1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <asm/unaligned.h>
33 #include "compat.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "print-tree.h"
40 #include "async-thread.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 
45 static struct extent_io_ops btree_extent_io_ops;
46 static void end_workqueue_fn(struct btrfs_work *work);
47 static void free_fs_root(struct btrfs_root *root);
48 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
49 				    int read_only);
50 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
51 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
52 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
53 				      struct btrfs_root *root);
54 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
55 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
56 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
57 					struct extent_io_tree *dirty_pages,
58 					int mark);
59 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
60 				       struct extent_io_tree *pinned_extents);
61 static int btrfs_cleanup_transaction(struct btrfs_root *root);
62 
63 /*
64  * end_io_wq structs are used to do processing in task context when an IO is
65  * complete.  This is used during reads to verify checksums, and it is used
66  * by writes to insert metadata for new file extents after IO is complete.
67  */
68 struct end_io_wq {
69 	struct bio *bio;
70 	bio_end_io_t *end_io;
71 	void *private;
72 	struct btrfs_fs_info *info;
73 	int error;
74 	int metadata;
75 	struct list_head list;
76 	struct btrfs_work work;
77 };
78 
79 /*
80  * async submit bios are used to offload expensive checksumming
81  * onto the worker threads.  They checksum file and metadata bios
82  * just before they are sent down the IO stack.
83  */
84 struct async_submit_bio {
85 	struct inode *inode;
86 	struct bio *bio;
87 	struct list_head list;
88 	extent_submit_bio_hook_t *submit_bio_start;
89 	extent_submit_bio_hook_t *submit_bio_done;
90 	int rw;
91 	int mirror_num;
92 	unsigned long bio_flags;
93 	/*
94 	 * bio_offset is optional, can be used if the pages in the bio
95 	 * can't tell us where in the file the bio should go
96 	 */
97 	u64 bio_offset;
98 	struct btrfs_work work;
99 };
100 
101 /* These are used to set the lockdep class on the extent buffer locks.
102  * The class is set by the readpage_end_io_hook after the buffer has
103  * passed csum validation but before the pages are unlocked.
104  *
105  * The lockdep class is also set by btrfs_init_new_buffer on freshly
106  * allocated blocks.
107  *
108  * The class is based on the level in the tree block, which allows lockdep
109  * to know that lower nodes nest inside the locks of higher nodes.
110  *
111  * We also add a check to make sure the highest level of the tree is
112  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
113  * code needs update as well.
114  */
115 #ifdef CONFIG_DEBUG_LOCK_ALLOC
116 # if BTRFS_MAX_LEVEL != 8
117 #  error
118 # endif
119 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
120 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
121 	/* leaf */
122 	"btrfs-extent-00",
123 	"btrfs-extent-01",
124 	"btrfs-extent-02",
125 	"btrfs-extent-03",
126 	"btrfs-extent-04",
127 	"btrfs-extent-05",
128 	"btrfs-extent-06",
129 	"btrfs-extent-07",
130 	/* highest possible level */
131 	"btrfs-extent-08",
132 };
133 #endif
134 
135 /*
136  * extents on the btree inode are pretty simple, there's one extent
137  * that covers the entire device
138  */
btree_get_extent(struct inode * inode,struct page * page,size_t page_offset,u64 start,u64 len,int create)139 static struct extent_map *btree_get_extent(struct inode *inode,
140 		struct page *page, size_t page_offset, u64 start, u64 len,
141 		int create)
142 {
143 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
144 	struct extent_map *em;
145 	int ret;
146 
147 	read_lock(&em_tree->lock);
148 	em = lookup_extent_mapping(em_tree, start, len);
149 	if (em) {
150 		em->bdev =
151 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
152 		read_unlock(&em_tree->lock);
153 		goto out;
154 	}
155 	read_unlock(&em_tree->lock);
156 
157 	em = alloc_extent_map(GFP_NOFS);
158 	if (!em) {
159 		em = ERR_PTR(-ENOMEM);
160 		goto out;
161 	}
162 	em->start = 0;
163 	em->len = (u64)-1;
164 	em->block_len = (u64)-1;
165 	em->block_start = 0;
166 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
167 
168 	write_lock(&em_tree->lock);
169 	ret = add_extent_mapping(em_tree, em);
170 	if (ret == -EEXIST) {
171 		u64 failed_start = em->start;
172 		u64 failed_len = em->len;
173 
174 		free_extent_map(em);
175 		em = lookup_extent_mapping(em_tree, start, len);
176 		if (em) {
177 			ret = 0;
178 		} else {
179 			em = lookup_extent_mapping(em_tree, failed_start,
180 						   failed_len);
181 			ret = -EIO;
182 		}
183 	} else if (ret) {
184 		free_extent_map(em);
185 		em = NULL;
186 	}
187 	write_unlock(&em_tree->lock);
188 
189 	if (ret)
190 		em = ERR_PTR(ret);
191 out:
192 	return em;
193 }
194 
btrfs_csum_data(struct btrfs_root * root,char * data,u32 seed,size_t len)195 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
196 {
197 	return crc32c(seed, data, len);
198 }
199 
btrfs_csum_final(u32 crc,char * result)200 void btrfs_csum_final(u32 crc, char *result)
201 {
202 	put_unaligned_le32(~crc, result);
203 }
204 
205 /*
206  * compute the csum for a btree block, and either verify it or write it
207  * into the csum field of the block.
208  */
csum_tree_block(struct btrfs_root * root,struct extent_buffer * buf,int verify)209 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
210 			   int verify)
211 {
212 	u16 csum_size =
213 		btrfs_super_csum_size(&root->fs_info->super_copy);
214 	char *result = NULL;
215 	unsigned long len;
216 	unsigned long cur_len;
217 	unsigned long offset = BTRFS_CSUM_SIZE;
218 	char *map_token = NULL;
219 	char *kaddr;
220 	unsigned long map_start;
221 	unsigned long map_len;
222 	int err;
223 	u32 crc = ~(u32)0;
224 	unsigned long inline_result;
225 
226 	len = buf->len - offset;
227 	while (len > 0) {
228 		err = map_private_extent_buffer(buf, offset, 32,
229 					&map_token, &kaddr,
230 					&map_start, &map_len, KM_USER0);
231 		if (err)
232 			return 1;
233 		cur_len = min(len, map_len - (offset - map_start));
234 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
235 				      crc, cur_len);
236 		len -= cur_len;
237 		offset += cur_len;
238 		unmap_extent_buffer(buf, map_token, KM_USER0);
239 	}
240 	if (csum_size > sizeof(inline_result)) {
241 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
242 		if (!result)
243 			return 1;
244 	} else {
245 		result = (char *)&inline_result;
246 	}
247 
248 	btrfs_csum_final(crc, result);
249 
250 	if (verify) {
251 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
252 			u32 val;
253 			u32 found = 0;
254 			memcpy(&found, result, csum_size);
255 
256 			read_extent_buffer(buf, &val, 0, csum_size);
257 			if (printk_ratelimit()) {
258 				printk(KERN_INFO "btrfs: %s checksum verify "
259 				       "failed on %llu wanted %X found %X "
260 				       "level %d\n",
261 				       root->fs_info->sb->s_id,
262 				       (unsigned long long)buf->start, val, found,
263 				       btrfs_header_level(buf));
264 			}
265 			if (result != (char *)&inline_result)
266 				kfree(result);
267 			return 1;
268 		}
269 	} else {
270 		write_extent_buffer(buf, result, 0, csum_size);
271 	}
272 	if (result != (char *)&inline_result)
273 		kfree(result);
274 	return 0;
275 }
276 
277 /*
278  * we can't consider a given block up to date unless the transid of the
279  * block matches the transid in the parent node's pointer.  This is how we
280  * detect blocks that either didn't get written at all or got written
281  * in the wrong place.
282  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid)283 static int verify_parent_transid(struct extent_io_tree *io_tree,
284 				 struct extent_buffer *eb, u64 parent_transid)
285 {
286 	struct extent_state *cached_state = NULL;
287 	int ret;
288 
289 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
290 		return 0;
291 
292 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
293 			 0, &cached_state, GFP_NOFS);
294 	if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
295 	    btrfs_header_generation(eb) == parent_transid) {
296 		ret = 0;
297 		goto out;
298 	}
299 	if (printk_ratelimit()) {
300 		printk("parent transid verify failed on %llu wanted %llu "
301 		       "found %llu\n",
302 		       (unsigned long long)eb->start,
303 		       (unsigned long long)parent_transid,
304 		       (unsigned long long)btrfs_header_generation(eb));
305 	}
306 	ret = 1;
307 	clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
308 out:
309 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
310 			     &cached_state, GFP_NOFS);
311 	return ret;
312 }
313 
314 /*
315  * helper to read a given tree block, doing retries as required when
316  * the checksums don't match and we have alternate mirrors to try.
317  */
btree_read_extent_buffer_pages(struct btrfs_root * root,struct extent_buffer * eb,u64 start,u64 parent_transid)318 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
319 					  struct extent_buffer *eb,
320 					  u64 start, u64 parent_transid)
321 {
322 	struct extent_io_tree *io_tree;
323 	int ret;
324 	int num_copies = 0;
325 	int mirror_num = 0;
326 
327 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
328 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
329 	while (1) {
330 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
331 					       btree_get_extent, mirror_num);
332 		if (!ret &&
333 		    !verify_parent_transid(io_tree, eb, parent_transid))
334 			return ret;
335 
336 		/*
337 		 * This buffer's crc is fine, but its contents are corrupted, so
338 		 * there is no reason to read the other copies, they won't be
339 		 * any less wrong.
340 		 */
341 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
342 			return ret;
343 
344 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
345 					      eb->start, eb->len);
346 		if (num_copies == 1)
347 			return ret;
348 
349 		mirror_num++;
350 		if (mirror_num > num_copies)
351 			return ret;
352 	}
353 	return -EIO;
354 }
355 
356 /*
357  * checksum a dirty tree block before IO.  This has extra checks to make sure
358  * we only fill in the checksum field in the first page of a multi-page block
359  */
360 
csum_dirty_buffer(struct btrfs_root * root,struct page * page)361 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
362 {
363 	struct extent_io_tree *tree;
364 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
365 	u64 found_start;
366 	unsigned long len;
367 	struct extent_buffer *eb;
368 	int ret;
369 
370 	tree = &BTRFS_I(page->mapping->host)->io_tree;
371 
372 	if (page->private == EXTENT_PAGE_PRIVATE) {
373 		WARN_ON(1);
374 		goto out;
375 	}
376 	if (!page->private) {
377 		WARN_ON(1);
378 		goto out;
379 	}
380 	len = page->private >> 2;
381 	WARN_ON(len == 0);
382 
383 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
384 	if (eb == NULL) {
385 		WARN_ON(1);
386 		goto out;
387 	}
388 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
389 					     btrfs_header_generation(eb));
390 	BUG_ON(ret);
391 	WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
392 
393 	found_start = btrfs_header_bytenr(eb);
394 	if (found_start != start) {
395 		WARN_ON(1);
396 		goto err;
397 	}
398 	if (eb->first_page != page) {
399 		WARN_ON(1);
400 		goto err;
401 	}
402 	if (!PageUptodate(page)) {
403 		WARN_ON(1);
404 		goto err;
405 	}
406 	csum_tree_block(root, eb, 0);
407 err:
408 	free_extent_buffer(eb);
409 out:
410 	return 0;
411 }
412 
check_tree_block_fsid(struct btrfs_root * root,struct extent_buffer * eb)413 static int check_tree_block_fsid(struct btrfs_root *root,
414 				 struct extent_buffer *eb)
415 {
416 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
417 	u8 fsid[BTRFS_UUID_SIZE];
418 	int ret = 1;
419 
420 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
421 			   BTRFS_FSID_SIZE);
422 	while (fs_devices) {
423 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
424 			ret = 0;
425 			break;
426 		}
427 		fs_devices = fs_devices->seed;
428 	}
429 	return ret;
430 }
431 
432 #define CORRUPT(reason, eb, root, slot)				\
433 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
434 	       "root=%llu, slot=%d\n", reason,			\
435 	       (unsigned long long)btrfs_header_bytenr(eb),	\
436 	       (unsigned long long)root->objectid, slot)
437 
check_leaf(struct btrfs_root * root,struct extent_buffer * leaf)438 static noinline int check_leaf(struct btrfs_root *root,
439 			       struct extent_buffer *leaf)
440 {
441 	struct btrfs_key key;
442 	struct btrfs_key leaf_key;
443 	u32 nritems = btrfs_header_nritems(leaf);
444 	int slot;
445 
446 	if (nritems == 0)
447 		return 0;
448 
449 	/* Check the 0 item */
450 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
451 	    BTRFS_LEAF_DATA_SIZE(root)) {
452 		CORRUPT("invalid item offset size pair", leaf, root, 0);
453 		return -EIO;
454 	}
455 
456 	/*
457 	 * Check to make sure each items keys are in the correct order and their
458 	 * offsets make sense.  We only have to loop through nritems-1 because
459 	 * we check the current slot against the next slot, which verifies the
460 	 * next slot's offset+size makes sense and that the current's slot
461 	 * offset is correct.
