1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90 if (in_compat_syscall()) {
91 struct compat_sock_fprog f32;
92
93 if (len != sizeof(f32))
94 return -EINVAL;
95 if (copy_from_sockptr(&f32, src, sizeof(f32)))
96 return -EFAULT;
97 memset(dst, 0, sizeof(*dst));
98 dst->len = f32.len;
99 dst->filter = compat_ptr(f32.filter);
100 } else {
101 if (len != sizeof(*dst))
102 return -EINVAL;
103 if (copy_from_sockptr(dst, src, sizeof(*dst)))
104 return -EFAULT;
105 }
106
107 return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110
111 /**
112 * sk_filter_trim_cap - run a packet through a socket filter
113 * @sk: sock associated with &sk_buff
114 * @skb: buffer to filter
115 * @cap: limit on how short the eBPF program may trim the packet
116 *
117 * Run the eBPF program and then cut skb->data to correct size returned by
118 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119 * than pkt_len we keep whole skb->data. This is the socket level
120 * wrapper to bpf_prog_run. It returns 0 if the packet should
121 * be accepted or -EPERM if the packet should be tossed.
122 *
123 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126 int err;
127 struct sk_filter *filter;
128
129 /*
130 * If the skb was allocated from pfmemalloc reserves, only
131 * allow SOCK_MEMALLOC sockets to use it as this socket is
132 * helping free memory
133 */
134 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136 return -ENOMEM;
137 }
138 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139 if (err)
140 return err;
141
142 err = security_sock_rcv_skb(sk, skb);
143 if (err)
144 return err;
145
146 rcu_read_lock();
147 filter = rcu_dereference(sk->sk_filter);
148 if (filter) {
149 struct sock *save_sk = skb->sk;
150 unsigned int pkt_len;
151
152 skb->sk = sk;
153 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154 skb->sk = save_sk;
155 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156 }
157 rcu_read_unlock();
158
159 return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165 return skb_get_poff(skb);
166 }
167
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170 struct nlattr *nla;
171
172 if (skb_is_nonlinear(skb))
173 return 0;
174
175 if (skb->len < sizeof(struct nlattr))
176 return 0;
177
178 if (a > skb->len - sizeof(struct nlattr))
179 return 0;
180
181 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182 if (nla)
183 return (void *) nla - (void *) skb->data;
184
185 return 0;
186 }
187
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190 struct nlattr *nla;
191
192 if (skb_is_nonlinear(skb))
193 return 0;
194
195 if (skb->len < sizeof(struct nlattr))
196 return 0;
197
198 if (a > skb->len - sizeof(struct nlattr))
199 return 0;
200
201 nla = (struct nlattr *) &skb->data[a];
202 if (nla->nla_len > skb->len - a)
203 return 0;
204
205 nla = nla_find_nested(nla, x);
206 if (nla)
207 return (void *) nla - (void *) skb->data;
208
209 return 0;
210 }
211
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213 data, int, headlen, int, offset)
214 {
215 u8 tmp, *ptr;
216 const int len = sizeof(tmp);
217
218 if (offset >= 0) {
219 if (headlen - offset >= len)
220 return *(u8 *)(data + offset);
221 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222 return tmp;
223 } else {
224 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225 if (likely(ptr))
226 return *(u8 *)ptr;
227 }
228
229 return -EFAULT;
230 }
231
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233 int, offset)
234 {
235 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236 offset);
237 }
238
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240 data, int, headlen, int, offset)
241 {
242 __be16 tmp, *ptr;
243 const int len = sizeof(tmp);
244
245 if (offset >= 0) {
246 if (headlen - offset >= len)
247 return get_unaligned_be16(data + offset);
248 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249 return be16_to_cpu(tmp);
250 } else {
251 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252 if (likely(ptr))
253 return get_unaligned_be16(ptr);
254 }
255
256 return -EFAULT;
257 }
258
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260 int, offset)
261 {
262 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263 offset);
264 }
265
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267 data, int, headlen, int, offset)
268 {
269 __be32 tmp, *ptr;
270 const int len = sizeof(tmp);
271
272 if (likely(offset >= 0)) {
273 if (headlen - offset >= len)
274 return get_unaligned_be32(data + offset);
275 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276 return be32_to_cpu(tmp);
277 } else {
278 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279 if (likely(ptr))
280 return get_unaligned_be32(ptr);
281 }
282
283 return -EFAULT;
284 }
285
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287 int, offset)
288 {
289 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290 offset);
291 }
292
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294 struct bpf_insn *insn_buf)
295 {
296 struct bpf_insn *insn = insn_buf;
297
298 switch (skb_field) {
299 case SKF_AD_MARK:
300 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301
302 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303 offsetof(struct sk_buff, mark));
304 break;
305
306 case SKF_AD_PKTTYPE:
307 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312 break;
313
314 case SKF_AD_QUEUE:
315 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316
317 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318 offsetof(struct sk_buff, queue_mapping));
319 break;
320
321 case SKF_AD_VLAN_TAG:
322 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323
324 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326 offsetof(struct sk_buff, vlan_tci));
327 break;
328 case SKF_AD_VLAN_TAG_PRESENT:
329 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
330 if (PKT_VLAN_PRESENT_BIT)
331 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
332 if (PKT_VLAN_PRESENT_BIT < 7)
333 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
334 break;
335 }
336
337 return insn - insn_buf;
338 }
339
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)340 static bool convert_bpf_extensions(struct sock_filter *fp,
341 struct bpf_insn **insnp)
342 {
343 struct bpf_insn *insn = *insnp;
344 u32 cnt;
345
346 switch (fp->k) {
347 case SKF_AD_OFF + SKF_AD_PROTOCOL:
348 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349
350 /* A = *(u16 *) (CTX + offsetof(protocol)) */
351 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352 offsetof(struct sk_buff, protocol));
353 /* A = ntohs(A) [emitting a nop or swap16] */
354 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355 break;
356
357 case SKF_AD_OFF + SKF_AD_PKTTYPE:
358 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359 insn += cnt - 1;
360 break;
361
362 case SKF_AD_OFF + SKF_AD_IFINDEX:
