mode, we want to have some free space up to
3424 * about 1% of the FS size.
3425 */
3426 if (force == CHUNK_ALLOC_LIMITED) {
3427 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3428 thresh = max_t(u64, 64 * 1024 * 1024,
3429 div_factor_fine(thresh, 1));
3430
3431 if (num_bytes - num_allocated < thresh)
3432 return 1;
3433 }
3434 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3435
3436 /* 256MB or 2% of the FS */
3437 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3438 /* system chunks need a much small threshold */
3439 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3440 thresh = 32 * 1024 * 1024;
3441
3442 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3443 return 0;
3444 return 1;
3445 }
3446
get_system_chunk_thresh(struct btrfs_root * root,u64 type)3447 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3448 {
3449 u64 num_dev;
3450
3451 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3452 type & BTRFS_BLOCK_GROUP_RAID0)
3453 num_dev = root->fs_info->fs_devices->rw_devices;
3454 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3455 num_dev = 2;
3456 else
3457 num_dev = 1; /* DUP or single */
3458
3459 /* metadata for updaing devices and chunk tree */
3460 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3461 }
3462
check_system_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 type)3463 static void check_system_chunk(struct btrfs_trans_handle *trans,
3464 struct btrfs_root *root, u64 type)
3465 {
3466 struct btrfs_space_info *info;
3467 u64 left;
3468 u64 thresh;
3469
3470 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3471 spin_lock(&info->lock);
3472 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3473 info->bytes_reserved - info->bytes_readonly;
3474 spin_unlock(&info->lock);
3475
3476 thresh = get_system_chunk_thresh(root, type);
3477 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3478 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3479 left, thresh, type);
3480 dump_space_info(info, 0, 0);
3481 }
3482
3483 if (left < thresh) {
3484 u64 flags;
3485
3486 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3487 btrfs_alloc_chunk(trans, root, flags);
3488 }
3489 }
3490
do_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 alloc_bytes,u64 flags,int force)3491 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3492 struct btrfs_root *extent_root, u64 alloc_bytes,
3493 u64 flags, int force)
3494 {
3495 struct btrfs_space_info *space_info;
3496 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3497 int wait_for_alloc = 0;
3498 int ret = 0;
3499
3500 space_info = __find_space_info(extent_root->fs_info, flags);
3501 if (!space_info) {
3502 ret = update_space_info(extent_root->fs_info, flags,
3503 0, 0, &space_info);
3504 BUG_ON(ret); /* -ENOMEM */
3505 }
3506 BUG_ON(!space_info); /* Logic error */
3507
3508 again:
3509 spin_lock(&space_info->lock);
3510 if (force < space_info->force_alloc)
3511 force = space_info->force_alloc;
3512 if (space_info->full) {
3513 spin_unlock(&space_info->lock);
3514 return 0;
3515 }
3516
3517 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3518 spin_unlock(&space_info->lock);
3519 return 0;
3520 } else if (space_info->chunk_alloc) {
3521 wait_for_alloc = 1;
3522 } else {
3523 space_info->chunk_alloc = 1;
3524 }
3525
3526 spin_unlock(&space_info->lock);
3527
3528 mutex_lock(&fs_info->chunk_mutex);
3529
3530 /*
3531 * The chunk_mutex is held throughout the entirety of a chunk
3532 * allocation, so once we've acquired the chunk_mutex we know that the
3533 * other guy is done and we need to recheck and see if we should
3534 * allocate.
3535 */
3536 if (wait_for_alloc) {
3537 mutex_unlock(&fs_info->chunk_mutex);
3538 wait_for_alloc = 0;
3539 goto again;
3540 }
3541
3542 /*
3543 * If we have mixed data/metadata chunks we want to make sure we keep
3544 * allocating mixed chunks instead of individual chunks.
3545 */
3546 if (btrfs_mixed_space_info(space_info))
3547 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3548
3549 /*
3550 * if we're doing a data chunk, go ahead and make sure that
3551 * we keep a reasonable number of metadata chunks allocated in the
3552 * FS as well.
3553 */
3554 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3555 fs_info->data_chunk_allocations++;
3556 if (!(fs_info->data_chunk_allocations %
3557 fs_info->metadata_ratio))
3558 force_metadata_allocation(fs_info);
3559 }
3560
3561 /*
3562 * Check if we have enough space in SYSTEM chunk because we may need
3563 * to update devices.
3564 */
3565 check_system_chunk(trans, extent_root, flags);
3566
3567 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3568 if (ret < 0 && ret != -ENOSPC)
3569 goto out;
3570
3571 spin_lock(&space_info->lock);
3572 if (ret)
3573 space_info->full = 1;
3574 else
3575 ret = 1;
3576
3577 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3578 space_info->chunk_alloc = 0;
3579 spin_unlock(&space_info->lock);
3580 out:
3581 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3582 return ret;
3583 }
3584
3585 /*
3586 * shrink metadata reservation for delalloc
3587 */
shrink_delalloc(struct btrfs_root * root,u64 to_reclaim,bool wait_ordered)3588 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3589 bool wait_ordered)
3590 {
3591 struct btrfs_block_rsv *block_rsv;
3592 struct btrfs_space_info *space_info;
3593 struct btrfs_trans_handle *trans;
3594 u64 reserved;
3595 u64 max_reclaim;
3596 u64 reclaimed = 0;
3597 long time_left;
3598 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3599 int loops = 0;
3600 unsigned long progress;
3601
3602 trans = (struct btrfs_trans_handle *)current->journal_info;
3603 block_rsv = &root->fs_info->delalloc_block_rsv;
3604 space_info = block_rsv->space_info;
3605
3606 smp_mb();
3607 reserved = space_info->bytes_may_use;
3608 progress = space_info->reservation_progress;
3609
3610 if (reserved == 0)
3611 return 0;
3612
3613 smp_mb();
3614 if (root->fs_info->delalloc_bytes == 0) {
3615 if (trans)
3616 return 0;
3617 btrfs_wait_ordered_extents(root, 0, 0);
3618 return 0;
3619 }
3620
3621 max_reclaim = min(reserved, to_reclaim);
3622 nr_pages = max_t(unsigned long, nr_pages,
3623 max_reclaim >> PAGE_CACHE_SHIFT);
3624 while (loops < 1024) {
3625 /* have the flusher threads jump in and do some IO */
3626 smp_mb();
3627 nr_pages = min_t(unsigned long, nr_pages,
3628 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3629 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3630 WB_REASON_FS_FREE_SPACE);
3631
3632 spin_lock(&space_info->lock);
3633 if (reserved > space_info->bytes_may_use)
3634 reclaimed += reserved - space_info->bytes_may_use;
3635 reserved = space_info->bytes_may_use;
3636 spin_unlock(&space_info->lock);
3637
3638 loops++;
3639
3640 if (reserved == 0 || reclaimed >= max_reclaim)
3641 break;
3642
3643 if (trans && trans->transaction->blocked)
3644 return -EAGAIN;
3645
3646 if (wait_ordered && !trans) {
3647 btrfs_wait_ordered_extents(root, 0, 0);
3648 } else {
3649 time_left = schedule_timeout_interruptible(1);
3650
3651 /* We were interrupted, exit */
3652 if (time_left)
3653 break;
3654 }
3655
3656 /* we've kicked the IO a few times, if anything has been freed,
3657 * exit. There is no sense in looping here for a long time
3658 * when we really need to commit the transaction, or there are
3659 * just too many writers without enough free space
3660 */
3661
3662 if (loops > 3) {
3663 smp_mb();
3664 if (progress != space_info->reservation_progress)
3665 break;
3666 }
3667
3668 }
3669
3670 return reclaimed >= to_reclaim;
3671 }
3672
3673 /**
3674 * maybe_commit_transaction - possibly commit the transaction if its ok to
3675 * @root - the root we're allocating for
3676 * @bytes - the number of bytes we want to reserve
3677 * @force - force the commit
3678 *
3679 * This will check to make sure that committing the transaction will actually
3680 * get us somewhere and then commit the transaction if it does. Otherwise it
3681 * will return -ENOSPC.
3682 */
may_commit_transaction(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 bytes,int force)3683 static int may_commit_transaction(struct btrfs_root *root,
3684 struct btrfs_space_info *space_info,
3685 u64 bytes, int force)
3686 {
3687 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3688 struct btrfs_trans_handle *trans;
3689
3690 trans = (struct btrfs_trans_handle *)current->journal_info;
3691 if (trans)
3692 return -EAGAIN;
3693
3694 if (force)
3695 goto commit;
3696
3697 /* See if there is enough pinned space to make this reservation */
3698 spin_lock(&space_info->lock);
3699 if (space_info->bytes_pinned >= bytes) {
3700 spin_unlock(&space_info->lock);
3701 goto commit;
3702 }
3703 spin_unlock(&space_info->lock);
3704
3705 /*
3706 * See if there is some space in the delayed insertion reservation for
3707 * this reservation.
3708 */
3709 if (space_info != delayed_rsv->space_info)
3710 return -ENOSPC;
3711
3712 spin_lock(&space_info->lock);
3713 spin_lock(&delayed_rsv->lock);
3714 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3715 spin_unlock(&delayed_rsv->lock);
3716 spin_unlock(&space_info->lock);
3717 return -ENOSPC;
3718 }
3719 spin_unlock(&delayed_rsv->lock);
3720 spin_unlock(&space_info->lock);
3721
3722 commit:
3723 trans = btrfs_join_transaction(root);
3724 if (IS_ERR(trans))
3725 return -ENOSPC;
3726
3727 return btrfs_commit_transaction(trans, root);
3728 }
3729
3730 /**
3731 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3732 * @root - the root we're allocating for
3733 * @block_rsv - the block_rsv we're allocating for
3734 * @orig_bytes - the number of bytes we want
3735 * @flush - wether or not we can flush to make our reservation
3736 *
3737 * This will reserve orgi_bytes number of bytes from the space info associated
3738 * with the block_rsv. If there is not enough space it will make an attempt to
3739 * flush out space to make room. It will do this by flushing delalloc if
3740 * possible or committing the transaction. If flush is 0 then no attempts to
3741 * regain reservations will be made and this will fail if there is not enough
3742 * space already.
3743 */
reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,int flush)3744 static int reserve_metadata_bytes(struct btrfs_root *root,
3745 struct btrfs_block_rsv *block_rsv,
3746 u64 orig_bytes, int flush)
3747 {
3748 struct btrfs_space_info *space_info = block_rsv->space_info;
3749 u64 used;
3750 u64 num_bytes = orig_bytes;
3751 int retries = 0;
3752 int ret = 0;
3753 bool committed = false;
3754 bool flushing = false;
3755 bool wait_ordered = false;
3756
3757 again:
3758 ret = 0;
3759 spin_lock(&space_info->lock);
3760 /*
3761 * We only want to wait if somebody other than us is flushing and we are
3762 * actually alloed to flush.
3763 */
3764 while (flush && !flushing && space_info->flush) {
3765 spin_unlock(&space_info->lock);
3766 /*
3767 * If we have a trans handle we can't wait because the flusher
3768 * may have to commit the transaction, which would mean we would
3769 * deadlock since we are waiting for the flusher to finish, but
3770 * hold the current transaction open.
3771 */
3772 if (current->journal_info)
3773 return -EAGAIN;
3774 ret = wait_event_killable(space_info->wait, !space_info->flush);
3775 /* Must have been killed, return */
3776 if (ret)
3777 return -EINTR;
3778
3779 spin_lock(&space_info->lock);
3780 }
3781
3782 ret = -ENOSPC;
3783 used = space_info->bytes_used + space_info->bytes_reserved +
3784 space_info->bytes_pinned + space_info->bytes_readonly +
3785 space_info->bytes_may_use;
3786
3787 /*
3788 * The idea here is that we've not already over-reserved the block group
3789 * then we can go ahead and save our reservation first and then start
3790 * flushing if we need to. Otherwise if we've already overcommitted
3791 * lets start flushing stuff first and then come back and try to make
3792 * our reservation.
3793 */
3794 if (used <= space_info->total_bytes) {
3795 if (used + orig_bytes <= space_info->total_bytes) {
3796 space_info->bytes_may_use += orig_bytes;
3797 trace_btrfs_space_reservation(root->fs_info,
3798 "space_info", space_info->flags, orig_bytes, 1);
3799 ret = 0;
3800 } else {
3801 /*
3802 * Ok set num_bytes to orig_bytes since we aren't
3803 * overocmmitted, this way we only try and reclaim what
3804 * we need.
3805 */
3806 num_bytes = orig_bytes;
3807 }
3808 } else {
3809 /*
3810 * Ok we're over committed, set num_bytes to the overcommitted
3811 * amount plus the amount of bytes that we need for this
3812 * reservation.
3813 */
3814 wait_ordered = true;
3815 num_bytes = used - space_info->total_bytes +
3816 (orig_bytes * (retries + 1));
3817 }
3818
3819 if (ret) {
3820 u64 profile = btrfs_get_alloc_profile(root, 0);
3821 u64 avail;
3822
3823 /*
3824 * If we have a lot of space that's pinned, don't bother doing
3825 * the overcommit dance yet and just commit the transaction.
3826 */
3827 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3828 do_div(avail, 10);
3829 if (space_info->bytes_pinned >= avail && flush && !committed) {
3830 space_info->flush = 1;
3831 flushing = true;
3832 spin_unlock(&space_info->lock);
3833 ret = may_commit_transaction(root, space_info,
3834 orig_bytes, 1);
3835 if (ret)
3836 goto out;
3837 committed = true;
3838 goto again;
3839 }
3840
3841 spin_lock(&root->fs_info->free_chunk_lock);
3842 avail = root->fs_info->free_chunk_space;
3843
3844 /*
3845 * If we have dup, raid1 or raid10 then only half of the free
3846 * space is actually useable.
3847 */
3848 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3849 BTRFS_BLOCK_GROUP_RAID1 |
3850 BTRFS_BLOCK_GROUP_RAID10))
3851 avail >>= 1;
3852
3853 /*
3854 * If we aren't flushing don't let us overcommit too much, say
3855 * 1/8th of the space. If we can flush, let it overcommit up to
3856 * 1/2 of the space.
3857 */
3858 if (flush)
3859 avail >>= 3;
3860 else
3861 avail >>= 1;
3862 spin_unlock(&root->fs_info->free_chunk_lock);
3863
3864 if (used + num_bytes < space_info->total_bytes + avail) {
3865 space_info->bytes_may_use += orig_bytes;
3866 trace_btrfs_space_reservation(root->fs_info,
3867 "space_info", space_info->flags, orig_bytes, 1);
3868 ret = 0;
3869 } else {
3870 wait_ordered = true;
3871 }
3872 }
3873
3874 /*
3875 * Couldn't make our reservation, save our place so while we're trying
3876 * to reclaim space we can actually use it instead of somebody else
3877 * stealing it from us.
3878 */
3879 if (ret && flush) {
3880 flushing = true;
3881 space_info->flush = 1;
3882 }
3883
3884 spin_unlock(&space_info->lock);
3885
3886 if (!ret || !flush)
3887 goto out;
3888
3889 /*
3890 * We do synchronous shrinking since we don't actually unreserve
3891 * metadata until after the IO is completed.
3892 */
3893 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3894 if (ret < 0)
3895 goto out;
3896
3897 ret = 0;
3898
3899 /*
3900 * So if we were overcommitted it's possible that somebody else flushed
3901 * out enough space and we simply didn't have enough space to reclaim,
3902 * so go back around and try again.
