1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74
75 struct btrfs_iget_args {
76 u64 ino;
77 struct btrfs_root *root;
78 };
79
80 struct btrfs_dio_data {
81 ssize_t submitted;
82 struct extent_changeset *data_reserved;
83 struct btrfs_ordered_extent *ordered;
84 bool data_space_reserved;
85 bool nocow_done;
86 };
87
88 struct btrfs_dio_private {
89 /* Range of I/O */
90 u64 file_offset;
91 u32 bytes;
92
93 /* This must be last */
94 struct btrfs_bio bbio;
95 };
96
97 static struct bio_set btrfs_dio_bioset;
98
99 struct btrfs_rename_ctx {
100 /* Output field. Stores the index number of the old directory entry. */
101 u64 index;
102 };
103
104 /*
105 * Used by data_reloc_print_warning_inode() to pass needed info for filename
106 * resolution and output of error message.
107 */
108 struct data_reloc_warn {
109 struct btrfs_path path;
110 struct btrfs_fs_info *fs_info;
111 u64 extent_item_size;
112 u64 logical;
113 int mirror_num;
114 };
115
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
122
123 static struct kmem_cache *btrfs_inode_cachep;
124
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
127
128 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
129 struct page *locked_page, u64 start,
130 u64 end, struct writeback_control *wbc,
131 bool pages_dirty);
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 u64 len, u64 orig_start, u64 block_start,
134 u64 block_len, u64 orig_block_len,
135 u64 ram_bytes, int compress_type,
136 int type);
137
data_reloc_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 u64 root, void *warn_ctx)
140 {
141 struct data_reloc_warn *warn = warn_ctx;
142 struct btrfs_fs_info *fs_info = warn->fs_info;
143 struct extent_buffer *eb;
144 struct btrfs_inode_item *inode_item;
145 struct inode_fs_paths *ipath = NULL;
146 struct btrfs_root *local_root;
147 struct btrfs_key key;
148 unsigned int nofs_flag;
149 u32 nlink;
150 int ret;
151
152 local_root = btrfs_get_fs_root(fs_info, root, true);
153 if (IS_ERR(local_root)) {
154 ret = PTR_ERR(local_root);
155 goto err;
156 }
157
158 /* This makes the path point to (inum INODE_ITEM ioff). */
159 key.objectid = inum;
160 key.type = BTRFS_INODE_ITEM_KEY;
161 key.offset = 0;
162
163 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
164 if (ret) {
165 btrfs_put_root(local_root);
166 btrfs_release_path(&warn->path);
167 goto err;
168 }
169
170 eb = warn->path.nodes[0];
171 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 nlink = btrfs_inode_nlink(eb, inode_item);
173 btrfs_release_path(&warn->path);
174
175 nofs_flag = memalloc_nofs_save();
176 ipath = init_ipath(4096, local_root, &warn->path);
177 memalloc_nofs_restore(nofs_flag);
178 if (IS_ERR(ipath)) {
179 btrfs_put_root(local_root);
180 ret = PTR_ERR(ipath);
181 ipath = NULL;
182 /*
183 * -ENOMEM, not a critical error, just output an generic error
184 * without filename.
185 */
186 btrfs_warn(fs_info,
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 warn->logical, warn->mirror_num, root, inum, offset);
189 return ret;
190 }
191 ret = paths_from_inode(inum, ipath);
192 if (ret < 0)
193 goto err;
194
195 /*
196 * We deliberately ignore the bit ipath might have been too small to
197 * hold all of the paths here
198 */
199 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
200 btrfs_warn(fs_info,
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 warn->logical, warn->mirror_num, root, inum, offset,
203 fs_info->sectorsize, nlink,
204 (char *)(unsigned long)ipath->fspath->val[i]);
205 }
206
207 btrfs_put_root(local_root);
208 free_ipath(ipath);
209 return 0;
210
211 err:
212 btrfs_warn(fs_info,
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 warn->logical, warn->mirror_num, root, inum, offset, ret);
215
216 free_ipath(ipath);
217 return ret;
218 }
219
220 /*
221 * Do extra user-friendly error output (e.g. lookup all the affected files).
222 *
223 * Return true if we succeeded doing the backref lookup.
224 * Return false if such lookup failed, and has to fallback to the old error message.
225 */
print_data_reloc_error(const struct btrfs_inode * inode,u64 file_off,const u8 * csum,const u8 * csum_expected,int mirror_num)226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 const u8 *csum, const u8 *csum_expected,
228 int mirror_num)
229 {
230 struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 struct btrfs_path path = { 0 };
232 struct btrfs_key found_key = { 0 };
233 struct extent_buffer *eb;
234 struct btrfs_extent_item *ei;
235 const u32 csum_size = fs_info->csum_size;
236 u64 logical;
237 u64 flags;
238 u32 item_size;
239 int ret;
240
241 mutex_lock(&fs_info->reloc_mutex);
242 logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 mutex_unlock(&fs_info->reloc_mutex);
244
245 if (logical == U64_MAX) {
246 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 CSUM_FMT_VALUE(csum_size, csum),
251 CSUM_FMT_VALUE(csum_size, csum_expected),
252 mirror_num);
253 return;
254 }
255
256 logical += file_off;
257 btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 inode->root->root_key.objectid,
260 btrfs_ino(inode), file_off, logical,
261 CSUM_FMT_VALUE(csum_size, csum),
262 CSUM_FMT_VALUE(csum_size, csum_expected),
263 mirror_num);
264
265 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
266 if (ret < 0) {
267 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
268 logical, ret);
269 return;
270 }
271 eb = path.nodes[0];
272 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 item_size = btrfs_item_size(eb, path.slots[0]);
274 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 unsigned long ptr = 0;
276 u64 ref_root;
277 u8 ref_level;
278
279 while (true) {
280 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 item_size, &ref_root,
282 &ref_level);
283 if (ret < 0) {
284 btrfs_warn_rl(fs_info,
285 "failed to resolve tree backref for logical %llu: %d",
286 logical, ret);
287 break;
288 }
289 if (ret > 0)
290 break;
291
292 btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
294 logical, mirror_num,
295 (ref_level ? "node" : "leaf"),
296 ref_level, ref_root);
297 }
298 btrfs_release_path(&path);
299 } else {
300 struct btrfs_backref_walk_ctx ctx = { 0 };
301 struct data_reloc_warn reloc_warn = { 0 };
302
303 btrfs_release_path(&path);
304
305 ctx.bytenr = found_key.objectid;
306 ctx.extent_item_pos = logical - found_key.objectid;
307 ctx.fs_info = fs_info;
308
309 reloc_warn.logical = logical;
310 reloc_warn.extent_item_size = found_key.offset;
311 reloc_warn.mirror_num = mirror_num;
312 reloc_warn.fs_info = fs_info;
313
314 iterate_extent_inodes(&ctx, true,
315 data_reloc_print_warning_inode, &reloc_warn);
316 }
317 }
318
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
321 {
322 struct btrfs_root *root = inode->root;
323 const u32 csum_size = root->fs_info->csum_size;
324
325 /* For data reloc tree, it's better to do a backref lookup instead. */
326 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 return print_data_reloc_error(inode, logical_start, csum,
328 csum_expected, mirror_num);
329
330 /* Output without objectid, which is more meaningful */
331 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 root->root_key.objectid, btrfs_ino(inode),
335 logical_start,
336 CSUM_FMT_VALUE(csum_size, csum),
337 CSUM_FMT_VALUE(csum_size, csum_expected),
338 mirror_num);
339 } else {
340 btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 root->root_key.objectid, btrfs_ino(inode),
343 logical_start,
344 CSUM_FMT_VALUE(csum_size, csum),
345 CSUM_FMT_VALUE(csum_size, csum_expected),
346 mirror_num);
347 }
348 }
349
350 /*
351 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
352 *
353 * ilock_flags can have the following bit set:
354 *
355 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
357 * return -EAGAIN
358 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
359 */
btrfs_inode_lock(struct btrfs_inode * inode,unsigned int ilock_flags)360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
361 {
362 if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 if (ilock_flags & BTRFS_ILOCK_TRY) {
364 if (!inode_trylock_shared(&inode->vfs_inode))
365 return -EAGAIN;
366 else
367 return 0;
368 }
369 inode_lock_shared(&inode->vfs_inode);
370 } else {
371 if (ilock_flags & BTRFS_ILOCK_TRY) {
372 if (!inode_trylock(&inode->vfs_inode))
373 return -EAGAIN;
374 else
375 return 0;
376 }
377 inode_lock(&inode->vfs_inode);
378 }
379 if (ilock_flags & BTRFS_ILOCK_MMAP)
380 down_write(&inode->i_mmap_lock);
381 return 0;
382 }
383
384 /*
385 * btrfs_inode_unlock - unock inode i_rwsem
386 *
387 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388 * to decide whether the lock acquired is shared or exclusive.
389 */
btrfs_inode_unlock(struct btrfs_inode * inode,unsigned int ilock_flags)390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
391 {
392 if (ilock_flags & BTRFS_ILOCK_MMAP)
393 up_write(&inode->i_mmap_lock);
394 if (ilock_flags & BTRFS_ILOCK_SHARED)
395 inode_unlock_shared(&inode->vfs_inode);
396 else
397 inode_unlock(&inode->vfs_inode);
398 }
399
400 /*
401 * Cleanup all submitted ordered extents in specified range to handle errors
402 * from the btrfs_run_delalloc_range() callback.
403 *
404 * NOTE: caller must ensure that when an error happens, it can not call
405 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407 * to be released, which we want to happen only when finishing the ordered
408 * extent (btrfs_finish_ordered_io()).
409 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,struct page * locked_page,u64 offset,u64 bytes)410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 struct page *locked_page,
412 u64 offset, u64 bytes)
413 {
414 unsigned long index = offset >> PAGE_SHIFT;
415 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 u64 page_start = 0, page_end = 0;
417 struct page *page;
418
419 if (locked_page) {
420 page_start = page_offset(locked_page);
421 page_end = page_start + PAGE_SIZE - 1;
422 }
423
424 while (index <= end_index) {
425 /*
426 * For locked page, we will call btrfs_mark_ordered_io_finished
427 * through btrfs_mark_ordered_io_finished() on it
428 * in run_delalloc_range() for the error handling, which will
429 * clear page Ordered and run the ordered extent accounting.
430 *
431 * Here we can't just clear the Ordered bit, or
432 * btrfs_mark_ordered_io_finished() would skip the accounting
433 * for the page range, and the ordered extent will never finish.
434 */
435 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
436 index++;
437 continue;
438 }
439 page = find_get_page(inode->vfs_inode.i_mapping, index);
440 index++;
441 if (!page)
442 continue;
443
444 /*
445 * Here we just clear all Ordered bits for every page in the
446 * range, then btrfs_mark_ordered_io_finished() will handle
447 * the ordered extent accounting for the range.
448 */
449 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
450 offset, bytes);
451 put_page(page);
452 }
453
454 if (locked_page) {
455 /* The locked page covers the full range, nothing needs to be done */
456 if (bytes + offset <= page_start + PAGE_SIZE)
457 return;
458 /*
459 * In case this page belongs to the delalloc range being
460 * instantiated then skip it, since the first page of a range is
461 * going to be properly cleaned up by the caller of
462 * run_delalloc_range
463 */
464 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
465 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
466 offset = page_offset(locked_page) + PAGE_SIZE;
467 }
468 }
469
470 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
471 }
472
473 static int btrfs_dirty_inode(struct btrfs_inode *inode);
474
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
476 struct btrfs_new_inode_args *args)
477 {
478 int err;
479
480 if (args->default_acl) {
481 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
482 ACL_TYPE_DEFAULT);
483 if (err)
484 return err;
485 }
486 if (args->acl) {
487 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
488 if (err)
489 return err;
490 }
491 if (!args->default_acl && !args->acl)
492 cache_no_acl(args->inode);
493 return btrfs_xattr_security_init(trans, args->inode, args->dir,
494 &args->dentry->d_name);
495 }
496
497 /*
498 * this does all the hard work for inserting an inline extent into
499 * the btree. The caller should have done a btrfs_drop_extents so that
500 * no overlapping inline items exist in the btree
501 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages,bool update_i_size)502 static int insert_inline_extent(struct btrfs_trans_handle *trans,
503 struct btrfs_path *path,
504 struct btrfs_inode *inode, bool extent_inserted,
505 size_t size, size_t compressed_size,
506 int compress_type,
507 struct page **compressed_pages,
508 bool update_i_size)
509 {
510 struct btrfs_root *root = inode->root;
511 struct extent_buffer *leaf;
512 struct page *page = NULL;
513 char *kaddr;
514 unsigned long ptr;
515 struct btrfs_file_extent_item *ei;
516 int ret;
517 size_t cur_size = size;
518 u64 i_size;
519
520 ASSERT((compressed_size > 0 && compressed_pages) ||
521 (compressed_size == 0 && !compressed_pages));
522
523 if (compressed_size && compressed_pages)
524 cur_size = compressed_size;
525
526 if (!extent_inserted) {
527 struct btrfs_key key;
528 size_t datasize;
529
530 key.objectid = btrfs_ino(inode);
531 key.offset = 0;
532 key.type = BTRFS_EXTENT_DATA_KEY;
533
534 datasize = btrfs_file_extent_calc_inline_size(cur_size);
535 ret = btrfs_insert_empty_item(trans, root, path, &key,
536 datasize);
537 if (ret)
538 goto fail;
539 }
540 leaf = path->nodes[0];
541 ei = btrfs_item_ptr(leaf, path->slots[0],
542 struct btrfs_file_extent_item);
543 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
544 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
545 btrfs_set_file_extent_encryption(leaf, ei, 0);
546 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
547 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
548 ptr = btrfs_file_extent_inline_start(ei);
549
550 if (compress_type != BTRFS_COMPRESS_NONE) {
551 struct page *cpage;
552 int i = 0;
553 while (compressed_size > 0) {
554 cpage = compressed_pages[i];
555 cur_size = min_t(unsigned long, compressed_size,
556 PAGE_SIZE);
557
558 kaddr = kmap_local_page(cpage);
559 write_extent_buffer(leaf, kaddr, ptr, cur_size);
560 kunmap_local(kaddr);
561
562 i++;
563 ptr += cur_size;
564 compressed_size -= cur_size;
565 }
566 btrfs_set_file_extent_compression(leaf, ei,
567 compress_type);
568 } else {
569 page = find_get_page(inode->vfs_inode.i_mapping, 0);
570 btrfs_set_file_extent_compression(leaf, ei, 0);
571 kaddr = kmap_local_page(page);
572 write_extent_buffer(leaf, kaddr, ptr, size);
573 kunmap_local(kaddr);
574 put_page(page);
575 }
576 btrfs_mark_buffer_dirty(trans, leaf);
577 btrfs_release_path(path);
578
579 /*
580 * We align size to sectorsize for inline extents just for simplicity
581 * sake.
582 */
583 ret = btrfs_inode_set_file_extent_range(inode, 0,
584 ALIGN(size, root->fs_info->sectorsize));
585 if (ret)
586 goto fail;
587
588 /*
589 * We're an inline extent, so nobody can extend the file past i_size
590 * without locking a page we already have locked.
591 *
592 * We must do any i_size and inode updates before we unlock the pages.
593 * Otherwise we could end up racing with unlink.
594 */
595 i_size = i_size_read(&inode->vfs_inode);
596 if (update_i_size && size > i_size) {
597 i_size_write(&inode->vfs_inode, size);
598 i_size = size;
599 }
600 inode->disk_i_size = i_size;
601
602 fail:
603 return ret;
604 }
605
606
607 /*
608 * conditionally insert an inline extent into the file. This
609 * does the checks required to make sure the data is small enough
610 * to fit as an inline extent.
611 */
cow_file_range_inline(struct btrfs_inode * inode,u64 size,size_t compressed_size,int compress_type,struct page ** compressed_pages,bool update_i_size)612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
613 size_t compressed_size,
614 int compress_type,
615 struct page **compressed_pages,
616 bool update_i_size)
617 {
618 struct btrfs_drop_extents_args drop_args = { 0 };
619 struct btrfs_root *root = inode->root;
620 struct btrfs_fs_info *fs_info = root->fs_info;
621 struct btrfs_trans_handle *trans;
622 u64 data_len = (compressed_size ?: size);
623 int ret;
624 struct btrfs_path *path;
625
626 /*
627 * We can create an inline extent if it ends at or beyond the current
628 * i_size, is no larger than a sector (decompressed), and the (possibly
629 * compressed) data fits in a leaf and the configured maximum inline
630 * size.
631 */
632 if (size < i_size_read(&inode->vfs_inode) ||
633 size > fs_info->sectorsize ||
634 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
635 data_len > fs_info->max_inline)
636 return 1;
637
638 path = btrfs_alloc_path();
639 if (!path)
640 return -ENOMEM;
641
642 trans = btrfs_join_transaction(root);
643 if (IS_ERR(trans)) {
644 btrfs_free_path(path);
645 return PTR_ERR(trans);
646 }
647 trans->block_rsv = &inode->block_rsv;
648
649 drop_args.path = path;
650 drop_args.start = 0;
651 drop_args.end = fs_info->sectorsize;
652 drop_args.drop_cache = true;
653 drop_args.replace_extent = true;
654 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
655 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
656 if (ret) {
657 btrfs_abort_transaction(trans, ret);
658 goto out;
659 }
660
661 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
662 size, compressed_size, compress_type,
663 compressed_pages, update_i_size);
664 if (ret && ret != -ENOSPC) {
665 btrfs_abort_transaction(trans, ret);
666 goto out;
667 } else if (ret == -ENOSPC) {
668 ret = 1;
669 goto out;
670 }
671
672 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
673 ret = btrfs_update_inode(trans, root, inode);
674 if (ret && ret != -ENOSPC) {
675 btrfs_abort_transaction(trans, ret);
676 goto out;
677 } else if (ret == -ENOSPC) {
678 ret = 1;
679 goto out;
680 }
681
682 btrfs_set_inode_full_sync(inode);
683 out:
684 /*
685 * Don't forget to free the reserved space, as for inlined extent
686 * it won't count as data extent, free them directly here.
687 * And at reserve time, it's always aligned to page size, so
688 * just free one page here.
689 */
690 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
691 btrfs_free_path(path);
692 btrfs_end_transaction(trans);
693 return ret;
694 }
695
696 struct async_extent {
697 u64 start;
698 u64 ram_size;
699 u64 compressed_size;
700 struct page **pages;
701 unsigned long nr_pages;
702 int compress_type;
703 struct list_head list;
704 };
705
706 struct async_chunk {
707 struct btrfs_inode *inode;
708 struct page *locked_page;
709 u64 start;
710 u64 end;
711 blk_opf_t write_flags;
712 struct list_head extents;
713 struct cgroup_subsys_state *blkcg_css;
714 struct btrfs_work work;
715 struct async_cow *async_cow;
716 };
717
718 struct async_cow {
719 atomic_t num_chunks;
720 struct async_chunk chunks[];
721 };
722
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)723 static noinline int add_async_extent(struct async_chunk *cow,
724 u64 start, u64 ram_size,
725 u64 compressed_size,
726 struct page **pages,
727 unsigned long nr_pages,
728 int compress_type)
729 {
730 struct async_extent *async_extent;
731
732 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
733 BUG_ON(!async_extent); /* -ENOMEM */
734 async_extent->start = start;
735 async_extent->ram_size = ram_size;
736 async_extent->compressed_size = compressed_size;
737 async_extent->pages = pages;
738 async_extent->nr_pages = nr_pages;
739 async_extent->compress_type = compress_type;
740 list_add_tail(&async_extent->list, &cow->extents);
741 return 0;
742 }
743
744 /*
745 * Check if the inode needs to be submitted to compression, based on mount
746 * options, defragmentation, properties or heuristics.
747 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)748 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
749 u64 end)
750 {
751 struct btrfs_fs_info *fs_info = inode->root->fs_info;
752
753 if (!btrfs_inode_can_compress(inode)) {
754 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
755 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
756 btrfs_ino(inode));
757 return 0;
758 }
759 /*
760 * Special check for subpage.
761 *
762 * We lock the full page then run each delalloc range in the page, thus
763 * for the following case, we will hit some subpage specific corner case:
764 *
765 * 0 32K 64K
766 * | |///////| |///////|
767 * \- A \- B
768 *
769 * In above case, both range A and range B will try to unlock the full
770 * page [0, 64K), causing the one finished later will have page
771 * unlocked already, triggering various page lock requirement BUG_ON()s.
772 *
773 * So here we add an artificial limit that subpage compression can only
774 * if the range is fully page aligned.
775 *
776 * In theory we only need to ensure the first page is fully covered, but
777 * the tailing partial page will be locked until the full compression
778 * finishes, delaying the write of other range.
779 *
780 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
781 * first to prevent any submitted async extent to unlock the full page.
782 * By this, we can ensure for subpage case that only the last async_cow
783 * will unlock the full page.
784 */
785 if (fs_info->sectorsize < PAGE_SIZE) {
786 if (!PAGE_ALIGNED(start) ||
787 !PAGE_ALIGNED(end + 1))
788 return 0;
789 }
790
791 /* force compress */
792 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
793 return 1;
794 /* defrag ioctl */
795 if (inode->defrag_compress)
796 return 1;
797 /* bad compression ratios */
798 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
799 return 0;
800 if (btrfs_test_opt(fs_info, COMPRESS) ||
801 inode->flags & BTRFS_INODE_COMPRESS ||
802 inode->prop_compress)
803 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
804 return 0;
805 }
806
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)807 static inline void inode_should_defrag(struct btrfs_inode *inode,
808 u64 start, u64 end, u64 num_bytes, u32 small_write)
809 {
810 /* If this is a small write inside eof, kick off a defrag */
811 if (num_bytes < small_write &&
812 (start > 0 || end + 1 < inode->disk_i_size))
813 btrfs_add_inode_defrag(NULL, inode, small_write);
814 }
815
816 /*
817 * Work queue call back to started compression on a file and pages.
818 *
819 * This is done inside an ordered work queue, and the compression is spread
820 * across many cpus. The actual IO submission is step two, and the ordered work
821 * queue takes care of making sure that happens in the same order things were
822 * put onto the queue by writepages and friends.
823 *
824 * If this code finds it can't get good compression, it puts an entry onto the
825 * work queue to write the uncompressed bytes. This makes sure that both
826 * compressed inodes and uncompressed inodes are written in the same order that
827 * the flusher thread sent them down.
828 */
compress_file_range(struct btrfs_work * work)829 static void compress_file_range(struct btrfs_work *work)
830 {
831 struct async_chunk *async_chunk =
832 container_of(work, struct async_chunk, work);
833 struct btrfs_inode *inode = async_chunk->inode;
834 struct btrfs_fs_info *fs_info = inode->root->fs_info;
835 struct address_space *mapping = inode->vfs_inode.i_mapping;
836 u64 blocksize = fs_info->sectorsize;
837 u64 start = async_chunk->start;
838 u64 end = async_chunk->end;
839 u64 actual_end;
840 u64 i_size;
841 int ret = 0;
842 struct page **pages;
843 unsigned long nr_pages;
844 unsigned long total_compressed = 0;
845 unsigned long total_in = 0;
846 unsigned int poff;
847 int i;
848 int compress_type = fs_info->compress_type;
849
850 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
851
852 /*
853 * We need to call clear_page_dirty_for_io on each page in the range.
854 * Otherwise applications with the file mmap'd can wander in and change
855 * the page contents while we are compressing them.
856 */
857 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
858
859 /*
860 * We need to save i_size before now because it could change in between
861 * us evaluating the size and assigning it. This is because we lock and
862 * unlock the page in truncate and fallocate, and then modify the i_size
863 * later on.
864 *
865 * The barriers are to emulate READ_ONCE, remove that once i_size_read
866 * does that for us.
867 */
868 barrier();
869 i_size = i_size_read(&inode->vfs_inode);
870 barrier();
871 actual_end = min_t(u64, i_size, end + 1);
872 again:
873 pages = NULL;
874 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
875 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
876
877 /*
878 * we don't want to send crud past the end of i_size through
879 * compression, that's just a waste of CPU time. So, if the
880 * end of the file is before the start of our current
881 * requested range of bytes, we bail out to the uncompressed
882 * cleanup code that can deal with all of this.
883 *
884 * It isn't really the fastest way to fix things, but this is a
885 * very uncommon corner.
886 */
887 if (actual_end <= start)
888 goto cleanup_and_bail_uncompressed;
889
890 total_compressed = actual_end - start;
891
892 /*
893 * Skip compression for a small file range(<=blocksize) that
894 * isn't an inline extent, since it doesn't save disk space at all.
895 */
896 if (total_compressed <= blocksize &&
897 (start > 0 || end + 1 < inode->disk_i_size))
898 goto cleanup_and_bail_uncompressed;
899
900 /*
901 * For subpage case, we require full page alignment for the sector
902 * aligned range.
903 * Thus we must also check against @actual_end, not just @end.
904 */
905 if (blocksize < PAGE_SIZE) {
906 if (!PAGE_ALIGNED(start) ||
907 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
908 goto cleanup_and_bail_uncompressed;
909 }
910
911 total_compressed = min_t(unsigned long, total_compressed,
912 BTRFS_MAX_UNCOMPRESSED);
913 total_in = 0;
914 ret = 0;
915
916 /*
917 * We do compression for mount -o compress and when the inode has not
918 * been flagged as NOCOMPRESS. This flag can change at any time if we
919 * discover bad compression ratios.
920 */
921 if (!inode_need_compress(inode, start, end))
922 goto cleanup_and_bail_uncompressed;
923
924 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
925 if (!pages) {
926 /*
927 * Memory allocation failure is not a fatal error, we can fall
928 * back to uncompressed code.
929 */
930 goto cleanup_and_bail_uncompressed;
931 }
932
933 if (inode->defrag_compress)
934 compress_type = inode->defrag_compress;
935 else if (inode->prop_compress)
936 compress_type = inode->prop_compress;
937
938 /* Compression level is applied here. */
939 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
940 mapping, start, pages, &nr_pages, &total_in,
941 &total_compressed);
942 if (ret)
943 goto mark_incompressible;
944
945 /*
946 * Zero the tail end of the last page, as we might be sending it down
947 * to disk.
948 */
949 poff = offset_in_page(total_compressed);
950 if (poff)
951 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
952
953 /*
954 * Try to create an inline extent.
955 *
956 * If we didn't compress the entire range, try to create an uncompressed
957 * inline extent, else a compressed one.
958 *
959 * Check cow_file_range() for why we don't even try to create inline
960 * extent for the subpage case.
961 */
962 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
963 if (total_in < actual_end) {
964 ret = cow_file_range_inline(inode, actual_end, 0,
965 BTRFS_COMPRESS_NONE, NULL,
966 false);
967 } else {
968 ret = cow_file_range_inline(inode, actual_end,
969 total_compressed,
970 compress_type, pages,
971 false);
972 }
973 if (ret <= 0) {
974 unsigned long clear_flags = EXTENT_DELALLOC |
975 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
976 EXTENT_DO_ACCOUNTING;
977
978 if (ret < 0)
979 mapping_set_error(mapping, -EIO);
980
981 /*
982 * inline extent creation worked or returned error,
983 * we don't need to create any more async work items.
984 * Unlock and free up our temp pages.
985 *
986 * We use DO_ACCOUNTING here because we need the
987 * delalloc_release_metadata to be done _after_ we drop
988 * our outstanding extent for clearing delalloc for this
989 * range.
990 */
991 extent_clear_unlock_delalloc(inode, start, end,
992 NULL,
993 clear_flags,
994 PAGE_UNLOCK |
995 PAGE_START_WRITEBACK |
996 PAGE_END_WRITEBACK);
997 goto free_pages;
998 }
999 }
1000
1001 /*
1002 * We aren't doing an inline extent. Round the compressed size up to a
1003 * block size boundary so the allocator does sane things.
1004 */
1005 total_compressed = ALIGN(total_compressed, blocksize);
1006
1007 /*
1008 * One last check to make sure the compression is really a win, compare
1009 * the page count read with the blocks on disk, compression must free at
1010 * least one sector.
1011 */
1012 total_in = round_up(total_in, fs_info->sectorsize);
1013 if (total_compressed + blocksize > total_in)
1014 goto mark_incompressible;
1015
1016 /*
1017 * The async work queues will take care of doing actual allocation on
1018 * disk for these compressed pages, and will submit the bios.
1019 */
1020 add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1021 nr_pages, compress_type);
1022 if (start + total_in < end) {
1023 start += total_in;
1024 cond_resched();
1025 goto again;
1026 }
1027 return;
1028
1029 mark_incompressible:
1030 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1031 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1032 cleanup_and_bail_uncompressed:
1033 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1034 BTRFS_COMPRESS_NONE);
1035 free_pages:
1036 if (pages) {
1037 for (i = 0; i < nr_pages; i++) {
1038 WARN_ON(pages[i]->mapping);
1039 put_page(pages[i]);
1040 }
1041 kfree(pages);
1042 }
1043 }
1044
free_async_extent_pages(struct async_extent * async_extent)1045 static void free_async_extent_pages(struct async_extent *async_extent)
1046 {
1047 int i;
1048
1049 if (!async_extent->pages)
1050 return;
1051
1052 for (i = 0; i < async_extent->nr_pages; i++) {
1053 WARN_ON(async_extent->pages[i]->mapping);
1054 put_page(async_extent->pages[i]);
1055 }
1056 kfree(async_extent->pages);
1057 async_extent->nr_pages = 0;
1058 async_extent->pages = NULL;
1059 }
1060
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct page * locked_page)1061 static void submit_uncompressed_range(struct btrfs_inode *inode,
1062 struct async_extent *async_extent,
1063 struct page *locked_page)
1064 {
1065 u64 start = async_extent->start;
1066 u64 end = async_extent->start + async_extent->ram_size - 1;
1067 int ret;
1068 struct writeback_control wbc = {
1069 .sync_mode = WB_SYNC_ALL,
1070 .range_start = start,
1071 .range_end = end,
1072 .no_cgroup_owner = 1,
1073 };
1074
1075 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1076 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1077 wbc_detach_inode(&wbc);
1078 if (ret < 0) {
1079 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1080 if (locked_page) {
1081 const u64 page_start = page_offset(locked_page);
1082
1083 set_page_writeback(locked_page);
1084 end_page_writeback(locked_page);
1085 btrfs_mark_ordered_io_finished(inode, locked_page,
1086 page_start, PAGE_SIZE,
1087 !ret);
1088 mapping_set_error(locked_page->mapping, ret);
1089 unlock_page(locked_page);
1090 }
1091 }
1092 }
1093
submit_one_async_extent(struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)1094 static void submit_one_async_extent(struct async_chunk *async_chunk,
1095 struct async_extent *async_extent,
1096 u64 *alloc_hint)
1097 {
1098 struct btrfs_inode *inode = async_chunk->inode;
1099 struct extent_io_tree *io_tree = &inode->io_tree;
1100 struct btrfs_root *root = inode->root;
1101 struct btrfs_fs_info *fs_info = root->fs_info;
1102 struct btrfs_ordered_extent *ordered;
1103 struct btrfs_key ins;
1104 struct page *locked_page = NULL;
1105 struct extent_map *em;
1106 int ret = 0;
1107 u64 start = async_extent->start;
1108 u64 end = async_extent->start + async_extent->ram_size - 1;
1109
1110 if (async_chunk->blkcg_css)
1111 kthread_associate_blkcg(async_chunk->blkcg_css);
1112
1113 /*
1114 * If async_chunk->locked_page is in the async_extent range, we need to
1115 * handle it.
1116 */
1117 if (async_chunk->locked_page) {
1118 u64 locked_page_start = page_offset(async_chunk->locked_page);
1119 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1120
1121 if (!(start >= locked_page_end || end <= locked_page_start))
1122 locked_page = async_chunk->locked_page;
1123 }
1124 lock_extent(io_tree, start, end, NULL);
1125
1126 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1127 submit_uncompressed_range(inode, async_extent, locked_page);
1128 goto done;
1129 }
1130
1131 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1132 async_extent->compressed_size,
1133 async_extent->compressed_size,
1134 0, *alloc_hint, &ins, 1, 1);
1135 if (ret) {
1136 /*
1137 * Here we used to try again by going back to non-compressed
1138 * path for ENOSPC. But we can't reserve space even for
1139 * compressed size, how could it work for uncompressed size
1140 * which requires larger size? So here we directly go error
1141 * path.
1142 */
1143 goto out_free;
1144 }
1145
1146 /* Here we're doing allocation and writeback of the compressed pages */
1147 em = create_io_em(inode, start,
1148 async_extent->ram_size, /* len */
1149 start, /* orig_start */
1150 ins.objectid, /* block_start */
1151 ins.offset, /* block_len */
1152 ins.offset, /* orig_block_len */
1153 async_extent->ram_size, /* ram_bytes */
1154 async_extent->compress_type,
1155 BTRFS_ORDERED_COMPRESSED);
1156 if (IS_ERR(em)) {
1157 ret = PTR_ERR(em);
1158 goto out_free_reserve;
1159 }
1160 free_extent_map(em);
1161
1162 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */
1163 async_extent->ram_size, /* num_bytes */
1164 async_extent->ram_size, /* ram_bytes */
1165 ins.objectid, /* disk_bytenr */
1166 ins.offset, /* disk_num_bytes */
1167 0, /* offset */
1168 1 << BTRFS_ORDERED_COMPRESSED,
1169 async_extent->compress_type);
1170 if (IS_ERR(ordered)) {
1171 btrfs_drop_extent_map_range(inode, start, end, false);
1172 ret = PTR_ERR(ordered);
1173 goto out_free_reserve;
1174 }
1175 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1176
1177 /* Clear dirty, set writeback and unlock the pages. */
1178 extent_clear_unlock_delalloc(inode, start, end,
1179 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1180 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1181 btrfs_submit_compressed_write(ordered,
1182 async_extent->pages, /* compressed_pages */
1183 async_extent->nr_pages,
1184 async_chunk->write_flags, true);
1185 *alloc_hint = ins.objectid + ins.offset;
1186 done:
1187 if (async_chunk->blkcg_css)
1188 kthread_associate_blkcg(NULL);
1189 kfree(async_extent);
1190 return;
1191
1192 out_free_reserve:
1193 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1194 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1195 out_free:
1196 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1197 extent_clear_unlock_delalloc(inode, start, end,
1198 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1199 EXTENT_DELALLOC_NEW |
1200 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1201 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1202 PAGE_END_WRITEBACK);
1203 free_async_extent_pages(async_extent);
1204 if (async_chunk->blkcg_css)
1205 kthread_associate_blkcg(NULL);
1206 btrfs_debug(fs_info,
1207 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1208 root->root_key.objectid, btrfs_ino(inode), start,
1209 async_extent->ram_size, ret);
1210 kfree(async_extent);
1211 }
1212
get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1213 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1214 u64 num_bytes)
1215 {
1216 struct extent_map_tree *em_tree = &inode->extent_tree;
1217 struct extent_map *em;
1218 u64 alloc_hint = 0;
1219
1220 read_lock(&em_tree->lock);
1221 em = search_extent_mapping(em_tree, start, num_bytes);
1222 if (em) {
1223 /*
1224 * if block start isn't an actual block number then find the
1225 * first block in this inode and use that as a hint. If that
1226 * block is also bogus then just don't worry about it.
1227 */
1228 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1229 free_extent_map(em);
1230 em = search_extent_mapping(em_tree, 0, 0);
1231 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1232 alloc_hint = em->block_start;
1233 if (em)
1234 free_extent_map(em);
1235 } else {
1236 alloc_hint = em->block_start;
1237 free_extent_map(em);
1238 }
1239 }
1240 read_unlock(&em_tree->lock);
1241
1242 return alloc_hint;
1243 }
1244
1245 /*
1246 * when extent_io.c finds a delayed allocation range in the file,
1247 * the call backs end up in this code. The basic idea is to
1248 * allocate extents on disk for the range, and create ordered data structs
1249 * in ram to track those extents.
1250 *
1251 * locked_page is the page that writepage had locked already. We use
1252 * it to make sure we don't do extra locks or unlocks.
1253 *
1254 * When this function fails, it unlocks all pages except @locked_page.
1255 *
1256 * When this function successfully creates an inline extent, it returns 1 and
1257 * unlocks all pages including locked_page and starts I/O on them.
1258 * (In reality inline extents are limited to a single page, so locked_page is
1259 * the only page handled anyway).
1260 *
1261 * When this function succeed and creates a normal extent, the page locking
1262 * status depends on the passed in flags:
1263 *
1264 * - If @keep_locked is set, all pages are kept locked.
1265 * - Else all pages except for @locked_page are unlocked.
1266 *
1267 * When a failure happens in the second or later iteration of the
1268 * while-loop, the ordered extents created in previous iterations are kept
1269 * intact. So, the caller must clean them up by calling
1270 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1271 * example.
1272 */
cow_file_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,u64 * done_offset,bool keep_locked,bool no_inline)1273 static noinline int cow_file_range(struct btrfs_inode *inode,
1274 struct page *locked_page, u64 start, u64 end,
1275 u64 *done_offset,
1276 bool keep_locked, bool no_inline)
1277 {
1278 struct btrfs_root *root = inode->root;
1279 struct btrfs_fs_info *fs_info = root->fs_info;
1280 u64 alloc_hint = 0;
1281 u64 orig_start = start;
1282 u64 num_bytes;
1283 unsigned long ram_size;
1284 u64 cur_alloc_size = 0;
1285 u64 min_alloc_size;
1286 u64 blocksize = fs_info->sectorsize;
1287 struct btrfs_key ins;
1288 struct extent_map *em;
1289 unsigned clear_bits;
1290 unsigned long page_ops;
1291 bool extent_reserved = false;
1292 int ret = 0;
1293
1294 if (btrfs_is_free_space_inode(inode)) {
1295 ret = -EINVAL;
1296 goto out_unlock;
1297 }
1298
1299 num_bytes = ALIGN(end - start + 1, blocksize);
1300 num_bytes = max(blocksize, num_bytes);
1301 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1302
1303 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1304
1305 /*
1306 * Due to the page size limit, for subpage we can only trigger the
1307 * writeback for the dirty sectors of page, that means data writeback
1308 * is doing more writeback than what we want.
1309 *
1310 * This is especially unexpected for some call sites like fallocate,
1311 * where we only increase i_size after everything is done.
1312 * This means we can trigger inline extent even if we didn't want to.
1313 * So here we skip inline extent creation completely.
1314 */
1315 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1316 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1317 end + 1);
1318
1319 /* lets try to make an inline extent */
1320 ret = cow_file_range_inline(inode, actual_end, 0,
1321 BTRFS_COMPRESS_NONE, NULL, false);
1322 if (ret == 0) {
1323 /*
1324 * We use DO_ACCOUNTING here because we need the
1325 * delalloc_release_metadata to be run _after_ we drop
1326 * our outstanding extent for clearing delalloc for this
1327 * range.
1328 */
1329 extent_clear_unlock_delalloc(inode, start, end,
1330 locked_page,
1331 EXTENT_LOCKED | EXTENT_DELALLOC |
1332 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1333 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1334 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1335 /*
1336 * locked_page is locked by the caller of
1337 * writepage_delalloc(), not locked by
1338 * __process_pages_contig().
1339 *
1340 * We can't let __process_pages_contig() to unlock it,
1341 * as it doesn't have any subpage::writers recorded.
1342 *
1343 * Here we manually unlock the page, since the caller
1344 * can't determine if it's an inline extent or a
1345 * compressed extent.
1346 */
1347 unlock_page(locked_page);
1348 ret = 1;
1349 goto done;
1350 } else if (ret < 0) {
1351 goto out_unlock;
1352 }
1353 }
1354
1355 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1356
1357 /*
1358 * Relocation relies on the relocated extents to have exactly the same
1359 * size as the original extents. Normally writeback for relocation data
1360 * extents follows a NOCOW path because relocation preallocates the
1361 * extents. However, due to an operation such as scrub turning a block
1362 * group to RO mode, it may fallback to COW mode, so we must make sure
1363 * an extent allocated during COW has exactly the requested size and can
1364 * not be split into smaller extents, otherwise relocation breaks and
1365 * fails during the stage where it updates the bytenr of file extent
1366 * items.
1367 */
1368 if (btrfs_is_data_reloc_root(root))
1369 min_alloc_size = num_bytes;
1370 else
1371 min_alloc_size = fs_info->sectorsize;
1372
1373 while (num_bytes > 0) {
1374 struct btrfs_ordered_extent *ordered;
1375
1376 cur_alloc_size = num_bytes;
1377 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1378 min_alloc_size, 0, alloc_hint,
1379 &ins, 1, 1);
1380 if (ret == -EAGAIN) {
1381 /*
1382 * btrfs_reserve_extent only returns -EAGAIN for zoned
1383 * file systems, which is an indication that there are
1384 * no active zones to allocate from at the moment.
1385 *
1386 * If this is the first loop iteration, wait for at
1387 * least one zone to finish before retrying the
1388 * allocation. Otherwise ask the caller to write out
1389 * the already allocated blocks before coming back to
1390 * us, or return -ENOSPC if it can't handle retries.
1391 */
1392 ASSERT(btrfs_is_zoned(fs_info));
1393 if (start == orig_start) {
1394 wait_on_bit_io(&inode->root->fs_info->flags,
1395 BTRFS_FS_NEED_ZONE_FINISH,
1396 TASK_UNINTERRUPTIBLE);
1397 continue;
1398 }
1399 if (done_offset) {
1400 *done_offset = start - 1;
1401 return 0;
1402 }
1403 ret = -ENOSPC;
1404 }
1405 if (ret < 0)
1406 goto out_unlock;
1407 cur_alloc_size = ins.offset;
1408 extent_reserved = true;
1409
1410 ram_size = ins.offset;
1411 em = create_io_em(inode, start, ins.offset, /* len */
1412 start, /* orig_start */
1413 ins.objectid, /* block_start */
1414 ins.offset, /* block_len */
1415 ins.offset, /* orig_block_len */
1416 ram_size, /* ram_bytes */
1417 BTRFS_COMPRESS_NONE, /* compress_type */
1418 BTRFS_ORDERED_REGULAR /* type */);
1419 if (IS_ERR(em)) {
1420 ret = PTR_ERR(em);
1421 goto out_reserve;
1422 }
1423 free_extent_map(em);
1424
1425 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1426 ram_size, ins.objectid, cur_alloc_size,
1427 0, 1 << BTRFS_ORDERED_REGULAR,
1428 BTRFS_COMPRESS_NONE);
1429 if (IS_ERR(ordered)) {
1430 ret = PTR_ERR(ordered);
1431 goto out_drop_extent_cache;
1432 }
1433
1434 if (btrfs_is_data_reloc_root(root)) {
1435 ret = btrfs_reloc_clone_csums(ordered);
1436
1437 /*
1438 * Only drop cache here, and process as normal.
