1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 
19 /* Just an arbitrary number so we can be sure this happened */
20 #define BACKREF_FOUND_SHARED 6
21 
22 struct extent_inode_elem {
23 	u64 inum;
24 	u64 offset;
25 	struct extent_inode_elem *next;
26 };
27 
check_extent_in_eb(const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)28 static int check_extent_in_eb(const struct btrfs_key *key,
29 			      const struct extent_buffer *eb,
30 			      const struct btrfs_file_extent_item *fi,
31 			      u64 extent_item_pos,
32 			      struct extent_inode_elem **eie,
33 			      bool ignore_offset)
34 {
35 	u64 offset = 0;
36 	struct extent_inode_elem *e;
37 
38 	if (!ignore_offset &&
39 	    !btrfs_file_extent_compression(eb, fi) &&
40 	    !btrfs_file_extent_encryption(eb, fi) &&
41 	    !btrfs_file_extent_other_encoding(eb, fi)) {
42 		u64 data_offset;
43 		u64 data_len;
44 
45 		data_offset = btrfs_file_extent_offset(eb, fi);
46 		data_len = btrfs_file_extent_num_bytes(eb, fi);
47 
48 		if (extent_item_pos < data_offset ||
49 		    extent_item_pos >= data_offset + data_len)
50 			return 1;
51 		offset = extent_item_pos - data_offset;
52 	}
53 
54 	e = kmalloc(sizeof(*e), GFP_NOFS);
55 	if (!e)
56 		return -ENOMEM;
57 
58 	e->next = *eie;
59 	e->inum = key->objectid;
60 	e->offset = key->offset + offset;
61 	*eie = e;
62 
63 	return 0;
64 }
65 
free_inode_elem_list(struct extent_inode_elem * eie)66 static void free_inode_elem_list(struct extent_inode_elem *eie)
67 {
68 	struct extent_inode_elem *eie_next;
69 
70 	for (; eie; eie = eie_next) {
71 		eie_next = eie->next;
72 		kfree(eie);
73 	}
74 }
75 
find_extent_in_eb(const struct extent_buffer * eb,u64 wanted_disk_byte,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)76 static int find_extent_in_eb(const struct extent_buffer *eb,
77 			     u64 wanted_disk_byte, u64 extent_item_pos,
78 			     struct extent_inode_elem **eie,
79 			     bool ignore_offset)
80 {
81 	u64 disk_byte;
82 	struct btrfs_key key;
83 	struct btrfs_file_extent_item *fi;
84 	int slot;
85 	int nritems;
86 	int extent_type;
87 	int ret;
88 
89 	/*
90 	 * from the shared data ref, we only have the leaf but we need
91 	 * the key. thus, we must look into all items and see that we
92 	 * find one (some) with a reference to our extent item.
93 	 */
94 	nritems = btrfs_header_nritems(eb);
95 	for (slot = 0; slot < nritems; ++slot) {
96 		btrfs_item_key_to_cpu(eb, &key, slot);
97 		if (key.type != BTRFS_EXTENT_DATA_KEY)
98 			continue;
99 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 		extent_type = btrfs_file_extent_type(eb, fi);
101 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 			continue;
103 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 		if (disk_byte != wanted_disk_byte)
106 			continue;
107 
108 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
109 		if (ret < 0)
110 			return ret;
111 	}
112 
113 	return 0;
114 }
115 
116 struct preftree {
117 	struct rb_root_cached root;
118 	unsigned int count;
119 };
120 
121 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
122 
123 struct preftrees {
124 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 	struct preftree indirect_missing_keys;
127 };
128 
129 /*
130  * Checks for a shared extent during backref search.
131  *
132  * The share_count tracks prelim_refs (direct and indirect) having a
133  * ref->count >0:
134  *  - incremented when a ref->count transitions to >0
135  *  - decremented when a ref->count transitions to <1
136  */
137 struct share_check {
138 	u64 root_objectid;
139 	u64 inum;
140 	int share_count;
141 	bool have_delayed_delete_refs;
142 };
143 
extent_is_shared(struct share_check * sc)144 static inline int extent_is_shared(struct share_check *sc)
145 {
146 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
147 }
148 
149 static struct kmem_cache *btrfs_prelim_ref_cache;
150 
btrfs_prelim_ref_init(void)151 int __init btrfs_prelim_ref_init(void)
152 {
153 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
154 					sizeof(struct prelim_ref),
155 					0,
156 					SLAB_MEM_SPREAD,
157 					NULL);
158 	if (!btrfs_prelim_ref_cache)
159 		return -ENOMEM;
160 	return 0;
161 }
162 
btrfs_prelim_ref_exit(void)163 void __cold btrfs_prelim_ref_exit(void)
164 {
165 	kmem_cache_destroy(btrfs_prelim_ref_cache);
166 }
167 
free_pref(struct prelim_ref * ref)168 static void free_pref(struct prelim_ref *ref)
169 {
170 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
171 }
172 
173 /*
174  * Return 0 when both refs are for the same block (and can be merged).
175  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
176  * indicates a 'higher' block.
177  */
prelim_ref_compare(struct prelim_ref * ref1,struct prelim_ref * ref2)178 static int prelim_ref_compare(struct prelim_ref *ref1,
179 			      struct prelim_ref *ref2)
180 {
181 	if (ref1->level < ref2->level)
182 		return -1;
183 	if (ref1->level > ref2->level)
184 		return 1;
185 	if (ref1->root_id < ref2->root_id)
186 		return -1;
187 	if (ref1->root_id > ref2->root_id)
188 		return 1;
189 	if (ref1->key_for_search.type < ref2->key_for_search.type)
190 		return -1;
191 	if (ref1->key_for_search.type > ref2->key_for_search.type)
192 		return 1;
193 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
194 		return -1;
195 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
196 		return 1;
197 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
198 		return -1;
199 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
200 		return 1;
201 	if (ref1->parent < ref2->parent)
202 		return -1;
203 	if (ref1->parent > ref2->parent)
204 		return 1;
205 
206 	return 0;
207 }
208 
update_share_count(struct share_check * sc,int oldcount,int newcount)209 static void update_share_count(struct share_check *sc, int oldcount,
210 			       int newcount)
211 {
212 	if ((!sc) || (oldcount == 0 && newcount < 1))
213 		return;
214 
215 	if (oldcount > 0 && newcount < 1)
216 		sc->share_count--;
217 	else if (oldcount < 1 && newcount > 0)
218 		sc->share_count++;
219 }
220 
221 /*
222  * Add @newref to the @root rbtree, merging identical refs.
223  *
224  * Callers should assume that newref has been freed after calling.
225  */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)226 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
227 			      struct preftree *preftree,
228 			      struct prelim_ref *newref,
229 			      struct share_check *sc)
230 {
231 	struct rb_root_cached *root;
232 	struct rb_node **p;
233 	struct rb_node *parent = NULL;
234 	struct prelim_ref *ref;
235 	int result;
236 	bool leftmost = true;
237 
238 	root = &preftree->root;
239 	p = &root->rb_root.rb_node;
240 
241 	while (*p) {
242 		parent = *p;
243 		ref = rb_entry(parent, struct prelim_ref, rbnode);
244 		result = prelim_ref_compare(ref, newref);
245 		if (result < 0) {
246 			p = &(*p)->rb_left;
247 		} else if (result > 0) {
248 			p = &(*p)->rb_right;
249 			leftmost = false;
250 		} else {
251 			/* Identical refs, merge them and free @newref */
252 			struct extent_inode_elem *eie = ref->inode_list;
253 
254 			while (eie && eie->next)
255 				eie = eie->next;
256 
257 			if (!eie)
258 				ref->inode_list = newref->inode_list;
259 			else
260 				eie->next = newref->inode_list;
261 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
262 						     preftree->count);
263 			/*
264 			 * A delayed ref can have newref->count < 0.
265 			 * The ref->count is updated to follow any
266 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
267 			 */
268 			update_share_count(sc, ref->count,
269 					   ref->count + newref->count);
270 			ref->count += newref->count;
271 			free_pref(newref);
272 			return;
273 		}
274 	}
275 
276 	update_share_count(sc, 0, newref->count);
277 	preftree->count++;
278 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
279 	rb_link_node(&newref->rbnode, parent, p);
280 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
281 }
282 
283 /*
284  * Release the entire tree.  We don't care about internal consistency so
285  * just free everything and then reset the tree root.
286  */
prelim_release(struct preftree * preftree)287 static void prelim_release(struct preftree *preftree)
288 {
289 	struct prelim_ref *ref, *next_ref;
290 
291 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
292 					     &preftree->root.rb_root, rbnode) {
293 		free_inode_elem_list(ref->inode_list);
294 		free_pref(ref);
295 	}
296 
297 	preftree->root = RB_ROOT_CACHED;
298 	preftree->count = 0;
299 }
300 
301 /*
302  * the rules for all callers of this function are:
303  * - obtaining the parent is the goal
304  * - if you add a key, you must know that it is a correct key
305  * - if you cannot add the parent or a correct key, then we will look into the
306  *   block later to set a correct key
307  *
308  * delayed refs
309  * ============
310  *        backref type | shared | indirect | shared | indirect
311  * information         |   tree |     tree |   data |     data
312  * --------------------+--------+----------+--------+----------
313  *      parent logical |    y   |     -    |    -   |     -
314  *      key to resolve |    -   |     y    |    y   |     y
315  *  tree block logical |    -   |     -    |    -   |     -
316  *  root for resolving |    y   |     y    |    y   |     y
317  *
318  * - column 1:       we've the parent -> done
319  * - column 2, 3, 4: we use the key to find the parent
320  *
321  * on disk refs (inline or keyed)
322  * ==============================
323  *        backref type | shared | indirect | shared | indirect
324  * information         |   tree |     tree |   data |     data
325  * --------------------+--------+----------+--------+----------
326  *      parent logical |    y   |     -    |    y   |     -
327  *      key to resolve |    -   |     -    |    -   |     y
328  *  tree block logical |    y   |     y    |    y   |     y
329  *  root for resolving |    -   |     y    |    y   |     y
330  *
331  * - column 1, 3: we've the parent -> done
332  * - column 2:    we take the first key from the block to find the parent
333  *                (see add_missing_keys)
334  * - column 4:    we use the key to find the parent
335  *
336  * additional information that's available but not required to find the parent
337  * block might help in merging entries to gain some speed.
338  */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)339 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
340 			  struct preftree *preftree, u64 root_id,
341 			  const struct btrfs_key *key, int level, u64 parent,
342 			  u64 wanted_disk_byte, int count,
343 			  struct share_check *sc, gfp_t gfp_mask)
344 {
345 	struct prelim_ref *ref;
346 
347 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
348 		return 0;
349 
350 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
351 	if (!ref)
352 		return -ENOMEM;
353 
354 	ref->root_id = root_id;
355 	if (key)
356 		ref->key_for_search = *key;
357 	else
358 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
359 
360 	ref->inode_list = NULL;
361 	ref->level = level;
362 	ref->count = count;
363 	ref->parent = parent;
364 	ref->wanted_disk_byte = wanted_disk_byte;
365 	prelim_ref_insert(fs_info, preftree, ref, sc);
366 	return extent_is_shared(sc);
367 }
368 
369 /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)370 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
371 			  struct preftrees *preftrees, int level, u64 parent,
372 			  u64 wanted_disk_byte, int count,
373 			  struct share_check *sc, gfp_t gfp_mask)
374 {
375 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
376 			      parent, wanted_disk_byte, count, sc, gfp_mask);
377 }
378 
379 /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)380 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
381 			    struct preftrees *preftrees, u64 root_id,
382 			    const struct btrfs_key *key, int level,
383 			    u64 wanted_disk_byte, int count,
384 			    struct share_check *sc, gfp_t gfp_mask)
385 {
386 	struct preftree *tree = &preftrees->indirect;
387 
388 	if (!key)
389 		tree = &preftrees->indirect_missing_keys;
390 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
391 			      wanted_disk_byte, count, sc, gfp_mask);
392 }
393 
is_shared_data_backref(struct preftrees * preftrees,u64 bytenr)394 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
395 {
396 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
397 	struct rb_node *parent = NULL;
398 	struct prelim_ref *ref = NULL;
399 	struct prelim_ref target = {};
400 	int result;
401 
402 	target.parent = bytenr;
403 
404 	while (*p) {
405 		parent = *p;
406 		ref = rb_entry(parent, struct prelim_ref, rbnode);
407 		result = prelim_ref_compare(ref, &target);
408 
409 		if (result < 0)
410 			p = &(*p)->rb_left;
411 		else if (result > 0)
412 			p = &(*p)->rb_right;
413 		else
414 			return 1;
415 	}
416 	return 0;
417 }
418 
add_all_parents(struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct preftrees * preftrees,struct prelim_ref * ref,int level,u64 time_seq,const u64 * extent_item_pos,bool ignore_offset)419 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
420 			   struct ulist *parents,
421 			   struct preftrees *preftrees, struct prelim_ref *ref,
422 			   int level, u64 time_seq, const u64 *extent_item_pos,
423 			   bool ignore_offset)
424 {
425 	int ret = 0;
426 	int slot;
427 	struct extent_buffer *eb;
428 	struct btrfs_key key;
429 	struct btrfs_key *key_for_search = &ref->key_for_search;
430 	struct btrfs_file_extent_item *fi;
431 	struct extent_inode_elem *eie = NULL, *old = NULL;
432 	u64 disk_byte;
433 	u64 wanted_disk_byte = ref->wanted_disk_byte;
434 	u64 count = 0;
435 	u64 data_offset;
436 	u8 type;
437 
438 	if (level != 0) {
439 		eb = path->nodes[level];
440 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
441 		if (ret < 0)
442 			return ret;
443 		return 0;
444 	}
445 
446 	/*
447 	 * 1. We normally enter this function with the path already pointing to
448 	 *    the first item to check. But sometimes, we may enter it with
449 	 *    slot == nritems.
450 	 * 2. We are searching for normal backref but bytenr of this leaf
451 	 *    matches shared data backref
452 	 * 3. The leaf owner is not equal to the root we are searching
453 	 *
454 	 * For these cases, go to the next leaf before we continue.