363 case SKF_AD_OFF + SKF_AD_HATYPE:
364 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366
367 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368 BPF_REG_TMP, BPF_REG_CTX,
369 offsetof(struct sk_buff, dev));
370 /* if (tmp != 0) goto pc + 1 */
371 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372 *insn++ = BPF_EXIT_INSN();
373 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375 offsetof(struct net_device, ifindex));
376 else
377 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378 offsetof(struct net_device, type));
379 break;
380
381 case SKF_AD_OFF + SKF_AD_MARK:
382 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383 insn += cnt - 1;
384 break;
385
386 case SKF_AD_OFF + SKF_AD_RXHASH:
387 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388
389 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390 offsetof(struct sk_buff, hash));
391 break;
392
393 case SKF_AD_OFF + SKF_AD_QUEUE:
394 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395 insn += cnt - 1;
396 break;
397
398 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400 BPF_REG_A, BPF_REG_CTX, insn);
401 insn += cnt - 1;
402 break;
403
404 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406 BPF_REG_A, BPF_REG_CTX, insn);
407 insn += cnt - 1;
408 break;
409
410 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412
413 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415 offsetof(struct sk_buff, vlan_proto));
416 /* A = ntohs(A) [emitting a nop or swap16] */
417 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418 break;
419
420 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421 case SKF_AD_OFF + SKF_AD_NLATTR:
422 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423 case SKF_AD_OFF + SKF_AD_CPU:
424 case SKF_AD_OFF + SKF_AD_RANDOM:
425 /* arg1 = CTX */
426 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427 /* arg2 = A */
428 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429 /* arg3 = X */
430 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
432 switch (fp->k) {
433 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435 break;
436 case SKF_AD_OFF + SKF_AD_NLATTR:
437 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438 break;
439 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441 break;
442 case SKF_AD_OFF + SKF_AD_CPU:
443 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444 break;
445 case SKF_AD_OFF + SKF_AD_RANDOM:
446 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447 bpf_user_rnd_init_once();
448 break;
449 }
450 break;
451
452 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453 /* A ^= X */
454 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455 break;
456
457 default:
458 /* This is just a dummy call to avoid letting the compiler
459 * evict __bpf_call_base() as an optimization. Placed here
460 * where no-one bothers.
461 */
462 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463 return false;
464 }
465
466 *insnp = insn;
467 return true;
468 }
469
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474 bool endian = BPF_SIZE(fp->code) == BPF_H ||
475 BPF_SIZE(fp->code) == BPF_W;
476 bool indirect = BPF_MODE(fp->code) == BPF_IND;
477 const int ip_align = NET_IP_ALIGN;
478 struct bpf_insn *insn = *insnp;
479 int offset = fp->k;
480
481 if (!indirect &&
482 ((unaligned_ok && offset >= 0) ||
483 (!unaligned_ok && offset >= 0 &&
484 offset + ip_align >= 0 &&
485 offset + ip_align % size == 0))) {
486 bool ldx_off_ok = offset <= S16_MAX;
487
488 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489 if (offset)
490 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492 size, 2 + endian + (!ldx_off_ok * 2));
493 if (ldx_off_ok) {
494 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495 BPF_REG_D, offset);
496 } else {
497 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500 BPF_REG_TMP, 0);
501 }
502 if (endian)
503 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504 *insn++ = BPF_JMP_A(8);
505 }
506
507 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510 if (!indirect) {
511 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512 } else {
513 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514 if (fp->k)
515 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516 }
517
518 switch (BPF_SIZE(fp->code)) {
519 case BPF_B:
520 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521 break;
522 case BPF_H:
523 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524 break;
525 case BPF_W:
526 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527 break;
528 default:
529 return false;
530 }
531
532 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534 *insn = BPF_EXIT_INSN();
535
536 *insnp = insn;
537 return true;
538 }
539
540 /**
541 * bpf_convert_filter - convert filter program
542 * @prog: the user passed filter program
543 * @len: the length of the user passed filter program
544 * @new_prog: allocated 'struct bpf_prog' or NULL
545 * @new_len: pointer to store length of converted program
546 * @seen_ld_abs: bool whether we've seen ld_abs/ind
547 *
548 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549 * style extended BPF (eBPF).
550 * Conversion workflow:
551 *
552 * 1) First pass for calculating the new program length:
553 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554 *
555 * 2) 2nd pass to remap in two passes: 1st pass finds new
556 * jump offsets, 2nd pass remapping:
557 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560 struct bpf_prog *new_prog, int *new_len,
561 bool *seen_ld_abs)
562 {
563 int new_flen = 0, pass = 0, target, i, stack_off;
564 struct bpf_insn *new_insn, *first_insn = NULL;
565 struct sock_filter *fp;
566 int *addrs = NULL;
567 u8 bpf_src;
568
569 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571
572 if (len <= 0 || len > BPF_MAXINSNS)
573 return -EINVAL;
574
575 if (new_prog) {
576 first_insn = new_prog->insnsi;
577 addrs = kcalloc(len, sizeof(*addrs),
578 GFP_KERNEL | __GFP_NOWARN);
579 if (!addrs)
580 return -ENOMEM;
581 }
582
583 do_pass:
584 new_insn = first_insn;
585 fp = prog;
586
587 /* Classic BPF related prologue emission. */
588 if (new_prog) {
589 /* Classic BPF expects A and X to be reset first. These need
590 * to be guaranteed to be the first two instructions.
591 */
592 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594
595 /* All programs must keep CTX in callee saved BPF_REG_CTX.
596 * In eBPF case it's done by the compiler, here we need to
597 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598 */
599 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600 if (*seen_ld_abs) {
601 /* For packet access in classic BPF, cache skb->data
602 * in callee-saved BPF R8 and skb->len - skb->data_len
603 * (headlen) in BPF R9. Since classic BPF is read-only
604 * on CTX, we only need to cache it once.