1439 *
1440 * We must not allow extent_clear_unlock_delalloc()
1441 * at out_unlock label to free meta of this ordered
1442 * extent, as its meta should be freed by
1443 * btrfs_finish_ordered_io().
1444 *
1445 * So we must continue until @start is increased to
1446 * skip current ordered extent.
1447 */
1448 if (ret)
1449 btrfs_drop_extent_map_range(inode, start,
1450 start + ram_size - 1,
1451 false);
1452 }
1453 btrfs_put_ordered_extent(ordered);
1454
1455 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1456
1457 /*
1458 * We're not doing compressed IO, don't unlock the first page
1459 * (which the caller expects to stay locked), don't clear any
1460 * dirty bits and don't set any writeback bits
1461 *
1462 * Do set the Ordered (Private2) bit so we know this page was
1463 * properly setup for writepage.
1464 */
1465 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1466 page_ops |= PAGE_SET_ORDERED;
1467
1468 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1469 locked_page,
1470 EXTENT_LOCKED | EXTENT_DELALLOC,
1471 page_ops);
1472 if (num_bytes < cur_alloc_size)
1473 num_bytes = 0;
1474 else
1475 num_bytes -= cur_alloc_size;
1476 alloc_hint = ins.objectid + ins.offset;
1477 start += cur_alloc_size;
1478 extent_reserved = false;
1479
1480 /*
1481 * btrfs_reloc_clone_csums() error, since start is increased
1482 * extent_clear_unlock_delalloc() at out_unlock label won't
1483 * free metadata of current ordered extent, we're OK to exit.
1484 */
1485 if (ret)
1486 goto out_unlock;
1487 }
1488 done:
1489 if (done_offset)
1490 *done_offset = end;
1491 return ret;
1492
1493 out_drop_extent_cache:
1494 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1495 out_reserve:
1496 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1497 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1498 out_unlock:
1499 /*
1500 * Now, we have three regions to clean up:
1501 *
1502 * |-------(1)----|---(2)---|-------------(3)----------|
1503 * `- orig_start `- start `- start + cur_alloc_size `- end
1504 *
1505 * We process each region below.
1506 */
1507
1508 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1509 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1510 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1511
1512 /*
1513 * For the range (1). We have already instantiated the ordered extents
1514 * for this region. They are cleaned up by
1515 * btrfs_cleanup_ordered_extents() in e.g,
1516 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1517 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1518 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1519 * function.
1520 *
1521 * However, in case of @keep_locked, we still need to unlock the pages
1522 * (except @locked_page) to ensure all the pages are unlocked.
1523 */
1524 if (keep_locked && orig_start < start) {
1525 if (!locked_page)
1526 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1527 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1528 locked_page, 0, page_ops);
1529 }
1530
1531 /*
1532 * For the range (2). If we reserved an extent for our delalloc range
1533 * (or a subrange) and failed to create the respective ordered extent,
1534 * then it means that when we reserved the extent we decremented the
1535 * extent's size from the data space_info's bytes_may_use counter and
1536 * incremented the space_info's bytes_reserved counter by the same
1537 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1538 * to decrement again the data space_info's bytes_may_use counter,
1539 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1540 */
1541 if (extent_reserved) {
1542 extent_clear_unlock_delalloc(inode, start,
1543 start + cur_alloc_size - 1,
1544 locked_page,
1545 clear_bits,
1546 page_ops);
1547 start += cur_alloc_size;
1548 }
1549
1550 /*
1551 * For the range (3). We never touched the region. In addition to the
1552 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1553 * space_info's bytes_may_use counter, reserved in
1554 * btrfs_check_data_free_space().
1555 */
1556 if (start < end) {
1557 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1558 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1559 clear_bits, page_ops);
1560 }
1561 return ret;
1562 }
1563
1564 /*
1565 * Phase two of compressed writeback. This is the ordered portion of the code,
1566 * which only gets called in the order the work was queued. We walk all the
1567 * async extents created by compress_file_range and send them down to the disk.
1568 */
submit_compressed_extents(struct btrfs_work * work)1569 static noinline void submit_compressed_extents(struct btrfs_work *work)
1570 {
1571 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1572 work);
1573 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1574 struct async_extent *async_extent;
1575 unsigned long nr_pages;
1576 u64 alloc_hint = 0;
1577
1578 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1579 PAGE_SHIFT;
1580
1581 while (!list_empty(&async_chunk->extents)) {
1582 async_extent = list_entry(async_chunk->extents.next,
1583 struct async_extent, list);
1584 list_del(&async_extent->list);
1585 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1586 }
1587
1588 /* atomic_sub_return implies a barrier */
1589 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1590 5 * SZ_1M)
1591 cond_wake_up_nomb(&fs_info->async_submit_wait);
1592 }
1593
async_cow_free(struct btrfs_work * work)1594 static noinline void async_cow_free(struct btrfs_work *work)
1595 {
1596 struct async_chunk *async_chunk;
1597 struct async_cow *async_cow;
1598
1599 async_chunk = container_of(work, struct async_chunk, work);
1600 btrfs_add_delayed_iput(async_chunk->inode);
1601 if (async_chunk->blkcg_css)
1602 css_put(async_chunk->blkcg_css);
1603
1604 async_cow = async_chunk->async_cow;
1605 if (atomic_dec_and_test(&async_cow->num_chunks))
1606 kvfree(async_cow);
1607 }
1608
run_delalloc_compressed(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,struct writeback_control * wbc)1609 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1610 struct page *locked_page, u64 start,
1611 u64 end, struct writeback_control *wbc)
1612 {
1613 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1614 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1615 struct async_cow *ctx;
1616 struct async_chunk *async_chunk;
1617 unsigned long nr_pages;
1618 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1619 int i;
1620 unsigned nofs_flag;
1621 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1622
1623 nofs_flag = memalloc_nofs_save();
1624 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1625 memalloc_nofs_restore(nofs_flag);
1626 if (!ctx)
1627 return false;
1628
1629 unlock_extent(&inode->io_tree, start, end, NULL);
1630 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1631
1632 async_chunk = ctx->chunks;
1633 atomic_set(&ctx->num_chunks, num_chunks);
1634
1635 for (i = 0; i < num_chunks; i++) {
1636 u64 cur_end = min(end, start + SZ_512K - 1);
1637
1638 /*
1639 * igrab is called higher up in the call chain, take only the
1640 * lightweight reference for the callback lifetime
1641 */
1642 ihold(&inode->vfs_inode);
1643 async_chunk[i].async_cow = ctx;
1644 async_chunk[i].inode = inode;
1645 async_chunk[i].start = start;
1646 async_chunk[i].end = cur_end;
1647 async_chunk[i].write_flags = write_flags;
1648 INIT_LIST_HEAD(&async_chunk[i].extents);
1649
1650 /*
1651 * The locked_page comes all the way from writepage and its
1652 * the original page we were actually given. As we spread
1653 * this large delalloc region across multiple async_chunk
1654 * structs, only the first struct needs a pointer to locked_page
1655 *
1656 * This way we don't need racey decisions about who is supposed
1657 * to unlock it.
1658 */
1659 if (locked_page) {
1660 /*
1661 * Depending on the compressibility, the pages might or
1662 * might not go through async. We want all of them to
1663 * be accounted against wbc once. Let's do it here
1664 * before the paths diverge. wbc accounting is used
1665 * only for foreign writeback detection and doesn't
1666 * need full accuracy. Just account the whole thing
1667 * against the first page.
1668 */
1669 wbc_account_cgroup_owner(wbc, locked_page,
1670 cur_end - start);
1671 async_chunk[i].locked_page = locked_page;
1672 locked_page = NULL;
1673 } else {
1674 async_chunk[i].locked_page = NULL;
1675 }
1676
1677 if (blkcg_css != blkcg_root_css) {
1678 css_get(blkcg_css);
1679 async_chunk[i].blkcg_css = blkcg_css;
1680 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1681 } else {
1682 async_chunk[i].blkcg_css = NULL;
1683 }
1684
1685 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1686 submit_compressed_extents, async_cow_free);
1687
1688 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1689 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1690
1691 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1692
1693 start = cur_end + 1;
1694 }
1695 return true;
1696 }
1697
1698 /*
1699 * Run the delalloc range from start to end, and write back any dirty pages
1700 * covered by the range.
1701 */
run_delalloc_cow(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)1702 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1703 struct page *locked_page, u64 start,
1704 u64 end, struct writeback_control *wbc,
1705 bool pages_dirty)
1706 {
1707 u64 done_offset = end;
1708 int ret;
1709
1710 while (start <= end) {
1711 ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1712 true, false);
1713 if (ret)
1714 return ret;
1715 extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1716 done_offset, wbc, pages_dirty);
1717 start = done_offset + 1;
1718 }
1719
1720 return 1;
1721 }
1722
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,bool nowait)1723 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1724 u64 bytenr, u64 num_bytes, bool nowait)
1725 {
1726 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1727 struct btrfs_ordered_sum *sums;
1728 int ret;
1729 LIST_HEAD(list);
1730
1731 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1732 &list, 0, nowait);
1733 if (ret == 0 && list_empty(&list))
1734 return 0;
1735
1736 while (!list_empty(&list)) {
1737 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1738 list_del(&sums->list);
1739 kfree(sums);
1740 }
1741 if (ret < 0)
1742 return ret;
1743 return 1;
1744 }
1745
fallback_to_cow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end)1746 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1747 const u64 start, const u64 end)
1748 {
1749 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1750 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1751 const u64 range_bytes = end + 1 - start;
1752 struct extent_io_tree *io_tree = &inode->io_tree;
1753 u64 range_start = start;
1754 u64 count;
1755 int ret;
1756
1757 /*
1758 * If EXTENT_NORESERVE is set it means that when the buffered write was
1759 * made we had not enough available data space and therefore we did not
1760 * reserve data space for it, since we though we could do NOCOW for the
1761 * respective file range (either there is prealloc extent or the inode
1762 * has the NOCOW bit set).
1763 *
1764 * However when we need to fallback to COW mode (because for example the
1765 * block group for the corresponding extent was turned to RO mode by a
1766 * scrub or relocation) we need to do the following:
1767 *
1768 * 1) We increment the bytes_may_use counter of the data space info.
1769 * If COW succeeds, it allocates a new data extent and after doing
1770 * that it decrements the space info's bytes_may_use counter and
1771 * increments its bytes_reserved counter by the same amount (we do
1772 * this at btrfs_add_reserved_bytes()). So we need to increment the
1773 * bytes_may_use counter to compensate (when space is reserved at
1774 * buffered write time, the bytes_may_use counter is incremented);
1775 *
1776 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1777 * that if the COW path fails for any reason, it decrements (through
1778 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1779 * data space info, which we incremented in the step above.
1780 *
1781 * If we need to fallback to cow and the inode corresponds to a free
1782 * space cache inode or an inode of the data relocation tree, we must
1783 * also increment bytes_may_use of the data space_info for the same
1784 * reason. Space caches and relocated data extents always get a prealloc
1785 * extent for them, however scrub or balance may have set the block
1786 * group that contains that extent to RO mode and therefore force COW
1787 * when starting writeback.
1788 */
1789 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1790 EXTENT_NORESERVE, 0, NULL);
1791 if (count > 0 || is_space_ino || is_reloc_ino) {
1792 u64 bytes = count;
1793 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1794 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1795
1796 if (is_space_ino || is_reloc_ino)
1797 bytes = range_bytes;
1798
1799 spin_lock(&sinfo->lock);
1800 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1801 spin_unlock(&sinfo->lock);
1802
1803 if (count > 0)
1804 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1805 NULL);
1806 }
1807
1808 /*
1809 * Don't try to create inline extents, as a mix of inline extent that
1810 * is written out and unlocked directly and a normal NOCOW extent
1811 * doesn't work.
1812 */
1813 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1814 ASSERT(ret != 1);
1815 return ret;
1816 }
1817
1818 struct can_nocow_file_extent_args {
1819 /* Input fields. */
1820
1821 /* Start file offset of the range we want to NOCOW. */
1822 u64 start;
1823 /* End file offset (inclusive) of the range we want to NOCOW. */
1824 u64 end;
1825 bool writeback_path;
1826 bool strict;
1827 /*
1828 * Free the path passed to can_nocow_file_extent() once it's not needed
1829 * anymore.
1830 */
1831 bool free_path;
1832
1833 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1834
1835 u64 disk_bytenr;
1836 u64 disk_num_bytes;
1837 u64 extent_offset;
1838 /* Number of bytes that can be written to in NOCOW mode. */
1839 u64 num_bytes;
1840 };
1841
1842 /*
1843 * Check if we can NOCOW the file extent that the path points to.
1844 * This function may return with the path released, so the caller should check
1845 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1846 *
1847 * Returns: < 0 on error
1848 * 0 if we can not NOCOW
1849 * 1 if we can NOCOW
1850 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1851 static int can_nocow_file_extent(struct btrfs_path *path,
1852 struct btrfs_key *key,
1853 struct btrfs_inode *inode,
1854 struct can_nocow_file_extent_args *args)
1855 {
1856 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1857 struct extent_buffer *leaf = path->nodes[0];
1858 struct btrfs_root *root = inode->root;
1859 struct btrfs_file_extent_item *fi;
1860 u64 extent_end;
1861 u8 extent_type;
1862 int can_nocow = 0;
1863 int ret = 0;
1864 bool nowait = path->nowait;
1865
1866 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1867 extent_type = btrfs_file_extent_type(leaf, fi);
1868
1869 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1870 goto out;
1871
1872 /* Can't access these fields unless we know it's not an inline extent. */
1873 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1874 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1875 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1876
1877 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1878 extent_type == BTRFS_FILE_EXTENT_REG)
1879 goto out;
1880
1881 /*
1882 * If the extent was created before the generation where the last snapshot
1883 * for its subvolume was created, then this implies the extent is shared,
1884 * hence we must COW.
1885 */
1886 if (!args->strict &&
1887 btrfs_file_extent_generation(leaf, fi) <=
1888 btrfs_root_last_snapshot(&root->root_item))
1889 goto out;
1890
1891 /* An explicit hole, must COW. */
1892 if (args->disk_bytenr == 0)
1893 goto out;
1894
1895 /* Compressed/encrypted/encoded extents must be COWed. */
1896 if (btrfs_file_extent_compression(leaf, fi) ||
1897 btrfs_file_extent_encryption(leaf, fi) ||
1898 btrfs_file_extent_other_encoding(leaf, fi))
1899 goto out;
1900
1901 extent_end = btrfs_file_extent_end(path);
1902
1903 /*
1904 * The following checks can be expensive, as they need to take other
1905 * locks and do btree or rbtree searches, so release the path to avoid
1906 * blocking other tasks for too long.
1907 */
1908 btrfs_release_path(path);
1909
1910 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1911 key->offset - args->extent_offset,
1912 args->disk_bytenr, args->strict, path);
1913 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1914 if (ret != 0)
1915 goto out;
1916
1917 if (args->free_path) {
1918 /*
1919 * We don't need the path anymore, plus through the
1920 * csum_exist_in_range() call below we will end up allocating
1921 * another path. So free the path to avoid unnecessary extra
1922 * memory usage.
1923 */
1924 btrfs_free_path(path);
1925 path = NULL;
1926 }
1927
1928 /* If there are pending snapshots for this root, we must COW. */
1929 if (args->writeback_path && !is_freespace_inode &&
1930 atomic_read(&root->snapshot_force_cow))
1931 goto out;
1932
1933 args->disk_bytenr += args->extent_offset;
1934 args->disk_bytenr += args->start - key->offset;
1935 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1936
1937 /*
1938 * Force COW if csums exist in the range. This ensures that csums for a
1939 * given extent are either valid or do not exist.
1940 */
1941 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1942 nowait);
1943 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1944 if (ret != 0)
1945 goto out;
1946
1947 can_nocow = 1;
1948 out:
1949 if (args->free_path && path)
1950 btrfs_free_path(path);
1951
1952 return ret < 0 ? ret : can_nocow;
1953 }
1954
1955 /*
1956 * when nowcow writeback call back. This checks for snapshots or COW copies
1957 * of the extents that exist in the file, and COWs the file as required.
1958 *
1959 * If no cow copies or snapshots exist, we write directly to the existing
1960 * blocks on disk
1961 */
run_delalloc_nocow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end)1962 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1963 struct page *locked_page,
1964 const u64 start, const u64 end)
1965 {
1966 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1967 struct btrfs_root *root = inode->root;
1968 struct btrfs_path *path;
1969 u64 cow_start = (u64)-1;
1970 u64 cur_offset = start;
1971 int ret;
1972 bool check_prev = true;
1973 u64 ino = btrfs_ino(inode);
1974 struct can_nocow_file_extent_args nocow_args = { 0 };
1975
1976 /*
1977 * Normally on a zoned device we're only doing COW writes, but in case
1978 * of relocation on a zoned filesystem serializes I/O so that we're only
1979 * writing sequentially and can end up here as well.
1980 */
1981 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1982
1983 path = btrfs_alloc_path();
1984 if (!path) {
1985 ret = -ENOMEM;
1986 goto error;
1987 }
1988
1989 nocow_args.end = end;
1990 nocow_args.writeback_path = true;
1991
1992 while (1) {
1993 struct btrfs_block_group *nocow_bg = NULL;
1994 struct btrfs_ordered_extent *ordered;
1995 struct btrfs_key found_key;
1996 struct btrfs_file_extent_item *fi;
1997 struct extent_buffer *leaf;
1998 u64 extent_end;
1999 u64 ram_bytes;
2000 u64 nocow_end;
2001 int extent_type;
2002 bool is_prealloc;
2003
2004 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2005 cur_offset, 0);
2006 if (ret < 0)
2007 goto error;
2008
2009 /*
2010 * If there is no extent for our range when doing the initial
2011 * search, then go back to the previous slot as it will be the
2012 * one containing the search offset
2013 */
2014 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2015 leaf = path->nodes[0];
2016 btrfs_item_key_to_cpu(leaf, &found_key,
2017 path->slots[0] - 1);
2018 if (found_key.objectid == ino &&
2019 found_key.type == BTRFS_EXTENT_DATA_KEY)
2020 path->slots[0]--;
2021 }
2022 check_prev = false;
2023 next_slot:
2024 /* Go to next leaf if we have exhausted the current one */
2025 leaf = path->nodes[0];
2026 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2027 ret = btrfs_next_leaf(root, path);
2028 if (ret < 0)
2029 goto error;
2030 if (ret > 0)
2031 break;
2032 leaf = path->nodes[0];
2033 }
2034
2035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2036
2037 /* Didn't find anything for our INO */
2038 if (found_key.objectid > ino)
2039 break;
2040 /*
2041 * Keep searching until we find an EXTENT_ITEM or there are no
2042 * more extents for this inode
2043 */
2044 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2045 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2046 path->slots[0]++;
2047 goto next_slot;
2048 }
2049
2050 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2051 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2052 found_key.offset > end)
2053 break;
2054
2055 /*
2056 * If the found extent starts after requested offset, then
2057 * adjust extent_end to be right before this extent begins
2058 */
2059 if (found_key.offset > cur_offset) {
2060 extent_end = found_key.offset;
2061 extent_type = 0;
2062 goto must_cow;
2063 }
2064
2065 /*
2066 * Found extent which begins before our range and potentially
2067 * intersect it
2068 */
2069 fi = btrfs_item_ptr(leaf, path->slots[0],
2070 struct btrfs_file_extent_item);
2071 extent_type = btrfs_file_extent_type(leaf, fi);
2072 /* If this is triggered then we have a memory corruption. */
2073 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2074 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2075 ret = -EUCLEAN;
2076 goto error;
2077 }
2078 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2079 extent_end = btrfs_file_extent_end(path);
2080
2081 /*
2082 * If the extent we got ends before our current offset, skip to
2083 * the next extent.
2084 */
2085 if (extent_end <= cur_offset) {
2086 path->slots[0]++;
2087 goto next_slot;
2088 }
2089
2090 nocow_args.start = cur_offset;
2091 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2092 if (ret < 0)
2093 goto error;
2094 if (ret == 0)
2095 goto must_cow;
2096
2097 ret = 0;
2098 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2099 if (!nocow_bg) {
2100 must_cow:
2101 /*
2102 * If we can't perform NOCOW writeback for the range,
2103 * then record the beginning of the range that needs to
2104 * be COWed. It will be written out before the next
2105 * NOCOW range if we find one, or when exiting this
2106 * loop.
2107 */
2108 if (cow_start == (u64)-1)
2109 cow_start = cur_offset;
2110 cur_offset = extent_end;
2111 if (cur_offset > end)
2112 break;
2113 if (!path->nodes[0])
2114 continue;
2115 path->slots[0]++;
2116 goto next_slot;
2117 }
2118
2119 /*
2120 * COW range from cow_start to found_key.offset - 1. As the key
2121 * will contain the beginning of the first extent that can be
2122 * NOCOW, following one which needs to be COW'ed
2123 */
2124 if (cow_start != (u64)-1) {
2125 ret = fallback_to_cow(inode, locked_page,
2126 cow_start, found_key.offset - 1);
2127 cow_start = (u64)-1;
2128 if (ret) {
2129 btrfs_dec_nocow_writers(nocow_bg);
2130 goto error;
2131 }
2132 }
2133
2134 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2135 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2136 if (is_prealloc) {
2137 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2138 struct extent_map *em;
2139
2140 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2141 orig_start,
2142 nocow_args.disk_bytenr, /* block_start */
2143 nocow_args.num_bytes, /* block_len */
2144 nocow_args.disk_num_bytes, /* orig_block_len */
2145 ram_bytes, BTRFS_COMPRESS_NONE,
2146 BTRFS_ORDERED_PREALLOC);
2147 if (IS_ERR(em)) {
2148 btrfs_dec_nocow_writers(nocow_bg);
2149 ret = PTR_ERR(em);
2150 goto error;
2151 }
2152 free_extent_map(em);
2153 }
2154
2155 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2156 nocow_args.num_bytes, nocow_args.num_bytes,
2157 nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2158 is_prealloc
2159 ? (1 << BTRFS_ORDERED_PREALLOC)
2160 : (1 << BTRFS_ORDERED_NOCOW),
2161 BTRFS_COMPRESS_NONE);
2162 btrfs_dec_nocow_writers(nocow_bg);
2163 if (IS_ERR(ordered)) {
2164 if (is_prealloc) {
2165 btrfs_drop_extent_map_range(inode, cur_offset,
2166 nocow_end, false);
2167 }
2168 ret = PTR_ERR(ordered);
2169 goto error;
2170 }
2171
2172 if (btrfs_is_data_reloc_root(root))
2173 /*
2174 * Error handled later, as we must prevent
2175 * extent_clear_unlock_delalloc() in error handler
2176 * from freeing metadata of created ordered extent.
2177 */
2178 ret = btrfs_reloc_clone_csums(ordered);
2179 btrfs_put_ordered_extent(ordered);
2180
2181 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2182 locked_page, EXTENT_LOCKED |
2183 EXTENT_DELALLOC |
2184 EXTENT_CLEAR_DATA_RESV,
2185 PAGE_UNLOCK | PAGE_SET_ORDERED);
2186
2187 cur_offset = extent_end;
2188
2189 /*
2190 * btrfs_reloc_clone_csums() error, now we're OK to call error
2191 * handler, as metadata for created ordered extent will only
2192 * be freed by btrfs_finish_ordered_io().
2193 */
2194 if (ret)
2195 goto error;
2196 if (cur_offset > end)
2197 break;
2198 }
2199 btrfs_release_path(path);
2200
2201 if (cur_offset <= end && cow_start == (u64)-1)
2202 cow_start = cur_offset;
2203
2204 if (cow_start != (u64)-1) {
2205 cur_offset = end;
2206 ret = fallback_to_cow(inode, locked_page, cow_start, end);
2207 cow_start = (u64)-1;
2208 if (ret)
2209 goto error;
2210 }
2211
2212 btrfs_free_path(path);
2213 return 0;
2214
2215 error:
2216 /*
2217 * If an error happened while a COW region is outstanding, cur_offset
2218 * needs to be reset to cow_start to ensure the COW region is unlocked
2219 * as well.
2220 */
2221 if (cow_start != (u64)-1)
2222 cur_offset = cow_start;
2223 if (cur_offset < end)
2224 extent_clear_unlock_delalloc(inode, cur_offset, end,
2225 locked_page, EXTENT_LOCKED |
2226 EXTENT_DELALLOC | EXTENT_DEFRAG |
2227 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2228 PAGE_START_WRITEBACK |
2229 PAGE_END_WRITEBACK);
2230 btrfs_free_path(path);
2231 return ret;
2232 }
2233
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2234 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2235 {
2236 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2237 if (inode->defrag_bytes &&
2238 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2239 0, NULL))
2240 return false;
2241 return true;
2242 }
2243 return false;
2244 }
2245
2246 /*
2247 * Function to process delayed allocation (create CoW) for ranges which are
2248 * being touched for the first time.
2249 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,struct writeback_control * wbc)2250 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2251 u64 start, u64 end, struct writeback_control *wbc)
2252 {
2253 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2254 int ret;
2255
2256 /*
2257 * The range must cover part of the @locked_page, or a return of 1
2258 * can confuse the caller.
2259 */
2260 ASSERT(!(end <= page_offset(locked_page) ||
2261 start >= page_offset(locked_page) + PAGE_SIZE));
2262
2263 if (should_nocow(inode, start, end)) {
2264 ret = run_delalloc_nocow(inode, locked_page, start, end);
2265 goto out;
2266 }
2267
2268 if (btrfs_inode_can_compress(inode) &&
2269 inode_need_compress(inode, start, end) &&
2270 run_delalloc_compressed(inode, locked_page, start, end, wbc))
2271 return 1;
2272
2273 if (zoned)
2274 ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2275 true);
2276 else
2277 ret = cow_file_range(inode, locked_page, start, end, NULL,
2278 false, false);
2279
2280 out:
2281 if (ret < 0)
2282 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2283 end - start + 1);
2284 return ret;
2285 }
2286
btrfs_split_delalloc_extent(struct btrfs_inode * inode,struct extent_state * orig,u64 split)2287 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2288 struct extent_state *orig, u64 split)
2289 {
2290 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2291 u64 size;
2292
2293 /* not delalloc, ignore it */
2294 if (!(orig->state & EXTENT_DELALLOC))
2295 return;
2296
2297 size = orig->end - orig->start + 1;
2298 if (size > fs_info->max_extent_size) {
2299 u32 num_extents;
2300 u64 new_size;
2301
2302 /*
2303 * See the explanation in btrfs_merge_delalloc_extent, the same
2304 * applies here, just in reverse.
2305 */
2306 new_size = orig->end - split + 1;
2307 num_extents = count_max_extents(fs_info, new_size);
2308 new_size = split - orig->start;
2309 num_extents += count_max_extents(fs_info, new_size);
2310 if (count_max_extents(fs_info, size) >= num_extents)
2311 return;
2312 }
2313
2314 spin_lock(&inode->lock);
2315 btrfs_mod_outstanding_extents(inode, 1);
2316 spin_unlock(&inode->lock);
2317 }
2318
2319 /*
2320 * Handle merged delayed allocation extents so we can keep track of new extents
2321 * that are just merged onto old extents, such as when we are doing sequential
2322 * writes, so we can properly account for the metadata space we'll need.
2323 */
btrfs_merge_delalloc_extent(struct btrfs_inode * inode,struct extent_state * new,struct extent_state * other)2324 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2325 struct extent_state *other)
2326 {
2327 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2328 u64 new_size, old_size;
2329 u32 num_extents;
2330
2331 /* not delalloc, ignore it */
2332 if (!(other->state & EXTENT_DELALLOC))
2333 return;
2334
2335 if (new->start > other->start)
2336 new_size = new->end - other->start + 1;
2337 else
2338 new_size = other->end - new->start + 1;
2339
2340 /* we're not bigger than the max, unreserve the space and go */
2341 if (new_size <= fs_info->max_extent_size) {
2342 spin_lock(&inode->lock);
2343 btrfs_mod_outstanding_extents(inode, -1);
2344 spin_unlock(&inode->lock);
2345 return;
2346 }
2347
2348 /*
2349 * We have to add up either side to figure out how many extents were
2350 * accounted for before we merged into one big extent. If the number of
2351 * extents we accounted for is <= the amount we need for the new range
2352 * then we can return, otherwise drop. Think of it like this
2353 *
2354 * [ 4k][MAX_SIZE]
2355 *
2356 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2357 * need 2 outstanding extents, on one side we have 1 and the other side
2358 * we have 1 so they are == and we can return. But in this case
2359 *
2360 * [MAX_SIZE+4k][MAX_SIZE+4k]
2361 *
2362 * Each range on their own accounts for 2 extents, but merged together
2363 * they are only 3 extents worth of accounting, so we need to drop in
2364 * this case.
2365 */
2366 old_size = other->end - other->start + 1;
2367 num_extents = count_max_extents(fs_info, old_size);
2368 old_size = new->end - new->start + 1;
2369 num_extents += count_max_extents(fs_info, old_size);
2370 if (count_max_extents(fs_info, new_size) >= num_extents)
2371 return;
2372
2373 spin_lock(&inode->lock);
2374 btrfs_mod_outstanding_extents(inode, -1);
2375 spin_unlock(&inode->lock);
2376 }
2377
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct btrfs_inode * inode)2378 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2379 struct btrfs_inode *inode)
2380 {
2381 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2382
2383 spin_lock(&root->delalloc_lock);
2384 if (list_empty(&inode->delalloc_inodes)) {
2385 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2386 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2387 root->nr_delalloc_inodes++;
2388 if (root->nr_delalloc_inodes == 1) {
2389 spin_lock(&fs_info->delalloc_root_lock);
2390 BUG_ON(!list_empty(&root->delalloc_root));
2391 list_add_tail(&root->delalloc_root,
2392 &fs_info->delalloc_roots);
2393 spin_unlock(&fs_info->delalloc_root_lock);
2394 }
2395 }
2396 spin_unlock(&root->delalloc_lock);
2397 }
2398
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)2399 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2400 struct btrfs_inode *inode)
2401 {
2402 struct btrfs_fs_info *fs_info = root->fs_info;
2403
2404 if (!list_empty(&inode->delalloc_inodes)) {
2405 list_del_init(&inode->delalloc_inodes);
2406 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2407 &inode->runtime_flags);
2408 root->nr_delalloc_inodes--;
2409 if (!root->nr_delalloc_inodes) {
2410 ASSERT(list_empty(&root->delalloc_inodes));
2411 spin_lock(&fs_info->delalloc_root_lock);
2412 BUG_ON(list_empty(&root->delalloc_root));
2413 list_del_init(&root->delalloc_root);
2414 spin_unlock(&fs_info->delalloc_root_lock);
2415 }
2416 }
2417 }
2418
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)2419 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2420 struct btrfs_inode *inode)
2421 {
2422 spin_lock(&root->delalloc_lock);
2423 __btrfs_del_delalloc_inode(root, inode);
2424 spin_unlock(&root->delalloc_lock);
2425 }
2426
2427 /*
2428 * Properly track delayed allocation bytes in the inode and to maintain the
2429 * list of inodes that have pending delalloc work to be done.
2430 */
btrfs_set_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2431 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2432 u32 bits)
2433 {
2434 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2435
2436 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2437 WARN_ON(1);
2438 /*
2439 * set_bit and clear bit hooks normally require _irqsave/restore
2440 * but in this case, we are only testing for the DELALLOC
2441 * bit, which is only set or cleared with irqs on
2442 */
2443 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2444 struct btrfs_root *root = inode->root;
2445 u64 len = state->end + 1 - state->start;
2446 u32 num_extents = count_max_extents(fs_info, len);
2447 bool do_list = !btrfs_is_free_space_inode(inode);
2448
2449 spin_lock(&inode->lock);
2450 btrfs_mod_outstanding_extents(inode, num_extents);
2451 spin_unlock(&inode->lock);
2452
2453 /* For sanity tests */
2454 if (btrfs_is_testing(fs_info))
2455 return;
2456
2457 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2458 fs_info->delalloc_batch);
2459 spin_lock(&inode->lock);
2460 inode->delalloc_bytes += len;
2461 if (bits & EXTENT_DEFRAG)
2462 inode->defrag_bytes += len;
2463 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2464 &inode->runtime_flags))
2465 btrfs_add_delalloc_inodes(root, inode);
2466 spin_unlock(&inode->lock);
2467 }
2468
2469 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2470 (bits & EXTENT_DELALLOC_NEW)) {
2471 spin_lock(&inode->lock);
2472 inode->new_delalloc_bytes += state->end + 1 - state->start;
2473 spin_unlock(&inode->lock);
2474 }
2475 }
2476
2477 /*
2478 * Once a range is no longer delalloc this function ensures that proper
2479 * accounting happens.
2480 */
btrfs_clear_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2481 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2482 struct extent_state *state, u32 bits)
2483 {
2484 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2485 u64 len = state->end + 1 - state->start;
2486 u32 num_extents = count_max_extents(fs_info, len);
2487
2488 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2489 spin_lock(&inode->lock);
2490 inode->defrag_bytes -= len;
2491 spin_unlock(&inode->lock);
2492 }
2493
2494 /*
2495 * set_bit and clear bit hooks normally require _irqsave/restore
2496 * but in this case, we are only testing for the DELALLOC
2497 * bit, which is only set or cleared with irqs on
2498 */
2499 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2500 struct btrfs_root *root = inode->root;
2501 bool do_list = !btrfs_is_free_space_inode(inode);
2502
2503 spin_lock(&inode->lock);
2504 btrfs_mod_outstanding_extents(inode, -num_extents);
2505 spin_unlock(&inode->lock);
2506
2507 /*
2508 * We don't reserve metadata space for space cache inodes so we
2509 * don't need to call delalloc_release_metadata if there is an
2510 * error.
2511 */
2512 if (bits & EXTENT_CLEAR_META_RESV &&
2513 root != fs_info->tree_root)
2514 btrfs_delalloc_release_metadata(inode, len, false);
2515
2516 /* For sanity tests. */
2517 if (btrfs_is_testing(fs_info))
2518 return;
2519
2520 if (!btrfs_is_data_reloc_root(root) &&
2521 do_list && !(state->state & EXTENT_NORESERVE) &&
2522 (bits & EXTENT_CLEAR_DATA_RESV))
2523 btrfs_free_reserved_data_space_noquota(fs_info, len);
2524
2525 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2526 fs_info->delalloc_batch);
2527 spin_lock(&inode->lock);
2528 inode->delalloc_bytes -= len;
2529 if (do_list && inode->delalloc_bytes == 0 &&
2530 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2531 &inode->runtime_flags))
2532 btrfs_del_delalloc_inode(root, inode);
2533 spin_unlock(&inode->lock);
2534 }
2535
2536 if ((state->state & EXTENT_DELALLOC_NEW) &&
2537 (bits & EXTENT_DELALLOC_NEW)) {
2538 spin_lock(&inode->lock);
2539 ASSERT(inode->new_delalloc_bytes >= len);
2540 inode->new_delalloc_bytes -= len;
2541 if (bits & EXTENT_ADD_INODE_BYTES)
2542 inode_add_bytes(&inode->vfs_inode, len);
2543 spin_unlock(&inode->lock);
2544 }
2545 }
2546
btrfs_extract_ordered_extent(struct btrfs_bio * bbio,struct btrfs_ordered_extent * ordered)2547 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2548 struct btrfs_ordered_extent *ordered)
2549 {
2550 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2551 u64 len = bbio->bio.bi_iter.bi_size;
2552 struct btrfs_ordered_extent *new;
2553 int ret;
2554
2555 /* Must always be called for the beginning of an ordered extent. */
2556 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2557 return -EINVAL;
2558
2559 /* No need to split if the ordered extent covers the entire bio. */
2560 if (ordered->disk_num_bytes == len) {
2561 refcount_inc(&ordered->refs);
2562 bbio->ordered = ordered;
2563 return 0;
2564 }
2565
2566 /*
2567 * Don't split the extent_map for NOCOW extents, as we're writing into
2568 * a pre-existing one.
2569 */
2570 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2571 ret = split_extent_map(bbio->inode, bbio->file_offset,
2572 ordered->num_bytes, len,
2573 ordered->disk_bytenr);
2574 if (ret)
2575 return ret;
2576 }
2577
2578 new = btrfs_split_ordered_extent(ordered, len);
2579 if (IS_ERR(new))
2580 return PTR_ERR(new);
2581 bbio->ordered = new;
2582 return 0;
2583 }
2584
2585 /*
2586 * given a list of ordered sums record them in the inode. This happens
2587 * at IO completion time based on sums calculated at bio submission time.
2588 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2589 static int add_pending_csums(struct btrfs_trans_handle *trans,
2590 struct list_head *list)
2591 {
2592 struct btrfs_ordered_sum *sum;
2593 struct btrfs_root *csum_root = NULL;
2594 int ret;
2595
2596 list_for_each_entry(sum, list, list) {
2597 trans->adding_csums = true;
2598 if (!csum_root)
2599 csum_root = btrfs_csum_root(trans->fs_info,
2600 sum->logical);
2601 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2602 trans->adding_csums = false;
2603 if (ret)
2604 return ret;
2605 }
2606 return 0;
2607 }
2608
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2609 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2610 const u64 start,
2611 const u64 len,
2612 struct extent_state **cached_state)
2613 {
2614 u64 search_start = start;
2615 const u64 end = start + len - 1;
2616
2617 while (search_start < end) {
2618 const u64 search_len = end - search_start + 1;
2619 struct extent_map *em;
2620 u64 em_len;
2621 int ret = 0;
2622
2623 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2624 if (IS_ERR(em))
2625 return PTR_ERR(em);
2626
2627 if (em->block_start != EXTENT_MAP_HOLE)
2628 goto next;
2629
2630 em_len = em->len;
2631 if (em->start < search_start)
2632 em_len -= search_start - em->start;
2633 if (em_len > search_len)
2634 em_len = search_len;
2635
2636 ret = set_extent_bit(&inode->io_tree, search_start,
2637 search_start + em_len - 1,
2638 EXTENT_DELALLOC_NEW, cached_state);
2639 next:
2640 search_start = extent_map_end(em);
2641 free_extent_map(em);
2642 if (ret)
2643 return ret;
2644 }
2645 return 0;
2646 }
2647
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2648 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2649 unsigned int extra_bits,
2650 struct extent_state **cached_state)
2651 {
2652 WARN_ON(PAGE_ALIGNED(end));
2653
2654 if (start >= i_size_read(&inode->vfs_inode) &&
2655 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2656 /*
2657 * There can't be any extents following eof in this case so just
2658 * set the delalloc new bit for the range directly.
2659 */
2660 extra_bits |= EXTENT_DELALLOC_NEW;
2661 } else {
2662 int ret;
2663
2664 ret = btrfs_find_new_delalloc_bytes(inode, start,
2665 end + 1 - start,
2666 cached_state);
2667 if (ret)
2668 return ret;
2669 }
2670
2671 return set_extent_bit(&inode->io_tree, start, end,
2672 EXTENT_DELALLOC | extra_bits, cached_state);
2673 }
2674
2675 /* see btrfs_writepage_start_hook for details on why this is required */
2676 struct btrfs_writepage_fixup {
2677 struct page *page;
2678 struct btrfs_inode *inode;
2679 struct btrfs_work work;
2680 };
2681
btrfs_writepage_fixup_worker(struct btrfs_work * work)2682 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2683 {
2684 struct btrfs_writepage_fixup *fixup =
2685 container_of(work, struct btrfs_writepage_fixup, work);
2686 struct btrfs_ordered_extent *ordered;
2687 struct extent_state *cached_state = NULL;
2688 struct extent_changeset *data_reserved = NULL;
2689 struct page *page = fixup->page;
2690 struct btrfs_inode *inode = fixup->inode;
2691 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2692 u64 page_start = page_offset(page);
2693 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2694 int ret = 0;
2695 bool free_delalloc_space = true;
2696
2697 /*
2698 * This is similar to page_mkwrite, we need to reserve the space before
2699 * we take the page lock.
2700 */
2701 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2702 PAGE_SIZE);
2703 again:
2704 lock_page(page);
2705
2706 /*
2707 * Before we queued this fixup, we took a reference on the page.
2708 * page->mapping may go NULL, but it shouldn't be moved to a different
2709 * address space.
2710 */
2711 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2712 /*
2713 * Unfortunately this is a little tricky, either
2714 *
2715 * 1) We got here and our page had already been dealt with and
2716 * we reserved our space, thus ret == 0, so we need to just
2717 * drop our space reservation and bail. This can happen the
2718 * first time we come into the fixup worker, or could happen
2719 * while waiting for the ordered extent.
2720 * 2) Our page was already dealt with, but we happened to get an
2721 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2722 * this case we obviously don't have anything to release, but
2723 * because the page was already dealt with we don't want to
2724 * mark the page with an error, so make sure we're resetting
2725 * ret to 0. This is why we have this check _before_ the ret
2726 * check, because we do not want to have a surprise ENOSPC
2727 * when the page was already properly dealt with.
2728 */
2729 if (!ret) {
2730 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2731 btrfs_delalloc_release_space(inode, data_reserved,
2732 page_start, PAGE_SIZE,
2733 true);
2734 }
2735 ret = 0;
2736 goto out_page;
2737 }
2738
2739 /*
2740 * We can't mess with the page state unless it is locked, so now that
2741 * it is locked bail if we failed to make our space reservation.
2742 */
2743 if (ret)
2744 goto out_page;
2745
2746 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2747
2748 /* already ordered? We're done */
2749 if (PageOrdered(page))
2750 goto out_reserved;
2751
2752 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2753 if (ordered) {
2754 unlock_extent(&inode->io_tree, page_start, page_end,
2755 &cached_state);
2756 unlock_page(page);
2757 btrfs_start_ordered_extent(ordered);
2758 btrfs_put_ordered_extent(ordered);
2759 goto again;
2760 }
2761
2762 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2763 &cached_state);
2764 if (ret)
2765 goto out_reserved;
2766
2767 /*
2768 * Everything went as planned, we're now the owner of a dirty page with
2769 * delayed allocation bits set and space reserved for our COW
2770 * destination.
2771 *
2772 * The page was dirty when we started, nothing should have cleaned it.
2773 */
2774 BUG_ON(!PageDirty(page));
2775 free_delalloc_space = false;
2776 out_reserved:
2777 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2778 if (free_delalloc_space)
2779 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2780 PAGE_SIZE, true);
2781 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2782 out_page:
2783 if (ret) {
2784 /*
2785 * We hit ENOSPC or other errors. Update the mapping and page
2786 * to reflect the errors and clean the page.