455 	 */
456 	eb = path->nodes[0];
457 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
458 	    is_shared_data_backref(preftrees, eb->start) ||
459 	    ref->root_id != btrfs_header_owner(eb)) {
460 		if (time_seq == BTRFS_SEQ_LAST)
461 			ret = btrfs_next_leaf(root, path);
462 		else
463 			ret = btrfs_next_old_leaf(root, path, time_seq);
464 	}
465 
466 	while (!ret && count < ref->count) {
467 		eb = path->nodes[0];
468 		slot = path->slots[0];
469 
470 		btrfs_item_key_to_cpu(eb, &key, slot);
471 
472 		if (key.objectid != key_for_search->objectid ||
473 		    key.type != BTRFS_EXTENT_DATA_KEY)
474 			break;
475 
476 		/*
477 		 * We are searching for normal backref but bytenr of this leaf
478 		 * matches shared data backref, OR
479 		 * the leaf owner is not equal to the root we are searching for
480 		 */
481 		if (slot == 0 &&
482 		    (is_shared_data_backref(preftrees, eb->start) ||
483 		     ref->root_id != btrfs_header_owner(eb))) {
484 			if (time_seq == BTRFS_SEQ_LAST)
485 				ret = btrfs_next_leaf(root, path);
486 			else
487 				ret = btrfs_next_old_leaf(root, path, time_seq);
488 			continue;
489 		}
490 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
491 		type = btrfs_file_extent_type(eb, fi);
492 		if (type == BTRFS_FILE_EXTENT_INLINE)
493 			goto next;
494 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
495 		data_offset = btrfs_file_extent_offset(eb, fi);
496 
497 		if (disk_byte == wanted_disk_byte) {
498 			eie = NULL;
499 			old = NULL;
500 			if (ref->key_for_search.offset == key.offset - data_offset)
501 				count++;
502 			else
503 				goto next;
504 			if (extent_item_pos) {
505 				ret = check_extent_in_eb(&key, eb, fi,
506 						*extent_item_pos,
507 						&eie, ignore_offset);
508 				if (ret < 0)
509 					break;
510 			}
511 			if (ret > 0)
512 				goto next;
513 			ret = ulist_add_merge_ptr(parents, eb->start,
514 						  eie, (void **)&old, GFP_NOFS);
515 			if (ret < 0)
516 				break;
517 			if (!ret && extent_item_pos) {
518 				while (old->next)
519 					old = old->next;
520 				old->next = eie;
521 			}
522 			eie = NULL;
523 		}
524 next:
525 		if (time_seq == BTRFS_SEQ_LAST)
526 			ret = btrfs_next_item(root, path);
527 		else
528 			ret = btrfs_next_old_item(root, path, time_seq);
529 	}
530 
531 	if (ret > 0)
532 		ret = 0;
533 	else if (ret < 0)
534 		free_inode_elem_list(eie);
535 	return ret;
536 }
537 
538 /*
539  * resolve an indirect backref in the form (root_id, key, level)
540  * to a logical address
541  */
resolve_indirect_ref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,struct prelim_ref * ref,struct ulist * parents,const u64 * extent_item_pos,bool ignore_offset)542 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
543 				struct btrfs_path *path, u64 time_seq,
544 				struct preftrees *preftrees,
545 				struct prelim_ref *ref, struct ulist *parents,
546 				const u64 *extent_item_pos, bool ignore_offset)
547 {
548 	struct btrfs_root *root;
549 	struct extent_buffer *eb;
550 	int ret = 0;
551 	int root_level;
552 	int level = ref->level;
553 	struct btrfs_key search_key = ref->key_for_search;
554 
555 	/*
556 	 * If we're search_commit_root we could possibly be holding locks on
557 	 * other tree nodes.  This happens when qgroups does backref walks when
558 	 * adding new delayed refs.  To deal with this we need to look in cache
559 	 * for the root, and if we don't find it then we need to search the
560 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
561 	 * here.
562 	 */
563 	if (path->search_commit_root)
564 		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
565 	else
566 		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
567 	if (IS_ERR(root)) {
568 		ret = PTR_ERR(root);
569 		goto out_free;
570 	}
571 
572 	if (!path->search_commit_root &&
573 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
574 		ret = -ENOENT;
575 		goto out;
576 	}
577 
578 	if (btrfs_is_testing(fs_info)) {
579 		ret = -ENOENT;
580 		goto out;
581 	}
582 
583 	if (path->search_commit_root)
584 		root_level = btrfs_header_level(root->commit_root);
585 	else if (time_seq == BTRFS_SEQ_LAST)
586 		root_level = btrfs_header_level(root->node);
587 	else
588 		root_level = btrfs_old_root_level(root, time_seq);
589 
590 	if (root_level + 1 == level)
591 		goto out;
592 
593 	/*
594 	 * We can often find data backrefs with an offset that is too large
595 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
596 	 * subtracting a file's offset with the data offset of its
597 	 * corresponding extent data item. This can happen for example in the
598 	 * clone ioctl.
599 	 *
600 	 * So if we detect such case we set the search key's offset to zero to
601 	 * make sure we will find the matching file extent item at
602 	 * add_all_parents(), otherwise we will miss it because the offset
603 	 * taken form the backref is much larger then the offset of the file
604 	 * extent item. This can make us scan a very large number of file
605 	 * extent items, but at least it will not make us miss any.
606 	 *
607 	 * This is an ugly workaround for a behaviour that should have never
608 	 * existed, but it does and a fix for the clone ioctl would touch a lot
609 	 * of places, cause backwards incompatibility and would not fix the
610 	 * problem for extents cloned with older kernels.
611 	 */
612 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
613 	    search_key.offset >= LLONG_MAX)
614 		search_key.offset = 0;
615 	path->lowest_level = level;
616 	if (time_seq == BTRFS_SEQ_LAST)
617 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
618 	else
619 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
620 
621 	btrfs_debug(fs_info,
622 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
623 		 ref->root_id, level, ref->count, ret,
624 		 ref->key_for_search.objectid, ref->key_for_search.type,
625 		 ref->key_for_search.offset);
626 	if (ret < 0)
627 		goto out;
628 
629 	eb = path->nodes[level];
630 	while (!eb) {
631 		if (WARN_ON(!level)) {
632 			ret = 1;
633 			goto out;
634 		}
635 		level--;
636 		eb = path->nodes[level];
637 	}
638 
639 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
640 			      time_seq, extent_item_pos, ignore_offset);
641 out:
642 	btrfs_put_root(root);
643 out_free:
644 	path->lowest_level = 0;
645 	btrfs_release_path(path);
646 	return ret;
647 }
648 
649 static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)650 unode_aux_to_inode_list(struct ulist_node *node)
651 {
652 	if (!node)
653 		return NULL;
654 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
655 }
656 
free_leaf_list(struct ulist * ulist)657 static void free_leaf_list(struct ulist *ulist)
658 {
659 	struct ulist_node *node;
660 	struct ulist_iterator uiter;
661 
662 	ULIST_ITER_INIT(&uiter);
663 	while ((node = ulist_next(ulist, &uiter)))
664 		free_inode_elem_list(unode_aux_to_inode_list(node));
665 
666 	ulist_free(ulist);
667 }
668 
669 /*
670  * We maintain three separate rbtrees: one for direct refs, one for
671  * indirect refs which have a key, and one for indirect refs which do not
672  * have a key. Each tree does merge on insertion.
673  *
674  * Once all of the references are located, we iterate over the tree of
675  * indirect refs with missing keys. An appropriate key is located and
676  * the ref is moved onto the tree for indirect refs. After all missing
677  * keys are thus located, we iterate over the indirect ref tree, resolve
678  * each reference, and then insert the resolved reference onto the
679  * direct tree (merging there too).
680  *
681  * New backrefs (i.e., for parent nodes) are added to the appropriate
682  * rbtree as they are encountered. The new backrefs are subsequently
683  * resolved as above.
684  */
resolve_indirect_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)685 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
686 				 struct btrfs_path *path, u64 time_seq,
687 				 struct preftrees *preftrees,
688 				 const u64 *extent_item_pos,
689 				 struct share_check *sc, bool ignore_offset)
690 {
691 	int err;
692 	int ret = 0;
693 	struct ulist *parents;
694 	struct ulist_node *node;
695 	struct ulist_iterator uiter;
696 	struct rb_node *rnode;
697 
698 	parents = ulist_alloc(GFP_NOFS);
699 	if (!parents)
700 		return -ENOMEM;
701 
702 	/*
703 	 * We could trade memory usage for performance here by iterating
704 	 * the tree, allocating new refs for each insertion, and then
705 	 * freeing the entire indirect tree when we're done.  In some test
706 	 * cases, the tree can grow quite large (~200k objects).
707 	 */
708 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
709 		struct prelim_ref *ref;
710 
711 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
712 		if (WARN(ref->parent,
713 			 "BUG: direct ref found in indirect tree")) {
714 			ret = -EINVAL;
715 			goto out;
716 		}
717 
718 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
719 		preftrees->indirect.count--;
720 
721 		if (ref->count == 0) {
722 			free_pref(ref);
723 			continue;
724 		}
725 
726 		if (sc && sc->root_objectid &&
727 		    ref->root_id != sc->root_objectid) {
728 			free_pref(ref);
729 			ret = BACKREF_FOUND_SHARED;
730 			goto out;
731 		}
732 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
733 					   ref, parents, extent_item_pos,
734 					   ignore_offset);
735 		/*
736 		 * we can only tolerate ENOENT,otherwise,we should catch error
737 		 * and return directly.
738 		 */
739 		if (err == -ENOENT) {
740 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
741 					  NULL);
742 			continue;
743 		} else if (err) {
744 			free_pref(ref);
745 			ret = err;
746 			goto out;
747 		}
748 
749 		/* we put the first parent into the ref at hand */
750 		ULIST_ITER_INIT(&uiter);
751 		node = ulist_next(parents, &uiter);
752 		ref->parent = node ? node->val : 0;
753 		ref->inode_list = unode_aux_to_inode_list(node);
754 
755 		/* Add a prelim_ref(s) for any other parent(s). */
756 		while ((node = ulist_next(parents, &uiter))) {
757 			struct prelim_ref *new_ref;
758 
759 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
760 						   GFP_NOFS);
761 			if (!new_ref) {
762 				free_pref(ref);
763 				ret = -ENOMEM;
764 				goto out;
765 			}
766 			memcpy(new_ref, ref, sizeof(*ref));
767 			new_ref->parent = node->val;
768 			new_ref->inode_list = unode_aux_to_inode_list(node);
769 			prelim_ref_insert(fs_info, &preftrees->direct,
770 					  new_ref, NULL);
771 		}
772 
773 		/*
774 		 * Now it's a direct ref, put it in the direct tree. We must
775 		 * do this last because the ref could be merged/freed here.
776 		 */
777 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
778 
779 		ulist_reinit(parents);
780 		cond_resched();
781 	}
782 out:
783 	/*
784 	 * We may have inode lists attached to refs in the parents ulist, so we
785 	 * must free them before freeing the ulist and its refs.
786 	 */
787 	free_leaf_list(parents);
788 	return ret;
789 }
790 
791 /*
792  * read tree blocks and add keys where required.
793  */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)794 static int add_missing_keys(struct btrfs_fs_info *fs_info,
795 			    struct preftrees *preftrees, bool lock)
796 {
797 	struct prelim_ref *ref;
798 	struct extent_buffer *eb;
799 	struct preftree *tree = &preftrees->indirect_missing_keys;
800 	struct rb_node *node;
801 
802 	while ((node = rb_first_cached(&tree->root))) {
803 		ref = rb_entry(node, struct prelim_ref, rbnode);
804 		rb_erase_cached(node, &tree->root);
805 
806 		BUG_ON(ref->parent);	/* should not be a direct ref */
807 		BUG_ON(ref->key_for_search.type);
808 		BUG_ON(!ref->wanted_disk_byte);
809 
810 		eb = read_tree_block(fs_info, ref->wanted_disk_byte,
811 				     ref->root_id, 0, ref->level - 1, NULL);
812 		if (IS_ERR(eb)) {
813 			free_pref(ref);
814 			return PTR_ERR(eb);
815 		}
816 		if (!extent_buffer_uptodate(eb)) {
817 			free_pref(ref);
818 			free_extent_buffer(eb);
819 			return -EIO;
820 		}
821 
822 		if (lock)
823 			btrfs_tree_read_lock(eb);
824 		if (btrfs_header_level(eb) == 0)
825 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
826 		else
827 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
828 		if (lock)
829 			btrfs_tree_read_unlock(eb);
830 		free_extent_buffer(eb);
831 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
832 		cond_resched();
833 	}
834 	return 0;
835 }
836 
837 /*
838  * add all currently queued delayed refs from this head whose seq nr is
839  * smaller or equal that seq to the list
840  */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,struct share_check * sc)841 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
842 			    struct btrfs_delayed_ref_head *head, u64 seq,
843 			    struct preftrees *preftrees, struct share_check *sc)
844 {
845 	struct btrfs_delayed_ref_node *node;
846 	struct btrfs_key key;
847 	struct rb_node *n;
848 	int count;
849 	int ret = 0;
850 
851 	spin_lock(&head->lock);
852 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
853 		node = rb_entry(n, struct btrfs_delayed_ref_node,
854 				ref_node);
855 		if (node->seq > seq)
856 			continue;
857 
858 		switch (node->action) {
859 		case BTRFS_ADD_DELAYED_EXTENT:
860 		case BTRFS_UPDATE_DELAYED_HEAD:
861 			WARN_ON(1);
862 			continue;
863 		case BTRFS_ADD_DELAYED_REF:
864 			count = node->ref_mod;
865 			break;
866 		case BTRFS_DROP_DELAYED_REF:
867 			count = node->ref_mod * -1;
868 			break;
869 		default:
870 			BUG();
871 		}
872 		switch (node->type) {
873 		case BTRFS_TREE_BLOCK_REF_KEY: {
874 			/* NORMAL INDIRECT METADATA backref */
875 			struct btrfs_delayed_tree_ref *ref;
876 			struct btrfs_key *key_ptr = NULL;
877 
878 			if (head->extent_op && head->extent_op->update_key) {
879 				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
880 				key_ptr = &key;
881 			}
882 
883 			ref = btrfs_delayed_node_to_tree_ref(node);
884 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
885 					       key_ptr, ref->level + 1,
886 					       node->bytenr, count, sc,
887 					       GFP_ATOMIC);
888 			break;
889 		}
890 		case BTRFS_SHARED_BLOCK_REF_KEY: {
891 			/* SHARED DIRECT METADATA backref */
892 			struct btrfs_delayed_tree_ref *ref;
893 
894 			ref = btrfs_delayed_node_to_tree_ref(node);
895 
896 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
897 					     ref->parent, node->bytenr, count,
898 					     sc, GFP_ATOMIC);
899 			break;
900 		}
901 		case BTRFS_EXTENT_DATA_REF_KEY: {
902 			/* NORMAL INDIRECT DATA backref */
903 			struct btrfs_delayed_data_ref *ref;
904 			ref = btrfs_delayed_node_to_data_ref(node);
905 
906 			key.objectid = ref->objectid;
907 			key.type = BTRFS_EXTENT_DATA_KEY;
908 			key.offset = ref->offset;
909 
910 			/*
911 			 * If we have a share check context and a reference for
912 			 * another inode, we can't exit immediately. This is
913 			 * because even if this is a BTRFS_ADD_DELAYED_REF
914 			 * reference we may find next a BTRFS_DROP_DELAYED_REF
915 			 * which cancels out this ADD reference.