3903 */
3904 if (retries < 2) {
3905 wait_ordered = true;
3906 retries++;
3907 goto again;
3908 }
3909
3910 ret = -ENOSPC;
3911 if (committed)
3912 goto out;
3913
3914 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3915 if (!ret) {
3916 committed = true;
3917 goto again;
3918 }
3919
3920 out:
3921 if (flushing) {
3922 spin_lock(&space_info->lock);
3923 space_info->flush = 0;
3924 wake_up_all(&space_info->wait);
3925 spin_unlock(&space_info->lock);
3926 }
3927 return ret;
3928 }
3929
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)3930 static struct btrfs_block_rsv *get_block_rsv(
3931 const struct btrfs_trans_handle *trans,
3932 const struct btrfs_root *root)
3933 {
3934 struct btrfs_block_rsv *block_rsv = NULL;
3935
3936 if (root->ref_cows || root == root->fs_info->csum_root)
3937 block_rsv = trans->block_rsv;
3938
3939 if (!block_rsv)
3940 block_rsv = root->block_rsv;
3941
3942 if (!block_rsv)
3943 block_rsv = &root->fs_info->empty_block_rsv;
3944
3945 return block_rsv;
3946 }
3947
block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)3948 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3949 u64 num_bytes)
3950 {
3951 int ret = -ENOSPC;
3952 spin_lock(&block_rsv->lock);
3953 if (block_rsv->reserved >= num_bytes) {
3954 block_rsv->reserved -= num_bytes;
3955 if (block_rsv->reserved < block_rsv->size)
3956 block_rsv->full = 0;
3957 ret = 0;
3958 }
3959 spin_unlock(&block_rsv->lock);
3960 return ret;
3961 }
3962
block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,int update_size)3963 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3964 u64 num_bytes, int update_size)
3965 {
3966 spin_lock(&block_rsv->lock);
3967 block_rsv->reserved += num_bytes;
3968 if (update_size)
3969 block_rsv->size += num_bytes;
3970 else if (block_rsv->reserved >= block_rsv->size)
3971 block_rsv->full = 1;
3972 spin_unlock(&block_rsv->lock);
3973 }
3974
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes)3975 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3976 struct btrfs_block_rsv *block_rsv,
3977 struct btrfs_block_rsv *dest, u64 num_bytes)
3978 {
3979 struct btrfs_space_info *space_info = block_rsv->space_info;
3980
3981 spin_lock(&block_rsv->lock);
3982 if (num_bytes == (u64)-1)
3983 num_bytes = block_rsv->size;
3984 block_rsv->size -= num_bytes;
3985 if (block_rsv->reserved >= block_rsv->size) {
3986 num_bytes = block_rsv->reserved - block_rsv->size;
3987 block_rsv->reserved = block_rsv->size;
3988 block_rsv->full = 1;
3989 } else {
3990 num_bytes = 0;
3991 }
3992 spin_unlock(&block_rsv->lock);
3993
3994 if (num_bytes > 0) {
3995 if (dest) {
3996 spin_lock(&dest->lock);
3997 if (!dest->full) {
3998 u64 bytes_to_add;
3999
4000 bytes_to_add = dest->size - dest->reserved;
4001 bytes_to_add = min(num_bytes, bytes_to_add);
4002 dest->reserved += bytes_to_add;
4003 if (dest->reserved >= dest->size)
4004 dest->full = 1;
4005 num_bytes -= bytes_to_add;
4006 }
4007 spin_unlock(&dest->lock);
4008 }
4009 if (num_bytes) {
4010 spin_lock(&space_info->lock);
4011 space_info->bytes_may_use -= num_bytes;
4012 trace_btrfs_space_reservation(fs_info, "space_info",
4013 space_info->flags, num_bytes, 0);
4014 space_info->reservation_progress++;
4015 spin_unlock(&space_info->lock);
4016 }
4017 }
4018 }
4019
block_rsv_migrate_bytes(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes)4020 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4021 struct btrfs_block_rsv *dst, u64 num_bytes)
4022 {
4023 int ret;
4024
4025 ret = block_rsv_use_bytes(src, num_bytes);
4026 if (ret)
4027 return ret;
4028
4029 block_rsv_add_bytes(dst, num_bytes, 1);
4030 return 0;
4031 }
4032
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv)4033 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
4034 {
4035 memset(rsv, 0, sizeof(*rsv));
4036 spin_lock_init(&rsv->lock);
4037 }
4038
btrfs_alloc_block_rsv(struct btrfs_root * root)4039 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
4040 {
4041 struct btrfs_block_rsv *block_rsv;
4042 struct btrfs_fs_info *fs_info = root->fs_info;
4043
4044 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4045 if (!block_rsv)
4046 return NULL;
4047
4048 btrfs_init_block_rsv(block_rsv);
4049 block_rsv->space_info = __find_space_info(fs_info,
4050 BTRFS_BLOCK_GROUP_METADATA);
4051 return block_rsv;
4052 }
4053
btrfs_free_block_rsv(struct btrfs_root * root,struct btrfs_block_rsv * rsv)4054 void btrfs_free_block_rsv(struct btrfs_root *root,
4055 struct btrfs_block_rsv *rsv)
4056 {
4057 btrfs_block_rsv_release(root, rsv, (u64)-1);
4058 kfree(rsv);
4059 }
4060
__block_rsv_add(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes,int flush)4061 static inline int __block_rsv_add(struct btrfs_root *root,
4062 struct btrfs_block_rsv *block_rsv,
4063 u64 num_bytes, int flush)
4064 {
4065 int ret;
4066
4067 if (num_bytes == 0)
4068 return 0;
4069
4070 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4071 if (!ret) {
4072 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4073 return 0;
4074 }
4075
4076 return ret;
4077 }
4078
btrfs_block_rsv_add(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes)4079 int btrfs_block_rsv_add(struct btrfs_root *root,
4080 struct btrfs_block_rsv *block_rsv,
4081 u64 num_bytes)
4082 {
4083 return __block_rsv_add(root, block_rsv, num_bytes, 1);
4084 }
4085
btrfs_block_rsv_add_noflush(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes)4086 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4087 struct btrfs_block_rsv *block_rsv,
4088 u64 num_bytes)
4089 {
4090 return __block_rsv_add(root, block_rsv, num_bytes, 0);
4091 }
4092
btrfs_block_rsv_check(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int min_factor)4093 int btrfs_block_rsv_check(struct btrfs_root *root,
4094 struct btrfs_block_rsv *block_rsv, int min_factor)
4095 {
4096 u64 num_bytes = 0;
4097 int ret = -ENOSPC;
4098
4099 if (!block_rsv)
4100 return 0;
4101
4102 spin_lock(&block_rsv->lock);
4103 num_bytes = div_factor(block_rsv->size, min_factor);
4104 if (block_rsv->reserved >= num_bytes)
4105 ret = 0;
4106 spin_unlock(&block_rsv->lock);
4107
4108 return ret;
4109 }
4110
__btrfs_block_rsv_refill(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved,int flush)4111 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4112 struct btrfs_block_rsv *block_rsv,
4113 u64 min_reserved, int flush)
4114 {
4115 u64 num_bytes = 0;
4116 int ret = -ENOSPC;
4117
4118 if (!block_rsv)
4119 return 0;
4120
4121 spin_lock(&block_rsv->lock);
4122 num_bytes = min_reserved;
4123 if (block_rsv->reserved >= num_bytes)
4124 ret = 0;
4125 else
4126 num_bytes -= block_rsv->reserved;
4127 spin_unlock(&block_rsv->lock);
4128
4129 if (!ret)
4130 return 0;
4131
4132 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4133 if (!ret) {
4134 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4135 return 0;
4136 }
4137
4138 return ret;
4139 }
4140
btrfs_block_rsv_refill(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved)4141 int btrfs_block_rsv_refill(struct btrfs_root *root,
4142 struct btrfs_block_rsv *block_rsv,
4143 u64 min_reserved)
4144 {
4145 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4146 }
4147
btrfs_block_rsv_refill_noflush(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved)4148 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4149 struct btrfs_block_rsv *block_rsv,
4150 u64 min_reserved)
4151 {
4152 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4153 }
4154
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src_rsv,struct btrfs_block_rsv * dst_rsv,u64 num_bytes)4155 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4156 struct btrfs_block_rsv *dst_rsv,
4157 u64 num_bytes)
4158 {
4159 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4160 }
4161
btrfs_block_rsv_release(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes)4162 void btrfs_block_rsv_release(struct btrfs_root *root,
4163 struct btrfs_block_rsv *block_rsv,
4164 u64 num_bytes)
4165 {
4166 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4167 if (global_rsv->full || global_rsv == block_rsv ||
4168 block_rsv->space_info != global_rsv->space_info)
4169 global_rsv = NULL;
4170 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4171 num_bytes);
4172 }
4173
4174 /*
4175 * helper to calculate size of global block reservation.
4176 * the desired value is sum of space used by extent tree,
4177 * checksum tree and root tree
4178 */
calc_global_metadata_size(struct btrfs_fs_info * fs_info)4179 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4180 {
4181 struct btrfs_space_info *sinfo;
4182 u64 num_bytes;
4183 u64 meta_used;
4184 u64 data_used;
4185 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4186
4187 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4188 spin_lock(&sinfo->lock);
4189 data_used = sinfo->bytes_used;
4190 spin_unlock(&sinfo->lock);
4191
4192 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4193 spin_lock(&sinfo->lock);
4194 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4195 data_used = 0;
4196 meta_used = sinfo->bytes_used;
4197 spin_unlock(&sinfo->lock);
4198
4199 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4200 csum_size * 2;
4201 num_bytes += div64_u64(data_used + meta_used, 50);
4202
4203 if (num_bytes * 3 > meta_used)
4204 num_bytes = div64_u64(meta_used, 3);
4205
4206 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4207 }
4208
update_global_block_rsv(struct btrfs_fs_info * fs_info)4209 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4210 {
4211 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4212 struct btrfs_space_info *sinfo = block_rsv->space_info;
4213 u64 num_bytes;
4214
4215 num_bytes = calc_global_metadata_size(fs_info);
4216
4217 spin_lock(&sinfo->lock);
4218 spin_lock(&block_rsv->lock);
4219
4220 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4221
4222 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4223 sinfo->bytes_reserved + sinfo->bytes_readonly +
4224 sinfo->bytes_may_use;
4225
4226 if (sinfo->total_bytes > num_bytes) {
4227 num_bytes = sinfo->total_bytes - num_bytes;
4228 block_rsv->reserved += num_bytes;
4229 sinfo->bytes_may_use += num_bytes;
4230 trace_btrfs_space_reservation(fs_info, "space_info",
4231 sinfo->flags, num_bytes, 1);
4232 }
4233
4234 if (block_rsv->reserved >= block_rsv->size) {
4235 num_bytes = block_rsv->reserved - block_rsv->size;
4236 sinfo->bytes_may_use -= num_bytes;
4237 trace_btrfs_space_reservation(fs_info, "space_info",
4238 sinfo->flags, num_bytes, 0);
4239 sinfo->reservation_progress++;
4240 block_rsv->reserved = block_rsv->size;
4241 block_rsv->full = 1;
4242 }
4243
4244 spin_unlock(&block_rsv->lock);
4245 spin_unlock(&sinfo->lock);
4246 }
4247
init_global_block_rsv(struct btrfs_fs_info * fs_info)4248 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4249 {
4250 struct btrfs_space_info *space_info;
4251
4252 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4253 fs_info->chunk_block_rsv.space_info = space_info;
4254
4255 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4256 fs_info->global_block_rsv.space_info = space_info;
4257 fs_info->delalloc_block_rsv.space_info = space_info;
4258 fs_info->trans_block_rsv.space_info = space_info;
4259 fs_info->empty_block_rsv.space_info = space_info;
4260 fs_info->delayed_block_rsv.space_info = space_info;
4261
4262 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4263 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4264 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4265 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4266 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4267
4268 update_global_block_rsv(fs_info);
4269 }
4270
release_global_block_rsv(struct btrfs_fs_info * fs_info)4271 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4272 {
4273 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4274 (u64)-1);
4275 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4276 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4277 WARN_ON(fs_info->trans_block_rsv.size > 0);
4278 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4279 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4280 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4281 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4282 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4283 }
4284
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root)4285 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4286 struct btrfs_root *root)
4287 {
4288 if (!trans->bytes_reserved)
4289 return;
4290
4291 trace_btrfs_space_reservation(root->fs_info, "transaction",
4292 trans->transid, trans->bytes_reserved, 0);
4293 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4294 trans->bytes_reserved = 0;
4295 }
4296
4297 /* Can only return 0 or -ENOSPC */
btrfs_orphan_reserve_metadata(struct btrfs_trans_handle * trans,struct inode * inode)4298 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4299 struct inode *inode)
4300 {
4301 struct btrfs_root *root = BTRFS_I(inode)->root;
4302 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4303 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4304
4305 /*
4306 * We need to hold space in order to delete our orphan item once we've
4307 * added it, so this takes the reservation so we can release it later
4308 * when we are truly done with the orphan item.
4309 */
4310 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4311 trace_btrfs_space_reservation(root->fs_info, "orphan",
4312 btrfs_ino(inode), num_bytes, 1);
4313 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4314 }
4315
btrfs_orphan_release_metadata(struct inode * inode)4316 void btrfs_orphan_release_metadata(struct inode *inode)
4317 {
4318 struct btrfs_root *root = BTRFS_I(inode)->root;
4319 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4320 trace_btrfs_space_reservation(root->fs_info, "orphan",
4321 btrfs_ino(inode), num_bytes, 0);
4322 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4323 }
4324
btrfs_snap_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4325 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4326 struct btrfs_pending_snapshot *pending)
4327 {
4328 struct btrfs_root *root = pending->root;
4329 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4330 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4331 /*
4332 * two for root back/forward refs, two for directory entries
4333 * and one for root of the snapshot.
4334 */
4335 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4336 dst_rsv->space_info = src_rsv->space_info;
4337 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4338 }
4339
4340 /**
4341 * drop_outstanding_extent - drop an outstanding extent
4342 * @inode: the inode we're dropping the extent for
4343 *
4344 * This is called when we are freeing up an outstanding extent, either called
4345 * after an error or after an extent is written. This will return the number of
4346 * reserved extents that need to be freed. This must be called with
4347 * BTRFS_I(inode)->lock held.
4348 */
drop_outstanding_extent(struct inode * inode)4349 static unsigned drop_outstanding_extent(struct inode *inode)
4350 {
4351 unsigned drop_inode_space = 0;
4352 unsigned dropped_extents = 0;
4353
4354 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4355 BTRFS_I(inode)->outstanding_extents--;
4356
4357 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4358 BTRFS_I(inode)->delalloc_meta_reserved) {
4359 drop_inode_space = 1;
4360 BTRFS_I(inode)->delalloc_meta_reserved = 0;
4361 }
4362
4363 /*
4364 * If we have more or the same amount of outsanding extents than we have
4365 * reserved then we need to leave the reserved extents count alone.
4366 */
4367 if (BTRFS_I(inode)->outstanding_extents >=
4368 BTRFS_I(inode)->reserved_extents)
4369 return drop_inode_space;
4370
4371 dropped_extents = BTRFS_I(inode)->reserved_extents -
4372 BTRFS_I(inode)->outstanding_extents;
4373 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4374 return dropped_extents + drop_inode_space;
4375 }
4376
4377 /**
4378 * calc_csum_metadata_size - return the amount of metada space that must be
4379 * reserved/free'd for the given bytes.
4380 * @inode: the inode we're manipulating
4381 * @num_bytes: the number of bytes in question
4382 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4383 *
4384 * This adjusts the number of csum_bytes in the inode and then returns the
4385 * correct amount of metadata that must either be reserved or freed. We
4386 * calculate how many checksums we can fit into one leaf and then divide the
4387 * number of bytes that will need to be checksumed by this value to figure out
4388 * how many checksums will be required. If we are adding bytes then the number
4389 * may go up and we will return the number of additional bytes that must be
4390 * reserved. If it is going down we will return the number of bytes that must
4391 * be freed.
4392 *
4393 * This must be called with BTRFS_I(inode)->lock held.
4394 */
calc_csum_metadata_size(struct inode * inode,u64 num_bytes,int reserve)4395 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4396 int reserve)
4397 {
4398 struct btrfs_root *root = BTRFS_I(inode)->root;
4399 u64 csum_size;
4400 int num_csums_per_leaf;
4401 int num_csums;
4402 int old_csums;
4403
4404 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4405 BTRFS_I(inode)->csum_bytes == 0)
4406 return 0;
4407
4408 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4409 if (reserve)
4410 BTRFS_I(inode)->csum_bytes += num_bytes;
4411 else
4412 BTRFS_I(inode)->csum_bytes -= num_bytes;
4413 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4414 num_csums_per_leaf = (int)div64_u64(csum_size,
4415 sizeof(struct btrfs_csum_item) +
4416 sizeof(struct btrfs_disk_key));
4417 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4418 num_csums = num_csums + num_csums_per_leaf - 1;
4419 num_csums = num_csums / num_csums_per_leaf;
4420
4421 old_csums = old_csums + num_csums_per_leaf - 1;
4422 old_csums = old_csums / num_csums_per_leaf;
4423
4424 /* No change, no need to reserve more */
4425 if (old_csums == num_csums)
4426 return 0;
4427
4428 if (reserve)
4429 return btrfs_calc_trans_metadata_size(root,
4430 num_csums - old_csums);
4431
4432 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4433 }
4434
btrfs_delalloc_reserve_metadata(struct inode * inode,u64 num_bytes)4435 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4436 {
4437 struct btrfs_root *root = BTRFS_I(inode)->root;
4438 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4439 u64 to_reserve = 0;
4440 u64 csum_bytes;
4441 unsigned nr_extents = 0;
4442 int extra_reserve = 0;
4443 int flush = 1;
4444 int ret;
4445
4446 /* Need to be holding the i_mutex here if we aren't free space cache */
4447 if (btrfs_is_free_space_inode(root, inode))
4448 flush = 0;
4449
4450 if (flush && btrfs_transaction_in_commit(root->fs_info))
4451 schedule_timeout(1);
4452
4453 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4454 num_bytes = ALIGN(num_bytes, root->sectorsize);
4455
4456 spin_lock(&BTRFS_I(inode)->lock);
4457 BTRFS_I(inode)->outstanding_extents++;
4458
4459 if (BTRFS_I(inode)->outstanding_extents >
4460 BTRFS_I(inode)->reserved_extents)
4461 nr_extents = BTRFS_I(inode)->outstanding_extents -
4462 BTRFS_I(inode)->reserved_extents;
4463
4464 /*
4465 * Add an item to reserve for updating the inode when we complete the
4466 * delalloc io.
4467 */
4468 if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4469 nr_extents++;
4470 extra_reserve = 1;
4471 }
4472
4473 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4474 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4475 csum_bytes = BTRFS_I(inode)->csum_bytes;
4476 spin_unlock(&BTRFS_I(inode)->lock);
4477
4478 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4479 if (ret) {
4480 u64 to_free = 0;
4481 unsigned dropped;
4482
4483 spin_lock(&BTRFS_I(inode)->lock);
4484 dropped = drop_outstanding_extent(inode);
4485 /*
4486 * If the inodes csum_bytes is the same as the original
4487 * csum_bytes then we know we haven't raced with any free()ers
4488 * so we can just reduce our inodes csum bytes and carry on.
4489 */
4490 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
4491 calc_csum_metadata_size(inode, num_bytes, 0);
4492 } else {
4493 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
4494 u64 bytes;
4495
4496 /*
4497 * This is tricky, but first we need to figure out how much we
4498 * free'd from any free-ers that occured during this
4499 * reservation, so we reset ->csum_bytes to the csum_bytes
4500 * before we dropped our lock, and then call the free for the
4501 * number of bytes that were freed while we were trying our
4502 * reservation.
4503 */
4504 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
4505 BTRFS_I(inode)->csum_bytes = csum_bytes;
4506 to_free = calc_csum_metadata_size(inode, bytes, 0);
4507
4508
4509 /*
4510 * Now we need to see how much we would have freed had we not
4511 * been making this reservation and our ->csum_bytes were not
4512 * artificially inflated.
4513 */
4514 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
4515 bytes = csum_bytes - orig_csum_bytes;
4516 bytes = calc_csum_metadata_size(inode, bytes, 0);
4517
4518 /*
4519 * Now reset ->csum_bytes to what it should be. If bytes is
4520 * more than to_free then we would have free'd more space had we
4521 * not had an artificially high ->csum_bytes, so we need to free
4522 * the remainder. If bytes is the same or less then we don't
4523 * need to do anything, the other free-ers did the correct
4524 * thing.
4525 */
4526 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
4527 if (bytes > to_free)
4528 to_free = bytes - to_free;
4529 else
4530 to_free = 0;
4531 }
4532 spin_unlock(&BTRFS_I(inode)->lock);
4533 if (dropped)
4534 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4535
4536 if (to_free) {
4537 btrfs_block_rsv_release(root, block_rsv, to_free);
4538 trace_btrfs_space_reservation(root->fs_info,
4539 "delalloc",
4540 btrfs_ino(inode),
4541 to_free, 0);
4542 }
4543 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4544 return ret;
4545 }
4546
4547 spin_lock(&BTRFS_I(inode)->lock);
4548 if (extra_reserve) {
4549 BTRFS_I(inode)->delalloc_meta_reserved = 1;
4550 nr_extents--;
4551 }
4552 BTRFS_I(inode)->reserved_extents += nr_extents;
4553 spin_unlock(&BTRFS_I(inode)->lock);
4554 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4555
4556 if (to_reserve)
4557 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4558 btrfs_ino(inode), to_reserve, 1);
4559 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4560
4561 return 0;
4562 }
4563
4564 /**
4565 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4566 * @inode: the inode to release the reservation for
4567 * @num_bytes: the number of bytes we're releasing
4568 *
4569 * This will release the metadata reservation for an inode. This can be called
4570 * once we complete IO for a given set of bytes to release their metadata
4571 * reservations.