2787 */
2788 mapping_set_error(page->mapping, ret);
2789 btrfs_mark_ordered_io_finished(inode, page, page_start,
2790 PAGE_SIZE, !ret);
2791 clear_page_dirty_for_io(page);
2792 }
2793 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2794 unlock_page(page);
2795 put_page(page);
2796 kfree(fixup);
2797 extent_changeset_free(data_reserved);
2798 /*
2799 * As a precaution, do a delayed iput in case it would be the last iput
2800 * that could need flushing space. Recursing back to fixup worker would
2801 * deadlock.
2802 */
2803 btrfs_add_delayed_iput(inode);
2804 }
2805
2806 /*
2807 * There are a few paths in the higher layers of the kernel that directly
2808 * set the page dirty bit without asking the filesystem if it is a
2809 * good idea. This causes problems because we want to make sure COW
2810 * properly happens and the data=ordered rules are followed.
2811 *
2812 * In our case any range that doesn't have the ORDERED bit set
2813 * hasn't been properly setup for IO. We kick off an async process
2814 * to fix it up. The async helper will wait for ordered extents, set
2815 * the delalloc bit and make it safe to write the page.
2816 */
btrfs_writepage_cow_fixup(struct page * page)2817 int btrfs_writepage_cow_fixup(struct page *page)
2818 {
2819 struct inode *inode = page->mapping->host;
2820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2821 struct btrfs_writepage_fixup *fixup;
2822
2823 /* This page has ordered extent covering it already */
2824 if (PageOrdered(page))
2825 return 0;
2826
2827 /*
2828 * PageChecked is set below when we create a fixup worker for this page,
2829 * don't try to create another one if we're already PageChecked()
2830 *
2831 * The extent_io writepage code will redirty the page if we send back
2832 * EAGAIN.
2833 */
2834 if (PageChecked(page))
2835 return -EAGAIN;
2836
2837 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2838 if (!fixup)
2839 return -EAGAIN;
2840
2841 /*
2842 * We are already holding a reference to this inode from
2843 * write_cache_pages. We need to hold it because the space reservation
2844 * takes place outside of the page lock, and we can't trust
2845 * page->mapping outside of the page lock.
2846 */
2847 ihold(inode);
2848 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2849 get_page(page);
2850 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2851 fixup->page = page;
2852 fixup->inode = BTRFS_I(inode);
2853 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2854
2855 return -EAGAIN;
2856 }
2857
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2858 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2859 struct btrfs_inode *inode, u64 file_pos,
2860 struct btrfs_file_extent_item *stack_fi,
2861 const bool update_inode_bytes,
2862 u64 qgroup_reserved)
2863 {
2864 struct btrfs_root *root = inode->root;
2865 const u64 sectorsize = root->fs_info->sectorsize;
2866 struct btrfs_path *path;
2867 struct extent_buffer *leaf;
2868 struct btrfs_key ins;
2869 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2870 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2871 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2872 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2873 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2874 struct btrfs_drop_extents_args drop_args = { 0 };
2875 int ret;
2876
2877 path = btrfs_alloc_path();
2878 if (!path)
2879 return -ENOMEM;
2880
2881 /*
2882 * we may be replacing one extent in the tree with another.
2883 * The new extent is pinned in the extent map, and we don't want
2884 * to drop it from the cache until it is completely in the btree.
2885 *
2886 * So, tell btrfs_drop_extents to leave this extent in the cache.
2887 * the caller is expected to unpin it and allow it to be merged
2888 * with the others.
2889 */
2890 drop_args.path = path;
2891 drop_args.start = file_pos;
2892 drop_args.end = file_pos + num_bytes;
2893 drop_args.replace_extent = true;
2894 drop_args.extent_item_size = sizeof(*stack_fi);
2895 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2896 if (ret)
2897 goto out;
2898
2899 if (!drop_args.extent_inserted) {
2900 ins.objectid = btrfs_ino(inode);
2901 ins.offset = file_pos;
2902 ins.type = BTRFS_EXTENT_DATA_KEY;
2903
2904 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2905 sizeof(*stack_fi));
2906 if (ret)
2907 goto out;
2908 }
2909 leaf = path->nodes[0];
2910 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2911 write_extent_buffer(leaf, stack_fi,
2912 btrfs_item_ptr_offset(leaf, path->slots[0]),
2913 sizeof(struct btrfs_file_extent_item));
2914
2915 btrfs_mark_buffer_dirty(trans, leaf);
2916 btrfs_release_path(path);
2917
2918 /*
2919 * If we dropped an inline extent here, we know the range where it is
2920 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2921 * number of bytes only for that range containing the inline extent.
2922 * The remaining of the range will be processed when clearning the
2923 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2924 */
2925 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2926 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2927
2928 inline_size = drop_args.bytes_found - inline_size;
2929 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2930 drop_args.bytes_found -= inline_size;
2931 num_bytes -= sectorsize;
2932 }
2933
2934 if (update_inode_bytes)
2935 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2936
2937 ins.objectid = disk_bytenr;
2938 ins.offset = disk_num_bytes;
2939 ins.type = BTRFS_EXTENT_ITEM_KEY;
2940
2941 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2942 if (ret)
2943 goto out;
2944
2945 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2946 file_pos - offset,
2947 qgroup_reserved, &ins);
2948 out:
2949 btrfs_free_path(path);
2950
2951 return ret;
2952 }
2953
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2954 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2955 u64 start, u64 len)
2956 {
2957 struct btrfs_block_group *cache;
2958
2959 cache = btrfs_lookup_block_group(fs_info, start);
2960 ASSERT(cache);
2961
2962 spin_lock(&cache->lock);
2963 cache->delalloc_bytes -= len;
2964 spin_unlock(&cache->lock);
2965
2966 btrfs_put_block_group(cache);
2967 }
2968
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)2969 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2970 struct btrfs_ordered_extent *oe)
2971 {
2972 struct btrfs_file_extent_item stack_fi;
2973 bool update_inode_bytes;
2974 u64 num_bytes = oe->num_bytes;
2975 u64 ram_bytes = oe->ram_bytes;
2976
2977 memset(&stack_fi, 0, sizeof(stack_fi));
2978 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2979 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2980 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2981 oe->disk_num_bytes);
2982 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2983 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2984 num_bytes = oe->truncated_len;
2985 ram_bytes = num_bytes;
2986 }
2987 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2988 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2989 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2990 /* Encryption and other encoding is reserved and all 0 */
2991
2992 /*
2993 * For delalloc, when completing an ordered extent we update the inode's
2994 * bytes when clearing the range in the inode's io tree, so pass false
2995 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2996 * except if the ordered extent was truncated.
2997 */
2998 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2999 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3000 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3001
3002 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3003 oe->file_offset, &stack_fi,
3004 update_inode_bytes, oe->qgroup_rsv);
3005 }
3006
3007 /*
3008 * As ordered data IO finishes, this gets called so we can finish
3009 * an ordered extent if the range of bytes in the file it covers are
3010 * fully written.
3011 */
btrfs_finish_one_ordered(struct btrfs_ordered_extent * ordered_extent)3012 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3013 {
3014 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3015 struct btrfs_root *root = inode->root;
3016 struct btrfs_fs_info *fs_info = root->fs_info;
3017 struct btrfs_trans_handle *trans = NULL;
3018 struct extent_io_tree *io_tree = &inode->io_tree;
3019 struct extent_state *cached_state = NULL;
3020 u64 start, end;
3021 int compress_type = 0;
3022 int ret = 0;
3023 u64 logical_len = ordered_extent->num_bytes;
3024 bool freespace_inode;
3025 bool truncated = false;
3026 bool clear_reserved_extent = true;
3027 unsigned int clear_bits = EXTENT_DEFRAG;
3028
3029 start = ordered_extent->file_offset;
3030 end = start + ordered_extent->num_bytes - 1;
3031
3032 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3033 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3034 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3035 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3036 clear_bits |= EXTENT_DELALLOC_NEW;
3037
3038 freespace_inode = btrfs_is_free_space_inode(inode);
3039 if (!freespace_inode)
3040 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3041
3042 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3043 ret = -EIO;
3044 goto out;
3045 }
3046
3047 if (btrfs_is_zoned(fs_info))
3048 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3049 ordered_extent->disk_num_bytes);
3050
3051 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3052 truncated = true;
3053 logical_len = ordered_extent->truncated_len;
3054 /* Truncated the entire extent, don't bother adding */
3055 if (!logical_len)
3056 goto out;
3057 }
3058
3059 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3060 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3061
3062 btrfs_inode_safe_disk_i_size_write(inode, 0);
3063 if (freespace_inode)
3064 trans = btrfs_join_transaction_spacecache(root);
3065 else
3066 trans = btrfs_join_transaction(root);
3067 if (IS_ERR(trans)) {
3068 ret = PTR_ERR(trans);
3069 trans = NULL;
3070 goto out;
3071 }
3072 trans->block_rsv = &inode->block_rsv;
3073 ret = btrfs_update_inode_fallback(trans, root, inode);
3074 if (ret) /* -ENOMEM or corruption */
3075 btrfs_abort_transaction(trans, ret);
3076 goto out;
3077 }
3078
3079 clear_bits |= EXTENT_LOCKED;
3080 lock_extent(io_tree, start, end, &cached_state);
3081
3082 if (freespace_inode)
3083 trans = btrfs_join_transaction_spacecache(root);
3084 else
3085 trans = btrfs_join_transaction(root);
3086 if (IS_ERR(trans)) {
3087 ret = PTR_ERR(trans);
3088 trans = NULL;
3089 goto out;
3090 }
3091
3092 trans->block_rsv = &inode->block_rsv;
3093
3094 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3095 compress_type = ordered_extent->compress_type;
3096 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3097 BUG_ON(compress_type);
3098 ret = btrfs_mark_extent_written(trans, inode,
3099 ordered_extent->file_offset,
3100 ordered_extent->file_offset +
3101 logical_len);
3102 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3103 ordered_extent->disk_num_bytes);
3104 } else {
3105 BUG_ON(root == fs_info->tree_root);
3106 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3107 if (!ret) {
3108 clear_reserved_extent = false;
3109 btrfs_release_delalloc_bytes(fs_info,
3110 ordered_extent->disk_bytenr,
3111 ordered_extent->disk_num_bytes);
3112 }
3113 }
3114 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3115 ordered_extent->num_bytes, trans->transid);
3116 if (ret < 0) {
3117 btrfs_abort_transaction(trans, ret);
3118 goto out;
3119 }
3120
3121 ret = add_pending_csums(trans, &ordered_extent->list);
3122 if (ret) {
3123 btrfs_abort_transaction(trans, ret);
3124 goto out;
3125 }
3126
3127 /*
3128 * If this is a new delalloc range, clear its new delalloc flag to
3129 * update the inode's number of bytes. This needs to be done first
3130 * before updating the inode item.
3131 */
3132 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3133 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3134 clear_extent_bit(&inode->io_tree, start, end,
3135 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3136 &cached_state);
3137
3138 btrfs_inode_safe_disk_i_size_write(inode, 0);
3139 ret = btrfs_update_inode_fallback(trans, root, inode);
3140 if (ret) { /* -ENOMEM or corruption */
3141 btrfs_abort_transaction(trans, ret);
3142 goto out;
3143 }
3144 ret = 0;
3145 out:
3146 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3147 &cached_state);
3148
3149 if (trans)
3150 btrfs_end_transaction(trans);
3151
3152 if (ret || truncated) {
3153 u64 unwritten_start = start;
3154
3155 /*
3156 * If we failed to finish this ordered extent for any reason we
3157 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3158 * extent, and mark the inode with the error if it wasn't
3159 * already set. Any error during writeback would have already
3160 * set the mapping error, so we need to set it if we're the ones
3161 * marking this ordered extent as failed.
3162 */
3163 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3164 &ordered_extent->flags))
3165 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3166
3167 if (truncated)
3168 unwritten_start += logical_len;
3169 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3170
3171 /*
3172 * Drop extent maps for the part of the extent we didn't write.
3173 *
3174 * We have an exception here for the free_space_inode, this is
3175 * because when we do btrfs_get_extent() on the free space inode
3176 * we will search the commit root. If this is a new block group
3177 * we won't find anything, and we will trip over the assert in
3178 * writepage where we do ASSERT(em->block_start !=
3179 * EXTENT_MAP_HOLE).
3180 *
3181 * Theoretically we could also skip this for any NOCOW extent as
3182 * we don't mess with the extent map tree in the NOCOW case, but
3183 * for now simply skip this if we are the free space inode.
3184 */
3185 if (!btrfs_is_free_space_inode(inode))
3186 btrfs_drop_extent_map_range(inode, unwritten_start,
3187 end, false);
3188
3189 /*
3190 * If the ordered extent had an IOERR or something else went
3191 * wrong we need to return the space for this ordered extent
3192 * back to the allocator. We only free the extent in the
3193 * truncated case if we didn't write out the extent at all.
3194 *
3195 * If we made it past insert_reserved_file_extent before we
3196 * errored out then we don't need to do this as the accounting
3197 * has already been done.
3198 */
3199 if ((ret || !logical_len) &&
3200 clear_reserved_extent &&
3201 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3202 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3203 /*
3204 * Discard the range before returning it back to the
3205 * free space pool
3206 */
3207 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3208 btrfs_discard_extent(fs_info,
3209 ordered_extent->disk_bytenr,
3210 ordered_extent->disk_num_bytes,
3211 NULL);
3212 btrfs_free_reserved_extent(fs_info,
3213 ordered_extent->disk_bytenr,
3214 ordered_extent->disk_num_bytes, 1);
3215 /*
3216 * Actually free the qgroup rsv which was released when
3217 * the ordered extent was created.
3218 */
3219 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3220 ordered_extent->qgroup_rsv,
3221 BTRFS_QGROUP_RSV_DATA);
3222 }
3223 }
3224
3225 /*
3226 * This needs to be done to make sure anybody waiting knows we are done
3227 * updating everything for this ordered extent.
3228 */
3229 btrfs_remove_ordered_extent(inode, ordered_extent);
3230
3231 /* once for us */
3232 btrfs_put_ordered_extent(ordered_extent);
3233 /* once for the tree */
3234 btrfs_put_ordered_extent(ordered_extent);
3235
3236 return ret;
3237 }
3238
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered)3239 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3240 {
3241 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3242 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3243 btrfs_finish_ordered_zoned(ordered);
3244 return btrfs_finish_one_ordered(ordered);
3245 }
3246
3247 /*
3248 * Verify the checksum for a single sector without any extra action that depend
3249 * on the type of I/O.
3250 */
btrfs_check_sector_csum(struct btrfs_fs_info * fs_info,struct page * page,u32 pgoff,u8 * csum,const u8 * const csum_expected)3251 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3252 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3253 {
3254 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3255 char *kaddr;
3256
3257 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3258
3259 shash->tfm = fs_info->csum_shash;
3260
3261 kaddr = kmap_local_page(page) + pgoff;
3262 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3263 kunmap_local(kaddr);
3264
3265 if (memcmp(csum, csum_expected, fs_info->csum_size))
3266 return -EIO;
3267 return 0;
3268 }
3269
3270 /*
3271 * Verify the checksum of a single data sector.
3272 *
3273 * @bbio: btrfs_io_bio which contains the csum
3274 * @dev: device the sector is on
3275 * @bio_offset: offset to the beginning of the bio (in bytes)
3276 * @bv: bio_vec to check
3277 *
3278 * Check if the checksum on a data block is valid. When a checksum mismatch is
3279 * detected, report the error and fill the corrupted range with zero.
3280 *
3281 * Return %true if the sector is ok or had no checksum to start with, else %false.
3282 */
btrfs_data_csum_ok(struct btrfs_bio * bbio,struct btrfs_device * dev,u32 bio_offset,struct bio_vec * bv)3283 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3284 u32 bio_offset, struct bio_vec *bv)
3285 {
3286 struct btrfs_inode *inode = bbio->inode;
3287 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3288 u64 file_offset = bbio->file_offset + bio_offset;
3289 u64 end = file_offset + bv->bv_len - 1;
3290 u8 *csum_expected;
3291 u8 csum[BTRFS_CSUM_SIZE];
3292
3293 ASSERT(bv->bv_len == fs_info->sectorsize);
3294
3295 if (!bbio->csum)
3296 return true;
3297
3298 if (btrfs_is_data_reloc_root(inode->root) &&
3299 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3300 1, NULL)) {
3301 /* Skip the range without csum for data reloc inode */
3302 clear_extent_bits(&inode->io_tree, file_offset, end,
3303 EXTENT_NODATASUM);
3304 return true;
3305 }
3306
3307 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3308 fs_info->csum_size;
3309 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3310 csum_expected))
3311 goto zeroit;
3312 return true;
3313
3314 zeroit:
3315 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3316 bbio->mirror_num);
3317 if (dev)
3318 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3319 memzero_bvec(bv);
3320 return false;
3321 }
3322
3323 /*
3324 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3325 *
3326 * @inode: The inode we want to perform iput on
3327 *
3328 * This function uses the generic vfs_inode::i_count to track whether we should
3329 * just decrement it (in case it's > 1) or if this is the last iput then link
3330 * the inode to the delayed iput machinery. Delayed iputs are processed at
3331 * transaction commit time/superblock commit/cleaner kthread.
3332 */
btrfs_add_delayed_iput(struct btrfs_inode * inode)3333 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3334 {
3335 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3336 unsigned long flags;
3337
3338 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3339 return;
3340
3341 atomic_inc(&fs_info->nr_delayed_iputs);
3342 /*
3343 * Need to be irq safe here because we can be called from either an irq
3344 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3345 * context.
3346 */
3347 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3348 ASSERT(list_empty(&inode->delayed_iput));
3349 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3350 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3351 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3352 wake_up_process(fs_info->cleaner_kthread);
3353 }
3354
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3355 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3356 struct btrfs_inode *inode)
3357 {
3358 list_del_init(&inode->delayed_iput);
3359 spin_unlock_irq(&fs_info->delayed_iput_lock);
3360 iput(&inode->vfs_inode);
3361 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3362 wake_up(&fs_info->delayed_iputs_wait);
3363 spin_lock_irq(&fs_info->delayed_iput_lock);
3364 }
3365
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3366 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3367 struct btrfs_inode *inode)
3368 {
3369 if (!list_empty(&inode->delayed_iput)) {
3370 spin_lock_irq(&fs_info->delayed_iput_lock);
3371 if (!list_empty(&inode->delayed_iput))
3372 run_delayed_iput_locked(fs_info, inode);
3373 spin_unlock_irq(&fs_info->delayed_iput_lock);
3374 }
3375 }
3376
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3377 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3378 {
3379 /*
3380 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3381 * calls btrfs_add_delayed_iput() and that needs to lock
3382 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3383 * prevent a deadlock.
3384 */
3385 spin_lock_irq(&fs_info->delayed_iput_lock);
3386 while (!list_empty(&fs_info->delayed_iputs)) {
3387 struct btrfs_inode *inode;
3388
3389 inode = list_first_entry(&fs_info->delayed_iputs,
3390 struct btrfs_inode, delayed_iput);
3391 run_delayed_iput_locked(fs_info, inode);
3392 if (need_resched()) {
3393 spin_unlock_irq(&fs_info->delayed_iput_lock);
3394 cond_resched();
3395 spin_lock_irq(&fs_info->delayed_iput_lock);
3396 }
3397 }
3398 spin_unlock_irq(&fs_info->delayed_iput_lock);
3399 }
3400
3401 /*
3402 * Wait for flushing all delayed iputs
3403 *
3404 * @fs_info: the filesystem
3405 *
3406 * This will wait on any delayed iputs that are currently running with KILLABLE
3407 * set. Once they are all done running we will return, unless we are killed in
3408 * which case we return EINTR. This helps in user operations like fallocate etc
3409 * that might get blocked on the iputs.
3410 *
3411 * Return EINTR if we were killed, 0 if nothing's pending
3412 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3413 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3414 {
3415 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3416 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3417 if (ret)
3418 return -EINTR;
3419 return 0;
3420 }
3421
3422 /*
3423 * This creates an orphan entry for the given inode in case something goes wrong
3424 * in the middle of an unlink.
3425 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3426 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3427 struct btrfs_inode *inode)
3428 {
3429 int ret;
3430
3431 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3432 if (ret && ret != -EEXIST) {
3433 btrfs_abort_transaction(trans, ret);
3434 return ret;
3435 }
3436
3437 return 0;
3438 }
3439
3440 /*
3441 * We have done the delete so we can go ahead and remove the orphan item for
3442 * this particular inode.
3443 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3444 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3445 struct btrfs_inode *inode)
3446 {
3447 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3448 }
3449
3450 /*
3451 * this cleans up any orphans that may be left on the list from the last use
3452 * of this root.
3453 */
btrfs_orphan_cleanup(struct btrfs_root * root)3454 int btrfs_orphan_cleanup(struct btrfs_root *root)
3455 {
3456 struct btrfs_fs_info *fs_info = root->fs_info;
3457 struct btrfs_path *path;
3458 struct extent_buffer *leaf;
3459 struct btrfs_key key, found_key;
3460 struct btrfs_trans_handle *trans;
3461 struct inode *inode;
3462 u64 last_objectid = 0;
3463 int ret = 0, nr_unlink = 0;
3464
3465 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3466 return 0;
3467
3468 path = btrfs_alloc_path();
3469 if (!path) {
3470 ret = -ENOMEM;
3471 goto out;
3472 }
3473 path->reada = READA_BACK;
3474
3475 key.objectid = BTRFS_ORPHAN_OBJECTID;
3476 key.type = BTRFS_ORPHAN_ITEM_KEY;
3477 key.offset = (u64)-1;
3478
3479 while (1) {
3480 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3481 if (ret < 0)
3482 goto out;
3483
3484 /*
3485 * if ret == 0 means we found what we were searching for, which
3486 * is weird, but possible, so only screw with path if we didn't
3487 * find the key and see if we have stuff that matches
3488 */
3489 if (ret > 0) {
3490 ret = 0;
3491 if (path->slots[0] == 0)
3492 break;
3493 path->slots[0]--;
3494 }
3495
3496 /* pull out the item */
3497 leaf = path->nodes[0];
3498 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3499
3500 /* make sure the item matches what we want */
3501 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3502 break;
3503 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3504 break;
3505
3506 /* release the path since we're done with it */
3507 btrfs_release_path(path);
3508
3509 /*
3510 * this is where we are basically btrfs_lookup, without the
3511 * crossing root thing. we store the inode number in the
3512 * offset of the orphan item.
3513 */
3514
3515 if (found_key.offset == last_objectid) {
3516 /*
3517 * We found the same inode as before. This means we were
3518 * not able to remove its items via eviction triggered
3519 * by an iput(). A transaction abort may have happened,
3520 * due to -ENOSPC for example, so try to grab the error
3521 * that lead to a transaction abort, if any.
3522 */
3523 btrfs_err(fs_info,
3524 "Error removing orphan entry, stopping orphan cleanup");
3525 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3526 goto out;
3527 }
3528
3529 last_objectid = found_key.offset;
3530
3531 found_key.objectid = found_key.offset;
3532 found_key.type = BTRFS_INODE_ITEM_KEY;
3533 found_key.offset = 0;
3534 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3535 if (IS_ERR(inode)) {
3536 ret = PTR_ERR(inode);
3537 inode = NULL;
3538 if (ret != -ENOENT)
3539 goto out;
3540 }
3541
3542 if (!inode && root == fs_info->tree_root) {
3543 struct btrfs_root *dead_root;
3544 int is_dead_root = 0;
3545
3546 /*
3547 * This is an orphan in the tree root. Currently these
3548 * could come from 2 sources:
3549 * a) a root (snapshot/subvolume) deletion in progress
3550 * b) a free space cache inode
3551 * We need to distinguish those two, as the orphan item
3552 * for a root must not get deleted before the deletion
3553 * of the snapshot/subvolume's tree completes.
3554 *
3555 * btrfs_find_orphan_roots() ran before us, which has
3556 * found all deleted roots and loaded them into
3557 * fs_info->fs_roots_radix. So here we can find if an
3558 * orphan item corresponds to a deleted root by looking
3559 * up the root from that radix tree.
3560 */
3561
3562 spin_lock(&fs_info->fs_roots_radix_lock);
3563 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3564 (unsigned long)found_key.objectid);
3565 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3566 is_dead_root = 1;
3567 spin_unlock(&fs_info->fs_roots_radix_lock);
3568
3569 if (is_dead_root) {
3570 /* prevent this orphan from being found again */
3571 key.offset = found_key.objectid - 1;
3572 continue;
3573 }
3574
3575 }
3576
3577 /*
3578 * If we have an inode with links, there are a couple of
3579 * possibilities:
3580 *
3581 * 1. We were halfway through creating fsverity metadata for the
3582 * file. In that case, the orphan item represents incomplete
3583 * fsverity metadata which must be cleaned up with
3584 * btrfs_drop_verity_items and deleting the orphan item.
3585
3586 * 2. Old kernels (before v3.12) used to create an
3587 * orphan item for truncate indicating that there were possibly
3588 * extent items past i_size that needed to be deleted. In v3.12,
3589 * truncate was changed to update i_size in sync with the extent
3590 * items, but the (useless) orphan item was still created. Since
3591 * v4.18, we don't create the orphan item for truncate at all.
3592 *
3593 * So, this item could mean that we need to do a truncate, but
3594 * only if this filesystem was last used on a pre-v3.12 kernel
3595 * and was not cleanly unmounted. The odds of that are quite
3596 * slim, and it's a pain to do the truncate now, so just delete
3597 * the orphan item.
3598 *
3599 * It's also possible that this orphan item was supposed to be
3600 * deleted but wasn't. The inode number may have been reused,
3601 * but either way, we can delete the orphan item.
3602 */
3603 if (!inode || inode->i_nlink) {
3604 if (inode) {
3605 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3606 iput(inode);
3607 inode = NULL;
3608 if (ret)
3609 goto out;
3610 }
3611 trans = btrfs_start_transaction(root, 1);
3612 if (IS_ERR(trans)) {
3613 ret = PTR_ERR(trans);
3614 goto out;
3615 }
3616 btrfs_debug(fs_info, "auto deleting %Lu",
3617 found_key.objectid);
3618 ret = btrfs_del_orphan_item(trans, root,
3619 found_key.objectid);
3620 btrfs_end_transaction(trans);
3621 if (ret)
3622 goto out;
3623 continue;
3624 }
3625
3626 nr_unlink++;
3627
3628 /* this will do delete_inode and everything for us */
3629 iput(inode);
3630 }
3631 /* release the path since we're done with it */
3632 btrfs_release_path(path);
3633
3634 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3635 trans = btrfs_join_transaction(root);
3636 if (!IS_ERR(trans))
3637 btrfs_end_transaction(trans);
3638 }
3639
3640 if (nr_unlink)
3641 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3642
3643 out:
3644 if (ret)
3645 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3646 btrfs_free_path(path);
3647 return ret;
3648 }
3649
3650 /*
3651 * very simple check to peek ahead in the leaf looking for xattrs. If we
3652 * don't find any xattrs, we know there can't be any acls.
3653 *
3654 * slot is the slot the inode is in, objectid is the objectid of the inode
3655 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3656 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3657 int slot, u64 objectid,
3658 int *first_xattr_slot)
3659 {
3660 u32 nritems = btrfs_header_nritems(leaf);
3661 struct btrfs_key found_key;
3662 static u64 xattr_access = 0;
3663 static u64 xattr_default = 0;
3664 int scanned = 0;
3665
3666 if (!xattr_access) {
3667 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3668 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3669 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3670 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3671 }
3672
3673 slot++;
3674 *first_xattr_slot = -1;
3675 while (slot < nritems) {
3676 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3677
3678 /* we found a different objectid, there must not be acls */
3679 if (found_key.objectid != objectid)
3680 return 0;
3681
3682 /* we found an xattr, assume we've got an acl */
3683 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3684 if (*first_xattr_slot == -1)
3685 *first_xattr_slot = slot;
3686 if (found_key.offset == xattr_access ||
3687 found_key.offset == xattr_default)
3688 return 1;
3689 }
3690
3691 /*
3692 * we found a key greater than an xattr key, there can't
3693 * be any acls later on
3694 */
3695 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3696 return 0;
3697
3698 slot++;
3699 scanned++;
3700
3701 /*
3702 * it goes inode, inode backrefs, xattrs, extents,
3703 * so if there are a ton of hard links to an inode there can
3704 * be a lot of backrefs. Don't waste time searching too hard,
3705 * this is just an optimization
3706 */
3707 if (scanned >= 8)
3708 break;
3709 }
3710 /* we hit the end of the leaf before we found an xattr or
3711 * something larger than an xattr. We have to assume the inode
3712 * has acls
3713 */
3714 if (*first_xattr_slot == -1)
3715 *first_xattr_slot = slot;
3716 return 1;
3717 }
3718
3719 /*
3720 * read an inode from the btree into the in-memory inode
3721 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3722 static int btrfs_read_locked_inode(struct inode *inode,
3723 struct btrfs_path *in_path)
3724 {
3725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3726 struct btrfs_path *path = in_path;
3727 struct extent_buffer *leaf;
3728 struct btrfs_inode_item *inode_item;
3729 struct btrfs_root *root = BTRFS_I(inode)->root;
3730 struct btrfs_key location;
3731 unsigned long ptr;
3732 int maybe_acls;
3733 u32 rdev;
3734 int ret;
3735 bool filled = false;
3736 int first_xattr_slot;
3737
3738 ret = btrfs_fill_inode(inode, &rdev);
3739 if (!ret)
3740 filled = true;
3741
3742 if (!path) {
3743 path = btrfs_alloc_path();
3744 if (!path)
3745 return -ENOMEM;
3746 }
3747
3748 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3749
3750 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3751 if (ret) {
3752 if (path != in_path)
3753 btrfs_free_path(path);
3754 return ret;
3755 }
3756
3757 leaf = path->nodes[0];
3758
3759 if (filled)
3760 goto cache_index;
3761
3762 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3763 struct btrfs_inode_item);
3764 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3765 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3766 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3767 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3768 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3769 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3770 round_up(i_size_read(inode), fs_info->sectorsize));
3771
3772 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3773 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3774
3775 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3776 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3777
3778 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3779 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3780
3781 BTRFS_I(inode)->i_otime.tv_sec =
3782 btrfs_timespec_sec(leaf, &inode_item->otime);
3783 BTRFS_I(inode)->i_otime.tv_nsec =
3784 btrfs_timespec_nsec(leaf, &inode_item->otime);
3785
3786 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3787 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3788 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3789
3790 inode_set_iversion_queried(inode,
3791 btrfs_inode_sequence(leaf, inode_item));
3792 inode->i_generation = BTRFS_I(inode)->generation;
3793 inode->i_rdev = 0;
3794 rdev = btrfs_inode_rdev(leaf, inode_item);
3795
3796 BTRFS_I(inode)->index_cnt = (u64)-1;
3797 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3798 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3799
3800 cache_index:
3801 /*
3802 * If we were modified in the current generation and evicted from memory
3803 * and then re-read we need to do a full sync since we don't have any
3804 * idea about which extents were modified before we were evicted from
3805 * cache.
3806 *
3807 * This is required for both inode re-read from disk and delayed inode
3808 * in delayed_nodes_tree.
3809 */
3810 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3811 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3812 &BTRFS_I(inode)->runtime_flags);
3813
3814 /*
3815 * We don't persist the id of the transaction where an unlink operation
3816 * against the inode was last made. So here we assume the inode might
3817 * have been evicted, and therefore the exact value of last_unlink_trans
3818 * lost, and set it to last_trans to avoid metadata inconsistencies
3819 * between the inode and its parent if the inode is fsync'ed and the log
3820 * replayed. For example, in the scenario:
3821 *
3822 * touch mydir/foo
3823 * ln mydir/foo mydir/bar
3824 * sync
3825 * unlink mydir/bar
3826 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3827 * xfs_io -c fsync mydir/foo
3828 * <power failure>
3829 * mount fs, triggers fsync log replay
3830 *
3831 * We must make sure that when we fsync our inode foo we also log its
3832 * parent inode, otherwise after log replay the parent still has the
3833 * dentry with the "bar" name but our inode foo has a link count of 1
3834 * and doesn't have an inode ref with the name "bar" anymore.
3835 *
3836 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3837 * but it guarantees correctness at the expense of occasional full
3838 * transaction commits on fsync if our inode is a directory, or if our
3839 * inode is not a directory, logging its parent unnecessarily.
3840 */
3841 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3842
3843 /*
3844 * Same logic as for last_unlink_trans. We don't persist the generation
3845 * of the last transaction where this inode was used for a reflink
3846 * operation, so after eviction and reloading the inode we must be
3847 * pessimistic and assume the last transaction that modified the inode.
3848 */
3849 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3850
3851 path->slots[0]++;
3852 if (inode->i_nlink != 1 ||
3853 path->slots[0] >= btrfs_header_nritems(leaf))
3854 goto cache_acl;
3855
3856 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3857 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3858 goto cache_acl;
3859
3860 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3861 if (location.type == BTRFS_INODE_REF_KEY) {
3862 struct btrfs_inode_ref *ref;
3863
3864 ref = (struct btrfs_inode_ref *)ptr;
3865 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3866 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3867 struct btrfs_inode_extref *extref;
3868
3869 extref = (struct btrfs_inode_extref *)ptr;
3870 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3871 extref);
3872 }
3873 cache_acl:
3874 /*
3875 * try to precache a NULL acl entry for files that don't have
3876 * any xattrs or acls
3877 */
3878 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3879 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3880 if (first_xattr_slot != -1) {
3881 path->slots[0] = first_xattr_slot;
3882 ret = btrfs_load_inode_props(inode, path);
3883 if (ret)
3884 btrfs_err(fs_info,
3885 "error loading props for ino %llu (root %llu): %d",
3886 btrfs_ino(BTRFS_I(inode)),
3887 root->root_key.objectid, ret);
3888 }
3889 if (path != in_path)
3890 btrfs_free_path(path);
3891
3892 if (!maybe_acls)
3893 cache_no_acl(inode);
3894
3895 switch (inode->i_mode & S_IFMT) {
3896 case S_IFREG:
3897 inode->i_mapping->a_ops = &btrfs_aops;
3898 inode->i_fop = &btrfs_file_operations;
3899 inode->i_op = &btrfs_file_inode_operations;
3900 break;
3901 case S_IFDIR:
3902 inode->i_fop = &btrfs_dir_file_operations;
3903 inode->i_op = &btrfs_dir_inode_operations;
3904 break;
3905 case S_IFLNK:
3906 inode->i_op = &btrfs_symlink_inode_operations;
3907 inode_nohighmem(inode);
3908 inode->i_mapping->a_ops = &btrfs_aops;
3909 break;
3910 default:
3911 inode->i_op = &btrfs_special_inode_operations;
3912 init_special_inode(inode, inode->i_mode, rdev);
3913 break;
3914 }
3915
3916 btrfs_sync_inode_flags_to_i_flags(inode);
3917 return 0;
3918 }
3919
3920 /*
3921 * given a leaf and an inode, copy the inode fields into the leaf
3922 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3923 static void fill_inode_item(struct btrfs_trans_handle *trans,
3924 struct extent_buffer *leaf,
3925 struct btrfs_inode_item *item,
3926 struct inode *inode)
3927 {
3928 struct btrfs_map_token token;
3929 u64 flags;
3930
3931 btrfs_init_map_token(&token, leaf);
3932
3933 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3934 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3935 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3936 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3937 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3938
3939 btrfs_set_token_timespec_sec(&token, &item->atime,
3940 inode->i_atime.tv_sec);
3941 btrfs_set_token_timespec_nsec(&token, &item->atime,
3942 inode->i_atime.tv_nsec);
3943
3944 btrfs_set_token_timespec_sec(&token, &item->mtime,
3945 inode->i_mtime.tv_sec);
3946 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3947 inode->i_mtime.tv_nsec);
3948
3949 btrfs_set_token_timespec_sec(&token, &item->ctime,
3950 inode_get_ctime(inode).tv_sec);
3951 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3952 inode_get_ctime(inode).tv_nsec);
3953
3954 btrfs_set_token_timespec_sec(&token, &item->otime,
3955 BTRFS_I(inode)->i_otime.tv_sec);
3956 btrfs_set_token_timespec_nsec(&token, &item->otime,
3957 BTRFS_I(inode)->i_otime.tv_nsec);
3958
3959 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3960 btrfs_set_token_inode_generation(&token, item,
3961 BTRFS_I(inode)->generation);
3962 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3963 btrfs_set_token_inode_transid(&token, item, trans->transid);
3964 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3965 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3966 BTRFS_I(inode)->ro_flags);
3967 btrfs_set_token_inode_flags(&token, item, flags);
3968 btrfs_set_token_inode_block_group(&token, item, 0);
3969 }
3970
3971 /*
3972 * copy everything in the in-memory inode into the btree.
3973 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)3974 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3975 struct btrfs_root *root,
3976 struct btrfs_inode *inode)
3977 {
3978 struct btrfs_inode_item *inode_item;
3979 struct btrfs_path *path;
3980 struct extent_buffer *leaf;
3981 int ret;
3982
3983 path = btrfs_alloc_path();
3984 if (!path)
3985 return -ENOMEM;
3986
3987 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3988 if (ret) {
3989 if (ret > 0)
3990 ret = -ENOENT;
3991 goto failed;
3992 }
3993
3994 leaf = path->nodes[0];
3995 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3996 struct btrfs_inode_item);
3997
3998 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3999 btrfs_mark_buffer_dirty(trans, leaf);
4000 btrfs_set_inode_last_trans(trans, inode);
4001 ret = 0;
4002 failed:
4003 btrfs_free_path(path);
4004 return ret;
4005 }
4006
4007 /*
4008 * copy everything in the in-memory inode into the btree.
4009 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)4010 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4011 struct btrfs_root *root,
4012 struct btrfs_inode *inode)
4013 {
4014 struct btrfs_fs_info *fs_info = root->fs_info;
4015 int ret;
4016
4017 /*
4018 * If the inode is a free space inode, we can deadlock during commit
4019 * if we put it into the delayed code.
4020 *
4021 * The data relocation inode should also be directly updated
4022 * without delay
4023 */
4024 if (!btrfs_is_free_space_inode(inode)
4025 && !btrfs_is_data_reloc_root(root)
4026 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4027 btrfs_update_root_times(trans, root);
4028
4029 ret = btrfs_delayed_update_inode(trans, root, inode);
4030 if (!ret)
4031 btrfs_set_inode_last_trans(trans, inode);
4032 return ret;
4033 }
4034
4035 return btrfs_update_inode_item(trans, root, inode);
4036 }
4037
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)4038 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4039 struct btrfs_root *root, struct btrfs_inode *inode)
4040 {
4041 int ret;
4042
4043 ret = btrfs_update_inode(trans, root, inode);
4044 if (ret == -ENOSPC)
4045 return btrfs_update_inode_item(trans, root, inode);
4046 return ret;
4047 }
4048
4049 /*
4050 * unlink helper that gets used here in inode.c and in the tree logging
4051 * recovery code. It remove a link in a directory with a given name, and
4052 * also drops the back refs in the inode to the directory
4053 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name,struct btrfs_rename_ctx * rename_ctx)4054 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4055 struct btrfs_inode *dir,
4056 struct btrfs_inode *inode,
4057 const struct fscrypt_str *name,
4058 struct btrfs_rename_ctx *rename_ctx)
4059 {
4060 struct btrfs_root *root = dir->root;
4061 struct btrfs_fs_info *fs_info = root->fs_info;
4062 struct btrfs_path *path;
4063 int ret = 0;
4064 struct btrfs_dir_item *di;
4065 u64 index;
4066 u64 ino = btrfs_ino(inode);
4067 u64 dir_ino = btrfs_ino(dir);
4068
4069 path = btrfs_alloc_path();
4070 if (!path) {
4071 ret = -ENOMEM;
4072 goto out;
4073 }
4074
4075 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4076 if (IS_ERR_OR_NULL(di)) {
4077 ret = di ? PTR_ERR(di) : -ENOENT;
4078 goto err;
4079 }
4080 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4081 if (ret)
4082 goto err;
4083 btrfs_release_path(path);
4084
4085 /*
4086 * If we don't have dir index, we have to get it by looking up
4087 * the inode ref, since we get the inode ref, remove it directly,
4088 * it is unnecessary to do delayed deletion.
4089 *
4090 * But if we have dir index, needn't search inode ref to get it.
4091 * Since the inode ref is close to the inode item, it is better
4092 * that we delay to delete it, and just do this deletion when
4093 * we update the inode item.
4094 */
4095 if (inode->dir_index) {
4096 ret = btrfs_delayed_delete_inode_ref(inode);
4097 if (!ret) {
4098 index = inode->dir_index;
4099 goto skip_backref;
4100 }
4101 }
4102
4103 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4104 if (ret) {
4105 btrfs_info(fs_info,
4106 "failed to delete reference to %.*s, inode %llu parent %llu",
4107 name->len, name->name, ino, dir_ino);
4108 btrfs_abort_transaction(trans, ret);
4109 goto err;
4110 }
4111 skip_backref:
4112 if (rename_ctx)
4113 rename_ctx->index = index;
4114
4115 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4116 if (ret) {
4117 btrfs_abort_transaction(trans, ret);
4118 goto err;
4119 }
4120
4121 /*
4122 * If we are in a rename context, we don't need to update anything in the
4123 * log. That will be done later during the rename by btrfs_log_new_name().
4124 * Besides that, doing it here would only cause extra unnecessary btree
4125 * operations on the log tree, increasing latency for applications.
4126 */
4127 if (!rename_ctx) {
4128 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4129 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4130 }
4131
4132 /*
4133 * If we have a pending delayed iput we could end up with the final iput
4134 * being run in btrfs-cleaner context. If we have enough of these built
4135 * up we can end up burning a lot of time in btrfs-cleaner without any
4136 * way to throttle the unlinks. Since we're currently holding a ref on
4137 * the inode we can run the delayed iput here without any issues as the
4138 * final iput won't be done until after we drop the ref we're currently
4139 * holding.
4140 */
4141 btrfs_run_delayed_iput(fs_info, inode);
4142 err:
4143 btrfs_free_path(path);
4144 if (ret)
4145 goto out;
4146
4147 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4148 inode_inc_iversion(&inode->vfs_inode);
4149 inode_inc_iversion(&dir->vfs_inode);
4150 inode_set_ctime_current(&inode->vfs_inode);
4151 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4152 ret = btrfs_update_inode(trans, root, dir);
4153 out:
4154 return ret;
4155 }
4156
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)4157 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4158 struct btrfs_inode *dir, struct btrfs_inode *inode,
4159 const struct fscrypt_str *name)
4160 {
4161 int ret;
4162
4163 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4164 if (!ret) {
4165 drop_nlink(&inode->vfs_inode);
4166 ret = btrfs_update_inode(trans, inode->root, inode);
4167 }
4168 return ret;
4169 }
4170
4171 /*
4172 * helper to start transaction for unlink and rmdir.