916 			 *
917 			 * If this is a DROP reference and there was no previous
918 			 * ADD reference, then we need to signal that when we
919 			 * process references from the extent tree (through
920 			 * add_inline_refs() and add_keyed_refs()), we should
921 			 * not exit early if we find a reference for another
922 			 * inode, because one of the delayed DROP references
923 			 * may cancel that reference in the extent tree.
924 			 */
925 			if (sc && count < 0)
926 				sc->have_delayed_delete_refs = true;
927 
928 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
929 					       &key, 0, node->bytenr, count, sc,
930 					       GFP_ATOMIC);
931 			break;
932 		}
933 		case BTRFS_SHARED_DATA_REF_KEY: {
934 			/* SHARED DIRECT FULL backref */
935 			struct btrfs_delayed_data_ref *ref;
936 
937 			ref = btrfs_delayed_node_to_data_ref(node);
938 
939 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
940 					     node->bytenr, count, sc,
941 					     GFP_ATOMIC);
942 			break;
943 		}
944 		default:
945 			WARN_ON(1);
946 		}
947 		/*
948 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
949 		 * refs have been checked.
950 		 */
951 		if (ret && (ret != BACKREF_FOUND_SHARED))
952 			break;
953 	}
954 	if (!ret)
955 		ret = extent_is_shared(sc);
956 
957 	spin_unlock(&head->lock);
958 	return ret;
959 }
960 
961 /*
962  * add all inline backrefs for bytenr to the list
963  *
964  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
965  */
add_inline_refs(const struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int * info_level,struct preftrees * preftrees,struct share_check * sc)966 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
967 			   struct btrfs_path *path, u64 bytenr,
968 			   int *info_level, struct preftrees *preftrees,
969 			   struct share_check *sc)
970 {
971 	int ret = 0;
972 	int slot;
973 	struct extent_buffer *leaf;
974 	struct btrfs_key key;
975 	struct btrfs_key found_key;
976 	unsigned long ptr;
977 	unsigned long end;
978 	struct btrfs_extent_item *ei;
979 	u64 flags;
980 	u64 item_size;
981 
982 	/*
983 	 * enumerate all inline refs
984 	 */
985 	leaf = path->nodes[0];
986 	slot = path->slots[0];
987 
988 	item_size = btrfs_item_size(leaf, slot);
989 	BUG_ON(item_size < sizeof(*ei));
990 
991 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
992 	flags = btrfs_extent_flags(leaf, ei);
993 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
994 
995 	ptr = (unsigned long)(ei + 1);
996 	end = (unsigned long)ei + item_size;
997 
998 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
999 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1000 		struct btrfs_tree_block_info *info;
1001 
1002 		info = (struct btrfs_tree_block_info *)ptr;
1003 		*info_level = btrfs_tree_block_level(leaf, info);
1004 		ptr += sizeof(struct btrfs_tree_block_info);
1005 		BUG_ON(ptr > end);
1006 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1007 		*info_level = found_key.offset;
1008 	} else {
1009 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1010 	}
1011 
1012 	while (ptr < end) {
1013 		struct btrfs_extent_inline_ref *iref;
1014 		u64 offset;
1015 		int type;
1016 
1017 		iref = (struct btrfs_extent_inline_ref *)ptr;
1018 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1019 							BTRFS_REF_TYPE_ANY);
1020 		if (type == BTRFS_REF_TYPE_INVALID)
1021 			return -EUCLEAN;
1022 
1023 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1024 
1025 		switch (type) {
1026 		case BTRFS_SHARED_BLOCK_REF_KEY:
1027 			ret = add_direct_ref(fs_info, preftrees,
1028 					     *info_level + 1, offset,
1029 					     bytenr, 1, NULL, GFP_NOFS);
1030 			break;
1031 		case BTRFS_SHARED_DATA_REF_KEY: {
1032 			struct btrfs_shared_data_ref *sdref;
1033 			int count;
1034 
1035 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1036 			count = btrfs_shared_data_ref_count(leaf, sdref);
1037 
1038 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1039 					     bytenr, count, sc, GFP_NOFS);
1040 			break;
1041 		}
1042 		case BTRFS_TREE_BLOCK_REF_KEY:
1043 			ret = add_indirect_ref(fs_info, preftrees, offset,
1044 					       NULL, *info_level + 1,
1045 					       bytenr, 1, NULL, GFP_NOFS);
1046 			break;
1047 		case BTRFS_EXTENT_DATA_REF_KEY: {
1048 			struct btrfs_extent_data_ref *dref;
1049 			int count;
1050 			u64 root;
1051 
1052 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1053 			count = btrfs_extent_data_ref_count(leaf, dref);
1054 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1055 								      dref);
1056 			key.type = BTRFS_EXTENT_DATA_KEY;
1057 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1058 
1059 			if (sc && sc->inum && key.objectid != sc->inum &&
1060 			    !sc->have_delayed_delete_refs) {
1061 				ret = BACKREF_FOUND_SHARED;
1062 				break;
1063 			}
1064 
1065 			root = btrfs_extent_data_ref_root(leaf, dref);
1066 
1067 			ret = add_indirect_ref(fs_info, preftrees, root,
1068 					       &key, 0, bytenr, count,
1069 					       sc, GFP_NOFS);
1070 
1071 			break;
1072 		}
1073 		default:
1074 			WARN_ON(1);
1075 		}
1076 		if (ret)
1077 			return ret;
1078 		ptr += btrfs_extent_inline_ref_size(type);
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 /*
1085  * add all non-inline backrefs for bytenr to the list
1086  *
1087  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1088  */
add_keyed_refs(struct btrfs_root * extent_root,struct btrfs_path * path,u64 bytenr,int info_level,struct preftrees * preftrees,struct share_check * sc)1089 static int add_keyed_refs(struct btrfs_root *extent_root,
1090 			  struct btrfs_path *path, u64 bytenr,
1091 			  int info_level, struct preftrees *preftrees,
1092 			  struct share_check *sc)
1093 {
1094 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1095 	int ret;
1096 	int slot;
1097 	struct extent_buffer *leaf;
1098 	struct btrfs_key key;
1099 
1100 	while (1) {
1101 		ret = btrfs_next_item(extent_root, path);
1102 		if (ret < 0)
1103 			break;
1104 		if (ret) {
1105 			ret = 0;
1106 			break;
1107 		}
1108 
1109 		slot = path->slots[0];
1110 		leaf = path->nodes[0];
1111 		btrfs_item_key_to_cpu(leaf, &key, slot);
1112 
1113 		if (key.objectid != bytenr)
1114 			break;
1115 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1116 			continue;
1117 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1118 			break;
1119 
1120 		switch (key.type) {
1121 		case BTRFS_SHARED_BLOCK_REF_KEY:
1122 			/* SHARED DIRECT METADATA backref */
1123 			ret = add_direct_ref(fs_info, preftrees,
1124 					     info_level + 1, key.offset,
1125 					     bytenr, 1, NULL, GFP_NOFS);
1126 			break;
1127 		case BTRFS_SHARED_DATA_REF_KEY: {
1128 			/* SHARED DIRECT FULL backref */
1129 			struct btrfs_shared_data_ref *sdref;
1130 			int count;
1131 
1132 			sdref = btrfs_item_ptr(leaf, slot,
1133 					      struct btrfs_shared_data_ref);
1134 			count = btrfs_shared_data_ref_count(leaf, sdref);
1135 			ret = add_direct_ref(fs_info, preftrees, 0,
1136 					     key.offset, bytenr, count,
1137 					     sc, GFP_NOFS);
1138 			break;
1139 		}
1140 		case BTRFS_TREE_BLOCK_REF_KEY:
1141 			/* NORMAL INDIRECT METADATA backref */
1142 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1143 					       NULL, info_level + 1, bytenr,
1144 					       1, NULL, GFP_NOFS);
1145 			break;
1146 		case BTRFS_EXTENT_DATA_REF_KEY: {
1147 			/* NORMAL INDIRECT DATA backref */
1148 			struct btrfs_extent_data_ref *dref;
1149 			int count;
1150 			u64 root;
1151 
1152 			dref = btrfs_item_ptr(leaf, slot,
1153 					      struct btrfs_extent_data_ref);
1154 			count = btrfs_extent_data_ref_count(leaf, dref);
1155 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1156 								      dref);
1157 			key.type = BTRFS_EXTENT_DATA_KEY;
1158 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1159 
1160 			if (sc && sc->inum && key.objectid != sc->inum &&
1161 			    !sc->have_delayed_delete_refs) {
1162 				ret = BACKREF_FOUND_SHARED;
1163 				break;
1164 			}
1165 
1166 			root = btrfs_extent_data_ref_root(leaf, dref);
1167 			ret = add_indirect_ref(fs_info, preftrees, root,
1168 					       &key, 0, bytenr, count,
1169 					       sc, GFP_NOFS);
1170 			break;
1171 		}
1172 		default:
1173 			WARN_ON(1);
1174 		}
1175 		if (ret)
1176 			return ret;
1177 
1178 	}
1179 
1180 	return ret;
1181 }
1182 
1183 /*
1184  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1185  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1186  * indirect refs to their parent bytenr.
1187  * When roots are found, they're added to the roots list
1188  *
1189  * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1190  * behave much like trans == NULL case, the difference only lies in it will not
1191  * commit root.
1192  * The special case is for qgroup to search roots in commit_transaction().
1193  *
1194  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1195  * shared extent is detected.
1196  *
1197  * Otherwise this returns 0 for success and <0 for an error.
1198  *
1199  * If ignore_offset is set to false, only extent refs whose offsets match
1200  * extent_item_pos are returned.  If true, every extent ref is returned
1201  * and extent_item_pos is ignored.
1202  *
1203  * FIXME some caching might speed things up
1204  */
find_parent_nodes(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist * refs,struct ulist * roots,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)1205 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1206 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1207 			     u64 time_seq, struct ulist *refs,
1208 			     struct ulist *roots, const u64 *extent_item_pos,
1209 			     struct share_check *sc, bool ignore_offset)
1210 {
1211 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
1212 	struct btrfs_key key;
1213 	struct btrfs_path *path;
1214 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1215 	struct btrfs_delayed_ref_head *head;
1216 	int info_level = 0;
1217 	int ret;
1218 	struct prelim_ref *ref;
1219 	struct rb_node *node;
1220 	struct extent_inode_elem *eie = NULL;
1221 	struct preftrees preftrees = {
1222 		.direct = PREFTREE_INIT,
1223 		.indirect = PREFTREE_INIT,
1224 		.indirect_missing_keys = PREFTREE_INIT
1225 	};
1226 
1227 	key.objectid = bytenr;
1228 	key.offset = (u64)-1;
1229 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1230 		key.type = BTRFS_METADATA_ITEM_KEY;
1231 	else
1232 		key.type = BTRFS_EXTENT_ITEM_KEY;
1233 
1234 	path = btrfs_alloc_path();
1235 	if (!path)
1236 		return -ENOMEM;
1237 	if (!trans) {
1238 		path->search_commit_root = 1;
1239 		path->skip_locking = 1;
1240 	}
1241 
1242 	if (time_seq == BTRFS_SEQ_LAST)
1243 		path->skip_locking = 1;
1244 
1245 again:
1246 	head = NULL;
1247 
1248 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1249 	if (ret < 0)
1250 		goto out;
1251 	if (ret == 0) {
1252 		/* This shouldn't happen, indicates a bug or fs corruption. */
1253 		ASSERT(ret != 0);
1254 		ret = -EUCLEAN;
1255 		goto out;
1256 	}
1257 
1258 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1259 	    time_seq != BTRFS_SEQ_LAST) {
1260 		/*
1261 		 * We have a specific time_seq we care about and trans which
1262 		 * means we have the path lock, we need to grab the ref head and
1263 		 * lock it so we have a consistent view of the refs at the given
1264 		 * time.
1265 		 */
1266 		delayed_refs = &trans->transaction->delayed_refs;
1267 		spin_lock(&delayed_refs->lock);
1268 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1269 		if (head) {
1270 			if (!mutex_trylock(&head->mutex)) {
1271 				refcount_inc(&head->refs);
1272 				spin_unlock(&delayed_refs->lock);
1273 
1274 				btrfs_release_path(path);
1275 
1276 				/*
1277 				 * Mutex was contended, block until it's
1278 				 * released and try again
1279 				 */
1280 				mutex_lock(&head->mutex);
1281 				mutex_unlock(&head->mutex);
1282 				btrfs_put_delayed_ref_head(head);
1283 				goto again;
1284 			}
1285 			spin_unlock(&delayed_refs->lock);
1286 			ret = add_delayed_refs(fs_info, head, time_seq,
1287 					       &preftrees, sc);
1288 			mutex_unlock(&head->mutex);
1289 			if (ret)
1290 				goto out;
1291 		} else {
1292 			spin_unlock(&delayed_refs->lock);
1293 		}
1294 	}
1295 
1296 	if (path->slots[0]) {
1297 		struct extent_buffer *leaf;
1298 		int slot;
1299 
1300 		path->slots[0]--;
1301 		leaf = path->nodes[0];
1302 		slot = path->slots[0];
1303 		btrfs_item_key_to_cpu(leaf, &key, slot);
1304 		if (key.objectid == bytenr &&
1305 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1306 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1307 			ret = add_inline_refs(fs_info, path, bytenr,
1308 					      &info_level, &preftrees, sc);
1309 			if (ret)
1310 				goto out;
1311 			ret = add_keyed_refs(root, path, bytenr, info_level,
1312 					     &preftrees, sc);
1313 			if (ret)
1314 				goto out;
1315 		}
1316 	}
1317 
1318 	btrfs_release_path(path);
1319 
1320 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1321 	if (ret)
1322 		goto out;
1323 
1324 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1325 
1326 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1327 				    extent_item_pos, sc, ignore_offset);
1328 	if (ret)
1329 		goto out;
1330 
1331 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1332 
1333 	/*
1334 	 * This walks the tree of merged and resolved refs. Tree blocks are
1335 	 * read in as needed. Unique entries are added to the ulist, and
1336 	 * the list of found roots is updated.