605 */
606 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607 BPF_REG_D, BPF_REG_CTX,
608 offsetof(struct sk_buff, data));
609 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610 offsetof(struct sk_buff, len));
611 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612 offsetof(struct sk_buff, data_len));
613 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614 }
615 } else {
616 new_insn += 3;
617 }
618
619 for (i = 0; i < len; fp++, i++) {
620 struct bpf_insn tmp_insns[32] = { };
621 struct bpf_insn *insn = tmp_insns;
622
623 if (addrs)
624 addrs[i] = new_insn - first_insn;
625
626 switch (fp->code) {
627 /* All arithmetic insns and skb loads map as-is. */
628 case BPF_ALU | BPF_ADD | BPF_X:
629 case BPF_ALU | BPF_ADD | BPF_K:
630 case BPF_ALU | BPF_SUB | BPF_X:
631 case BPF_ALU | BPF_SUB | BPF_K:
632 case BPF_ALU | BPF_AND | BPF_X:
633 case BPF_ALU | BPF_AND | BPF_K:
634 case BPF_ALU | BPF_OR | BPF_X:
635 case BPF_ALU | BPF_OR | BPF_K:
636 case BPF_ALU | BPF_LSH | BPF_X:
637 case BPF_ALU | BPF_LSH | BPF_K:
638 case BPF_ALU | BPF_RSH | BPF_X:
639 case BPF_ALU | BPF_RSH | BPF_K:
640 case BPF_ALU | BPF_XOR | BPF_X:
641 case BPF_ALU | BPF_XOR | BPF_K:
642 case BPF_ALU | BPF_MUL | BPF_X:
643 case BPF_ALU | BPF_MUL | BPF_K:
644 case BPF_ALU | BPF_DIV | BPF_X:
645 case BPF_ALU | BPF_DIV | BPF_K:
646 case BPF_ALU | BPF_MOD | BPF_X:
647 case BPF_ALU | BPF_MOD | BPF_K:
648 case BPF_ALU | BPF_NEG:
649 case BPF_LD | BPF_ABS | BPF_W:
650 case BPF_LD | BPF_ABS | BPF_H:
651 case BPF_LD | BPF_ABS | BPF_B:
652 case BPF_LD | BPF_IND | BPF_W:
653 case BPF_LD | BPF_IND | BPF_H:
654 case BPF_LD | BPF_IND | BPF_B:
655 /* Check for overloaded BPF extension and
656 * directly convert it if found, otherwise
657 * just move on with mapping.
658 */
659 if (BPF_CLASS(fp->code) == BPF_LD &&
660 BPF_MODE(fp->code) == BPF_ABS &&
661 convert_bpf_extensions(fp, &insn))
662 break;
663 if (BPF_CLASS(fp->code) == BPF_LD &&
664 convert_bpf_ld_abs(fp, &insn)) {
665 *seen_ld_abs = true;
666 break;
667 }
668
669 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672 /* Error with exception code on div/mod by 0.
673 * For cBPF programs, this was always return 0.
674 */
675 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677 *insn++ = BPF_EXIT_INSN();
678 }
679
680 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681 break;
682
683 /* Jump transformation cannot use BPF block macros
684 * everywhere as offset calculation and target updates
685 * require a bit more work than the rest, i.e. jump
686 * opcodes map as-is, but offsets need adjustment.
687 */
688
689 #define BPF_EMIT_JMP \
690 do { \
691 const s32 off_min = S16_MIN, off_max = S16_MAX; \
692 s32 off; \
693 \
694 if (target >= len || target < 0) \
695 goto err; \
696 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
697 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
698 off -= insn - tmp_insns; \
699 /* Reject anything not fitting into insn->off. */ \
700 if (off < off_min || off > off_max) \
701 goto err; \
702 insn->off = off; \
703 } while (0)
704
705 case BPF_JMP | BPF_JA:
706 target = i + fp->k + 1;
707 insn->code = fp->code;
708 BPF_EMIT_JMP;
709 break;
710
711 case BPF_JMP | BPF_JEQ | BPF_K:
712 case BPF_JMP | BPF_JEQ | BPF_X:
713 case BPF_JMP | BPF_JSET | BPF_K:
714 case BPF_JMP | BPF_JSET | BPF_X:
715 case BPF_JMP | BPF_JGT | BPF_K:
716 case BPF_JMP | BPF_JGT | BPF_X:
717 case BPF_JMP | BPF_JGE | BPF_K:
718 case BPF_JMP | BPF_JGE | BPF_X:
719 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720 /* BPF immediates are signed, zero extend
721 * immediate into tmp register and use it
722 * in compare insn.
723 */
724 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725
726 insn->dst_reg = BPF_REG_A;
727 insn->src_reg = BPF_REG_TMP;
728 bpf_src = BPF_X;
729 } else {
730 insn->dst_reg = BPF_REG_A;
731 insn->imm = fp->k;
732 bpf_src = BPF_SRC(fp->code);
733 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734 }
735
736 /* Common case where 'jump_false' is next insn. */
737 if (fp->jf == 0) {
738 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739 target = i + fp->jt + 1;
740 BPF_EMIT_JMP;
741 break;
742 }
743
744 /* Convert some jumps when 'jump_true' is next insn. */
745 if (fp->jt == 0) {
746 switch (BPF_OP(fp->code)) {
747 case BPF_JEQ:
748 insn->code = BPF_JMP | BPF_JNE | bpf_src;
749 break;
750 case BPF_JGT:
751 insn->code = BPF_JMP | BPF_JLE | bpf_src;
752 break;
753 case BPF_JGE:
754 insn->code = BPF_JMP | BPF_JLT | bpf_src;
755 break;
756 default:
757 goto jmp_rest;
758 }
759
760 target = i + fp->jf + 1;
761 BPF_EMIT_JMP;
762 break;
763 }
764 jmp_rest:
765 /* Other jumps are mapped into two insns: Jxx and JA. */