462 	 */
463 	for (slot = 0; slot < nritems - 1; slot++) {
464 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
465 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
466 
467 		/* Make sure the keys are in the right order */
468 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
469 			CORRUPT("bad key order", leaf, root, slot);
470 			return -EIO;
471 		}
472 
473 		/*
474 		 * Make sure the offset and ends are right, remember that the
475 		 * item data starts at the end of the leaf and grows towards the
476 		 * front.
477 		 */
478 		if (btrfs_item_offset_nr(leaf, slot) !=
479 			btrfs_item_end_nr(leaf, slot + 1)) {
480 			CORRUPT("slot offset bad", leaf, root, slot);
481 			return -EIO;
482 		}
483 
484 		/*
485 		 * Check to make sure that we don't point outside of the leaf,
486 		 * just incase all the items are consistent to eachother, but
487 		 * all point outside of the leaf.
488 		 */
489 		if (btrfs_item_end_nr(leaf, slot) >
490 		    BTRFS_LEAF_DATA_SIZE(root)) {
491 			CORRUPT("slot end outside of leaf", leaf, root, slot);
492 			return -EIO;
493 		}
494 	}
495 
496 	return 0;
497 }
498 
499 #ifdef CONFIG_DEBUG_LOCK_ALLOC
btrfs_set_buffer_lockdep_class(struct extent_buffer * eb,int level)500 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
501 {
502 	lockdep_set_class_and_name(&eb->lock,
503 			   &btrfs_eb_class[level],
504 			   btrfs_eb_name[level]);
505 }
506 #endif
507 
btree_readpage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state)508 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
509 			       struct extent_state *state)
510 {
511 	struct extent_io_tree *tree;
512 	u64 found_start;
513 	int found_level;
514 	unsigned long len;
515 	struct extent_buffer *eb;
516 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
517 	int ret = 0;
518 
519 	tree = &BTRFS_I(page->mapping->host)->io_tree;
520 	if (page->private == EXTENT_PAGE_PRIVATE)
521 		goto out;
522 	if (!page->private)
523 		goto out;
524 
525 	len = page->private >> 2;
526 	WARN_ON(len == 0);
527 
528 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
529 	if (eb == NULL) {
530 		ret = -EIO;
531 		goto out;
532 	}
533 
534 	found_start = btrfs_header_bytenr(eb);
535 	if (found_start != start) {
536 		if (printk_ratelimit()) {
537 			printk(KERN_INFO "btrfs bad tree block start "
538 			       "%llu %llu\n",
539 			       (unsigned long long)found_start,
540 			       (unsigned long long)eb->start);
541 		}
542 		ret = -EIO;
543 		goto err;
544 	}
545 	if (eb->first_page != page) {
546 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
547 		       eb->first_page->index, page->index);
548 		WARN_ON(1);
549 		ret = -EIO;
550 		goto err;
551 	}
552 	if (check_tree_block_fsid(root, eb)) {
553 		if (printk_ratelimit()) {
554 			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
555 			       (unsigned long long)eb->start);
556 		}
557 		ret = -EIO;
558 		goto err;
559 	}
560 	found_level = btrfs_header_level(eb);
561 
562 	btrfs_set_buffer_lockdep_class(eb, found_level);
563 
564 	ret = csum_tree_block(root, eb, 1);
565 	if (ret) {
566 		ret = -EIO;
567 		goto err;
568 	}
569 
570 	/*
571 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
572 	 * that we don't try and read the other copies of this block, just
573 	 * return -EIO.
574 	 */
575 	if (found_level == 0 && check_leaf(root, eb)) {
576 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
577 		ret = -EIO;
578 	}
579 
580 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
581 	end = eb->start + end - 1;
582 err:
583 	free_extent_buffer(eb);
584 out:
585 	return ret;
586 }
587 
end_workqueue_bio(struct bio * bio,int err)588 static void end_workqueue_bio(struct bio *bio, int err)
589 {
590 	struct end_io_wq *end_io_wq = bio->bi_private;
591 	struct btrfs_fs_info *fs_info;
592 
593 	fs_info = end_io_wq->info;
594 	end_io_wq->error = err;
595 	end_io_wq->work.func = end_workqueue_fn;
596 	end_io_wq->work.flags = 0;
597 
598 	if (bio->bi_rw & REQ_WRITE) {
599 		if (end_io_wq->metadata == 1)
600 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
601 					   &end_io_wq->work);
602 		else if (end_io_wq->metadata == 2)
603 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
604 					   &end_io_wq->work);
605 		else
606 			btrfs_queue_worker(&fs_info->endio_write_workers,
607 					   &end_io_wq->work);
608 	} else {
609 		if (end_io_wq->metadata)
610 			btrfs_queue_worker(&fs_info->endio_meta_workers,
611 					   &end_io_wq->work);
612 		else
613 			btrfs_queue_worker(&fs_info->endio_workers,
614 					   &end_io_wq->work);
615 	}
616 }
617 
618 /*
619  * For the metadata arg you want
620  *
621  * 0 - if data
622  * 1 - if normal metadta
623  * 2 - if writing to the free space cache area
624  */
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,int metadata)625 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
626 			int metadata)
627 {
628 	struct end_io_wq *end_io_wq;
629 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
630 	if (!end_io_wq)
631 		return -ENOMEM;
632 
633 	end_io_wq->private = bio->bi_private;
634 	end_io_wq->end_io = bio->bi_end_io;
635 	end_io_wq->info = info;
636 	end_io_wq->error = 0;
637 	end_io_wq->bio = bio;
638 	end_io_wq->metadata = metadata;
639 
640 	bio->bi_private = end_io_wq;
641 	bio->bi_end_io = end_workqueue_bio;
642 	return 0;
643 }
644 
btrfs_async_submit_limit(struct btrfs_fs_info * info)645 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
646 {
647 	unsigned long limit = min_t(unsigned long,
648 				    info->workers.max_workers,
649 				    info->fs_devices->open_devices);
650 	return 256 * limit;
651 }
652 
btrfs_congested_async(struct btrfs_fs_info * info,int iodone)653 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
654 {
655 	return atomic_read(&info->nr_async_bios) >
656 		btrfs_async_submit_limit(info);
657 }
658 
run_one_async_start(struct btrfs_work * work)659 static void run_one_async_start(struct btrfs_work *work)
660 {
661 	struct async_submit_bio *async;
662 
663 	async = container_of(work, struct  async_submit_bio, work);
664 	async->submit_bio_start(async->inode, async->rw, async->bio,
665 			       async->mirror_num, async->bio_flags,
666 			       async->bio_offset);
667 }
668 
run_one_async_done(struct btrfs_work * work)669 static void run_one_async_done(struct btrfs_work *work)
670 {
671 	struct btrfs_fs_info *fs_info;
672 	struct async_submit_bio *async;
673 	int limit;
674 
675 	async = container_of(work, struct  async_submit_bio, work);
676 	fs_info = BTRFS_I(async->inode)->root->fs_info;
677 
678 	limit = btrfs_async_submit_limit(fs_info);
679 	limit = limit * 2 / 3;
680 
681 	atomic_dec(&fs_info->nr_async_submits);
682 
683 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
684 	    waitqueue_active(&fs_info->async_submit_wait))
685 		wake_up(&fs_info->async_submit_wait);
686 
687 	async->submit_bio_done(async->inode, async->rw, async->bio,
688 			       async->mirror_num, async->bio_flags,
689 			       async->bio_offset);
690 }
691 
run_one_async_free(struct btrfs_work * work)692 static void run_one_async_free(struct btrfs_work *work)
693 {
694 	struct async_submit_bio *async;
695 
696 	async = container_of(work, struct  async_submit_bio, work);
697 	kfree(async);
698 }
699 
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,extent_submit_bio_hook_t * submit_bio_start,extent_submit_bio_hook_t * submit_bio_done)700 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
701 			int rw, struct bio *bio, int mirror_num,
702 			unsigned long bio_flags,
703 			u64 bio_offset,
704 			extent_submit_bio_hook_t *submit_bio_start,
705 			extent_submit_bio_hook_t *submit_bio_done)
706 {
707 	struct async_submit_bio *async;
708 
709 	async = kmalloc(sizeof(*async), GFP_NOFS);
710 	if (!async)
711 		return -ENOMEM;
712 
713 	async->inode = inode;
714 	async->rw = rw;
715 	async->bio = bio;
716 	async->mirror_num = mirror_num;
717 	async->submit_bio_start = submit_bio_start;
718 	async->submit_bio_done = submit_bio_done;
719 
720 	async->work.func = run_one_async_start;
721 	async->work.ordered_func = run_one_async_done;
722 	async->work.ordered_free = run_one_async_free;
723 
724 	async->work.flags = 0;
725 	async->bio_flags = bio_flags;
726 	async->bio_offset = bio_offset;
727 
728 	atomic_inc(&fs_info->nr_async_submits);
729 
730 	if (rw & REQ_SYNC)
731 		btrfs_set_work_high_prio(&async->work);
732 
733 	btrfs_queue_worker(&fs_info->workers, &async->work);
734 
735 	while (atomic_read(&fs_info->async_submit_draining) &&
736 	      atomic_read(&fs_info->nr_async_submits)) {
737 		wait_event(fs_info->async_submit_wait,
738 			   (atomic_read(&fs_info->nr_async_submits) == 0));
739 	}
740 
741 	return 0;
742 }
743 
btree_csum_one_bio(struct bio * bio)744 static int btree_csum_one_bio(struct bio *bio)
745 {
746 	struct bio_vec *bvec = bio->bi_io_vec;
747 	int bio_index = 0;
748 	struct btrfs_root *root;
749 
750 	WARN_ON(bio->bi_vcnt <= 0);
751 	while (bio_index < bio->bi_vcnt) {
752 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
753 		csum_dirty_buffer(root, bvec->bv_page);
754 		bio_index++;
755 		bvec++;
756 	}
757 	return 0;
758 }
759 
__btree_submit_bio_start(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)760 static int __btree_submit_bio_start(struct inode *inode, int rw,
761 				    struct bio *bio, int mirror_num,
762 				    unsigned long bio_flags,
763 				    u64 bio_offset)
764 {
765 	/*
766 	 * when we're called for a write, we're already in the async
767 	 * submission context.  Just jump into btrfs_map_bio
768 	 */
769 	btree_csum_one_bio(bio);
770 	return 0;
771 }
772 
__btree_submit_bio_done(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)773 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
774 				 int mirror_num, unsigned long bio_flags,
775 				 u64 bio_offset)
776 {
777 	/*
778 	 * when we're called for a write, we're already in the async
779 	 * submission context.  Just jump into btrfs_map_bio
780 	 */
781 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
782 }
783 
btree_submit_bio_hook(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)784 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
785 				 int mirror_num, unsigned long bio_flags,
786 				 u64 bio_offset)
787 {
788 	int ret;
789 
790 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
791 					  bio, 1);
792 	BUG_ON(ret);
793 
794 	if (!(rw & REQ_WRITE)) {
795 		/*
796 		 * called for a read, do the setup so that checksum validation
797 		 * can happen in the async kernel threads
798 		 */
799 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
800 				     mirror_num, 0);
801 	}
802 
803 	/*
804 	 * kthread helpers are used to submit writes so that checksumming
805 	 * can happen in parallel across all CPUs
806 	 */
807 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
808 				   inode, rw, bio, mirror_num, 0,
809 				   bio_offset,
810 				   __btree_submit_bio_start,
811 				   __btree_submit_bio_done);
812 }
813 
814 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page)815 static int btree_migratepage(struct address_space *mapping,
816 			struct page *newpage, struct page *page)
817 {
818 	/*
819 	 * we can't safely write a btree page from here,
820 	 * we haven't done the locking hook
821 	 */
822 	if (PageDirty(page))
823 		return -EAGAIN;
824 	/*
825 	 * Buffers may be managed in a filesystem specific way.
826 	 * We must have no buffers or drop them.