1337 	 *
1338 	 * We release the entire tree in one go before returning.
1339 	 */
1340 	node = rb_first_cached(&preftrees.direct.root);
1341 	while (node) {
1342 		ref = rb_entry(node, struct prelim_ref, rbnode);
1343 		node = rb_next(&ref->rbnode);
1344 		/*
1345 		 * ref->count < 0 can happen here if there are delayed
1346 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1347 		 * prelim_ref_insert() relies on this when merging
1348 		 * identical refs to keep the overall count correct.
1349 		 * prelim_ref_insert() will merge only those refs
1350 		 * which compare identically.  Any refs having
1351 		 * e.g. different offsets would not be merged,
1352 		 * and would retain their original ref->count < 0.
1353 		 */
1354 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1355 			if (sc && sc->root_objectid &&
1356 			    ref->root_id != sc->root_objectid) {
1357 				ret = BACKREF_FOUND_SHARED;
1358 				goto out;
1359 			}
1360 
1361 			/* no parent == root of tree */
1362 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1363 			if (ret < 0)
1364 				goto out;
1365 		}
1366 		if (ref->count && ref->parent) {
1367 			if (extent_item_pos && !ref->inode_list &&
1368 			    ref->level == 0) {
1369 				struct extent_buffer *eb;
1370 
1371 				eb = read_tree_block(fs_info, ref->parent, 0,
1372 						     0, ref->level, NULL);
1373 				if (IS_ERR(eb)) {
1374 					ret = PTR_ERR(eb);
1375 					goto out;
1376 				}
1377 				if (!extent_buffer_uptodate(eb)) {
1378 					free_extent_buffer(eb);
1379 					ret = -EIO;
1380 					goto out;
1381 				}
1382 
1383 				if (!path->skip_locking)
1384 					btrfs_tree_read_lock(eb);
1385 				ret = find_extent_in_eb(eb, bytenr,
1386 							*extent_item_pos, &eie, ignore_offset);
1387 				if (!path->skip_locking)
1388 					btrfs_tree_read_unlock(eb);
1389 				free_extent_buffer(eb);
1390 				if (ret < 0)
1391 					goto out;
1392 				ref->inode_list = eie;
1393 				/*
1394 				 * We transferred the list ownership to the ref,
1395 				 * so set to NULL to avoid a double free in case
1396 				 * an error happens after this.
1397 				 */
1398 				eie = NULL;
1399 			}
1400 			ret = ulist_add_merge_ptr(refs, ref->parent,
1401 						  ref->inode_list,
1402 						  (void **)&eie, GFP_NOFS);
1403 			if (ret < 0)
1404 				goto out;
1405 			if (!ret && extent_item_pos) {
1406 				/*
1407 				 * We've recorded that parent, so we must extend
1408 				 * its inode list here.
1409 				 *
1410 				 * However if there was corruption we may not
1411 				 * have found an eie, return an error in this
1412 				 * case.
1413 				 */
1414 				ASSERT(eie);
1415 				if (!eie) {
1416 					ret = -EUCLEAN;
1417 					goto out;
1418 				}
1419 				while (eie->next)
1420 					eie = eie->next;
1421 				eie->next = ref->inode_list;
1422 			}
1423 			eie = NULL;
1424 			/*
1425 			 * We have transferred the inode list ownership from
1426 			 * this ref to the ref we added to the 'refs' ulist.
1427 			 * So set this ref's inode list to NULL to avoid
1428 			 * use-after-free when our caller uses it or double
1429 			 * frees in case an error happens before we return.
1430 			 */
1431 			ref->inode_list = NULL;
1432 		}
1433 		cond_resched();
1434 	}
1435 
1436 out:
1437 	btrfs_free_path(path);
1438 
1439 	prelim_release(&preftrees.direct);
1440 	prelim_release(&preftrees.indirect);
1441 	prelim_release(&preftrees.indirect_missing_keys);
1442 
1443 	if (ret < 0)
1444 		free_inode_elem_list(eie);
1445 	return ret;
1446 }
1447 
1448 /*
1449  * Finds all leafs with a reference to the specified combination of bytenr and
1450  * offset. key_list_head will point to a list of corresponding keys (caller must
1451  * free each list element). The leafs will be stored in the leafs ulist, which
1452  * must be freed with ulist_free.
1453  *
1454  * returns 0 on success, <0 on error
1455  */
btrfs_find_all_leafs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist ** leafs,const u64 * extent_item_pos,bool ignore_offset)1456 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1457 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1458 			 u64 time_seq, struct ulist **leafs,
1459 			 const u64 *extent_item_pos, bool ignore_offset)
1460 {
1461 	int ret;
1462 
1463 	*leafs = ulist_alloc(GFP_NOFS);
1464 	if (!*leafs)
1465 		return -ENOMEM;
1466 
1467 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1468 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1469 	if (ret < 0 && ret != -ENOENT) {
1470 		free_leaf_list(*leafs);
1471 		return ret;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 /*
1478  * walk all backrefs for a given extent to find all roots that reference this
1479  * extent. Walking a backref means finding all extents that reference this
1480  * extent and in turn walk the backrefs of those, too. Naturally this is a
1481  * recursive process, but here it is implemented in an iterative fashion: We
1482  * find all referencing extents for the extent in question and put them on a
1483  * list. In turn, we find all referencing extents for those, further appending
1484  * to the list. The way we iterate the list allows adding more elements after
1485  * the current while iterating. The process stops when we reach the end of the
1486  * list. Found roots are added to the roots list.
1487  *
1488  * returns 0 on success, < 0 on error.
1489  */
btrfs_find_all_roots_safe(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist ** roots,bool ignore_offset)1490 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1491 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1492 				     u64 time_seq, struct ulist **roots,
1493 				     bool ignore_offset)
1494 {
1495 	struct ulist *tmp;
1496 	struct ulist_node *node = NULL;
1497 	struct ulist_iterator uiter;
1498 	int ret;
1499 
1500 	tmp = ulist_alloc(GFP_NOFS);
1501 	if (!tmp)
1502 		return -ENOMEM;
1503 	*roots = ulist_alloc(GFP_NOFS);
1504 	if (!*roots) {
1505 		ulist_free(tmp);
1506 		return -ENOMEM;
1507 	}
1508 
1509 	ULIST_ITER_INIT(&uiter);
1510 	while (1) {
1511 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1512 					tmp, *roots, NULL, NULL, ignore_offset);
1513 		if (ret < 0 && ret != -ENOENT) {
1514 			ulist_free(tmp);
1515 			ulist_free(*roots);
1516 			*roots = NULL;
1517 			return ret;
1518 		}
1519 		node = ulist_next(tmp, &uiter);
1520 		if (!node)
1521 			break;
1522 		bytenr = node->val;
1523 		cond_resched();
1524 	}
1525 
1526 	ulist_free(tmp);
1527 	return 0;
1528 }
1529 
btrfs_find_all_roots(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist ** roots,bool skip_commit_root_sem)1530 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1531 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1532 			 u64 time_seq, struct ulist **roots,
1533 			 bool skip_commit_root_sem)
1534 {
1535 	int ret;
1536 
1537 	if (!trans && !skip_commit_root_sem)
1538 		down_read(&fs_info->commit_root_sem);
1539 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1540 					time_seq, roots, false);
1541 	if (!trans && !skip_commit_root_sem)
1542 		up_read(&fs_info->commit_root_sem);
1543 	return ret;
1544 }
1545 
1546 /*
1547  * The caller has joined a transaction or is holding a read lock on the
1548  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1549  * snapshot field changing while updating or checking the cache.
1550  */
lookup_backref_shared_cache(struct btrfs_backref_shared_cache * cache,struct btrfs_root * root,u64 bytenr,int level,bool * is_shared)1551 static bool lookup_backref_shared_cache(struct btrfs_backref_shared_cache *cache,
1552 					struct btrfs_root *root,
1553 					u64 bytenr, int level, bool *is_shared)
1554 {
1555 	struct btrfs_backref_shared_cache_entry *entry;
1556 
1557 	if (!cache->use_cache)
1558 		return false;
1559 
1560 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1561 		return false;
1562 
1563 	/*
1564 	 * Level -1 is used for the data extent, which is not reliable to cache
1565 	 * because its reference count can increase or decrease without us
1566 	 * realizing. We cache results only for extent buffers that lead from
1567 	 * the root node down to the leaf with the file extent item.
1568 	 */
1569 	ASSERT(level >= 0);
1570 
1571 	entry = &cache->entries[level];
1572 
1573 	/* Unused cache entry or being used for some other extent buffer. */
1574 	if (entry->bytenr != bytenr)
1575 		return false;
1576 
1577 	/*
1578 	 * We cached a false result, but the last snapshot generation of the
1579 	 * root changed, so we now have a snapshot. Don't trust the result.
1580 	 */
1581 	if (!entry->is_shared &&
1582 	    entry->gen != btrfs_root_last_snapshot(&root->root_item))
1583 		return false;
1584 
1585 	/*
1586 	 * If we cached a true result and the last generation used for dropping
1587 	 * a root changed, we can not trust the result, because the dropped root
1588 	 * could be a snapshot sharing this extent buffer.
1589 	 */
1590 	if (entry->is_shared &&
1591 	    entry->gen != btrfs_get_last_root_drop_gen(root->fs_info))
1592 		return false;
1593 
1594 	*is_shared = entry->is_shared;
1595 	/*
1596 	 * If the node at this level is shared, than all nodes below are also
1597 	 * shared. Currently some of the nodes below may be marked as not shared
1598 	 * because we have just switched from one leaf to another, and switched
1599 	 * also other nodes above the leaf and below the current level, so mark
1600 	 * them as shared.
1601 	 */
1602 	if (*is_shared) {
1603 		for (int i = 0; i < level; i++) {
1604 			cache->entries[i].is_shared = true;
1605 			cache->entries[i].gen = entry->gen;
1606 		}
1607 	}
1608 
1609 	return true;
1610 }
1611 
1612 /*
1613  * The caller has joined a transaction or is holding a read lock on the
1614  * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1615  * snapshot field changing while updating or checking the cache.
1616  */
store_backref_shared_cache(struct btrfs_backref_shared_cache * cache,struct btrfs_root * root,u64 bytenr,int level,bool is_shared)1617 static void store_backref_shared_cache(struct btrfs_backref_shared_cache *cache,
1618 				       struct btrfs_root *root,
1619 				       u64 bytenr, int level, bool is_shared)
1620 {
1621 	struct btrfs_backref_shared_cache_entry *entry;
1622 	u64 gen;
1623 
1624 	if (!cache->use_cache)
1625 		return;
1626 
1627 	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1628 		return;
1629 
1630 	/*
1631 	 * Level -1 is used for the data extent, which is not reliable to cache
1632 	 * because its reference count can increase or decrease without us
1633 	 * realizing. We cache results only for extent buffers that lead from
1634 	 * the root node down to the leaf with the file extent item.
1635 	 */
1636 	ASSERT(level >= 0);
1637 
1638 	if (is_shared)
1639 		gen = btrfs_get_last_root_drop_gen(root->fs_info);
1640 	else
1641 		gen = btrfs_root_last_snapshot(&root->root_item);
1642 
1643 	entry = &cache->entries[level];
1644 	entry->bytenr = bytenr;
1645 	entry->is_shared = is_shared;
1646 	entry->gen = gen;
1647 
1648 	/*
1649 	 * If we found an extent buffer is shared, set the cache result for all
1650 	 * extent buffers below it to true. As nodes in the path are COWed,
1651 	 * their sharedness is moved to their children, and if a leaf is COWed,
1652 	 * then the sharedness of a data extent becomes direct, the refcount of
1653 	 * data extent is increased in the extent item at the extent tree.
1654 	 */
1655 	if (is_shared) {
1656 		for (int i = 0; i < level; i++) {
1657 			entry = &cache->entries[i];
1658 			entry->is_shared = is_shared;
1659 			entry->gen = gen;
1660 		}
1661 	}
1662 }
1663 
1664 /*
1665  * Check if a data extent is shared or not.
1666  *
1667  * @root:        The root the inode belongs to.
1668  * @inum:        Number of the inode whose extent we are checking.
1669  * @bytenr:      Logical bytenr of the extent we are checking.
1670  * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1671  *               not known.
1672  * @roots:       List of roots this extent is shared among.
1673  * @tmp:         Temporary list used for iteration.
1674  * @cache:       A backref lookup result cache.
1675  *
1676  * btrfs_is_data_extent_shared uses the backref walking code but will short
1677  * circuit as soon as it finds a root or inode that doesn't match the
1678  * one passed in. This provides a significant performance benefit for
1679  * callers (such as fiemap) which want to know whether the extent is
1680  * shared but do not need a ref count.
1681  *
1682  * This attempts to attach to the running transaction in order to account for
1683  * delayed refs, but continues on even when no running transaction exists.