4173 *
4174 * unlink and rmdir are special in btrfs, they do not always free space, so
4175 * if we cannot make our reservations the normal way try and see if there is
4176 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4177 * allow the unlink to occur.
4178 */
__unlink_start_trans(struct btrfs_inode * dir)4179 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4180 {
4181 struct btrfs_root *root = dir->root;
4182
4183 return btrfs_start_transaction_fallback_global_rsv(root,
4184 BTRFS_UNLINK_METADATA_UNITS);
4185 }
4186
btrfs_unlink(struct inode * dir,struct dentry * dentry)4187 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4188 {
4189 struct btrfs_trans_handle *trans;
4190 struct inode *inode = d_inode(dentry);
4191 int ret;
4192 struct fscrypt_name fname;
4193
4194 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4195 if (ret)
4196 return ret;
4197
4198 /* This needs to handle no-key deletions later on */
4199
4200 trans = __unlink_start_trans(BTRFS_I(dir));
4201 if (IS_ERR(trans)) {
4202 ret = PTR_ERR(trans);
4203 goto fscrypt_free;
4204 }
4205
4206 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4207 false);
4208
4209 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4210 &fname.disk_name);
4211 if (ret)
4212 goto end_trans;
4213
4214 if (inode->i_nlink == 0) {
4215 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4216 if (ret)
4217 goto end_trans;
4218 }
4219
4220 end_trans:
4221 btrfs_end_transaction(trans);
4222 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4223 fscrypt_free:
4224 fscrypt_free_filename(&fname);
4225 return ret;
4226 }
4227
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry)4228 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4229 struct btrfs_inode *dir, struct dentry *dentry)
4230 {
4231 struct btrfs_root *root = dir->root;
4232 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4233 struct btrfs_path *path;
4234 struct extent_buffer *leaf;
4235 struct btrfs_dir_item *di;
4236 struct btrfs_key key;
4237 u64 index;
4238 int ret;
4239 u64 objectid;
4240 u64 dir_ino = btrfs_ino(dir);
4241 struct fscrypt_name fname;
4242
4243 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4244 if (ret)
4245 return ret;
4246
4247 /* This needs to handle no-key deletions later on */
4248
4249 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4250 objectid = inode->root->root_key.objectid;
4251 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4252 objectid = inode->location.objectid;
4253 } else {
4254 WARN_ON(1);
4255 fscrypt_free_filename(&fname);
4256 return -EINVAL;
4257 }
4258
4259 path = btrfs_alloc_path();
4260 if (!path) {
4261 ret = -ENOMEM;
4262 goto out;
4263 }
4264
4265 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4266 &fname.disk_name, -1);
4267 if (IS_ERR_OR_NULL(di)) {
4268 ret = di ? PTR_ERR(di) : -ENOENT;
4269 goto out;
4270 }
4271
4272 leaf = path->nodes[0];
4273 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4274 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4275 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4276 if (ret) {
4277 btrfs_abort_transaction(trans, ret);
4278 goto out;
4279 }
4280 btrfs_release_path(path);
4281
4282 /*
4283 * This is a placeholder inode for a subvolume we didn't have a
4284 * reference to at the time of the snapshot creation. In the meantime
4285 * we could have renamed the real subvol link into our snapshot, so
4286 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4287 * Instead simply lookup the dir_index_item for this entry so we can
4288 * remove it. Otherwise we know we have a ref to the root and we can
4289 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4290 */
4291 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4292 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4293 if (IS_ERR_OR_NULL(di)) {
4294 if (!di)
4295 ret = -ENOENT;
4296 else
4297 ret = PTR_ERR(di);
4298 btrfs_abort_transaction(trans, ret);
4299 goto out;
4300 }
4301
4302 leaf = path->nodes[0];
4303 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4304 index = key.offset;
4305 btrfs_release_path(path);
4306 } else {
4307 ret = btrfs_del_root_ref(trans, objectid,
4308 root->root_key.objectid, dir_ino,
4309 &index, &fname.disk_name);
4310 if (ret) {
4311 btrfs_abort_transaction(trans, ret);
4312 goto out;
4313 }
4314 }
4315
4316 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4317 if (ret) {
4318 btrfs_abort_transaction(trans, ret);
4319 goto out;
4320 }
4321
4322 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4323 inode_inc_iversion(&dir->vfs_inode);
4324 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4325 ret = btrfs_update_inode_fallback(trans, root, dir);
4326 if (ret)
4327 btrfs_abort_transaction(trans, ret);
4328 out:
4329 btrfs_free_path(path);
4330 fscrypt_free_filename(&fname);
4331 return ret;
4332 }
4333
4334 /*
4335 * Helper to check if the subvolume references other subvolumes or if it's
4336 * default.
4337 */
may_destroy_subvol(struct btrfs_root * root)4338 static noinline int may_destroy_subvol(struct btrfs_root *root)
4339 {
4340 struct btrfs_fs_info *fs_info = root->fs_info;
4341 struct btrfs_path *path;
4342 struct btrfs_dir_item *di;
4343 struct btrfs_key key;
4344 struct fscrypt_str name = FSTR_INIT("default", 7);
4345 u64 dir_id;
4346 int ret;
4347
4348 path = btrfs_alloc_path();
4349 if (!path)
4350 return -ENOMEM;
4351
4352 /* Make sure this root isn't set as the default subvol */
4353 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4354 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4355 dir_id, &name, 0);
4356 if (di && !IS_ERR(di)) {
4357 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4358 if (key.objectid == root->root_key.objectid) {
4359 ret = -EPERM;
4360 btrfs_err(fs_info,
4361 "deleting default subvolume %llu is not allowed",
4362 key.objectid);
4363 goto out;
4364 }
4365 btrfs_release_path(path);
4366 }
4367
4368 key.objectid = root->root_key.objectid;
4369 key.type = BTRFS_ROOT_REF_KEY;
4370 key.offset = (u64)-1;
4371
4372 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4373 if (ret < 0)
4374 goto out;
4375 BUG_ON(ret == 0);
4376
4377 ret = 0;
4378 if (path->slots[0] > 0) {
4379 path->slots[0]--;
4380 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4381 if (key.objectid == root->root_key.objectid &&
4382 key.type == BTRFS_ROOT_REF_KEY)
4383 ret = -ENOTEMPTY;
4384 }
4385 out:
4386 btrfs_free_path(path);
4387 return ret;
4388 }
4389
4390 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4391 static void btrfs_prune_dentries(struct btrfs_root *root)
4392 {
4393 struct btrfs_fs_info *fs_info = root->fs_info;
4394 struct rb_node *node;
4395 struct rb_node *prev;
4396 struct btrfs_inode *entry;
4397 struct inode *inode;
4398 u64 objectid = 0;
4399
4400 if (!BTRFS_FS_ERROR(fs_info))
4401 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4402
4403 spin_lock(&root->inode_lock);
4404 again:
4405 node = root->inode_tree.rb_node;
4406 prev = NULL;
4407 while (node) {
4408 prev = node;
4409 entry = rb_entry(node, struct btrfs_inode, rb_node);
4410
4411 if (objectid < btrfs_ino(entry))
4412 node = node->rb_left;
4413 else if (objectid > btrfs_ino(entry))
4414 node = node->rb_right;
4415 else
4416 break;
4417 }
4418 if (!node) {
4419 while (prev) {
4420 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4421 if (objectid <= btrfs_ino(entry)) {
4422 node = prev;
4423 break;
4424 }
4425 prev = rb_next(prev);
4426 }
4427 }
4428 while (node) {
4429 entry = rb_entry(node, struct btrfs_inode, rb_node);
4430 objectid = btrfs_ino(entry) + 1;
4431 inode = igrab(&entry->vfs_inode);
4432 if (inode) {
4433 spin_unlock(&root->inode_lock);
4434 if (atomic_read(&inode->i_count) > 1)
4435 d_prune_aliases(inode);
4436 /*
4437 * btrfs_drop_inode will have it removed from the inode
4438 * cache when its usage count hits zero.
4439 */
4440 iput(inode);
4441 cond_resched();
4442 spin_lock(&root->inode_lock);
4443 goto again;
4444 }
4445
4446 if (cond_resched_lock(&root->inode_lock))
4447 goto again;
4448
4449 node = rb_next(node);
4450 }
4451 spin_unlock(&root->inode_lock);
4452 }
4453
btrfs_delete_subvolume(struct btrfs_inode * dir,struct dentry * dentry)4454 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4455 {
4456 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4457 struct btrfs_root *root = dir->root;
4458 struct inode *inode = d_inode(dentry);
4459 struct btrfs_root *dest = BTRFS_I(inode)->root;
4460 struct btrfs_trans_handle *trans;
4461 struct btrfs_block_rsv block_rsv;
4462 u64 root_flags;
4463 int ret;
4464
4465 down_write(&fs_info->subvol_sem);
4466
4467 /*
4468 * Don't allow to delete a subvolume with send in progress. This is
4469 * inside the inode lock so the error handling that has to drop the bit
4470 * again is not run concurrently.
4471 */
4472 spin_lock(&dest->root_item_lock);
4473 if (dest->send_in_progress) {
4474 spin_unlock(&dest->root_item_lock);
4475 btrfs_warn(fs_info,
4476 "attempt to delete subvolume %llu during send",
4477 dest->root_key.objectid);
4478 ret = -EPERM;
4479 goto out_up_write;
4480 }
4481 if (atomic_read(&dest->nr_swapfiles)) {
4482 spin_unlock(&dest->root_item_lock);
4483 btrfs_warn(fs_info,
4484 "attempt to delete subvolume %llu with active swapfile",
4485 root->root_key.objectid);
4486 ret = -EPERM;
4487 goto out_up_write;
4488 }
4489 root_flags = btrfs_root_flags(&dest->root_item);
4490 btrfs_set_root_flags(&dest->root_item,
4491 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4492 spin_unlock(&dest->root_item_lock);
4493
4494 ret = may_destroy_subvol(dest);
4495 if (ret)
4496 goto out_undead;
4497
4498 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4499 /*
4500 * One for dir inode,
4501 * two for dir entries,
4502 * two for root ref/backref.
4503 */
4504 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4505 if (ret)
4506 goto out_undead;
4507
4508 trans = btrfs_start_transaction(root, 0);
4509 if (IS_ERR(trans)) {
4510 ret = PTR_ERR(trans);
4511 goto out_release;
4512 }
4513 trans->block_rsv = &block_rsv;
4514 trans->bytes_reserved = block_rsv.size;
4515
4516 btrfs_record_snapshot_destroy(trans, dir);
4517
4518 ret = btrfs_unlink_subvol(trans, dir, dentry);
4519 if (ret) {
4520 btrfs_abort_transaction(trans, ret);
4521 goto out_end_trans;
4522 }
4523
4524 ret = btrfs_record_root_in_trans(trans, dest);
4525 if (ret) {
4526 btrfs_abort_transaction(trans, ret);
4527 goto out_end_trans;
4528 }
4529
4530 memset(&dest->root_item.drop_progress, 0,
4531 sizeof(dest->root_item.drop_progress));
4532 btrfs_set_root_drop_level(&dest->root_item, 0);
4533 btrfs_set_root_refs(&dest->root_item, 0);
4534
4535 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4536 ret = btrfs_insert_orphan_item(trans,
4537 fs_info->tree_root,
4538 dest->root_key.objectid);
4539 if (ret) {
4540 btrfs_abort_transaction(trans, ret);
4541 goto out_end_trans;
4542 }
4543 }
4544
4545 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4546 BTRFS_UUID_KEY_SUBVOL,
4547 dest->root_key.objectid);
4548 if (ret && ret != -ENOENT) {
4549 btrfs_abort_transaction(trans, ret);
4550 goto out_end_trans;
4551 }
4552 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4553 ret = btrfs_uuid_tree_remove(trans,
4554 dest->root_item.received_uuid,
4555 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4556 dest->root_key.objectid);
4557 if (ret && ret != -ENOENT) {
4558 btrfs_abort_transaction(trans, ret);
4559 goto out_end_trans;
4560 }
4561 }
4562
4563 free_anon_bdev(dest->anon_dev);
4564 dest->anon_dev = 0;
4565 out_end_trans:
4566 trans->block_rsv = NULL;
4567 trans->bytes_reserved = 0;
4568 ret = btrfs_end_transaction(trans);
4569 inode->i_flags |= S_DEAD;
4570 out_release:
4571 btrfs_subvolume_release_metadata(root, &block_rsv);
4572 out_undead:
4573 if (ret) {
4574 spin_lock(&dest->root_item_lock);
4575 root_flags = btrfs_root_flags(&dest->root_item);
4576 btrfs_set_root_flags(&dest->root_item,
4577 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4578 spin_unlock(&dest->root_item_lock);
4579 }
4580 out_up_write:
4581 up_write(&fs_info->subvol_sem);
4582 if (!ret) {
4583 d_invalidate(dentry);
4584 btrfs_prune_dentries(dest);
4585 ASSERT(dest->send_in_progress == 0);
4586 }
4587
4588 return ret;
4589 }
4590
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4591 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4592 {
4593 struct inode *inode = d_inode(dentry);
4594 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4595 int err = 0;
4596 struct btrfs_trans_handle *trans;
4597 u64 last_unlink_trans;
4598 struct fscrypt_name fname;
4599
4600 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4601 return -ENOTEMPTY;
4602 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4603 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4604 btrfs_err(fs_info,
4605 "extent tree v2 doesn't support snapshot deletion yet");
4606 return -EOPNOTSUPP;
4607 }
4608 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4609 }
4610
4611 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4612 if (err)
4613 return err;
4614
4615 /* This needs to handle no-key deletions later on */
4616
4617 trans = __unlink_start_trans(BTRFS_I(dir));
4618 if (IS_ERR(trans)) {
4619 err = PTR_ERR(trans);
4620 goto out_notrans;
4621 }
4622
4623 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4624 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4625 goto out;
4626 }
4627
4628 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4629 if (err)
4630 goto out;
4631
4632 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4633
4634 /* now the directory is empty */
4635 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4636 &fname.disk_name);
4637 if (!err) {
4638 btrfs_i_size_write(BTRFS_I(inode), 0);
4639 /*
4640 * Propagate the last_unlink_trans value of the deleted dir to
4641 * its parent directory. This is to prevent an unrecoverable
4642 * log tree in the case we do something like this:
4643 * 1) create dir foo
4644 * 2) create snapshot under dir foo
4645 * 3) delete the snapshot
4646 * 4) rmdir foo
4647 * 5) mkdir foo
4648 * 6) fsync foo or some file inside foo
4649 */
4650 if (last_unlink_trans >= trans->transid)
4651 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4652 }
4653 out:
4654 btrfs_end_transaction(trans);
4655 out_notrans:
4656 btrfs_btree_balance_dirty(fs_info);
4657 fscrypt_free_filename(&fname);
4658
4659 return err;
4660 }
4661
4662 /*
4663 * btrfs_truncate_block - read, zero a chunk and write a block
4664 * @inode - inode that we're zeroing
4665 * @from - the offset to start zeroing
4666 * @len - the length to zero, 0 to zero the entire range respective to the
4667 * offset
4668 * @front - zero up to the offset instead of from the offset on
4669 *
4670 * This will find the block for the "from" offset and cow the block and zero the
4671 * part we want to zero. This is used with truncate and hole punching.
4672 */
btrfs_truncate_block(struct btrfs_inode * inode,loff_t from,loff_t len,int front)4673 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4674 int front)
4675 {
4676 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4677 struct address_space *mapping = inode->vfs_inode.i_mapping;
4678 struct extent_io_tree *io_tree = &inode->io_tree;
4679 struct btrfs_ordered_extent *ordered;
4680 struct extent_state *cached_state = NULL;
4681 struct extent_changeset *data_reserved = NULL;
4682 bool only_release_metadata = false;
4683 u32 blocksize = fs_info->sectorsize;
4684 pgoff_t index = from >> PAGE_SHIFT;
4685 unsigned offset = from & (blocksize - 1);
4686 struct page *page;
4687 gfp_t mask = btrfs_alloc_write_mask(mapping);
4688 size_t write_bytes = blocksize;
4689 int ret = 0;
4690 u64 block_start;
4691 u64 block_end;
4692
4693 if (IS_ALIGNED(offset, blocksize) &&
4694 (!len || IS_ALIGNED(len, blocksize)))
4695 goto out;
4696
4697 block_start = round_down(from, blocksize);
4698 block_end = block_start + blocksize - 1;
4699
4700 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4701 blocksize, false);
4702 if (ret < 0) {
4703 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4704 /* For nocow case, no need to reserve data space */
4705 only_release_metadata = true;
4706 } else {
4707 goto out;
4708 }
4709 }
4710 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4711 if (ret < 0) {
4712 if (!only_release_metadata)
4713 btrfs_free_reserved_data_space(inode, data_reserved,
4714 block_start, blocksize);
4715 goto out;
4716 }
4717 again:
4718 page = find_or_create_page(mapping, index, mask);
4719 if (!page) {
4720 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4721 blocksize, true);
4722 btrfs_delalloc_release_extents(inode, blocksize);
4723 ret = -ENOMEM;
4724 goto out;
4725 }
4726
4727 if (!PageUptodate(page)) {
4728 ret = btrfs_read_folio(NULL, page_folio(page));
4729 lock_page(page);
4730 if (page->mapping != mapping) {
4731 unlock_page(page);
4732 put_page(page);
4733 goto again;
4734 }
4735 if (!PageUptodate(page)) {
4736 ret = -EIO;
4737 goto out_unlock;
4738 }
4739 }
4740
4741 /*
4742 * We unlock the page after the io is completed and then re-lock it
4743 * above. release_folio() could have come in between that and cleared
4744 * PagePrivate(), but left the page in the mapping. Set the page mapped
4745 * here to make sure it's properly set for the subpage stuff.
4746 */
4747 ret = set_page_extent_mapped(page);
4748 if (ret < 0)
4749 goto out_unlock;
4750
4751 wait_on_page_writeback(page);
4752
4753 lock_extent(io_tree, block_start, block_end, &cached_state);
4754
4755 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4756 if (ordered) {
4757 unlock_extent(io_tree, block_start, block_end, &cached_state);
4758 unlock_page(page);
4759 put_page(page);
4760 btrfs_start_ordered_extent(ordered);
4761 btrfs_put_ordered_extent(ordered);
4762 goto again;
4763 }
4764
4765 clear_extent_bit(&inode->io_tree, block_start, block_end,
4766 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4767 &cached_state);
4768
4769 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4770 &cached_state);
4771 if (ret) {
4772 unlock_extent(io_tree, block_start, block_end, &cached_state);
4773 goto out_unlock;
4774 }
4775
4776 if (offset != blocksize) {
4777 if (!len)
4778 len = blocksize - offset;
4779 if (front)
4780 memzero_page(page, (block_start - page_offset(page)),
4781 offset);
4782 else
4783 memzero_page(page, (block_start - page_offset(page)) + offset,
4784 len);
4785 }
4786 btrfs_page_clear_checked(fs_info, page, block_start,
4787 block_end + 1 - block_start);
4788 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4789 unlock_extent(io_tree, block_start, block_end, &cached_state);
4790
4791 if (only_release_metadata)
4792 set_extent_bit(&inode->io_tree, block_start, block_end,
4793 EXTENT_NORESERVE, NULL);
4794
4795 out_unlock:
4796 if (ret) {
4797 if (only_release_metadata)
4798 btrfs_delalloc_release_metadata(inode, blocksize, true);
4799 else
4800 btrfs_delalloc_release_space(inode, data_reserved,
4801 block_start, blocksize, true);
4802 }
4803 btrfs_delalloc_release_extents(inode, blocksize);
4804 unlock_page(page);
4805 put_page(page);
4806 out:
4807 if (only_release_metadata)
4808 btrfs_check_nocow_unlock(inode);
4809 extent_changeset_free(data_reserved);
4810 return ret;
4811 }
4812
maybe_insert_hole(struct btrfs_root * root,struct btrfs_inode * inode,u64 offset,u64 len)4813 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4814 u64 offset, u64 len)
4815 {
4816 struct btrfs_fs_info *fs_info = root->fs_info;
4817 struct btrfs_trans_handle *trans;
4818 struct btrfs_drop_extents_args drop_args = { 0 };
4819 int ret;
4820
4821 /*
4822 * If NO_HOLES is enabled, we don't need to do anything.
4823 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4824 * or btrfs_update_inode() will be called, which guarantee that the next
4825 * fsync will know this inode was changed and needs to be logged.
4826 */
4827 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4828 return 0;
4829
4830 /*
4831 * 1 - for the one we're dropping
4832 * 1 - for the one we're adding
4833 * 1 - for updating the inode.
4834 */
4835 trans = btrfs_start_transaction(root, 3);
4836 if (IS_ERR(trans))
4837 return PTR_ERR(trans);
4838
4839 drop_args.start = offset;
4840 drop_args.end = offset + len;
4841 drop_args.drop_cache = true;
4842
4843 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4844 if (ret) {
4845 btrfs_abort_transaction(trans, ret);
4846 btrfs_end_transaction(trans);
4847 return ret;
4848 }
4849
4850 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4851 if (ret) {
4852 btrfs_abort_transaction(trans, ret);
4853 } else {
4854 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4855 btrfs_update_inode(trans, root, inode);
4856 }
4857 btrfs_end_transaction(trans);
4858 return ret;
4859 }
4860
4861 /*
4862 * This function puts in dummy file extents for the area we're creating a hole
4863 * for. So if we are truncating this file to a larger size we need to insert
4864 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4865 * the range between oldsize and size
4866 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)4867 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4868 {
4869 struct btrfs_root *root = inode->root;
4870 struct btrfs_fs_info *fs_info = root->fs_info;
4871 struct extent_io_tree *io_tree = &inode->io_tree;
4872 struct extent_map *em = NULL;
4873 struct extent_state *cached_state = NULL;
4874 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4875 u64 block_end = ALIGN(size, fs_info->sectorsize);
4876 u64 last_byte;
4877 u64 cur_offset;
4878 u64 hole_size;
4879 int err = 0;
4880
4881 /*
4882 * If our size started in the middle of a block we need to zero out the
4883 * rest of the block before we expand the i_size, otherwise we could
4884 * expose stale data.
4885 */
4886 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4887 if (err)
4888 return err;
4889
4890 if (size <= hole_start)
4891 return 0;
4892
4893 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4894 &cached_state);
4895 cur_offset = hole_start;
4896 while (1) {
4897 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4898 block_end - cur_offset);
4899 if (IS_ERR(em)) {
4900 err = PTR_ERR(em);
4901 em = NULL;
4902 break;
4903 }
4904 last_byte = min(extent_map_end(em), block_end);
4905 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4906 hole_size = last_byte - cur_offset;
4907
4908 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4909 struct extent_map *hole_em;
4910
4911 err = maybe_insert_hole(root, inode, cur_offset,
4912 hole_size);
4913 if (err)
4914 break;
4915
4916 err = btrfs_inode_set_file_extent_range(inode,
4917 cur_offset, hole_size);
4918 if (err)
4919 break;
4920
4921 hole_em = alloc_extent_map();
4922 if (!hole_em) {
4923 btrfs_drop_extent_map_range(inode, cur_offset,
4924 cur_offset + hole_size - 1,
4925 false);
4926 btrfs_set_inode_full_sync(inode);
4927 goto next;
4928 }
4929 hole_em->start = cur_offset;
4930 hole_em->len = hole_size;
4931 hole_em->orig_start = cur_offset;
4932
4933 hole_em->block_start = EXTENT_MAP_HOLE;
4934 hole_em->block_len = 0;
4935 hole_em->orig_block_len = 0;
4936 hole_em->ram_bytes = hole_size;
4937 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4938 hole_em->generation = fs_info->generation;
4939
4940 err = btrfs_replace_extent_map_range(inode, hole_em, true);
4941 free_extent_map(hole_em);
4942 } else {
4943 err = btrfs_inode_set_file_extent_range(inode,
4944 cur_offset, hole_size);
4945 if (err)
4946 break;
4947 }
4948 next:
4949 free_extent_map(em);
4950 em = NULL;
4951 cur_offset = last_byte;
4952 if (cur_offset >= block_end)
4953 break;
4954 }
4955 free_extent_map(em);
4956 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4957 return err;
4958 }
4959
btrfs_setsize(struct inode * inode,struct iattr * attr)4960 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4961 {
4962 struct btrfs_root *root = BTRFS_I(inode)->root;
4963 struct btrfs_trans_handle *trans;
4964 loff_t oldsize = i_size_read(inode);
4965 loff_t newsize = attr->ia_size;
4966 int mask = attr->ia_valid;
4967 int ret;
4968
4969 /*
4970 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4971 * special case where we need to update the times despite not having
4972 * these flags set. For all other operations the VFS set these flags
4973 * explicitly if it wants a timestamp update.
4974 */
4975 if (newsize != oldsize) {
4976 inode_inc_iversion(inode);
4977 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4978 inode->i_mtime = inode_set_ctime_current(inode);
4979 }
4980 }
4981
4982 if (newsize > oldsize) {
4983 /*
4984 * Don't do an expanding truncate while snapshotting is ongoing.
4985 * This is to ensure the snapshot captures a fully consistent
4986 * state of this file - if the snapshot captures this expanding
4987 * truncation, it must capture all writes that happened before
4988 * this truncation.
4989 */
4990 btrfs_drew_write_lock(&root->snapshot_lock);
4991 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4992 if (ret) {
4993 btrfs_drew_write_unlock(&root->snapshot_lock);
4994 return ret;
4995 }
4996
4997 trans = btrfs_start_transaction(root, 1);
4998 if (IS_ERR(trans)) {
4999 btrfs_drew_write_unlock(&root->snapshot_lock);
5000 return PTR_ERR(trans);
5001 }
5002
5003 i_size_write(inode, newsize);
5004 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5005 pagecache_isize_extended(inode, oldsize, newsize);
5006 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5007 btrfs_drew_write_unlock(&root->snapshot_lock);
5008 btrfs_end_transaction(trans);
5009 } else {
5010 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5011
5012 if (btrfs_is_zoned(fs_info)) {
5013 ret = btrfs_wait_ordered_range(inode,
5014 ALIGN(newsize, fs_info->sectorsize),
5015 (u64)-1);
5016 if (ret)
5017 return ret;
5018 }
5019
5020 /*
5021 * We're truncating a file that used to have good data down to
5022 * zero. Make sure any new writes to the file get on disk
5023 * on close.
5024 */
5025 if (newsize == 0)
5026 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5027 &BTRFS_I(inode)->runtime_flags);
5028
5029 truncate_setsize(inode, newsize);
5030
5031 inode_dio_wait(inode);
5032
5033 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5034 if (ret && inode->i_nlink) {
5035 int err;
5036
5037 /*
5038 * Truncate failed, so fix up the in-memory size. We
5039 * adjusted disk_i_size down as we removed extents, so
5040 * wait for disk_i_size to be stable and then update the
5041 * in-memory size to match.
5042 */
5043 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5044 if (err)
5045 return err;
5046 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5047 }
5048 }
5049
5050 return ret;
5051 }
5052
btrfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5053 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5054 struct iattr *attr)
5055 {
5056 struct inode *inode = d_inode(dentry);
5057 struct btrfs_root *root = BTRFS_I(inode)->root;
5058 int err;
5059
5060 if (btrfs_root_readonly(root))
5061 return -EROFS;
5062
5063 err = setattr_prepare(idmap, dentry, attr);
5064 if (err)
5065 return err;
5066
5067 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5068 err = btrfs_setsize(inode, attr);
5069 if (err)
5070 return err;
5071 }
5072
5073 if (attr->ia_valid) {
5074 setattr_copy(idmap, inode, attr);
5075 inode_inc_iversion(inode);
5076 err = btrfs_dirty_inode(BTRFS_I(inode));
5077
5078 if (!err && attr->ia_valid & ATTR_MODE)
5079 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5080 }
5081
5082 return err;
5083 }
5084
5085 /*
5086 * While truncating the inode pages during eviction, we get the VFS
5087 * calling btrfs_invalidate_folio() against each folio of the inode. This
5088 * is slow because the calls to btrfs_invalidate_folio() result in a
5089 * huge amount of calls to lock_extent() and clear_extent_bit(),
5090 * which keep merging and splitting extent_state structures over and over,
5091 * wasting lots of time.
5092 *
5093 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5094 * skip all those expensive operations on a per folio basis and do only
5095 * the ordered io finishing, while we release here the extent_map and
5096 * extent_state structures, without the excessive merging and splitting.
5097 */
evict_inode_truncate_pages(struct inode * inode)5098 static void evict_inode_truncate_pages(struct inode *inode)
5099 {
5100 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5101 struct rb_node *node;
5102
5103 ASSERT(inode->i_state & I_FREEING);
5104 truncate_inode_pages_final(&inode->i_data);
5105
5106 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5107
5108 /*
5109 * Keep looping until we have no more ranges in the io tree.
5110 * We can have ongoing bios started by readahead that have
5111 * their endio callback (extent_io.c:end_bio_extent_readpage)
5112 * still in progress (unlocked the pages in the bio but did not yet
5113 * unlocked the ranges in the io tree). Therefore this means some
5114 * ranges can still be locked and eviction started because before
5115 * submitting those bios, which are executed by a separate task (work
5116 * queue kthread), inode references (inode->i_count) were not taken
5117 * (which would be dropped in the end io callback of each bio).
5118 * Therefore here we effectively end up waiting for those bios and
5119 * anyone else holding locked ranges without having bumped the inode's
5120 * reference count - if we don't do it, when they access the inode's
5121 * io_tree to unlock a range it may be too late, leading to an
5122 * use-after-free issue.
5123 */
5124 spin_lock(&io_tree->lock);
5125 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5126 struct extent_state *state;
5127 struct extent_state *cached_state = NULL;
5128 u64 start;
5129 u64 end;
5130 unsigned state_flags;
5131
5132 node = rb_first(&io_tree->state);
5133 state = rb_entry(node, struct extent_state, rb_node);
5134 start = state->start;
5135 end = state->end;
5136 state_flags = state->state;
5137 spin_unlock(&io_tree->lock);
5138
5139 lock_extent(io_tree, start, end, &cached_state);
5140
5141 /*
5142 * If still has DELALLOC flag, the extent didn't reach disk,
5143 * and its reserved space won't be freed by delayed_ref.
5144 * So we need to free its reserved space here.
5145 * (Refer to comment in btrfs_invalidate_folio, case 2)
5146 *
5147 * Note, end is the bytenr of last byte, so we need + 1 here.
5148 */
5149 if (state_flags & EXTENT_DELALLOC)
5150 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5151 end - start + 1, NULL);
5152
5153 clear_extent_bit(io_tree, start, end,
5154 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5155 &cached_state);
5156
5157 cond_resched();
5158 spin_lock(&io_tree->lock);
5159 }
5160 spin_unlock(&io_tree->lock);
5161 }
5162
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5163 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5164 struct btrfs_block_rsv *rsv)
5165 {
5166 struct btrfs_fs_info *fs_info = root->fs_info;
5167 struct btrfs_trans_handle *trans;
5168 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5169 int ret;
5170
5171 /*
5172 * Eviction should be taking place at some place safe because of our
5173 * delayed iputs. However the normal flushing code will run delayed
5174 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5175 *
5176 * We reserve the delayed_refs_extra here again because we can't use
5177 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5178 * above. We reserve our extra bit here because we generate a ton of
5179 * delayed refs activity by truncating.
5180 *
5181 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5182 * if we fail to make this reservation we can re-try without the
5183 * delayed_refs_extra so we can make some forward progress.
5184 */
5185 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5186 BTRFS_RESERVE_FLUSH_EVICT);
5187 if (ret) {
5188 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5189 BTRFS_RESERVE_FLUSH_EVICT);
5190 if (ret) {
5191 btrfs_warn(fs_info,
5192 "could not allocate space for delete; will truncate on mount");
5193 return ERR_PTR(-ENOSPC);
5194 }
5195 delayed_refs_extra = 0;
5196 }
5197
5198 trans = btrfs_join_transaction(root);
5199 if (IS_ERR(trans))
5200 return trans;
5201
5202 if (delayed_refs_extra) {
5203 trans->block_rsv = &fs_info->trans_block_rsv;
5204 trans->bytes_reserved = delayed_refs_extra;
5205 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5206 delayed_refs_extra, true);
5207 }
5208 return trans;
5209 }
5210
btrfs_evict_inode(struct inode * inode)5211 void btrfs_evict_inode(struct inode *inode)
5212 {
5213 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5214 struct btrfs_trans_handle *trans;
5215 struct btrfs_root *root = BTRFS_I(inode)->root;
5216 struct btrfs_block_rsv *rsv = NULL;
5217 int ret;
5218
5219 trace_btrfs_inode_evict(inode);
5220
5221 if (!root) {
5222 fsverity_cleanup_inode(inode);
5223 clear_inode(inode);
5224 return;
5225 }
5226
5227 evict_inode_truncate_pages(inode);
5228
5229 if (inode->i_nlink &&
5230 ((btrfs_root_refs(&root->root_item) != 0 &&
5231 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5232 btrfs_is_free_space_inode(BTRFS_I(inode))))
5233 goto out;
5234
5235 if (is_bad_inode(inode))
5236 goto out;
5237
5238 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5239 goto out;
5240
5241 if (inode->i_nlink > 0) {
5242 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5243 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5244 goto out;
5245 }
5246
5247 /*
5248 * This makes sure the inode item in tree is uptodate and the space for
5249 * the inode update is released.
5250 */
5251 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5252 if (ret)
5253 goto out;
5254
5255 /*
5256 * This drops any pending insert or delete operations we have for this
5257 * inode. We could have a delayed dir index deletion queued up, but
5258 * we're removing the inode completely so that'll be taken care of in
5259 * the truncate.
5260 */
5261 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5262
5263 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5264 if (!rsv)
5265 goto out;
5266 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5267 rsv->failfast = true;
5268
5269 btrfs_i_size_write(BTRFS_I(inode), 0);
5270
5271 while (1) {
5272 struct btrfs_truncate_control control = {
5273 .inode = BTRFS_I(inode),
5274 .ino = btrfs_ino(BTRFS_I(inode)),
5275 .new_size = 0,
5276 .min_type = 0,
5277 };
5278
5279 trans = evict_refill_and_join(root, rsv);
5280 if (IS_ERR(trans))
5281 goto out;
5282
5283 trans->block_rsv = rsv;
5284
5285 ret = btrfs_truncate_inode_items(trans, root, &control);
5286 trans->block_rsv = &fs_info->trans_block_rsv;
5287 btrfs_end_transaction(trans);
5288 /*
5289 * We have not added new delayed items for our inode after we
5290 * have flushed its delayed items, so no need to throttle on
5291 * delayed items. However we have modified extent buffers.
5292 */
5293 btrfs_btree_balance_dirty_nodelay(fs_info);
5294 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5295 goto out;
5296 else if (!ret)
5297 break;
5298 }
5299
5300 /*
5301 * Errors here aren't a big deal, it just means we leave orphan items in
5302 * the tree. They will be cleaned up on the next mount. If the inode
5303 * number gets reused, cleanup deletes the orphan item without doing
5304 * anything, and unlink reuses the existing orphan item.
5305 *
5306 * If it turns out that we are dropping too many of these, we might want
5307 * to add a mechanism for retrying these after a commit.
5308 */
5309 trans = evict_refill_and_join(root, rsv);
5310 if (!IS_ERR(trans)) {
5311 trans->block_rsv = rsv;
5312 btrfs_orphan_del(trans, BTRFS_I(inode));
5313 trans->block_rsv = &fs_info->trans_block_rsv;
5314 btrfs_end_transaction(trans);
5315 }
5316
5317 out:
5318 btrfs_free_block_rsv(fs_info, rsv);
5319 /*
5320 * If we didn't successfully delete, the orphan item will still be in
5321 * the tree and we'll retry on the next mount. Again, we might also want
5322 * to retry these periodically in the future.
5323 */
5324 btrfs_remove_delayed_node(BTRFS_I(inode));
5325 fsverity_cleanup_inode(inode);
5326 clear_inode(inode);
5327 }
5328
5329 /*
5330 * Return the key found in the dir entry in the location pointer, fill @type
5331 * with BTRFS_FT_*, and return 0.
5332 *
5333 * If no dir entries were found, returns -ENOENT.
5334 * If found a corrupted location in dir entry, returns -EUCLEAN.
5335 */
btrfs_inode_by_name(struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5336 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5337 struct btrfs_key *location, u8 *type)
5338 {
5339 struct btrfs_dir_item *di;
5340 struct btrfs_path *path;
5341 struct btrfs_root *root = dir->root;
5342 int ret = 0;
5343 struct fscrypt_name fname;
5344
5345 path = btrfs_alloc_path();
5346 if (!path)
5347 return -ENOMEM;
5348
5349 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5350 if (ret < 0)
5351 goto out;
5352 /*
5353 * fscrypt_setup_filename() should never return a positive value, but
5354 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5355 */
5356 ASSERT(ret == 0);
5357
5358 /* This needs to handle no-key deletions later on */
5359
5360 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5361 &fname.disk_name, 0);
5362 if (IS_ERR_OR_NULL(di)) {
5363 ret = di ? PTR_ERR(di) : -ENOENT;
5364 goto out;
5365 }
5366
5367 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5368 if (location->type != BTRFS_INODE_ITEM_KEY &&
5369 location->type != BTRFS_ROOT_ITEM_KEY) {
5370 ret = -EUCLEAN;
5371 btrfs_warn(root->fs_info,
5372 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5373 __func__, fname.disk_name.name, btrfs_ino(dir),
5374 location->objectid, location->type, location->offset);
5375 }
5376 if (!ret)
5377 *type = btrfs_dir_ftype(path->nodes[0], di);
5378 out:
5379 fscrypt_free_filename(&fname);
5380 btrfs_free_path(path);
5381 return ret;
5382 }
5383
5384 /*
5385 * when we hit a tree root in a directory, the btrfs part of the inode
5386 * needs to be changed to reflect the root directory of the tree root. This
5387 * is kind of like crossing a mount point.
5388 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5389 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5390 struct btrfs_inode *dir,
5391 struct dentry *dentry,
5392 struct btrfs_key *location,
5393 struct btrfs_root **sub_root)
5394 {
5395 struct btrfs_path *path;
5396 struct btrfs_root *new_root;
5397 struct btrfs_root_ref *ref;
5398 struct extent_buffer *leaf;
5399 struct btrfs_key key;
5400 int ret;
5401 int err = 0;
5402 struct fscrypt_name fname;
5403
5404 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5405 if (ret)
5406 return ret;
5407
5408 path = btrfs_alloc_path();
5409 if (!path) {
5410 err = -ENOMEM;
5411 goto out;
5412 }
5413
5414 err = -ENOENT;
5415 key.objectid = dir->root->root_key.objectid;
5416 key.type = BTRFS_ROOT_REF_KEY;
5417 key.offset = location->objectid;
5418
5419 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5420 if (ret) {
5421 if (ret < 0)
5422 err = ret;
5423 goto out;
5424 }
5425
5426 leaf = path->nodes[0];
5427 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5428 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5429 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5430 goto out;
5431
5432 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5433 (unsigned long)(ref + 1), fname.disk_name.len);
5434 if (ret)
5435 goto out;
5436
5437 btrfs_release_path(path);
5438
5439 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5440 if (IS_ERR(new_root)) {
5441 err = PTR_ERR(new_root);
5442 goto out;
5443 }
5444
5445 *sub_root = new_root;
5446 location->objectid = btrfs_root_dirid(&new_root->root_item);
5447 location->type = BTRFS_INODE_ITEM_KEY;
5448 location->offset = 0;
5449 err = 0;
5450 out:
5451 btrfs_free_path(path);
5452 fscrypt_free_filename(&fname);
5453 return err;
5454 }
5455
inode_tree_add(struct btrfs_inode * inode)5456 static void inode_tree_add(struct btrfs_inode *inode)
5457 {
5458 struct btrfs_root *root = inode->root;
5459 struct btrfs_inode *entry;
5460 struct rb_node **p;
5461 struct rb_node *parent;
5462 struct rb_node *new = &inode->rb_node;
5463 u64 ino = btrfs_ino(inode);
5464
5465 if (inode_unhashed(&inode->vfs_inode))
5466 return;
5467 parent = NULL;
5468 spin_lock(&root->inode_lock);
5469 p = &root->inode_tree.rb_node;
5470 while (*p) {
5471 parent = *p;
5472 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5473
5474 if (ino < btrfs_ino(entry))
5475 p = &parent->rb_left;
5476 else if (ino > btrfs_ino(entry))
5477 p = &parent->rb_right;
5478 else {
5479 WARN_ON(!(entry->vfs_inode.i_state &
5480 (I_WILL_FREE | I_FREEING)));
5481 rb_replace_node(parent, new, &root->inode_tree);
5482 RB_CLEAR_NODE(parent);
5483 spin_unlock(&root->inode_lock);
5484 return;
5485 }
5486 }
5487 rb_link_node(new, parent, p);
5488 rb_insert_color(new, &root->inode_tree);
5489 spin_unlock(&root->inode_lock);
5490 }
5491
inode_tree_del(struct btrfs_inode * inode)5492 static void inode_tree_del(struct btrfs_inode *inode)
5493 {
5494 struct btrfs_root *root = inode->root;
5495 int empty = 0;
5496
5497 spin_lock(&root->inode_lock);
5498 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5499 rb_erase(&inode->rb_node, &root->inode_tree);
5500 RB_CLEAR_NODE(&inode->rb_node);
5501 empty = RB_EMPTY_ROOT(&root->inode_tree);
5502 }
5503 spin_unlock(&root->inode_lock);
5504
5505 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5506 spin_lock(&root->inode_lock);
5507 empty = RB_EMPTY_ROOT(&root->inode_tree);
5508 spin_unlock(&root->inode_lock);
5509 if (empty)
5510 btrfs_add_dead_root(root);
5511 }
5512 }
5513
5514
btrfs_init_locked_inode(struct inode * inode,void * p)5515 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5516 {
5517 struct btrfs_iget_args *args = p;
5518
5519 inode->i_ino = args->ino;
5520 BTRFS_I(inode)->location.objectid = args->ino;
5521 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5522 BTRFS_I(inode)->location.offset = 0;
5523 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5524 BUG_ON(args->root && !BTRFS_I(inode)->root);
5525
5526 if (args->root && args->root == args->root->fs_info->tree_root &&
5527 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5528 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5529 &BTRFS_I(inode)->runtime_flags);
5530 return 0;
5531 }
5532
btrfs_find_actor(struct inode * inode,void * opaque)5533 static int btrfs_find_actor(struct inode *inode, void *opaque)
5534 {
5535 struct btrfs_iget_args *args = opaque;
5536
5537 return args->ino == BTRFS_I(inode)->location.objectid &&
5538 args->root == BTRFS_I(inode)->root;
5539 }
5540
btrfs_iget_locked(struct super_block * s,u64 ino,struct btrfs_root * root)5541 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5542 struct btrfs_root *root)
5543 {
5544 struct inode *inode;
5545 struct btrfs_iget_args args;
5546 unsigned long hashval = btrfs_inode_hash(ino, root);
5547
5548 args.ino = ino;
5549 args.root = root;
5550
5551 inode = iget5_locked(s, hashval, btrfs_find_actor,
5552 btrfs_init_locked_inode,
5553 (void *)&args);
5554 return inode;
5555 }
5556
5557 /*
5558 * Get an inode object given its inode number and corresponding root.