4572 */
btrfs_delalloc_release_metadata(struct inode * inode,u64 num_bytes)4573 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4574 {
4575 struct btrfs_root *root = BTRFS_I(inode)->root;
4576 u64 to_free = 0;
4577 unsigned dropped;
4578
4579 num_bytes = ALIGN(num_bytes, root->sectorsize);
4580 spin_lock(&BTRFS_I(inode)->lock);
4581 dropped = drop_outstanding_extent(inode);
4582
4583 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4584 spin_unlock(&BTRFS_I(inode)->lock);
4585 if (dropped > 0)
4586 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4587
4588 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4589 btrfs_ino(inode), to_free, 0);
4590 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4591 to_free);
4592 }
4593
4594 /**
4595 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4596 * @inode: inode we're writing to
4597 * @num_bytes: the number of bytes we want to allocate
4598 *
4599 * This will do the following things
4600 *
4601 * o reserve space in the data space info for num_bytes
4602 * o reserve space in the metadata space info based on number of outstanding
4603 * extents and how much csums will be needed
4604 * o add to the inodes ->delalloc_bytes
4605 * o add it to the fs_info's delalloc inodes list.
4606 *
4607 * This will return 0 for success and -ENOSPC if there is no space left.
4608 */
btrfs_delalloc_reserve_space(struct inode * inode,u64 num_bytes)4609 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4610 {
4611 int ret;
4612
4613 ret = btrfs_check_data_free_space(inode, num_bytes);
4614 if (ret)
4615 return ret;
4616
4617 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4618 if (ret) {
4619 btrfs_free_reserved_data_space(inode, num_bytes);
4620 return ret;
4621 }
4622
4623 return 0;
4624 }
4625
4626 /**
4627 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4628 * @inode: inode we're releasing space for
4629 * @num_bytes: the number of bytes we want to free up
4630 *
4631 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4632 * called in the case that we don't need the metadata AND data reservations
4633 * anymore. So if there is an error or we insert an inline extent.
4634 *
4635 * This function will release the metadata space that was not used and will
4636 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4637 * list if there are no delalloc bytes left.
4638 */
btrfs_delalloc_release_space(struct inode * inode,u64 num_bytes)4639 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4640 {
4641 btrfs_delalloc_release_metadata(inode, num_bytes);
4642 btrfs_free_reserved_data_space(inode, num_bytes);
4643 }
4644
update_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,int alloc)4645 static int update_block_group(struct btrfs_trans_handle *trans,
4646 struct btrfs_root *root,
4647 u64 bytenr, u64 num_bytes, int alloc)
4648 {
4649 struct btrfs_block_group_cache *cache = NULL;
4650 struct btrfs_fs_info *info = root->fs_info;
4651 u64 total = num_bytes;
4652 u64 old_val;
4653 u64 byte_in_group;
4654 int factor;
4655
4656 /* block accounting for super block */
4657 spin_lock(&info->delalloc_lock);
4658 old_val = btrfs_super_bytes_used(info->super_copy);
4659 if (alloc)
4660 old_val += num_bytes;
4661 else
4662 old_val -= num_bytes;
4663 btrfs_set_super_bytes_used(info->super_copy, old_val);
4664 spin_unlock(&info->delalloc_lock);
4665
4666 while (total) {
4667 cache = btrfs_lookup_block_group(info, bytenr);
4668 if (!cache)
4669 return -ENOENT;
4670 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4671 BTRFS_BLOCK_GROUP_RAID1 |
4672 BTRFS_BLOCK_GROUP_RAID10))
4673 factor = 2;
4674 else
4675 factor = 1;
4676 /*
4677 * If this block group has free space cache written out, we
4678 * need to make sure to load it if we are removing space. This
4679 * is because we need the unpinning stage to actually add the
4680 * space back to the block group, otherwise we will leak space.
4681 */
4682 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4683 cache_block_group(cache, trans, NULL, 1);
4684
4685 byte_in_group = bytenr - cache->key.objectid;
4686 WARN_ON(byte_in_group > cache->key.offset);
4687
4688 spin_lock(&cache->space_info->lock);
4689 spin_lock(&cache->lock);
4690
4691 if (btrfs_test_opt(root, SPACE_CACHE) &&
4692 cache->disk_cache_state < BTRFS_DC_CLEAR)
4693 cache->disk_cache_state = BTRFS_DC_CLEAR;
4694
4695 cache->dirty = 1;
4696 old_val = btrfs_block_group_used(&cache->item);
4697 num_bytes = min(total, cache->key.offset - byte_in_group);
4698 if (alloc) {
4699 old_val += num_bytes;
4700 btrfs_set_block_group_used(&cache->item, old_val);
4701 cache->reserved -= num_bytes;
4702 cache->space_info->bytes_reserved -= num_bytes;
4703 cache->space_info->bytes_used += num_bytes;
4704 cache->space_info->disk_used += num_bytes * factor;
4705 spin_unlock(&cache->lock);
4706 spin_unlock(&cache->space_info->lock);
4707 } else {
4708 old_val -= num_bytes;
4709 btrfs_set_block_group_used(&cache->item, old_val);
4710 cache->pinned += num_bytes;
4711 cache->space_info->bytes_pinned += num_bytes;
4712 cache->space_info->bytes_used -= num_bytes;
4713 cache->space_info->disk_used -= num_bytes * factor;
4714 spin_unlock(&cache->lock);
4715 spin_unlock(&cache->space_info->lock);
4716
4717 set_extent_dirty(info->pinned_extents,
4718 bytenr, bytenr + num_bytes - 1,
4719 GFP_NOFS | __GFP_NOFAIL);
4720 }
4721 btrfs_put_block_group(cache);
4722 total -= num_bytes;
4723 bytenr += num_bytes;
4724 }
4725 return 0;
4726 }
4727
first_logical_byte(struct btrfs_root * root,u64 search_start)4728 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4729 {
4730 struct btrfs_block_group_cache *cache;
4731 u64 bytenr;
4732
4733 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4734 if (!cache)
4735 return 0;
4736
4737 bytenr = cache->key.objectid;
4738 btrfs_put_block_group(cache);
4739
4740 return bytenr;
4741 }
4742
pin_down_extent(struct btrfs_root * root,struct btrfs_block_group_cache * cache,u64 bytenr,u64 num_bytes,int reserved)4743 static int pin_down_extent(struct btrfs_root *root,
4744 struct btrfs_block_group_cache *cache,
4745 u64 bytenr, u64 num_bytes, int reserved)
4746 {
4747 spin_lock(&cache->space_info->lock);
4748 spin_lock(&cache->lock);
4749 cache->pinned += num_bytes;
4750 cache->space_info->bytes_pinned += num_bytes;
4751 if (reserved) {
4752 cache->reserved -= num_bytes;
4753 cache->space_info->bytes_reserved -= num_bytes;
4754 }
4755 spin_unlock(&cache->lock);
4756 spin_unlock(&cache->space_info->lock);
4757
4758 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4759 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4760 return 0;
4761 }
4762
4763 /*
4764 * this function must be called within transaction
4765 */
btrfs_pin_extent(struct btrfs_root * root,u64 bytenr,u64 num_bytes,int reserved)4766 int btrfs_pin_extent(struct btrfs_root *root,
4767 u64 bytenr, u64 num_bytes, int reserved)
4768 {
4769 struct btrfs_block_group_cache *cache;
4770
4771 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4772 BUG_ON(!cache); /* Logic error */
4773
4774 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4775
4776 btrfs_put_block_group(cache);
4777 return 0;
4778 }
4779
4780 /*
4781 * this function must be called within transaction
4782 */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes)4783 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4784 struct btrfs_root *root,
4785 u64 bytenr, u64 num_bytes)
4786 {
4787 struct btrfs_block_group_cache *cache;
4788
4789 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4790 BUG_ON(!cache); /* Logic error */
4791
4792 /*
4793 * pull in the free space cache (if any) so that our pin
4794 * removes the free space from the cache. We have load_only set
4795 * to one because the slow code to read in the free extents does check
4796 * the pinned extents.
4797 */
4798 cache_block_group(cache, trans, root, 1);
4799
4800 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4801
4802 /* remove us from the free space cache (if we're there at all) */
4803 btrfs_remove_free_space(cache, bytenr, num_bytes);
4804 btrfs_put_block_group(cache);
4805 return 0;
4806 }
4807
4808 /**
4809 * btrfs_update_reserved_bytes - update the block_group and space info counters
4810 * @cache: The cache we are manipulating
4811 * @num_bytes: The number of bytes in question
4812 * @reserve: One of the reservation enums
4813 *
4814 * This is called by the allocator when it reserves space, or by somebody who is
4815 * freeing space that was never actually used on disk. For example if you
4816 * reserve some space for a new leaf in transaction A and before transaction A
4817 * commits you free that leaf, you call this with reserve set to 0 in order to
4818 * clear the reservation.
4819 *
4820 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4821 * ENOSPC accounting. For data we handle the reservation through clearing the
4822 * delalloc bits in the io_tree. We have to do this since we could end up
4823 * allocating less disk space for the amount of data we have reserved in the
4824 * case of compression.
4825 *
4826 * If this is a reservation and the block group has become read only we cannot
4827 * make the reservation and return -EAGAIN, otherwise this function always
4828 * succeeds.
4829 */
btrfs_update_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int reserve)4830 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4831 u64 num_bytes, int reserve)
4832 {
4833 struct btrfs_space_info *space_info = cache->space_info;
4834 int ret = 0;
4835
4836 spin_lock(&space_info->lock);
4837 spin_lock(&cache->lock);
4838 if (reserve != RESERVE_FREE) {
4839 if (cache->ro) {
4840 ret = -EAGAIN;
4841 } else {
4842 cache->reserved += num_bytes;
4843 space_info->bytes_reserved += num_bytes;
4844 if (reserve == RESERVE_ALLOC) {
4845 trace_btrfs_space_reservation(cache->fs_info,
4846 "space_info", space_info->flags,
4847 num_bytes, 0);
4848 space_info->bytes_may_use -= num_bytes;
4849 }
4850 }
4851 } else {
4852 if (cache->ro)
4853 space_info->bytes_readonly += num_bytes;
4854 cache->reserved -= num_bytes;
4855 space_info->bytes_reserved -= num_bytes;
4856 space_info->reservation_progress++;
4857 }
4858 spin_unlock(&cache->lock);
4859 spin_unlock(&space_info->lock);
4860 return ret;
4861 }
4862
btrfs_prepare_extent_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root)4863 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4864 struct btrfs_root *root)
4865 {
4866 struct btrfs_fs_info *fs_info = root->fs_info;
4867 struct btrfs_caching_control *next;
4868 struct btrfs_caching_control *caching_ctl;
4869 struct btrfs_block_group_cache *cache;
4870
4871 down_write(&fs_info->extent_commit_sem);
4872
4873 list_for_each_entry_safe(caching_ctl, next,
4874 &fs_info->caching_block_groups, list) {
4875 cache = caching_ctl->block_group;
4876 if (block_group_cache_done(cache)) {
4877 cache->last_byte_to_unpin = (u64)-1;
4878 list_del_init(&caching_ctl->list);
4879 put_caching_control(caching_ctl);
4880 } else {
4881 cache->last_byte_to_unpin = caching_ctl->progress;
4882 }
4883 }
4884
4885 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4886 fs_info->pinned_extents = &fs_info->freed_extents[1];
4887 else
4888 fs_info->pinned_extents = &fs_info->freed_extents[0];
4889
4890 up_write(&fs_info->extent_commit_sem);
4891
4892 update_global_block_rsv(fs_info);
4893 }
4894
unpin_extent_range(struct btrfs_root * root,u64 start,u64 end)4895 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4896 {
4897 struct btrfs_fs_info *fs_info = root->fs_info;
4898 struct btrfs_block_group_cache *cache = NULL;
4899 u64 len;
4900
4901 while (start <= end) {
4902 if (!cache ||
4903 start >= cache->key.objectid + cache->key.offset) {
4904 if (cache)
4905 btrfs_put_block_group(cache);
4906 cache = btrfs_lookup_block_group(fs_info, start);
4907 BUG_ON(!cache); /* Logic error */
4908 }
4909
4910 len = cache->key.objectid + cache->key.offset - start;
4911 len = min(len, end + 1 - start);
4912
4913 if (start < cache->last_byte_to_unpin) {
4914 len = min(len, cache->last_byte_to_unpin - start);
4915 btrfs_add_free_space(cache, start, len);
4916 }
4917
4918 start += len;
4919
4920 spin_lock(&cache->space_info->lock);
4921 spin_lock(&cache->lock);
4922 cache->pinned -= len;
4923 cache->space_info->bytes_pinned -= len;
4924 if (cache->ro)
4925 cache->space_info->bytes_readonly += len;
4926 spin_unlock(&cache->lock);
4927 spin_unlock(&cache->space_info->lock);
4928 }
4929
4930 if (cache)
4931 btrfs_put_block_group(cache);
4932 return 0;
4933 }
4934
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root)4935 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4936 struct btrfs_root *root)
4937 {
4938 struct btrfs_fs_info *fs_info = root->fs_info;
4939 struct extent_io_tree *unpin;
4940 u64 start;
4941 u64 end;
4942 int ret;
4943
4944 if (trans->aborted)
4945 return 0;
4946
4947 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4948 unpin = &fs_info->freed_extents[1];
4949 else
4950 unpin = &fs_info->freed_extents[0];
4951
4952 while (1) {
4953 ret = find_first_extent_bit(unpin, 0, &start, &end,
4954 EXTENT_DIRTY);
4955 if (ret)
4956 break;
4957
4958 if (btrfs_test_opt(root, DISCARD))
4959 ret = btrfs_discard_extent(root, start,
4960 end + 1 - start, NULL);
4961
4962 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4963 unpin_extent_range(root, start, end);
4964 cond_resched();
4965 }
4966
4967 return 0;
4968 }
4969
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)4970 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4971 struct btrfs_root *root,
4972 u64 bytenr, u64 num_bytes, u64 parent,
4973 u64 root_objectid, u64 owner_objectid,
4974 u64 owner_offset, int refs_to_drop,
4975 struct btrfs_delayed_extent_op *extent_op)
4976 {
4977 struct btrfs_key key;
4978 struct btrfs_path *path;
4979 struct btrfs_fs_info *info = root->fs_info;
4980 struct btrfs_root *extent_root = info->extent_root;
4981 struct extent_buffer *leaf;
4982 struct btrfs_extent_item *ei;
4983 struct btrfs_extent_inline_ref *iref;
4984 int ret;
4985 int is_data;
4986 int extent_slot = 0;
4987 int found_extent = 0;
4988 int num_to_del = 1;
4989 u32 item_size;
4990 u64 refs;
4991
4992 path = btrfs_alloc_path();
4993 if (!path)
4994 return -ENOMEM;
4995
4996 path->reada = 1;
4997 path->leave_spinning = 1;
4998
4999 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5000 BUG_ON(!is_data && refs_to_drop != 1);
5001
5002 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5003 bytenr, num_bytes, parent,
5004 root_objectid, owner_objectid,
5005 owner_offset);
5006 if (ret == 0) {
5007 extent_slot = path->slots[0];
5008 while (extent_slot >= 0) {
5009 btrfs_item_key_to_cpu(path->nodes[0], &key,
5010 extent_slot);
5011 if (key.objectid != bytenr)
5012 break;
5013 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5014 key.offset == num_bytes) {
5015 found_extent = 1;
5016 break;
5017 }
5018 if (path->slots[0] - extent_slot > 5)
5019 break;
5020 extent_slot--;
5021 }
5022 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5023 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5024 if (found_extent && item_size < sizeof(*ei))
5025 found_extent = 0;
5026 #endif
5027 if (!found_extent) {
5028 BUG_ON(iref);
5029 ret = remove_extent_backref(trans, extent_root, path,
5030 NULL, refs_to_drop,
5031 is_data);
5032 if (ret)
5033 goto abort;
5034 btrfs_release_path(path);
5035 path->leave_spinning = 1;
5036
5037 key.objectid = bytenr;
5038 key.type = BTRFS_EXTENT_ITEM_KEY;
5039 key.offset = num_bytes;
5040
5041 ret = btrfs_search_slot(trans, extent_root,
5042 &key, path, -1, 1);
5043 if (ret) {
5044 printk(KERN_ERR "umm, got %d back from search"
5045 ", was looking for %llu\n", ret,
5046 (unsigned long long)bytenr);
5047 if (ret > 0)
5048 btrfs_print_leaf(extent_root,
5049 path->nodes[0]);
5050 }
5051 if (ret < 0)
5052 goto abort;
5053 extent_slot = path->slots[0];
5054 }
5055 } else if (ret == -ENOENT) {
5056 btrfs_print_leaf(extent_root, path->nodes[0]);
5057 WARN_ON(1);
5058 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5059 "parent %llu root %llu owner %llu offset %llu\n",
5060 (unsigned long long)bytenr,
5061 (unsigned long long)parent,
5062 (unsigned long long)root_objectid,
5063 (unsigned long long)owner_objectid,
5064 (unsigned long long)owner_offset);
5065 } else {
5066 goto abort;
5067 }
5068
5069 leaf = path->nodes[0];
5070 item_size = btrfs_item_size_nr(leaf, extent_slot);
5071 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5072 if (item_size < sizeof(*ei)) {
5073 BUG_ON(found_extent || extent_slot != path->slots[0]);
5074 ret = convert_extent_item_v0(trans, extent_root, path,
5075 owner_objectid, 0);
5076 if (ret < 0)
5077 goto abort;
5078
5079 btrfs_release_path(path);
5080 path->leave_spinning = 1;
5081
5082 key.objectid = bytenr;
5083 key.type = BTRFS_EXTENT_ITEM_KEY;
5084 key.offset = num_bytes;
5085
5086 ret = btrfs_search_slot(trans, extent_root, &key, path,
5087 -1, 1);
5088 if (ret) {
5089 printk(KERN_ERR "umm, got %d back from search"
5090 ", was looking for %llu\n", ret,
5091 (unsigned long long)bytenr);
5092 btrfs_print_leaf(extent_root, path->nodes[0]);
5093 }
5094 if (ret < 0)
5095 goto abort;
5096 extent_slot = path->slots[0];
5097 leaf = path->nodes[0];
5098 item_size = btrfs_item_size_nr(leaf, extent_slot);
5099 }
5100 #endif
5101 BUG_ON(item_size < sizeof(*ei));
5102 ei = btrfs_item_ptr(leaf, extent_slot,
5103 struct btrfs_extent_item);
5104 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5105 struct btrfs_tree_block_info *bi;
5106 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5107 bi = (struct btrfs_tree_block_info *)(ei + 1);
5108 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5109 }
5110
5111 refs = btrfs_extent_refs(leaf, ei);
5112 BUG_ON(refs < refs_to_drop);
5113 refs -= refs_to_drop;
5114
5115 if (refs > 0) {
5116 if (extent_op)
5117 __run_delayed_extent_op(extent_op, leaf, ei);
5118 /*
5119 * In the case of inline back ref, reference count will
5120 * be updated by remove_extent_backref
5121 */
5122 if (iref) {
5123 BUG_ON(!found_extent);
5124 } else {
5125 btrfs_set_extent_refs(leaf, ei, refs);
5126 btrfs_mark_buffer_dirty(leaf);
5127 }
5128 if (found_extent) {
5129 ret = remove_extent_backref(trans, extent_root, path,
5130 iref, refs_to_drop,
5131 is_data);
5132 if (ret)
5133 goto abort;
5134 }
5135 } else {
5136 if (found_extent) {
5137 BUG_ON(is_data && refs_to_drop !=
5138 extent_data_ref_count(root, path, iref));
5139 if (iref) {
5140 BUG_ON(path->slots[0] != extent_slot);
5141 } else {
5142 BUG_ON(path->slots[0] != extent_slot + 1);
5143 path->slots[0] = extent_slot;
5144 num_to_del = 2;
5145 }
5146 }
5147
5148 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5149 num_to_del);
5150 if (ret)
5151 goto abort;
5152 btrfs_release_path(path);
5153
5154 if (is_data) {
5155 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5156 if (ret)
5157 goto abort;
5158 }
5159
5160 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5161 if (ret)
5162 goto abort;
5163 }
5164 out:
5165 btrfs_free_path(path);
5166 return ret;
5167
5168 abort:
5169 btrfs_abort_transaction(trans, extent_root, ret);
5170 goto out;
5171 }
5172
5173 /*
5174 * when we free an block, it is possible (and likely) that we free the last
5175 * delayed ref for that extent as well. This searches the delayed ref tree for
5176 * a given extent, and if there are no other delayed refs to be processed, it
5177 * removes it from the tree.