766 target = i + fp->jt + 1;
767 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768 BPF_EMIT_JMP;
769 insn++;
770
771 insn->code = BPF_JMP | BPF_JA;
772 target = i + fp->jf + 1;
773 BPF_EMIT_JMP;
774 break;
775
776 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777 case BPF_LDX | BPF_MSH | BPF_B: {
778 struct sock_filter tmp = {
779 .code = BPF_LD | BPF_ABS | BPF_B,
780 .k = fp->k,
781 };
782
783 *seen_ld_abs = true;
784
785 /* X = A */
786 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
788 convert_bpf_ld_abs(&tmp, &insn);
789 insn++;
790 /* A &= 0xf */
791 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792 /* A <<= 2 */
793 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794 /* tmp = X */
795 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796 /* X = A */
797 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798 /* A = tmp */
799 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800 break;
801 }
802 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
803 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804 */
805 case BPF_RET | BPF_A:
806 case BPF_RET | BPF_K:
807 if (BPF_RVAL(fp->code) == BPF_K)
808 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809 0, fp->k);
810 *insn = BPF_EXIT_INSN();
811 break;
812
813 /* Store to stack. */
814 case BPF_ST:
815 case BPF_STX:
816 stack_off = fp->k * 4 + 4;
817 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818 BPF_ST ? BPF_REG_A : BPF_REG_X,
819 -stack_off);
820 /* check_load_and_stores() verifies that classic BPF can
821 * load from stack only after write, so tracking
822 * stack_depth for ST|STX insns is enough
823 */
824 if (new_prog && new_prog->aux->stack_depth < stack_off)
825 new_prog->aux->stack_depth = stack_off;
826 break;
827
828 /* Load from stack. */
829 case BPF_LD | BPF_MEM:
830 case BPF_LDX | BPF_MEM:
831 stack_off = fp->k * 4 + 4;
832 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
833 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834 -stack_off);
835 break;
836
837 /* A = K or X = K */
838 case BPF_LD | BPF_IMM:
839 case BPF_LDX | BPF_IMM:
840 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841 BPF_REG_A : BPF_REG_X, fp->k);
842 break;
843
844 /* X = A */
845 case BPF_MISC | BPF_TAX:
846 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847 break;
848
849 /* A = X */
850 case BPF_MISC | BPF_TXA:
851 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852 break;
853
854 /* A = skb->len or X = skb->len */
855 case BPF_LD | BPF_W | BPF_LEN:
856 case BPF_LDX | BPF_W | BPF_LEN:
857 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859 offsetof(struct sk_buff, len));
860 break;
861
862 /* Access seccomp_data fields. */
863 case BPF_LDX | BPF_ABS | BPF_W:
864 /* A = *(u32 *) (ctx + K) */
865 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866 break;
867
868 /* Unknown instruction. */
869 default:
870 goto err;
871 }
872
873 insn++;
874 if (new_prog)
875 memcpy(new_insn, tmp_insns,
876 sizeof(*insn) * (insn - tmp_insns));
877 new_insn += insn - tmp_insns;
878 }
879
880 if (!new_prog) {
881 /* Only calculating new length. */
882 *new_len = new_insn - first_insn;
883 if (*seen_ld_abs)
884 *new_len += 4; /* Prologue bits. */
885 return 0;
886 }
887
888 pass++;
889 if (new_flen != new_insn - first_insn) {
890 new_flen = new_insn - first_insn;
891 if (pass > 2)
892 goto err;
893 goto do_pass;
894 }
895
896 kfree(addrs);
897 BUG_ON(*new_len != new_flen);
898 return 0;
899 err:
900 kfree(addrs);
901 return -EINVAL;
902 }
903
904 /* Security:
905 *
906 * As we dont want to clear mem[] array for each packet going through
907 * __bpf_prog_run(), we check that filter loaded by user never try to read
908 * a cell if not previously written, and we check all branches to be sure
909 * a malicious user doesn't try to abuse us.
910 */
check_load_and_stores(const struct sock_filter * filter,int flen)911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914 int pc, ret = 0;
915
916 BUILD_BUG_ON(BPF_MEMWORDS > 16);
917
918 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919 if (!masks)
920 return -ENOMEM;
921
922 memset(masks, 0xff, flen * sizeof(*masks));
923
924 for (pc = 0; pc < flen; pc++) {
925 memvalid &= masks[pc];
926
927 switch (filter[pc].code) {
928 case BPF_ST:
929 case BPF_STX:
930 memvalid |= (1 << filter[pc].k);
931 break;
932 case BPF_LD | BPF_MEM:
933 case BPF_LDX | BPF_MEM:
934 if (!(memvalid & (1 << filter[pc].k))) {
935 ret = -EINVAL;
936 goto error;
937 }
938 break;
939 case BPF_JMP | BPF_JA:
940 /* A jump must set masks on target */
941 masks[pc + 1 + filter[pc].k] &= memvalid;
942 memvalid = ~0;
943 break;