827 	 */
828 	if (page_has_private(page) &&
829 	    !try_to_release_page(page, GFP_KERNEL))
830 		return -EAGAIN;
831 	return migrate_page(mapping, newpage, page);
832 }
833 #endif
834 
btree_writepage(struct page * page,struct writeback_control * wbc)835 static int btree_writepage(struct page *page, struct writeback_control *wbc)
836 {
837 	struct extent_io_tree *tree;
838 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
839 	struct extent_buffer *eb;
840 	int was_dirty;
841 
842 	tree = &BTRFS_I(page->mapping->host)->io_tree;
843 	if (!(current->flags & PF_MEMALLOC)) {
844 		return extent_write_full_page(tree, page,
845 					      btree_get_extent, wbc);
846 	}
847 
848 	redirty_page_for_writepage(wbc, page);
849 	eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
850 	WARN_ON(!eb);
851 
852 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
853 	if (!was_dirty) {
854 		spin_lock(&root->fs_info->delalloc_lock);
855 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
856 		spin_unlock(&root->fs_info->delalloc_lock);
857 	}
858 	free_extent_buffer(eb);
859 
860 	unlock_page(page);
861 	return 0;
862 }
863 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)864 static int btree_writepages(struct address_space *mapping,
865 			    struct writeback_control *wbc)
866 {
867 	struct extent_io_tree *tree;
868 	tree = &BTRFS_I(mapping->host)->io_tree;
869 	if (wbc->sync_mode == WB_SYNC_NONE) {
870 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
871 		u64 num_dirty;
872 		unsigned long thresh = 32 * 1024 * 1024;
873 
874 		if (wbc->for_kupdate)
875 			return 0;
876 
877 		/* this is a bit racy, but that's ok */
878 		num_dirty = root->fs_info->dirty_metadata_bytes;
879 		if (num_dirty < thresh)
880 			return 0;
881 	}
882 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
883 }
884 
btree_readpage(struct file * file,struct page * page)885 static int btree_readpage(struct file *file, struct page *page)
886 {
887 	struct extent_io_tree *tree;
888 	tree = &BTRFS_I(page->mapping->host)->io_tree;
889 	return extent_read_full_page(tree, page, btree_get_extent);
890 }
891 
btree_releasepage(struct page * page,gfp_t gfp_flags)892 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
893 {
894 	struct extent_io_tree *tree;
895 	struct extent_map_tree *map;
896 	int ret;
897 
898 	if (PageWriteback(page) || PageDirty(page))
899 		return 0;
900 
901 	tree = &BTRFS_I(page->mapping->host)->io_tree;
902 	map = &BTRFS_I(page->mapping->host)->extent_tree;
903 
904 	ret = try_release_extent_state(map, tree, page, gfp_flags);
905 	if (!ret)
906 		return 0;
907 
908 	ret = try_release_extent_buffer(tree, page);
909 	if (ret == 1) {
910 		ClearPagePrivate(page);
911 		set_page_private(page, 0);
912 		page_cache_release(page);
913 	}
914 
915 	return ret;
916 }
917 
btree_invalidatepage(struct page * page,unsigned long offset)918 static void btree_invalidatepage(struct page *page, unsigned long offset)
919 {
920 	struct extent_io_tree *tree;
921 	tree = &BTRFS_I(page->mapping->host)->io_tree;
922 	extent_invalidatepage(tree, page, offset);
923 	btree_releasepage(page, GFP_NOFS);
924 	if (PagePrivate(page)) {
925 		printk(KERN_WARNING "btrfs warning page private not zero "
926 		       "on page %llu\n", (unsigned long long)page_offset(page));
927 		ClearPagePrivate(page);
928 		set_page_private(page, 0);
929 		page_cache_release(page);
930 	}
931 }
932 
933 static const struct address_space_operations btree_aops = {
934 	.readpage	= btree_readpage,
935 	.writepage	= btree_writepage,
936 	.writepages	= btree_writepages,
937 	.releasepage	= btree_releasepage,
938 	.invalidatepage = btree_invalidatepage,
939 #ifdef CONFIG_MIGRATION
940 	.migratepage	= btree_migratepage,
941 #endif
942 };
943 
readahead_tree_block(struct btrfs_root * root,u64 bytenr,u32 blocksize,u64 parent_transid)944 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
945 			 u64 parent_transid)
946 {
947 	struct extent_buffer *buf = NULL;
948 	struct inode *btree_inode = root->fs_info->btree_inode;
949 	int ret = 0;
950 
951 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
952 	if (!buf)
953 		return 0;
954 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
955 				 buf, 0, 0, btree_get_extent, 0);
956 	free_extent_buffer(buf);
957 	return ret;
958 }
959 
btrfs_find_tree_block(struct btrfs_root * root,u64 bytenr,u32 blocksize)960 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
961 					    u64 bytenr, u32 blocksize)
962 {
963 	struct inode *btree_inode = root->fs_info->btree_inode;
964 	struct extent_buffer *eb;
965 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
966 				bytenr, blocksize, GFP_NOFS);
967 	return eb;
968 }
969 
btrfs_find_create_tree_block(struct btrfs_root * root,u64 bytenr,u32 blocksize)970 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
971 						 u64 bytenr, u32 blocksize)
972 {
973 	struct inode *btree_inode = root->fs_info->btree_inode;
974 	struct extent_buffer *eb;
975 
976 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
977 				 bytenr, blocksize, NULL, GFP_NOFS);
978 	return eb;
979 }
980 
981 
btrfs_write_tree_block(struct extent_buffer * buf)982 int btrfs_write_tree_block(struct extent_buffer *buf)
983 {
984 	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
985 					buf->start + buf->len - 1);
986 }
987 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)988 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
989 {
990 	return filemap_fdatawait_range(buf->first_page->mapping,
991 				       buf->start, buf->start + buf->len - 1);
992 }
993 
read_tree_block(struct btrfs_root * root,u64 bytenr,u32 blocksize,u64 parent_transid)994 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
995 				      u32 blocksize, u64 parent_transid)
996 {
997 	struct extent_buffer *buf = NULL;
998 	int ret;
999 
1000 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1001 	if (!buf)
1002 		return NULL;
1003 
1004 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1005 
1006 	if (ret == 0)
1007 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1008 	return buf;
1009 
1010 }
1011 
clean_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)1012 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1013 		     struct extent_buffer *buf)
1014 {
1015 	struct inode *btree_inode = root->fs_info->btree_inode;
1016 	if (btrfs_header_generation(buf) ==
1017 	    root->fs_info->running_transaction->transid) {
1018 		btrfs_assert_tree_locked(buf);
1019 
1020 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1021 			spin_lock(&root->fs_info->delalloc_lock);
1022 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1023 				root->fs_info->dirty_metadata_bytes -= buf->len;
1024 			else
1025 				WARN_ON(1);
1026 			spin_unlock(&root->fs_info->delalloc_lock);
1027 		}
1028 
1029 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1030 		btrfs_set_lock_blocking(buf);
1031 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1032 					  buf);
1033 	}
1034 	return 0;
1035 }
1036 
__setup_root(u32 nodesize,u32 leafsize,u32 sectorsize,u32 stripesize,struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1037 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1038 			u32 stripesize, struct btrfs_root *root,
1039 			struct btrfs_fs_info *fs_info,
1040 			u64 objectid)
1041 {
1042 	root->node = NULL;
1043 	root->commit_root = NULL;
1044 	root->sectorsize = sectorsize;
1045 	root->nodesize = nodesize;
1046 	root->leafsize = leafsize;
1047 	root->stripesize = stripesize;
1048 	root->ref_cows = 0;
1049 	root->track_dirty = 0;
1050 	root->in_radix = 0;
1051 	root->orphan_item_inserted = 0;
1052 	root->orphan_cleanup_state = 0;
1053 
1054 	root->fs_info = fs_info;
1055 	root->objectid = objectid;
1056 	root->last_trans = 0;
1057 	root->highest_objectid = 0;
1058 	root->name = NULL;
1059 	root->in_sysfs = 0;
1060 	root->inode_tree = RB_ROOT;
1061 	root->block_rsv = NULL;
1062 	root->orphan_block_rsv = NULL;
1063 
1064 	INIT_LIST_HEAD(&root->dirty_list);
1065 	INIT_LIST_HEAD(&root->orphan_list);
1066 	INIT_LIST_HEAD(&root->root_list);
1067 	spin_lock_init(&root->node_lock);
1068 	spin_lock_init(&root->orphan_lock);
1069 	spin_lock_init(&root->inode_lock);
1070 	spin_lock_init(&root->accounting_lock);
1071 	mutex_init(&root->objectid_mutex);
1072 	mutex_init(&root->log_mutex);
1073 	init_waitqueue_head(&root->log_writer_wait);
1074 	init_waitqueue_head(&root->log_commit_wait[0]);
1075 	init_waitqueue_head(&root->log_commit_wait[1]);
1076 	atomic_set(&root->log_commit[0], 0);
1077 	atomic_set(&root->log_commit[1], 0);
1078 	atomic_set(&root->log_writers, 0);
1079 	root->log_batch = 0;
1080 	root->log_transid = 0;
1081 	root->last_log_commit = 0;
1082 	extent_io_tree_init(&root->dirty_log_pages,
1083 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1084 
1085 	memset(&root->root_key, 0, sizeof(root->root_key));
1086 	memset(&root->root_item, 0, sizeof(root->root_item));
1087 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1088 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1089 	root->defrag_trans_start = fs_info->generation;
1090 	init_completion(&root->kobj_unregister);
1091 	root->defrag_running = 0;
1092 	root->root_key.objectid = objectid;
1093 	root->anon_super.s_root = NULL;
1094 	root->anon_super.s_dev = 0;
1095 	INIT_LIST_HEAD(&root->anon_super.s_list);
1096 	INIT_LIST_HEAD(&root->anon_super.s_instances);
1097 	init_rwsem(&root->anon_super.s_umount);
1098 
1099 	return 0;
1100 }
1101 
find_and_setup_root(struct btrfs_root * tree_root,struct btrfs_fs_info * fs_info,u64 objectid,struct btrfs_root * root)1102 static int find_and_setup_root(struct btrfs_root *tree_root,
1103 			       struct btrfs_fs_info *fs_info,
1104 			       u64 objectid,
1105 			       struct btrfs_root *root)
1106 {
1107 	int ret;
1108 	u32 blocksize;
1109 	u64 generation;
1110 
1111 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1112 		     tree_root->sectorsize, tree_root->stripesize,
1113 		     root, fs_info, objectid);
1114 	ret = btrfs_find_last_root(tree_root, objectid,
1115 				   &root->root_item, &root->root_key);
1116 	if (ret > 0)
1117 		return -ENOENT;
1118 	BUG_ON(ret);
1119 
1120 	generation = btrfs_root_generation(&root->root_item);
1121 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1122 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1123 				     blocksize, generation);
1124 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1125 		free_extent_buffer(root->node);
1126 		return -EIO;
1127 	}
1128 	root->commit_root = btrfs_root_node(root);
1129 	return 0;
1130 }
1131 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1132 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1133 					 struct btrfs_fs_info *fs_info)
1134 {
1135 	struct btrfs_root *root;
1136 	struct btrfs_root *tree_root = fs_info->tree_root;
1137 	struct extent_buffer *leaf;
1138 
1139 	root = kzalloc(sizeof(*root), GFP_NOFS);
1140 	if (!root)
1141 		return ERR_PTR(-ENOMEM);
1142 
1143 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1144 		     tree_root->sectorsize, tree_root->stripesize,
1145 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1146 
1147 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1148 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1149 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1150 	/*
1151 	 * log trees do not get reference counted because they go away
1152 	 * before a real commit is actually done.  They do store pointers
1153 	 * to file data extents, and those reference counts still get
1154 	 * updated (along with back refs to the log tree).