5178 */
check_ref_cleanup(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr)5179 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5180 struct btrfs_root *root, u64 bytenr)
5181 {
5182 struct btrfs_delayed_ref_head *head;
5183 struct btrfs_delayed_ref_root *delayed_refs;
5184 struct btrfs_delayed_ref_node *ref;
5185 struct rb_node *node;
5186 int ret = 0;
5187
5188 delayed_refs = &trans->transaction->delayed_refs;
5189 spin_lock(&delayed_refs->lock);
5190 head = btrfs_find_delayed_ref_head(trans, bytenr);
5191 if (!head)
5192 goto out;
5193
5194 node = rb_prev(&head->node.rb_node);
5195 if (!node)
5196 goto out;
5197
5198 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5199
5200 /* there are still entries for this ref, we can't drop it */
5201 if (ref->bytenr == bytenr)
5202 goto out;
5203
5204 if (head->extent_op) {
5205 if (!head->must_insert_reserved)
5206 goto out;
5207 kfree(head->extent_op);
5208 head->extent_op = NULL;
5209 }
5210
5211 /*
5212 * waiting for the lock here would deadlock. If someone else has it
5213 * locked they are already in the process of dropping it anyway
5214 */
5215 if (!mutex_trylock(&head->mutex))
5216 goto out;
5217
5218 /*
5219 * at this point we have a head with no other entries. Go
5220 * ahead and process it.
5221 */
5222 head->node.in_tree = 0;
5223 rb_erase(&head->node.rb_node, &delayed_refs->root);
5224
5225 delayed_refs->num_entries--;
5226 if (waitqueue_active(&delayed_refs->seq_wait))
5227 wake_up(&delayed_refs->seq_wait);
5228
5229 /*
5230 * we don't take a ref on the node because we're removing it from the
5231 * tree, so we just steal the ref the tree was holding.
5232 */
5233 delayed_refs->num_heads--;
5234 if (list_empty(&head->cluster))
5235 delayed_refs->num_heads_ready--;
5236
5237 list_del_init(&head->cluster);
5238 spin_unlock(&delayed_refs->lock);
5239
5240 BUG_ON(head->extent_op);
5241 if (head->must_insert_reserved)
5242 ret = 1;
5243
5244 mutex_unlock(&head->mutex);
5245 btrfs_put_delayed_ref(&head->node);
5246 return ret;
5247 out:
5248 spin_unlock(&delayed_refs->lock);
5249 return 0;
5250 }
5251
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref,int for_cow)5252 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5253 struct btrfs_root *root,
5254 struct extent_buffer *buf,
5255 u64 parent, int last_ref, int for_cow)
5256 {
5257 struct btrfs_block_group_cache *cache = NULL;
5258 int ret;
5259
5260 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5261 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5262 buf->start, buf->len,
5263 parent, root->root_key.objectid,
5264 btrfs_header_level(buf),
5265 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5266 BUG_ON(ret); /* -ENOMEM */
5267 }
5268
5269 if (!last_ref)
5270 return;
5271
5272 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5273
5274 if (btrfs_header_generation(buf) == trans->transid) {
5275 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5276 ret = check_ref_cleanup(trans, root, buf->start);
5277 if (!ret)
5278 goto out;
5279 }
5280
5281 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5282 pin_down_extent(root, cache, buf->start, buf->len, 1);
5283 goto out;
5284 }
5285
5286 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5287
5288 btrfs_add_free_space(cache, buf->start, buf->len);
5289 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5290 }
5291 out:
5292 /*
5293 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5294 * anymore.
5295 */
5296 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5297 btrfs_put_block_group(cache);
5298 }
5299
5300 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int for_cow)5301 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5302 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5303 u64 owner, u64 offset, int for_cow)
5304 {
5305 int ret;
5306 struct btrfs_fs_info *fs_info = root->fs_info;
5307
5308 /*
5309 * tree log blocks never actually go into the extent allocation
5310 * tree, just update pinning info and exit early.
5311 */
5312 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5313 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5314 /* unlocks the pinned mutex */
5315 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5316 ret = 0;
5317 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5318 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5319 num_bytes,
5320 parent, root_objectid, (int)owner,
5321 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5322 } else {
5323 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5324 num_bytes,
5325 parent, root_objectid, owner,
5326 offset, BTRFS_DROP_DELAYED_REF,
5327 NULL, for_cow);
5328 }
5329 return ret;
5330 }
5331
stripe_align(struct btrfs_root * root,u64 val)5332 static u64 stripe_align(struct btrfs_root *root, u64 val)
5333 {
5334 u64 mask = ((u64)root->stripesize - 1);
5335 u64 ret = (val + mask) & ~mask;
5336 return ret;
5337 }
5338
5339 /*
5340 * when we wait for progress in the block group caching, its because
5341 * our allocation attempt failed at least once. So, we must sleep
5342 * and let some progress happen before we try again.
5343 *
5344 * This function will sleep at least once waiting for new free space to
5345 * show up, and then it will check the block group free space numbers
5346 * for our min num_bytes. Another option is to have it go ahead
5347 * and look in the rbtree for a free extent of a given size, but this
5348 * is a good start.
5349 */
5350 static noinline int
wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)5351 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5352 u64 num_bytes)
5353 {
5354 struct btrfs_caching_control *caching_ctl;
5355 DEFINE_WAIT(wait);
5356
5357 caching_ctl = get_caching_control(cache);
5358 if (!caching_ctl)
5359 return 0;
5360
5361 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5362 (cache->free_space_ctl->free_space >= num_bytes));
5363
5364 put_caching_control(caching_ctl);
5365 return 0;
5366 }
5367
5368 static noinline int
wait_block_group_cache_done(struct btrfs_block_group_cache * cache)5369 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5370 {
5371 struct btrfs_caching_control *caching_ctl;
5372 DEFINE_WAIT(wait);
5373
5374 caching_ctl = get_caching_control(cache);
5375 if (!caching_ctl)
5376 return 0;
5377
5378 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5379
5380 put_caching_control(caching_ctl);
5381 return 0;
5382 }
5383
__get_block_group_index(u64 flags)5384 static int __get_block_group_index(u64 flags)
5385 {
5386 int index;
5387
5388 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5389 index = 0;
5390 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5391 index = 1;
5392 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5393 index = 2;
5394 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5395 index = 3;
5396 else
5397 index = 4;
5398
5399 return index;
5400 }
5401
get_block_group_index(struct btrfs_block_group_cache * cache)5402 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5403 {
5404 return __get_block_group_index(cache->flags);
5405 }
5406
5407 enum btrfs_loop_type {
5408 LOOP_CACHING_NOWAIT = 0,
5409 LOOP_CACHING_WAIT = 1,
5410 LOOP_ALLOC_CHUNK = 2,
5411 LOOP_NO_EMPTY_SIZE = 3,
5412 };
5413
5414 /*
5415 * walks the btree of allocated extents and find a hole of a given size.
5416 * The key ins is changed to record the hole:
5417 * ins->objectid == block start
5418 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5419 * ins->offset == number of blocks
5420 * Any available blocks before search_start are skipped.
5421 */
find_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * orig_root,u64 num_bytes,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,u64 data)5422 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5423 struct btrfs_root *orig_root,
5424 u64 num_bytes, u64 empty_size,
5425 u64 hint_byte, struct btrfs_key *ins,
5426 u64 data)
5427 {
5428 int ret = 0;
5429 struct btrfs_root *root = orig_root->fs_info->extent_root;
5430 struct btrfs_free_cluster *last_ptr = NULL;
5431 struct btrfs_block_group_cache *block_group = NULL;
5432 struct btrfs_block_group_cache *used_block_group;
5433 u64 search_start = 0;
5434 int empty_cluster = 2 * 1024 * 1024;
5435 int allowed_chunk_alloc = 0;
5436 int done_chunk_alloc = 0;
5437 struct btrfs_space_info *space_info;
5438 int loop = 0;
5439 int index = 0;
5440 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5441 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5442 bool found_uncached_bg = false;
5443 bool failed_cluster_refill = false;
5444 bool failed_alloc = false;
5445 bool use_cluster = true;
5446 bool have_caching_bg = false;
5447
5448 WARN_ON(num_bytes < root->sectorsize);
5449 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5450 ins->objectid = 0;
5451 ins->offset = 0;
5452
5453 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5454
5455 space_info = __find_space_info(root->fs_info, data);
5456 if (!space_info) {
5457 printk(KERN_ERR "No space info for %llu\n", data);
5458 return -ENOSPC;
5459 }
5460
5461 /*
5462 * If the space info is for both data and metadata it means we have a
5463 * small filesystem and we can't use the clustering stuff.
5464 */
5465 if (btrfs_mixed_space_info(space_info))
5466 use_cluster = false;
5467
5468 if (orig_root->ref_cows || empty_size)
5469 allowed_chunk_alloc = 1;
5470
5471 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5472 last_ptr = &root->fs_info->meta_alloc_cluster;
5473 if (!btrfs_test_opt(root, SSD))
5474 empty_cluster = 64 * 1024;
5475 }
5476
5477 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5478 btrfs_test_opt(root, SSD)) {
5479 last_ptr = &root->fs_info->data_alloc_cluster;
5480 }
5481
5482 if (last_ptr) {
5483 spin_lock(&last_ptr->lock);
5484 if (last_ptr->block_group)
5485 hint_byte = last_ptr->window_start;
5486 spin_unlock(&last_ptr->lock);
5487 }
5488
5489 search_start = max(search_start, first_logical_byte(root, 0));
5490 search_start = max(search_start, hint_byte);
5491
5492 if (!last_ptr)
5493 empty_cluster = 0;
5494
5495 if (search_start == hint_byte) {
5496 block_group = btrfs_lookup_block_group(root->fs_info,
5497 search_start);
5498 used_block_group = block_group;
5499 /*
5500 * we don't want to use the block group if it doesn't match our
5501 * allocation bits, or if its not cached.
5502 *
5503 * However if we are re-searching with an ideal block group
5504 * picked out then we don't care that the block group is cached.
5505 */
5506 if (block_group && block_group_bits(block_group, data) &&
5507 block_group->cached != BTRFS_CACHE_NO) {
5508 down_read(&space_info->groups_sem);
5509 if (list_empty(&block_group->list) ||
5510 block_group->ro) {
5511 /*
5512 * someone is removing this block group,
5513 * we can't jump into the have_block_group
5514 * target because our list pointers are not
5515 * valid
5516 */
5517 btrfs_put_block_group(block_group);
5518 up_read(&space_info->groups_sem);
5519 } else {
5520 index = get_block_group_index(block_group);
5521 goto have_block_group;
5522 }
5523 } else if (block_group) {
5524 btrfs_put_block_group(block_group);
5525 }
5526 }
5527 search:
5528 have_caching_bg = false;
5529 down_read(&space_info->groups_sem);
5530 list_for_each_entry(block_group, &space_info->block_groups[index],
5531 list) {
5532 u64 offset;
5533 int cached;
5534
5535 used_block_group = block_group;
5536 btrfs_get_block_group(block_group);
5537 search_start = block_group->key.objectid;
5538
5539 /*
5540 * this can happen if we end up cycling through all the
5541 * raid types, but we want to make sure we only allocate
5542 * for the proper type.
5543 */
5544 if (!block_group_bits(block_group, data)) {
5545 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5546 BTRFS_BLOCK_GROUP_RAID1 |
5547 BTRFS_BLOCK_GROUP_RAID10;
5548
5549 /*
5550 * if they asked for extra copies and this block group
5551 * doesn't provide them, bail. This does allow us to
5552 * fill raid0 from raid1.
5553 */
5554 if ((data & extra) && !(block_group->flags & extra))
5555 goto loop;
5556 }
5557
5558 have_block_group:
5559 cached = block_group_cache_done(block_group);
5560 if (unlikely(!cached)) {
5561 found_uncached_bg = true;
5562 ret = cache_block_group(block_group, trans,
5563 orig_root, 0);
5564 BUG_ON(ret < 0);
5565 ret = 0;
5566 }
5567
5568 if (unlikely(block_group->ro))
5569 goto loop;
5570
5571 /*
5572 * Ok we want to try and use the cluster allocator, so
5573 * lets look there
5574 */
5575 if (last_ptr) {
5576 /*
5577 * the refill lock keeps out other
5578 * people trying to start a new cluster
5579 */
5580 spin_lock(&last_ptr->refill_lock);
5581 used_block_group = last_ptr->block_group;
5582 if (used_block_group != block_group &&
5583 (!used_block_group ||
5584 used_block_group->ro ||
5585 !block_group_bits(used_block_group, data))) {
5586 used_block_group = block_group;
5587 goto refill_cluster;
5588 }
5589
5590 if (used_block_group != block_group)
5591 btrfs_get_block_group(used_block_group);
5592
5593 offset = btrfs_alloc_from_cluster(used_block_group,
5594 last_ptr, num_bytes, used_block_group->key.objectid);
5595 if (offset) {
5596 /* we have a block, we're done */
5597 spin_unlock(&last_ptr->refill_lock);
5598 trace_btrfs_reserve_extent_cluster(root,
5599 block_group, search_start, num_bytes);
5600 goto checks;
5601 }
5602
5603 WARN_ON(last_ptr->block_group != used_block_group);
5604 if (used_block_group != block_group) {
5605 btrfs_put_block_group(used_block_group);
5606 used_block_group = block_group;
5607 }
5608 refill_cluster:
5609 BUG_ON(used_block_group != block_group);
5610 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5611 * set up a new clusters, so lets just skip it
5612 * and let the allocator find whatever block
5613 * it can find. If we reach this point, we
5614 * will have tried the cluster allocator
5615 * plenty of times and not have found
5616 * anything, so we are likely way too
5617 * fragmented for the clustering stuff to find
5618 * anything.
5619 *
5620 * However, if the cluster is taken from the
5621 * current block group, release the cluster
5622 * first, so that we stand a better chance of
5623 * succeeding in the unclustered
5624 * allocation. */
5625 if (loop >= LOOP_NO_EMPTY_SIZE &&
5626 last_ptr->block_group != block_group) {
5627 spin_unlock(&last_ptr->refill_lock);
5628 goto unclustered_alloc;
5629 }
5630
5631 /*
5632 * this cluster didn't work out, free it and
5633 * start over
5634 */
5635 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5636
5637 if (loop >= LOOP_NO_EMPTY_SIZE) {
5638 spin_unlock(&last_ptr->refill_lock);
5639 goto unclustered_alloc;
5640 }
5641
5642 /* allocate a cluster in this block group */
5643 ret = btrfs_find_space_cluster(trans, root,
5644 block_group, last_ptr,
5645 search_start, num_bytes,
5646 empty_cluster + empty_size);
5647 if (ret == 0) {
5648 /*
5649 * now pull our allocation out of this
5650 * cluster
5651 */
5652 offset = btrfs_alloc_from_cluster(block_group,
5653 last_ptr, num_bytes,
5654 search_start);
5655 if (offset) {
5656 /* we found one, proceed */
5657 spin_unlock(&last_ptr->refill_lock);
5658 trace_btrfs_reserve_extent_cluster(root,
5659 block_group, search_start,
5660 num_bytes);
5661 goto checks;
5662 }
5663 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5664 && !failed_cluster_refill) {
5665 spin_unlock(&last_ptr->refill_lock);
5666
5667 failed_cluster_refill = true;
5668 wait_block_group_cache_progress(block_group,
5669 num_bytes + empty_cluster + empty_size);
5670 goto have_block_group;
5671 }
5672
5673 /*
5674 * at this point we either didn't find a cluster
5675 * or we weren't able to allocate a block from our
5676 * cluster. Free the cluster we've been trying
5677 * to use, and go to the next block group
5678 */
5679 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5680 spin_unlock(&last_ptr->refill_lock);
5681 goto loop;
5682 }
5683
5684 unclustered_alloc:
5685 spin_lock(&block_group->free_space_ctl->tree_lock);
5686 if (cached &&
5687 block_group->free_space_ctl->free_space <
5688 num_bytes + empty_cluster + empty_size) {
5689 spin_unlock(&block_group->free_space_ctl->tree_lock);
5690 goto loop;
5691 }
5692 spin_unlock(&block_group->free_space_ctl->tree_lock);
5693
5694 offset = btrfs_find_space_for_alloc(block_group, search_start,
5695 num_bytes, empty_size);
5696 /*
5697 * If we didn't find a chunk, and we haven't failed on this
5698 * block group before, and this block group is in the middle of
5699 * caching and we are ok with waiting, then go ahead and wait
5700 * for progress to be made, and set failed_alloc to true.
5701 *
5702 * If failed_alloc is true then we've already waited on this
5703 * block group once and should move on to the next block group.