944 case BPF_JMP | BPF_JEQ | BPF_K:
945 case BPF_JMP | BPF_JEQ | BPF_X:
946 case BPF_JMP | BPF_JGE | BPF_K:
947 case BPF_JMP | BPF_JGE | BPF_X:
948 case BPF_JMP | BPF_JGT | BPF_K:
949 case BPF_JMP | BPF_JGT | BPF_X:
950 case BPF_JMP | BPF_JSET | BPF_K:
951 case BPF_JMP | BPF_JSET | BPF_X:
952 /* A jump must set masks on targets */
953 masks[pc + 1 + filter[pc].jt] &= memvalid;
954 masks[pc + 1 + filter[pc].jf] &= memvalid;
955 memvalid = ~0;
956 break;
957 }
958 }
959 error:
960 kfree(masks);
961 return ret;
962 }
963
chk_code_allowed(u16 code_to_probe)964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966 static const bool codes[] = {
967 /* 32 bit ALU operations */
968 [BPF_ALU | BPF_ADD | BPF_K] = true,
969 [BPF_ALU | BPF_ADD | BPF_X] = true,
970 [BPF_ALU | BPF_SUB | BPF_K] = true,
971 [BPF_ALU | BPF_SUB | BPF_X] = true,
972 [BPF_ALU | BPF_MUL | BPF_K] = true,
973 [BPF_ALU | BPF_MUL | BPF_X] = true,
974 [BPF_ALU | BPF_DIV | BPF_K] = true,
975 [BPF_ALU | BPF_DIV | BPF_X] = true,
976 [BPF_ALU | BPF_MOD | BPF_K] = true,
977 [BPF_ALU | BPF_MOD | BPF_X] = true,
978 [BPF_ALU | BPF_AND | BPF_K] = true,
979 [BPF_ALU | BPF_AND | BPF_X] = true,
980 [BPF_ALU | BPF_OR | BPF_K] = true,
981 [BPF_ALU | BPF_OR | BPF_X] = true,
982 [BPF_ALU | BPF_XOR | BPF_K] = true,
983 [BPF_ALU | BPF_XOR | BPF_X] = true,
984 [BPF_ALU | BPF_LSH | BPF_K] = true,
985 [BPF_ALU | BPF_LSH | BPF_X] = true,
986 [BPF_ALU | BPF_RSH | BPF_K] = true,
987 [BPF_ALU | BPF_RSH | BPF_X] = true,
988 [BPF_ALU | BPF_NEG] = true,
989 /* Load instructions */
990 [BPF_LD | BPF_W | BPF_ABS] = true,
991 [BPF_LD | BPF_H | BPF_ABS] = true,
992 [BPF_LD | BPF_B | BPF_ABS] = true,
993 [BPF_LD | BPF_W | BPF_LEN] = true,
994 [BPF_LD | BPF_W | BPF_IND] = true,
995 [BPF_LD | BPF_H | BPF_IND] = true,
996 [BPF_LD | BPF_B | BPF_IND] = true,
997 [BPF_LD | BPF_IMM] = true,
998 [BPF_LD | BPF_MEM] = true,
999 [BPF_LDX | BPF_W | BPF_LEN] = true,
1000 [BPF_LDX | BPF_B | BPF_MSH] = true,
1001 [BPF_LDX | BPF_IMM] = true,
1002 [BPF_LDX | BPF_MEM] = true,
1003 /* Store instructions */
1004 [BPF_ST] = true,
1005 [BPF_STX] = true,
1006 /* Misc instructions */
1007 [BPF_MISC | BPF_TAX] = true,
1008 [BPF_MISC | BPF_TXA] = true,
1009 /* Return instructions */
1010 [BPF_RET | BPF_K] = true,
1011 [BPF_RET | BPF_A] = true,
1012 /* Jump instructions */
1013 [BPF_JMP | BPF_JA] = true,
1014 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1015 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1016 [BPF_JMP | BPF_JGE | BPF_K] = true,
1017 [BPF_JMP | BPF_JGE | BPF_X] = true,
1018 [BPF_JMP | BPF_JGT | BPF_K] = true,
1019 [BPF_JMP | BPF_JGT | BPF_X] = true,
1020 [BPF_JMP | BPF_JSET | BPF_K] = true,
1021 [BPF_JMP | BPF_JSET | BPF_X] = true,
1022 };
1023
1024 if (code_to_probe >= ARRAY_SIZE(codes))
1025 return false;
1026
1027 return codes[code_to_probe];
1028 }
1029
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031 unsigned int flen)
1032 {
1033 if (filter == NULL)
1034 return false;
1035 if (flen == 0 || flen > BPF_MAXINSNS)
1036 return false;
1037
1038 return true;
1039 }
1040
1041 /**
1042 * bpf_check_classic - verify socket filter code
1043 * @filter: filter to verify
1044 * @flen: length of filter
1045 *
1046 * Check the user's filter code. If we let some ugly
1047 * filter code slip through kaboom! The filter must contain
1048 * no references or jumps that are out of range, no illegal
1049 * instructions, and must end with a RET instruction.
1050 *
1051 * All jumps are forward as they are not signed.
1052 *
1053 * Returns 0 if the rule set is legal or -EINVAL if not.
1054 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1055 static int bpf_check_classic(const struct sock_filter *filter,
1056 unsigned int flen)
1057 {
1058 bool anc_found;
1059 int pc;
1060
1061 /* Check the filter code now */
1062 for (pc = 0; pc < flen; pc++) {
1063 const struct sock_filter *ftest = &filter[pc];
1064
1065 /* May we actually operate on this code? */
1066 if (!chk_code_allowed(ftest->code))
1067 return -EINVAL;
1068
1069 /* Some instructions need special checks */
1070 switch (ftest->code) {
1071 case BPF_ALU | BPF_DIV | BPF_K:
1072 case BPF_ALU | BPF_MOD | BPF_K:
1073 /* Check for division by zero */
1074 if (ftest->k == 0)
1075 return -EINVAL;
1076 break;
1077 case BPF_ALU | BPF_LSH | BPF_K:
1078 case BPF_ALU | BPF_RSH | BPF_K:
1079 if (ftest->k >= 32)
1080 return -EINVAL;
1081 break;
1082 case BPF_LD | BPF_MEM:
1083 case BPF_LDX | BPF_MEM:
1084 case BPF_ST:
1085 case BPF_STX:
1086 /* Check for invalid memory addresses */
1087 if (ftest->k >= BPF_MEMWORDS)
1088 return -EINVAL;
1089 break;
1090 case BPF_JMP | BPF_JA:
1091 /* Note, the large ftest->k might cause loops.