1155 	 */
1156 	root->ref_cows = 0;
1157 
1158 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1159 				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1160 	if (IS_ERR(leaf)) {
1161 		kfree(root);
1162 		return ERR_CAST(leaf);
1163 	}
1164 
1165 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1166 	btrfs_set_header_bytenr(leaf, leaf->start);
1167 	btrfs_set_header_generation(leaf, trans->transid);
1168 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1169 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1170 	root->node = leaf;
1171 
1172 	write_extent_buffer(root->node, root->fs_info->fsid,
1173 			    (unsigned long)btrfs_header_fsid(root->node),
1174 			    BTRFS_FSID_SIZE);
1175 	btrfs_mark_buffer_dirty(root->node);
1176 	btrfs_tree_unlock(root->node);
1177 	return root;
1178 }
1179 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1180 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1181 			     struct btrfs_fs_info *fs_info)
1182 {
1183 	struct btrfs_root *log_root;
1184 
1185 	log_root = alloc_log_tree(trans, fs_info);
1186 	if (IS_ERR(log_root))
1187 		return PTR_ERR(log_root);
1188 	WARN_ON(fs_info->log_root_tree);
1189 	fs_info->log_root_tree = log_root;
1190 	return 0;
1191 }
1192 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1193 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1194 		       struct btrfs_root *root)
1195 {
1196 	struct btrfs_root *log_root;
1197 	struct btrfs_inode_item *inode_item;
1198 
1199 	log_root = alloc_log_tree(trans, root->fs_info);
1200 	if (IS_ERR(log_root))
1201 		return PTR_ERR(log_root);
1202 
1203 	log_root->last_trans = trans->transid;
1204 	log_root->root_key.offset = root->root_key.objectid;
1205 
1206 	inode_item = &log_root->root_item.inode;
1207 	inode_item->generation = cpu_to_le64(1);
1208 	inode_item->size = cpu_to_le64(3);
1209 	inode_item->nlink = cpu_to_le32(1);
1210 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1211 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1212 
1213 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1214 
1215 	WARN_ON(root->log_root);
1216 	root->log_root = log_root;
1217 	root->log_transid = 0;
1218 	root->last_log_commit = 0;
1219 	return 0;
1220 }
1221 
btrfs_read_fs_root_no_radix(struct btrfs_root * tree_root,struct btrfs_key * location)1222 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1223 					       struct btrfs_key *location)
1224 {
1225 	struct btrfs_root *root;
1226 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1227 	struct btrfs_path *path;
1228 	struct extent_buffer *l;
1229 	u64 generation;
1230 	u32 blocksize;
1231 	int ret = 0;
1232 
1233 	root = kzalloc(sizeof(*root), GFP_NOFS);
1234 	if (!root)
1235 		return ERR_PTR(-ENOMEM);
1236 	if (location->offset == (u64)-1) {
1237 		ret = find_and_setup_root(tree_root, fs_info,
1238 					  location->objectid, root);
1239 		if (ret) {
1240 			kfree(root);
1241 			return ERR_PTR(ret);
1242 		}
1243 		goto out;
1244 	}
1245 
1246 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1247 		     tree_root->sectorsize, tree_root->stripesize,
1248 		     root, fs_info, location->objectid);
1249 
1250 	path = btrfs_alloc_path();
1251 	if (!path) {
1252 		kfree(root);
1253 		return ERR_PTR(-ENOMEM);
1254 	}
1255 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1256 	if (ret == 0) {
1257 		l = path->nodes[0];
1258 		read_extent_buffer(l, &root->root_item,
1259 				btrfs_item_ptr_offset(l, path->slots[0]),
1260 				sizeof(root->root_item));
1261 		memcpy(&root->root_key, location, sizeof(*location));
1262 	}
1263 	btrfs_free_path(path);
1264 	if (ret) {
1265 		kfree(root);
1266 		if (ret > 0)
1267 			ret = -ENOENT;
1268 		return ERR_PTR(ret);
1269 	}
1270 
1271 	generation = btrfs_root_generation(&root->root_item);
1272 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1273 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1274 				     blocksize, generation);
1275 	root->commit_root = btrfs_root_node(root);
1276 	BUG_ON(!root->node);
1277 out:
1278 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1279 		root->ref_cows = 1;
1280 		btrfs_check_and_init_root_item(&root->root_item);
1281 	}
1282 
1283 	return root;
1284 }
1285 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_objectid)1286 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1287 					u64 root_objectid)
1288 {
1289 	struct btrfs_root *root;
1290 
1291 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1292 		return fs_info->tree_root;
1293 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1294 		return fs_info->extent_root;
1295 
1296 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1297 				 (unsigned long)root_objectid);
1298 	return root;
1299 }
1300 
btrfs_read_fs_root_no_name(struct btrfs_fs_info * fs_info,struct btrfs_key * location)1301 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1302 					      struct btrfs_key *location)
1303 {
1304 	struct btrfs_root *root;
1305 	int ret;
1306 
1307 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1308 		return fs_info->tree_root;
1309 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1310 		return fs_info->extent_root;
1311 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1312 		return fs_info->chunk_root;
1313 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1314 		return fs_info->dev_root;
1315 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1316 		return fs_info->csum_root;
1317 again:
1318 	spin_lock(&fs_info->fs_roots_radix_lock);
1319 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1320 				 (unsigned long)location->objectid);
1321 	spin_unlock(&fs_info->fs_roots_radix_lock);
1322 	if (root)
1323 		return root;
1324 
1325 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1326 	if (IS_ERR(root))
1327 		return root;
1328 
1329 	set_anon_super(&root->anon_super, NULL);
1330 
1331 	if (btrfs_root_refs(&root->root_item) == 0) {
1332 		ret = -ENOENT;
1333 		goto fail;
1334 	}
1335 
1336 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1337 	if (ret < 0)
1338 		goto fail;
1339 	if (ret == 0)
1340 		root->orphan_item_inserted = 1;
1341 
1342 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1343 	if (ret)
1344 		goto fail;
1345 
1346 	spin_lock(&fs_info->fs_roots_radix_lock);
1347 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1348 				(unsigned long)root->root_key.objectid,
1349 				root);
1350 	if (ret == 0)
1351 		root->in_radix = 1;
1352 
1353 	spin_unlock(&fs_info->fs_roots_radix_lock);
1354 	radix_tree_preload_end();
1355 	if (ret) {
1356 		if (ret == -EEXIST) {
1357 			free_fs_root(root);
1358 			goto again;
1359 		}
1360 		goto fail;
1361 	}
1362 
1363 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1364 				    root->root_key.objectid);
1365 	WARN_ON(ret);
1366 	return root;
1367 fail:
1368 	free_fs_root(root);
1369 	return ERR_PTR(ret);
1370 }
1371 
btrfs_read_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,const char * name,int namelen)1372 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1373 				      struct btrfs_key *location,
1374 				      const char *name, int namelen)
1375 {
1376 	return btrfs_read_fs_root_no_name(fs_info, location);
1377 #if 0
1378 	struct btrfs_root *root;
1379 	int ret;
1380 
1381 	root = btrfs_read_fs_root_no_name(fs_info, location);
1382 	if (!root)
1383 		return NULL;
1384 
1385 	if (root->in_sysfs)
1386 		return root;
1387 
1388 	ret = btrfs_set_root_name(root, name, namelen);
1389 	if (ret) {
1390 		free_extent_buffer(root->node);
1391 		kfree(root);
1392 		return ERR_PTR(ret);
1393 	}
1394 
1395 	ret = btrfs_sysfs_add_root(root);
1396 	if (ret) {
1397 		free_extent_buffer(root->node);
1398 		kfree(root->name);
1399 		kfree(root);
1400 		return ERR_PTR(ret);
1401 	}
1402 	root->in_sysfs = 1;
1403 	return root;
1404 #endif
1405 }
1406 
btrfs_congested_fn(void * congested_data,int bdi_bits)1407 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1408 {
1409 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1410 	int ret = 0;
1411 	struct btrfs_device *device;
1412 	struct backing_dev_info *bdi;
1413 
1414 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1415 		if (!device->bdev)
1416 			continue;
1417 		bdi = blk_get_backing_dev_info(device->bdev);
1418 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1419 			ret = 1;
1420 			break;
1421 		}
1422 	}
1423 	return ret;
1424 }
1425 
1426 /*
1427  * If this fails, caller must call bdi_destroy() to get rid of the
1428  * bdi again.
1429  */
setup_bdi(struct btrfs_fs_info * info,struct backing_dev_info * bdi)1430 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1431 {
1432 	int err;
1433 
1434 	bdi->capabilities = BDI_CAP_MAP_COPY;
1435 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1436 	if (err)
1437 		return err;
1438 
1439 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1440 	bdi->congested_fn	= btrfs_congested_fn;
1441 	bdi->congested_data	= info;
1442 	return 0;
1443 }
1444 
bio_ready_for_csum(struct bio * bio)1445 static int bio_ready_for_csum(struct bio *bio)
1446 {
1447 	u64 length = 0;
1448 	u64 buf_len = 0;
1449 	u64 start = 0;
1450 	struct page *page;
1451 	struct extent_io_tree *io_tree = NULL;
1452 	struct bio_vec *bvec;
1453 	int i;
1454 	int ret;
1455 
1456 	bio_for_each_segment(bvec, bio, i) {
1457 		page = bvec->bv_page;
1458 		if (page->private == EXTENT_PAGE_PRIVATE) {
1459 			length += bvec->bv_len;
1460 			continue;
1461 		}
1462 		if (!page->private) {
1463 			length += bvec->bv_len;
1464 			continue;
1465 		}
1466 		length = bvec->bv_len;
1467 		buf_len = page->private >> 2;
1468 		start = page_offset(page) + bvec->bv_offset;
1469 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1470 	}
1471 	/* are we fully contained in this bio? */
1472 	if (buf_len <= length)
1473 		return 1;
1474 
1475 	ret = extent_range_uptodate(io_tree, start + length,
1476 				    start + buf_len - 1);
1477 	return ret;
1478 }
1479 
1480 /*
1481  * called by the kthread helper functions to finally call the bio end_io
1482  * functions.  This is where read checksum verification actually happens
1483  */
end_workqueue_fn(struct btrfs_work * work)1484 static void end_workqueue_fn(struct btrfs_work *work)
1485 {
1486 	struct bio *bio;
1487 	struct end_io_wq *end_io_wq;
1488 	struct btrfs_fs_info *fs_info;
1489 	int error;
1490 
1491 	end_io_wq = container_of(work, struct end_io_wq, work);
1492 	bio = end_io_wq->bio;
1493 	fs_info = end_io_wq->info;
1494 
1495 	/* metadata bio reads are special because the whole tree block must
1496 	 * be checksummed at once.  This makes sure the entire block is in
1497 	 * ram and up to date before trying to verify things.  For
1498 	 * blocksize <= pagesize, it is basically a noop
1499 	 */
1500 	if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1501 	    !bio_ready_for_csum(bio)) {
1502 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1503 				   &end_io_wq->work);
1504 		return;
1505 	}
1506 	error = end_io_wq->error;
1507 	bio->bi_private = end_io_wq->private;
1508 	bio->bi_end_io = end_io_wq->end_io;
1509 	kfree(end_io_wq);
1510 	bio_endio(bio, error);
1511 }
1512 
cleaner_kthread(void * arg)1513 static int cleaner_kthread(void *arg)
1514 {
1515 	struct btrfs_root *root = arg;
1516 
1517 	do {
1518 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1519 
1520 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1521 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1522 			btrfs_run_delayed_iputs(root);
1523 			btrfs_clean_old_snapshots(root);
1524 			mutex_unlock(&root->fs_info->cleaner_mutex);
1525 		}
1526 
1527 		if (freezing(current)) {
1528 			refrigerator();
1529 		} else {
1530 			set_current_state(TASK_INTERRUPTIBLE);
1531 			if (!kthread_should_stop())
1532 				schedule();
1533 			__set_current_state(TASK_RUNNING);
1534 		}
1535 	} while (!kthread_should_stop());
1536 	return 0;
1537 }
1538 
transaction_kthread(void * arg)1539 static int transaction_kthread(void *arg)
1540 {
1541 	struct btrfs_root *root = arg;
1542 	struct btrfs_trans_handle *trans;