1684  *
1685  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1686  */
btrfs_is_data_extent_shared(struct btrfs_root * root,u64 inum,u64 bytenr,u64 extent_gen,struct ulist * roots,struct ulist * tmp,struct btrfs_backref_shared_cache * cache)1687 int btrfs_is_data_extent_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1688 				u64 extent_gen,
1689 				struct ulist *roots, struct ulist *tmp,
1690 				struct btrfs_backref_shared_cache *cache)
1691 {
1692 	struct btrfs_fs_info *fs_info = root->fs_info;
1693 	struct btrfs_trans_handle *trans;
1694 	struct ulist_iterator uiter;
1695 	struct ulist_node *node;
1696 	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1697 	int ret = 0;
1698 	struct share_check shared = {
1699 		.root_objectid = root->root_key.objectid,
1700 		.inum = inum,
1701 		.share_count = 0,
1702 		.have_delayed_delete_refs = false,
1703 	};
1704 	int level;
1705 
1706 	ulist_init(roots);
1707 	ulist_init(tmp);
1708 
1709 	trans = btrfs_join_transaction_nostart(root);
1710 	if (IS_ERR(trans)) {
1711 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1712 			ret = PTR_ERR(trans);
1713 			goto out;
1714 		}
1715 		trans = NULL;
1716 		down_read(&fs_info->commit_root_sem);
1717 	} else {
1718 		btrfs_get_tree_mod_seq(fs_info, &elem);
1719 	}
1720 
1721 	/* -1 means we are in the bytenr of the data extent. */
1722 	level = -1;
1723 	ULIST_ITER_INIT(&uiter);
1724 	cache->use_cache = true;
1725 	while (1) {
1726 		bool is_shared;
1727 		bool cached;
1728 
1729 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1730 					roots, NULL, &shared, false);
1731 		if (ret == BACKREF_FOUND_SHARED) {
1732 			/* this is the only condition under which we return 1 */
1733 			ret = 1;
1734 			if (level >= 0)
1735 				store_backref_shared_cache(cache, root, bytenr,
1736 							   level, true);
1737 			break;
1738 		}
1739 		if (ret < 0 && ret != -ENOENT)
1740 			break;
1741 		ret = 0;
1742 		/*
1743 		 * If our data extent is not shared through reflinks and it was
1744 		 * created in a generation after the last one used to create a
1745 		 * snapshot of the inode's root, then it can not be shared
1746 		 * indirectly through subtrees, as that can only happen with
1747 		 * snapshots. In this case bail out, no need to check for the
1748 		 * sharedness of extent buffers.
1749 		 */
1750 		if (level == -1 &&
1751 		    extent_gen > btrfs_root_last_snapshot(&root->root_item))
1752 			break;
1753 
1754 		/*
1755 		 * If our data extent was not directly shared (without multiple
1756 		 * reference items), than it might have a single reference item
1757 		 * with a count > 1 for the same offset, which means there are 2
1758 		 * (or more) file extent items that point to the data extent -
1759 		 * this happens when a file extent item needs to be split and
1760 		 * then one item gets moved to another leaf due to a b+tree leaf
1761 		 * split when inserting some item. In this case the file extent
1762 		 * items may be located in different leaves and therefore some
1763 		 * of the leaves may be referenced through shared subtrees while
1764 		 * others are not. Since our extent buffer cache only works for
1765 		 * a single path (by far the most common case and simpler to
1766 		 * deal with), we can not use it if we have multiple leaves
1767 		 * (which implies multiple paths).
1768 		 */
1769 		if (level == -1 && tmp->nnodes > 1)
1770 			cache->use_cache = false;
1771 
1772 		if (level >= 0)
1773 			store_backref_shared_cache(cache, root, bytenr,
1774 						   level, false);
1775 		node = ulist_next(tmp, &uiter);
1776 		if (!node)
1777 			break;
1778 		bytenr = node->val;
1779 		level++;
1780 		cached = lookup_backref_shared_cache(cache, root, bytenr, level,
1781 						     &is_shared);
1782 		if (cached) {
1783 			ret = (is_shared ? 1 : 0);
1784 			break;
1785 		}
1786 		shared.share_count = 0;
1787 		shared.have_delayed_delete_refs = false;
1788 		cond_resched();
1789 	}
1790 
1791 	if (trans) {
1792 		btrfs_put_tree_mod_seq(fs_info, &elem);
1793 		btrfs_end_transaction(trans);
1794 	} else {
1795 		up_read(&fs_info->commit_root_sem);
1796 	}
1797 out:
1798 	ulist_release(roots);
1799 	ulist_release(tmp);
1800 	return ret;
1801 }
1802 
btrfs_find_one_extref(struct btrfs_root * root,u64 inode_objectid,u64 start_off,struct btrfs_path * path,struct btrfs_inode_extref ** ret_extref,u64 * found_off)1803 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1804 			  u64 start_off, struct btrfs_path *path,
1805 			  struct btrfs_inode_extref **ret_extref,
1806 			  u64 *found_off)
1807 {
1808 	int ret, slot;
1809 	struct btrfs_key key;
1810 	struct btrfs_key found_key;
1811 	struct btrfs_inode_extref *extref;
1812 	const struct extent_buffer *leaf;
1813 	unsigned long ptr;
1814 
1815 	key.objectid = inode_objectid;
1816 	key.type = BTRFS_INODE_EXTREF_KEY;
1817 	key.offset = start_off;
1818 
1819 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1820 	if (ret < 0)
1821 		return ret;
1822 
1823 	while (1) {
1824 		leaf = path->nodes[0];
1825 		slot = path->slots[0];
1826 		if (slot >= btrfs_header_nritems(leaf)) {
1827 			/*
1828 			 * If the item at offset is not found,
1829 			 * btrfs_search_slot will point us to the slot
1830 			 * where it should be inserted. In our case
1831 			 * that will be the slot directly before the
1832 			 * next INODE_REF_KEY_V2 item. In the case
1833 			 * that we're pointing to the last slot in a
1834 			 * leaf, we must move one leaf over.
1835 			 */
1836 			ret = btrfs_next_leaf(root, path);
1837 			if (ret) {
1838 				if (ret >= 1)
1839 					ret = -ENOENT;
1840 				break;
1841 			}
1842 			continue;
1843 		}
1844 
1845 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1846 
1847 		/*
1848 		 * Check that we're still looking at an extended ref key for
1849 		 * this particular objectid. If we have different
1850 		 * objectid or type then there are no more to be found
1851 		 * in the tree and we can exit.
1852 		 */
1853 		ret = -ENOENT;
1854 		if (found_key.objectid != inode_objectid)
1855 			break;
1856 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1857 			break;
1858 
1859 		ret = 0;
1860 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1861 		extref = (struct btrfs_inode_extref *)ptr;
1862 		*ret_extref = extref;
1863 		if (found_off)
1864 			*found_off = found_key.offset;
1865 		break;
1866 	}
1867 
1868 	return ret;
1869 }
1870 
1871 /*
1872  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1873  * Elements of the path are separated by '/' and the path is guaranteed to be
1874  * 0-terminated. the path is only given within the current file system.
1875  * Therefore, it never starts with a '/'. the caller is responsible to provide
1876  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1877  * the start point of the resulting string is returned. this pointer is within
1878  * dest, normally.
1879  * in case the path buffer would overflow, the pointer is decremented further
1880  * as if output was written to the buffer, though no more output is actually
1881  * generated. that way, the caller can determine how much space would be
1882  * required for the path to fit into the buffer. in that case, the returned
1883  * value will be smaller than dest. callers must check this!
1884  */
btrfs_ref_to_path(struct btrfs_root * fs_root,struct btrfs_path * path,u32 name_len,unsigned long name_off,struct extent_buffer * eb_in,u64 parent,char * dest,u32 size)1885 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1886 			u32 name_len, unsigned long name_off,
1887 			struct extent_buffer *eb_in, u64 parent,
1888 			char *dest, u32 size)
1889 {
1890 	int slot;
1891 	u64 next_inum;
1892 	int ret;
1893 	s64 bytes_left = ((s64)size) - 1;
1894 	struct extent_buffer *eb = eb_in;
1895 	struct btrfs_key found_key;
1896 	struct btrfs_inode_ref *iref;
1897 
1898 	if (bytes_left >= 0)
1899 		dest[bytes_left] = '\0';
1900 
1901 	while (1) {
1902 		bytes_left -= name_len;
1903 		if (bytes_left >= 0)
1904 			read_extent_buffer(eb, dest + bytes_left,
1905 					   name_off, name_len);
1906 		if (eb != eb_in) {
1907 			if (!path->skip_locking)
1908 				btrfs_tree_read_unlock(eb);
1909 			free_extent_buffer(eb);
1910 		}
1911 		ret = btrfs_find_item(fs_root, path, parent, 0,
1912 				BTRFS_INODE_REF_KEY, &found_key);
1913 		if (ret > 0)
1914 			ret = -ENOENT;
1915 		if (ret)
1916 			break;
1917 
1918 		next_inum = found_key.offset;
1919 
1920 		/* regular exit ahead */
1921 		if (parent == next_inum)
1922 			break;
1923 
1924 		slot = path->slots[0];
1925 		eb = path->nodes[0];
1926 		/* make sure we can use eb after releasing the path */
1927 		if (eb != eb_in) {
1928 			path->nodes[0] = NULL;
1929 			path->locks[0] = 0;
1930 		}
1931 		btrfs_release_path(path);
1932 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1933 
1934 		name_len = btrfs_inode_ref_name_len(eb, iref);
1935 		name_off = (unsigned long)(iref + 1);
1936 
1937 		parent = next_inum;
1938 		--bytes_left;
1939 		if (bytes_left >= 0)
1940 			dest[bytes_left] = '/';
1941 	}
1942 
1943 	btrfs_release_path(path);
1944 
1945 	if (ret)
1946 		return ERR_PTR(ret);
1947 
1948 	return dest + bytes_left;
1949 }
1950 
1951 /*
1952  * this makes the path point to (logical EXTENT_ITEM *)
1953  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1954  * tree blocks and <0 on error.
1955  */
extent_from_logical(struct btrfs_fs_info * fs_info,u64 logical,struct btrfs_path * path,struct btrfs_key * found_key,u64 * flags_ret)1956 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1957 			struct btrfs_path *path, struct btrfs_key *found_key,
1958 			u64 *flags_ret)
1959 {
1960 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
1961 	int ret;
1962 	u64 flags;
1963 	u64 size = 0;
1964 	u32 item_size;
1965 	const struct extent_buffer *eb;
1966 	struct btrfs_extent_item *ei;
1967 	struct btrfs_key key;
1968 
1969 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1970 		key.type = BTRFS_METADATA_ITEM_KEY;
1971 	else
1972 		key.type = BTRFS_EXTENT_ITEM_KEY;
1973 	key.objectid = logical;
1974 	key.offset = (u64)-1;
1975 
1976 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1977 	if (ret < 0)
1978 		return ret;
1979 
1980 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1981 	if (ret) {
1982 		if (ret > 0)
1983 			ret = -ENOENT;
1984 		return ret;
1985 	}
1986 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1987 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1988 		size = fs_info->nodesize;
1989 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1990 		size = found_key->offset;
1991 
1992 	if (found_key->objectid > logical ||
1993 	    found_key->objectid + size <= logical) {
1994 		btrfs_debug(fs_info,
1995 			"logical %llu is not within any extent", logical);
1996 		return -ENOENT;
1997 	}
1998 
1999 	eb = path->nodes[0];
2000 	item_size = btrfs_item_size(eb, path->slots[0]);
2001 	BUG_ON(item_size < sizeof(*ei));
2002 
2003 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2004 	flags = btrfs_extent_flags(eb, ei);
2005 
2006 	btrfs_debug(fs_info,
2007 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2008 		 logical, logical - found_key->objectid, found_key->objectid,
2009 		 found_key->offset, flags, item_size);
2010 
2011 	WARN_ON(!flags_ret);
2012 	if (flags_ret) {
2013 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2014 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2015 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
2016 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2017 		else
2018 			BUG();
2019 		return 0;
2020 	}
2021 
2022 	return -EIO;
2023 }
2024 
2025 /*
2026  * helper function to iterate extent inline refs. ptr must point to a 0 value
2027  * for the first call and may be modified. it is used to track state.
2028  * if more refs exist, 0 is returned and the next call to
2029  * get_extent_inline_ref must pass the modified ptr parameter to get the
2030  * next ref. after the last ref was processed, 1 is returned.
2031  * returns <0 on error
2032  */
get_extent_inline_ref(unsigned long * ptr,const struct extent_buffer * eb,const struct btrfs_key * key,const struct btrfs_extent_item * ei,u32 item_size,struct btrfs_extent_inline_ref ** out_eiref,int * out_type)2033 static int get_extent_inline_ref(unsigned long *ptr,
2034 				 const struct extent_buffer *eb,
2035 				 const struct btrfs_key *key,
2036 				 const struct btrfs_extent_item *ei,
2037 				 u32 item_size,
2038 				 struct btrfs_extent_inline_ref **out_eiref,
2039 				 int *out_type)
2040 {
2041 	unsigned long end;
2042 	u64 flags;
2043 	struct btrfs_tree_block_info *info;
2044 
2045 	if (!*ptr) {
2046 		/* first call */
2047 		flags = btrfs_extent_flags(eb, ei);
2048 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2049 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
2050 				/* a skinny metadata extent */
2051 				*out_eiref =
2052 				     (struct btrfs_extent_inline_ref *)(ei + 1);
2053 			} else {
2054 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2055 				info = (struct btrfs_tree_block_info *)(ei + 1);
2056 				*out_eiref =
2057 				   (struct btrfs_extent_inline_ref *)(info + 1);
2058 			}
2059 		} else {
2060 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2061 		}
2062 		*ptr = (unsigned long)*out_eiref;
2063 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2064 			return -ENOENT;
2065 	}
2066 
2067 	end = (unsigned long)ei + item_size;
2068 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2069 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2070 						     BTRFS_REF_TYPE_ANY);
2071 	if (*out_type == BTRFS_REF_TYPE_INVALID)
2072 		return -EUCLEAN;
2073 
2074 	*ptr += btrfs_extent_inline_ref_size(*out_type);
2075 	WARN_ON(*ptr > end);
2076 	if (*ptr == end)
2077 		return 1; /* last */
2078 
2079 	return 0;
2080 }
2081 
2082 /*
2083  * reads the tree block backref for an extent. tree level and root are returned
2084  * through out_level and out_root. ptr must point to a 0 value for the first
2085  * call and may be modified (see get_extent_inline_ref comment).
2086  * returns 0 if data was provided, 1 if there was no more data to provide or
2087  * <0 on error.