1092 * Compare this with conditional jumps below,
1093 * where offsets are limited. --ANK (981016)
1094 */
1095 if (ftest->k >= (unsigned int)(flen - pc - 1))
1096 return -EINVAL;
1097 break;
1098 case BPF_JMP | BPF_JEQ | BPF_K:
1099 case BPF_JMP | BPF_JEQ | BPF_X:
1100 case BPF_JMP | BPF_JGE | BPF_K:
1101 case BPF_JMP | BPF_JGE | BPF_X:
1102 case BPF_JMP | BPF_JGT | BPF_K:
1103 case BPF_JMP | BPF_JGT | BPF_X:
1104 case BPF_JMP | BPF_JSET | BPF_K:
1105 case BPF_JMP | BPF_JSET | BPF_X:
1106 /* Both conditionals must be safe */
1107 if (pc + ftest->jt + 1 >= flen ||
1108 pc + ftest->jf + 1 >= flen)
1109 return -EINVAL;
1110 break;
1111 case BPF_LD | BPF_W | BPF_ABS:
1112 case BPF_LD | BPF_H | BPF_ABS:
1113 case BPF_LD | BPF_B | BPF_ABS:
1114 anc_found = false;
1115 if (bpf_anc_helper(ftest) & BPF_ANC)
1116 anc_found = true;
1117 /* Ancillary operation unknown or unsupported */
1118 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119 return -EINVAL;
1120 }
1121 }
1122
1123 /* Last instruction must be a RET code */
1124 switch (filter[flen - 1].code) {
1125 case BPF_RET | BPF_K:
1126 case BPF_RET | BPF_A:
1127 return check_load_and_stores(filter, flen);
1128 }
1129
1130 return -EINVAL;
1131 }
1132
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134 const struct sock_fprog *fprog)
1135 {
1136 unsigned int fsize = bpf_classic_proglen(fprog);
1137 struct sock_fprog_kern *fkprog;
1138
1139 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140 if (!fp->orig_prog)
1141 return -ENOMEM;
1142
1143 fkprog = fp->orig_prog;
1144 fkprog->len = fprog->len;
1145
1146 fkprog->filter = kmemdup(fp->insns, fsize,
1147 GFP_KERNEL | __GFP_NOWARN);
1148 if (!fkprog->filter) {
1149 kfree(fp->orig_prog);
1150 return -ENOMEM;
1151 }
1152
1153 return 0;
1154 }
1155
bpf_release_orig_filter(struct bpf_prog * fp)1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158 struct sock_fprog_kern *fprog = fp->orig_prog;
1159
1160 if (fprog) {
1161 kfree(fprog->filter);
1162 kfree(fprog);
1163 }
1164 }
1165
__bpf_prog_release(struct bpf_prog * prog)1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169 bpf_prog_put(prog);
1170 } else {
1171 bpf_release_orig_filter(prog);
1172 bpf_prog_free(prog);
1173 }
1174 }
1175
__sk_filter_release(struct sk_filter * fp)1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178 __bpf_prog_release(fp->prog);
1179 kfree(fp);
1180 }
1181
1182 /**
1183 * sk_filter_release_rcu - Release a socket filter by rcu_head
1184 * @rcu: rcu_head that contains the sk_filter to free
1185 */
sk_filter_release_rcu(struct rcu_head * rcu)1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189
1190 __sk_filter_release(fp);
1191 }
1192
1193 /**
1194 * sk_filter_release - release a socket filter
1195 * @fp: filter to remove
1196 *
1197 * Remove a filter from a socket and release its resources.
1198 */
sk_filter_release(struct sk_filter * fp)1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201 if (refcount_dec_and_test(&fp->refcnt))
1202 call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207 u32 filter_size = bpf_prog_size(fp->prog->len);
1208
1209 atomic_sub(filter_size, &sk->sk_omem_alloc);
1210 sk_filter_release(fp);
1211 }
1212
1213 /* try to charge the socket memory if there is space available
1214 * return true on success
1215 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218 u32 filter_size = bpf_prog_size(fp->prog->len);
1219 int optmem_max = READ_ONCE(sysctl_optmem_max);
1220
1221 /* same check as in sock_kmalloc() */
1222 if (filter_size <= optmem_max &&
1223 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224 atomic_add(filter_size, &sk->sk_omem_alloc);
1225 return true;
1226 }
1227 return false;
1228 }
1229
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232 if (!refcount_inc_not_zero(&fp->refcnt))
1233 return false;
1234
1235 if (!__sk_filter_charge(sk, fp)) {
1236 sk_filter_release(fp);
1237 return false;
1238 }
1239 return true;
1240 }
1241
bpf_migrate_filter(struct bpf_prog * fp)1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244 struct sock_filter *old_prog;
1245 struct bpf_prog *old_fp;
1246 int err, new_len, old_len = fp->len;
1247 bool seen_ld_abs = false;
1248
1249 /* We are free to overwrite insns et al right here as it won't be used at
1250 * this point in time anymore internally after the migration to the eBPF
1251 * instruction representation.
1252 */
1253 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254 sizeof(struct bpf_insn));
1255
1256 /* Conversion cannot happen on overlapping memory areas,
1257 * so we need to keep the user BPF around until the 2nd
1258 * pass. At this time, the user BPF is stored in fp->insns.
1259 */
1260 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261 GFP_KERNEL | __GFP_NOWARN);
1262 if (!old_prog) {
1263 err = -ENOMEM;
1264 goto out_err;
1265 }
1266
1267 /* 1st pass: calculate the new program length. */
1268 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269 &seen_ld_abs);
1270 if (err)
1271 goto out_err_free;
1272
1273 /* Expand fp for appending the new filter representation. */
1274 old_fp = fp;
1275 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276 if (!fp) {
1277 /* The old_fp is still around in case we couldn't
1278 * allocate new memory, so uncharge on that one.
1279 */
1280 fp = old_fp;
1281 err = -ENOMEM;
1282 goto out_err_free;
1283 }
1284
1285 fp->len = new_len;
1286
1287 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289 &seen_ld_abs);
1290 if (err)
1291 /* 2nd bpf_convert_filter() can fail only if it fails
1292 * to allocate memory, remapping must succeed. Note,
1293 * that at this time old_fp has already been released
1294 * by krealloc().
1295 */
1296 goto out_err_free;
1297
1298 fp = bpf_prog_select_runtime(fp, &err);
1299 if (err)
1300 goto out_err_free;
1301
1302 kfree(old_prog);
1303 return fp;
1304
1305 out_err_free:
1306 kfree(old_prog);
1307 out_err:
1308 __bpf_prog_release(fp);
1309 return ERR_PTR(err);
1310 }
1311
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313 bpf_aux_classic_check_t trans)
1314 {
1315 int err;
1316
1317 fp->bpf_func = NULL;
1318 fp->jited = 0;
1319
1320 err = bpf_check_classic(fp->insns, fp->len);
1321 if (err) {
1322 __bpf_prog_release(fp);
1323 return ERR_PTR(err);
1324 }
1325
1326 /* There might be additional checks and transformations
1327 * needed on classic filters, f.e. in case of seccomp.
1328 */
1329 if (trans) {
1330 err = trans(fp->insns, fp->len);
1331 if (err) {
1332 __bpf_prog_release(fp);
1333 return ERR_PTR(err);
1334 }
1335 }
1336
1337 /* Probe if we can JIT compile the filter and if so, do
1338 * the compilation of the filter.
1339 */
1340 bpf_jit_compile(fp);
1341
1342 /* JIT compiler couldn't process this filter, so do the eBPF translation
1343 * for the optimized interpreter.
1344 */
1345 if (!fp->jited)
1346 fp = bpf_migrate_filter(fp);
1347
1348 return fp;
1349 }
1350
1351 /**
1352 * bpf_prog_create - create an unattached filter
1353 * @pfp: the unattached filter that is created
1354 * @fprog: the filter program
1355 *
1356 * Create a filter independent of any socket. We first run some
1357 * sanity checks on it to make sure it does not explode on us later.