5559 * Path can be preallocated to prevent recursing back to iget through
5560 * allocator. NULL is also valid but may require an additional allocation
5561 * later.
5562 */
btrfs_iget_path(struct super_block * s,u64 ino,struct btrfs_root * root,struct btrfs_path * path)5563 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5564 struct btrfs_root *root, struct btrfs_path *path)
5565 {
5566 struct inode *inode;
5567
5568 inode = btrfs_iget_locked(s, ino, root);
5569 if (!inode)
5570 return ERR_PTR(-ENOMEM);
5571
5572 if (inode->i_state & I_NEW) {
5573 int ret;
5574
5575 ret = btrfs_read_locked_inode(inode, path);
5576 if (!ret) {
5577 inode_tree_add(BTRFS_I(inode));
5578 unlock_new_inode(inode);
5579 } else {
5580 iget_failed(inode);
5581 /*
5582 * ret > 0 can come from btrfs_search_slot called by
5583 * btrfs_read_locked_inode, this means the inode item
5584 * was not found.
5585 */
5586 if (ret > 0)
5587 ret = -ENOENT;
5588 inode = ERR_PTR(ret);
5589 }
5590 }
5591
5592 return inode;
5593 }
5594
btrfs_iget(struct super_block * s,u64 ino,struct btrfs_root * root)5595 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5596 {
5597 return btrfs_iget_path(s, ino, root, NULL);
5598 }
5599
new_simple_dir(struct inode * dir,struct btrfs_key * key,struct btrfs_root * root)5600 static struct inode *new_simple_dir(struct inode *dir,
5601 struct btrfs_key *key,
5602 struct btrfs_root *root)
5603 {
5604 struct inode *inode = new_inode(dir->i_sb);
5605
5606 if (!inode)
5607 return ERR_PTR(-ENOMEM);
5608
5609 BTRFS_I(inode)->root = btrfs_grab_root(root);
5610 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5611 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5612
5613 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5614 /*
5615 * We only need lookup, the rest is read-only and there's no inode
5616 * associated with the dentry
5617 */
5618 inode->i_op = &simple_dir_inode_operations;
5619 inode->i_opflags &= ~IOP_XATTR;
5620 inode->i_fop = &simple_dir_operations;
5621 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5622 inode->i_mtime = inode_set_ctime_current(inode);
5623 inode->i_atime = dir->i_atime;
5624 BTRFS_I(inode)->i_otime = inode->i_mtime;
5625 inode->i_uid = dir->i_uid;
5626 inode->i_gid = dir->i_gid;
5627
5628 return inode;
5629 }
5630
5631 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5632 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5633 static_assert(BTRFS_FT_DIR == FT_DIR);
5634 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5635 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5636 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5637 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5638 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5639
btrfs_inode_type(struct inode * inode)5640 static inline u8 btrfs_inode_type(struct inode *inode)
5641 {
5642 return fs_umode_to_ftype(inode->i_mode);
5643 }
5644
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5645 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5646 {
5647 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5648 struct inode *inode;
5649 struct btrfs_root *root = BTRFS_I(dir)->root;
5650 struct btrfs_root *sub_root = root;
5651 struct btrfs_key location;
5652 u8 di_type = 0;
5653 int ret = 0;
5654
5655 if (dentry->d_name.len > BTRFS_NAME_LEN)
5656 return ERR_PTR(-ENAMETOOLONG);
5657
5658 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5659 if (ret < 0)
5660 return ERR_PTR(ret);
5661
5662 if (location.type == BTRFS_INODE_ITEM_KEY) {
5663 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5664 if (IS_ERR(inode))
5665 return inode;
5666
5667 /* Do extra check against inode mode with di_type */
5668 if (btrfs_inode_type(inode) != di_type) {
5669 btrfs_crit(fs_info,
5670 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5671 inode->i_mode, btrfs_inode_type(inode),
5672 di_type);
5673 iput(inode);
5674 return ERR_PTR(-EUCLEAN);
5675 }
5676 return inode;
5677 }
5678
5679 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5680 &location, &sub_root);
5681 if (ret < 0) {
5682 if (ret != -ENOENT)
5683 inode = ERR_PTR(ret);
5684 else
5685 inode = new_simple_dir(dir, &location, root);
5686 } else {
5687 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5688 btrfs_put_root(sub_root);
5689
5690 if (IS_ERR(inode))
5691 return inode;
5692
5693 down_read(&fs_info->cleanup_work_sem);
5694 if (!sb_rdonly(inode->i_sb))
5695 ret = btrfs_orphan_cleanup(sub_root);
5696 up_read(&fs_info->cleanup_work_sem);
5697 if (ret) {
5698 iput(inode);
5699 inode = ERR_PTR(ret);
5700 }
5701 }
5702
5703 return inode;
5704 }
5705
btrfs_dentry_delete(const struct dentry * dentry)5706 static int btrfs_dentry_delete(const struct dentry *dentry)
5707 {
5708 struct btrfs_root *root;
5709 struct inode *inode = d_inode(dentry);
5710
5711 if (!inode && !IS_ROOT(dentry))
5712 inode = d_inode(dentry->d_parent);
5713
5714 if (inode) {
5715 root = BTRFS_I(inode)->root;
5716 if (btrfs_root_refs(&root->root_item) == 0)
5717 return 1;
5718
5719 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5720 return 1;
5721 }
5722 return 0;
5723 }
5724
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5725 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5726 unsigned int flags)
5727 {
5728 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5729
5730 if (inode == ERR_PTR(-ENOENT))
5731 inode = NULL;
5732 return d_splice_alias(inode, dentry);
5733 }
5734
5735 /*
5736 * Find the highest existing sequence number in a directory and then set the
5737 * in-memory index_cnt variable to the first free sequence number.
5738 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5739 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5740 {
5741 struct btrfs_root *root = inode->root;
5742 struct btrfs_key key, found_key;
5743 struct btrfs_path *path;
5744 struct extent_buffer *leaf;
5745 int ret;
5746
5747 key.objectid = btrfs_ino(inode);
5748 key.type = BTRFS_DIR_INDEX_KEY;
5749 key.offset = (u64)-1;
5750
5751 path = btrfs_alloc_path();
5752 if (!path)
5753 return -ENOMEM;
5754
5755 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5756 if (ret < 0)
5757 goto out;
5758 /* FIXME: we should be able to handle this */
5759 if (ret == 0)
5760 goto out;
5761 ret = 0;
5762
5763 if (path->slots[0] == 0) {
5764 inode->index_cnt = BTRFS_DIR_START_INDEX;
5765 goto out;
5766 }
5767
5768 path->slots[0]--;
5769
5770 leaf = path->nodes[0];
5771 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5772
5773 if (found_key.objectid != btrfs_ino(inode) ||
5774 found_key.type != BTRFS_DIR_INDEX_KEY) {
5775 inode->index_cnt = BTRFS_DIR_START_INDEX;
5776 goto out;
5777 }
5778
5779 inode->index_cnt = found_key.offset + 1;
5780 out:
5781 btrfs_free_path(path);
5782 return ret;
5783 }
5784
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)5785 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5786 {
5787 int ret = 0;
5788
5789 btrfs_inode_lock(dir, 0);
5790 if (dir->index_cnt == (u64)-1) {
5791 ret = btrfs_inode_delayed_dir_index_count(dir);
5792 if (ret) {
5793 ret = btrfs_set_inode_index_count(dir);
5794 if (ret)
5795 goto out;
5796 }
5797 }
5798
5799 /* index_cnt is the index number of next new entry, so decrement it. */
5800 *index = dir->index_cnt - 1;
5801 out:
5802 btrfs_inode_unlock(dir, 0);
5803
5804 return ret;
5805 }
5806
5807 /*
5808 * All this infrastructure exists because dir_emit can fault, and we are holding
5809 * the tree lock when doing readdir. For now just allocate a buffer and copy
5810 * our information into that, and then dir_emit from the buffer. This is
5811 * similar to what NFS does, only we don't keep the buffer around in pagecache
5812 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5813 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5814 * tree lock.
5815 */
btrfs_opendir(struct inode * inode,struct file * file)5816 static int btrfs_opendir(struct inode *inode, struct file *file)
5817 {
5818 struct btrfs_file_private *private;
5819 u64 last_index;
5820 int ret;
5821
5822 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5823 if (ret)
5824 return ret;
5825
5826 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5827 if (!private)
5828 return -ENOMEM;
5829 private->last_index = last_index;
5830 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5831 if (!private->filldir_buf) {
5832 kfree(private);
5833 return -ENOMEM;
5834 }
5835 file->private_data = private;
5836 return 0;
5837 }
5838
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)5839 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5840 {
5841 struct btrfs_file_private *private = file->private_data;
5842 int ret;
5843
5844 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5845 &private->last_index);
5846 if (ret)
5847 return ret;
5848
5849 return generic_file_llseek(file, offset, whence);
5850 }
5851
5852 struct dir_entry {
5853 u64 ino;
5854 u64 offset;
5855 unsigned type;
5856 int name_len;
5857 };
5858
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5859 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5860 {
5861 while (entries--) {
5862 struct dir_entry *entry = addr;
5863 char *name = (char *)(entry + 1);
5864
5865 ctx->pos = get_unaligned(&entry->offset);
5866 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5867 get_unaligned(&entry->ino),
5868 get_unaligned(&entry->type)))
5869 return 1;
5870 addr += sizeof(struct dir_entry) +
5871 get_unaligned(&entry->name_len);
5872 ctx->pos++;
5873 }
5874 return 0;
5875 }
5876
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5877 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5878 {
5879 struct inode *inode = file_inode(file);
5880 struct btrfs_root *root = BTRFS_I(inode)->root;
5881 struct btrfs_file_private *private = file->private_data;
5882 struct btrfs_dir_item *di;
5883 struct btrfs_key key;
5884 struct btrfs_key found_key;
5885 struct btrfs_path *path;
5886 void *addr;
5887 LIST_HEAD(ins_list);
5888 LIST_HEAD(del_list);
5889 int ret;
5890 char *name_ptr;
5891 int name_len;
5892 int entries = 0;
5893 int total_len = 0;
5894 bool put = false;
5895 struct btrfs_key location;
5896
5897 if (!dir_emit_dots(file, ctx))
5898 return 0;
5899
5900 path = btrfs_alloc_path();
5901 if (!path)
5902 return -ENOMEM;
5903
5904 addr = private->filldir_buf;
5905 path->reada = READA_FORWARD;
5906
5907 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5908 &ins_list, &del_list);
5909
5910 again:
5911 key.type = BTRFS_DIR_INDEX_KEY;
5912 key.offset = ctx->pos;
5913 key.objectid = btrfs_ino(BTRFS_I(inode));
5914
5915 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5916 struct dir_entry *entry;
5917 struct extent_buffer *leaf = path->nodes[0];
5918 u8 ftype;
5919
5920 if (found_key.objectid != key.objectid)
5921 break;
5922 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5923 break;
5924 if (found_key.offset < ctx->pos)
5925 continue;
5926 if (found_key.offset > private->last_index)
5927 break;
5928 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5929 continue;
5930 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5931 name_len = btrfs_dir_name_len(leaf, di);
5932 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5933 PAGE_SIZE) {
5934 btrfs_release_path(path);
5935 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5936 if (ret)
5937 goto nopos;
5938 addr = private->filldir_buf;
5939 entries = 0;
5940 total_len = 0;
5941 goto again;
5942 }
5943
5944 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5945 entry = addr;
5946 name_ptr = (char *)(entry + 1);
5947 read_extent_buffer(leaf, name_ptr,
5948 (unsigned long)(di + 1), name_len);
5949 put_unaligned(name_len, &entry->name_len);
5950 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5951 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5952 put_unaligned(location.objectid, &entry->ino);
5953 put_unaligned(found_key.offset, &entry->offset);
5954 entries++;
5955 addr += sizeof(struct dir_entry) + name_len;
5956 total_len += sizeof(struct dir_entry) + name_len;
5957 }
5958 /* Catch error encountered during iteration */
5959 if (ret < 0)
5960 goto err;
5961
5962 btrfs_release_path(path);
5963
5964 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5965 if (ret)
5966 goto nopos;
5967
5968 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5969 if (ret)
5970 goto nopos;
5971
5972 /*
5973 * Stop new entries from being returned after we return the last
5974 * entry.
5975 *
5976 * New directory entries are assigned a strictly increasing
5977 * offset. This means that new entries created during readdir
5978 * are *guaranteed* to be seen in the future by that readdir.
5979 * This has broken buggy programs which operate on names as
5980 * they're returned by readdir. Until we re-use freed offsets
5981 * we have this hack to stop new entries from being returned
5982 * under the assumption that they'll never reach this huge
5983 * offset.
5984 *
5985 * This is being careful not to overflow 32bit loff_t unless the
5986 * last entry requires it because doing so has broken 32bit apps
5987 * in the past.
5988 */
5989 if (ctx->pos >= INT_MAX)
5990 ctx->pos = LLONG_MAX;
5991 else
5992 ctx->pos = INT_MAX;
5993 nopos:
5994 ret = 0;
5995 err:
5996 if (put)
5997 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5998 btrfs_free_path(path);
5999 return ret;
6000 }
6001
6002 /*
6003 * This is somewhat expensive, updating the tree every time the
6004 * inode changes. But, it is most likely to find the inode in cache.
6005 * FIXME, needs more benchmarking...there are no reasons other than performance
6006 * to keep or drop this code.
6007 */
btrfs_dirty_inode(struct btrfs_inode * inode)6008 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6009 {
6010 struct btrfs_root *root = inode->root;
6011 struct btrfs_fs_info *fs_info = root->fs_info;
6012 struct btrfs_trans_handle *trans;
6013 int ret;
6014
6015 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6016 return 0;
6017
6018 trans = btrfs_join_transaction(root);
6019 if (IS_ERR(trans))
6020 return PTR_ERR(trans);
6021
6022 ret = btrfs_update_inode(trans, root, inode);
6023 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6024 /* whoops, lets try again with the full transaction */
6025 btrfs_end_transaction(trans);
6026 trans = btrfs_start_transaction(root, 1);
6027 if (IS_ERR(trans))
6028 return PTR_ERR(trans);
6029
6030 ret = btrfs_update_inode(trans, root, inode);
6031 }
6032 btrfs_end_transaction(trans);
6033 if (inode->delayed_node)
6034 btrfs_balance_delayed_items(fs_info);
6035
6036 return ret;
6037 }
6038
6039 /*
6040 * This is a copy of file_update_time. We need this so we can return error on
6041 * ENOSPC for updating the inode in the case of file write and mmap writes.
6042 */
btrfs_update_time(struct inode * inode,int flags)6043 static int btrfs_update_time(struct inode *inode, int flags)
6044 {
6045 struct btrfs_root *root = BTRFS_I(inode)->root;
6046 bool dirty = flags & ~S_VERSION;
6047
6048 if (btrfs_root_readonly(root))
6049 return -EROFS;
6050
6051 dirty = inode_update_timestamps(inode, flags);
6052 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6053 }
6054
6055 /*
6056 * helper to find a free sequence number in a given directory. This current
6057 * code is very simple, later versions will do smarter things in the btree
6058 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6059 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6060 {
6061 int ret = 0;
6062
6063 if (dir->index_cnt == (u64)-1) {
6064 ret = btrfs_inode_delayed_dir_index_count(dir);
6065 if (ret) {
6066 ret = btrfs_set_inode_index_count(dir);
6067 if (ret)
6068 return ret;
6069 }
6070 }
6071
6072 *index = dir->index_cnt;
6073 dir->index_cnt++;
6074
6075 return ret;
6076 }
6077
btrfs_insert_inode_locked(struct inode * inode)6078 static int btrfs_insert_inode_locked(struct inode *inode)
6079 {
6080 struct btrfs_iget_args args;
6081
6082 args.ino = BTRFS_I(inode)->location.objectid;
6083 args.root = BTRFS_I(inode)->root;
6084
6085 return insert_inode_locked4(inode,
6086 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6087 btrfs_find_actor, &args);
6088 }
6089
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6090 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6091 unsigned int *trans_num_items)
6092 {
6093 struct inode *dir = args->dir;
6094 struct inode *inode = args->inode;
6095 int ret;
6096
6097 if (!args->orphan) {
6098 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6099 &args->fname);
6100 if (ret)
6101 return ret;
6102 }
6103
6104 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6105 if (ret) {
6106 fscrypt_free_filename(&args->fname);
6107 return ret;
6108 }
6109
6110 /* 1 to add inode item */
6111 *trans_num_items = 1;
6112 /* 1 to add compression property */
6113 if (BTRFS_I(dir)->prop_compress)
6114 (*trans_num_items)++;
6115 /* 1 to add default ACL xattr */
6116 if (args->default_acl)
6117 (*trans_num_items)++;
6118 /* 1 to add access ACL xattr */
6119 if (args->acl)
6120 (*trans_num_items)++;
6121 #ifdef CONFIG_SECURITY
6122 /* 1 to add LSM xattr */
6123 if (dir->i_security)
6124 (*trans_num_items)++;
6125 #endif
6126 if (args->orphan) {
6127 /* 1 to add orphan item */
6128 (*trans_num_items)++;
6129 } else {
6130 /*
6131 * 1 to add dir item
6132 * 1 to add dir index
6133 * 1 to update parent inode item
6134 *
6135 * No need for 1 unit for the inode ref item because it is
6136 * inserted in a batch together with the inode item at
6137 * btrfs_create_new_inode().
6138 */
6139 *trans_num_items += 3;
6140 }
6141 return 0;
6142 }
6143
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6144 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6145 {
6146 posix_acl_release(args->acl);
6147 posix_acl_release(args->default_acl);
6148 fscrypt_free_filename(&args->fname);
6149 }
6150
6151 /*
6152 * Inherit flags from the parent inode.
6153 *
6154 * Currently only the compression flags and the cow flags are inherited.
6155 */
btrfs_inherit_iflags(struct btrfs_inode * inode,struct btrfs_inode * dir)6156 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6157 {
6158 unsigned int flags;
6159
6160 flags = dir->flags;
6161
6162 if (flags & BTRFS_INODE_NOCOMPRESS) {
6163 inode->flags &= ~BTRFS_INODE_COMPRESS;
6164 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6165 } else if (flags & BTRFS_INODE_COMPRESS) {
6166 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6167 inode->flags |= BTRFS_INODE_COMPRESS;
6168 }
6169
6170 if (flags & BTRFS_INODE_NODATACOW) {
6171 inode->flags |= BTRFS_INODE_NODATACOW;
6172 if (S_ISREG(inode->vfs_inode.i_mode))
6173 inode->flags |= BTRFS_INODE_NODATASUM;
6174 }
6175
6176 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6177 }
6178
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6179 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6180 struct btrfs_new_inode_args *args)
6181 {
6182 struct inode *dir = args->dir;
6183 struct inode *inode = args->inode;
6184 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6185 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6186 struct btrfs_root *root;
6187 struct btrfs_inode_item *inode_item;
6188 struct btrfs_key *location;
6189 struct btrfs_path *path;
6190 u64 objectid;
6191 struct btrfs_inode_ref *ref;
6192 struct btrfs_key key[2];
6193 u32 sizes[2];
6194 struct btrfs_item_batch batch;
6195 unsigned long ptr;
6196 int ret;
6197
6198 path = btrfs_alloc_path();
6199 if (!path)
6200 return -ENOMEM;
6201
6202 if (!args->subvol)
6203 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6204 root = BTRFS_I(inode)->root;
6205
6206 ret = btrfs_get_free_objectid(root, &objectid);
6207 if (ret)
6208 goto out;
6209 inode->i_ino = objectid;
6210
6211 if (args->orphan) {
6212 /*
6213 * O_TMPFILE, set link count to 0, so that after this point, we
6214 * fill in an inode item with the correct link count.
6215 */
6216 set_nlink(inode, 0);
6217 } else {
6218 trace_btrfs_inode_request(dir);
6219
6220 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6221 if (ret)
6222 goto out;
6223 }
6224 /* index_cnt is ignored for everything but a dir. */
6225 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6226 BTRFS_I(inode)->generation = trans->transid;
6227 inode->i_generation = BTRFS_I(inode)->generation;
6228
6229 /*
6230 * Subvolumes don't inherit flags from their parent directory.
6231 * Originally this was probably by accident, but we probably can't
6232 * change it now without compatibility issues.
6233 */
6234 if (!args->subvol)
6235 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6236
6237 if (S_ISREG(inode->i_mode)) {
6238 if (btrfs_test_opt(fs_info, NODATASUM))
6239 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6240 if (btrfs_test_opt(fs_info, NODATACOW))
6241 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6242 BTRFS_INODE_NODATASUM;
6243 }
6244
6245 location = &BTRFS_I(inode)->location;
6246 location->objectid = objectid;
6247 location->offset = 0;
6248 location->type = BTRFS_INODE_ITEM_KEY;
6249
6250 ret = btrfs_insert_inode_locked(inode);
6251 if (ret < 0) {
6252 if (!args->orphan)
6253 BTRFS_I(dir)->index_cnt--;
6254 goto out;
6255 }
6256
6257 /*
6258 * We could have gotten an inode number from somebody who was fsynced
6259 * and then removed in this same transaction, so let's just set full
6260 * sync since it will be a full sync anyway and this will blow away the
6261 * old info in the log.
6262 */
6263 btrfs_set_inode_full_sync(BTRFS_I(inode));
6264
6265 key[0].objectid = objectid;
6266 key[0].type = BTRFS_INODE_ITEM_KEY;
6267 key[0].offset = 0;
6268
6269 sizes[0] = sizeof(struct btrfs_inode_item);
6270
6271 if (!args->orphan) {
6272 /*
6273 * Start new inodes with an inode_ref. This is slightly more
6274 * efficient for small numbers of hard links since they will
6275 * be packed into one item. Extended refs will kick in if we
6276 * add more hard links than can fit in the ref item.
6277 */
6278 key[1].objectid = objectid;
6279 key[1].type = BTRFS_INODE_REF_KEY;
6280 if (args->subvol) {
6281 key[1].offset = objectid;
6282 sizes[1] = 2 + sizeof(*ref);
6283 } else {
6284 key[1].offset = btrfs_ino(BTRFS_I(dir));
6285 sizes[1] = name->len + sizeof(*ref);
6286 }
6287 }
6288
6289 batch.keys = &key[0];
6290 batch.data_sizes = &sizes[0];
6291 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6292 batch.nr = args->orphan ? 1 : 2;
6293 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6294 if (ret != 0) {
6295 btrfs_abort_transaction(trans, ret);
6296 goto discard;
6297 }
6298
6299 inode->i_mtime = inode_set_ctime_current(inode);
6300 inode->i_atime = inode->i_mtime;
6301 BTRFS_I(inode)->i_otime = inode->i_mtime;
6302
6303 /*
6304 * We're going to fill the inode item now, so at this point the inode
6305 * must be fully initialized.
6306 */
6307
6308 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6309 struct btrfs_inode_item);
6310 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6311 sizeof(*inode_item));
6312 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6313
6314 if (!args->orphan) {
6315 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6316 struct btrfs_inode_ref);
6317 ptr = (unsigned long)(ref + 1);
6318 if (args->subvol) {
6319 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6320 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6321 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6322 } else {
6323 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6324 name->len);
6325 btrfs_set_inode_ref_index(path->nodes[0], ref,
6326 BTRFS_I(inode)->dir_index);
6327 write_extent_buffer(path->nodes[0], name->name, ptr,
6328 name->len);
6329 }
6330 }
6331
6332 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6333 /*
6334 * We don't need the path anymore, plus inheriting properties, adding
6335 * ACLs, security xattrs, orphan item or adding the link, will result in
6336 * allocating yet another path. So just free our path.
6337 */
6338 btrfs_free_path(path);
6339 path = NULL;
6340
6341 if (args->subvol) {
6342 struct inode *parent;
6343
6344 /*
6345 * Subvolumes inherit properties from their parent subvolume,
6346 * not the directory they were created in.
6347 */
6348 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6349 BTRFS_I(dir)->root);
6350 if (IS_ERR(parent)) {
6351 ret = PTR_ERR(parent);
6352 } else {
6353 ret = btrfs_inode_inherit_props(trans, inode, parent);
6354 iput(parent);
6355 }
6356 } else {
6357 ret = btrfs_inode_inherit_props(trans, inode, dir);
6358 }
6359 if (ret) {
6360 btrfs_err(fs_info,
6361 "error inheriting props for ino %llu (root %llu): %d",
6362 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6363 ret);
6364 }
6365
6366 /*
6367 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6368 * probably a bug.
6369 */
6370 if (!args->subvol) {
6371 ret = btrfs_init_inode_security(trans, args);
6372 if (ret) {
6373 btrfs_abort_transaction(trans, ret);
6374 goto discard;
6375 }
6376 }
6377
6378 inode_tree_add(BTRFS_I(inode));
6379
6380 trace_btrfs_inode_new(inode);
6381 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6382
6383 btrfs_update_root_times(trans, root);
6384
6385 if (args->orphan) {
6386 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6387 } else {
6388 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6389 0, BTRFS_I(inode)->dir_index);
6390 }
6391 if (ret) {
6392 btrfs_abort_transaction(trans, ret);
6393 goto discard;
6394 }
6395
6396 return 0;
6397
6398 discard:
6399 /*
6400 * discard_new_inode() calls iput(), but the caller owns the reference
6401 * to the inode.
6402 */
6403 ihold(inode);
6404 discard_new_inode(inode);
6405 out:
6406 btrfs_free_path(path);
6407 return ret;
6408 }
6409
6410 /*
6411 * utility function to add 'inode' into 'parent_inode' with
6412 * a give name and a given sequence number.
6413 * if 'add_backref' is true, also insert a backref from the
6414 * inode to the parent directory.
6415 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const struct fscrypt_str * name,int add_backref,u64 index)6416 int btrfs_add_link(struct btrfs_trans_handle *trans,
6417 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6418 const struct fscrypt_str *name, int add_backref, u64 index)
6419 {
6420 int ret = 0;
6421 struct btrfs_key key;
6422 struct btrfs_root *root = parent_inode->root;
6423 u64 ino = btrfs_ino(inode);
6424 u64 parent_ino = btrfs_ino(parent_inode);
6425
6426 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6427 memcpy(&key, &inode->root->root_key, sizeof(key));
6428 } else {
6429 key.objectid = ino;
6430 key.type = BTRFS_INODE_ITEM_KEY;
6431 key.offset = 0;
6432 }
6433
6434 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6435 ret = btrfs_add_root_ref(trans, key.objectid,
6436 root->root_key.objectid, parent_ino,
6437 index, name);
6438 } else if (add_backref) {
6439 ret = btrfs_insert_inode_ref(trans, root, name,
6440 ino, parent_ino, index);
6441 }
6442
6443 /* Nothing to clean up yet */
6444 if (ret)
6445 return ret;
6446
6447 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6448 btrfs_inode_type(&inode->vfs_inode), index);
6449 if (ret == -EEXIST || ret == -EOVERFLOW)
6450 goto fail_dir_item;
6451 else if (ret) {
6452 btrfs_abort_transaction(trans, ret);
6453 return ret;
6454 }
6455
6456 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6457 name->len * 2);
6458 inode_inc_iversion(&parent_inode->vfs_inode);
6459 /*
6460 * If we are replaying a log tree, we do not want to update the mtime
6461 * and ctime of the parent directory with the current time, since the
6462 * log replay procedure is responsible for setting them to their correct
6463 * values (the ones it had when the fsync was done).
6464 */
6465 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6466 parent_inode->vfs_inode.i_mtime =
6467 inode_set_ctime_current(&parent_inode->vfs_inode);
6468
6469 ret = btrfs_update_inode(trans, root, parent_inode);
6470 if (ret)
6471 btrfs_abort_transaction(trans, ret);
6472 return ret;
6473
6474 fail_dir_item:
6475 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6476 u64 local_index;
6477 int err;
6478 err = btrfs_del_root_ref(trans, key.objectid,
6479 root->root_key.objectid, parent_ino,
6480 &local_index, name);
6481 if (err)
6482 btrfs_abort_transaction(trans, err);
6483 } else if (add_backref) {
6484 u64 local_index;
6485 int err;
6486
6487 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6488 &local_index);
6489 if (err)
6490 btrfs_abort_transaction(trans, err);
6491 }
6492
6493 /* Return the original error code */
6494 return ret;
6495 }
6496
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6497 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6498 struct inode *inode)
6499 {
6500 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6501 struct btrfs_root *root = BTRFS_I(dir)->root;
6502 struct btrfs_new_inode_args new_inode_args = {
6503 .dir = dir,
6504 .dentry = dentry,
6505 .inode = inode,
6506 };
6507 unsigned int trans_num_items;
6508 struct btrfs_trans_handle *trans;
6509 int err;
6510
6511 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6512 if (err)
6513 goto out_inode;
6514
6515 trans = btrfs_start_transaction(root, trans_num_items);
6516 if (IS_ERR(trans)) {
6517 err = PTR_ERR(trans);
6518 goto out_new_inode_args;
6519 }
6520
6521 err = btrfs_create_new_inode(trans, &new_inode_args);
6522 if (!err)
6523 d_instantiate_new(dentry, inode);
6524
6525 btrfs_end_transaction(trans);
6526 btrfs_btree_balance_dirty(fs_info);
6527 out_new_inode_args:
6528 btrfs_new_inode_args_destroy(&new_inode_args);
6529 out_inode:
6530 if (err)
6531 iput(inode);
6532 return err;
6533 }
6534
btrfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6535 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6536 struct dentry *dentry, umode_t mode, dev_t rdev)
6537 {
6538 struct inode *inode;
6539
6540 inode = new_inode(dir->i_sb);
6541 if (!inode)
6542 return -ENOMEM;
6543 inode_init_owner(idmap, inode, dir, mode);
6544 inode->i_op = &btrfs_special_inode_operations;
6545 init_special_inode(inode, inode->i_mode, rdev);
6546 return btrfs_create_common(dir, dentry, inode);
6547 }
6548
btrfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6549 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6550 struct dentry *dentry, umode_t mode, bool excl)
6551 {
6552 struct inode *inode;
6553
6554 inode = new_inode(dir->i_sb);
6555 if (!inode)
6556 return -ENOMEM;
6557 inode_init_owner(idmap, inode, dir, mode);
6558 inode->i_fop = &btrfs_file_operations;
6559 inode->i_op = &btrfs_file_inode_operations;
6560 inode->i_mapping->a_ops = &btrfs_aops;
6561 return btrfs_create_common(dir, dentry, inode);
6562 }
6563
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6564 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6565 struct dentry *dentry)
6566 {
6567 struct btrfs_trans_handle *trans = NULL;
6568 struct btrfs_root *root = BTRFS_I(dir)->root;
6569 struct inode *inode = d_inode(old_dentry);
6570 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6571 struct fscrypt_name fname;
6572 u64 index;
6573 int err;
6574 int drop_inode = 0;
6575
6576 /* do not allow sys_link's with other subvols of the same device */
6577 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6578 return -EXDEV;
6579
6580 if (inode->i_nlink >= BTRFS_LINK_MAX)
6581 return -EMLINK;
6582
6583 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6584 if (err)
6585 goto fail;
6586
6587 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6588 if (err)
6589 goto fail;
6590
6591 /*
6592 * 2 items for inode and inode ref
6593 * 2 items for dir items
6594 * 1 item for parent inode
6595 * 1 item for orphan item deletion if O_TMPFILE
6596 */
6597 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6598 if (IS_ERR(trans)) {
6599 err = PTR_ERR(trans);
6600 trans = NULL;
6601 goto fail;
6602 }
6603
6604 /* There are several dir indexes for this inode, clear the cache. */
6605 BTRFS_I(inode)->dir_index = 0ULL;
6606 inc_nlink(inode);
6607 inode_inc_iversion(inode);
6608 inode_set_ctime_current(inode);
6609 ihold(inode);
6610 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6611
6612 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6613 &fname.disk_name, 1, index);
6614
6615 if (err) {
6616 drop_inode = 1;
6617 } else {
6618 struct dentry *parent = dentry->d_parent;
6619
6620 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6621 if (err)
6622 goto fail;
6623 if (inode->i_nlink == 1) {
6624 /*
6625 * If new hard link count is 1, it's a file created
6626 * with open(2) O_TMPFILE flag.
6627 */
6628 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6629 if (err)
6630 goto fail;
6631 }
6632 d_instantiate(dentry, inode);
6633 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6634 }
6635
6636 fail:
6637 fscrypt_free_filename(&fname);
6638 if (trans)
6639 btrfs_end_transaction(trans);
6640 if (drop_inode) {
6641 inode_dec_link_count(inode);
6642 iput(inode);
6643 }
6644 btrfs_btree_balance_dirty(fs_info);
6645 return err;
6646 }
6647
btrfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)6648 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6649 struct dentry *dentry, umode_t mode)
6650 {
6651 struct inode *inode;
6652
6653 inode = new_inode(dir->i_sb);
6654 if (!inode)
6655 return -ENOMEM;
6656 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6657 inode->i_op = &btrfs_dir_inode_operations;
6658 inode->i_fop = &btrfs_dir_file_operations;
6659 return btrfs_create_common(dir, dentry, inode);
6660 }
6661
uncompress_inline(struct btrfs_path * path,struct page * page,struct btrfs_file_extent_item * item)6662 static noinline int uncompress_inline(struct btrfs_path *path,
6663 struct page *page,
6664 struct btrfs_file_extent_item *item)
6665 {
6666 int ret;
6667 struct extent_buffer *leaf = path->nodes[0];
6668 char *tmp;
6669 size_t max_size;
6670 unsigned long inline_size;
6671 unsigned long ptr;
6672 int compress_type;
6673
6674 compress_type = btrfs_file_extent_compression(leaf, item);
6675 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6676 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6677 tmp = kmalloc(inline_size, GFP_NOFS);
6678 if (!tmp)
6679 return -ENOMEM;
6680 ptr = btrfs_file_extent_inline_start(item);
6681
6682 read_extent_buffer(leaf, tmp, ptr, inline_size);
6683
6684 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6685 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6686
6687 /*
6688 * decompression code contains a memset to fill in any space between the end
6689 * of the uncompressed data and the end of max_size in case the decompressed
6690 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6691 * the end of an inline extent and the beginning of the next block, so we
6692 * cover that region here.
6693 */
6694
6695 if (max_size < PAGE_SIZE)
6696 memzero_page(page, max_size, PAGE_SIZE - max_size);
6697 kfree(tmp);
6698 return ret;
6699 }
6700
read_inline_extent(struct btrfs_inode * inode,struct btrfs_path * path,struct page * page)6701 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6702 struct page *page)
6703 {
6704 struct btrfs_file_extent_item *fi;
6705 void *kaddr;
6706 size_t copy_size;
6707
6708 if (!page || PageUptodate(page))
6709 return 0;
6710
6711 ASSERT(page_offset(page) == 0);
6712
6713 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6714 struct btrfs_file_extent_item);
6715 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6716 return uncompress_inline(path, page, fi);
6717
6718 copy_size = min_t(u64, PAGE_SIZE,
6719 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6720 kaddr = kmap_local_page(page);
6721 read_extent_buffer(path->nodes[0], kaddr,
6722 btrfs_file_extent_inline_start(fi), copy_size);
6723 kunmap_local(kaddr);
6724 if (copy_size < PAGE_SIZE)
6725 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6726 return 0;
6727 }
6728
6729 /*
6730 * Lookup the first extent overlapping a range in a file.
6731 *
6732 * @inode: file to search in
6733 * @page: page to read extent data into if the extent is inline
6734 * @pg_offset: offset into @page to copy to
6735 * @start: file offset
6736 * @len: length of range starting at @start
6737 *
6738 * Return the first &struct extent_map which overlaps the given range, reading
6739 * it from the B-tree and caching it if necessary. Note that there may be more
6740 * extents which overlap the given range after the returned extent_map.
6741 *
6742 * If @page is not NULL and the extent is inline, this also reads the extent
6743 * data directly into the page and marks the extent up to date in the io_tree.
6744 *
6745 * Return: ERR_PTR on error, non-NULL extent_map on success.
6746 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len)6747 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6748 struct page *page, size_t pg_offset,
6749 u64 start, u64 len)
6750 {
6751 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6752 int ret = 0;
6753 u64 extent_start = 0;
6754 u64 extent_end = 0;
6755 u64 objectid = btrfs_ino(inode);
6756 int extent_type = -1;
6757 struct btrfs_path *path = NULL;
6758 struct btrfs_root *root = inode->root;
6759 struct btrfs_file_extent_item *item;
6760 struct extent_buffer *leaf;
6761 struct btrfs_key found_key;
6762 struct extent_map *em = NULL;
6763 struct extent_map_tree *em_tree = &inode->extent_tree;
6764
6765 read_lock(&em_tree->lock);
6766 em = lookup_extent_mapping(em_tree, start, len);
6767 read_unlock(&em_tree->lock);
6768
6769 if (em) {
6770 if (em->start > start || em->start + em->len <= start)
6771 free_extent_map(em);
6772 else if (em->block_start == EXTENT_MAP_INLINE && page)
6773 free_extent_map(em);
6774 else
6775 goto out;
6776 }
6777 em = alloc_extent_map();
6778 if (!em) {
6779 ret = -ENOMEM;
6780 goto out;
6781 }
6782 em->start = EXTENT_MAP_HOLE;
6783 em->orig_start = EXTENT_MAP_HOLE;
6784 em->len = (u64)-1;
6785 em->block_len = (u64)-1;
6786
6787 path = btrfs_alloc_path();
6788 if (!path) {
6789 ret = -ENOMEM;
6790 goto out;
6791 }
6792
6793 /* Chances are we'll be called again, so go ahead and do readahead */
6794 path->reada = READA_FORWARD;
6795
6796 /*
6797 * The same explanation in load_free_space_cache applies here as well,
6798 * we only read when we're loading the free space cache, and at that
6799 * point the commit_root has everything we need.
6800 */
6801 if (btrfs_is_free_space_inode(inode)) {
6802 path->search_commit_root = 1;
6803 path->skip_locking = 1;
6804 }
6805
6806 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6807 if (ret < 0) {
6808 goto out;
6809 } else if (ret > 0) {
6810 if (path->slots[0] == 0)
6811 goto not_found;
6812 path->slots[0]--;
6813 ret = 0;
6814 }
6815
6816 leaf = path->nodes[0];
6817 item = btrfs_item_ptr(leaf, path->slots[0],
6818 struct btrfs_file_extent_item);
6819 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6820 if (found_key.objectid != objectid ||
6821 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6822 /*
6823 * If we backup past the first extent we want to move forward
6824 * and see if there is an extent in front of us, otherwise we'll
6825 * say there is a hole for our whole search range which can
6826 * cause problems.
6827 */
6828 extent_end = start;
6829 goto next;
6830 }
6831
6832 extent_type = btrfs_file_extent_type(leaf, item);
6833 extent_start = found_key.offset;
6834 extent_end = btrfs_file_extent_end(path);
6835 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6836 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6837 /* Only regular file could have regular/prealloc extent */
6838 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6839 ret = -EUCLEAN;
6840 btrfs_crit(fs_info,
6841 "regular/prealloc extent found for non-regular inode %llu",
6842 btrfs_ino(inode));
6843 goto out;
6844 }
6845 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6846 extent_start);
6847 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6848 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6849 path->slots[0],
6850 extent_start);
6851 }
6852 next:
6853 if (start >= extent_end) {
6854 path->slots[0]++;
6855 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6856 ret = btrfs_next_leaf(root, path);
6857 if (ret < 0)
6858 goto out;
6859 else if (ret > 0)
6860 goto not_found;
6861
6862 leaf = path->nodes[0];
6863 }
6864 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6865 if (found_key.objectid != objectid ||
6866 found_key.type != BTRFS_EXTENT_DATA_KEY)
6867 goto not_found;
6868 if (start + len <= found_key.offset)
6869 goto not_found;
6870 if (start > found_key.offset)
6871 goto next;
6872
6873 /* New extent overlaps with existing one */
6874 em->start = start;
6875 em->orig_start = start;
6876 em->len = found_key.offset - start;
6877 em->block_start = EXTENT_MAP_HOLE;
6878 goto insert;
6879 }
6880
6881 btrfs_extent_item_to_extent_map(inode, path, item, em);
6882
6883 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6884 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6885 goto insert;
6886 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6887 /*
6888 * Inline extent can only exist at file offset 0. This is
6889 * ensured by tree-checker and inline extent creation path.
6890 * Thus all members representing file offsets should be zero.
6891 */
6892 ASSERT(pg_offset == 0);
6893 ASSERT(extent_start == 0);
6894 ASSERT(em->start == 0);
6895
6896 /*
6897 * btrfs_extent_item_to_extent_map() should have properly
6898 * initialized em members already.
6899 *
6900 * Other members are not utilized for inline extents.