5704 */
5705 if (!offset && !failed_alloc && !cached &&
5706 loop > LOOP_CACHING_NOWAIT) {
5707 wait_block_group_cache_progress(block_group,
5708 num_bytes + empty_size);
5709 failed_alloc = true;
5710 goto have_block_group;
5711 } else if (!offset) {
5712 if (!cached)
5713 have_caching_bg = true;
5714 goto loop;
5715 }
5716 checks:
5717 search_start = stripe_align(root, offset);
5718
5719 /* move on to the next group */
5720 if (search_start + num_bytes >
5721 used_block_group->key.objectid + used_block_group->key.offset) {
5722 btrfs_add_free_space(used_block_group, offset, num_bytes);
5723 goto loop;
5724 }
5725
5726 if (offset < search_start)
5727 btrfs_add_free_space(used_block_group, offset,
5728 search_start - offset);
5729 BUG_ON(offset > search_start);
5730
5731 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5732 alloc_type);
5733 if (ret == -EAGAIN) {
5734 btrfs_add_free_space(used_block_group, offset, num_bytes);
5735 goto loop;
5736 }
5737
5738 /* we are all good, lets return */
5739 ins->objectid = search_start;
5740 ins->offset = num_bytes;
5741
5742 trace_btrfs_reserve_extent(orig_root, block_group,
5743 search_start, num_bytes);
5744 if (offset < search_start)
5745 btrfs_add_free_space(used_block_group, offset,
5746 search_start - offset);
5747 BUG_ON(offset > search_start);
5748 if (used_block_group != block_group)
5749 btrfs_put_block_group(used_block_group);
5750 btrfs_put_block_group(block_group);
5751 break;
5752 loop:
5753 failed_cluster_refill = false;
5754 failed_alloc = false;
5755 BUG_ON(index != get_block_group_index(block_group));
5756 if (used_block_group != block_group)
5757 btrfs_put_block_group(used_block_group);
5758 btrfs_put_block_group(block_group);
5759 }
5760 up_read(&space_info->groups_sem);
5761
5762 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5763 goto search;
5764
5765 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5766 goto search;
5767
5768 /*
5769 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5770 * caching kthreads as we move along
5771 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5772 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5773 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5774 * again
5775 */
5776 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5777 index = 0;
5778 loop++;
5779 if (loop == LOOP_ALLOC_CHUNK) {
5780 if (allowed_chunk_alloc) {
5781 ret = do_chunk_alloc(trans, root, num_bytes +
5782 2 * 1024 * 1024, data,
5783 CHUNK_ALLOC_LIMITED);
5784 if (ret < 0) {
5785 btrfs_abort_transaction(trans,
5786 root, ret);
5787 goto out;
5788 }
5789 allowed_chunk_alloc = 0;
5790 if (ret == 1)
5791 done_chunk_alloc = 1;
5792 } else if (!done_chunk_alloc &&
5793 space_info->force_alloc ==
5794 CHUNK_ALLOC_NO_FORCE) {
5795 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5796 }
5797
5798 /*
5799 * We didn't allocate a chunk, go ahead and drop the
5800 * empty size and loop again.
5801 */
5802 if (!done_chunk_alloc)
5803 loop = LOOP_NO_EMPTY_SIZE;
5804 }
5805
5806 if (loop == LOOP_NO_EMPTY_SIZE) {
5807 empty_size = 0;
5808 empty_cluster = 0;
5809 }
5810
5811 goto search;
5812 } else if (!ins->objectid) {
5813 ret = -ENOSPC;
5814 } else if (ins->objectid) {
5815 ret = 0;
5816 }
5817 out:
5818
5819 return ret;
5820 }
5821
dump_space_info(struct btrfs_space_info * info,u64 bytes,int dump_block_groups)5822 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5823 int dump_block_groups)
5824 {
5825 struct btrfs_block_group_cache *cache;
5826 int index = 0;
5827
5828 spin_lock(&info->lock);
5829 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5830 (unsigned long long)info->flags,
5831 (unsigned long long)(info->total_bytes - info->bytes_used -
5832 info->bytes_pinned - info->bytes_reserved -
5833 info->bytes_readonly),
5834 (info->full) ? "" : "not ");
5835 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5836 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5837 (unsigned long long)info->total_bytes,
5838 (unsigned long long)info->bytes_used,
5839 (unsigned long long)info->bytes_pinned,
5840 (unsigned long long)info->bytes_reserved,
5841 (unsigned long long)info->bytes_may_use,
5842 (unsigned long long)info->bytes_readonly);
5843 spin_unlock(&info->lock);
5844
5845 if (!dump_block_groups)
5846 return;
5847
5848 down_read(&info->groups_sem);
5849 again:
5850 list_for_each_entry(cache, &info->block_groups[index], list) {
5851 spin_lock(&cache->lock);
5852 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5853 "%llu pinned %llu reserved\n",
5854 (unsigned long long)cache->key.objectid,
5855 (unsigned long long)cache->key.offset,
5856 (unsigned long long)btrfs_block_group_used(&cache->item),
5857 (unsigned long long)cache->pinned,
5858 (unsigned long long)cache->reserved);
5859 btrfs_dump_free_space(cache, bytes);
5860 spin_unlock(&cache->lock);
5861 }
5862 if (++index < BTRFS_NR_RAID_TYPES)
5863 goto again;
5864 up_read(&info->groups_sem);
5865 }
5866
btrfs_reserve_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,u64 data)5867 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5868 struct btrfs_root *root,
5869 u64 num_bytes, u64 min_alloc_size,
5870 u64 empty_size, u64 hint_byte,
5871 struct btrfs_key *ins, u64 data)
5872 {
5873 bool final_tried = false;
5874 int ret;
5875
5876 data = btrfs_get_alloc_profile(root, data);
5877 again:
5878 /*
5879 * the only place that sets empty_size is btrfs_realloc_node, which
5880 * is not called recursively on allocations
5881 */
5882 if (empty_size || root->ref_cows) {
5883 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5884 num_bytes + 2 * 1024 * 1024, data,
5885 CHUNK_ALLOC_NO_FORCE);
5886 if (ret < 0 && ret != -ENOSPC) {
5887 btrfs_abort_transaction(trans, root, ret);
5888 return ret;
5889 }
5890 }
5891
5892 WARN_ON(num_bytes < root->sectorsize);
5893 ret = find_free_extent(trans, root, num_bytes, empty_size,
5894 hint_byte, ins, data);
5895
5896 if (ret == -ENOSPC) {
5897 if (!final_tried) {
5898 num_bytes = num_bytes >> 1;
5899 num_bytes = num_bytes & ~(root->sectorsize - 1);
5900 num_bytes = max(num_bytes, min_alloc_size);
5901 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5902 num_bytes, data, CHUNK_ALLOC_FORCE);
5903 if (ret < 0 && ret != -ENOSPC) {
5904 btrfs_abort_transaction(trans, root, ret);
5905 return ret;
5906 }
5907 if (num_bytes == min_alloc_size)
5908 final_tried = true;
5909 goto again;
5910 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5911 struct btrfs_space_info *sinfo;
5912
5913 sinfo = __find_space_info(root->fs_info, data);
5914 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5915 "wanted %llu\n", (unsigned long long)data,
5916 (unsigned long long)num_bytes);
5917 if (sinfo)
5918 dump_space_info(sinfo, num_bytes, 1);
5919 }
5920 }
5921
5922 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5923
5924 return ret;
5925 }
5926
__btrfs_free_reserved_extent(struct btrfs_root * root,u64 start,u64 len,int pin)5927 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5928 u64 start, u64 len, int pin)
5929 {
5930 struct btrfs_block_group_cache *cache;
5931 int ret = 0;
5932
5933 cache = btrfs_lookup_block_group(root->fs_info, start);
5934 if (!cache) {
5935 printk(KERN_ERR "Unable to find block group for %llu\n",
5936 (unsigned long long)start);
5937 return -ENOSPC;
5938 }
5939
5940 if (btrfs_test_opt(root, DISCARD))
5941 ret = btrfs_discard_extent(root, start, len, NULL);
5942
5943 if (pin)
5944 pin_down_extent(root, cache, start, len, 1);
5945 else {
5946 btrfs_add_free_space(cache, start, len);
5947 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5948 }
5949 btrfs_put_block_group(cache);
5950
5951 trace_btrfs_reserved_extent_free(root, start, len);
5952
5953 return ret;
5954 }
5955
btrfs_free_reserved_extent(struct btrfs_root * root,u64 start,u64 len)5956 int btrfs_free_reserved_extent(struct btrfs_root *root,
5957 u64 start, u64 len)
5958 {
5959 return __btrfs_free_reserved_extent(root, start, len, 0);
5960 }
5961
btrfs_free_and_pin_reserved_extent(struct btrfs_root * root,u64 start,u64 len)5962 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5963 u64 start, u64 len)
5964 {
5965 return __btrfs_free_reserved_extent(root, start, len, 1);
5966 }
5967
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)5968 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5969 struct btrfs_root *root,
5970 u64 parent, u64 root_objectid,
5971 u64 flags, u64 owner, u64 offset,
5972 struct btrfs_key *ins, int ref_mod)
5973 {
5974 int ret;
5975 struct btrfs_fs_info *fs_info = root->fs_info;
5976 struct btrfs_extent_item *extent_item;
5977 struct btrfs_extent_inline_ref *iref;
5978 struct btrfs_path *path;
5979 struct extent_buffer *leaf;
5980 int type;
5981 u32 size;
5982
5983 if (parent > 0)
5984 type = BTRFS_SHARED_DATA_REF_KEY;
5985 else
5986 type = BTRFS_EXTENT_DATA_REF_KEY;
5987
5988 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5989
5990 path = btrfs_alloc_path();
5991 if (!path)
5992 return -ENOMEM;
5993
5994 path->leave_spinning = 1;
5995 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5996 ins, size);
5997 if (ret) {
5998 btrfs_free_path(path);
5999 return ret;
6000 }
6001
6002 leaf = path->nodes[0];
6003 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6004 struct btrfs_extent_item);
6005 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6006 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6007 btrfs_set_extent_flags(leaf, extent_item,
6008 flags | BTRFS_EXTENT_FLAG_DATA);
6009
6010 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6011 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6012 if (parent > 0) {
6013 struct btrfs_shared_data_ref *ref;
6014 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6015 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6016 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6017 } else {
6018 struct btrfs_extent_data_ref *ref;
6019 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6020 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6021 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6022 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6023 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6024 }
6025
6026 btrfs_mark_buffer_dirty(path->nodes[0]);
6027 btrfs_free_path(path);
6028
6029 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6030 if (ret) { /* -ENOENT, logic error */
6031 printk(KERN_ERR "btrfs update block group failed for %llu "
6032 "%llu\n", (unsigned long long)ins->objectid,
6033 (unsigned long long)ins->offset);
6034 BUG();
6035 }
6036 return ret;
6037 }
6038
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,u64 flags,struct btrfs_disk_key * key,int level,struct btrfs_key * ins)6039 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6040 struct btrfs_root *root,
6041 u64 parent, u64 root_objectid,
6042 u64 flags, struct btrfs_disk_key *key,
6043 int level, struct btrfs_key *ins)
6044 {
6045 int ret;
6046 struct btrfs_fs_info *fs_info = root->fs_info;
6047 struct btrfs_extent_item *extent_item;
6048 struct btrfs_tree_block_info *block_info;
6049 struct btrfs_extent_inline_ref *iref;
6050 struct btrfs_path *path;
6051 struct extent_buffer *leaf;
6052 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6053
6054 path = btrfs_alloc_path();
6055 if (!path)
6056 return -ENOMEM;
6057
6058 path->leave_spinning = 1;
6059 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6060 ins, size);
6061 if (ret) {
6062 btrfs_free_path(path);
6063 return ret;
6064 }
6065
6066 leaf = path->nodes[0];
6067 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6068 struct btrfs_extent_item);
6069 btrfs_set_extent_refs(leaf, extent_item, 1);
6070 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6071 btrfs_set_extent_flags(leaf, extent_item,
6072 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6073 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6074
6075 btrfs_set_tree_block_key(leaf, block_info, key);
6076 btrfs_set_tree_block_level(leaf, block_info, level);
6077
6078 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6079 if (parent > 0) {
6080 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6081 btrfs_set_extent_inline_ref_type(leaf, iref,
6082 BTRFS_SHARED_BLOCK_REF_KEY);
6083 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6084 } else {
6085 btrfs_set_extent_inline_ref_type(leaf, iref,
6086 BTRFS_TREE_BLOCK_REF_KEY);
6087 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6088 }
6089
6090 btrfs_mark_buffer_dirty(leaf);
6091 btrfs_free_path(path);
6092
6093 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6094 if (ret) { /* -ENOENT, logic error */
6095 printk(KERN_ERR "btrfs update block group failed for %llu "
6096 "%llu\n", (unsigned long long)ins->objectid,
6097 (unsigned long long)ins->offset);
6098 BUG();
6099 }
6100 return ret;
6101 }
6102
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)6103 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6104 struct btrfs_root *root,
6105 u64 root_objectid, u64 owner,
6106 u64 offset, struct btrfs_key *ins)
6107 {
6108 int ret;
6109
6110 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6111
6112 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6113 ins->offset, 0,
6114 root_objectid, owner, offset,
6115 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6116 return ret;
6117 }
6118
6119 /*
6120 * this is used by the tree logging recovery code. It records that
6121 * an extent has been allocated and makes sure to clear the free
6122 * space cache bits as well
6123 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)6124 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6125 struct btrfs_root *root,
6126 u64 root_objectid, u64 owner, u64 offset,
6127 struct btrfs_key *ins)
6128 {
6129 int ret;
6130 struct btrfs_block_group_cache *block_group;
6131 struct btrfs_caching_control *caching_ctl;
6132 u64 start = ins->objectid;
6133 u64 num_bytes = ins->offset;
6134
6135 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6136 cache_block_group(block_group, trans, NULL, 0);
6137 caching_ctl = get_caching_control(block_group);
6138
6139 if (!caching_ctl) {
6140 BUG_ON(!block_group_cache_done(block_group));
6141 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6142 BUG_ON(ret); /* -ENOMEM */
6143 } else {
6144 mutex_lock(&caching_ctl->mutex);
6145
6146 if (start >= caching_ctl->progress) {
6147 ret = add_excluded_extent(root, start, num_bytes);
6148 BUG_ON(ret); /* -ENOMEM */
6149 } else if (start + num_bytes <= caching_ctl->progress) {
6150 ret = btrfs_remove_free_space(block_group,
6151 start, num_bytes);
6152 BUG_ON(ret); /* -ENOMEM */
6153 } else {
6154 num_bytes = caching_ctl->progress - start;
6155 ret = btrfs_remove_free_space(block_group,
6156 start, num_bytes);
6157 BUG_ON(ret); /* -ENOMEM */
6158
6159 start = caching_ctl->progress;
6160 num_bytes = ins->objectid + ins->offset -
6161 caching_ctl->progress;
6162 ret = add_excluded_extent(root, start, num_bytes);
6163 BUG_ON(ret); /* -ENOMEM */
6164 }
6165
6166 mutex_unlock(&caching_ctl->mutex);
6167 put_caching_control(caching_ctl);
6168 }
6169
6170 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6171 RESERVE_ALLOC_NO_ACCOUNT);
6172 BUG_ON(ret); /* logic error */
6173 btrfs_put_block_group(block_group);
6174 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6175 0, owner, offset, ins, 1);
6176 return ret;
6177 }
6178
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u32 blocksize,int level)6179 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6180 struct btrfs_root *root,
6181 u64 bytenr, u32 blocksize,
6182 int level)
6183 {
6184 struct extent_buffer *buf;
6185
6186 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6187 if (!buf)
6188 return ERR_PTR(-ENOMEM);
6189 btrfs_set_header_generation(buf, trans->transid);
6190 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6191 btrfs_tree_lock(buf);
6192 clean_tree_block(trans, root, buf);
6193 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6194
6195 btrfs_set_lock_blocking(buf);
6196 btrfs_set_buffer_uptodate(buf);
6197
6198 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6199 /*
6200 * we allow two log transactions at a time, use different
6201 * EXENT bit to differentiate dirty pages.
6202 */
6203 if (root->log_transid % 2 == 0)
6204 set_extent_dirty(&root->dirty_log_pages, buf->start,
6205 buf->start + buf->len - 1, GFP_NOFS);
6206 else
6207 set_extent_new(&root->dirty_log_pages, buf->start,
6208 buf->start + buf->len - 1, GFP_NOFS);
6209 } else {
6210 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6211 buf->start + buf->len - 1, GFP_NOFS);
6212 }
6213 trans->blocks_used++;
6214 /* this returns a buffer locked for blocking */
6215 return buf;
6216 }
6217
6218 static struct btrfs_block_rsv *
use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)6219 use_block_rsv(struct btrfs_trans_handle *trans,
6220 struct btrfs_root *root, u32 blocksize)
6221 {
6222 struct btrfs_block_rsv *block_rsv;
6223 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6224 int ret;
6225
6226 block_rsv = get_block_rsv(trans, root);
6227
6228 if (block_rsv->size == 0) {
6229 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6230 /*
6231 * If we couldn't reserve metadata bytes try and use some from
6232 * the global reserve.
6233 */
6234 if (ret && block_rsv != global_rsv) {
6235 ret = block_rsv_use_bytes(global_rsv, blocksize);
6236 if (!ret)
6237 return global_rsv;
6238 return ERR_PTR(ret);
6239 } else if (ret) {
6240 return ERR_PTR(ret);
6241 }
6242 return block_rsv;
6243 }
6244
6245 ret = block_rsv_use_bytes(block_rsv, blocksize);
6246 if (!ret)
6247 return block_rsv;
6248 if (ret) {
6249 static DEFINE_RATELIMIT_STATE(_rs,
6250 DEFAULT_RATELIMIT_INTERVAL,
6251 /*DEFAULT_RATELIMIT_BURST*/ 2);
6252 if (__ratelimit(&_rs)) {
6253 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6254 WARN_ON(1);
6255 }
6256 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6257 if (!ret) {
6258 return block_rsv;
6259 } else if (ret && block_rsv != global_rsv) {
6260 ret = block_rsv_use_bytes(global_rsv, blocksize);
6261 if (!ret)
6262 return global_rsv;
6263 }
6264 }
6265
6266 return ERR_PTR(-ENOSPC);
6267 }
6268
unuse_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u32 blocksize)6269 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6270 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6271 {
6272 block_rsv_add_bytes(block_rsv, blocksize, 0);
6273 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6274 }
6275
6276 /*
6277 * finds a free extent and does all the dirty work required for allocation
6278 * returns the key for the extent through ins, and a tree buffer for
6279 * the first block of the extent through buf.
6280 *
6281 * returns the tree buffer or NULL.