1358 * If an error occurs or there is insufficient memory for the filter
1359 * a negative errno code is returned. On success the return is zero.
1360 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363 unsigned int fsize = bpf_classic_proglen(fprog);
1364 struct bpf_prog *fp;
1365
1366 /* Make sure new filter is there and in the right amounts. */
1367 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368 return -EINVAL;
1369
1370 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371 if (!fp)
1372 return -ENOMEM;
1373
1374 memcpy(fp->insns, fprog->filter, fsize);
1375
1376 fp->len = fprog->len;
1377 /* Since unattached filters are not copied back to user
1378 * space through sk_get_filter(), we do not need to hold
1379 * a copy here, and can spare us the work.
1380 */
1381 fp->orig_prog = NULL;
1382
1383 /* bpf_prepare_filter() already takes care of freeing
1384 * memory in case something goes wrong.
1385 */
1386 fp = bpf_prepare_filter(fp, NULL);
1387 if (IS_ERR(fp))
1388 return PTR_ERR(fp);
1389
1390 *pfp = fp;
1391 return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394
1395 /**
1396 * bpf_prog_create_from_user - create an unattached filter from user buffer
1397 * @pfp: the unattached filter that is created
1398 * @fprog: the filter program
1399 * @trans: post-classic verifier transformation handler
1400 * @save_orig: save classic BPF program
1401 *
1402 * This function effectively does the same as bpf_prog_create(), only
1403 * that it builds up its insns buffer from user space provided buffer.
1404 * It also allows for passing a bpf_aux_classic_check_t handler.
1405 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407 bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409 unsigned int fsize = bpf_classic_proglen(fprog);
1410 struct bpf_prog *fp;
1411 int err;
1412
1413 /* Make sure new filter is there and in the right amounts. */
1414 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415 return -EINVAL;
1416
1417 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418 if (!fp)
1419 return -ENOMEM;
1420
1421 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422 __bpf_prog_free(fp);
1423 return -EFAULT;
1424 }
1425
1426 fp->len = fprog->len;
1427 fp->orig_prog = NULL;
1428
1429 if (save_orig) {
1430 err = bpf_prog_store_orig_filter(fp, fprog);
1431 if (err) {
1432 __bpf_prog_free(fp);
1433 return -ENOMEM;
1434 }
1435 }
1436
1437 /* bpf_prepare_filter() already takes care of freeing
1438 * memory in case something goes wrong.
1439 */
1440 fp = bpf_prepare_filter(fp, trans);
1441 if (IS_ERR(fp))
1442 return PTR_ERR(fp);
1443
1444 *pfp = fp;
1445 return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448
bpf_prog_destroy(struct bpf_prog * fp)1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451 __bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457 struct sk_filter *fp, *old_fp;
1458
1459 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460 if (!fp)
1461 return -ENOMEM;
1462
1463 fp->prog = prog;
1464
1465 if (!__sk_filter_charge(sk, fp)) {
1466 kfree(fp);
1467 return -ENOMEM;
1468 }
1469 refcount_set(&fp->refcnt, 1);
1470
1471 old_fp = rcu_dereference_protected(sk->sk_filter,
1472 lockdep_sock_is_held(sk));
1473 rcu_assign_pointer(sk->sk_filter, fp);
1474
1475 if (old_fp)
1476 sk_filter_uncharge(sk, old_fp);
1477
1478 return 0;
1479 }
1480
1481 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484 unsigned int fsize = bpf_classic_proglen(fprog);
1485 struct bpf_prog *prog;
1486 int err;
1487
1488 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489 return ERR_PTR(-EPERM);
1490
1491 /* Make sure new filter is there and in the right amounts. */
1492 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493 return ERR_PTR(-EINVAL);
1494
1495 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496 if (!prog)
1497 return ERR_PTR(-ENOMEM);
1498
1499 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500 __bpf_prog_free(prog);
1501 return ERR_PTR(-EFAULT);
1502 }
1503
1504 prog->len = fprog->len;
1505
1506 err = bpf_prog_store_orig_filter(prog, fprog);
1507 if (err) {
1508 __bpf_prog_free(prog);
1509 return ERR_PTR(-ENOMEM);
1510 }
1511
1512 /* bpf_prepare_filter() already takes care of freeing
1513 * memory in case something goes wrong.
1514 */
1515 return bpf_prepare_filter(prog, NULL);
1516 }
1517
1518 /**
1519 * sk_attach_filter - attach a socket filter
1520 * @fprog: the filter program
1521 * @sk: the socket to use
1522 *
1523 * Attach the user's filter code. We first run some sanity checks on
1524 * it to make sure it does not explode on us later. If an error
1525 * occurs or there is insufficient memory for the filter a negative
1526 * errno code is returned. On success the return is zero.
1527 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530 struct bpf_prog *prog = __get_filter(fprog, sk);
1531 int err;
1532
1533 if (IS_ERR(prog))
1534 return PTR_ERR(prog);
1535
1536 err = __sk_attach_prog(prog, sk);
1537 if (err < 0) {
1538 __bpf_prog_release(prog);
1539 return err;
1540 }
1541
1542 return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548 struct bpf_prog *prog = __get_filter(fprog, sk);
1549 int err;
1550
1551 if (IS_ERR(prog))
1552 return PTR_ERR(prog);
1553
1554 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555 err = -ENOMEM;
1556 else
1557 err = reuseport_attach_prog(sk, prog);
1558
1559 if (err)
1560 __bpf_prog_release(prog);
1561
1562 return err;
1563 }
1564
__get_bpf(u32 ufd,struct sock * sk)1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568 return ERR_PTR(-EPERM);
1569
1570 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572
sk_attach_bpf(u32 ufd,struct sock * sk)1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575 struct bpf_prog *prog = __get_bpf(ufd, sk);
1576 int err;
1577
1578 if (IS_ERR(prog))
1579 return PTR_ERR(prog);
1580
1581 err = __sk_attach_prog(prog, sk);
1582 if (err < 0) {
1583 bpf_prog_put(prog);
1584 return err;
1585 }
1586
1587 return 0;
1588 }
1589
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592 struct bpf_prog *prog;
1593 int err;
1594
1595 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596 return -EPERM;
1597
1598 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599 if (PTR_ERR(prog) == -EINVAL)
1600 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601 if (IS_ERR(prog))
1602 return PTR_ERR(prog);
1603
1604 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606 * bpf prog (e.g. sockmap). It depends on the
1607 * limitation imposed by bpf_prog_load().