1543 	struct btrfs_transaction *cur;
1544 	u64 transid;
1545 	unsigned long now;
1546 	unsigned long delay;
1547 	int ret;
1548 
1549 	do {
1550 		delay = HZ * 30;
1551 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1552 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1553 
1554 		spin_lock(&root->fs_info->new_trans_lock);
1555 		cur = root->fs_info->running_transaction;
1556 		if (!cur) {
1557 			spin_unlock(&root->fs_info->new_trans_lock);
1558 			goto sleep;
1559 		}
1560 
1561 		now = get_seconds();
1562 		if (!cur->blocked &&
1563 		    (now < cur->start_time || now - cur->start_time < 30)) {
1564 			spin_unlock(&root->fs_info->new_trans_lock);
1565 			delay = HZ * 5;
1566 			goto sleep;
1567 		}
1568 		transid = cur->transid;
1569 		spin_unlock(&root->fs_info->new_trans_lock);
1570 
1571 		trans = btrfs_join_transaction(root, 1);
1572 		BUG_ON(IS_ERR(trans));
1573 		if (transid == trans->transid) {
1574 			ret = btrfs_commit_transaction(trans, root);
1575 			BUG_ON(ret);
1576 		} else {
1577 			btrfs_end_transaction(trans, root);
1578 		}
1579 sleep:
1580 		wake_up_process(root->fs_info->cleaner_kthread);
1581 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1582 
1583 		if (freezing(current)) {
1584 			refrigerator();
1585 		} else {
1586 			set_current_state(TASK_INTERRUPTIBLE);
1587 			if (!kthread_should_stop() &&
1588 			    !btrfs_transaction_blocked(root->fs_info))
1589 				schedule_timeout(delay);
1590 			__set_current_state(TASK_RUNNING);
1591 		}
1592 	} while (!kthread_should_stop());
1593 	return 0;
1594 }
1595 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)1596 struct btrfs_root *open_ctree(struct super_block *sb,
1597 			      struct btrfs_fs_devices *fs_devices,
1598 			      char *options)
1599 {
1600 	u32 sectorsize;
1601 	u32 nodesize;
1602 	u32 leafsize;
1603 	u32 blocksize;
1604 	u32 stripesize;
1605 	u64 generation;
1606 	u64 features;
1607 	struct btrfs_key location;
1608 	struct buffer_head *bh;
1609 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1610 						 GFP_NOFS);
1611 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1612 						 GFP_NOFS);
1613 	struct btrfs_root *tree_root = btrfs_sb(sb);
1614 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1615 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1616 						GFP_NOFS);
1617 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1618 					      GFP_NOFS);
1619 	struct btrfs_root *log_tree_root;
1620 
1621 	int ret;
1622 	int err = -EINVAL;
1623 
1624 	struct btrfs_super_block *disk_super;
1625 
1626 	if (!extent_root || !tree_root || !fs_info ||
1627 	    !chunk_root || !dev_root || !csum_root) {
1628 		err = -ENOMEM;
1629 		goto fail;
1630 	}
1631 
1632 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1633 	if (ret) {
1634 		err = ret;
1635 		goto fail;
1636 	}
1637 
1638 	ret = setup_bdi(fs_info, &fs_info->bdi);
1639 	if (ret) {
1640 		err = ret;
1641 		goto fail_srcu;
1642 	}
1643 
1644 	fs_info->btree_inode = new_inode(sb);
1645 	if (!fs_info->btree_inode) {
1646 		err = -ENOMEM;
1647 		goto fail_bdi;
1648 	}
1649 
1650 	fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS;
1651 
1652 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1653 	INIT_LIST_HEAD(&fs_info->trans_list);
1654 	INIT_LIST_HEAD(&fs_info->dead_roots);
1655 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1656 	INIT_LIST_HEAD(&fs_info->hashers);
1657 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1658 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1659 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1660 	spin_lock_init(&fs_info->delalloc_lock);
1661 	spin_lock_init(&fs_info->new_trans_lock);
1662 	spin_lock_init(&fs_info->ref_cache_lock);
1663 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1664 	spin_lock_init(&fs_info->delayed_iput_lock);
1665 
1666 	init_completion(&fs_info->kobj_unregister);
1667 	fs_info->tree_root = tree_root;
1668 	fs_info->extent_root = extent_root;
1669 	fs_info->csum_root = csum_root;
1670 	fs_info->chunk_root = chunk_root;
1671 	fs_info->dev_root = dev_root;
1672 	fs_info->fs_devices = fs_devices;
1673 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1674 	INIT_LIST_HEAD(&fs_info->space_info);
1675 	btrfs_mapping_init(&fs_info->mapping_tree);
1676 	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1677 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1678 	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1679 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1680 	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1681 	INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1682 	mutex_init(&fs_info->durable_block_rsv_mutex);
1683 	atomic_set(&fs_info->nr_async_submits, 0);
1684 	atomic_set(&fs_info->async_delalloc_pages, 0);
1685 	atomic_set(&fs_info->async_submit_draining, 0);
1686 	atomic_set(&fs_info->nr_async_bios, 0);
1687 	fs_info->sb = sb;
1688 	fs_info->max_inline = 8192 * 1024;
1689 	fs_info->metadata_ratio = 0;
1690 
1691 	fs_info->thread_pool_size = min_t(unsigned long,
1692 					  num_online_cpus() + 2, 8);
1693 
1694 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1695 	spin_lock_init(&fs_info->ordered_extent_lock);
1696 
1697 	sb->s_blocksize = 4096;
1698 	sb->s_blocksize_bits = blksize_bits(4096);
1699 	sb->s_bdi = &fs_info->bdi;
1700 
1701 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1702 	fs_info->btree_inode->i_nlink = 1;
1703 	/*
1704 	 * we set the i_size on the btree inode to the max possible int.
1705 	 * the real end of the address space is determined by all of
1706 	 * the devices in the system
1707 	 */
1708 	fs_info->btree_inode->i_size = OFFSET_MAX;
1709 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1710 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1711 
1712 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1713 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1714 			     fs_info->btree_inode->i_mapping,
1715 			     GFP_NOFS);
1716 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1717 			     GFP_NOFS);
1718 
1719 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1720 
1721 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1722 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1723 	       sizeof(struct btrfs_key));
1724 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1725 	insert_inode_hash(fs_info->btree_inode);
1726 
1727 	spin_lock_init(&fs_info->block_group_cache_lock);
1728 	fs_info->block_group_cache_tree = RB_ROOT;
1729 
1730 	extent_io_tree_init(&fs_info->freed_extents[0],
1731 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1732 	extent_io_tree_init(&fs_info->freed_extents[1],
1733 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1734 	fs_info->pinned_extents = &fs_info->freed_extents[0];
1735 	fs_info->do_barriers = 1;
1736 
1737 
1738 	mutex_init(&fs_info->trans_mutex);
1739 	mutex_init(&fs_info->ordered_operations_mutex);
1740 	mutex_init(&fs_info->tree_log_mutex);
1741 	mutex_init(&fs_info->chunk_mutex);
1742 	mutex_init(&fs_info->transaction_kthread_mutex);
1743 	mutex_init(&fs_info->cleaner_mutex);
1744 	mutex_init(&fs_info->volume_mutex);
1745 	init_rwsem(&fs_info->extent_commit_sem);
1746 	init_rwsem(&fs_info->cleanup_work_sem);
1747 	init_rwsem(&fs_info->subvol_sem);
1748 
1749 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1750 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1751 
1752 	init_waitqueue_head(&fs_info->transaction_throttle);
1753 	init_waitqueue_head(&fs_info->transaction_wait);
1754 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
1755 	init_waitqueue_head(&fs_info->async_submit_wait);
1756 
1757 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1758 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1759 
1760 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1761 	if (!bh) {
1762 		err = -EINVAL;
1763 		goto fail_iput;
1764 	}
1765 
1766 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1767 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1768 	       sizeof(fs_info->super_for_commit));
1769 	brelse(bh);
1770 
1771 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1772 
1773 	disk_super = &fs_info->super_copy;
1774 	if (!btrfs_super_root(disk_super))
1775 		goto fail_iput;
1776 
1777 	/* check FS state, whether FS is broken. */
1778 	fs_info->fs_state |= btrfs_super_flags(disk_super);
1779 
1780 	btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1781 
1782 	/*
1783 	 * In the long term, we'll store the compression type in the super
1784 	 * block, and it'll be used for per file compression control.
1785 	 */
1786 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
1787 
1788 	ret = btrfs_parse_options(tree_root, options);
1789 	if (ret) {
1790 		err = ret;
1791 		goto fail_iput;
1792 	}
1793 
1794 	features = btrfs_super_incompat_flags(disk_super) &
1795 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1796 	if (features) {
1797 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1798 		       "unsupported optional features (%Lx).\n",
1799 		       (unsigned long long)features);
1800 		err = -EINVAL;
1801 		goto fail_iput;
1802 	}
1803 
1804 	features = btrfs_super_incompat_flags(disk_super);
1805 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1806 	if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1807 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1808 	btrfs_set_super_incompat_flags(disk_super, features);
1809 
1810 	features = btrfs_super_compat_ro_flags(disk_super) &
1811 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1812 	if (!(sb->s_flags & MS_RDONLY) && features) {
1813 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1814 		       "unsupported option features (%Lx).\n",
1815 		       (unsigned long long)features);
1816 		err = -EINVAL;
1817 		goto fail_iput;
1818 	}
1819 
1820 	btrfs_init_workers(&fs_info->generic_worker,
1821 			   "genwork", 1, NULL);
1822 
1823 	btrfs_init_workers(&fs_info->workers, "worker",
1824 			   fs_info->thread_pool_size,
1825 			   &fs_info->generic_worker);
1826 
1827 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1828 			   fs_info->thread_pool_size,
1829 			   &fs_info->generic_worker);
1830 
1831 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1832 			   min_t(u64, fs_devices->num_devices,
1833 			   fs_info->thread_pool_size),
1834 			   &fs_info->generic_worker);
1835 
1836 	/* a higher idle thresh on the submit workers makes it much more
1837 	 * likely that bios will be send down in a sane order to the
1838 	 * devices
1839 	 */
1840 	fs_info->submit_workers.idle_thresh = 64;
1841 
1842 	fs_info->workers.idle_thresh = 16;
1843 	fs_info->workers.ordered = 1;
1844 
1845 	fs_info->delalloc_workers.idle_thresh = 2;
1846 	fs_info->delalloc_workers.ordered = 1;
1847 
1848 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1849 			   &fs_info->generic_worker);
1850 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1851 			   fs_info->thread_pool_size,
1852 			   &fs_info->generic_worker);
1853 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1854 			   fs_info->thread_pool_size,
1855 			   &fs_info->generic_worker);
1856 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1857 			   "endio-meta-write", fs_info->thread_pool_size,
1858 			   &fs_info->generic_worker);
1859 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1860 			   fs_info->thread_pool_size,
1861 			   &fs_info->generic_worker);
1862 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1863 			   1, &fs_info->generic_worker);
1864 
1865 	/*
1866 	 * endios are largely parallel and should have a very
1867 	 * low idle thresh
1868 	 */
1869 	fs_info->endio_workers.idle_thresh = 4;
1870 	fs_info->endio_meta_workers.idle_thresh = 4;
1871 
1872 	fs_info->endio_write_workers.idle_thresh = 2;
1873 	fs_info->endio_meta_write_workers.idle_thresh = 2;
1874 
1875 	btrfs_start_workers(&fs_info->workers, 1);
1876 	btrfs_start_workers(&fs_info->generic_worker, 1);
1877 	btrfs_start_workers(&fs_info->submit_workers, 1);