2088  */
tree_backref_for_extent(unsigned long * ptr,struct extent_buffer * eb,struct btrfs_key * key,struct btrfs_extent_item * ei,u32 item_size,u64 * out_root,u8 * out_level)2089 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2090 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
2091 			    u32 item_size, u64 *out_root, u8 *out_level)
2092 {
2093 	int ret;
2094 	int type;
2095 	struct btrfs_extent_inline_ref *eiref;
2096 
2097 	if (*ptr == (unsigned long)-1)
2098 		return 1;
2099 
2100 	while (1) {
2101 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2102 					      &eiref, &type);
2103 		if (ret < 0)
2104 			return ret;
2105 
2106 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2107 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
2108 			break;
2109 
2110 		if (ret == 1)
2111 			return 1;
2112 	}
2113 
2114 	/* we can treat both ref types equally here */
2115 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2116 
2117 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2118 		struct btrfs_tree_block_info *info;
2119 
2120 		info = (struct btrfs_tree_block_info *)(ei + 1);
2121 		*out_level = btrfs_tree_block_level(eb, info);
2122 	} else {
2123 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2124 		*out_level = (u8)key->offset;
2125 	}
2126 
2127 	if (ret == 1)
2128 		*ptr = (unsigned long)-1;
2129 
2130 	return 0;
2131 }
2132 
iterate_leaf_refs(struct btrfs_fs_info * fs_info,struct extent_inode_elem * inode_list,u64 root,u64 extent_item_objectid,iterate_extent_inodes_t * iterate,void * ctx)2133 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2134 			     struct extent_inode_elem *inode_list,
2135 			     u64 root, u64 extent_item_objectid,
2136 			     iterate_extent_inodes_t *iterate, void *ctx)
2137 {
2138 	struct extent_inode_elem *eie;
2139 	int ret = 0;
2140 
2141 	for (eie = inode_list; eie; eie = eie->next) {
2142 		btrfs_debug(fs_info,
2143 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2144 			    extent_item_objectid, eie->inum,
2145 			    eie->offset, root);
2146 		ret = iterate(eie->inum, eie->offset, root, ctx);
2147 		if (ret) {
2148 			btrfs_debug(fs_info,
2149 				    "stopping iteration for %llu due to ret=%d",
2150 				    extent_item_objectid, ret);
2151 			break;
2152 		}
2153 	}
2154 
2155 	return ret;
2156 }
2157 
2158 /*
2159  * calls iterate() for every inode that references the extent identified by
2160  * the given parameters.
2161  * when the iterator function returns a non-zero value, iteration stops.
2162  */
iterate_extent_inodes(struct btrfs_fs_info * fs_info,u64 extent_item_objectid,u64 extent_item_pos,int search_commit_root,iterate_extent_inodes_t * iterate,void * ctx,bool ignore_offset)2163 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
2164 				u64 extent_item_objectid, u64 extent_item_pos,
2165 				int search_commit_root,
2166 				iterate_extent_inodes_t *iterate, void *ctx,
2167 				bool ignore_offset)
2168 {
2169 	int ret;
2170 	struct btrfs_trans_handle *trans = NULL;
2171 	struct ulist *refs = NULL;
2172 	struct ulist *roots = NULL;
2173 	struct ulist_node *ref_node = NULL;
2174 	struct ulist_node *root_node = NULL;
2175 	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2176 	struct ulist_iterator ref_uiter;
2177 	struct ulist_iterator root_uiter;
2178 
2179 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2180 			extent_item_objectid);
2181 
2182 	if (!search_commit_root) {
2183 		trans = btrfs_attach_transaction(fs_info->tree_root);
2184 		if (IS_ERR(trans)) {
2185 			if (PTR_ERR(trans) != -ENOENT &&
2186 			    PTR_ERR(trans) != -EROFS)
2187 				return PTR_ERR(trans);
2188 			trans = NULL;
2189 		}
2190 	}
2191 
2192 	if (trans)
2193 		btrfs_get_tree_mod_seq(fs_info, &seq_elem);
2194 	else
2195 		down_read(&fs_info->commit_root_sem);
2196 
2197 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2198 				   seq_elem.seq, &refs,
2199 				   &extent_item_pos, ignore_offset);
2200 	if (ret)
2201 		goto out;
2202 
2203 	ULIST_ITER_INIT(&ref_uiter);
2204 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2205 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
2206 						seq_elem.seq, &roots,
2207 						ignore_offset);
2208 		if (ret)
2209 			break;
2210 		ULIST_ITER_INIT(&root_uiter);
2211 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2212 			btrfs_debug(fs_info,
2213 				    "root %llu references leaf %llu, data list %#llx",
2214 				    root_node->val, ref_node->val,
2215 				    ref_node->aux);
2216 			ret = iterate_leaf_refs(fs_info,
2217 						(struct extent_inode_elem *)
2218 						(uintptr_t)ref_node->aux,
2219 						root_node->val,
2220 						extent_item_objectid,
2221 						iterate, ctx);
2222 		}
2223 		ulist_free(roots);
2224 	}
2225 
2226 	free_leaf_list(refs);
2227 out:
2228 	if (trans) {
2229 		btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2230 		btrfs_end_transaction(trans);
2231 	} else {
2232 		up_read(&fs_info->commit_root_sem);
2233 	}
2234 
2235 	return ret;
2236 }
2237 
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)2238 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
2239 {
2240 	struct btrfs_data_container *inodes = ctx;
2241 	const size_t c = 3 * sizeof(u64);
2242 
2243 	if (inodes->bytes_left >= c) {
2244 		inodes->bytes_left -= c;
2245 		inodes->val[inodes->elem_cnt] = inum;
2246 		inodes->val[inodes->elem_cnt + 1] = offset;
2247 		inodes->val[inodes->elem_cnt + 2] = root;
2248 		inodes->elem_cnt += 3;
2249 	} else {
2250 		inodes->bytes_missing += c - inodes->bytes_left;
2251 		inodes->bytes_left = 0;
2252 		inodes->elem_missed += 3;
2253 	}
2254 
2255 	return 0;
2256 }
2257 
iterate_inodes_from_logical(u64 logical,struct btrfs_fs_info * fs_info,struct btrfs_path * path,void * ctx,bool ignore_offset)2258 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2259 				struct btrfs_path *path,
2260 				void *ctx, bool ignore_offset)
2261 {
2262 	int ret;
2263 	u64 extent_item_pos;
2264 	u64 flags = 0;
2265 	struct btrfs_key found_key;
2266 	int search_commit_root = path->search_commit_root;
2267 
2268 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2269 	btrfs_release_path(path);
2270 	if (ret < 0)
2271 		return ret;
2272 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2273 		return -EINVAL;
2274 
2275 	extent_item_pos = logical - found_key.objectid;
2276 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2277 					extent_item_pos, search_commit_root,
2278 					build_ino_list, ctx, ignore_offset);
2279 
2280 	return ret;
2281 }
2282 
2283 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2284 			 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2285 
iterate_inode_refs(u64 inum,struct inode_fs_paths * ipath)2286 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2287 {
2288 	int ret = 0;
2289 	int slot;
2290 	u32 cur;
2291 	u32 len;
2292 	u32 name_len;
2293 	u64 parent = 0;
2294 	int found = 0;
2295 	struct btrfs_root *fs_root = ipath->fs_root;
2296 	struct btrfs_path *path = ipath->btrfs_path;
2297 	struct extent_buffer *eb;
2298 	struct btrfs_inode_ref *iref;
2299 	struct btrfs_key found_key;
2300 
2301 	while (!ret) {
2302 		ret = btrfs_find_item(fs_root, path, inum,
2303 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2304 				&found_key);
2305 
2306 		if (ret < 0)
2307 			break;
2308 		if (ret) {
2309 			ret = found ? 0 : -ENOENT;
2310 			break;
2311 		}
2312 		++found;
2313 
2314 		parent = found_key.offset;
2315 		slot = path->slots[0];
2316 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2317 		if (!eb) {
2318 			ret = -ENOMEM;
2319 			break;
2320 		}
2321 		btrfs_release_path(path);
2322 
2323 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2324 
2325 		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2326 			name_len = btrfs_inode_ref_name_len(eb, iref);
2327 			/* path must be released before calling iterate()! */
2328 			btrfs_debug(fs_root->fs_info,
2329 				"following ref at offset %u for inode %llu in tree %llu",
2330 				cur, found_key.objectid,
2331 				fs_root->root_key.objectid);
2332 			ret = inode_to_path(parent, name_len,
2333 				      (unsigned long)(iref + 1), eb, ipath);
2334 			if (ret)
2335 				break;
2336 			len = sizeof(*iref) + name_len;
2337 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2338 		}
2339 		free_extent_buffer(eb);
2340 	}
2341 
2342 	btrfs_release_path(path);
2343 
2344 	return ret;
2345 }
2346 
iterate_inode_extrefs(u64 inum,struct inode_fs_paths * ipath)2347 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2348 {
2349 	int ret;
2350 	int slot;
2351 	u64 offset = 0;
2352 	u64 parent;
2353 	int found = 0;
2354 	struct btrfs_root *fs_root = ipath->fs_root;
2355 	struct btrfs_path *path = ipath->btrfs_path;
2356 	struct extent_buffer *eb;
2357 	struct btrfs_inode_extref *extref;
2358 	u32 item_size;
2359 	u32 cur_offset;
2360 	unsigned long ptr;
2361 
2362 	while (1) {
2363 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2364 					    &offset);
2365 		if (ret < 0)
2366 			break;
2367 		if (ret) {
2368 			ret = found ? 0 : -ENOENT;
2369 			break;
2370 		}
2371 		++found;
2372 
2373 		slot = path->slots[0];
2374 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2375 		if (!eb) {
2376 			ret = -ENOMEM;
2377 			break;
2378 		}
2379 		btrfs_release_path(path);
2380 
2381 		item_size = btrfs_item_size(eb, slot);
2382 		ptr = btrfs_item_ptr_offset(eb, slot);
2383 		cur_offset = 0;
2384 
2385 		while (cur_offset < item_size) {
2386 			u32 name_len;
2387 
2388 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2389 			parent = btrfs_inode_extref_parent(eb, extref);
2390 			name_len = btrfs_inode_extref_name_len(eb, extref);
2391 			ret = inode_to_path(parent, name_len,
2392 				      (unsigned long)&extref->name, eb, ipath);
2393 			if (ret)
2394 				break;
2395 
2396 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2397 			cur_offset += sizeof(*extref);
2398 		}
2399 		free_extent_buffer(eb);
2400 
2401 		offset++;
2402 	}
2403 
2404 	btrfs_release_path(path);
2405 
2406 	return ret;
2407 }
2408 
2409 /*
2410  * returns 0 if the path could be dumped (probably truncated)
2411  * returns <0 in case of an error
2412  */
inode_to_path(u64 inum,u32 name_len,unsigned long name_off,struct extent_buffer * eb,struct inode_fs_paths * ipath)2413 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2414 			 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2415 {
2416 	char *fspath;
2417 	char *fspath_min;
2418 	int i = ipath->fspath->elem_cnt;
2419 	const int s_ptr = sizeof(char *);
2420 	u32 bytes_left;
2421 
2422 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2423 					ipath->fspath->bytes_left - s_ptr : 0;
2424 
2425 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2426 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2427 				   name_off, eb, inum, fspath_min, bytes_left);
2428 	if (IS_ERR(fspath))
2429 		return PTR_ERR(fspath);
2430 
2431 	if (fspath > fspath_min) {
2432 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2433 		++ipath->fspath->elem_cnt;
2434 		ipath->fspath->bytes_left = fspath - fspath_min;
2435 	} else {
2436 		++ipath->fspath->elem_missed;
2437 		ipath->fspath->bytes_missing += fspath_min - fspath;
2438 		ipath->fspath->bytes_left = 0;
2439 	}
2440 
2441 	return 0;
2442 }
2443 
2444 /*
2445  * this dumps all file system paths to the inode into the ipath struct, provided
2446  * is has been created large enough. each path is zero-terminated and accessed
2447  * from ipath->fspath->val[i].
2448  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2449  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2450  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2451  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2452  * have been needed to return all paths.
2453  */
paths_from_inode(u64 inum,struct inode_fs_paths * ipath)2454 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2455 {
2456 	int ret;
2457 	int found_refs = 0;
2458 
2459 	ret = iterate_inode_refs(inum, ipath);
2460 	if (!ret)
2461 		++found_refs;
2462 	else if (ret != -ENOENT)
2463 		return ret;
2464 
2465 	ret = iterate_inode_extrefs(inum, ipath);
2466 	if (ret == -ENOENT && found_refs)
2467 		return 0;
2468 
2469 	return ret;
2470 }
2471 
init_data_container(u32 total_bytes)2472 struct btrfs_data_container *init_data_container(u32 total_bytes)
2473 {
2474 	struct btrfs_data_container *data;
2475 	size_t alloc_bytes;
2476 
2477 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2478 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2479 	if (!data)
2480 		return ERR_PTR(-ENOMEM);
2481 
2482 	if (total_bytes >= sizeof(*data)) {
2483 		data->bytes_left = total_bytes - sizeof(*data);
2484 		data->bytes_missing = 0;
2485 	} else {
2486 		data->bytes_missing = sizeof(*data) - total_bytes;
2487 		data->bytes_left = 0;
2488 	}
2489 
2490 	data->elem_cnt = 0;
2491 	data->elem_missed = 0;
2492 
2493 	return data;
2494 }
2495 
2496 /*
2497  * allocates space to return multiple file system paths for an inode.
2498  * total_bytes to allocate are passed, note that space usable for actual path
2499  * information will be total_bytes - sizeof(struct inode_fs_paths).
2500  * the returned pointer must be freed with free_ipath() in the end.