6282 */
btrfs_alloc_free_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize,u64 parent,u64 root_objectid,struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,int for_cow)6283 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6284 struct btrfs_root *root, u32 blocksize,
6285 u64 parent, u64 root_objectid,
6286 struct btrfs_disk_key *key, int level,
6287 u64 hint, u64 empty_size, int for_cow)
6288 {
6289 struct btrfs_key ins;
6290 struct btrfs_block_rsv *block_rsv;
6291 struct extent_buffer *buf;
6292 u64 flags = 0;
6293 int ret;
6294
6295
6296 block_rsv = use_block_rsv(trans, root, blocksize);
6297 if (IS_ERR(block_rsv))
6298 return ERR_CAST(block_rsv);
6299
6300 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6301 empty_size, hint, &ins, 0);
6302 if (ret) {
6303 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6304 return ERR_PTR(ret);
6305 }
6306
6307 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6308 blocksize, level);
6309 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6310
6311 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6312 if (parent == 0)
6313 parent = ins.objectid;
6314 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6315 } else
6316 BUG_ON(parent > 0);
6317
6318 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6319 struct btrfs_delayed_extent_op *extent_op;
6320 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6321 BUG_ON(!extent_op); /* -ENOMEM */
6322 if (key)
6323 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6324 else
6325 memset(&extent_op->key, 0, sizeof(extent_op->key));
6326 extent_op->flags_to_set = flags;
6327 extent_op->update_key = 1;
6328 extent_op->update_flags = 1;
6329 extent_op->is_data = 0;
6330
6331 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6332 ins.objectid,
6333 ins.offset, parent, root_objectid,
6334 level, BTRFS_ADD_DELAYED_EXTENT,
6335 extent_op, for_cow);
6336 BUG_ON(ret); /* -ENOMEM */
6337 }
6338 return buf;
6339 }
6340
6341 struct walk_control {
6342 u64 refs[BTRFS_MAX_LEVEL];
6343 u64 flags[BTRFS_MAX_LEVEL];
6344 struct btrfs_key update_progress;
6345 int stage;
6346 int level;
6347 int shared_level;
6348 int update_ref;
6349 int keep_locks;
6350 int reada_slot;
6351 int reada_count;
6352 int for_reloc;
6353 };
6354
6355 #define DROP_REFERENCE 1
6356 #define UPDATE_BACKREF 2
6357
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)6358 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6359 struct btrfs_root *root,
6360 struct walk_control *wc,
6361 struct btrfs_path *path)
6362 {
6363 u64 bytenr;
6364 u64 generation;
6365 u64 refs;
6366 u64 flags;
6367 u32 nritems;
6368 u32 blocksize;
6369 struct btrfs_key key;
6370 struct extent_buffer *eb;
6371 int ret;
6372 int slot;
6373 int nread = 0;
6374
6375 if (path->slots[wc->level] < wc->reada_slot) {
6376 wc->reada_count = wc->reada_count * 2 / 3;
6377 wc->reada_count = max(wc->reada_count, 2);
6378 } else {
6379 wc->reada_count = wc->reada_count * 3 / 2;
6380 wc->reada_count = min_t(int, wc->reada_count,
6381 BTRFS_NODEPTRS_PER_BLOCK(root));
6382 }
6383
6384 eb = path->nodes[wc->level];
6385 nritems = btrfs_header_nritems(eb);
6386 blocksize = btrfs_level_size(root, wc->level - 1);
6387
6388 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6389 if (nread >= wc->reada_count)
6390 break;
6391
6392 cond_resched();
6393 bytenr = btrfs_node_blockptr(eb, slot);
6394 generation = btrfs_node_ptr_generation(eb, slot);
6395
6396 if (slot == path->slots[wc->level])
6397 goto reada;
6398
6399 if (wc->stage == UPDATE_BACKREF &&
6400 generation <= root->root_key.offset)
6401 continue;
6402
6403 /* We don't lock the tree block, it's OK to be racy here */
6404 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6405 &refs, &flags);
6406 /* We don't care about errors in readahead. */
6407 if (ret < 0)
6408 continue;
6409 BUG_ON(refs == 0);
6410
6411 if (wc->stage == DROP_REFERENCE) {
6412 if (refs == 1)
6413 goto reada;
6414
6415 if (wc->level == 1 &&
6416 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6417 continue;
6418 if (!wc->update_ref ||
6419 generation <= root->root_key.offset)
6420 continue;
6421 btrfs_node_key_to_cpu(eb, &key, slot);
6422 ret = btrfs_comp_cpu_keys(&key,
6423 &wc->update_progress);
6424 if (ret < 0)
6425 continue;
6426 } else {
6427 if (wc->level == 1 &&
6428 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6429 continue;
6430 }
6431 reada:
6432 ret = readahead_tree_block(root, bytenr, blocksize,
6433 generation);
6434 if (ret)
6435 break;
6436 nread++;
6437 }
6438 wc->reada_slot = slot;
6439 }
6440
6441 /*
6442 * hepler to process tree block while walking down the tree.
6443 *
6444 * when wc->stage == UPDATE_BACKREF, this function updates
6445 * back refs for pointers in the block.
6446 *
6447 * NOTE: return value 1 means we should stop walking down.
6448 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)6449 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6450 struct btrfs_root *root,
6451 struct btrfs_path *path,
6452 struct walk_control *wc, int lookup_info)
6453 {
6454 int level = wc->level;
6455 struct extent_buffer *eb = path->nodes[level];
6456 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6457 int ret;
6458
6459 if (wc->stage == UPDATE_BACKREF &&
6460 btrfs_header_owner(eb) != root->root_key.objectid)
6461 return 1;
6462
6463 /*
6464 * when reference count of tree block is 1, it won't increase
6465 * again. once full backref flag is set, we never clear it.
6466 */
6467 if (lookup_info &&
6468 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6469 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6470 BUG_ON(!path->locks[level]);
6471 ret = btrfs_lookup_extent_info(trans, root,
6472 eb->start, eb->len,
6473 &wc->refs[level],
6474 &wc->flags[level]);
6475 BUG_ON(ret == -ENOMEM);
6476 if (ret)
6477 return ret;
6478 BUG_ON(wc->refs[level] == 0);
6479 }
6480
6481 if (wc->stage == DROP_REFERENCE) {
6482 if (wc->refs[level] > 1)
6483 return 1;
6484
6485 if (path->locks[level] && !wc->keep_locks) {
6486 btrfs_tree_unlock_rw(eb, path->locks[level]);
6487 path->locks[level] = 0;
6488 }
6489 return 0;
6490 }
6491
6492 /* wc->stage == UPDATE_BACKREF */
6493 if (!(wc->flags[level] & flag)) {
6494 BUG_ON(!path->locks[level]);
6495 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6496 BUG_ON(ret); /* -ENOMEM */
6497 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6498 BUG_ON(ret); /* -ENOMEM */
6499 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6500 eb->len, flag, 0);
6501 BUG_ON(ret); /* -ENOMEM */
6502 wc->flags[level] |= flag;
6503 }
6504
6505 /*
6506 * the block is shared by multiple trees, so it's not good to
6507 * keep the tree lock
6508 */
6509 if (path->locks[level] && level > 0) {
6510 btrfs_tree_unlock_rw(eb, path->locks[level]);
6511 path->locks[level] = 0;
6512 }
6513 return 0;
6514 }
6515
6516 /*
6517 * hepler to process tree block pointer.
6518 *
6519 * when wc->stage == DROP_REFERENCE, this function checks
6520 * reference count of the block pointed to. if the block
6521 * is shared and we need update back refs for the subtree
6522 * rooted at the block, this function changes wc->stage to
6523 * UPDATE_BACKREF. if the block is shared and there is no
6524 * need to update back, this function drops the reference
6525 * to the block.
6526 *
6527 * NOTE: return value 1 means we should stop walking down.
6528 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)6529 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6530 struct btrfs_root *root,
6531 struct btrfs_path *path,
6532 struct walk_control *wc, int *lookup_info)
6533 {
6534 u64 bytenr;
6535 u64 generation;
6536 u64 parent;
6537 u32 blocksize;
6538 struct btrfs_key key;
6539 struct extent_buffer *next;
6540 int level = wc->level;
6541 int reada = 0;
6542 int ret = 0;
6543
6544 generation = btrfs_node_ptr_generation(path->nodes[level],
6545 path->slots[level]);
6546 /*
6547 * if the lower level block was created before the snapshot
6548 * was created, we know there is no need to update back refs
6549 * for the subtree
6550 */
6551 if (wc->stage == UPDATE_BACKREF &&
6552 generation <= root->root_key.offset) {
6553 *lookup_info = 1;
6554 return 1;
6555 }
6556
6557 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6558 blocksize = btrfs_level_size(root, level - 1);
6559
6560 next = btrfs_find_tree_block(root, bytenr, blocksize);
6561 if (!next) {
6562 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6563 if (!next)
6564 return -ENOMEM;
6565 reada = 1;
6566 }
6567 btrfs_tree_lock(next);
6568 btrfs_set_lock_blocking(next);
6569
6570 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6571 &wc->refs[level - 1],
6572 &wc->flags[level - 1]);
6573 if (ret < 0) {
6574 btrfs_tree_unlock(next);
6575 return ret;
6576 }
6577
6578 BUG_ON(wc->refs[level - 1] == 0);
6579 *lookup_info = 0;
6580
6581 if (wc->stage == DROP_REFERENCE) {
6582 if (wc->refs[level - 1] > 1) {
6583 if (level == 1 &&
6584 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6585 goto skip;
6586
6587 if (!wc->update_ref ||
6588 generation <= root->root_key.offset)
6589 goto skip;
6590
6591 btrfs_node_key_to_cpu(path->nodes[level], &key,
6592 path->slots[level]);
6593 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6594 if (ret < 0)
6595 goto skip;
6596
6597 wc->stage = UPDATE_BACKREF;
6598 wc->shared_level = level - 1;
6599 }
6600 } else {
6601 if (level == 1 &&
6602 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6603 goto skip;
6604 }
6605
6606 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6607 btrfs_tree_unlock(next);
6608 free_extent_buffer(next);
6609 next = NULL;
6610 *lookup_info = 1;
6611 }
6612
6613 if (!next) {
6614 if (reada && level == 1)
6615 reada_walk_down(trans, root, wc, path);
6616 next = read_tree_block(root, bytenr, blocksize, generation);
6617 if (!next)
6618 return -EIO;
6619 btrfs_tree_lock(next);
6620 btrfs_set_lock_blocking(next);
6621 }
6622
6623 level--;
6624 BUG_ON(level != btrfs_header_level(next));
6625 path->nodes[level] = next;
6626 path->slots[level] = 0;
6627 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6628 wc->level = level;
6629 if (wc->level == 1)
6630 wc->reada_slot = 0;
6631 return 0;
6632 skip:
6633 wc->refs[level - 1] = 0;
6634 wc->flags[level - 1] = 0;
6635 if (wc->stage == DROP_REFERENCE) {
6636 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6637 parent = path->nodes[level]->start;
6638 } else {
6639 BUG_ON(root->root_key.objectid !=
6640 btrfs_header_owner(path->nodes[level]));
6641 parent = 0;
6642 }
6643
6644 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6645 root->root_key.objectid, level - 1, 0, 0);
6646 BUG_ON(ret); /* -ENOMEM */
6647 }
6648 btrfs_tree_unlock(next);
6649 free_extent_buffer(next);
6650 *lookup_info = 1;
6651 return 1;
6652 }
6653
6654 /*
6655 * hepler to process tree block while walking up the tree.
6656 *
6657 * when wc->stage == DROP_REFERENCE, this function drops
6658 * reference count on the block.
6659 *
6660 * when wc->stage == UPDATE_BACKREF, this function changes
6661 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6662 * to UPDATE_BACKREF previously while processing the block.
6663 *
6664 * NOTE: return value 1 means we should stop walking up.
6665 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)6666 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6667 struct btrfs_root *root,
6668 struct btrfs_path *path,
6669 struct walk_control *wc)
6670 {
6671 int ret;
6672 int level = wc->level;
6673 struct extent_buffer *eb = path->nodes[level];
6674 u64 parent = 0;
6675
6676 if (wc->stage == UPDATE_BACKREF) {
6677 BUG_ON(wc->shared_level < level);
6678 if (level < wc->shared_level)
6679 goto out;
6680
6681 ret = find_next_key(path, level + 1, &wc->update_progress);
6682 if (ret > 0)
6683 wc->update_ref = 0;
6684
6685 wc->stage = DROP_REFERENCE;
6686 wc->shared_level = -1;
6687 path->slots[level] = 0;
6688
6689 /*
6690 * check reference count again if the block isn't locked.
6691 * we should start walking down the tree again if reference
6692 * count is one.
6693 */
6694 if (!path->locks[level]) {
6695 BUG_ON(level == 0);
6696 btrfs_tree_lock(eb);
6697 btrfs_set_lock_blocking(eb);
6698 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6699
6700 ret = btrfs_lookup_extent_info(trans, root,
6701 eb->start, eb->len,
6702 &wc->refs[level],
6703 &wc->flags[level]);
6704 if (ret < 0) {
6705 btrfs_tree_unlock_rw(eb, path->locks[level]);
6706 return ret;
6707 }
6708 BUG_ON(wc->refs[level] == 0);
6709 if (wc->refs[level] == 1) {
6710 btrfs_tree_unlock_rw(eb, path->locks[level]);
6711 return 1;
6712 }
6713 }
6714 }
6715
6716 /* wc->stage == DROP_REFERENCE */
6717 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6718
6719 if (wc->refs[level] == 1) {
6720 if (level == 0) {
6721 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6722 ret = btrfs_dec_ref(trans, root, eb, 1,
6723 wc->for_reloc);
6724 else
6725 ret = btrfs_dec_ref(trans, root, eb, 0,
6726 wc->for_reloc);
6727 BUG_ON(ret); /* -ENOMEM */
6728 }
6729 /* make block locked assertion in clean_tree_block happy */
6730 if (!path->locks[level] &&
6731 btrfs_header_generation(eb) == trans->transid) {
6732 btrfs_tree_lock(eb);
6733 btrfs_set_lock_blocking(eb);
6734 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6735 }
6736 clean_tree_block(trans, root, eb);
6737 }
6738
6739 if (eb == root->node) {
6740 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6741 parent = eb->start;
6742 else
6743 BUG_ON(root->root_key.objectid !=
6744 btrfs_header_owner(eb));
6745 } else {
6746 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6747 parent = path->nodes[level + 1]->start;
6748 else
6749 BUG_ON(root->root_key.objectid !=
6750 btrfs_header_owner(path->nodes[level + 1]));
6751 }
6752
6753 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0);
6754 out:
6755 wc->refs[level] = 0;
6756 wc->flags[level] = 0;
6757 return 0;
6758 }
6759
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)6760 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6761 struct btrfs_root *root,
6762 struct btrfs_path *path,
6763 struct walk_control *wc)
6764 {
6765 int level = wc->level;
6766 int lookup_info = 1;
6767 int ret;
6768
6769 while (level >= 0) {
6770 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6771 if (ret > 0)
6772 break;
6773
6774 if (level == 0)
6775 break;
6776
6777 if (path->slots[level] >=
6778 btrfs_header_nritems(path->nodes[level]))
6779 break;
6780
6781 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6782 if (ret > 0) {
6783 path->slots[level]++;
6784 continue;
6785 } else if (ret < 0)
6786 return ret;
6787 level = wc->level;
6788 }
6789 return 0;
6790 }
6791
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)6792 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6793 struct btrfs_root *root,
6794 struct btrfs_path *path,
6795 struct walk_control *wc, int max_level)
6796 {
6797 int level = wc->level;
6798 int ret;
6799
6800 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6801 while (level < max_level && path->nodes[level]) {
6802 wc->level = level;
6803 if (path->slots[level] + 1 <
6804 btrfs_header_nritems(path->nodes[level])) {
6805 path->slots[level]++;
6806 return 0;
6807 } else {
6808 ret = walk_up_proc(trans, root, path, wc);
6809 if (ret > 0)
6810 return 0;
6811
6812 if (path->locks[level]) {
6813 btrfs_tree_unlock_rw(path->nodes[level],
6814 path->locks[level]);
6815 path->locks[level] = 0;
6816 }
6817 free_extent_buffer(path->nodes[level]);
6818 path->nodes[level] = NULL;
6819 level++;
6820 }
6821 }
6822 return 1;
6823 }
6824
6825 /*
6826 * drop a subvolume tree.
6827 *
6828 * this function traverses the tree freeing any blocks that only
6829 * referenced by the tree.
6830 *
6831 * when a shared tree block is found. this function decreases its
6832 * reference count by one. if update_ref is true, this function
6833 * also make sure backrefs for the shared block and all lower level
6834 * blocks are properly updated.