1878 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1879 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1880 	btrfs_start_workers(&fs_info->endio_workers, 1);
1881 	btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1882 	btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1883 	btrfs_start_workers(&fs_info->endio_write_workers, 1);
1884 	btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1885 
1886 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1887 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1888 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1889 
1890 	nodesize = btrfs_super_nodesize(disk_super);
1891 	leafsize = btrfs_super_leafsize(disk_super);
1892 	sectorsize = btrfs_super_sectorsize(disk_super);
1893 	stripesize = btrfs_super_stripesize(disk_super);
1894 	tree_root->nodesize = nodesize;
1895 	tree_root->leafsize = leafsize;
1896 	tree_root->sectorsize = sectorsize;
1897 	tree_root->stripesize = stripesize;
1898 
1899 	sb->s_blocksize = sectorsize;
1900 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1901 
1902 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1903 		    sizeof(disk_super->magic))) {
1904 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1905 		goto fail_sb_buffer;
1906 	}
1907 
1908 	mutex_lock(&fs_info->chunk_mutex);
1909 	ret = btrfs_read_sys_array(tree_root);
1910 	mutex_unlock(&fs_info->chunk_mutex);
1911 	if (ret) {
1912 		printk(KERN_WARNING "btrfs: failed to read the system "
1913 		       "array on %s\n", sb->s_id);
1914 		goto fail_sb_buffer;
1915 	}
1916 
1917 	blocksize = btrfs_level_size(tree_root,
1918 				     btrfs_super_chunk_root_level(disk_super));
1919 	generation = btrfs_super_chunk_root_generation(disk_super);
1920 
1921 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1922 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1923 
1924 	chunk_root->node = read_tree_block(chunk_root,
1925 					   btrfs_super_chunk_root(disk_super),
1926 					   blocksize, generation);
1927 	BUG_ON(!chunk_root->node);
1928 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1929 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1930 		       sb->s_id);
1931 		goto fail_chunk_root;
1932 	}
1933 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1934 	chunk_root->commit_root = btrfs_root_node(chunk_root);
1935 
1936 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1937 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1938 	   BTRFS_UUID_SIZE);
1939 
1940 	mutex_lock(&fs_info->chunk_mutex);
1941 	ret = btrfs_read_chunk_tree(chunk_root);
1942 	mutex_unlock(&fs_info->chunk_mutex);
1943 	if (ret) {
1944 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1945 		       sb->s_id);
1946 		goto fail_chunk_root;
1947 	}
1948 
1949 	btrfs_close_extra_devices(fs_devices);
1950 
1951 	blocksize = btrfs_level_size(tree_root,
1952 				     btrfs_super_root_level(disk_super));
1953 	generation = btrfs_super_generation(disk_super);
1954 
1955 	tree_root->node = read_tree_block(tree_root,
1956 					  btrfs_super_root(disk_super),
1957 					  blocksize, generation);
1958 	if (!tree_root->node)
1959 		goto fail_chunk_root;
1960 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1961 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1962 		       sb->s_id);
1963 		goto fail_tree_root;
1964 	}
1965 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1966 	tree_root->commit_root = btrfs_root_node(tree_root);
1967 
1968 	ret = find_and_setup_root(tree_root, fs_info,
1969 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1970 	if (ret)
1971 		goto fail_tree_root;
1972 	extent_root->track_dirty = 1;
1973 
1974 	ret = find_and_setup_root(tree_root, fs_info,
1975 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1976 	if (ret)
1977 		goto fail_extent_root;
1978 	dev_root->track_dirty = 1;
1979 
1980 	ret = find_and_setup_root(tree_root, fs_info,
1981 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1982 	if (ret)
1983 		goto fail_dev_root;
1984 
1985 	csum_root->track_dirty = 1;
1986 
1987 	fs_info->generation = generation;
1988 	fs_info->last_trans_committed = generation;
1989 	fs_info->data_alloc_profile = (u64)-1;
1990 	fs_info->metadata_alloc_profile = (u64)-1;
1991 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1992 
1993 	ret = btrfs_init_space_info(fs_info);
1994 	if (ret) {
1995 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
1996 		goto fail_block_groups;
1997 	}
1998 
1999 	ret = btrfs_read_block_groups(extent_root);
2000 	if (ret) {
2001 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2002 		goto fail_block_groups;
2003 	}
2004 
2005 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2006 					       "btrfs-cleaner");
2007 	if (IS_ERR(fs_info->cleaner_kthread))
2008 		goto fail_block_groups;
2009 
2010 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2011 						   tree_root,
2012 						   "btrfs-transaction");
2013 	if (IS_ERR(fs_info->transaction_kthread))
2014 		goto fail_cleaner;
2015 
2016 	if (!btrfs_test_opt(tree_root, SSD) &&
2017 	    !btrfs_test_opt(tree_root, NOSSD) &&
2018 	    !fs_info->fs_devices->rotating) {
2019 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2020 		       "mode\n");
2021 		btrfs_set_opt(fs_info->mount_opt, SSD);
2022 	}
2023 
2024 	/* do not make disk changes in broken FS */
2025 	if (btrfs_super_log_root(disk_super) != 0 &&
2026 	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2027 		u64 bytenr = btrfs_super_log_root(disk_super);
2028 
2029 		if (fs_devices->rw_devices == 0) {
2030 			printk(KERN_WARNING "Btrfs log replay required "
2031 			       "on RO media\n");
2032 			err = -EIO;
2033 			goto fail_trans_kthread;
2034 		}
2035 		blocksize =
2036 		     btrfs_level_size(tree_root,
2037 				      btrfs_super_log_root_level(disk_super));
2038 
2039 		log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2040 		if (!log_tree_root) {
2041 			err = -ENOMEM;
2042 			goto fail_trans_kthread;
2043 		}
2044 
2045 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2046 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2047 
2048 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2049 						      blocksize,
2050 						      generation + 1);
2051 		ret = btrfs_recover_log_trees(log_tree_root);
2052 		BUG_ON(ret);
2053 
2054 		if (sb->s_flags & MS_RDONLY) {
2055 			ret =  btrfs_commit_super(tree_root);
2056 			BUG_ON(ret);
2057 		}
2058 	}
2059 
2060 	ret = btrfs_find_orphan_roots(tree_root);
2061 	BUG_ON(ret);
2062 
2063 	if (!(sb->s_flags & MS_RDONLY)) {
2064 		ret = btrfs_cleanup_fs_roots(fs_info);
2065 		BUG_ON(ret);
2066 
2067 		ret = btrfs_recover_relocation(tree_root);
2068 		if (ret < 0) {
2069 			printk(KERN_WARNING
2070 			       "btrfs: failed to recover relocation\n");
2071 			err = -EINVAL;
2072 			goto fail_trans_kthread;
2073 		}
2074 	}
2075 
2076 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2077 	location.type = BTRFS_ROOT_ITEM_KEY;
2078 	location.offset = (u64)-1;
2079 
2080 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2081 	if (!fs_info->fs_root)
2082 		goto fail_trans_kthread;
2083 	if (IS_ERR(fs_info->fs_root)) {
2084 		err = PTR_ERR(fs_info->fs_root);
2085 		goto fail_trans_kthread;
2086 	}
2087 
2088 	if (!(sb->s_flags & MS_RDONLY)) {
2089 		down_read(&fs_info->cleanup_work_sem);
2090 		err = btrfs_orphan_cleanup(fs_info->fs_root);
2091 		if (!err)
2092 			err = btrfs_orphan_cleanup(fs_info->tree_root);
2093 		up_read(&fs_info->cleanup_work_sem);
2094 		if (err) {
2095 			close_ctree(tree_root);
2096 			return ERR_PTR(err);
2097 		}
2098 	}
2099 
2100 	return tree_root;
2101 
2102 fail_trans_kthread:
2103 	kthread_stop(fs_info->transaction_kthread);
2104 fail_cleaner:
2105 	kthread_stop(fs_info->cleaner_kthread);
2106 
2107 	/*
2108 	 * make sure we're done with the btree inode before we stop our
2109 	 * kthreads
2110 	 */
2111 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2112 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2113 
2114 fail_block_groups:
2115 	btrfs_free_block_groups(fs_info);
2116 	free_extent_buffer(csum_root->node);
2117 	free_extent_buffer(csum_root->commit_root);
2118 fail_dev_root:
2119 	free_extent_buffer(dev_root->node);
2120 	free_extent_buffer(dev_root->commit_root);
2121 fail_extent_root:
2122 	free_extent_buffer(extent_root->node);
2123 	free_extent_buffer(extent_root->commit_root);
2124 fail_tree_root:
2125 	free_extent_buffer(tree_root->node);
2126 	free_extent_buffer(tree_root->commit_root);
2127 fail_chunk_root:
2128 	free_extent_buffer(chunk_root->node);
2129 	free_extent_buffer(chunk_root->commit_root);
2130 fail_sb_buffer:
2131 	btrfs_stop_workers(&fs_info->generic_worker);
2132 	btrfs_stop_workers(&fs_info->fixup_workers);
2133 	btrfs_stop_workers(&fs_info->delalloc_workers);
2134 	btrfs_stop_workers(&fs_info->workers);
2135 	btrfs_stop_workers(&fs_info->endio_workers);
2136 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2137 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2138 	btrfs_stop_workers(&fs_info->endio_write_workers);
2139 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2140 	btrfs_stop_workers(&fs_info->submit_workers);
2141 fail_iput:
2142 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2143 	iput(fs_info->btree_inode);
2144 
2145 	btrfs_close_devices(fs_info->fs_devices);
2146 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2147 fail_bdi:
2148 	bdi_destroy(&fs_info->bdi);
2149 fail_srcu:
2150 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2151 fail:
2152 	kfree(extent_root);
2153 	kfree(tree_root);
2154 	kfree(fs_info);
2155 	kfree(chunk_root);
2156 	kfree(dev_root);
2157 	kfree(csum_root);
2158 	return ERR_PTR(err);
2159 }
2160 
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)2161 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2162 {
2163 	char b[BDEVNAME_SIZE];
2164 
2165 	if (uptodate) {
2166 		set_buffer_uptodate(bh);
2167 	} else {
2168 		if (printk_ratelimit()) {
2169 			printk(KERN_WARNING "lost page write due to "
2170 					"I/O error on %s\n",
2171 				       bdevname(bh->b_bdev, b));
2172 		}
2173 		/* note, we dont' set_buffer_write_io_error because we have
2174 		 * our own ways of dealing with the IO errors
2175 		 */
2176 		clear_buffer_uptodate(bh);
2177 	}
2178 	unlock_buffer(bh);
2179 	put_bh(bh);
2180 }
2181 
btrfs_read_dev_super(struct block_device * bdev)2182 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2183 {
2184 	struct buffer_head *bh;
2185 	struct buffer_head *latest = NULL;
2186 	struct btrfs_super_block *super;
2187 	int i;
2188 	u64 transid = 0;
2189 	u64 bytenr;
2190 
2191 	/* we would like to check all the supers, but that would make
2192 	 * a btrfs mount succeed after a mkfs from a different FS.
2193 	 * So, we need to add a special mount option to scan for
2194 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2195 	 */
2196 	for (i = 0; i < 1; i++) {
2197 		bytenr = btrfs_sb_offset(i);
2198 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2199 			break;
2200 		bh = __bread(bdev, bytenr / 4096, 4096);
2201 		if (!bh)
2202 			continue;
2203 
2204 		super = (struct btrfs_super_block *)bh->b_data;
2205 		if (btrfs_super_bytenr(super) != bytenr ||
2206 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2207 			    sizeof(super->magic))) {
2208 			brelse(bh);
2209 			continue;
2210 		}
2211 
2212 		if (!latest || btrfs_super_generation(super) > transid) {
2213 			brelse(latest);
2214 			latest = bh;
2215 			transid = btrfs_super_generation(super);
2216 		} else {
2217 			brelse(bh);
2218 		}
2219 	}
2220 	return latest;
2221 }
2222 
2223 /*
2224  * this should be called twice, once with wait == 0 and
2225  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2226  * we write are pinned.
2227  *
2228  * They are released when wait == 1 is done.
2229  * max_mirrors must be the same for both runs, and it indicates how
2230  * many supers on this one device should be written.
2231  *
2232  * max_mirrors == 0 means to write them all.