6901 */
6902 ASSERT(em->block_start == EXTENT_MAP_INLINE);
6903 ASSERT(em->len == fs_info->sectorsize);
6904
6905 ret = read_inline_extent(inode, path, page);
6906 if (ret < 0)
6907 goto out;
6908 goto insert;
6909 }
6910 not_found:
6911 em->start = start;
6912 em->orig_start = start;
6913 em->len = len;
6914 em->block_start = EXTENT_MAP_HOLE;
6915 insert:
6916 ret = 0;
6917 btrfs_release_path(path);
6918 if (em->start > start || extent_map_end(em) <= start) {
6919 btrfs_err(fs_info,
6920 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6921 em->start, em->len, start, len);
6922 ret = -EIO;
6923 goto out;
6924 }
6925
6926 write_lock(&em_tree->lock);
6927 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6928 write_unlock(&em_tree->lock);
6929 out:
6930 btrfs_free_path(path);
6931
6932 trace_btrfs_get_extent(root, inode, em);
6933
6934 if (ret) {
6935 free_extent_map(em);
6936 return ERR_PTR(ret);
6937 }
6938 return em;
6939 }
6940
btrfs_create_dio_extent(struct btrfs_inode * inode,struct btrfs_dio_data * dio_data,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)6941 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6942 struct btrfs_dio_data *dio_data,
6943 const u64 start,
6944 const u64 len,
6945 const u64 orig_start,
6946 const u64 block_start,
6947 const u64 block_len,
6948 const u64 orig_block_len,
6949 const u64 ram_bytes,
6950 const int type)
6951 {
6952 struct extent_map *em = NULL;
6953 struct btrfs_ordered_extent *ordered;
6954
6955 if (type != BTRFS_ORDERED_NOCOW) {
6956 em = create_io_em(inode, start, len, orig_start, block_start,
6957 block_len, orig_block_len, ram_bytes,
6958 BTRFS_COMPRESS_NONE, /* compress_type */
6959 type);
6960 if (IS_ERR(em))
6961 goto out;
6962 }
6963 ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6964 block_start, block_len, 0,
6965 (1 << type) |
6966 (1 << BTRFS_ORDERED_DIRECT),
6967 BTRFS_COMPRESS_NONE);
6968 if (IS_ERR(ordered)) {
6969 if (em) {
6970 free_extent_map(em);
6971 btrfs_drop_extent_map_range(inode, start,
6972 start + len - 1, false);
6973 }
6974 em = ERR_CAST(ordered);
6975 } else {
6976 ASSERT(!dio_data->ordered);
6977 dio_data->ordered = ordered;
6978 }
6979 out:
6980
6981 return em;
6982 }
6983
btrfs_new_extent_direct(struct btrfs_inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)6984 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6985 struct btrfs_dio_data *dio_data,
6986 u64 start, u64 len)
6987 {
6988 struct btrfs_root *root = inode->root;
6989 struct btrfs_fs_info *fs_info = root->fs_info;
6990 struct extent_map *em;
6991 struct btrfs_key ins;
6992 u64 alloc_hint;
6993 int ret;
6994
6995 alloc_hint = get_extent_allocation_hint(inode, start, len);
6996 again:
6997 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6998 0, alloc_hint, &ins, 1, 1);
6999 if (ret == -EAGAIN) {
7000 ASSERT(btrfs_is_zoned(fs_info));
7001 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7002 TASK_UNINTERRUPTIBLE);
7003 goto again;
7004 }
7005 if (ret)
7006 return ERR_PTR(ret);
7007
7008 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7009 ins.objectid, ins.offset, ins.offset,
7010 ins.offset, BTRFS_ORDERED_REGULAR);
7011 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7012 if (IS_ERR(em))
7013 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7014 1);
7015
7016 return em;
7017 }
7018
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7019 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7020 {
7021 struct btrfs_block_group *block_group;
7022 bool readonly = false;
7023
7024 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7025 if (!block_group || block_group->ro)
7026 readonly = true;
7027 if (block_group)
7028 btrfs_put_block_group(block_group);
7029 return readonly;
7030 }
7031
7032 /*
7033 * Check if we can do nocow write into the range [@offset, @offset + @len)
7034 *
7035 * @offset: File offset
7036 * @len: The length to write, will be updated to the nocow writeable
7037 * range
7038 * @orig_start: (optional) Return the original file offset of the file extent
7039 * @orig_len: (optional) Return the original on-disk length of the file extent
7040 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7041 * @strict: if true, omit optimizations that might force us into unnecessary
7042 * cow. e.g., don't trust generation number.
7043 *
7044 * Return:
7045 * >0 and update @len if we can do nocow write
7046 * 0 if we can't do nocow write
7047 * <0 if error happened
7048 *
7049 * NOTE: This only checks the file extents, caller is responsible to wait for
7050 * any ordered extents.
7051 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes,bool nowait,bool strict)7052 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7053 u64 *orig_start, u64 *orig_block_len,
7054 u64 *ram_bytes, bool nowait, bool strict)
7055 {
7056 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7057 struct can_nocow_file_extent_args nocow_args = { 0 };
7058 struct btrfs_path *path;
7059 int ret;
7060 struct extent_buffer *leaf;
7061 struct btrfs_root *root = BTRFS_I(inode)->root;
7062 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7063 struct btrfs_file_extent_item *fi;
7064 struct btrfs_key key;
7065 int found_type;
7066
7067 path = btrfs_alloc_path();
7068 if (!path)
7069 return -ENOMEM;
7070 path->nowait = nowait;
7071
7072 ret = btrfs_lookup_file_extent(NULL, root, path,
7073 btrfs_ino(BTRFS_I(inode)), offset, 0);
7074 if (ret < 0)
7075 goto out;
7076
7077 if (ret == 1) {
7078 if (path->slots[0] == 0) {
7079 /* can't find the item, must cow */
7080 ret = 0;
7081 goto out;
7082 }
7083 path->slots[0]--;
7084 }
7085 ret = 0;
7086 leaf = path->nodes[0];
7087 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7088 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7089 key.type != BTRFS_EXTENT_DATA_KEY) {
7090 /* not our file or wrong item type, must cow */
7091 goto out;
7092 }
7093
7094 if (key.offset > offset) {
7095 /* Wrong offset, must cow */
7096 goto out;
7097 }
7098
7099 if (btrfs_file_extent_end(path) <= offset)
7100 goto out;
7101
7102 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7103 found_type = btrfs_file_extent_type(leaf, fi);
7104 if (ram_bytes)
7105 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7106
7107 nocow_args.start = offset;
7108 nocow_args.end = offset + *len - 1;
7109 nocow_args.strict = strict;
7110 nocow_args.free_path = true;
7111
7112 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7113 /* can_nocow_file_extent() has freed the path. */
7114 path = NULL;
7115
7116 if (ret != 1) {
7117 /* Treat errors as not being able to NOCOW. */
7118 ret = 0;
7119 goto out;
7120 }
7121
7122 ret = 0;
7123 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7124 goto out;
7125
7126 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7127 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7128 u64 range_end;
7129
7130 range_end = round_up(offset + nocow_args.num_bytes,
7131 root->fs_info->sectorsize) - 1;
7132 ret = test_range_bit(io_tree, offset, range_end,
7133 EXTENT_DELALLOC, 0, NULL);
7134 if (ret) {
7135 ret = -EAGAIN;
7136 goto out;
7137 }
7138 }
7139
7140 if (orig_start)
7141 *orig_start = key.offset - nocow_args.extent_offset;
7142 if (orig_block_len)
7143 *orig_block_len = nocow_args.disk_num_bytes;
7144
7145 *len = nocow_args.num_bytes;
7146 ret = 1;
7147 out:
7148 btrfs_free_path(path);
7149 return ret;
7150 }
7151
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,unsigned int iomap_flags)7152 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7153 struct extent_state **cached_state,
7154 unsigned int iomap_flags)
7155 {
7156 const bool writing = (iomap_flags & IOMAP_WRITE);
7157 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7158 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7159 struct btrfs_ordered_extent *ordered;
7160 int ret = 0;
7161
7162 while (1) {
7163 if (nowait) {
7164 if (!try_lock_extent(io_tree, lockstart, lockend,
7165 cached_state))
7166 return -EAGAIN;
7167 } else {
7168 lock_extent(io_tree, lockstart, lockend, cached_state);
7169 }
7170 /*
7171 * We're concerned with the entire range that we're going to be
7172 * doing DIO to, so we need to make sure there's no ordered
7173 * extents in this range.
7174 */
7175 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7176 lockend - lockstart + 1);
7177
7178 /*
7179 * We need to make sure there are no buffered pages in this
7180 * range either, we could have raced between the invalidate in
7181 * generic_file_direct_write and locking the extent. The
7182 * invalidate needs to happen so that reads after a write do not
7183 * get stale data.
7184 */
7185 if (!ordered &&
7186 (!writing || !filemap_range_has_page(inode->i_mapping,
7187 lockstart, lockend)))
7188 break;
7189
7190 unlock_extent(io_tree, lockstart, lockend, cached_state);
7191
7192 if (ordered) {
7193 if (nowait) {
7194 btrfs_put_ordered_extent(ordered);
7195 ret = -EAGAIN;
7196 break;
7197 }
7198 /*
7199 * If we are doing a DIO read and the ordered extent we
7200 * found is for a buffered write, we can not wait for it
7201 * to complete and retry, because if we do so we can
7202 * deadlock with concurrent buffered writes on page
7203 * locks. This happens only if our DIO read covers more
7204 * than one extent map, if at this point has already
7205 * created an ordered extent for a previous extent map
7206 * and locked its range in the inode's io tree, and a
7207 * concurrent write against that previous extent map's
7208 * range and this range started (we unlock the ranges
7209 * in the io tree only when the bios complete and
7210 * buffered writes always lock pages before attempting
7211 * to lock range in the io tree).
7212 */
7213 if (writing ||
7214 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7215 btrfs_start_ordered_extent(ordered);
7216 else
7217 ret = nowait ? -EAGAIN : -ENOTBLK;
7218 btrfs_put_ordered_extent(ordered);
7219 } else {
7220 /*
7221 * We could trigger writeback for this range (and wait
7222 * for it to complete) and then invalidate the pages for
7223 * this range (through invalidate_inode_pages2_range()),
7224 * but that can lead us to a deadlock with a concurrent
7225 * call to readahead (a buffered read or a defrag call
7226 * triggered a readahead) on a page lock due to an
7227 * ordered dio extent we created before but did not have
7228 * yet a corresponding bio submitted (whence it can not
7229 * complete), which makes readahead wait for that
7230 * ordered extent to complete while holding a lock on
7231 * that page.
7232 */
7233 ret = nowait ? -EAGAIN : -ENOTBLK;
7234 }
7235
7236 if (ret)
7237 break;
7238
7239 cond_resched();
7240 }
7241
7242 return ret;
7243 }
7244
7245 /* The callers of this must take lock_extent() */
create_io_em(struct btrfs_inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7246 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7247 u64 len, u64 orig_start, u64 block_start,
7248 u64 block_len, u64 orig_block_len,
7249 u64 ram_bytes, int compress_type,
7250 int type)
7251 {
7252 struct extent_map *em;
7253 int ret;
7254
7255 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7256 type == BTRFS_ORDERED_COMPRESSED ||
7257 type == BTRFS_ORDERED_NOCOW ||
7258 type == BTRFS_ORDERED_REGULAR);
7259
7260 em = alloc_extent_map();
7261 if (!em)
7262 return ERR_PTR(-ENOMEM);
7263
7264 em->start = start;
7265 em->orig_start = orig_start;
7266 em->len = len;
7267 em->block_len = block_len;
7268 em->block_start = block_start;
7269 em->orig_block_len = orig_block_len;
7270 em->ram_bytes = ram_bytes;
7271 em->generation = -1;
7272 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7273 if (type == BTRFS_ORDERED_PREALLOC) {
7274 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7275 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7276 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7277 em->compress_type = compress_type;
7278 }
7279
7280 ret = btrfs_replace_extent_map_range(inode, em, true);
7281 if (ret) {
7282 free_extent_map(em);
7283 return ERR_PTR(ret);
7284 }
7285
7286 /* em got 2 refs now, callers needs to do free_extent_map once. */
7287 return em;
7288 }
7289
7290
btrfs_get_blocks_direct_write(struct extent_map ** map,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 * lenp,unsigned int iomap_flags)7291 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7292 struct inode *inode,
7293 struct btrfs_dio_data *dio_data,
7294 u64 start, u64 *lenp,
7295 unsigned int iomap_flags)
7296 {
7297 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7298 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7299 struct extent_map *em = *map;
7300 int type;
7301 u64 block_start, orig_start, orig_block_len, ram_bytes;
7302 struct btrfs_block_group *bg;
7303 bool can_nocow = false;
7304 bool space_reserved = false;
7305 u64 len = *lenp;
7306 u64 prev_len;
7307 int ret = 0;
7308
7309 /*
7310 * We don't allocate a new extent in the following cases
7311 *
7312 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7313 * existing extent.
7314 * 2) The extent is marked as PREALLOC. We're good to go here and can
7315 * just use the extent.
7316 *
7317 */
7318 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7319 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7320 em->block_start != EXTENT_MAP_HOLE)) {
7321 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7322 type = BTRFS_ORDERED_PREALLOC;
7323 else
7324 type = BTRFS_ORDERED_NOCOW;
7325 len = min(len, em->len - (start - em->start));
7326 block_start = em->block_start + (start - em->start);
7327
7328 if (can_nocow_extent(inode, start, &len, &orig_start,
7329 &orig_block_len, &ram_bytes, false, false) == 1) {
7330 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7331 if (bg)
7332 can_nocow = true;
7333 }
7334 }
7335
7336 prev_len = len;
7337 if (can_nocow) {
7338 struct extent_map *em2;
7339
7340 /* We can NOCOW, so only need to reserve metadata space. */
7341 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7342 nowait);
7343 if (ret < 0) {
7344 /* Our caller expects us to free the input extent map. */
7345 free_extent_map(em);
7346 *map = NULL;
7347 btrfs_dec_nocow_writers(bg);
7348 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7349 ret = -EAGAIN;
7350 goto out;
7351 }
7352 space_reserved = true;
7353
7354 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7355 orig_start, block_start,
7356 len, orig_block_len,
7357 ram_bytes, type);
7358 btrfs_dec_nocow_writers(bg);
7359 if (type == BTRFS_ORDERED_PREALLOC) {
7360 free_extent_map(em);
7361 *map = em2;
7362 em = em2;
7363 }
7364
7365 if (IS_ERR(em2)) {
7366 ret = PTR_ERR(em2);
7367 goto out;
7368 }
7369
7370 dio_data->nocow_done = true;
7371 } else {
7372 /* Our caller expects us to free the input extent map. */
7373 free_extent_map(em);
7374 *map = NULL;
7375
7376 if (nowait) {
7377 ret = -EAGAIN;
7378 goto out;
7379 }
7380
7381 /*
7382 * If we could not allocate data space before locking the file
7383 * range and we can't do a NOCOW write, then we have to fail.
7384 */
7385 if (!dio_data->data_space_reserved) {
7386 ret = -ENOSPC;
7387 goto out;
7388 }
7389
7390 /*
7391 * We have to COW and we have already reserved data space before,
7392 * so now we reserve only metadata.
7393 */
7394 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7395 false);
7396 if (ret < 0)
7397 goto out;
7398 space_reserved = true;
7399
7400 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7401 if (IS_ERR(em)) {
7402 ret = PTR_ERR(em);
7403 goto out;
7404 }
7405 *map = em;
7406 len = min(len, em->len - (start - em->start));
7407 if (len < prev_len)
7408 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7409 prev_len - len, true);
7410 }
7411
7412 /*
7413 * We have created our ordered extent, so we can now release our reservation
7414 * for an outstanding extent.
7415 */
7416 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7417
7418 /*
7419 * Need to update the i_size under the extent lock so buffered
7420 * readers will get the updated i_size when we unlock.
7421 */
7422 if (start + len > i_size_read(inode))
7423 i_size_write(inode, start + len);
7424 out:
7425 if (ret && space_reserved) {
7426 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7427 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7428 }
7429 *lenp = len;
7430 return ret;
7431 }
7432
btrfs_dio_iomap_begin(struct inode * inode,loff_t start,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)7433 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7434 loff_t length, unsigned int flags, struct iomap *iomap,
7435 struct iomap *srcmap)
7436 {
7437 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7438 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7439 struct extent_map *em;
7440 struct extent_state *cached_state = NULL;
7441 struct btrfs_dio_data *dio_data = iter->private;
7442 u64 lockstart, lockend;
7443 const bool write = !!(flags & IOMAP_WRITE);
7444 int ret = 0;
7445 u64 len = length;
7446 const u64 data_alloc_len = length;
7447 bool unlock_extents = false;
7448
7449 /*
7450 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7451 * we're NOWAIT we may submit a bio for a partial range and return
7452 * EIOCBQUEUED, which would result in an errant short read.
7453 *
7454 * The best way to handle this would be to allow for partial completions
7455 * of iocb's, so we could submit the partial bio, return and fault in
7456 * the rest of the pages, and then submit the io for the rest of the
7457 * range. However we don't have that currently, so simply return
7458 * -EAGAIN at this point so that the normal path is used.
7459 */
7460 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7461 return -EAGAIN;
7462
7463 /*
7464 * Cap the size of reads to that usually seen in buffered I/O as we need
7465 * to allocate a contiguous array for the checksums.
7466 */
7467 if (!write)
7468 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7469
7470 lockstart = start;
7471 lockend = start + len - 1;
7472
7473 /*
7474 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7475 * enough if we've written compressed pages to this area, so we need to
7476 * flush the dirty pages again to make absolutely sure that any
7477 * outstanding dirty pages are on disk - the first flush only starts
7478 * compression on the data, while keeping the pages locked, so by the
7479 * time the second flush returns we know bios for the compressed pages
7480 * were submitted and finished, and the pages no longer under writeback.
7481 *
7482 * If we have a NOWAIT request and we have any pages in the range that
7483 * are locked, likely due to compression still in progress, we don't want
7484 * to block on page locks. We also don't want to block on pages marked as
7485 * dirty or under writeback (same as for the non-compression case).
7486 * iomap_dio_rw() did the same check, but after that and before we got
7487 * here, mmap'ed writes may have happened or buffered reads started
7488 * (readpage() and readahead(), which lock pages), as we haven't locked
7489 * the file range yet.
7490 */
7491 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7492 &BTRFS_I(inode)->runtime_flags)) {
7493 if (flags & IOMAP_NOWAIT) {
7494 if (filemap_range_needs_writeback(inode->i_mapping,
7495 lockstart, lockend))
7496 return -EAGAIN;
7497 } else {
7498 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7499 start + length - 1);
7500 if (ret)
7501 return ret;
7502 }
7503 }
7504
7505 memset(dio_data, 0, sizeof(*dio_data));
7506
7507 /*
7508 * We always try to allocate data space and must do it before locking
7509 * the file range, to avoid deadlocks with concurrent writes to the same
7510 * range if the range has several extents and the writes don't expand the
7511 * current i_size (the inode lock is taken in shared mode). If we fail to
7512 * allocate data space here we continue and later, after locking the
7513 * file range, we fail with ENOSPC only if we figure out we can not do a
7514 * NOCOW write.
7515 */
7516 if (write && !(flags & IOMAP_NOWAIT)) {
7517 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7518 &dio_data->data_reserved,
7519 start, data_alloc_len, false);
7520 if (!ret)
7521 dio_data->data_space_reserved = true;
7522 else if (ret && !(BTRFS_I(inode)->flags &
7523 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7524 goto err;
7525 }
7526
7527 /*
7528 * If this errors out it's because we couldn't invalidate pagecache for
7529 * this range and we need to fallback to buffered IO, or we are doing a
7530 * NOWAIT read/write and we need to block.
7531 */
7532 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7533 if (ret < 0)
7534 goto err;
7535
7536 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7537 if (IS_ERR(em)) {
7538 ret = PTR_ERR(em);
7539 goto unlock_err;
7540 }
7541
7542 /*
7543 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7544 * io. INLINE is special, and we could probably kludge it in here, but
7545 * it's still buffered so for safety lets just fall back to the generic
7546 * buffered path.
7547 *
7548 * For COMPRESSED we _have_ to read the entire extent in so we can
7549 * decompress it, so there will be buffering required no matter what we
7550 * do, so go ahead and fallback to buffered.
7551 *
7552 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7553 * to buffered IO. Don't blame me, this is the price we pay for using
7554 * the generic code.
7555 */
7556 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7557 em->block_start == EXTENT_MAP_INLINE) {
7558 free_extent_map(em);
7559 /*
7560 * If we are in a NOWAIT context, return -EAGAIN in order to
7561 * fallback to buffered IO. This is not only because we can
7562 * block with buffered IO (no support for NOWAIT semantics at
7563 * the moment) but also to avoid returning short reads to user
7564 * space - this happens if we were able to read some data from
7565 * previous non-compressed extents and then when we fallback to
7566 * buffered IO, at btrfs_file_read_iter() by calling
7567 * filemap_read(), we fail to fault in pages for the read buffer,
7568 * in which case filemap_read() returns a short read (the number
7569 * of bytes previously read is > 0, so it does not return -EFAULT).
7570 */
7571 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7572 goto unlock_err;
7573 }
7574
7575 len = min(len, em->len - (start - em->start));
7576
7577 /*
7578 * If we have a NOWAIT request and the range contains multiple extents
7579 * (or a mix of extents and holes), then we return -EAGAIN to make the
7580 * caller fallback to a context where it can do a blocking (without
7581 * NOWAIT) request. This way we avoid doing partial IO and returning
7582 * success to the caller, which is not optimal for writes and for reads
7583 * it can result in unexpected behaviour for an application.
7584 *
7585 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7586 * iomap_dio_rw(), we can end up returning less data then what the caller
7587 * asked for, resulting in an unexpected, and incorrect, short read.
7588 * That is, the caller asked to read N bytes and we return less than that,
7589 * which is wrong unless we are crossing EOF. This happens if we get a
7590 * page fault error when trying to fault in pages for the buffer that is
7591 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7592 * have previously submitted bios for other extents in the range, in
7593 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7594 * those bios have completed by the time we get the page fault error,
7595 * which we return back to our caller - we should only return EIOCBQUEUED
7596 * after we have submitted bios for all the extents in the range.
7597 */
7598 if ((flags & IOMAP_NOWAIT) && len < length) {
7599 free_extent_map(em);
7600 ret = -EAGAIN;
7601 goto unlock_err;
7602 }
7603
7604 if (write) {
7605 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7606 start, &len, flags);
7607 if (ret < 0)
7608 goto unlock_err;
7609 unlock_extents = true;
7610 /* Recalc len in case the new em is smaller than requested */
7611 len = min(len, em->len - (start - em->start));
7612 if (dio_data->data_space_reserved) {
7613 u64 release_offset;
7614 u64 release_len = 0;
7615
7616 if (dio_data->nocow_done) {
7617 release_offset = start;
7618 release_len = data_alloc_len;
7619 } else if (len < data_alloc_len) {
7620 release_offset = start + len;
7621 release_len = data_alloc_len - len;
7622 }
7623
7624 if (release_len > 0)
7625 btrfs_free_reserved_data_space(BTRFS_I(inode),
7626 dio_data->data_reserved,
7627 release_offset,
7628 release_len);
7629 }
7630 } else {
7631 /*
7632 * We need to unlock only the end area that we aren't using.
7633 * The rest is going to be unlocked by the endio routine.
7634 */
7635 lockstart = start + len;
7636 if (lockstart < lockend)
7637 unlock_extents = true;
7638 }
7639
7640 if (unlock_extents)
7641 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7642 &cached_state);
7643 else
7644 free_extent_state(cached_state);
7645
7646 /*
7647 * Translate extent map information to iomap.
7648 * We trim the extents (and move the addr) even though iomap code does
7649 * that, since we have locked only the parts we are performing I/O in.
7650 */
7651 if ((em->block_start == EXTENT_MAP_HOLE) ||
7652 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7653 iomap->addr = IOMAP_NULL_ADDR;
7654 iomap->type = IOMAP_HOLE;
7655 } else {
7656 iomap->addr = em->block_start + (start - em->start);
7657 iomap->type = IOMAP_MAPPED;
7658 }
7659 iomap->offset = start;
7660 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7661 iomap->length = len;
7662 free_extent_map(em);
7663
7664 return 0;
7665
7666 unlock_err:
7667 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7668 &cached_state);
7669 err:
7670 if (dio_data->data_space_reserved) {
7671 btrfs_free_reserved_data_space(BTRFS_I(inode),
7672 dio_data->data_reserved,
7673 start, data_alloc_len);
7674 extent_changeset_free(dio_data->data_reserved);
7675 }
7676
7677 return ret;
7678 }
7679
btrfs_dio_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned int flags,struct iomap * iomap)7680 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7681 ssize_t written, unsigned int flags, struct iomap *iomap)
7682 {
7683 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7684 struct btrfs_dio_data *dio_data = iter->private;
7685 size_t submitted = dio_data->submitted;
7686 const bool write = !!(flags & IOMAP_WRITE);
7687 int ret = 0;
7688
7689 if (!write && (iomap->type == IOMAP_HOLE)) {
7690 /* If reading from a hole, unlock and return */
7691 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7692 NULL);
7693 return 0;
7694 }
7695
7696 if (submitted < length) {
7697 pos += submitted;
7698 length -= submitted;
7699 if (write)
7700 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7701 pos, length, false);
7702 else
7703 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7704 pos + length - 1, NULL);
7705 ret = -ENOTBLK;
7706 }
7707 if (write) {
7708 btrfs_put_ordered_extent(dio_data->ordered);
7709 dio_data->ordered = NULL;
7710 }
7711
7712 if (write)
7713 extent_changeset_free(dio_data->data_reserved);
7714 return ret;
7715 }
7716
btrfs_dio_end_io(struct btrfs_bio * bbio)7717 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7718 {
7719 struct btrfs_dio_private *dip =
7720 container_of(bbio, struct btrfs_dio_private, bbio);
7721 struct btrfs_inode *inode = bbio->inode;
7722 struct bio *bio = &bbio->bio;
7723
7724 if (bio->bi_status) {
7725 btrfs_warn(inode->root->fs_info,
7726 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7727 btrfs_ino(inode), bio->bi_opf,
7728 dip->file_offset, dip->bytes, bio->bi_status);
7729 }
7730
7731 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7732 btrfs_finish_ordered_extent(bbio->ordered, NULL,
7733 dip->file_offset, dip->bytes,
7734 !bio->bi_status);
7735 } else {
7736 unlock_extent(&inode->io_tree, dip->file_offset,
7737 dip->file_offset + dip->bytes - 1, NULL);
7738 }
7739
7740 bbio->bio.bi_private = bbio->private;
7741 iomap_dio_bio_end_io(bio);
7742 }
7743
btrfs_dio_submit_io(const struct iomap_iter * iter,struct bio * bio,loff_t file_offset)7744 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7745 loff_t file_offset)
7746 {
7747 struct btrfs_bio *bbio = btrfs_bio(bio);
7748 struct btrfs_dio_private *dip =
7749 container_of(bbio, struct btrfs_dio_private, bbio);
7750 struct btrfs_dio_data *dio_data = iter->private;
7751
7752 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7753 btrfs_dio_end_io, bio->bi_private);
7754 bbio->inode = BTRFS_I(iter->inode);
7755 bbio->file_offset = file_offset;
7756
7757 dip->file_offset = file_offset;
7758 dip->bytes = bio->bi_iter.bi_size;
7759
7760 dio_data->submitted += bio->bi_iter.bi_size;
7761
7762 /*
7763 * Check if we are doing a partial write. If we are, we need to split
7764 * the ordered extent to match the submitted bio. Hang on to the
7765 * remaining unfinishable ordered_extent in dio_data so that it can be
7766 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7767 * remaining pages is blocked on the outstanding ordered extent.
7768 */
7769 if (iter->flags & IOMAP_WRITE) {
7770 int ret;
7771
7772 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7773 if (ret) {
7774 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7775 file_offset, dip->bytes,
7776 !ret);
7777 bio->bi_status = errno_to_blk_status(ret);
7778 iomap_dio_bio_end_io(bio);
7779 return;
7780 }
7781 }
7782
7783 btrfs_submit_bio(bbio, 0);
7784 }
7785
7786 static const struct iomap_ops btrfs_dio_iomap_ops = {
7787 .iomap_begin = btrfs_dio_iomap_begin,
7788 .iomap_end = btrfs_dio_iomap_end,
7789 };
7790
7791 static const struct iomap_dio_ops btrfs_dio_ops = {
7792 .submit_io = btrfs_dio_submit_io,
7793 .bio_set = &btrfs_dio_bioset,
7794 };
7795
btrfs_dio_read(struct kiocb * iocb,struct iov_iter * iter,size_t done_before)7796 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7797 {
7798 struct btrfs_dio_data data = { 0 };
7799
7800 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7801 IOMAP_DIO_PARTIAL, &data, done_before);
7802 }
7803
btrfs_dio_write(struct kiocb * iocb,struct iov_iter * iter,size_t done_before)7804 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7805 size_t done_before)
7806 {
7807 struct btrfs_dio_data data = { 0 };
7808
7809 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7810 IOMAP_DIO_PARTIAL, &data, done_before);
7811 }
7812
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)7813 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7814 u64 start, u64 len)
7815 {
7816 int ret;
7817
7818 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7819 if (ret)
7820 return ret;
7821
7822 /*
7823 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7824 * file range (0 to LLONG_MAX), but that is not enough if we have
7825 * compression enabled. The first filemap_fdatawrite_range() only kicks
7826 * in the compression of data (in an async thread) and will return
7827 * before the compression is done and writeback is started. A second
7828 * filemap_fdatawrite_range() is needed to wait for the compression to
7829 * complete and writeback to start. We also need to wait for ordered
7830 * extents to complete, because our fiemap implementation uses mainly
7831 * file extent items to list the extents, searching for extent maps
7832 * only for file ranges with holes or prealloc extents to figure out
7833 * if we have delalloc in those ranges.
7834 */
7835 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7836 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7837 if (ret)
7838 return ret;
7839 }
7840
7841 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7842 }
7843
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)7844 static int btrfs_writepages(struct address_space *mapping,
7845 struct writeback_control *wbc)
7846 {
7847 return extent_writepages(mapping, wbc);
7848 }
7849
btrfs_readahead(struct readahead_control * rac)7850 static void btrfs_readahead(struct readahead_control *rac)
7851 {
7852 extent_readahead(rac);
7853 }
7854
7855 /*
7856 * For release_folio() and invalidate_folio() we have a race window where
7857 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7858 * If we continue to release/invalidate the page, we could cause use-after-free
7859 * for subpage spinlock. So this function is to spin and wait for subpage
7860 * spinlock.
7861 */
wait_subpage_spinlock(struct page * page)7862 static void wait_subpage_spinlock(struct page *page)
7863 {
7864 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7865 struct btrfs_subpage *subpage;
7866
7867 if (!btrfs_is_subpage(fs_info, page))
7868 return;
7869
7870 ASSERT(PagePrivate(page) && page->private);
7871 subpage = (struct btrfs_subpage *)page->private;
7872
7873 /*
7874 * This may look insane as we just acquire the spinlock and release it,
7875 * without doing anything. But we just want to make sure no one is
7876 * still holding the subpage spinlock.
7877 * And since the page is not dirty nor writeback, and we have page
7878 * locked, the only possible way to hold a spinlock is from the endio
7879 * function to clear page writeback.
7880 *
7881 * Here we just acquire the spinlock so that all existing callers
7882 * should exit and we're safe to release/invalidate the page.
7883 */
7884 spin_lock_irq(&subpage->lock);
7885 spin_unlock_irq(&subpage->lock);
7886 }
7887
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7888 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7889 {
7890 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7891
7892 if (ret == 1) {
7893 wait_subpage_spinlock(&folio->page);
7894 clear_page_extent_mapped(&folio->page);
7895 }
7896 return ret;
7897 }
7898
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7899 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7900 {
7901 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7902 return false;
7903 return __btrfs_release_folio(folio, gfp_flags);
7904 }
7905
7906 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)7907 static int btrfs_migrate_folio(struct address_space *mapping,
7908 struct folio *dst, struct folio *src,
7909 enum migrate_mode mode)
7910 {
7911 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7912
7913 if (ret != MIGRATEPAGE_SUCCESS)
7914 return ret;
7915
7916 if (folio_test_ordered(src)) {
7917 folio_clear_ordered(src);
7918 folio_set_ordered(dst);
7919 }
7920
7921 return MIGRATEPAGE_SUCCESS;
7922 }
7923 #else
7924 #define btrfs_migrate_folio NULL
7925 #endif
7926
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)7927 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7928 size_t length)
7929 {
7930 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7931 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7932 struct extent_io_tree *tree = &inode->io_tree;
7933 struct extent_state *cached_state = NULL;
7934 u64 page_start = folio_pos(folio);
7935 u64 page_end = page_start + folio_size(folio) - 1;
7936 u64 cur;
7937 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7938
7939 /*
7940 * We have folio locked so no new ordered extent can be created on this
7941 * page, nor bio can be submitted for this folio.
7942 *
7943 * But already submitted bio can still be finished on this folio.
7944 * Furthermore, endio function won't skip folio which has Ordered
7945 * (Private2) already cleared, so it's possible for endio and
7946 * invalidate_folio to do the same ordered extent accounting twice
7947 * on one folio.
7948 *
7949 * So here we wait for any submitted bios to finish, so that we won't
7950 * do double ordered extent accounting on the same folio.
7951 */
7952 folio_wait_writeback(folio);
7953 wait_subpage_spinlock(&folio->page);
7954
7955 /*
7956 * For subpage case, we have call sites like
7957 * btrfs_punch_hole_lock_range() which passes range not aligned to
7958 * sectorsize.
7959 * If the range doesn't cover the full folio, we don't need to and
7960 * shouldn't clear page extent mapped, as folio->private can still
7961 * record subpage dirty bits for other part of the range.
7962 *
7963 * For cases that invalidate the full folio even the range doesn't
7964 * cover the full folio, like invalidating the last folio, we're
7965 * still safe to wait for ordered extent to finish.
7966 */
7967 if (!(offset == 0 && length == folio_size(folio))) {
7968 btrfs_release_folio(folio, GFP_NOFS);
7969 return;
7970 }
7971
7972 if (!inode_evicting)
7973 lock_extent(tree, page_start, page_end, &cached_state);
7974
7975 cur = page_start;
7976 while (cur < page_end) {
7977 struct btrfs_ordered_extent *ordered;
7978 u64 range_end;
7979 u32 range_len;
7980 u32 extra_flags = 0;
7981
7982 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7983 page_end + 1 - cur);
7984 if (!ordered) {
7985 range_end = page_end;
7986 /*
7987 * No ordered extent covering this range, we are safe
7988 * to delete all extent states in the range.
7989 */
7990 extra_flags = EXTENT_CLEAR_ALL_BITS;
7991 goto next;
7992 }
7993 if (ordered->file_offset > cur) {
7994 /*
7995 * There is a range between [cur, oe->file_offset) not
7996 * covered by any ordered extent.
7997 * We are safe to delete all extent states, and handle
7998 * the ordered extent in the next iteration.
7999 */
8000 range_end = ordered->file_offset - 1;
8001 extra_flags = EXTENT_CLEAR_ALL_BITS;
8002 goto next;
8003 }
8004
8005 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8006 page_end);
8007 ASSERT(range_end + 1 - cur < U32_MAX);
8008 range_len = range_end + 1 - cur;
8009 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8010 /*
8011 * If Ordered (Private2) is cleared, it means endio has
8012 * already been executed for the range.
8013 * We can't delete the extent states as
8014 * btrfs_finish_ordered_io() may still use some of them.
8015 */
8016 goto next;
8017 }
8018 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8019
8020 /*
8021 * IO on this page will never be started, so we need to account
8022 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8023 * here, must leave that up for the ordered extent completion.
8024 *
8025 * This will also unlock the range for incoming
8026 * btrfs_finish_ordered_io().
8027 */
8028 if (!inode_evicting)
8029 clear_extent_bit(tree, cur, range_end,
8030 EXTENT_DELALLOC |
8031 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8032 EXTENT_DEFRAG, &cached_state);
8033
8034 spin_lock_irq(&inode->ordered_tree.lock);
8035 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8036 ordered->truncated_len = min(ordered->truncated_len,
8037 cur - ordered->file_offset);
8038 spin_unlock_irq(&inode->ordered_tree.lock);
8039
8040 /*
8041 * If the ordered extent has finished, we're safe to delete all
8042 * the extent states of the range, otherwise
8043 * btrfs_finish_ordered_io() will get executed by endio for
8044 * other pages, so we can't delete extent states.
8045 */
8046 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8047 cur, range_end + 1 - cur)) {
8048 btrfs_finish_ordered_io(ordered);
8049 /*
8050 * The ordered extent has finished, now we're again
8051 * safe to delete all extent states of the range.
8052 */
8053 extra_flags = EXTENT_CLEAR_ALL_BITS;
8054 }
8055 next:
8056 if (ordered)
8057 btrfs_put_ordered_extent(ordered);
8058 /*
8059 * Qgroup reserved space handler
8060 * Sector(s) here will be either:
8061 *
8062 * 1) Already written to disk or bio already finished
8063 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8064 * Qgroup will be handled by its qgroup_record then.
8065 * btrfs_qgroup_free_data() call will do nothing here.
8066 *
8067 * 2) Not written to disk yet
8068 * Then btrfs_qgroup_free_data() call will clear the
8069 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8070 * reserved data space.
8071 * Since the IO will never happen for this page.
8072 */
8073 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8074 if (!inode_evicting) {
8075 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8076 EXTENT_DELALLOC | EXTENT_UPTODATE |
8077 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8078 extra_flags, &cached_state);
8079 }
8080 cur = range_end + 1;
8081 }
8082 /*
8083 * We have iterated through all ordered extents of the page, the page
8084 * should not have Ordered (Private2) anymore, or the above iteration
8085 * did something wrong.
8086 */
8087 ASSERT(!folio_test_ordered(folio));
8088 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8089 if (!inode_evicting)
8090 __btrfs_release_folio(folio, GFP_NOFS);
8091 clear_page_extent_mapped(&folio->page);
8092 }
8093
8094 /*
8095 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8096 * called from a page fault handler when a page is first dirtied. Hence we must
8097 * be careful to check for EOF conditions here. We set the page up correctly
8098 * for a written page which means we get ENOSPC checking when writing into
8099 * holes and correct delalloc and unwritten extent mapping on filesystems that
8100 * support these features.
8101 *
8102 * We are not allowed to take the i_mutex here so we have to play games to
8103 * protect against truncate races as the page could now be beyond EOF. Because
8104 * truncate_setsize() writes the inode size before removing pages, once we have
8105 * the page lock we can determine safely if the page is beyond EOF. If it is not
8106 * beyond EOF, then the page is guaranteed safe against truncation until we
8107 * unlock the page.
8108 */
btrfs_page_mkwrite(struct vm_fault * vmf)8109 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8110 {
8111 struct page *page = vmf->page;
8112 struct inode *inode = file_inode(vmf->vma->vm_file);
8113 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8114 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8115 struct btrfs_ordered_extent *ordered;
8116 struct extent_state *cached_state = NULL;
8117 struct extent_changeset *data_reserved = NULL;
8118 unsigned long zero_start;
8119 loff_t size;
8120 vm_fault_t ret;
8121 int ret2;
8122 int reserved = 0;
8123 u64 reserved_space;
8124 u64 page_start;
8125 u64 page_end;
8126 u64 end;
8127
8128 reserved_space = PAGE_SIZE;
8129
8130 sb_start_pagefault(inode->i_sb);
8131 page_start = page_offset(page);
8132 page_end = page_start + PAGE_SIZE - 1;
8133 end = page_end;
8134
8135 /*
8136 * Reserving delalloc space after obtaining the page lock can lead to
8137 * deadlock. For example, if a dirty page is locked by this function
8138 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8139 * dirty page write out, then the btrfs_writepages() function could
8140 * end up waiting indefinitely to get a lock on the page currently
8141 * being processed by btrfs_page_mkwrite() function.
8142 */
8143 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8144 page_start, reserved_space);
8145 if (!ret2) {
8146 ret2 = file_update_time(vmf->vma->vm_file);
8147 reserved = 1;
8148 }
8149 if (ret2) {
8150 ret = vmf_error(ret2);
8151 if (reserved)
8152 goto out;
8153 goto out_noreserve;
8154 }
8155
8156 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8157 again:
8158 down_read(&BTRFS_I(inode)->i_mmap_lock);
8159 lock_page(page);
8160 size = i_size_read(inode);
8161
8162 if ((page->mapping != inode->i_mapping) ||
8163 (page_start >= size)) {
8164 /* page got truncated out from underneath us */
8165 goto out_unlock;
8166 }
8167 wait_on_page_writeback(page);
8168
8169 lock_extent(io_tree, page_start, page_end, &cached_state);
8170 ret2 = set_page_extent_mapped(page);
8171 if (ret2 < 0) {
8172 ret = vmf_error(ret2);
8173 unlock_extent(io_tree, page_start, page_end, &cached_state);
8174 goto out_unlock;
8175 }
8176
8177 /*
8178 * we can't set the delalloc bits if there are pending ordered
8179 * extents. Drop our locks and wait for them to finish
8180 */
8181 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8182 PAGE_SIZE);
8183 if (ordered) {
8184 unlock_extent(io_tree, page_start, page_end, &cached_state);
8185 unlock_page(page);
8186 up_read(&BTRFS_I(inode)->i_mmap_lock);
8187 btrfs_start_ordered_extent(ordered);
8188 btrfs_put_ordered_extent(ordered);
8189 goto again;
8190 }
8191
8192 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8193 reserved_space = round_up(size - page_start,
8194 fs_info->sectorsize);
8195 if (reserved_space < PAGE_SIZE) {
8196 end = page_start + reserved_space - 1;
8197 btrfs_delalloc_release_space(BTRFS_I(inode),
8198 data_reserved, page_start,
8199 PAGE_SIZE - reserved_space, true);
8200 }
8201 }
8202
8203 /*
8204 * page_mkwrite gets called when the page is firstly dirtied after it's
8205 * faulted in, but write(2) could also dirty a page and set delalloc
8206 * bits, thus in this case for space account reason, we still need to
8207 * clear any delalloc bits within this page range since we have to
8208 * reserve data&meta space before lock_page() (see above comments).
8209 */
8210 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8211 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8212 EXTENT_DEFRAG, &cached_state);
8213
8214 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8215 &cached_state);
8216 if (ret2) {
8217 unlock_extent(io_tree, page_start, page_end, &cached_state);
8218 ret = VM_FAULT_SIGBUS;
8219 goto out_unlock;
8220 }
8221
8222 /* page is wholly or partially inside EOF */
8223 if (page_start + PAGE_SIZE > size)
8224 zero_start = offset_in_page(size);
8225 else
8226 zero_start = PAGE_SIZE;
8227
8228 if (zero_start != PAGE_SIZE)
8229 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8230
8231 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8232 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8233 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8234
8235 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8236
8237 unlock_extent(io_tree, page_start, page_end, &cached_state);
8238 up_read(&BTRFS_I(inode)->i_mmap_lock);
8239
8240 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8241 sb_end_pagefault(inode->i_sb);
8242 extent_changeset_free(data_reserved);
8243 return VM_FAULT_LOCKED;
8244
8245 out_unlock:
8246 unlock_page(page);
8247 up_read(&BTRFS_I(inode)->i_mmap_lock);
8248 out:
8249 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8250 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8251 reserved_space, (ret != 0));
8252 out_noreserve:
8253 sb_end_pagefault(inode->i_sb);
8254 extent_changeset_free(data_reserved);
8255 return ret;
8256 }
8257
btrfs_truncate(struct btrfs_inode * inode,bool skip_writeback)8258 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8259 {
8260 struct btrfs_truncate_control control = {
8261 .inode = inode,
8262 .ino = btrfs_ino(inode),
8263 .min_type = BTRFS_EXTENT_DATA_KEY,
8264 .clear_extent_range = true,
8265 };
8266 struct btrfs_root *root = inode->root;
8267 struct btrfs_fs_info *fs_info = root->fs_info;
8268 struct btrfs_block_rsv *rsv;
8269 int ret;
8270 struct btrfs_trans_handle *trans;
8271 u64 mask = fs_info->sectorsize - 1;
8272 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8273
8274 if (!skip_writeback) {
8275 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8276 inode->vfs_inode.i_size & (~mask),
8277 (u64)-1);
8278 if (ret)
8279 return ret;
8280 }
8281
8282 /*
8283 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8284 * things going on here:
8285 *
8286 * 1) We need to reserve space to update our inode.