2501  */
init_ipath(s32 total_bytes,struct btrfs_root * fs_root,struct btrfs_path * path)2502 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2503 					struct btrfs_path *path)
2504 {
2505 	struct inode_fs_paths *ifp;
2506 	struct btrfs_data_container *fspath;
2507 
2508 	fspath = init_data_container(total_bytes);
2509 	if (IS_ERR(fspath))
2510 		return ERR_CAST(fspath);
2511 
2512 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2513 	if (!ifp) {
2514 		kvfree(fspath);
2515 		return ERR_PTR(-ENOMEM);
2516 	}
2517 
2518 	ifp->btrfs_path = path;
2519 	ifp->fspath = fspath;
2520 	ifp->fs_root = fs_root;
2521 
2522 	return ifp;
2523 }
2524 
free_ipath(struct inode_fs_paths * ipath)2525 void free_ipath(struct inode_fs_paths *ipath)
2526 {
2527 	if (!ipath)
2528 		return;
2529 	kvfree(ipath->fspath);
2530 	kfree(ipath);
2531 }
2532 
btrfs_backref_iter_alloc(struct btrfs_fs_info * fs_info,gfp_t gfp_flag)2533 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2534 		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2535 {
2536 	struct btrfs_backref_iter *ret;
2537 
2538 	ret = kzalloc(sizeof(*ret), gfp_flag);
2539 	if (!ret)
2540 		return NULL;
2541 
2542 	ret->path = btrfs_alloc_path();
2543 	if (!ret->path) {
2544 		kfree(ret);
2545 		return NULL;
2546 	}
2547 
2548 	/* Current backref iterator only supports iteration in commit root */
2549 	ret->path->search_commit_root = 1;
2550 	ret->path->skip_locking = 1;
2551 	ret->fs_info = fs_info;
2552 
2553 	return ret;
2554 }
2555 
btrfs_backref_iter_start(struct btrfs_backref_iter * iter,u64 bytenr)2556 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2557 {
2558 	struct btrfs_fs_info *fs_info = iter->fs_info;
2559 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2560 	struct btrfs_path *path = iter->path;
2561 	struct btrfs_extent_item *ei;
2562 	struct btrfs_key key;
2563 	int ret;
2564 
2565 	key.objectid = bytenr;
2566 	key.type = BTRFS_METADATA_ITEM_KEY;
2567 	key.offset = (u64)-1;
2568 	iter->bytenr = bytenr;
2569 
2570 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2571 	if (ret < 0)
2572 		return ret;
2573 	if (ret == 0) {
2574 		ret = -EUCLEAN;
2575 		goto release;
2576 	}
2577 	if (path->slots[0] == 0) {
2578 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2579 		ret = -EUCLEAN;
2580 		goto release;
2581 	}
2582 	path->slots[0]--;
2583 
2584 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2585 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2586 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2587 		ret = -ENOENT;
2588 		goto release;
2589 	}
2590 	memcpy(&iter->cur_key, &key, sizeof(key));
2591 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2592 						    path->slots[0]);
2593 	iter->end_ptr = (u32)(iter->item_ptr +
2594 			btrfs_item_size(path->nodes[0], path->slots[0]));
2595 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2596 			    struct btrfs_extent_item);
2597 
2598 	/*
2599 	 * Only support iteration on tree backref yet.
2600 	 *
2601 	 * This is an extra precaution for non skinny-metadata, where
2602 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2603 	 * extent flags to determine if it's a tree block.
2604 	 */
2605 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2606 		ret = -ENOTSUPP;
2607 		goto release;
2608 	}
2609 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2610 
2611 	/* If there is no inline backref, go search for keyed backref */
2612 	if (iter->cur_ptr >= iter->end_ptr) {
2613 		ret = btrfs_next_item(extent_root, path);
2614 
2615 		/* No inline nor keyed ref */
2616 		if (ret > 0) {
2617 			ret = -ENOENT;
2618 			goto release;
2619 		}
2620 		if (ret < 0)
2621 			goto release;
2622 
2623 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2624 				path->slots[0]);
2625 		if (iter->cur_key.objectid != bytenr ||
2626 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2627 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2628 			ret = -ENOENT;
2629 			goto release;
2630 		}
2631 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2632 							   path->slots[0]);
2633 		iter->item_ptr = iter->cur_ptr;
2634 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2635 				      path->nodes[0], path->slots[0]));
2636 	}
2637 
2638 	return 0;
2639 release:
2640 	btrfs_backref_iter_release(iter);
2641 	return ret;
2642 }
2643 
2644 /*
2645  * Go to the next backref item of current bytenr, can be either inlined or
2646  * keyed.
2647  *
2648  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2649  *
2650  * Return 0 if we get next backref without problem.
2651  * Return >0 if there is no extra backref for this bytenr.
2652  * Return <0 if there is something wrong happened.
2653  */
btrfs_backref_iter_next(struct btrfs_backref_iter * iter)2654 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2655 {
2656 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2657 	struct btrfs_root *extent_root;
2658 	struct btrfs_path *path = iter->path;
2659 	struct btrfs_extent_inline_ref *iref;
2660 	int ret;
2661 	u32 size;
2662 
2663 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2664 		/* We're still inside the inline refs */
2665 		ASSERT(iter->cur_ptr < iter->end_ptr);
2666 
2667 		if (btrfs_backref_has_tree_block_info(iter)) {
2668 			/* First tree block info */
2669 			size = sizeof(struct btrfs_tree_block_info);
2670 		} else {
2671 			/* Use inline ref type to determine the size */
2672 			int type;
2673 
2674 			iref = (struct btrfs_extent_inline_ref *)
2675 				((unsigned long)iter->cur_ptr);
2676 			type = btrfs_extent_inline_ref_type(eb, iref);
2677 
2678 			size = btrfs_extent_inline_ref_size(type);
2679 		}
2680 		iter->cur_ptr += size;
2681 		if (iter->cur_ptr < iter->end_ptr)
2682 			return 0;
2683 
2684 		/* All inline items iterated, fall through */
2685 	}
2686 
2687 	/* We're at keyed items, there is no inline item, go to the next one */
2688 	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2689 	ret = btrfs_next_item(extent_root, iter->path);
2690 	if (ret)
2691 		return ret;
2692 
2693 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2694 	if (iter->cur_key.objectid != iter->bytenr ||
2695 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2696 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2697 		return 1;
2698 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2699 					path->slots[0]);
2700 	iter->cur_ptr = iter->item_ptr;
2701 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2702 						path->slots[0]);
2703 	return 0;
2704 }
2705 
btrfs_backref_init_cache(struct btrfs_fs_info * fs_info,struct btrfs_backref_cache * cache,int is_reloc)2706 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2707 			      struct btrfs_backref_cache *cache, int is_reloc)
2708 {
2709 	int i;
2710 
2711 	cache->rb_root = RB_ROOT;
2712 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2713 		INIT_LIST_HEAD(&cache->pending[i]);
2714 	INIT_LIST_HEAD(&cache->changed);
2715 	INIT_LIST_HEAD(&cache->detached);
2716 	INIT_LIST_HEAD(&cache->leaves);
2717 	INIT_LIST_HEAD(&cache->pending_edge);
2718 	INIT_LIST_HEAD(&cache->useless_node);
2719 	cache->fs_info = fs_info;
2720 	cache->is_reloc = is_reloc;
2721 }
2722 
btrfs_backref_alloc_node(struct btrfs_backref_cache * cache,u64 bytenr,int level)2723 struct btrfs_backref_node *btrfs_backref_alloc_node(
2724 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2725 {
2726 	struct btrfs_backref_node *node;
2727 
2728 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2729 	node = kzalloc(sizeof(*node), GFP_NOFS);
2730 	if (!node)
2731 		return node;
2732 
2733 	INIT_LIST_HEAD(&node->list);
2734 	INIT_LIST_HEAD(&node->upper);
2735 	INIT_LIST_HEAD(&node->lower);
2736 	RB_CLEAR_NODE(&node->rb_node);
2737 	cache->nr_nodes++;
2738 	node->level = level;
2739 	node->bytenr = bytenr;
2740 
2741 	return node;
2742 }
2743 
btrfs_backref_alloc_edge(struct btrfs_backref_cache * cache)2744 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2745 		struct btrfs_backref_cache *cache)
2746 {
2747 	struct btrfs_backref_edge *edge;
2748 
2749 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2750 	if (edge)
2751 		cache->nr_edges++;
2752 	return edge;
2753 }
2754 
2755 /*
2756  * Drop the backref node from cache, also cleaning up all its
2757  * upper edges and any uncached nodes in the path.
2758  *
2759  * This cleanup happens bottom up, thus the node should either
2760  * be the lowest node in the cache or a detached node.
2761  */
btrfs_backref_cleanup_node(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node)2762 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2763 				struct btrfs_backref_node *node)
2764 {
2765 	struct btrfs_backref_node *upper;
2766 	struct btrfs_backref_edge *edge;
2767 
2768 	if (!node)
2769 		return;
2770 
2771 	BUG_ON(!node->lowest && !node->detached);
2772 	while (!list_empty(&node->upper)) {
2773 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2774 				  list[LOWER]);
2775 		upper = edge->node[UPPER];
2776 		list_del(&edge->list[LOWER]);
2777 		list_del(&edge->list[UPPER]);
2778 		btrfs_backref_free_edge(cache, edge);
2779 
2780 		/*
2781 		 * Add the node to leaf node list if no other child block
2782 		 * cached.
2783 		 */
2784 		if (list_empty(&upper->lower)) {
2785 			list_add_tail(&upper->lower, &cache->leaves);
2786 			upper->lowest = 1;
2787 		}
2788 	}
2789 
2790 	btrfs_backref_drop_node(cache, node);
2791 }
2792 
2793 /*
2794  * Release all nodes/edges from current cache
2795  */
btrfs_backref_release_cache(struct btrfs_backref_cache * cache)2796 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2797 {
2798 	struct btrfs_backref_node *node;
2799 	int i;
2800 
2801 	while (!list_empty(&cache->detached)) {
2802 		node = list_entry(cache->detached.next,
2803 				  struct btrfs_backref_node, list);
2804 		btrfs_backref_cleanup_node(cache, node);
2805 	}
2806 
2807 	while (!list_empty(&cache->leaves)) {
2808 		node = list_entry(cache->leaves.next,
2809 				  struct btrfs_backref_node, lower);
2810 		btrfs_backref_cleanup_node(cache, node);
2811 	}
2812 
2813 	cache->last_trans = 0;
2814 
2815 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2816 		ASSERT(list_empty(&cache->pending[i]));
2817 	ASSERT(list_empty(&cache->pending_edge));
2818 	ASSERT(list_empty(&cache->useless_node));
2819 	ASSERT(list_empty(&cache->changed));
2820 	ASSERT(list_empty(&cache->detached));
2821 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2822 	ASSERT(!cache->nr_nodes);
2823 	ASSERT(!cache->nr_edges);
2824 }
2825 
2826 /*
2827  * Handle direct tree backref
2828  *
2829  * Direct tree backref means, the backref item shows its parent bytenr
2830  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2831  *
2832  * @ref_key:	The converted backref key.
2833  *		For keyed backref, it's the item key.
2834  *		For inlined backref, objectid is the bytenr,
2835  *		type is btrfs_inline_ref_type, offset is
2836  *		btrfs_inline_ref_offset.
2837  */
handle_direct_tree_backref(struct btrfs_backref_cache * cache,struct btrfs_key * ref_key,struct btrfs_backref_node * cur)2838 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2839 				      struct btrfs_key *ref_key,
2840 				      struct btrfs_backref_node *cur)
2841 {
2842 	struct btrfs_backref_edge *edge;
2843 	struct btrfs_backref_node *upper;
2844 	struct rb_node *rb_node;
2845 
2846 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2847 
2848 	/* Only reloc root uses backref pointing to itself */
2849 	if (ref_key->objectid == ref_key->offset) {
2850 		struct btrfs_root *root;
2851 
2852 		cur->is_reloc_root = 1;
2853 		/* Only reloc backref cache cares about a specific root */
2854 		if (cache->is_reloc) {
2855 			root = find_reloc_root(cache->fs_info, cur->bytenr);
2856 			if (!root)
2857 				return -ENOENT;
2858 			cur->root = root;
2859 		} else {
2860 			/*
2861 			 * For generic purpose backref cache, reloc root node
2862 			 * is useless.
2863 			 */
2864 			list_add(&cur->list, &cache->useless_node);
2865 		}
2866 		return 0;
2867 	}
2868 
2869 	edge = btrfs_backref_alloc_edge(cache);
2870 	if (!edge)
2871 		return -ENOMEM;
2872 
2873 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2874 	if (!rb_node) {
2875 		/* Parent node not yet cached */
2876 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2877 					   cur->level + 1);
2878 		if (!upper) {
2879 			btrfs_backref_free_edge(cache, edge);
2880 			return -ENOMEM;
2881 		}
2882 
2883 		/*
2884 		 *  Backrefs for the upper level block isn't cached, add the
2885 		 *  block to pending list
2886 		 */
2887 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2888 	} else {
2889 		/* Parent node already cached */
2890 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2891 		ASSERT(upper->checked);
2892 		INIT_LIST_HEAD(&edge->list[UPPER]);
2893 	}
2894 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2895 	return 0;
2896 }
2897 
2898 /*
2899  * Handle indirect tree backref
2900  *
2901  * Indirect tree backref means, we only know which tree the node belongs to.
2902  * We still need to do a tree search to find out the parents. This is for
2903  * TREE_BLOCK_REF backref (keyed or inlined).
2904  *
2905  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2906  * @tree_key:	The first key of this tree block.
2907  * @path:	A clean (released) path, to avoid allocating path every time
2908  *		the function get called.
2909  */
handle_indirect_tree_backref(struct btrfs_backref_cache * cache,struct btrfs_path * path,struct btrfs_key * ref_key,struct btrfs_key * tree_key,struct btrfs_backref_node * cur)2910 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2911 					struct btrfs_path *path,
2912 					struct btrfs_key *ref_key,
2913 					struct btrfs_key *tree_key,
2914 					struct btrfs_backref_node *cur)
2915 {
2916 	struct btrfs_fs_info *fs_info = cache->fs_info;
2917 	struct btrfs_backref_node *upper;
2918 	struct btrfs_backref_node *lower;
2919 	struct btrfs_backref_edge *edge;
2920 	struct extent_buffer *eb;
2921 	struct btrfs_root *root;
2922 	struct rb_node *rb_node;
2923 	int level;
2924 	bool need_check = true;
2925 	int ret;
2926 
2927 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2928 	if (IS_ERR(root))
2929 		return PTR_ERR(root);
2930 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2931 		cur->cowonly = 1;
2932 
2933 	if (btrfs_root_level(&root->root_item) == cur->level) {
2934 		/* Tree root */
2935 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2936 		/*
2937 		 * For reloc backref cache, we may ignore reloc root.  But for
2938 		 * general purpose backref cache, we can't rely on
2939 		 * btrfs_should_ignore_reloc_root() as it may conflict with
2940 		 * current running relocation and lead to missing root.
2941 		 *
2942 		 * For general purpose backref cache, reloc root detection is
2943 		 * completely relying on direct backref (key->offset is parent
2944 		 * bytenr), thus only do such check for reloc cache.