6835 */
btrfs_drop_snapshot(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int update_ref,int for_reloc)6836 int btrfs_drop_snapshot(struct btrfs_root *root,
6837 struct btrfs_block_rsv *block_rsv, int update_ref,
6838 int for_reloc)
6839 {
6840 struct btrfs_path *path;
6841 struct btrfs_trans_handle *trans;
6842 struct btrfs_root *tree_root = root->fs_info->tree_root;
6843 struct btrfs_root_item *root_item = &root->root_item;
6844 struct walk_control *wc;
6845 struct btrfs_key key;
6846 int err = 0;
6847 int ret;
6848 int level;
6849 bool root_dropped = false;
6850
6851 path = btrfs_alloc_path();
6852 if (!path) {
6853 err = -ENOMEM;
6854 goto out;
6855 }
6856
6857 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6858 if (!wc) {
6859 btrfs_free_path(path);
6860 err = -ENOMEM;
6861 goto out;
6862 }
6863
6864 trans = btrfs_start_transaction(tree_root, 0);
6865 if (IS_ERR(trans)) {
6866 err = PTR_ERR(trans);
6867 goto out_free;
6868 }
6869
6870 if (block_rsv)
6871 trans->block_rsv = block_rsv;
6872
6873 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6874 level = btrfs_header_level(root->node);
6875 path->nodes[level] = btrfs_lock_root_node(root);
6876 btrfs_set_lock_blocking(path->nodes[level]);
6877 path->slots[level] = 0;
6878 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6879 memset(&wc->update_progress, 0,
6880 sizeof(wc->update_progress));
6881 } else {
6882 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6883 memcpy(&wc->update_progress, &key,
6884 sizeof(wc->update_progress));
6885
6886 level = root_item->drop_level;
6887 BUG_ON(level == 0);
6888 path->lowest_level = level;
6889 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6890 path->lowest_level = 0;
6891 if (ret < 0) {
6892 err = ret;
6893 goto out_end_trans;
6894 }
6895 WARN_ON(ret > 0);
6896
6897 /*
6898 * unlock our path, this is safe because only this
6899 * function is allowed to delete this snapshot
6900 */
6901 btrfs_unlock_up_safe(path, 0);
6902
6903 level = btrfs_header_level(root->node);
6904 while (1) {
6905 btrfs_tree_lock(path->nodes[level]);
6906 btrfs_set_lock_blocking(path->nodes[level]);
6907 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6908
6909 ret = btrfs_lookup_extent_info(trans, root,
6910 path->nodes[level]->start,
6911 path->nodes[level]->len,
6912 &wc->refs[level],
6913 &wc->flags[level]);
6914 if (ret < 0) {
6915 err = ret;
6916 goto out_end_trans;
6917 }
6918 BUG_ON(wc->refs[level] == 0);
6919
6920 if (level == root_item->drop_level)
6921 break;
6922
6923 btrfs_tree_unlock(path->nodes[level]);
6924 path->locks[level] = 0;
6925 WARN_ON(wc->refs[level] != 1);
6926 level--;
6927 }
6928 }
6929
6930 wc->level = level;
6931 wc->shared_level = -1;
6932 wc->stage = DROP_REFERENCE;
6933 wc->update_ref = update_ref;
6934 wc->keep_locks = 0;
6935 wc->for_reloc = for_reloc;
6936 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6937
6938 while (1) {
6939 ret = walk_down_tree(trans, root, path, wc);
6940 if (ret < 0) {
6941 err = ret;
6942 break;
6943 }
6944
6945 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6946 if (ret < 0) {
6947 err = ret;
6948 break;
6949 }
6950
6951 if (ret > 0) {
6952 BUG_ON(wc->stage != DROP_REFERENCE);
6953 break;
6954 }
6955
6956 if (wc->stage == DROP_REFERENCE) {
6957 level = wc->level;
6958 btrfs_node_key(path->nodes[level],
6959 &root_item->drop_progress,
6960 path->slots[level]);
6961 root_item->drop_level = level;
6962 }
6963
6964 BUG_ON(wc->level == 0);
6965 if (btrfs_should_end_transaction(trans, tree_root)) {
6966 ret = btrfs_update_root(trans, tree_root,
6967 &root->root_key,
6968 root_item);
6969 if (ret) {
6970 btrfs_abort_transaction(trans, tree_root, ret);
6971 err = ret;
6972 goto out_end_trans;
6973 }
6974
6975 btrfs_end_transaction_throttle(trans, tree_root);
6976 trans = btrfs_start_transaction(tree_root, 0);
6977 if (IS_ERR(trans)) {
6978 err = PTR_ERR(trans);
6979 goto out_free;
6980 }
6981 if (block_rsv)
6982 trans->block_rsv = block_rsv;
6983 }
6984 }
6985 btrfs_release_path(path);
6986 if (err)
6987 goto out_end_trans;
6988
6989 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6990 if (ret) {
6991 btrfs_abort_transaction(trans, tree_root, ret);
6992 goto out_end_trans;
6993 }
6994
6995 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6996 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6997 NULL, NULL);
6998 if (ret < 0) {
6999 btrfs_abort_transaction(trans, tree_root, ret);
7000 err = ret;
7001 goto out_end_trans;
7002 } else if (ret > 0) {
7003 /* if we fail to delete the orphan item this time
7004 * around, it'll get picked up the next time.
7005 *
7006 * The most common failure here is just -ENOENT.
7007 */
7008 btrfs_del_orphan_item(trans, tree_root,
7009 root->root_key.objectid);
7010 }
7011 }
7012
7013 if (root->in_radix) {
7014 btrfs_free_fs_root(tree_root->fs_info, root);
7015 } else {
7016 free_extent_buffer(root->node);
7017 free_extent_buffer(root->commit_root);
7018 kfree(root);
7019 }
7020 root_dropped = true;
7021 out_end_trans:
7022 btrfs_end_transaction_throttle(trans, tree_root);
7023 out_free:
7024 kfree(wc);
7025 btrfs_free_path(path);
7026 out:
7027 /*
7028 * So if we need to stop dropping the snapshot for whatever reason we
7029 * need to make sure to add it back to the dead root list so that we
7030 * keep trying to do the work later. This also cleans up roots if we
7031 * don't have it in the radix (like when we recover after a power fail
7032 * or unmount) so we don't leak memory.
7033 */
7034 if (root_dropped == false)
7035 btrfs_add_dead_root(root);
7036 if (err && err != -EAGAIN)
7037 btrfs_std_error(root->fs_info, err);
7038 return err;
7039 }
7040
7041 /*
7042 * drop subtree rooted at tree block 'node'.
7043 *
7044 * NOTE: this function will unlock and release tree block 'node'
7045 * only used by relocation code
7046 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)7047 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7048 struct btrfs_root *root,
7049 struct extent_buffer *node,
7050 struct extent_buffer *parent)
7051 {
7052 struct btrfs_path *path;
7053 struct walk_control *wc;
7054 int level;
7055 int parent_level;
7056 int ret = 0;
7057 int wret;
7058
7059 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7060
7061 path = btrfs_alloc_path();
7062 if (!path)
7063 return -ENOMEM;
7064
7065 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7066 if (!wc) {
7067 btrfs_free_path(path);
7068 return -ENOMEM;
7069 }
7070
7071 btrfs_assert_tree_locked(parent);
7072 parent_level = btrfs_header_level(parent);
7073 extent_buffer_get(parent);
7074 path->nodes[parent_level] = parent;
7075 path->slots[parent_level] = btrfs_header_nritems(parent);
7076
7077 btrfs_assert_tree_locked(node);
7078 level = btrfs_header_level(node);
7079 path->nodes[level] = node;
7080 path->slots[level] = 0;
7081 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7082
7083 wc->refs[parent_level] = 1;
7084 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7085 wc->level = level;
7086 wc->shared_level = -1;
7087 wc->stage = DROP_REFERENCE;
7088 wc->update_ref = 0;
7089 wc->keep_locks = 1;
7090 wc->for_reloc = 1;
7091 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7092
7093 while (1) {
7094 wret = walk_down_tree(trans, root, path, wc);
7095 if (wret < 0) {
7096 ret = wret;
7097 break;
7098 }
7099
7100 wret = walk_up_tree(trans, root, path, wc, parent_level);
7101 if (wret < 0)
7102 ret = wret;
7103 if (wret != 0)
7104 break;
7105 }
7106
7107 kfree(wc);
7108 btrfs_free_path(path);
7109 return ret;
7110 }
7111
update_block_group_flags(struct btrfs_root * root,u64 flags)7112 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7113 {
7114 u64 num_devices;
7115 u64 stripped;
7116
7117 /*
7118 * if restripe for this chunk_type is on pick target profile and
7119 * return, otherwise do the usual balance
7120 */
7121 stripped = get_restripe_target(root->fs_info, flags);
7122 if (stripped)
7123 return extended_to_chunk(stripped);
7124
7125 /*
7126 * we add in the count of missing devices because we want
7127 * to make sure that any RAID levels on a degraded FS
7128 * continue to be honored.
7129 */
7130 num_devices = root->fs_info->fs_devices->rw_devices +
7131 root->fs_info->fs_devices->missing_devices;
7132
7133 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7134 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7135
7136 if (num_devices == 1) {
7137 stripped |= BTRFS_BLOCK_GROUP_DUP;
7138 stripped = flags & ~stripped;
7139
7140 /* turn raid0 into single device chunks */
7141 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7142 return stripped;
7143
7144 /* turn mirroring into duplication */
7145 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7146 BTRFS_BLOCK_GROUP_RAID10))
7147 return stripped | BTRFS_BLOCK_GROUP_DUP;
7148 } else {
7149 /* they already had raid on here, just return */
7150 if (flags & stripped)
7151 return flags;
7152
7153 stripped |= BTRFS_BLOCK_GROUP_DUP;
7154 stripped = flags & ~stripped;
7155
7156 /* switch duplicated blocks with raid1 */
7157 if (flags & BTRFS_BLOCK_GROUP_DUP)
7158 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7159
7160 /* this is drive concat, leave it alone */
7161 }
7162
7163 return flags;
7164 }
7165
set_block_group_ro(struct btrfs_block_group_cache * cache,int force)7166 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7167 {
7168 struct btrfs_space_info *sinfo = cache->space_info;
7169 u64 num_bytes;
7170 u64 min_allocable_bytes;
7171 int ret = -ENOSPC;
7172
7173
7174 /*
7175 * We need some metadata space and system metadata space for
7176 * allocating chunks in some corner cases until we force to set
7177 * it to be readonly.
7178 */
7179 if ((sinfo->flags &
7180 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7181 !force)
7182 min_allocable_bytes = 1 * 1024 * 1024;
7183 else
7184 min_allocable_bytes = 0;
7185
7186 spin_lock(&sinfo->lock);
7187 spin_lock(&cache->lock);
7188
7189 if (cache->ro) {
7190 ret = 0;
7191 goto out;
7192 }
7193
7194 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7195 cache->bytes_super - btrfs_block_group_used(&cache->item);
7196
7197 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7198 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7199 min_allocable_bytes <= sinfo->total_bytes) {
7200 sinfo->bytes_readonly += num_bytes;
7201 cache->ro = 1;
7202 ret = 0;
7203 }
7204 out:
7205 spin_unlock(&cache->lock);
7206 spin_unlock(&sinfo->lock);
7207 return ret;
7208 }
7209
btrfs_set_block_group_ro(struct btrfs_root * root,struct btrfs_block_group_cache * cache)7210 int btrfs_set_block_group_ro(struct btrfs_root *root,
7211 struct btrfs_block_group_cache *cache)
7212
7213 {
7214 struct btrfs_trans_handle *trans;
7215 u64 alloc_flags;
7216 int ret;
7217
7218 BUG_ON(cache->ro);
7219
7220 trans = btrfs_join_transaction(root);
7221 if (IS_ERR(trans))
7222 return PTR_ERR(trans);
7223
7224 alloc_flags = update_block_group_flags(root, cache->flags);
7225 if (alloc_flags != cache->flags) {
7226 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7227 CHUNK_ALLOC_FORCE);
7228 if (ret < 0)
7229 goto out;
7230 }
7231
7232 ret = set_block_group_ro(cache, 0);
7233 if (!ret)
7234 goto out;
7235 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7236 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7237 CHUNK_ALLOC_FORCE);
7238 if (ret < 0)
7239 goto out;
7240 ret = set_block_group_ro(cache, 0);
7241 out:
7242 btrfs_end_transaction(trans, root);
7243 return ret;
7244 }
7245
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 type)7246 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7247 struct btrfs_root *root, u64 type)
7248 {
7249 u64 alloc_flags = get_alloc_profile(root, type);
7250 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7251 CHUNK_ALLOC_FORCE);
7252 }
7253
7254 /*
7255 * helper to account the unused space of all the readonly block group in the
7256 * list. takes mirrors into account.
7257 */
__btrfs_get_ro_block_group_free_space(struct list_head * groups_list)7258 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7259 {
7260 struct btrfs_block_group_cache *block_group;
7261 u64 free_bytes = 0;
7262 int factor;
7263
7264 list_for_each_entry(block_group, groups_list, list) {
7265 spin_lock(&block_group->lock);
7266
7267 if (!block_group->ro) {
7268 spin_unlock(&block_group->lock);
7269 continue;
7270 }
7271
7272 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7273 BTRFS_BLOCK_GROUP_RAID10 |
7274 BTRFS_BLOCK_GROUP_DUP))
7275 factor = 2;
7276 else
7277 factor = 1;
7278
7279 free_bytes += (block_group->key.offset -
7280 btrfs_block_group_used(&block_group->item)) *
7281 factor;
7282
7283 spin_unlock(&block_group->lock);
7284 }
7285
7286 return free_bytes;
7287 }
7288
7289 /*
7290 * helper to account the unused space of all the readonly block group in the
7291 * space_info. takes mirrors into account.
7292 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)7293 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7294 {
7295 int i;
7296 u64 free_bytes = 0;
7297
7298 spin_lock(&sinfo->lock);
7299
7300 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7301 if (!list_empty(&sinfo->block_groups[i]))
7302 free_bytes += __btrfs_get_ro_block_group_free_space(
7303 &sinfo->block_groups[i]);
7304
7305 spin_unlock(&sinfo->lock);
7306
7307 return free_bytes;
7308 }
7309
btrfs_set_block_group_rw(struct btrfs_root * root,struct btrfs_block_group_cache * cache)7310 void btrfs_set_block_group_rw(struct btrfs_root *root,
7311 struct btrfs_block_group_cache *cache)
7312 {
7313 struct btrfs_space_info *sinfo = cache->space_info;
7314 u64 num_bytes;
7315
7316 BUG_ON(!cache->ro);
7317
7318 spin_lock(&sinfo->lock);
7319 spin_lock(&cache->lock);
7320 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7321 cache->bytes_super - btrfs_block_group_used(&cache->item);
7322 sinfo->bytes_readonly -= num_bytes;
7323 cache->ro = 0;
7324 spin_unlock(&cache->lock);
7325 spin_unlock(&sinfo->lock);
7326 }
7327
7328 /*
7329 * checks to see if its even possible to relocate this block group.
7330 *
7331 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7332 * ok to go ahead and try.
7333 */
btrfs_can_relocate(struct btrfs_root * root,u64 bytenr)7334 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7335 {
7336 struct btrfs_block_group_cache *block_group;
7337 struct btrfs_space_info *space_info;
7338 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7339 struct btrfs_device *device;
7340 u64 min_free;
7341 u64 dev_min = 1;
7342 u64 dev_nr = 0;
7343 u64 target;
7344 int index;
7345 int full = 0;
7346 int ret = 0;
7347
7348 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7349
7350 /* odd, couldn't find the block group, leave it alone */
7351 if (!block_group)
7352 return -1;
7353
7354 min_free = btrfs_block_group_used(&block_group->item);
7355
7356 /* no bytes used, we're good */
7357 if (!min_free)
7358 goto out;
7359
7360 space_info = block_group->space_info;
7361 spin_lock(&space_info->lock);
7362
7363 full = space_info->full;
7364
7365 /*
7366 * if this is the last block group we have in this space, we can't
7367 * relocate it unless we're able to allocate a new chunk below.
7368 *
7369 * Otherwise, we need to make sure we have room in the space to handle
7370 * all of the extents from this block group. If we can, we're good
7371 */
7372 if ((space_info->total_bytes != block_group->key.offset) &&
7373 (space_info->bytes_used + space_info->bytes_reserved +
7374 space_info->bytes_pinned + space_info->bytes_readonly +
7375 min_free < space_info->total_bytes)) {
7376 spin_unlock(&space_info->lock);
7377 goto out;
7378 }
7379 spin_unlock(&space_info->lock);
7380
7381 /*
7382 * ok we don't have enough space, but maybe we have free space on our
7383 * devices to allocate new chunks for relocation, so loop through our
7384 * alloc devices and guess if we have enough space. if this block
7385 * group is going to be restriped, run checks against the target
7386 * profile instead of the current one.
7387 */
7388 ret = -1;
7389
7390 /*
7391 * index:
7392 * 0: raid10
7393 * 1: raid1
7394 * 2: dup
7395 * 3: raid0
7396 * 4: single
7397 */
7398 target = get_restripe_target(root->fs_info, block_group->flags);
7399 if (target) {
7400 index = __get_block_group_index(extended_to_chunk(target));
7401 } else {
7402 /*
7403 * this is just a balance, so if we were marked as full
7404 * we know there is no space for a new chunk
7405 */
7406 if (full)
7407 goto out;
7408
7409 index = get_block_group_index(block_group);
7410 }
7411
7412 if (index == 0) {
7413 dev_min = 4;
7414 /* Divide by 2 */
7415 min_free >>= 1;
7416 } else if (index == 1) {
7417 dev_min = 2;
7418 } else if (index == 2) {
7419 /* Multiply by 2 */
7420 min_free <<= 1;
7421 } else if (index == 3) {
7422 dev_min = fs_devices->rw_devices;
7423 do_div(min_free, dev_min);
7424 }
7425
7426 mutex_lock(&root->fs_info->chunk_mutex);
7427 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7428 u64 dev_offset;
7429
7430 /*
7431 * check to make sure we can actually find a chunk with enough
7432 * space to fit our block group in.
7433 */
7434 if (device->total_bytes > device->bytes_used + min_free) {
7435 ret = find_free_dev_extent(device, min_free,
7436 &dev_offset, NULL);
7437 if (!ret)
7438 dev_nr++;
7439
7440 if (dev_nr >= dev_min)
7441 break;
7442
7443 ret = -1;
7444 }
7445 }
7446 mutex_unlock(&root->fs_info->chunk_mutex);
7447 out:
7448 btrfs_put_block_group(block_group);
7449 return ret;
7450 }
7451
find_first_block_group(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key)7452 static int find_first_block_group(struct btrfs_root *root,
7453 struct btrfs_path *path, struct btrfs_key *key)
7454 {
7455 int ret = 0;
7456 struct btrfs_key found_key;
7457 struct extent_buffer *leaf;
7458 int slot;
7459
7460 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7461 if (ret < 0)
7462 goto out;
7463
7464 while (1) {
7465 slot = path->slots[0];
7466 leaf = path->nodes[0];
7467 if (slot >= btrfs_header_nritems(leaf)) {
7468 ret = btrfs_next_leaf(root, path);
7469 if (ret == 0)
7470 continue;
7471 if (ret < 0)
7472 goto out;
7473 break;
7474 }
7475 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7476
7477 if (found_key.objectid >= key->objectid &&
7478 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7479 ret = 0;
7480 goto out;
7481 }
7482 path->slots[0]++;
7483 }
7484 out:
7485 return ret;
7486 }
7487
btrfs_put_block_group_cache(struct btrfs_fs_info * info)7488 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7489 {
7490 struct btrfs_block_group_cache *block_group;
7491 u64 last = 0;
7492
7493 while (1) {
7494 struct inode *inode;
7495
7496 block_group = btrfs_lookup_first_block_group(info, last);
7497 while (block_group) {
7498 spin_lock(&block_group->lock);
7499 if (block_group->iref)
7500 break;
7501 spin_unlock(&block_group->lock);
7502 block_group = next_block_group(info->tree_root,
7503 block_group);
7504 }
7505 if (!block_group) {
7506 if (last == 0)
7507 break;
7508 last = 0;
7509 continue;
7510 }
7511
7512 inode = block_group->inode;
7513 block_group->iref = 0;
7514 block_group->inode = NULL;
7515 spin_unlock(&block_group->lock);
7516 iput(inode);
7517 last = block_group->key.objectid + block_group->key.offset;
7518 btrfs_put_block_group(block_group);
7519 }
7520 }
7521
btrfs_free_block_groups(struct btrfs_fs_info * info)7522 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7523 {
7524 struct btrfs_block_group_cache *block_group;
7525 struct btrfs_space_info *space_info;
7526 struct btrfs_caching_control *caching_ctl;
7527 struct rb_node *n;
7528
7529 down_write(&info->extent_commit_sem);
7530 while (!list_empty(&info->caching_block_groups)) {
7531 caching_ctl = list_entry(info->caching_block_groups.next,
7532 struct btrfs_caching_control, list);
7533 list_del(&caching_ctl->list);
7534 put_caching_control(caching_ctl);
7535 }
7536 up_write(&info->extent_commit_sem);
7537
7538 spin_lock(&info->block_group_cache_lock);
7539 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7540 block_group = rb_entry(n, struct btrfs_block_group_cache,
7541 cache_node);
7542 rb_erase(&block_group->cache_node,
7543 &info->block_group_cache_tree);
7544 spin_unlock(&info->block_group_cache_lock);
7545
7546 down_write(&block_group->space_info->groups_sem);
7547 list_del(&block_group->list);
7548 up_write(&block_group->space_info->groups_sem);
7549
7550 if (block_group->cached == BTRFS_CACHE_STARTED)
7551 wait_block_group_cache_done(block_group);
7552
7553 /*
7554 * We haven't cached this block group, which means we could
7555 * possibly have excluded extents on this block group.