2233  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int do_barriers,int wait,int max_mirrors)2234 static int write_dev_supers(struct btrfs_device *device,
2235 			    struct btrfs_super_block *sb,
2236 			    int do_barriers, int wait, int max_mirrors)
2237 {
2238 	struct buffer_head *bh;
2239 	int i;
2240 	int ret;
2241 	int errors = 0;
2242 	u32 crc;
2243 	u64 bytenr;
2244 	int last_barrier = 0;
2245 
2246 	if (max_mirrors == 0)
2247 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2248 
2249 	/* make sure only the last submit_bh does a barrier */
2250 	if (do_barriers) {
2251 		for (i = 0; i < max_mirrors; i++) {
2252 			bytenr = btrfs_sb_offset(i);
2253 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2254 			    device->total_bytes)
2255 				break;
2256 			last_barrier = i;
2257 		}
2258 	}
2259 
2260 	for (i = 0; i < max_mirrors; i++) {
2261 		bytenr = btrfs_sb_offset(i);
2262 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2263 			break;
2264 
2265 		if (wait) {
2266 			bh = __find_get_block(device->bdev, bytenr / 4096,
2267 					      BTRFS_SUPER_INFO_SIZE);
2268 			BUG_ON(!bh);
2269 			wait_on_buffer(bh);
2270 			if (!buffer_uptodate(bh))
2271 				errors++;
2272 
2273 			/* drop our reference */
2274 			brelse(bh);
2275 
2276 			/* drop the reference from the wait == 0 run */
2277 			brelse(bh);
2278 			continue;
2279 		} else {
2280 			btrfs_set_super_bytenr(sb, bytenr);
2281 
2282 			crc = ~(u32)0;
2283 			crc = btrfs_csum_data(NULL, (char *)sb +
2284 					      BTRFS_CSUM_SIZE, crc,
2285 					      BTRFS_SUPER_INFO_SIZE -
2286 					      BTRFS_CSUM_SIZE);
2287 			btrfs_csum_final(crc, sb->csum);
2288 
2289 			/*
2290 			 * one reference for us, and we leave it for the
2291 			 * caller
2292 			 */
2293 			bh = __getblk(device->bdev, bytenr / 4096,
2294 				      BTRFS_SUPER_INFO_SIZE);
2295 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2296 
2297 			/* one reference for submit_bh */
2298 			get_bh(bh);
2299 
2300 			set_buffer_uptodate(bh);
2301 			lock_buffer(bh);
2302 			bh->b_end_io = btrfs_end_buffer_write_sync;
2303 		}
2304 
2305 		if (i == last_barrier && do_barriers)
2306 			ret = submit_bh(WRITE_FLUSH_FUA, bh);
2307 		else
2308 			ret = submit_bh(WRITE_SYNC, bh);
2309 
2310 		if (ret)
2311 			errors++;
2312 	}
2313 	return errors < i ? 0 : -1;
2314 }
2315 
write_all_supers(struct btrfs_root * root,int max_mirrors)2316 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2317 {
2318 	struct list_head *head;
2319 	struct btrfs_device *dev;
2320 	struct btrfs_super_block *sb;
2321 	struct btrfs_dev_item *dev_item;
2322 	int ret;
2323 	int do_barriers;
2324 	int max_errors;
2325 	int total_errors = 0;
2326 	u64 flags;
2327 
2328 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2329 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2330 
2331 	sb = &root->fs_info->super_for_commit;
2332 	dev_item = &sb->dev_item;
2333 
2334 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2335 	head = &root->fs_info->fs_devices->devices;
2336 	list_for_each_entry(dev, head, dev_list) {
2337 		if (!dev->bdev) {
2338 			total_errors++;
2339 			continue;
2340 		}
2341 		if (!dev->in_fs_metadata || !dev->writeable)
2342 			continue;
2343 
2344 		btrfs_set_stack_device_generation(dev_item, 0);
2345 		btrfs_set_stack_device_type(dev_item, dev->type);
2346 		btrfs_set_stack_device_id(dev_item, dev->devid);
2347 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2348 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2349 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2350 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2351 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2352 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2353 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2354 
2355 		flags = btrfs_super_flags(sb);
2356 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2357 
2358 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2359 		if (ret)
2360 			total_errors++;
2361 	}
2362 	if (total_errors > max_errors) {
2363 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2364 		       total_errors);
2365 		BUG();
2366 	}
2367 
2368 	total_errors = 0;
2369 	list_for_each_entry(dev, head, dev_list) {
2370 		if (!dev->bdev)
2371 			continue;
2372 		if (!dev->in_fs_metadata || !dev->writeable)
2373 			continue;
2374 
2375 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2376 		if (ret)
2377 			total_errors++;
2378 	}
2379 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2380 	if (total_errors > max_errors) {
2381 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2382 		       total_errors);
2383 		BUG();
2384 	}
2385 	return 0;
2386 }
2387 
write_ctree_super(struct btrfs_trans_handle * trans,struct btrfs_root * root,int max_mirrors)2388 int write_ctree_super(struct btrfs_trans_handle *trans,
2389 		      struct btrfs_root *root, int max_mirrors)
2390 {
2391 	int ret;
2392 
2393 	ret = write_all_supers(root, max_mirrors);
2394 	return ret;
2395 }
2396 
btrfs_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)2397 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2398 {
2399 	spin_lock(&fs_info->fs_roots_radix_lock);
2400 	radix_tree_delete(&fs_info->fs_roots_radix,
2401 			  (unsigned long)root->root_key.objectid);
2402 	spin_unlock(&fs_info->fs_roots_radix_lock);
2403 
2404 	if (btrfs_root_refs(&root->root_item) == 0)
2405 		synchronize_srcu(&fs_info->subvol_srcu);
2406 
2407 	free_fs_root(root);
2408 	return 0;
2409 }
2410 
free_fs_root(struct btrfs_root * root)2411 static void free_fs_root(struct btrfs_root *root)
2412 {
2413 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2414 	if (root->anon_super.s_dev) {
2415 		down_write(&root->anon_super.s_umount);
2416 		kill_anon_super(&root->anon_super);
2417 	}
2418 	free_extent_buffer(root->node);
2419 	free_extent_buffer(root->commit_root);
2420 	kfree(root->name);
2421 	kfree(root);
2422 }
2423 
del_fs_roots(struct btrfs_fs_info * fs_info)2424 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2425 {
2426 	int ret;
2427 	struct btrfs_root *gang[8];
2428 	int i;
2429 
2430 	while (!list_empty(&fs_info->dead_roots)) {
2431 		gang[0] = list_entry(fs_info->dead_roots.next,
2432 				     struct btrfs_root, root_list);
2433 		list_del(&gang[0]->root_list);
2434 
2435 		if (gang[0]->in_radix) {
2436 			btrfs_free_fs_root(fs_info, gang[0]);
2437 		} else {
2438 			free_extent_buffer(gang[0]->node);
2439 			free_extent_buffer(gang[0]->commit_root);
2440 			kfree(gang[0]);
2441 		}
2442 	}
2443 
2444 	while (1) {
2445 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2446 					     (void **)gang, 0,
2447 					     ARRAY_SIZE(gang));
2448 		if (!ret)
2449 			break;
2450 		for (i = 0; i < ret; i++)
2451 			btrfs_free_fs_root(fs_info, gang[i]);
2452 	}
2453 	return 0;
2454 }
2455 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2456 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2457 {
2458 	u64 root_objectid = 0;
2459 	struct btrfs_root *gang[8];
2460 	int i;
2461 	int ret;
2462 
2463 	while (1) {
2464 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2465 					     (void **)gang, root_objectid,
2466 					     ARRAY_SIZE(gang));
2467 		if (!ret)
2468 			break;
2469 
2470 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2471 		for (i = 0; i < ret; i++) {
2472 			int err;
2473 
2474 			root_objectid = gang[i]->root_key.objectid;
2475 			err = btrfs_orphan_cleanup(gang[i]);
2476 			if (err)
2477 				return err;
2478 		}
2479 		root_objectid++;
2480 	}
2481 	return 0;
2482 }
2483 
btrfs_commit_super(struct btrfs_root * root)2484 int btrfs_commit_super(struct btrfs_root *root)
2485 {
2486 	struct btrfs_trans_handle *trans;
2487 	int ret;
2488 
2489 	mutex_lock(&root->fs_info->cleaner_mutex);
2490 	btrfs_run_delayed_iputs(root);
2491 	btrfs_clean_old_snapshots(root);
2492 	mutex_unlock(&root->fs_info->cleaner_mutex);
2493 
2494 	/* wait until ongoing cleanup work done */
2495 	down_write(&root->fs_info->cleanup_work_sem);
2496 	up_write(&root->fs_info->cleanup_work_sem);
2497 
2498 	trans = btrfs_join_transaction(root, 1);
2499 	if (IS_ERR(trans))
2500 		return PTR_ERR(trans);
2501 	ret = btrfs_commit_transaction(trans, root);
2502 	BUG_ON(ret);
2503 	/* run commit again to drop the original snapshot */
2504 	trans = btrfs_join_transaction(root, 1);
2505 	if (IS_ERR(trans))
2506 		return PTR_ERR(trans);
2507 	btrfs_commit_transaction(trans, root);
2508 	ret = btrfs_write_and_wait_transaction(NULL, root);
2509 	BUG_ON(ret);
2510 
2511 	ret = write_ctree_super(NULL, root, 0);
2512 	return ret;
2513 }
2514 
close_ctree(struct btrfs_root * root)2515 int close_ctree(struct btrfs_root *root)
2516 {
2517 	struct btrfs_fs_info *fs_info = root->fs_info;
2518 	int ret;
2519 
2520 	fs_info->closing = 1;
2521 	smp_mb();
2522 
2523 	btrfs_put_block_group_cache(fs_info);
2524 
2525 	/*
2526 	 * Here come 2 situations when btrfs is broken to flip readonly:
2527 	 *
2528 	 * 1. when btrfs flips readonly somewhere else before
2529 	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2530 	 * and btrfs will skip to write sb directly to keep
2531 	 * ERROR state on disk.
2532 	 *
2533 	 * 2. when btrfs flips readonly just in btrfs_commit_super,
2534 	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2535 	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2536 	 * btrfs will cleanup all FS resources first and write sb then.
2537 	 */
2538 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2539 		ret = btrfs_commit_super(root);
2540 		if (ret)
2541 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2542 	}
2543 
2544 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2545 		ret = btrfs_error_commit_super(root);
2546 		if (ret)
2547 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2548 	}
2549 
2550 	kthread_stop(root->fs_info->transaction_kthread);
2551 	kthread_stop(root->fs_info->cleaner_kthread);
2552 
2553 	fs_info->closing = 2;
2554 	smp_mb();
2555 
2556 	if (fs_info->delalloc_bytes) {
2557 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2558 		       (unsigned long long)fs_info->delalloc_bytes);
2559 	}
2560 	if (fs_info->total_ref_cache_size) {
2561 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2562 		       (unsigned long long)fs_info->total_ref_cache_size);
2563 	}
2564 
2565 	free_extent_buffer(fs_info->extent_root->node);
2566 	free_extent_buffer(fs_info->extent_root->commit_root);
2567 	free_extent_buffer(fs_info->tree_root->node);
2568 	free_extent_buffer(fs_info->tree_root->commit_root);
2569 	free_extent_buffer(root->fs_info->chunk_root->node);
2570 	free_extent_buffer(root->fs_info->chunk_root->commit_root);
2571 	free_extent_buffer(root->fs_info->dev_root->node);
2572 	free_extent_buffer(root->fs_info->dev_root->commit_root);
2573 	free_extent_buffer(root->fs_info->csum_root->node);
2574 	free_extent_buffer(root->fs_info->csum_root->commit_root);
2575 
2576 	btrfs_free_block_groups(root->fs_info);
2577 
2578 	del_fs_roots(fs_info);
2579 
2580 	iput(fs_info->btree_inode);
2581 
2582 	btrfs_stop_workers(&fs_info->generic_worker);
2583 	btrfs_stop_workers(&fs_info->fixup_workers);
2584 	btrfs_stop_workers(&fs_info->delalloc_workers);
2585 	btrfs_stop_workers(&fs_info->workers);
2586 	btrfs_stop_workers(&fs_info->endio_workers);
2587 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2588 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2589 	btrfs_stop_workers(&fs_info->endio_write_workers);
2590 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2591 	btrfs_stop_workers(&fs_info->submit_workers);
2592 
2593 	btrfs_close_devices(fs_info->fs_devices);
2594 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2595 
2596 	bdi_destroy(&fs_info->bdi);
2597 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2598 
2599 	kfree(fs_info->extent_root);
2600 	kfree(fs_info->tree_root);
2601 	kfree(fs_info->chunk_root);
2602 	kfree(fs_info->dev_root);
2603 	kfree(fs_info->csum_root);
2604 	kfree(fs_info);
2605 
2606 	return 0;
2607 }
2608 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid)2609 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2610 {
2611 	int ret;
2612 	struct inode *btree_inode = buf->first_page->mapping->host;
2613 
2614 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2615 				     NULL);
2616 	if (!ret)
2617 		return ret;
2618 
2619 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2620 				    parent_transid);
2621 	return !ret;
2622 }
2623 
btrfs_set_buffer_uptodate(struct extent_buffer * buf)2624 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2625 {
2626 	struct inode *btree_inode = buf->first_page->mapping->host;
2627 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2628 					  buf);
2629 }
2630 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)2631 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2632 {
2633 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2634 	u64 transid = btrfs_header_generation(buf);
2635 	struct inode *btree_inode = root->fs_info->btree_inode;
2636 	int was_dirty;
2637 
2638 	btrfs_assert_tree_locked(buf);
2639 	if (transid != root->fs_info->generation) {
2640 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2641 		       "found %llu running %llu\n",
2642 			(unsigned long long)buf->start,
2643 			(unsigned long long)transid,