8287 *
8288 * 2) We need to have something to cache all the space that is going to
8289 * be free'd up by the truncate operation, but also have some slack
8290 * space reserved in case it uses space during the truncate (thank you
8291 * very much snapshotting).
8292 *
8293 * And we need these to be separate. The fact is we can use a lot of
8294 * space doing the truncate, and we have no earthly idea how much space
8295 * we will use, so we need the truncate reservation to be separate so it
8296 * doesn't end up using space reserved for updating the inode. We also
8297 * need to be able to stop the transaction and start a new one, which
8298 * means we need to be able to update the inode several times, and we
8299 * have no idea of knowing how many times that will be, so we can't just
8300 * reserve 1 item for the entirety of the operation, so that has to be
8301 * done separately as well.
8302 *
8303 * So that leaves us with
8304 *
8305 * 1) rsv - for the truncate reservation, which we will steal from the
8306 * transaction reservation.
8307 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8308 * updating the inode.
8309 */
8310 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8311 if (!rsv)
8312 return -ENOMEM;
8313 rsv->size = min_size;
8314 rsv->failfast = true;
8315
8316 /*
8317 * 1 for the truncate slack space
8318 * 1 for updating the inode.
8319 */
8320 trans = btrfs_start_transaction(root, 2);
8321 if (IS_ERR(trans)) {
8322 ret = PTR_ERR(trans);
8323 goto out;
8324 }
8325
8326 /* Migrate the slack space for the truncate to our reserve */
8327 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8328 min_size, false);
8329 /*
8330 * We have reserved 2 metadata units when we started the transaction and
8331 * min_size matches 1 unit, so this should never fail, but if it does,
8332 * it's not critical we just fail truncation.
8333 */
8334 if (WARN_ON(ret)) {
8335 btrfs_end_transaction(trans);
8336 goto out;
8337 }
8338
8339 trans->block_rsv = rsv;
8340
8341 while (1) {
8342 struct extent_state *cached_state = NULL;
8343 const u64 new_size = inode->vfs_inode.i_size;
8344 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8345
8346 control.new_size = new_size;
8347 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8348 /*
8349 * We want to drop from the next block forward in case this new
8350 * size is not block aligned since we will be keeping the last
8351 * block of the extent just the way it is.
8352 */
8353 btrfs_drop_extent_map_range(inode,
8354 ALIGN(new_size, fs_info->sectorsize),
8355 (u64)-1, false);
8356
8357 ret = btrfs_truncate_inode_items(trans, root, &control);
8358
8359 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8360 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8361
8362 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8363
8364 trans->block_rsv = &fs_info->trans_block_rsv;
8365 if (ret != -ENOSPC && ret != -EAGAIN)
8366 break;
8367
8368 ret = btrfs_update_inode(trans, root, inode);
8369 if (ret)
8370 break;
8371
8372 btrfs_end_transaction(trans);
8373 btrfs_btree_balance_dirty(fs_info);
8374
8375 trans = btrfs_start_transaction(root, 2);
8376 if (IS_ERR(trans)) {
8377 ret = PTR_ERR(trans);
8378 trans = NULL;
8379 break;
8380 }
8381
8382 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8383 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8384 rsv, min_size, false);
8385 /*
8386 * We have reserved 2 metadata units when we started the
8387 * transaction and min_size matches 1 unit, so this should never
8388 * fail, but if it does, it's not critical we just fail truncation.
8389 */
8390 if (WARN_ON(ret))
8391 break;
8392
8393 trans->block_rsv = rsv;
8394 }
8395
8396 /*
8397 * We can't call btrfs_truncate_block inside a trans handle as we could
8398 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8399 * know we've truncated everything except the last little bit, and can
8400 * do btrfs_truncate_block and then update the disk_i_size.
8401 */
8402 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8403 btrfs_end_transaction(trans);
8404 btrfs_btree_balance_dirty(fs_info);
8405
8406 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8407 if (ret)
8408 goto out;
8409 trans = btrfs_start_transaction(root, 1);
8410 if (IS_ERR(trans)) {
8411 ret = PTR_ERR(trans);
8412 goto out;
8413 }
8414 btrfs_inode_safe_disk_i_size_write(inode, 0);
8415 }
8416
8417 if (trans) {
8418 int ret2;
8419
8420 trans->block_rsv = &fs_info->trans_block_rsv;
8421 ret2 = btrfs_update_inode(trans, root, inode);
8422 if (ret2 && !ret)
8423 ret = ret2;
8424
8425 ret2 = btrfs_end_transaction(trans);
8426 if (ret2 && !ret)
8427 ret = ret2;
8428 btrfs_btree_balance_dirty(fs_info);
8429 }
8430 out:
8431 btrfs_free_block_rsv(fs_info, rsv);
8432 /*
8433 * So if we truncate and then write and fsync we normally would just
8434 * write the extents that changed, which is a problem if we need to
8435 * first truncate that entire inode. So set this flag so we write out
8436 * all of the extents in the inode to the sync log so we're completely
8437 * safe.
8438 *
8439 * If no extents were dropped or trimmed we don't need to force the next
8440 * fsync to truncate all the inode's items from the log and re-log them
8441 * all. This means the truncate operation did not change the file size,
8442 * or changed it to a smaller size but there was only an implicit hole
8443 * between the old i_size and the new i_size, and there were no prealloc
8444 * extents beyond i_size to drop.
8445 */
8446 if (control.extents_found > 0)
8447 btrfs_set_inode_full_sync(inode);
8448
8449 return ret;
8450 }
8451
btrfs_new_subvol_inode(struct mnt_idmap * idmap,struct inode * dir)8452 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8453 struct inode *dir)
8454 {
8455 struct inode *inode;
8456
8457 inode = new_inode(dir->i_sb);
8458 if (inode) {
8459 /*
8460 * Subvolumes don't inherit the sgid bit or the parent's gid if
8461 * the parent's sgid bit is set. This is probably a bug.
8462 */
8463 inode_init_owner(idmap, inode, NULL,
8464 S_IFDIR | (~current_umask() & S_IRWXUGO));
8465 inode->i_op = &btrfs_dir_inode_operations;
8466 inode->i_fop = &btrfs_dir_file_operations;
8467 }
8468 return inode;
8469 }
8470
btrfs_alloc_inode(struct super_block * sb)8471 struct inode *btrfs_alloc_inode(struct super_block *sb)
8472 {
8473 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8474 struct btrfs_inode *ei;
8475 struct inode *inode;
8476
8477 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8478 if (!ei)
8479 return NULL;
8480
8481 ei->root = NULL;
8482 ei->generation = 0;
8483 ei->last_trans = 0;
8484 ei->last_sub_trans = 0;
8485 ei->logged_trans = 0;
8486 ei->delalloc_bytes = 0;
8487 ei->new_delalloc_bytes = 0;
8488 ei->defrag_bytes = 0;
8489 ei->disk_i_size = 0;
8490 ei->flags = 0;
8491 ei->ro_flags = 0;
8492 ei->csum_bytes = 0;
8493 ei->index_cnt = (u64)-1;
8494 ei->dir_index = 0;
8495 ei->last_unlink_trans = 0;
8496 ei->last_reflink_trans = 0;
8497 ei->last_log_commit = 0;
8498
8499 spin_lock_init(&ei->lock);
8500 ei->outstanding_extents = 0;
8501 if (sb->s_magic != BTRFS_TEST_MAGIC)
8502 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8503 BTRFS_BLOCK_RSV_DELALLOC);
8504 ei->runtime_flags = 0;
8505 ei->prop_compress = BTRFS_COMPRESS_NONE;
8506 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8507
8508 ei->delayed_node = NULL;
8509
8510 ei->i_otime.tv_sec = 0;
8511 ei->i_otime.tv_nsec = 0;
8512
8513 inode = &ei->vfs_inode;
8514 extent_map_tree_init(&ei->extent_tree);
8515 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8516 ei->io_tree.inode = ei;
8517 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8518 IO_TREE_INODE_FILE_EXTENT);
8519 mutex_init(&ei->log_mutex);
8520 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8521 INIT_LIST_HEAD(&ei->delalloc_inodes);
8522 INIT_LIST_HEAD(&ei->delayed_iput);
8523 RB_CLEAR_NODE(&ei->rb_node);
8524 init_rwsem(&ei->i_mmap_lock);
8525
8526 return inode;
8527 }
8528
8529 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)8530 void btrfs_test_destroy_inode(struct inode *inode)
8531 {
8532 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8533 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8534 }
8535 #endif
8536
btrfs_free_inode(struct inode * inode)8537 void btrfs_free_inode(struct inode *inode)
8538 {
8539 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8540 }
8541
btrfs_destroy_inode(struct inode * vfs_inode)8542 void btrfs_destroy_inode(struct inode *vfs_inode)
8543 {
8544 struct btrfs_ordered_extent *ordered;
8545 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8546 struct btrfs_root *root = inode->root;
8547 bool freespace_inode;
8548
8549 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8550 WARN_ON(vfs_inode->i_data.nrpages);
8551 WARN_ON(inode->block_rsv.reserved);
8552 WARN_ON(inode->block_rsv.size);
8553 WARN_ON(inode->outstanding_extents);
8554 if (!S_ISDIR(vfs_inode->i_mode)) {
8555 WARN_ON(inode->delalloc_bytes);
8556 WARN_ON(inode->new_delalloc_bytes);
8557 }
8558 WARN_ON(inode->csum_bytes);
8559 WARN_ON(inode->defrag_bytes);
8560
8561 /*
8562 * This can happen where we create an inode, but somebody else also
8563 * created the same inode and we need to destroy the one we already
8564 * created.
8565 */
8566 if (!root)
8567 return;
8568
8569 /*
8570 * If this is a free space inode do not take the ordered extents lockdep
8571 * map.
8572 */
8573 freespace_inode = btrfs_is_free_space_inode(inode);
8574
8575 while (1) {
8576 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8577 if (!ordered)
8578 break;
8579 else {
8580 btrfs_err(root->fs_info,
8581 "found ordered extent %llu %llu on inode cleanup",
8582 ordered->file_offset, ordered->num_bytes);
8583
8584 if (!freespace_inode)
8585 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8586
8587 btrfs_remove_ordered_extent(inode, ordered);
8588 btrfs_put_ordered_extent(ordered);
8589 btrfs_put_ordered_extent(ordered);
8590 }
8591 }
8592 btrfs_qgroup_check_reserved_leak(inode);
8593 inode_tree_del(inode);
8594 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8595 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8596 btrfs_put_root(inode->root);
8597 }
8598
btrfs_drop_inode(struct inode * inode)8599 int btrfs_drop_inode(struct inode *inode)
8600 {
8601 struct btrfs_root *root = BTRFS_I(inode)->root;
8602
8603 if (root == NULL)
8604 return 1;
8605
8606 /* the snap/subvol tree is on deleting */
8607 if (btrfs_root_refs(&root->root_item) == 0)
8608 return 1;
8609 else
8610 return generic_drop_inode(inode);
8611 }
8612
init_once(void * foo)8613 static void init_once(void *foo)
8614 {
8615 struct btrfs_inode *ei = foo;
8616
8617 inode_init_once(&ei->vfs_inode);
8618 }
8619
btrfs_destroy_cachep(void)8620 void __cold btrfs_destroy_cachep(void)
8621 {
8622 /*
8623 * Make sure all delayed rcu free inodes are flushed before we
8624 * destroy cache.
8625 */
8626 rcu_barrier();
8627 bioset_exit(&btrfs_dio_bioset);
8628 kmem_cache_destroy(btrfs_inode_cachep);
8629 }
8630
btrfs_init_cachep(void)8631 int __init btrfs_init_cachep(void)
8632 {
8633 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8634 sizeof(struct btrfs_inode), 0,
8635 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8636 init_once);
8637 if (!btrfs_inode_cachep)
8638 goto fail;
8639
8640 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8641 offsetof(struct btrfs_dio_private, bbio.bio),
8642 BIOSET_NEED_BVECS))
8643 goto fail;
8644
8645 return 0;
8646 fail:
8647 btrfs_destroy_cachep();
8648 return -ENOMEM;
8649 }
8650
btrfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)8651 static int btrfs_getattr(struct mnt_idmap *idmap,
8652 const struct path *path, struct kstat *stat,
8653 u32 request_mask, unsigned int flags)
8654 {
8655 u64 delalloc_bytes;
8656 u64 inode_bytes;
8657 struct inode *inode = d_inode(path->dentry);
8658 u32 blocksize = inode->i_sb->s_blocksize;
8659 u32 bi_flags = BTRFS_I(inode)->flags;
8660 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8661
8662 stat->result_mask |= STATX_BTIME;
8663 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8664 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8665 if (bi_flags & BTRFS_INODE_APPEND)
8666 stat->attributes |= STATX_ATTR_APPEND;
8667 if (bi_flags & BTRFS_INODE_COMPRESS)
8668 stat->attributes |= STATX_ATTR_COMPRESSED;
8669 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8670 stat->attributes |= STATX_ATTR_IMMUTABLE;
8671 if (bi_flags & BTRFS_INODE_NODUMP)
8672 stat->attributes |= STATX_ATTR_NODUMP;
8673 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8674 stat->attributes |= STATX_ATTR_VERITY;
8675
8676 stat->attributes_mask |= (STATX_ATTR_APPEND |
8677 STATX_ATTR_COMPRESSED |
8678 STATX_ATTR_IMMUTABLE |
8679 STATX_ATTR_NODUMP);
8680
8681 generic_fillattr(idmap, request_mask, inode, stat);
8682 stat->dev = BTRFS_I(inode)->root->anon_dev;
8683
8684 spin_lock(&BTRFS_I(inode)->lock);
8685 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8686 inode_bytes = inode_get_bytes(inode);
8687 spin_unlock(&BTRFS_I(inode)->lock);
8688 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8689 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8690 return 0;
8691 }
8692
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8693 static int btrfs_rename_exchange(struct inode *old_dir,
8694 struct dentry *old_dentry,
8695 struct inode *new_dir,
8696 struct dentry *new_dentry)
8697 {
8698 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8699 struct btrfs_trans_handle *trans;
8700 unsigned int trans_num_items;
8701 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8702 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8703 struct inode *new_inode = new_dentry->d_inode;
8704 struct inode *old_inode = old_dentry->d_inode;
8705 struct btrfs_rename_ctx old_rename_ctx;
8706 struct btrfs_rename_ctx new_rename_ctx;
8707 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8708 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8709 u64 old_idx = 0;
8710 u64 new_idx = 0;
8711 int ret;
8712 int ret2;
8713 bool need_abort = false;
8714 struct fscrypt_name old_fname, new_fname;
8715 struct fscrypt_str *old_name, *new_name;
8716
8717 /*
8718 * For non-subvolumes allow exchange only within one subvolume, in the
8719 * same inode namespace. Two subvolumes (represented as directory) can
8720 * be exchanged as they're a logical link and have a fixed inode number.
8721 */
8722 if (root != dest &&
8723 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8724 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8725 return -EXDEV;
8726
8727 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8728 if (ret)
8729 return ret;
8730
8731 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8732 if (ret) {
8733 fscrypt_free_filename(&old_fname);
8734 return ret;
8735 }
8736
8737 old_name = &old_fname.disk_name;
8738 new_name = &new_fname.disk_name;
8739
8740 /* close the race window with snapshot create/destroy ioctl */
8741 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8742 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8743 down_read(&fs_info->subvol_sem);
8744
8745 /*
8746 * For each inode:
8747 * 1 to remove old dir item
8748 * 1 to remove old dir index
8749 * 1 to add new dir item
8750 * 1 to add new dir index
8751 * 1 to update parent inode
8752 *
8753 * If the parents are the same, we only need to account for one
8754 */
8755 trans_num_items = (old_dir == new_dir ? 9 : 10);
8756 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8757 /*
8758 * 1 to remove old root ref
8759 * 1 to remove old root backref
8760 * 1 to add new root ref
8761 * 1 to add new root backref
8762 */
8763 trans_num_items += 4;
8764 } else {
8765 /*
8766 * 1 to update inode item
8767 * 1 to remove old inode ref
8768 * 1 to add new inode ref
8769 */
8770 trans_num_items += 3;
8771 }
8772 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8773 trans_num_items += 4;
8774 else
8775 trans_num_items += 3;
8776 trans = btrfs_start_transaction(root, trans_num_items);
8777 if (IS_ERR(trans)) {
8778 ret = PTR_ERR(trans);
8779 goto out_notrans;
8780 }
8781
8782 if (dest != root) {
8783 ret = btrfs_record_root_in_trans(trans, dest);
8784 if (ret)
8785 goto out_fail;
8786 }
8787
8788 /*
8789 * We need to find a free sequence number both in the source and
8790 * in the destination directory for the exchange.
8791 */
8792 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8793 if (ret)
8794 goto out_fail;
8795 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8796 if (ret)
8797 goto out_fail;
8798
8799 BTRFS_I(old_inode)->dir_index = 0ULL;
8800 BTRFS_I(new_inode)->dir_index = 0ULL;
8801
8802 /* Reference for the source. */
8803 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8804 /* force full log commit if subvolume involved. */
8805 btrfs_set_log_full_commit(trans);
8806 } else {
8807 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8808 btrfs_ino(BTRFS_I(new_dir)),
8809 old_idx);
8810 if (ret)
8811 goto out_fail;
8812 need_abort = true;
8813 }
8814
8815 /* And now for the dest. */
8816 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8817 /* force full log commit if subvolume involved. */
8818 btrfs_set_log_full_commit(trans);
8819 } else {
8820 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8821 btrfs_ino(BTRFS_I(old_dir)),
8822 new_idx);
8823 if (ret) {
8824 if (need_abort)
8825 btrfs_abort_transaction(trans, ret);
8826 goto out_fail;
8827 }
8828 }
8829
8830 /* Update inode version and ctime/mtime. */
8831 inode_inc_iversion(old_dir);
8832 inode_inc_iversion(new_dir);
8833 inode_inc_iversion(old_inode);
8834 inode_inc_iversion(new_inode);
8835 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8836
8837 if (old_dentry->d_parent != new_dentry->d_parent) {
8838 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8839 BTRFS_I(old_inode), true);
8840 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8841 BTRFS_I(new_inode), true);
8842 }
8843
8844 /* src is a subvolume */
8845 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8846 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8847 } else { /* src is an inode */
8848 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8849 BTRFS_I(old_dentry->d_inode),
8850 old_name, &old_rename_ctx);
8851 if (!ret)
8852 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8853 }
8854 if (ret) {
8855 btrfs_abort_transaction(trans, ret);
8856 goto out_fail;
8857 }
8858
8859 /* dest is a subvolume */
8860 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8861 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8862 } else { /* dest is an inode */
8863 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8864 BTRFS_I(new_dentry->d_inode),
8865 new_name, &new_rename_ctx);
8866 if (!ret)
8867 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8868 }
8869 if (ret) {
8870 btrfs_abort_transaction(trans, ret);
8871 goto out_fail;
8872 }
8873
8874 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8875 new_name, 0, old_idx);
8876 if (ret) {
8877 btrfs_abort_transaction(trans, ret);
8878 goto out_fail;
8879 }
8880
8881 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8882 old_name, 0, new_idx);
8883 if (ret) {
8884 btrfs_abort_transaction(trans, ret);
8885 goto out_fail;
8886 }
8887
8888 if (old_inode->i_nlink == 1)
8889 BTRFS_I(old_inode)->dir_index = old_idx;
8890 if (new_inode->i_nlink == 1)
8891 BTRFS_I(new_inode)->dir_index = new_idx;
8892
8893 /*
8894 * Now pin the logs of the roots. We do it to ensure that no other task
8895 * can sync the logs while we are in progress with the rename, because
8896 * that could result in an inconsistency in case any of the inodes that
8897 * are part of this rename operation were logged before.
8898 */
8899 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8900 btrfs_pin_log_trans(root);
8901 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8902 btrfs_pin_log_trans(dest);
8903
8904 /* Do the log updates for all inodes. */
8905 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8906 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8907 old_rename_ctx.index, new_dentry->d_parent);
8908 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8909 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8910 new_rename_ctx.index, old_dentry->d_parent);
8911
8912 /* Now unpin the logs. */
8913 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8914 btrfs_end_log_trans(root);
8915 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8916 btrfs_end_log_trans(dest);
8917 out_fail:
8918 ret2 = btrfs_end_transaction(trans);
8919 ret = ret ? ret : ret2;
8920 out_notrans:
8921 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8922 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8923 up_read(&fs_info->subvol_sem);
8924
8925 fscrypt_free_filename(&new_fname);
8926 fscrypt_free_filename(&old_fname);
8927 return ret;
8928 }
8929
new_whiteout_inode(struct mnt_idmap * idmap,struct inode * dir)8930 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8931 struct inode *dir)
8932 {
8933 struct inode *inode;
8934
8935 inode = new_inode(dir->i_sb);
8936 if (inode) {
8937 inode_init_owner(idmap, inode, dir,
8938 S_IFCHR | WHITEOUT_MODE);
8939 inode->i_op = &btrfs_special_inode_operations;
8940 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8941 }
8942 return inode;
8943 }
8944
btrfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8945 static int btrfs_rename(struct mnt_idmap *idmap,
8946 struct inode *old_dir, struct dentry *old_dentry,
8947 struct inode *new_dir, struct dentry *new_dentry,
8948 unsigned int flags)
8949 {
8950 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8951 struct btrfs_new_inode_args whiteout_args = {
8952 .dir = old_dir,
8953 .dentry = old_dentry,
8954 };
8955 struct btrfs_trans_handle *trans;
8956 unsigned int trans_num_items;
8957 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8958 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8959 struct inode *new_inode = d_inode(new_dentry);
8960 struct inode *old_inode = d_inode(old_dentry);
8961 struct btrfs_rename_ctx rename_ctx;
8962 u64 index = 0;
8963 int ret;
8964 int ret2;
8965 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8966 struct fscrypt_name old_fname, new_fname;
8967
8968 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8969 return -EPERM;
8970
8971 /* we only allow rename subvolume link between subvolumes */
8972 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8973 return -EXDEV;
8974
8975 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8976 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8977 return -ENOTEMPTY;
8978
8979 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8980 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8981 return -ENOTEMPTY;
8982
8983 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8984 if (ret)
8985 return ret;
8986
8987 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8988 if (ret) {
8989 fscrypt_free_filename(&old_fname);
8990 return ret;
8991 }
8992
8993 /* check for collisions, even if the name isn't there */
8994 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8995 if (ret) {
8996 if (ret == -EEXIST) {
8997 /* we shouldn't get
8998 * eexist without a new_inode */
8999 if (WARN_ON(!new_inode)) {
9000 goto out_fscrypt_names;
9001 }
9002 } else {
9003 /* maybe -EOVERFLOW */
9004 goto out_fscrypt_names;
9005 }
9006 }
9007 ret = 0;
9008
9009 /*
9010 * we're using rename to replace one file with another. Start IO on it
9011 * now so we don't add too much work to the end of the transaction
9012 */
9013 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9014 filemap_flush(old_inode->i_mapping);
9015
9016 if (flags & RENAME_WHITEOUT) {
9017 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9018 if (!whiteout_args.inode) {
9019 ret = -ENOMEM;
9020 goto out_fscrypt_names;
9021 }
9022 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9023 if (ret)
9024 goto out_whiteout_inode;
9025 } else {
9026 /* 1 to update the old parent inode. */
9027 trans_num_items = 1;
9028 }
9029
9030 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9031 /* Close the race window with snapshot create/destroy ioctl */
9032 down_read(&fs_info->subvol_sem);
9033 /*
9034 * 1 to remove old root ref
9035 * 1 to remove old root backref
9036 * 1 to add new root ref
9037 * 1 to add new root backref
9038 */
9039 trans_num_items += 4;
9040 } else {
9041 /*
9042 * 1 to update inode
9043 * 1 to remove old inode ref
9044 * 1 to add new inode ref
9045 */
9046 trans_num_items += 3;
9047 }
9048 /*
9049 * 1 to remove old dir item
9050 * 1 to remove old dir index
9051 * 1 to add new dir item
9052 * 1 to add new dir index
9053 */
9054 trans_num_items += 4;
9055 /* 1 to update new parent inode if it's not the same as the old parent */
9056 if (new_dir != old_dir)
9057 trans_num_items++;
9058 if (new_inode) {
9059 /*
9060 * 1 to update inode
9061 * 1 to remove inode ref
9062 * 1 to remove dir item
9063 * 1 to remove dir index
9064 * 1 to possibly add orphan item
9065 */
9066 trans_num_items += 5;
9067 }
9068 trans = btrfs_start_transaction(root, trans_num_items);
9069 if (IS_ERR(trans)) {
9070 ret = PTR_ERR(trans);
9071 goto out_notrans;
9072 }
9073
9074 if (dest != root) {
9075 ret = btrfs_record_root_in_trans(trans, dest);
9076 if (ret)
9077 goto out_fail;
9078 }
9079
9080 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9081 if (ret)
9082 goto out_fail;
9083
9084 BTRFS_I(old_inode)->dir_index = 0ULL;
9085 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9086 /* force full log commit if subvolume involved. */
9087 btrfs_set_log_full_commit(trans);
9088 } else {
9089 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9090 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9091 index);
9092 if (ret)
9093 goto out_fail;
9094 }
9095
9096 inode_inc_iversion(old_dir);
9097 inode_inc_iversion(new_dir);
9098 inode_inc_iversion(old_inode);
9099 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9100
9101 if (old_dentry->d_parent != new_dentry->d_parent)
9102 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9103 BTRFS_I(old_inode), true);
9104
9105 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9106 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9107 } else {
9108 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9109 BTRFS_I(d_inode(old_dentry)),
9110 &old_fname.disk_name, &rename_ctx);
9111 if (!ret)
9112 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9113 }
9114 if (ret) {
9115 btrfs_abort_transaction(trans, ret);
9116 goto out_fail;
9117 }
9118
9119 if (new_inode) {
9120 inode_inc_iversion(new_inode);
9121 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9122 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9123 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9124 BUG_ON(new_inode->i_nlink == 0);
9125 } else {
9126 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9127 BTRFS_I(d_inode(new_dentry)),
9128 &new_fname.disk_name);
9129 }
9130 if (!ret && new_inode->i_nlink == 0)
9131 ret = btrfs_orphan_add(trans,
9132 BTRFS_I(d_inode(new_dentry)));
9133 if (ret) {
9134 btrfs_abort_transaction(trans, ret);
9135 goto out_fail;
9136 }
9137 }
9138
9139 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9140 &new_fname.disk_name, 0, index);
9141 if (ret) {
9142 btrfs_abort_transaction(trans, ret);
9143 goto out_fail;
9144 }
9145
9146 if (old_inode->i_nlink == 1)
9147 BTRFS_I(old_inode)->dir_index = index;
9148
9149 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9150 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9151 rename_ctx.index, new_dentry->d_parent);
9152
9153 if (flags & RENAME_WHITEOUT) {
9154 ret = btrfs_create_new_inode(trans, &whiteout_args);
9155 if (ret) {
9156 btrfs_abort_transaction(trans, ret);
9157 goto out_fail;
9158 } else {
9159 unlock_new_inode(whiteout_args.inode);
9160 iput(whiteout_args.inode);
9161 whiteout_args.inode = NULL;
9162 }
9163 }
9164 out_fail:
9165 ret2 = btrfs_end_transaction(trans);
9166 ret = ret ? ret : ret2;
9167 out_notrans:
9168 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9169 up_read(&fs_info->subvol_sem);
9170 if (flags & RENAME_WHITEOUT)
9171 btrfs_new_inode_args_destroy(&whiteout_args);
9172 out_whiteout_inode:
9173 if (flags & RENAME_WHITEOUT)
9174 iput(whiteout_args.inode);
9175 out_fscrypt_names:
9176 fscrypt_free_filename(&old_fname);
9177 fscrypt_free_filename(&new_fname);
9178 return ret;
9179 }
9180
btrfs_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9181 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9182 struct dentry *old_dentry, struct inode *new_dir,
9183 struct dentry *new_dentry, unsigned int flags)
9184 {
9185 int ret;
9186
9187 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9188 return -EINVAL;
9189
9190 if (flags & RENAME_EXCHANGE)
9191 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9192 new_dentry);
9193 else
9194 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9195 new_dentry, flags);
9196
9197 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9198
9199 return ret;
9200 }
9201
9202 struct btrfs_delalloc_work {
9203 struct inode *inode;
9204 struct completion completion;
9205 struct list_head list;
9206 struct btrfs_work work;
9207 };
9208
btrfs_run_delalloc_work(struct btrfs_work * work)9209 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9210 {
9211 struct btrfs_delalloc_work *delalloc_work;
9212 struct inode *inode;
9213
9214 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9215 work);
9216 inode = delalloc_work->inode;
9217 filemap_flush(inode->i_mapping);
9218 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9219 &BTRFS_I(inode)->runtime_flags))
9220 filemap_flush(inode->i_mapping);
9221
9222 iput(inode);
9223 complete(&delalloc_work->completion);
9224 }
9225
btrfs_alloc_delalloc_work(struct inode * inode)9226 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9227 {
9228 struct btrfs_delalloc_work *work;
9229
9230 work = kmalloc(sizeof(*work), GFP_NOFS);
9231 if (!work)
9232 return NULL;
9233
9234 init_completion(&work->completion);
9235 INIT_LIST_HEAD(&work->list);
9236 work->inode = inode;
9237 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9238
9239 return work;
9240 }
9241
9242 /*
9243 * some fairly slow code that needs optimization. This walks the list
9244 * of all the inodes with pending delalloc and forces them to disk.
9245 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)9246 static int start_delalloc_inodes(struct btrfs_root *root,
9247 struct writeback_control *wbc, bool snapshot,
9248 bool in_reclaim_context)
9249 {
9250 struct btrfs_inode *binode;
9251 struct inode *inode;
9252 struct btrfs_delalloc_work *work, *next;
9253 LIST_HEAD(works);
9254 LIST_HEAD(splice);
9255 int ret = 0;
9256 bool full_flush = wbc->nr_to_write == LONG_MAX;
9257
9258 mutex_lock(&root->delalloc_mutex);
9259 spin_lock(&root->delalloc_lock);
9260 list_splice_init(&root->delalloc_inodes, &splice);
9261 while (!list_empty(&splice)) {
9262 binode = list_entry(splice.next, struct btrfs_inode,
9263 delalloc_inodes);
9264
9265 list_move_tail(&binode->delalloc_inodes,
9266 &root->delalloc_inodes);
9267
9268 if (in_reclaim_context &&
9269 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9270 continue;
9271
9272 inode = igrab(&binode->vfs_inode);
9273 if (!inode) {
9274 cond_resched_lock(&root->delalloc_lock);
9275 continue;
9276 }
9277 spin_unlock(&root->delalloc_lock);
9278
9279 if (snapshot)
9280 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9281 &binode->runtime_flags);
9282 if (full_flush) {
9283 work = btrfs_alloc_delalloc_work(inode);
9284 if (!work) {
9285 iput(inode);
9286 ret = -ENOMEM;
9287 goto out;
9288 }
9289 list_add_tail(&work->list, &works);
9290 btrfs_queue_work(root->fs_info->flush_workers,
9291 &work->work);
9292 } else {
9293 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9294 btrfs_add_delayed_iput(BTRFS_I(inode));
9295 if (ret || wbc->nr_to_write <= 0)
9296 goto out;
9297 }
9298 cond_resched();
9299 spin_lock(&root->delalloc_lock);
9300 }
9301 spin_unlock(&root->delalloc_lock);
9302
9303 out:
9304 list_for_each_entry_safe(work, next, &works, list) {
9305 list_del_init(&work->list);
9306 wait_for_completion(&work->completion);
9307 kfree(work);
9308 }
9309
9310 if (!list_empty(&splice)) {
9311 spin_lock(&root->delalloc_lock);
9312 list_splice_tail(&splice, &root->delalloc_inodes);
9313 spin_unlock(&root->delalloc_lock);
9314 }
9315 mutex_unlock(&root->delalloc_mutex);
9316 return ret;
9317 }
9318
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)9319 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9320 {
9321 struct writeback_control wbc = {
9322 .nr_to_write = LONG_MAX,
9323 .sync_mode = WB_SYNC_NONE,
9324 .range_start = 0,
9325 .range_end = LLONG_MAX,
9326 };
9327 struct btrfs_fs_info *fs_info = root->fs_info;
9328
9329 if (BTRFS_FS_ERROR(fs_info))
9330 return -EROFS;
9331
9332 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9333 }
9334
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)9335 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9336 bool in_reclaim_context)
9337 {
9338 struct writeback_control wbc = {
9339 .nr_to_write = nr,
9340 .sync_mode = WB_SYNC_NONE,
9341 .range_start = 0,
9342 .range_end = LLONG_MAX,
9343 };
9344 struct btrfs_root *root;
9345 LIST_HEAD(splice);
9346 int ret;
9347
9348 if (BTRFS_FS_ERROR(fs_info))
9349 return -EROFS;
9350
9351 mutex_lock(&fs_info->delalloc_root_mutex);
9352 spin_lock(&fs_info->delalloc_root_lock);
9353 list_splice_init(&fs_info->delalloc_roots, &splice);
9354 while (!list_empty(&splice)) {
9355 /*
9356 * Reset nr_to_write here so we know that we're doing a full
9357 * flush.
9358 */
9359 if (nr == LONG_MAX)
9360 wbc.nr_to_write = LONG_MAX;
9361
9362 root = list_first_entry(&splice, struct btrfs_root,
9363 delalloc_root);
9364 root = btrfs_grab_root(root);
9365 BUG_ON(!root);
9366 list_move_tail(&root->delalloc_root,
9367 &fs_info->delalloc_roots);
9368 spin_unlock(&fs_info->delalloc_root_lock);
9369
9370 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9371 btrfs_put_root(root);
9372 if (ret < 0 || wbc.nr_to_write <= 0)
9373 goto out;
9374 spin_lock(&fs_info->delalloc_root_lock);
9375 }
9376 spin_unlock(&fs_info->delalloc_root_lock);
9377
9378 ret = 0;
9379 out:
9380 if (!list_empty(&splice)) {
9381 spin_lock(&fs_info->delalloc_root_lock);
9382 list_splice_tail(&splice, &fs_info->delalloc_roots);
9383 spin_unlock(&fs_info->delalloc_root_lock);
9384 }
9385 mutex_unlock(&fs_info->delalloc_root_mutex);
9386 return ret;
9387 }
9388
btrfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)9389 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9390 struct dentry *dentry, const char *symname)
9391 {
9392 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9393 struct btrfs_trans_handle *trans;
9394 struct btrfs_root *root = BTRFS_I(dir)->root;
9395 struct btrfs_path *path;
9396 struct btrfs_key key;
9397 struct inode *inode;
9398 struct btrfs_new_inode_args new_inode_args = {
9399 .dir = dir,
9400 .dentry = dentry,
9401 };
9402 unsigned int trans_num_items;
9403 int err;
9404 int name_len;
9405 int datasize;
9406 unsigned long ptr;
9407 struct btrfs_file_extent_item *ei;
9408 struct extent_buffer *leaf;
9409
9410 name_len = strlen(symname);
9411 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9412 return -ENAMETOOLONG;
9413
9414 inode = new_inode(dir->i_sb);
9415 if (!inode)
9416 return -ENOMEM;
9417 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9418 inode->i_op = &btrfs_symlink_inode_operations;
9419 inode_nohighmem(inode);
9420 inode->i_mapping->a_ops = &btrfs_aops;
9421 btrfs_i_size_write(BTRFS_I(inode), name_len);
9422 inode_set_bytes(inode, name_len);
9423
9424 new_inode_args.inode = inode;
9425 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9426 if (err)
9427 goto out_inode;
9428 /* 1 additional item for the inline extent */
9429 trans_num_items++;
9430
9431 trans = btrfs_start_transaction(root, trans_num_items);
9432 if (IS_ERR(trans)) {
9433 err = PTR_ERR(trans);
9434 goto out_new_inode_args;
9435 }
9436
9437 err = btrfs_create_new_inode(trans, &new_inode_args);
9438 if (err)
9439 goto out;
9440
9441 path = btrfs_alloc_path();
9442 if (!path) {
9443 err = -ENOMEM;
9444 btrfs_abort_transaction(trans, err);
9445 discard_new_inode(inode);
9446 inode = NULL;
9447 goto out;
9448 }
9449 key.objectid = btrfs_ino(BTRFS_I(inode));
9450 key.offset = 0;
9451 key.type = BTRFS_EXTENT_DATA_KEY;
9452 datasize = btrfs_file_extent_calc_inline_size(name_len);
9453 err = btrfs_insert_empty_item(trans, root, path, &key,
9454 datasize);
9455 if (err) {
9456 btrfs_abort_transaction(trans, err);
9457 btrfs_free_path(path);
9458 discard_new_inode(inode);
9459 inode = NULL;
9460 goto out;
9461 }
9462 leaf = path->nodes[0];
9463 ei = btrfs_item_ptr(leaf, path->slots[0],
9464 struct btrfs_file_extent_item);
9465 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9466 btrfs_set_file_extent_type(leaf, ei,
9467 BTRFS_FILE_EXTENT_INLINE);
9468 btrfs_set_file_extent_encryption(leaf, ei, 0);
9469 btrfs_set_file_extent_compression(leaf, ei, 0);
9470 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9471 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9472
9473 ptr = btrfs_file_extent_inline_start(ei);
9474 write_extent_buffer(leaf, symname, ptr, name_len);
9475 btrfs_mark_buffer_dirty(trans, leaf);
9476 btrfs_free_path(path);
9477
9478 d_instantiate_new(dentry, inode);
9479 err = 0;
9480 out:
9481 btrfs_end_transaction(trans);
9482 btrfs_btree_balance_dirty(fs_info);
9483 out_new_inode_args:
9484 btrfs_new_inode_args_destroy(&new_inode_args);
9485 out_inode:
9486 if (err)
9487 iput(inode);
9488 return err;
9489 }
9490
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)9491 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9492 struct btrfs_trans_handle *trans_in,
9493 struct btrfs_inode *inode,
9494 struct btrfs_key *ins,
9495 u64 file_offset)
9496 {
9497 struct btrfs_file_extent_item stack_fi;
9498 struct btrfs_replace_extent_info extent_info;
9499 struct btrfs_trans_handle *trans = trans_in;
9500 struct btrfs_path *path;
9501 u64 start = ins->objectid;
9502 u64 len = ins->offset;
9503 u64 qgroup_released = 0;
9504 int ret;
9505
9506 memset(&stack_fi, 0, sizeof(stack_fi));
9507
9508 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9509 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9510 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9511 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9512 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9513 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9514 /* Encryption and other encoding is reserved and all 0 */
9515
9516 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9517 if (ret < 0)
9518 return ERR_PTR(ret);
9519
9520 if (trans) {
9521 ret = insert_reserved_file_extent(trans, inode,
9522 file_offset, &stack_fi,
9523 true, qgroup_released);
9524 if (ret)
9525 goto free_qgroup;
9526 return trans;
9527 }
9528
9529 extent_info.disk_offset = start;
9530 extent_info.disk_len = len;
9531 extent_info.data_offset = 0;
9532 extent_info.data_len = len;
9533 extent_info.file_offset = file_offset;
9534 extent_info.extent_buf = (char *)&stack_fi;
9535 extent_info.is_new_extent = true;
9536 extent_info.update_times = true;
9537 extent_info.qgroup_reserved = qgroup_released;
9538 extent_info.insertions = 0;
9539
9540 path = btrfs_alloc_path();
9541 if (!path) {
9542 ret = -ENOMEM;
9543 goto free_qgroup;
9544 }
9545
9546 ret = btrfs_replace_file_extents(inode, path, file_offset,
9547 file_offset + len - 1, &extent_info,
9548 &trans);
9549 btrfs_free_path(path);
9550 if (ret)
9551 goto free_qgroup;
9552 return trans;
9553
9554 free_qgroup:
9555 /*
9556 * We have released qgroup data range at the beginning of the function,
9557 * and normally qgroup_released bytes will be freed when committing
9558 * transaction.
9559 * But if we error out early, we have to free what we have released
9560 * or we leak qgroup data reservation.
9561 */
9562 btrfs_qgroup_free_refroot(inode->root->fs_info,
9563 inode->root->root_key.objectid, qgroup_released,
9564 BTRFS_QGROUP_RSV_DATA);
9565 return ERR_PTR(ret);
9566 }
9567
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9568 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9569 u64 start, u64 num_bytes, u64 min_size,
9570 loff_t actual_len, u64 *alloc_hint,
9571 struct btrfs_trans_handle *trans)
9572 {
9573 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9574 struct extent_map *em;
9575 struct btrfs_root *root = BTRFS_I(inode)->root;
9576 struct btrfs_key ins;
9577 u64 cur_offset = start;
9578 u64 clear_offset = start;
9579 u64 i_size;
9580 u64 cur_bytes;
9581 u64 last_alloc = (u64)-1;
9582 int ret = 0;
9583 bool own_trans = true;
9584 u64 end = start + num_bytes - 1;
9585
9586 if (trans)
9587 own_trans = false;
9588 while (num_bytes > 0) {
9589 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9590 cur_bytes = max(cur_bytes, min_size);
9591 /*
9592 * If we are severely fragmented we could end up with really
9593 * small allocations, so if the allocator is returning small
9594 * chunks lets make its job easier by only searching for those
9595 * sized chunks.
9596 */
9597 cur_bytes = min(cur_bytes, last_alloc);
9598 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9599 min_size, 0, *alloc_hint, &ins, 1, 0);
9600 if (ret)
9601 break;
9602
9603 /*
9604 * We've reserved this space, and thus converted it from
9605 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9606 * from here on out we will only need to clear our reservation
9607 * for the remaining unreserved area, so advance our
9608 * clear_offset by our extent size.
9609 */
9610 clear_offset += ins.offset;
9611
9612 last_alloc = ins.offset;
9613 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9614 &ins, cur_offset);
9615 /*
9616 * Now that we inserted the prealloc extent we can finally
9617 * decrement the number of reservations in the block group.