2945 		 */
2946 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2947 			btrfs_put_root(root);
2948 			list_add(&cur->list, &cache->useless_node);
2949 		} else {
2950 			cur->root = root;
2951 		}
2952 		return 0;
2953 	}
2954 
2955 	level = cur->level + 1;
2956 
2957 	/* Search the tree to find parent blocks referring to the block */
2958 	path->search_commit_root = 1;
2959 	path->skip_locking = 1;
2960 	path->lowest_level = level;
2961 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2962 	path->lowest_level = 0;
2963 	if (ret < 0) {
2964 		btrfs_put_root(root);
2965 		return ret;
2966 	}
2967 	if (ret > 0 && path->slots[level] > 0)
2968 		path->slots[level]--;
2969 
2970 	eb = path->nodes[level];
2971 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2972 		btrfs_err(fs_info,
2973 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2974 			  cur->bytenr, level - 1, root->root_key.objectid,
2975 			  tree_key->objectid, tree_key->type, tree_key->offset);
2976 		btrfs_put_root(root);
2977 		ret = -ENOENT;
2978 		goto out;
2979 	}
2980 	lower = cur;
2981 
2982 	/* Add all nodes and edges in the path */
2983 	for (; level < BTRFS_MAX_LEVEL; level++) {
2984 		if (!path->nodes[level]) {
2985 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2986 			       lower->bytenr);
2987 			/* Same as previous should_ignore_reloc_root() call */
2988 			if (btrfs_should_ignore_reloc_root(root) &&
2989 			    cache->is_reloc) {
2990 				btrfs_put_root(root);
2991 				list_add(&lower->list, &cache->useless_node);
2992 			} else {
2993 				lower->root = root;
2994 			}
2995 			break;
2996 		}
2997 
2998 		edge = btrfs_backref_alloc_edge(cache);
2999 		if (!edge) {
3000 			btrfs_put_root(root);
3001 			ret = -ENOMEM;
3002 			goto out;
3003 		}
3004 
3005 		eb = path->nodes[level];
3006 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
3007 		if (!rb_node) {
3008 			upper = btrfs_backref_alloc_node(cache, eb->start,
3009 							 lower->level + 1);
3010 			if (!upper) {
3011 				btrfs_put_root(root);
3012 				btrfs_backref_free_edge(cache, edge);
3013 				ret = -ENOMEM;
3014 				goto out;
3015 			}
3016 			upper->owner = btrfs_header_owner(eb);
3017 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3018 				upper->cowonly = 1;
3019 
3020 			/*
3021 			 * If we know the block isn't shared we can avoid
3022 			 * checking its backrefs.
3023 			 */
3024 			if (btrfs_block_can_be_shared(root, eb))
3025 				upper->checked = 0;
3026 			else
3027 				upper->checked = 1;
3028 
3029 			/*
3030 			 * Add the block to pending list if we need to check its
3031 			 * backrefs, we only do this once while walking up a
3032 			 * tree as we will catch anything else later on.
3033 			 */
3034 			if (!upper->checked && need_check) {
3035 				need_check = false;
3036 				list_add_tail(&edge->list[UPPER],
3037 					      &cache->pending_edge);
3038 			} else {
3039 				if (upper->checked)
3040 					need_check = true;
3041 				INIT_LIST_HEAD(&edge->list[UPPER]);
3042 			}
3043 		} else {
3044 			upper = rb_entry(rb_node, struct btrfs_backref_node,
3045 					 rb_node);
3046 			ASSERT(upper->checked);
3047 			INIT_LIST_HEAD(&edge->list[UPPER]);
3048 			if (!upper->owner)
3049 				upper->owner = btrfs_header_owner(eb);
3050 		}
3051 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3052 
3053 		if (rb_node) {
3054 			btrfs_put_root(root);
3055 			break;
3056 		}
3057 		lower = upper;
3058 		upper = NULL;
3059 	}
3060 out:
3061 	btrfs_release_path(path);
3062 	return ret;
3063 }
3064 
3065 /*
3066  * Add backref node @cur into @cache.
3067  *
3068  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3069  *	 links aren't yet bi-directional. Needs to finish such links.
3070  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
3071  *
3072  * @path:	Released path for indirect tree backref lookup
3073  * @iter:	Released backref iter for extent tree search
3074  * @node_key:	The first key of the tree block
3075  */
btrfs_backref_add_tree_node(struct btrfs_backref_cache * cache,struct btrfs_path * path,struct btrfs_backref_iter * iter,struct btrfs_key * node_key,struct btrfs_backref_node * cur)3076 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
3077 				struct btrfs_path *path,
3078 				struct btrfs_backref_iter *iter,
3079 				struct btrfs_key *node_key,
3080 				struct btrfs_backref_node *cur)
3081 {
3082 	struct btrfs_fs_info *fs_info = cache->fs_info;
3083 	struct btrfs_backref_edge *edge;
3084 	struct btrfs_backref_node *exist;
3085 	int ret;
3086 
3087 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
3088 	if (ret < 0)
3089 		return ret;
3090 	/*
3091 	 * We skip the first btrfs_tree_block_info, as we don't use the key
3092 	 * stored in it, but fetch it from the tree block
3093 	 */
3094 	if (btrfs_backref_has_tree_block_info(iter)) {
3095 		ret = btrfs_backref_iter_next(iter);
3096 		if (ret < 0)
3097 			goto out;
3098 		/* No extra backref? This means the tree block is corrupted */
3099 		if (ret > 0) {
3100 			ret = -EUCLEAN;
3101 			goto out;
3102 		}
3103 	}
3104 	WARN_ON(cur->checked);
3105 	if (!list_empty(&cur->upper)) {
3106 		/*
3107 		 * The backref was added previously when processing backref of
3108 		 * type BTRFS_TREE_BLOCK_REF_KEY
3109 		 */
3110 		ASSERT(list_is_singular(&cur->upper));
3111 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3112 				  list[LOWER]);
3113 		ASSERT(list_empty(&edge->list[UPPER]));
3114 		exist = edge->node[UPPER];
3115 		/*
3116 		 * Add the upper level block to pending list if we need check
3117 		 * its backrefs
3118 		 */
3119 		if (!exist->checked)
3120 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3121 	} else {
3122 		exist = NULL;
3123 	}
3124 
3125 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3126 		struct extent_buffer *eb;
3127 		struct btrfs_key key;
3128 		int type;
3129 
3130 		cond_resched();
3131 		eb = btrfs_backref_get_eb(iter);
3132 
3133 		key.objectid = iter->bytenr;
3134 		if (btrfs_backref_iter_is_inline_ref(iter)) {
3135 			struct btrfs_extent_inline_ref *iref;
3136 
3137 			/* Update key for inline backref */
3138 			iref = (struct btrfs_extent_inline_ref *)
3139 				((unsigned long)iter->cur_ptr);
3140 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3141 							BTRFS_REF_TYPE_BLOCK);
3142 			if (type == BTRFS_REF_TYPE_INVALID) {
3143 				ret = -EUCLEAN;
3144 				goto out;
3145 			}
3146 			key.type = type;
3147 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3148 		} else {
3149 			key.type = iter->cur_key.type;
3150 			key.offset = iter->cur_key.offset;
3151 		}
3152 
3153 		/*
3154 		 * Parent node found and matches current inline ref, no need to
3155 		 * rebuild this node for this inline ref
3156 		 */
3157 		if (exist &&
3158 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3159 		      exist->owner == key.offset) ||
3160 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3161 		      exist->bytenr == key.offset))) {
3162 			exist = NULL;
3163 			continue;
3164 		}
3165 
3166 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3167 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3168 			ret = handle_direct_tree_backref(cache, &key, cur);
3169 			if (ret < 0)
3170 				goto out;
3171 			continue;
3172 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3173 			ret = -EINVAL;
3174 			btrfs_print_v0_err(fs_info);
3175 			btrfs_handle_fs_error(fs_info, ret, NULL);
3176 			goto out;
3177 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3178 			continue;
3179 		}
3180 
3181 		/*
3182 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3183 		 * means the root objectid. We need to search the tree to get
3184 		 * its parent bytenr.
3185 		 */
3186 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3187 						   cur);
3188 		if (ret < 0)
3189 			goto out;
3190 	}
3191 	ret = 0;
3192 	cur->checked = 1;
3193 	WARN_ON(exist);
3194 out:
3195 	btrfs_backref_iter_release(iter);
3196 	return ret;
3197 }
3198 
3199 /*
3200  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3201  */
btrfs_backref_finish_upper_links(struct btrfs_backref_cache * cache,struct btrfs_backref_node * start)3202 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3203 				     struct btrfs_backref_node *start)
3204 {
3205 	struct list_head *useless_node = &cache->useless_node;
3206 	struct btrfs_backref_edge *edge;
3207 	struct rb_node *rb_node;
3208 	LIST_HEAD(pending_edge);
3209 
3210 	ASSERT(start->checked);
3211 
3212 	/* Insert this node to cache if it's not COW-only */
3213 	if (!start->cowonly) {
3214 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3215 					   &start->rb_node);
3216 		if (rb_node)
3217 			btrfs_backref_panic(cache->fs_info, start->bytenr,
3218 					    -EEXIST);
3219 		list_add_tail(&start->lower, &cache->leaves);
3220 	}
3221 
3222 	/*
3223 	 * Use breadth first search to iterate all related edges.
3224 	 *
3225 	 * The starting points are all the edges of this node
3226 	 */
3227 	list_for_each_entry(edge, &start->upper, list[LOWER])
3228 		list_add_tail(&edge->list[UPPER], &pending_edge);
3229 
3230 	while (!list_empty(&pending_edge)) {
3231 		struct btrfs_backref_node *upper;
3232 		struct btrfs_backref_node *lower;
3233 
3234 		edge = list_first_entry(&pending_edge,
3235 				struct btrfs_backref_edge, list[UPPER]);
3236 		list_del_init(&edge->list[UPPER]);
3237 		upper = edge->node[UPPER];
3238 		lower = edge->node[LOWER];
3239 
3240 		/* Parent is detached, no need to keep any edges */
3241 		if (upper->detached) {
3242 			list_del(&edge->list[LOWER]);
3243 			btrfs_backref_free_edge(cache, edge);
3244 
3245 			/* Lower node is orphan, queue for cleanup */
3246 			if (list_empty(&lower->upper))
3247 				list_add(&lower->list, useless_node);
3248 			continue;
3249 		}
3250 
3251 		/*
3252 		 * All new nodes added in current build_backref_tree() haven't
3253 		 * been linked to the cache rb tree.
3254 		 * So if we have upper->rb_node populated, this means a cache
3255 		 * hit. We only need to link the edge, as @upper and all its
3256 		 * parents have already been linked.
3257 		 */
3258 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3259 			if (upper->lowest) {
3260 				list_del_init(&upper->lower);
3261 				upper->lowest = 0;
3262 			}
3263 
3264 			list_add_tail(&edge->list[UPPER], &upper->lower);
3265 			continue;
3266 		}
3267 
3268 		/* Sanity check, we shouldn't have any unchecked nodes */
3269 		if (!upper->checked) {
3270 			ASSERT(0);
3271 			return -EUCLEAN;
3272 		}
3273 
3274 		/* Sanity check, COW-only node has non-COW-only parent */
3275 		if (start->cowonly != upper->cowonly) {
3276 			ASSERT(0);
3277 			return -EUCLEAN;
3278 		}
3279 
3280 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3281 		if (!upper->cowonly) {
3282 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3283 						   &upper->rb_node);
3284 			if (rb_node) {
3285 				btrfs_backref_panic(cache->fs_info,
3286 						upper->bytenr, -EEXIST);
3287 				return -EUCLEAN;
3288 			}
3289 		}
3290 
3291 		list_add_tail(&edge->list[UPPER], &upper->lower);
3292 
3293 		/*
3294 		 * Also queue all the parent edges of this uncached node
3295 		 * to finish the upper linkage
3296 		 */
3297 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3298 			list_add_tail(&edge->list[UPPER], &pending_edge);
3299 	}
3300 	return 0;
3301 }
3302 
btrfs_backref_error_cleanup(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node)3303 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3304 				 struct btrfs_backref_node *node)
3305 {
3306 	struct btrfs_backref_node *lower;
3307 	struct btrfs_backref_node *upper;
3308 	struct btrfs_backref_edge *edge;
3309 
3310 	while (!list_empty(&cache->useless_node)) {
3311 		lower = list_first_entry(&cache->useless_node,
3312 				   struct btrfs_backref_node, list);
3313 		list_del_init(&lower->list);
3314 	}
3315 	while (!list_empty(&cache->pending_edge)) {
3316 		edge = list_first_entry(&cache->pending_edge,
3317 				struct btrfs_backref_edge, list[UPPER]);
3318 		list_del(&edge->list[UPPER]);
3319 		list_del(&edge->list[LOWER]);
3320 		lower = edge->node[LOWER];
3321 		upper = edge->node[UPPER];
3322 		btrfs_backref_free_edge(cache, edge);
3323 
3324 		/*
3325 		 * Lower is no longer linked to any upper backref nodes and
3326 		 * isn't in the cache, we can free it ourselves.
3327 		 */
3328 		if (list_empty(&lower->upper) &&
3329 		    RB_EMPTY_NODE(&lower->rb_node))
3330 			list_add(&lower->list, &cache->useless_node);
3331 
3332 		if (!RB_EMPTY_NODE(&upper->rb_node))
3333 			continue;
3334 
3335 		/* Add this guy's upper edges to the list to process */
3336 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3337 			list_add_tail(&edge->list[UPPER],
3338 				      &cache->pending_edge);
3339 		if (list_empty(&upper->upper))
3340 			list_add(&upper->list, &cache->useless_node);
3341 	}
3342 
3343 	while (!list_empty(&cache->useless_node)) {
3344 		lower = list_first_entry(&cache->useless_node,
3345 				   struct btrfs_backref_node, list);
3346 		list_del_init(&lower->list);
3347 		if (lower == node)
3348 			node = NULL;
3349 		btrfs_backref_drop_node(cache, lower);
3350 	}
3351 
3352 	btrfs_backref_cleanup_node(cache, node);
3353 	ASSERT(list_empty(&cache->useless_node) &&
3354 	       list_empty(&cache->pending_edge));
3355 }
3356