2644 			(unsigned long long)root->fs_info->generation);
2645 		WARN_ON(1);
2646 	}
2647 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2648 					    buf);
2649 	if (!was_dirty) {
2650 		spin_lock(&root->fs_info->delalloc_lock);
2651 		root->fs_info->dirty_metadata_bytes += buf->len;
2652 		spin_unlock(&root->fs_info->delalloc_lock);
2653 	}
2654 }
2655 
btrfs_btree_balance_dirty(struct btrfs_root * root,unsigned long nr)2656 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2657 {
2658 	/*
2659 	 * looks as though older kernels can get into trouble with
2660 	 * this code, they end up stuck in balance_dirty_pages forever
2661 	 */
2662 	u64 num_dirty;
2663 	unsigned long thresh = 32 * 1024 * 1024;
2664 
2665 	if (current->flags & PF_MEMALLOC)
2666 		return;
2667 
2668 	num_dirty = root->fs_info->dirty_metadata_bytes;
2669 
2670 	if (num_dirty > thresh) {
2671 		balance_dirty_pages_ratelimited_nr(
2672 				   root->fs_info->btree_inode->i_mapping, 1);
2673 	}
2674 	return;
2675 }
2676 
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid)2677 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2678 {
2679 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2680 	int ret;
2681 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2682 	if (ret == 0)
2683 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2684 	return ret;
2685 }
2686 
btree_lock_page_hook(struct page * page)2687 int btree_lock_page_hook(struct page *page)
2688 {
2689 	struct inode *inode = page->mapping->host;
2690 	struct btrfs_root *root = BTRFS_I(inode)->root;
2691 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2692 	struct extent_buffer *eb;
2693 	unsigned long len;
2694 	u64 bytenr = page_offset(page);
2695 
2696 	if (page->private == EXTENT_PAGE_PRIVATE)
2697 		goto out;
2698 
2699 	len = page->private >> 2;
2700 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2701 	if (!eb)
2702 		goto out;
2703 
2704 	btrfs_tree_lock(eb);
2705 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2706 
2707 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2708 		spin_lock(&root->fs_info->delalloc_lock);
2709 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2710 			root->fs_info->dirty_metadata_bytes -= eb->len;
2711 		else
2712 			WARN_ON(1);
2713 		spin_unlock(&root->fs_info->delalloc_lock);
2714 	}
2715 
2716 	btrfs_tree_unlock(eb);
2717 	free_extent_buffer(eb);
2718 out:
2719 	lock_page(page);
2720 	return 0;
2721 }
2722 
btrfs_check_super_valid(struct btrfs_fs_info * fs_info,int read_only)2723 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2724 			      int read_only)
2725 {
2726 	if (read_only)
2727 		return;
2728 
2729 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2730 		printk(KERN_WARNING "warning: mount fs with errors, "
2731 		       "running btrfsck is recommended\n");
2732 }
2733 
btrfs_error_commit_super(struct btrfs_root * root)2734 int btrfs_error_commit_super(struct btrfs_root *root)
2735 {
2736 	int ret;
2737 
2738 	mutex_lock(&root->fs_info->cleaner_mutex);
2739 	btrfs_run_delayed_iputs(root);
2740 	mutex_unlock(&root->fs_info->cleaner_mutex);
2741 
2742 	down_write(&root->fs_info->cleanup_work_sem);
2743 	up_write(&root->fs_info->cleanup_work_sem);
2744 
2745 	/* cleanup FS via transaction */
2746 	btrfs_cleanup_transaction(root);
2747 
2748 	ret = write_ctree_super(NULL, root, 0);
2749 
2750 	return ret;
2751 }
2752 
btrfs_destroy_ordered_operations(struct btrfs_root * root)2753 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2754 {
2755 	struct btrfs_inode *btrfs_inode;
2756 	struct list_head splice;
2757 
2758 	INIT_LIST_HEAD(&splice);
2759 
2760 	mutex_lock(&root->fs_info->ordered_operations_mutex);
2761 	spin_lock(&root->fs_info->ordered_extent_lock);
2762 
2763 	list_splice_init(&root->fs_info->ordered_operations, &splice);
2764 	while (!list_empty(&splice)) {
2765 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2766 					 ordered_operations);
2767 
2768 		list_del_init(&btrfs_inode->ordered_operations);
2769 
2770 		btrfs_invalidate_inodes(btrfs_inode->root);
2771 	}
2772 
2773 	spin_unlock(&root->fs_info->ordered_extent_lock);
2774 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
2775 
2776 	return 0;
2777 }
2778 
btrfs_destroy_ordered_extents(struct btrfs_root * root)2779 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2780 {
2781 	struct list_head splice;
2782 	struct btrfs_ordered_extent *ordered;
2783 	struct inode *inode;
2784 
2785 	INIT_LIST_HEAD(&splice);
2786 
2787 	spin_lock(&root->fs_info->ordered_extent_lock);
2788 
2789 	list_splice_init(&root->fs_info->ordered_extents, &splice);
2790 	while (!list_empty(&splice)) {
2791 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2792 				     root_extent_list);
2793 
2794 		list_del_init(&ordered->root_extent_list);
2795 		atomic_inc(&ordered->refs);
2796 
2797 		/* the inode may be getting freed (in sys_unlink path). */
2798 		inode = igrab(ordered->inode);
2799 
2800 		spin_unlock(&root->fs_info->ordered_extent_lock);
2801 		if (inode)
2802 			iput(inode);
2803 
2804 		atomic_set(&ordered->refs, 1);
2805 		btrfs_put_ordered_extent(ordered);
2806 
2807 		spin_lock(&root->fs_info->ordered_extent_lock);
2808 	}
2809 
2810 	spin_unlock(&root->fs_info->ordered_extent_lock);
2811 
2812 	return 0;
2813 }
2814 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_root * root)2815 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2816 				      struct btrfs_root *root)
2817 {
2818 	struct rb_node *node;
2819 	struct btrfs_delayed_ref_root *delayed_refs;
2820 	struct btrfs_delayed_ref_node *ref;
2821 	int ret = 0;
2822 
2823 	delayed_refs = &trans->delayed_refs;
2824 
2825 	spin_lock(&delayed_refs->lock);
2826 	if (delayed_refs->num_entries == 0) {
2827 		spin_unlock(&delayed_refs->lock);
2828 		printk(KERN_INFO "delayed_refs has NO entry\n");
2829 		return ret;
2830 	}
2831 
2832 	node = rb_first(&delayed_refs->root);
2833 	while (node) {
2834 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2835 		node = rb_next(node);
2836 
2837 		ref->in_tree = 0;
2838 		rb_erase(&ref->rb_node, &delayed_refs->root);
2839 		delayed_refs->num_entries--;
2840 
2841 		atomic_set(&ref->refs, 1);
2842 		if (btrfs_delayed_ref_is_head(ref)) {
2843 			struct btrfs_delayed_ref_head *head;
2844 
2845 			head = btrfs_delayed_node_to_head(ref);
2846 			mutex_lock(&head->mutex);
2847 			kfree(head->extent_op);
2848 			delayed_refs->num_heads--;
2849 			if (list_empty(&head->cluster))
2850 				delayed_refs->num_heads_ready--;
2851 			list_del_init(&head->cluster);
2852 			mutex_unlock(&head->mutex);
2853 		}
2854 
2855 		spin_unlock(&delayed_refs->lock);
2856 		btrfs_put_delayed_ref(ref);
2857 
2858 		cond_resched();
2859 		spin_lock(&delayed_refs->lock);
2860 	}
2861 
2862 	spin_unlock(&delayed_refs->lock);
2863 
2864 	return ret;
2865 }
2866 
btrfs_destroy_pending_snapshots(struct btrfs_transaction * t)2867 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2868 {
2869 	struct btrfs_pending_snapshot *snapshot;
2870 	struct list_head splice;
2871 
2872 	INIT_LIST_HEAD(&splice);
2873 
2874 	list_splice_init(&t->pending_snapshots, &splice);
2875 
2876 	while (!list_empty(&splice)) {
2877 		snapshot = list_entry(splice.next,
2878 				      struct btrfs_pending_snapshot,
2879 				      list);
2880 
2881 		list_del_init(&snapshot->list);
2882 
2883 		kfree(snapshot);
2884 	}
2885 
2886 	return 0;
2887 }
2888 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)2889 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2890 {
2891 	struct btrfs_inode *btrfs_inode;
2892 	struct list_head splice;
2893 
2894 	INIT_LIST_HEAD(&splice);
2895 
2896 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2897 
2898 	spin_lock(&root->fs_info->delalloc_lock);
2899 
2900 	while (!list_empty(&splice)) {
2901 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2902 				    delalloc_inodes);
2903 
2904 		list_del_init(&btrfs_inode->delalloc_inodes);
2905 
2906 		btrfs_invalidate_inodes(btrfs_inode->root);
2907 	}
2908 
2909 	spin_unlock(&root->fs_info->delalloc_lock);
2910 
2911 	return 0;
2912 }
2913 
btrfs_destroy_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)2914 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2915 					struct extent_io_tree *dirty_pages,
2916 					int mark)
2917 {
2918 	int ret;
2919 	struct page *page;
2920 	struct inode *btree_inode = root->fs_info->btree_inode;
2921 	struct extent_buffer *eb;
2922 	u64 start = 0;
2923 	u64 end;
2924 	u64 offset;
2925 	unsigned long index;
2926 
2927 	while (1) {
2928 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2929 					    mark);
2930 		if (ret)
2931 			break;
2932 
2933 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2934 		while (start <= end) {
2935 			index = start >> PAGE_CACHE_SHIFT;
2936 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2937 			page = find_get_page(btree_inode->i_mapping, index);
2938 			if (!page)
2939 				continue;
2940 			offset = page_offset(page);
2941 
2942 			spin_lock(&dirty_pages->buffer_lock);
2943 			eb = radix_tree_lookup(
2944 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2945 					       offset >> PAGE_CACHE_SHIFT);
2946 			spin_unlock(&dirty_pages->buffer_lock);
2947 			if (eb) {
2948 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
2949 							 &eb->bflags);
2950 				atomic_set(&eb->refs, 1);
2951 			}
2952 			if (PageWriteback(page))
2953 				end_page_writeback(page);
2954 
2955 			lock_page(page);
2956 			if (PageDirty(page)) {
2957 				clear_page_dirty_for_io(page);
2958 				spin_lock_irq(&page->mapping->tree_lock);
2959 				radix_tree_tag_clear(&page->mapping->page_tree,
2960 							page_index(page),
2961 							PAGECACHE_TAG_DIRTY);
2962 				spin_unlock_irq(&page->mapping->tree_lock);
2963 			}
2964 
2965 			page->mapping->a_ops->invalidatepage(page, 0);
2966 			unlock_page(page);
2967 		}
2968 	}
2969 
2970 	return ret;
2971 }
2972 
btrfs_destroy_pinned_extent(struct btrfs_root * root,struct extent_io_tree * pinned_extents)2973 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
2974 				       struct extent_io_tree *pinned_extents)
2975 {
2976 	struct extent_io_tree *unpin;
2977 	u64 start;
2978 	u64 end;
2979 	int ret;
2980 
2981 	unpin = pinned_extents;
2982 	while (1) {
2983 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2984 					    EXTENT_DIRTY);
2985 		if (ret)
2986 			break;
2987 
2988 		/* opt_discard */
2989 		if (btrfs_test_opt(root, DISCARD))
2990 			ret = btrfs_error_discard_extent(root, start,
2991 							 end + 1 - start,
2992 							 NULL);
2993 
2994 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
2995 		btrfs_error_unpin_extent_range(root, start, end);
2996 		cond_resched();
2997 	}
2998 
2999 	return 0;
3000 }
3001 
btrfs_cleanup_transaction(struct btrfs_root * root)3002 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3003 {
3004 	struct btrfs_transaction *t;
3005 	LIST_HEAD(list);
3006 
3007 	WARN_ON(1);
3008 
3009 	mutex_lock(&root->fs_info->trans_mutex);
3010 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3011 
3012 	list_splice_init(&root->fs_info->trans_list, &list);
3013 	while (!list_empty(&list)) {
3014 		t = list_entry(list.next, struct btrfs_transaction, list);
3015 		if (!t)
3016 			break;
3017 
3018 		btrfs_destroy_ordered_operations(root);
3019 
3020 		btrfs_destroy_ordered_extents(root);
3021 
3022 		btrfs_destroy_delayed_refs(t, root);
3023 
3024 		btrfs_block_rsv_release(root,
3025 					&root->fs_info->trans_block_rsv,
3026 					t->dirty_pages.dirty_bytes);
3027 
3028 		/* FIXME: cleanup wait for commit */
3029 		t->in_commit = 1;
3030 		t->blocked = 1;
3031 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3032 			wake_up(&root->fs_info->transaction_blocked_wait);
3033 
3034 		t->blocked = 0;
3035 		if (waitqueue_active(&root->fs_info->transaction_wait))
3036 			wake_up(&root->fs_info->transaction_wait);
3037 		mutex_unlock(&root->fs_info->trans_mutex);
3038 
3039 		mutex_lock(&root->fs_info->trans_mutex);
3040 		t->commit_done = 1;
3041 		if (waitqueue_active(&t->commit_wait))
3042 			wake_up(&t->commit_wait);
3043 		mutex_unlock(&root->fs_info->trans_mutex);
3044 
3045 		mutex_lock(&root->fs_info->trans_mutex);
3046 
3047 		btrfs_destroy_pending_snapshots(t);
3048 
3049 		btrfs_destroy_delalloc_inodes(root);
3050 
3051 		spin_lock(&root->fs_info->new_trans_lock);
3052 		root->fs_info->running_transaction = NULL;
3053 		spin_unlock(&root->fs_info->new_trans_lock);
3054 
3055 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3056 					     EXTENT_DIRTY);
3057 
3058 		btrfs_destroy_pinned_extent(root,
3059 					    root->fs_info->pinned_extents);
3060 
3061 		atomic_set(&t->use_count, 0);
3062 		list_del_init(&t->list);
3063 		memset(t, 0, sizeof(*t));
3064 		kmem_cache_free(btrfs_transaction_cachep, t);
3065 	}
3066 
3067 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3068 	mutex_unlock(&root->fs_info->trans_mutex);
3069 
3070 	return 0;
3071 }
3072 
3073 static struct extent_io_ops btree_extent_io_ops = {
3074 	.write_cache_pages_lock_hook = btree_lock_page_hook,
3075 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3076 	.submit_bio_hook = btree_submit_bio_hook,
3077 	/* note we're sharing with inode.c for the merge bio hook */
3078 	.merge_bio_hook = btrfs_merge_bio_hook,
3079 };
3080