9618 * If we did it before, we could race with relocation and have
9619 * relocation miss the reserved extent, making it fail later.
9620 */
9621 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9622 if (IS_ERR(trans)) {
9623 ret = PTR_ERR(trans);
9624 btrfs_free_reserved_extent(fs_info, ins.objectid,
9625 ins.offset, 0);
9626 break;
9627 }
9628
9629 em = alloc_extent_map();
9630 if (!em) {
9631 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9632 cur_offset + ins.offset - 1, false);
9633 btrfs_set_inode_full_sync(BTRFS_I(inode));
9634 goto next;
9635 }
9636
9637 em->start = cur_offset;
9638 em->orig_start = cur_offset;
9639 em->len = ins.offset;
9640 em->block_start = ins.objectid;
9641 em->block_len = ins.offset;
9642 em->orig_block_len = ins.offset;
9643 em->ram_bytes = ins.offset;
9644 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9645 em->generation = trans->transid;
9646
9647 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9648 free_extent_map(em);
9649 next:
9650 num_bytes -= ins.offset;
9651 cur_offset += ins.offset;
9652 *alloc_hint = ins.objectid + ins.offset;
9653
9654 inode_inc_iversion(inode);
9655 inode_set_ctime_current(inode);
9656 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9657 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9658 (actual_len > inode->i_size) &&
9659 (cur_offset > inode->i_size)) {
9660 if (cur_offset > actual_len)
9661 i_size = actual_len;
9662 else
9663 i_size = cur_offset;
9664 i_size_write(inode, i_size);
9665 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9666 }
9667
9668 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9669
9670 if (ret) {
9671 btrfs_abort_transaction(trans, ret);
9672 if (own_trans)
9673 btrfs_end_transaction(trans);
9674 break;
9675 }
9676
9677 if (own_trans) {
9678 btrfs_end_transaction(trans);
9679 trans = NULL;
9680 }
9681 }
9682 if (clear_offset < end)
9683 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9684 end - clear_offset + 1);
9685 return ret;
9686 }
9687
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9688 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9689 u64 start, u64 num_bytes, u64 min_size,
9690 loff_t actual_len, u64 *alloc_hint)
9691 {
9692 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9693 min_size, actual_len, alloc_hint,
9694 NULL);
9695 }
9696
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9697 int btrfs_prealloc_file_range_trans(struct inode *inode,
9698 struct btrfs_trans_handle *trans, int mode,
9699 u64 start, u64 num_bytes, u64 min_size,
9700 loff_t actual_len, u64 *alloc_hint)
9701 {
9702 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9703 min_size, actual_len, alloc_hint, trans);
9704 }
9705
btrfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)9706 static int btrfs_permission(struct mnt_idmap *idmap,
9707 struct inode *inode, int mask)
9708 {
9709 struct btrfs_root *root = BTRFS_I(inode)->root;
9710 umode_t mode = inode->i_mode;
9711
9712 if (mask & MAY_WRITE &&
9713 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9714 if (btrfs_root_readonly(root))
9715 return -EROFS;
9716 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9717 return -EACCES;
9718 }
9719 return generic_permission(idmap, inode, mask);
9720 }
9721
btrfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)9722 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9723 struct file *file, umode_t mode)
9724 {
9725 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9726 struct btrfs_trans_handle *trans;
9727 struct btrfs_root *root = BTRFS_I(dir)->root;
9728 struct inode *inode;
9729 struct btrfs_new_inode_args new_inode_args = {
9730 .dir = dir,
9731 .dentry = file->f_path.dentry,
9732 .orphan = true,
9733 };
9734 unsigned int trans_num_items;
9735 int ret;
9736
9737 inode = new_inode(dir->i_sb);
9738 if (!inode)
9739 return -ENOMEM;
9740 inode_init_owner(idmap, inode, dir, mode);
9741 inode->i_fop = &btrfs_file_operations;
9742 inode->i_op = &btrfs_file_inode_operations;
9743 inode->i_mapping->a_ops = &btrfs_aops;
9744
9745 new_inode_args.inode = inode;
9746 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9747 if (ret)
9748 goto out_inode;
9749
9750 trans = btrfs_start_transaction(root, trans_num_items);
9751 if (IS_ERR(trans)) {
9752 ret = PTR_ERR(trans);
9753 goto out_new_inode_args;
9754 }
9755
9756 ret = btrfs_create_new_inode(trans, &new_inode_args);
9757
9758 /*
9759 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9760 * set it to 1 because d_tmpfile() will issue a warning if the count is
9761 * 0, through:
9762 *
9763 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9764 */
9765 set_nlink(inode, 1);
9766
9767 if (!ret) {
9768 d_tmpfile(file, inode);
9769 unlock_new_inode(inode);
9770 mark_inode_dirty(inode);
9771 }
9772
9773 btrfs_end_transaction(trans);
9774 btrfs_btree_balance_dirty(fs_info);
9775 out_new_inode_args:
9776 btrfs_new_inode_args_destroy(&new_inode_args);
9777 out_inode:
9778 if (ret)
9779 iput(inode);
9780 return finish_open_simple(file, ret);
9781 }
9782
btrfs_set_range_writeback(struct btrfs_inode * inode,u64 start,u64 end)9783 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9784 {
9785 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9786 unsigned long index = start >> PAGE_SHIFT;
9787 unsigned long end_index = end >> PAGE_SHIFT;
9788 struct page *page;
9789 u32 len;
9790
9791 ASSERT(end + 1 - start <= U32_MAX);
9792 len = end + 1 - start;
9793 while (index <= end_index) {
9794 page = find_get_page(inode->vfs_inode.i_mapping, index);
9795 ASSERT(page); /* Pages should be in the extent_io_tree */
9796
9797 btrfs_page_set_writeback(fs_info, page, start, len);
9798 put_page(page);
9799 index++;
9800 }
9801 }
9802
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)9803 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9804 int compress_type)
9805 {
9806 switch (compress_type) {
9807 case BTRFS_COMPRESS_NONE:
9808 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9809 case BTRFS_COMPRESS_ZLIB:
9810 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9811 case BTRFS_COMPRESS_LZO:
9812 /*
9813 * The LZO format depends on the sector size. 64K is the maximum
9814 * sector size that we support.
9815 */
9816 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9817 return -EINVAL;
9818 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9819 (fs_info->sectorsize_bits - 12);
9820 case BTRFS_COMPRESS_ZSTD:
9821 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9822 default:
9823 return -EUCLEAN;
9824 }
9825 }
9826
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)9827 static ssize_t btrfs_encoded_read_inline(
9828 struct kiocb *iocb,
9829 struct iov_iter *iter, u64 start,
9830 u64 lockend,
9831 struct extent_state **cached_state,
9832 u64 extent_start, size_t count,
9833 struct btrfs_ioctl_encoded_io_args *encoded,
9834 bool *unlocked)
9835 {
9836 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9837 struct btrfs_root *root = inode->root;
9838 struct btrfs_fs_info *fs_info = root->fs_info;
9839 struct extent_io_tree *io_tree = &inode->io_tree;
9840 struct btrfs_path *path;
9841 struct extent_buffer *leaf;
9842 struct btrfs_file_extent_item *item;
9843 u64 ram_bytes;
9844 unsigned long ptr;
9845 void *tmp;
9846 ssize_t ret;
9847
9848 path = btrfs_alloc_path();
9849 if (!path) {
9850 ret = -ENOMEM;
9851 goto out;
9852 }
9853 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9854 extent_start, 0);
9855 if (ret) {
9856 if (ret > 0) {
9857 /* The extent item disappeared? */
9858 ret = -EIO;
9859 }
9860 goto out;
9861 }
9862 leaf = path->nodes[0];
9863 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9864
9865 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9866 ptr = btrfs_file_extent_inline_start(item);
9867
9868 encoded->len = min_t(u64, extent_start + ram_bytes,
9869 inode->vfs_inode.i_size) - iocb->ki_pos;
9870 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9871 btrfs_file_extent_compression(leaf, item));
9872 if (ret < 0)
9873 goto out;
9874 encoded->compression = ret;
9875 if (encoded->compression) {
9876 size_t inline_size;
9877
9878 inline_size = btrfs_file_extent_inline_item_len(leaf,
9879 path->slots[0]);
9880 if (inline_size > count) {
9881 ret = -ENOBUFS;
9882 goto out;
9883 }
9884 count = inline_size;
9885 encoded->unencoded_len = ram_bytes;
9886 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9887 } else {
9888 count = min_t(u64, count, encoded->len);
9889 encoded->len = count;
9890 encoded->unencoded_len = count;
9891 ptr += iocb->ki_pos - extent_start;
9892 }
9893
9894 tmp = kmalloc(count, GFP_NOFS);
9895 if (!tmp) {
9896 ret = -ENOMEM;
9897 goto out;
9898 }
9899 read_extent_buffer(leaf, tmp, ptr, count);
9900 btrfs_release_path(path);
9901 unlock_extent(io_tree, start, lockend, cached_state);
9902 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9903 *unlocked = true;
9904
9905 ret = copy_to_iter(tmp, count, iter);
9906 if (ret != count)
9907 ret = -EFAULT;
9908 kfree(tmp);
9909 out:
9910 btrfs_free_path(path);
9911 return ret;
9912 }
9913
9914 struct btrfs_encoded_read_private {
9915 wait_queue_head_t wait;
9916 atomic_t pending;
9917 blk_status_t status;
9918 };
9919
btrfs_encoded_read_endio(struct btrfs_bio * bbio)9920 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9921 {
9922 struct btrfs_encoded_read_private *priv = bbio->private;
9923
9924 if (bbio->bio.bi_status) {
9925 /*
9926 * The memory barrier implied by the atomic_dec_return() here
9927 * pairs with the memory barrier implied by the
9928 * atomic_dec_return() or io_wait_event() in
9929 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9930 * write is observed before the load of status in
9931 * btrfs_encoded_read_regular_fill_pages().
9932 */
9933 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9934 }
9935 if (!atomic_dec_return(&priv->pending))
9936 wake_up(&priv->wait);
9937 bio_put(&bbio->bio);
9938 }
9939
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 file_offset,u64 disk_bytenr,u64 disk_io_size,struct page ** pages)9940 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9941 u64 file_offset, u64 disk_bytenr,
9942 u64 disk_io_size, struct page **pages)
9943 {
9944 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9945 struct btrfs_encoded_read_private priv = {
9946 .pending = ATOMIC_INIT(1),
9947 };
9948 unsigned long i = 0;
9949 struct btrfs_bio *bbio;
9950
9951 init_waitqueue_head(&priv.wait);
9952
9953 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9954 btrfs_encoded_read_endio, &priv);
9955 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9956 bbio->inode = inode;
9957
9958 do {
9959 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9960
9961 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9962 atomic_inc(&priv.pending);
9963 btrfs_submit_bio(bbio, 0);
9964
9965 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9966 btrfs_encoded_read_endio, &priv);
9967 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9968 bbio->inode = inode;
9969 continue;
9970 }
9971
9972 i++;
9973 disk_bytenr += bytes;
9974 disk_io_size -= bytes;
9975 } while (disk_io_size);
9976
9977 atomic_inc(&priv.pending);
9978 btrfs_submit_bio(bbio, 0);
9979
9980 if (atomic_dec_return(&priv.pending))
9981 io_wait_event(priv.wait, !atomic_read(&priv.pending));
9982 /* See btrfs_encoded_read_endio() for ordering. */
9983 return blk_status_to_errno(READ_ONCE(priv.status));
9984 }
9985
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)9986 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9987 struct iov_iter *iter,
9988 u64 start, u64 lockend,
9989 struct extent_state **cached_state,
9990 u64 disk_bytenr, u64 disk_io_size,
9991 size_t count, bool compressed,
9992 bool *unlocked)
9993 {
9994 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9995 struct extent_io_tree *io_tree = &inode->io_tree;
9996 struct page **pages;
9997 unsigned long nr_pages, i;
9998 u64 cur;
9999 size_t page_offset;
10000 ssize_t ret;
10001
10002 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10003 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10004 if (!pages)
10005 return -ENOMEM;
10006 ret = btrfs_alloc_page_array(nr_pages, pages);
10007 if (ret) {
10008 ret = -ENOMEM;
10009 goto out;
10010 }
10011
10012 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10013 disk_io_size, pages);
10014 if (ret)
10015 goto out;
10016
10017 unlock_extent(io_tree, start, lockend, cached_state);
10018 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10019 *unlocked = true;
10020
10021 if (compressed) {
10022 i = 0;
10023 page_offset = 0;
10024 } else {
10025 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10026 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10027 }
10028 cur = 0;
10029 while (cur < count) {
10030 size_t bytes = min_t(size_t, count - cur,
10031 PAGE_SIZE - page_offset);
10032
10033 if (copy_page_to_iter(pages[i], page_offset, bytes,
10034 iter) != bytes) {
10035 ret = -EFAULT;
10036 goto out;
10037 }
10038 i++;
10039 cur += bytes;
10040 page_offset = 0;
10041 }
10042 ret = count;
10043 out:
10044 for (i = 0; i < nr_pages; i++) {
10045 if (pages[i])
10046 __free_page(pages[i]);
10047 }
10048 kfree(pages);
10049 return ret;
10050 }
10051
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded)10052 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10053 struct btrfs_ioctl_encoded_io_args *encoded)
10054 {
10055 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10056 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10057 struct extent_io_tree *io_tree = &inode->io_tree;
10058 ssize_t ret;
10059 size_t count = iov_iter_count(iter);
10060 u64 start, lockend, disk_bytenr, disk_io_size;
10061 struct extent_state *cached_state = NULL;
10062 struct extent_map *em;
10063 bool unlocked = false;
10064
10065 file_accessed(iocb->ki_filp);
10066
10067 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10068
10069 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10070 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10071 return 0;
10072 }
10073 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10074 /*
10075 * We don't know how long the extent containing iocb->ki_pos is, but if
10076 * it's compressed we know that it won't be longer than this.
10077 */
10078 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10079
10080 for (;;) {
10081 struct btrfs_ordered_extent *ordered;
10082
10083 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10084 lockend - start + 1);
10085 if (ret)
10086 goto out_unlock_inode;
10087 lock_extent(io_tree, start, lockend, &cached_state);
10088 ordered = btrfs_lookup_ordered_range(inode, start,
10089 lockend - start + 1);
10090 if (!ordered)
10091 break;
10092 btrfs_put_ordered_extent(ordered);
10093 unlock_extent(io_tree, start, lockend, &cached_state);
10094 cond_resched();
10095 }
10096
10097 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10098 if (IS_ERR(em)) {
10099 ret = PTR_ERR(em);
10100 goto out_unlock_extent;
10101 }
10102
10103 if (em->block_start == EXTENT_MAP_INLINE) {
10104 u64 extent_start = em->start;
10105
10106 /*
10107 * For inline extents we get everything we need out of the
10108 * extent item.
10109 */
10110 free_extent_map(em);
10111 em = NULL;
10112 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10113 &cached_state, extent_start,
10114 count, encoded, &unlocked);
10115 goto out;
10116 }
10117
10118 /*
10119 * We only want to return up to EOF even if the extent extends beyond
10120 * that.
10121 */
10122 encoded->len = min_t(u64, extent_map_end(em),
10123 inode->vfs_inode.i_size) - iocb->ki_pos;
10124 if (em->block_start == EXTENT_MAP_HOLE ||
10125 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10126 disk_bytenr = EXTENT_MAP_HOLE;
10127 count = min_t(u64, count, encoded->len);
10128 encoded->len = count;
10129 encoded->unencoded_len = count;
10130 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10131 disk_bytenr = em->block_start;
10132 /*
10133 * Bail if the buffer isn't large enough to return the whole
10134 * compressed extent.
10135 */
10136 if (em->block_len > count) {
10137 ret = -ENOBUFS;
10138 goto out_em;
10139 }
10140 disk_io_size = em->block_len;
10141 count = em->block_len;
10142 encoded->unencoded_len = em->ram_bytes;
10143 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10144 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10145 em->compress_type);
10146 if (ret < 0)
10147 goto out_em;
10148 encoded->compression = ret;
10149 } else {
10150 disk_bytenr = em->block_start + (start - em->start);
10151 if (encoded->len > count)
10152 encoded->len = count;
10153 /*
10154 * Don't read beyond what we locked. This also limits the page
10155 * allocations that we'll do.
10156 */
10157 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10158 count = start + disk_io_size - iocb->ki_pos;
10159 encoded->len = count;
10160 encoded->unencoded_len = count;
10161 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10162 }
10163 free_extent_map(em);
10164 em = NULL;
10165
10166 if (disk_bytenr == EXTENT_MAP_HOLE) {
10167 unlock_extent(io_tree, start, lockend, &cached_state);
10168 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10169 unlocked = true;
10170 ret = iov_iter_zero(count, iter);
10171 if (ret != count)
10172 ret = -EFAULT;
10173 } else {
10174 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10175 &cached_state, disk_bytenr,
10176 disk_io_size, count,
10177 encoded->compression,
10178 &unlocked);
10179 }
10180
10181 out:
10182 if (ret >= 0)
10183 iocb->ki_pos += encoded->len;
10184 out_em:
10185 free_extent_map(em);
10186 out_unlock_extent:
10187 if (!unlocked)
10188 unlock_extent(io_tree, start, lockend, &cached_state);
10189 out_unlock_inode:
10190 if (!unlocked)
10191 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10192 return ret;
10193 }
10194
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)10195 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10196 const struct btrfs_ioctl_encoded_io_args *encoded)
10197 {
10198 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10199 struct btrfs_root *root = inode->root;
10200 struct btrfs_fs_info *fs_info = root->fs_info;
10201 struct extent_io_tree *io_tree = &inode->io_tree;
10202 struct extent_changeset *data_reserved = NULL;
10203 struct extent_state *cached_state = NULL;
10204 struct btrfs_ordered_extent *ordered;
10205 int compression;
10206 size_t orig_count;
10207 u64 start, end;
10208 u64 num_bytes, ram_bytes, disk_num_bytes;
10209 unsigned long nr_pages, i;
10210 struct page **pages;
10211 struct btrfs_key ins;
10212 bool extent_reserved = false;
10213 struct extent_map *em;
10214 ssize_t ret;
10215
10216 switch (encoded->compression) {
10217 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10218 compression = BTRFS_COMPRESS_ZLIB;
10219 break;
10220 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10221 compression = BTRFS_COMPRESS_ZSTD;
10222 break;
10223 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10224 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10225 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10226 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10227 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10228 /* The sector size must match for LZO. */
10229 if (encoded->compression -
10230 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10231 fs_info->sectorsize_bits)
10232 return -EINVAL;
10233 compression = BTRFS_COMPRESS_LZO;
10234 break;
10235 default:
10236 return -EINVAL;
10237 }
10238 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10239 return -EINVAL;
10240
10241 /*
10242 * Compressed extents should always have checksums, so error out if we
10243 * have a NOCOW file or inode was created while mounted with NODATASUM.
10244 */
10245 if (inode->flags & BTRFS_INODE_NODATASUM)
10246 return -EINVAL;
10247
10248 orig_count = iov_iter_count(from);
10249
10250 /* The extent size must be sane. */
10251 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10252 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10253 return -EINVAL;
10254
10255 /*
10256 * The compressed data must be smaller than the decompressed data.
10257 *
10258 * It's of course possible for data to compress to larger or the same
10259 * size, but the buffered I/O path falls back to no compression for such
10260 * data, and we don't want to break any assumptions by creating these
10261 * extents.
10262 *
10263 * Note that this is less strict than the current check we have that the
10264 * compressed data must be at least one sector smaller than the
10265 * decompressed data. We only want to enforce the weaker requirement
10266 * from old kernels that it is at least one byte smaller.
10267 */
10268 if (orig_count >= encoded->unencoded_len)
10269 return -EINVAL;
10270
10271 /* The extent must start on a sector boundary. */
10272 start = iocb->ki_pos;
10273 if (!IS_ALIGNED(start, fs_info->sectorsize))
10274 return -EINVAL;
10275
10276 /*
10277 * The extent must end on a sector boundary. However, we allow a write
10278 * which ends at or extends i_size to have an unaligned length; we round
10279 * up the extent size and set i_size to the unaligned end.
10280 */
10281 if (start + encoded->len < inode->vfs_inode.i_size &&
10282 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10283 return -EINVAL;
10284
10285 /* Finally, the offset in the unencoded data must be sector-aligned. */
10286 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10287 return -EINVAL;
10288
10289 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10290 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10291 end = start + num_bytes - 1;
10292
10293 /*
10294 * If the extent cannot be inline, the compressed data on disk must be
10295 * sector-aligned. For convenience, we extend it with zeroes if it
10296 * isn't.
10297 */
10298 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10299 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10300 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10301 if (!pages)
10302 return -ENOMEM;
10303 for (i = 0; i < nr_pages; i++) {
10304 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10305 char *kaddr;
10306
10307 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10308 if (!pages[i]) {
10309 ret = -ENOMEM;
10310 goto out_pages;
10311 }
10312 kaddr = kmap_local_page(pages[i]);
10313 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10314 kunmap_local(kaddr);
10315 ret = -EFAULT;
10316 goto out_pages;
10317 }
10318 if (bytes < PAGE_SIZE)
10319 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10320 kunmap_local(kaddr);
10321 }
10322
10323 for (;;) {
10324 struct btrfs_ordered_extent *ordered;
10325
10326 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10327 if (ret)
10328 goto out_pages;
10329 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10330 start >> PAGE_SHIFT,
10331 end >> PAGE_SHIFT);
10332 if (ret)
10333 goto out_pages;
10334 lock_extent(io_tree, start, end, &cached_state);
10335 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10336 if (!ordered &&
10337 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10338 break;
10339 if (ordered)
10340 btrfs_put_ordered_extent(ordered);
10341 unlock_extent(io_tree, start, end, &cached_state);
10342 cond_resched();
10343 }
10344
10345 /*
10346 * We don't use the higher-level delalloc space functions because our
10347 * num_bytes and disk_num_bytes are different.
10348 */
10349 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10350 if (ret)
10351 goto out_unlock;
10352 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10353 if (ret)
10354 goto out_free_data_space;
10355 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10356 false);
10357 if (ret)
10358 goto out_qgroup_free_data;
10359
10360 /* Try an inline extent first. */
10361 if (start == 0 && encoded->unencoded_len == encoded->len &&
10362 encoded->unencoded_offset == 0) {
10363 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10364 compression, pages, true);
10365 if (ret <= 0) {
10366 if (ret == 0)
10367 ret = orig_count;
10368 goto out_delalloc_release;
10369 }
10370 }
10371
10372 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10373 disk_num_bytes, 0, 0, &ins, 1, 1);
10374 if (ret)
10375 goto out_delalloc_release;
10376 extent_reserved = true;
10377
10378 em = create_io_em(inode, start, num_bytes,
10379 start - encoded->unencoded_offset, ins.objectid,
10380 ins.offset, ins.offset, ram_bytes, compression,
10381 BTRFS_ORDERED_COMPRESSED);
10382 if (IS_ERR(em)) {
10383 ret = PTR_ERR(em);
10384 goto out_free_reserved;
10385 }
10386 free_extent_map(em);
10387
10388 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10389 ins.objectid, ins.offset,
10390 encoded->unencoded_offset,
10391 (1 << BTRFS_ORDERED_ENCODED) |
10392 (1 << BTRFS_ORDERED_COMPRESSED),
10393 compression);
10394 if (IS_ERR(ordered)) {
10395 btrfs_drop_extent_map_range(inode, start, end, false);
10396 ret = PTR_ERR(ordered);
10397 goto out_free_reserved;
10398 }
10399 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10400
10401 if (start + encoded->len > inode->vfs_inode.i_size)
10402 i_size_write(&inode->vfs_inode, start + encoded->len);
10403
10404 unlock_extent(io_tree, start, end, &cached_state);
10405
10406 btrfs_delalloc_release_extents(inode, num_bytes);
10407
10408 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10409 ret = orig_count;
10410 goto out;
10411
10412 out_free_reserved:
10413 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10414 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10415 out_delalloc_release:
10416 btrfs_delalloc_release_extents(inode, num_bytes);
10417 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10418 out_qgroup_free_data:
10419 if (ret < 0)
10420 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10421 out_free_data_space:
10422 /*
10423 * If btrfs_reserve_extent() succeeded, then we already decremented
10424 * bytes_may_use.
10425 */
10426 if (!extent_reserved)
10427 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10428 out_unlock:
10429 unlock_extent(io_tree, start, end, &cached_state);
10430 out_pages:
10431 for (i = 0; i < nr_pages; i++) {
10432 if (pages[i])
10433 __free_page(pages[i]);
10434 }
10435 kvfree(pages);
10436 out:
10437 if (ret >= 0)
10438 iocb->ki_pos += encoded->len;
10439 return ret;
10440 }
10441
10442 #ifdef CONFIG_SWAP
10443 /*
10444 * Add an entry indicating a block group or device which is pinned by a
10445 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10446 * negative errno on failure.
10447 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10448 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10449 bool is_block_group)
10450 {
10451 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10452 struct btrfs_swapfile_pin *sp, *entry;
10453 struct rb_node **p;
10454 struct rb_node *parent = NULL;
10455
10456 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10457 if (!sp)
10458 return -ENOMEM;
10459 sp->ptr = ptr;
10460 sp->inode = inode;
10461 sp->is_block_group = is_block_group;
10462 sp->bg_extent_count = 1;
10463
10464 spin_lock(&fs_info->swapfile_pins_lock);
10465 p = &fs_info->swapfile_pins.rb_node;
10466 while (*p) {
10467 parent = *p;
10468 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10469 if (sp->ptr < entry->ptr ||
10470 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10471 p = &(*p)->rb_left;
10472 } else if (sp->ptr > entry->ptr ||
10473 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10474 p = &(*p)->rb_right;
10475 } else {
10476 if (is_block_group)
10477 entry->bg_extent_count++;
10478 spin_unlock(&fs_info->swapfile_pins_lock);
10479 kfree(sp);
10480 return 1;
10481 }
10482 }
10483 rb_link_node(&sp->node, parent, p);
10484 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10485 spin_unlock(&fs_info->swapfile_pins_lock);
10486 return 0;
10487 }
10488
10489 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10490 static void btrfs_free_swapfile_pins(struct inode *inode)
10491 {
10492 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10493 struct btrfs_swapfile_pin *sp;
10494 struct rb_node *node, *next;
10495
10496 spin_lock(&fs_info->swapfile_pins_lock);
10497 node = rb_first(&fs_info->swapfile_pins);
10498 while (node) {
10499 next = rb_next(node);
10500 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10501 if (sp->inode == inode) {
10502 rb_erase(&sp->node, &fs_info->swapfile_pins);
10503 if (sp->is_block_group) {
10504 btrfs_dec_block_group_swap_extents(sp->ptr,
10505 sp->bg_extent_count);
10506 btrfs_put_block_group(sp->ptr);
10507 }
10508 kfree(sp);
10509 }
10510 node = next;
10511 }
10512 spin_unlock(&fs_info->swapfile_pins_lock);
10513 }
10514
10515 struct btrfs_swap_info {
10516 u64 start;
10517 u64 block_start;
10518 u64 block_len;
10519 u64 lowest_ppage;
10520 u64 highest_ppage;
10521 unsigned long nr_pages;
10522 int nr_extents;
10523 };
10524
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10525 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10526 struct btrfs_swap_info *bsi)
10527 {
10528 unsigned long nr_pages;
10529 unsigned long max_pages;
10530 u64 first_ppage, first_ppage_reported, next_ppage;
10531 int ret;
10532
10533 /*
10534 * Our swapfile may have had its size extended after the swap header was
10535 * written. In that case activating the swapfile should not go beyond
10536 * the max size set in the swap header.
10537 */
10538 if (bsi->nr_pages >= sis->max)
10539 return 0;
10540
10541 max_pages = sis->max - bsi->nr_pages;
10542 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10543 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10544
10545 if (first_ppage >= next_ppage)
10546 return 0;
10547 nr_pages = next_ppage - first_ppage;
10548 nr_pages = min(nr_pages, max_pages);
10549
10550 first_ppage_reported = first_ppage;
10551 if (bsi->start == 0)
10552 first_ppage_reported++;
10553 if (bsi->lowest_ppage > first_ppage_reported)
10554 bsi->lowest_ppage = first_ppage_reported;
10555 if (bsi->highest_ppage < (next_ppage - 1))
10556 bsi->highest_ppage = next_ppage - 1;
10557
10558 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10559 if (ret < 0)
10560 return ret;
10561 bsi->nr_extents += ret;
10562 bsi->nr_pages += nr_pages;
10563 return 0;
10564 }
10565
btrfs_swap_deactivate(struct file * file)10566 static void btrfs_swap_deactivate(struct file *file)
10567 {
10568 struct inode *inode = file_inode(file);
10569
10570 btrfs_free_swapfile_pins(inode);
10571 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10572 }
10573
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10574 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10575 sector_t *span)
10576 {
10577 struct inode *inode = file_inode(file);
10578 struct btrfs_root *root = BTRFS_I(inode)->root;
10579 struct btrfs_fs_info *fs_info = root->fs_info;
10580 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10581 struct extent_state *cached_state = NULL;
10582 struct extent_map *em = NULL;
10583 struct btrfs_device *device = NULL;
10584 struct btrfs_swap_info bsi = {
10585 .lowest_ppage = (sector_t)-1ULL,
10586 };
10587 int ret = 0;
10588 u64 isize;
10589 u64 start;
10590
10591 /*
10592 * If the swap file was just created, make sure delalloc is done. If the
10593 * file changes again after this, the user is doing something stupid and
10594 * we don't really care.
10595 */
10596 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10597 if (ret)
10598 return ret;
10599
10600 /*
10601 * The inode is locked, so these flags won't change after we check them.
10602 */
10603 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10604 btrfs_warn(fs_info, "swapfile must not be compressed");
10605 return -EINVAL;
10606 }
10607 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10608 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10609 return -EINVAL;
10610 }
10611 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10612 btrfs_warn(fs_info, "swapfile must not be checksummed");
10613 return -EINVAL;
10614 }
10615
10616 /*
10617 * Balance or device remove/replace/resize can move stuff around from
10618 * under us. The exclop protection makes sure they aren't running/won't
10619 * run concurrently while we are mapping the swap extents, and
10620 * fs_info->swapfile_pins prevents them from running while the swap
10621 * file is active and moving the extents. Note that this also prevents
10622 * a concurrent device add which isn't actually necessary, but it's not
10623 * really worth the trouble to allow it.
10624 */
10625 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10626 btrfs_warn(fs_info,
10627 "cannot activate swapfile while exclusive operation is running");
10628 return -EBUSY;
10629 }
10630
10631 /*
10632 * Prevent snapshot creation while we are activating the swap file.
10633 * We do not want to race with snapshot creation. If snapshot creation
10634 * already started before we bumped nr_swapfiles from 0 to 1 and
10635 * completes before the first write into the swap file after it is
10636 * activated, than that write would fallback to COW.
10637 */
10638 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10639 btrfs_exclop_finish(fs_info);
10640 btrfs_warn(fs_info,
10641 "cannot activate swapfile because snapshot creation is in progress");
10642 return -EINVAL;
10643 }
10644 /*
10645 * Snapshots can create extents which require COW even if NODATACOW is
10646 * set. We use this counter to prevent snapshots. We must increment it
10647 * before walking the extents because we don't want a concurrent
10648 * snapshot to run after we've already checked the extents.
10649 *
10650 * It is possible that subvolume is marked for deletion but still not
10651 * removed yet. To prevent this race, we check the root status before
10652 * activating the swapfile.
10653 */
10654 spin_lock(&root->root_item_lock);
10655 if (btrfs_root_dead(root)) {
10656 spin_unlock(&root->root_item_lock);
10657
10658 btrfs_exclop_finish(fs_info);
10659 btrfs_warn(fs_info,
10660 "cannot activate swapfile because subvolume %llu is being deleted",
10661 root->root_key.objectid);
10662 return -EPERM;
10663 }
10664 atomic_inc(&root->nr_swapfiles);
10665 spin_unlock(&root->root_item_lock);
10666
10667 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10668
10669 lock_extent(io_tree, 0, isize - 1, &cached_state);
10670 start = 0;
10671 while (start < isize) {
10672 u64 logical_block_start, physical_block_start;
10673 struct btrfs_block_group *bg;
10674 u64 len = isize - start;
10675
10676 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10677 if (IS_ERR(em)) {
10678 ret = PTR_ERR(em);
10679 goto out;
10680 }
10681
10682 if (em->block_start == EXTENT_MAP_HOLE) {
10683 btrfs_warn(fs_info, "swapfile must not have holes");
10684 ret = -EINVAL;
10685 goto out;
10686 }
10687 if (em->block_start == EXTENT_MAP_INLINE) {
10688 /*
10689 * It's unlikely we'll ever actually find ourselves
10690 * here, as a file small enough to fit inline won't be
10691 * big enough to store more than the swap header, but in
10692 * case something changes in the future, let's catch it
10693 * here rather than later.
10694 */
10695 btrfs_warn(fs_info, "swapfile must not be inline");
10696 ret = -EINVAL;
10697 goto out;
10698 }
10699 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10700 btrfs_warn(fs_info, "swapfile must not be compressed");
10701 ret = -EINVAL;
10702 goto out;
10703 }
10704
10705 logical_block_start = em->block_start + (start - em->start);
10706 len = min(len, em->len - (start - em->start));
10707 free_extent_map(em);
10708 em = NULL;
10709
10710 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10711 if (ret < 0) {
10712 goto out;
10713 } else if (ret) {
10714 ret = 0;
10715 } else {
10716 btrfs_warn(fs_info,
10717 "swapfile must not be copy-on-write");
10718 ret = -EINVAL;
10719 goto out;
10720 }
10721
10722 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10723 if (IS_ERR(em)) {
10724 ret = PTR_ERR(em);
10725 goto out;
10726 }
10727
10728 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10729 btrfs_warn(fs_info,
10730 "swapfile must have single data profile");
10731 ret = -EINVAL;
10732 goto out;
10733 }
10734
10735 if (device == NULL) {
10736 device = em->map_lookup->stripes[0].dev;
10737 ret = btrfs_add_swapfile_pin(inode, device, false);
10738 if (ret == 1)
10739 ret = 0;
10740 else if (ret)
10741 goto out;
10742 } else if (device != em->map_lookup->stripes[0].dev) {
10743 btrfs_warn(fs_info, "swapfile must be on one device");
10744 ret = -EINVAL;
10745 goto out;
10746 }
10747
10748 physical_block_start = (em->map_lookup->stripes[0].physical +
10749 (logical_block_start - em->start));
10750 len = min(len, em->len - (logical_block_start - em->start));
10751 free_extent_map(em);
10752 em = NULL;
10753
10754 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10755 if (!bg) {
10756 btrfs_warn(fs_info,
10757 "could not find block group containing swapfile");
10758 ret = -EINVAL;
10759 goto out;
10760 }
10761
10762 if (!btrfs_inc_block_group_swap_extents(bg)) {
10763 btrfs_warn(fs_info,
10764 "block group for swapfile at %llu is read-only%s",
10765 bg->start,
10766 atomic_read(&fs_info->scrubs_running) ?
10767 " (scrub running)" : "");
10768 btrfs_put_block_group(bg);
10769 ret = -EINVAL;
10770 goto out;
10771 }
10772
10773 ret = btrfs_add_swapfile_pin(inode, bg, true);
10774 if (ret) {
10775 btrfs_put_block_group(bg);
10776 if (ret == 1)
10777 ret = 0;
10778 else
10779 goto out;
10780 }
10781
10782 if (bsi.block_len &&
10783 bsi.block_start + bsi.block_len == physical_block_start) {
10784 bsi.block_len += len;
10785 } else {
10786 if (bsi.block_len) {
10787 ret = btrfs_add_swap_extent(sis, &bsi);
10788 if (ret)
10789 goto out;
10790 }
10791 bsi.start = start;
10792 bsi.block_start = physical_block_start;
10793 bsi.block_len = len;
10794 }
10795
10796 start += len;
10797 }
10798
10799 if (bsi.block_len)
10800 ret = btrfs_add_swap_extent(sis, &bsi);
10801
10802 out:
10803 if (!IS_ERR_OR_NULL(em))
10804 free_extent_map(em);
10805
10806 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10807
10808 if (ret)
10809 btrfs_swap_deactivate(file);
10810
10811 btrfs_drew_write_unlock(&root->snapshot_lock);
10812
10813 btrfs_exclop_finish(fs_info);
10814
10815 if (ret)
10816 return ret;
10817
10818 if (device)
10819 sis->bdev = device->bdev;
10820 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10821 sis->max = bsi.nr_pages;
10822 sis->pages = bsi.nr_pages - 1;
10823 sis->highest_bit = bsi.nr_pages - 1;
10824 return bsi.nr_extents;
10825 }
10826 #else
btrfs_swap_deactivate(struct file * file)10827 static void btrfs_swap_deactivate(struct file *file)
10828 {
10829 }
10830
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10831 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10832 sector_t *span)
10833 {
10834 return -EOPNOTSUPP;
10835 }
10836 #endif
10837
10838 /*
10839 * Update the number of bytes used in the VFS' inode. When we replace extents in
10840 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10841 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10842 * always get a correct value.
10843 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10844 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10845 const u64 add_bytes,
10846 const u64 del_bytes)
10847 {
10848 if (add_bytes == del_bytes)
10849 return;
10850
10851 spin_lock(&inode->lock);
10852 if (del_bytes > 0)
10853 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10854 if (add_bytes > 0)
10855 inode_add_bytes(&inode->vfs_inode, add_bytes);
10856 spin_unlock(&inode->lock);
10857 }
10858
10859 /*
10860 * Verify that there are no ordered extents for a given file range.
10861 *
10862 * @inode: The target inode.
10863 * @start: Start offset of the file range, should be sector size aligned.
10864 * @end: End offset (inclusive) of the file range, its value +1 should be
10865 * sector size aligned.
10866 *
10867 * This should typically be used for cases where we locked an inode's VFS lock in
10868 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10869 * we have flushed all delalloc in the range, we have waited for all ordered
10870 * extents in the range to complete and finally we have locked the file range in
10871 * the inode's io_tree.
10872 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)10873 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10874 {
10875 struct btrfs_root *root = inode->root;
10876 struct btrfs_ordered_extent *ordered;
10877
10878 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10879 return;
10880
10881 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10882 if (ordered) {
10883 btrfs_err(root->fs_info,
10884 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10885 start, end, btrfs_ino(inode), root->root_key.objectid,
10886 ordered->file_offset,
10887 ordered->file_offset + ordered->num_bytes - 1);
10888 btrfs_put_ordered_extent(ordered);
10889 }
10890
10891 ASSERT(ordered == NULL);
10892 }
10893
10894 static const struct inode_operations btrfs_dir_inode_operations = {
10895 .getattr = btrfs_getattr,
10896 .lookup = btrfs_lookup,
10897 .create = btrfs_create,
10898 .unlink = btrfs_unlink,
10899 .link = btrfs_link,
10900 .mkdir = btrfs_mkdir,
10901 .rmdir = btrfs_rmdir,
10902 .rename = btrfs_rename2,
10903 .symlink = btrfs_symlink,
10904 .setattr = btrfs_setattr,
10905 .mknod = btrfs_mknod,
10906 .listxattr = btrfs_listxattr,
10907 .permission = btrfs_permission,
10908 .get_inode_acl = btrfs_get_acl,
10909 .set_acl = btrfs_set_acl,
10910 .update_time = btrfs_update_time,
10911 .tmpfile = btrfs_tmpfile,
10912 .fileattr_get = btrfs_fileattr_get,
10913 .fileattr_set = btrfs_fileattr_set,
10914 };
10915
10916 static const struct file_operations btrfs_dir_file_operations = {
10917 .llseek = btrfs_dir_llseek,
10918 .read = generic_read_dir,
10919 .iterate_shared = btrfs_real_readdir,
10920 .open = btrfs_opendir,
10921 .unlocked_ioctl = btrfs_ioctl,
10922 #ifdef CONFIG_COMPAT
10923 .compat_ioctl = btrfs_compat_ioctl,
10924 #endif
10925 .release = btrfs_release_file,
10926 .fsync = btrfs_sync_file,
10927 };
10928
10929 /*
10930 * btrfs doesn't support the bmap operation because swapfiles
10931 * use bmap to make a mapping of extents in the file. They assume
10932 * these extents won't change over the life of the file and they
10933 * use the bmap result to do IO directly to the drive.
10934 *
10935 * the btrfs bmap call would return logical addresses that aren't
10936 * suitable for IO and they also will change frequently as COW
10937 * operations happen. So, swapfile + btrfs == corruption.
10938 *
10939 * For now we're avoiding this by dropping bmap.
10940 */
10941 static const struct address_space_operations btrfs_aops = {
10942 .read_folio = btrfs_read_folio,
10943 .writepages = btrfs_writepages,
10944 .readahead = btrfs_readahead,
10945 .invalidate_folio = btrfs_invalidate_folio,
10946 .release_folio = btrfs_release_folio,
10947 .migrate_folio = btrfs_migrate_folio,
10948 .dirty_folio = filemap_dirty_folio,
10949 .error_remove_page = generic_error_remove_page,
10950 .swap_activate = btrfs_swap_activate,
10951 .swap_deactivate = btrfs_swap_deactivate,
10952 };
10953
10954 static const struct inode_operations btrfs_file_inode_operations = {
10955 .getattr = btrfs_getattr,
10956 .setattr = btrfs_setattr,
10957 .listxattr = btrfs_listxattr,
10958 .permission = btrfs_permission,
10959 .fiemap = btrfs_fiemap,
10960 .get_inode_acl = btrfs_get_acl,
10961 .set_acl = btrfs_set_acl,
10962 .update_time = btrfs_update_time,
10963 .fileattr_get = btrfs_fileattr_get,
10964 .fileattr_set = btrfs_fileattr_set,
10965 };
10966 static const struct inode_operations btrfs_special_inode_operations = {
10967 .getattr = btrfs_getattr,
10968 .setattr = btrfs_setattr,
10969 .permission = btrfs_permission,
10970 .listxattr = btrfs_listxattr,
10971 .get_inode_acl = btrfs_get_acl,
10972 .set_acl = btrfs_set_acl,
10973 .update_time = btrfs_update_time,
10974 };
10975 static const struct inode_operations btrfs_symlink_inode_operations = {
10976 .get_link = page_get_link,
10977 .getattr = btrfs_getattr,
10978 .setattr = btrfs_setattr,
10979 .permission = btrfs_permission,
10980 .listxattr = btrfs_listxattr,
10981 .update_time = btrfs_update_time,
10982 };
10983
10984 const struct dentry_operations btrfs_dentry_operations = {
10985 .d_delete = btrfs_dentry_delete,
10986 };
10987