7556 */
7557 if (block_group->cached == BTRFS_CACHE_NO)
7558 free_excluded_extents(info->extent_root, block_group);
7559
7560 btrfs_remove_free_space_cache(block_group);
7561 btrfs_put_block_group(block_group);
7562
7563 spin_lock(&info->block_group_cache_lock);
7564 }
7565 spin_unlock(&info->block_group_cache_lock);
7566
7567 /* now that all the block groups are freed, go through and
7568 * free all the space_info structs. This is only called during
7569 * the final stages of unmount, and so we know nobody is
7570 * using them. We call synchronize_rcu() once before we start,
7571 * just to be on the safe side.
7572 */
7573 synchronize_rcu();
7574
7575 release_global_block_rsv(info);
7576
7577 while(!list_empty(&info->space_info)) {
7578 space_info = list_entry(info->space_info.next,
7579 struct btrfs_space_info,
7580 list);
7581 if (space_info->bytes_pinned > 0 ||
7582 space_info->bytes_reserved > 0 ||
7583 space_info->bytes_may_use > 0) {
7584 WARN_ON(1);
7585 dump_space_info(space_info, 0, 0);
7586 }
7587 list_del(&space_info->list);
7588 kfree(space_info);
7589 }
7590 return 0;
7591 }
7592
__link_block_group(struct btrfs_space_info * space_info,struct btrfs_block_group_cache * cache)7593 static void __link_block_group(struct btrfs_space_info *space_info,
7594 struct btrfs_block_group_cache *cache)
7595 {
7596 int index = get_block_group_index(cache);
7597
7598 down_write(&space_info->groups_sem);
7599 list_add_tail(&cache->list, &space_info->block_groups[index]);
7600 up_write(&space_info->groups_sem);
7601 }
7602
btrfs_read_block_groups(struct btrfs_root * root)7603 int btrfs_read_block_groups(struct btrfs_root *root)
7604 {
7605 struct btrfs_path *path;
7606 int ret;
7607 struct btrfs_block_group_cache *cache;
7608 struct btrfs_fs_info *info = root->fs_info;
7609 struct btrfs_space_info *space_info;
7610 struct btrfs_key key;
7611 struct btrfs_key found_key;
7612 struct extent_buffer *leaf;
7613 int need_clear = 0;
7614 u64 cache_gen;
7615
7616 root = info->extent_root;
7617 key.objectid = 0;
7618 key.offset = 0;
7619 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7620 path = btrfs_alloc_path();
7621 if (!path)
7622 return -ENOMEM;
7623 path->reada = 1;
7624
7625 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7626 if (btrfs_test_opt(root, SPACE_CACHE) &&
7627 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7628 need_clear = 1;
7629 if (btrfs_test_opt(root, CLEAR_CACHE))
7630 need_clear = 1;
7631
7632 while (1) {
7633 ret = find_first_block_group(root, path, &key);
7634 if (ret > 0)
7635 break;
7636 if (ret != 0)
7637 goto error;
7638 leaf = path->nodes[0];
7639 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7640 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7641 if (!cache) {
7642 ret = -ENOMEM;
7643 goto error;
7644 }
7645 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7646 GFP_NOFS);
7647 if (!cache->free_space_ctl) {
7648 kfree(cache);
7649 ret = -ENOMEM;
7650 goto error;
7651 }
7652
7653 atomic_set(&cache->count, 1);
7654 spin_lock_init(&cache->lock);
7655 cache->fs_info = info;
7656 INIT_LIST_HEAD(&cache->list);
7657 INIT_LIST_HEAD(&cache->cluster_list);
7658
7659 if (need_clear)
7660 cache->disk_cache_state = BTRFS_DC_CLEAR;
7661
7662 read_extent_buffer(leaf, &cache->item,
7663 btrfs_item_ptr_offset(leaf, path->slots[0]),
7664 sizeof(cache->item));
7665 memcpy(&cache->key, &found_key, sizeof(found_key));
7666
7667 key.objectid = found_key.objectid + found_key.offset;
7668 btrfs_release_path(path);
7669 cache->flags = btrfs_block_group_flags(&cache->item);
7670 cache->sectorsize = root->sectorsize;
7671
7672 btrfs_init_free_space_ctl(cache);
7673
7674 /*
7675 * We need to exclude the super stripes now so that the space
7676 * info has super bytes accounted for, otherwise we'll think
7677 * we have more space than we actually do.
7678 */
7679 exclude_super_stripes(root, cache);
7680
7681 /*
7682 * check for two cases, either we are full, and therefore
7683 * don't need to bother with the caching work since we won't
7684 * find any space, or we are empty, and we can just add all
7685 * the space in and be done with it. This saves us _alot_ of
7686 * time, particularly in the full case.
7687 */
7688 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7689 cache->last_byte_to_unpin = (u64)-1;
7690 cache->cached = BTRFS_CACHE_FINISHED;
7691 free_excluded_extents(root, cache);
7692 } else if (btrfs_block_group_used(&cache->item) == 0) {
7693 cache->last_byte_to_unpin = (u64)-1;
7694 cache->cached = BTRFS_CACHE_FINISHED;
7695 add_new_free_space(cache, root->fs_info,
7696 found_key.objectid,
7697 found_key.objectid +
7698 found_key.offset);
7699 free_excluded_extents(root, cache);
7700 }
7701
7702 ret = update_space_info(info, cache->flags, found_key.offset,
7703 btrfs_block_group_used(&cache->item),
7704 &space_info);
7705 BUG_ON(ret); /* -ENOMEM */
7706 cache->space_info = space_info;
7707 spin_lock(&cache->space_info->lock);
7708 cache->space_info->bytes_readonly += cache->bytes_super;
7709 spin_unlock(&cache->space_info->lock);
7710
7711 __link_block_group(space_info, cache);
7712
7713 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7714 BUG_ON(ret); /* Logic error */
7715
7716 set_avail_alloc_bits(root->fs_info, cache->flags);
7717 if (btrfs_chunk_readonly(root, cache->key.objectid))
7718 set_block_group_ro(cache, 1);
7719 }
7720
7721 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7722 if (!(get_alloc_profile(root, space_info->flags) &
7723 (BTRFS_BLOCK_GROUP_RAID10 |
7724 BTRFS_BLOCK_GROUP_RAID1 |
7725 BTRFS_BLOCK_GROUP_DUP)))
7726 continue;
7727 /*
7728 * avoid allocating from un-mirrored block group if there are
7729 * mirrored block groups.
7730 */
7731 list_for_each_entry(cache, &space_info->block_groups[3], list)
7732 set_block_group_ro(cache, 1);
7733 list_for_each_entry(cache, &space_info->block_groups[4], list)
7734 set_block_group_ro(cache, 1);
7735 }
7736
7737 init_global_block_rsv(info);
7738 ret = 0;
7739 error:
7740 btrfs_free_path(path);
7741 return ret;
7742 }
7743
btrfs_make_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_used,u64 type,u64 chunk_objectid,u64 chunk_offset,u64 size)7744 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7745 struct btrfs_root *root, u64 bytes_used,
7746 u64 type, u64 chunk_objectid, u64 chunk_offset,
7747 u64 size)
7748 {
7749 int ret;
7750 struct btrfs_root *extent_root;
7751 struct btrfs_block_group_cache *cache;
7752
7753 extent_root = root->fs_info->extent_root;
7754
7755 root->fs_info->last_trans_log_full_commit = trans->transid;
7756
7757 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7758 if (!cache)
7759 return -ENOMEM;
7760 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7761 GFP_NOFS);
7762 if (!cache->free_space_ctl) {
7763 kfree(cache);
7764 return -ENOMEM;
7765 }
7766
7767 cache->key.objectid = chunk_offset;
7768 cache->key.offset = size;
7769 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7770 cache->sectorsize = root->sectorsize;
7771 cache->fs_info = root->fs_info;
7772
7773 atomic_set(&cache->count, 1);
7774 spin_lock_init(&cache->lock);
7775 INIT_LIST_HEAD(&cache->list);
7776 INIT_LIST_HEAD(&cache->cluster_list);
7777
7778 btrfs_init_free_space_ctl(cache);
7779
7780 btrfs_set_block_group_used(&cache->item, bytes_used);
7781 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7782 cache->flags = type;
7783 btrfs_set_block_group_flags(&cache->item, type);
7784
7785 cache->last_byte_to_unpin = (u64)-1;
7786 cache->cached = BTRFS_CACHE_FINISHED;
7787 exclude_super_stripes(root, cache);
7788
7789 add_new_free_space(cache, root->fs_info, chunk_offset,
7790 chunk_offset + size);
7791
7792 free_excluded_extents(root, cache);
7793
7794 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7795 &cache->space_info);
7796 BUG_ON(ret); /* -ENOMEM */
7797 update_global_block_rsv(root->fs_info);
7798
7799 spin_lock(&cache->space_info->lock);
7800 cache->space_info->bytes_readonly += cache->bytes_super;
7801 spin_unlock(&cache->space_info->lock);
7802
7803 __link_block_group(cache->space_info, cache);
7804
7805 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7806 BUG_ON(ret); /* Logic error */
7807
7808 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7809 sizeof(cache->item));
7810 if (ret) {
7811 btrfs_abort_transaction(trans, extent_root, ret);
7812 return ret;
7813 }
7814
7815 set_avail_alloc_bits(extent_root->fs_info, type);
7816
7817 return 0;
7818 }
7819
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)7820 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7821 {
7822 u64 extra_flags = chunk_to_extended(flags) &
7823 BTRFS_EXTENDED_PROFILE_MASK;
7824
7825 if (flags & BTRFS_BLOCK_GROUP_DATA)
7826 fs_info->avail_data_alloc_bits &= ~extra_flags;
7827 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7828 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7829 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7830 fs_info->avail_system_alloc_bits &= ~extra_flags;
7831 }
7832
btrfs_remove_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 group_start)7833 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7834 struct btrfs_root *root, u64 group_start)
7835 {
7836 struct btrfs_path *path;
7837 struct btrfs_block_group_cache *block_group;
7838 struct btrfs_free_cluster *cluster;
7839 struct btrfs_root *tree_root = root->fs_info->tree_root;
7840 struct btrfs_key key;
7841 struct inode *inode;
7842 int ret;
7843 int index;
7844 int factor;
7845
7846 root = root->fs_info->extent_root;
7847
7848 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7849 BUG_ON(!block_group);
7850 BUG_ON(!block_group->ro);
7851
7852 /*
7853 * Free the reserved super bytes from this block group before
7854 * remove it.
7855 */
7856 free_excluded_extents(root, block_group);
7857
7858 memcpy(&key, &block_group->key, sizeof(key));
7859 index = get_block_group_index(block_group);
7860 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7861 BTRFS_BLOCK_GROUP_RAID1 |
7862 BTRFS_BLOCK_GROUP_RAID10))
7863 factor = 2;
7864 else
7865 factor = 1;
7866
7867 /* make sure this block group isn't part of an allocation cluster */
7868 cluster = &root->fs_info->data_alloc_cluster;
7869 spin_lock(&cluster->refill_lock);
7870 btrfs_return_cluster_to_free_space(block_group, cluster);
7871 spin_unlock(&cluster->refill_lock);
7872
7873 /*
7874 * make sure this block group isn't part of a metadata
7875 * allocation cluster
7876 */
7877 cluster = &root->fs_info->meta_alloc_cluster;
7878 spin_lock(&cluster->refill_lock);
7879 btrfs_return_cluster_to_free_space(block_group, cluster);
7880 spin_unlock(&cluster->refill_lock);
7881
7882 path = btrfs_alloc_path();
7883 if (!path) {
7884 ret = -ENOMEM;
7885 goto out;
7886 }
7887
7888 inode = lookup_free_space_inode(tree_root, block_group, path);
7889 if (!IS_ERR(inode)) {
7890 ret = btrfs_orphan_add(trans, inode);
7891 if (ret) {
7892 btrfs_add_delayed_iput(inode);
7893 goto out;
7894 }
7895 clear_nlink(inode);
7896 /* One for the block groups ref */
7897 spin_lock(&block_group->lock);
7898 if (block_group->iref) {
7899 block_group->iref = 0;
7900 block_group->inode = NULL;
7901 spin_unlock(&block_group->lock);
7902 iput(inode);
7903 } else {
7904 spin_unlock(&block_group->lock);
7905 }
7906 /* One for our lookup ref */
7907 btrfs_add_delayed_iput(inode);
7908 }
7909
7910 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7911 key.offset = block_group->key.objectid;
7912 key.type = 0;
7913
7914 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7915 if (ret < 0)
7916 goto out;
7917 if (ret > 0)
7918 btrfs_release_path(path);
7919 if (ret == 0) {
7920 ret = btrfs_del_item(trans, tree_root, path);
7921 if (ret)
7922 goto out;
7923 btrfs_release_path(path);
7924 }
7925
7926 spin_lock(&root->fs_info->block_group_cache_lock);
7927 rb_erase(&block_group->cache_node,
7928 &root->fs_info->block_group_cache_tree);
7929 spin_unlock(&root->fs_info->block_group_cache_lock);
7930
7931 down_write(&block_group->space_info->groups_sem);
7932 /*
7933 * we must use list_del_init so people can check to see if they
7934 * are still on the list after taking the semaphore
7935 */
7936 list_del_init(&block_group->list);
7937 if (list_empty(&block_group->space_info->block_groups[index]))
7938 clear_avail_alloc_bits(root->fs_info, block_group->flags);
7939 up_write(&block_group->space_info->groups_sem);
7940
7941 if (block_group->cached == BTRFS_CACHE_STARTED)
7942 wait_block_group_cache_done(block_group);
7943
7944 btrfs_remove_free_space_cache(block_group);
7945
7946 spin_lock(&block_group->space_info->lock);
7947 block_group->space_info->total_bytes -= block_group->key.offset;
7948 block_group->space_info->bytes_readonly -= block_group->key.offset;
7949 block_group->space_info->disk_total -= block_group->key.offset * factor;
7950 spin_unlock(&block_group->space_info->lock);
7951
7952 memcpy(&key, &block_group->key, sizeof(key));
7953
7954 btrfs_clear_space_info_full(root->fs_info);
7955
7956 btrfs_put_block_group(block_group);
7957 btrfs_put_block_group(block_group);
7958
7959 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7960 if (ret > 0)
7961 ret = -EIO;
7962 if (ret < 0)
7963 goto out;
7964
7965 ret = btrfs_del_item(trans, root, path);
7966 out:
7967 btrfs_free_path(path);
7968 return ret;
7969 }
7970
btrfs_init_space_info(struct btrfs_fs_info * fs_info)7971 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7972 {
7973 struct btrfs_space_info *space_info;
7974 struct btrfs_super_block *disk_super;
7975 u64 features;
7976 u64 flags;
7977 int mixed = 0;
7978 int ret;
7979
7980 disk_super = fs_info->super_copy;
7981 if (!btrfs_super_root(disk_super))
7982 return 1;
7983
7984 features = btrfs_super_incompat_flags(disk_super);
7985 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7986 mixed = 1;
7987
7988 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7989 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7990 if (ret)
7991 goto out;
7992
7993 if (mixed) {
7994 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7995 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7996 } else {
7997 flags = BTRFS_BLOCK_GROUP_METADATA;
7998 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7999 if (ret)
8000 goto out;
8001
8002 flags = BTRFS_BLOCK_GROUP_DATA;
8003 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8004 }
8005 out:
8006 return ret;
8007 }
8008
btrfs_error_unpin_extent_range(struct btrfs_root * root,u64 start,u64 end)8009 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8010 {
8011 return unpin_extent_range(root, start, end);
8012 }
8013
btrfs_error_discard_extent(struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 * actual_bytes)8014 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8015 u64 num_bytes, u64 *actual_bytes)
8016 {
8017 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8018 }
8019
btrfs_trim_fs(struct btrfs_root * root,struct fstrim_range * range)8020 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8021 {
8022 struct btrfs_fs_info *fs_info = root->fs_info;
8023 struct btrfs_block_group_cache *cache = NULL;
8024 u64 group_trimmed;
8025 u64 start;
8026 u64 end;
8027 u64 trimmed = 0;
8028 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8029 int ret = 0;
8030
8031 /*
8032 * try to trim all FS space, our block group may start from non-zero.
8033 */
8034 if (range->len == total_bytes)
8035 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8036 else
8037 cache = btrfs_lookup_block_group(fs_info, range->start);
8038
8039 while (cache) {
8040 if (cache->key.objectid >= (range->start + range->len)) {
8041 btrfs_put_block_group(cache);
8042 break;
8043 }
8044
8045 start = max(range->start, cache->key.objectid);
8046 end = min(range->start + range->len,
8047 cache->key.objectid + cache->key.offset);
8048
8049 if (end - start >= range->minlen) {
8050 if (!block_group_cache_done(cache)) {
8051 ret = cache_block_group(cache, NULL, root, 0);
8052 if (!ret)
8053 wait_block_group_cache_done(cache);
8054 }
8055 ret = btrfs_trim_block_group(cache,
8056 &group_trimmed,
8057 start,
8058 end,
8059 range->minlen);
8060
8061 trimmed += group_trimmed;
8062 if (ret) {
8063 btrfs_put_block_group(cache);
8064 break;
8065 }
8066 }
8067
8068 cache = next_block_group(fs_info->tree_root, cache);
8069 }
8070
8071 range->len = trimmed;
8072 return ret;
8073 }
8074