1608 * Hence, sysctl_optmem_max is not checked.
1609 */
1610 if ((sk->sk_type != SOCK_STREAM &&
1611 sk->sk_type != SOCK_DGRAM) ||
1612 (sk->sk_protocol != IPPROTO_UDP &&
1613 sk->sk_protocol != IPPROTO_TCP) ||
1614 (sk->sk_family != AF_INET &&
1615 sk->sk_family != AF_INET6)) {
1616 err = -ENOTSUPP;
1617 goto err_prog_put;
1618 }
1619 } else {
1620 /* BPF_PROG_TYPE_SOCKET_FILTER */
1621 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622 err = -ENOMEM;
1623 goto err_prog_put;
1624 }
1625 }
1626
1627 err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629 if (err)
1630 bpf_prog_put(prog);
1631
1632 return err;
1633 }
1634
sk_reuseport_prog_free(struct bpf_prog * prog)1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637 if (!prog)
1638 return;
1639
1640 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641 bpf_prog_put(prog);
1642 else
1643 bpf_prog_destroy(prog);
1644 }
1645
1646 struct bpf_scratchpad {
1647 union {
1648 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649 u8 buff[MAX_BPF_STACK];
1650 };
1651 };
1652
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656 unsigned int write_len)
1657 {
1658 return skb_ensure_writable(skb, write_len);
1659 }
1660
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662 unsigned int write_len)
1663 {
1664 int err = __bpf_try_make_writable(skb, write_len);
1665
1666 bpf_compute_data_pointers(skb);
1667 return err;
1668 }
1669
bpf_try_make_head_writable(struct sk_buff * skb)1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672 return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674
bpf_push_mac_rcsum(struct sk_buff * skb)1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677 if (skb_at_tc_ingress(skb))
1678 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680
bpf_pull_mac_rcsum(struct sk_buff * skb)1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683 if (skb_at_tc_ingress(skb))
1684 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688 const void *, from, u32, len, u64, flags)
1689 {
1690 void *ptr;
1691
1692 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693 return -EINVAL;
1694 if (unlikely(offset > INT_MAX))
1695 return -EFAULT;
1696 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697 return -EFAULT;
1698
1699 ptr = skb->data + offset;
1700 if (flags & BPF_F_RECOMPUTE_CSUM)
1701 __skb_postpull_rcsum(skb, ptr, len, offset);
1702
1703 memcpy(ptr, from, len);
1704
1705 if (flags & BPF_F_RECOMPUTE_CSUM)
1706 __skb_postpush_rcsum(skb, ptr, len, offset);
1707 if (flags & BPF_F_INVALIDATE_HASH)
1708 skb_clear_hash(skb);
1709
1710 return 0;
1711 }
1712
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714 .func = bpf_skb_store_bytes,
1715 .gpl_only = false,
1716 .ret_type = RET_INTEGER,
1717 .arg1_type = ARG_PTR_TO_CTX,
1718 .arg2_type = ARG_ANYTHING,
1719 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1720 .arg4_type = ARG_CONST_SIZE,
1721 .arg5_type = ARG_ANYTHING,
1722 };
1723
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1724 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1725 void *, to, u32, len)
1726 {
1727 void *ptr;
1728
1729 if (unlikely(offset > INT_MAX))
1730 goto err_clear;
1731
1732 ptr = skb_header_pointer(skb, offset, len, to);
1733 if (unlikely(!ptr))
1734 goto err_clear;
1735 if (ptr != to)
1736 memcpy(to, ptr, len);
1737
1738 return 0;
1739 err_clear:
1740 memset(to, 0, len);
1741 return -EFAULT;
1742 }
1743
1744 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1745 .func = bpf_skb_load_bytes,
1746 .gpl_only = false,
1747 .ret_type = RET_INTEGER,
1748 .arg1_type = ARG_PTR_TO_CTX,
1749 .arg2_type = ARG_ANYTHING,
1750 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1751 .arg4_type = ARG_CONST_SIZE,
1752 };
1753
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1754 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1755 const struct bpf_flow_dissector *, ctx, u32, offset,
1756 void *, to, u32, len)
1757 {
1758 void *ptr;
1759
1760 if (unlikely(offset > 0xffff))
1761 goto err_clear;
1762
1763 if (unlikely(!ctx->skb))
1764 goto err_clear;
1765
1766 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1767 if (unlikely(!ptr))
1768 goto err_clear;
1769 if (ptr != to)
1770 memcpy(to, ptr, len);
1771
1772 return 0;
1773 err_clear:
1774 memset(to, 0, len);
1775 return -EFAULT;
1776 }
1777
1778 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1779 .func = bpf_flow_dissector_load_bytes,
1780 .gpl_only = false,
1781 .ret_type = RET_INTEGER,
1782 .arg1_type = ARG_PTR_TO_CTX,
1783 .arg2_type = ARG_ANYTHING,
1784 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1785 .arg4_type = ARG_CONST_SIZE,
1786 };
1787
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1788 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1789 u32, offset, void *, to, u32, len, u32, start_header)
1790 {
1791 u8 *end = skb_tail_pointer(skb);
1792 u8 *start, *ptr;
1793
1794 if (unlikely(offset > 0xffff))
1795 goto err_clear;
1796
1797 switch (start_header) {
1798 case BPF_HDR_START_MAC:
1799 if (unlikely(!skb_mac_header_was_set(skb)))
1800 goto err_clear;
1801 start = skb_mac_header(skb);
1802 break;
1803 case BPF_HDR_START_NET:
1804 start = skb_network_header(skb);
1805 break;
1806 default:
1807 goto err_clear;
1808 }
1809
1810 ptr = start + offset;
1811
1812 if (likely(ptr + len <= end)) {
1813 memcpy(to, ptr, len);
1814 return 0;
1815 }
1816
1817 err_clear:
1818 memset(to, 0, len);
1819 return -EFAULT;
1820 }
1821
1822 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1823 .func = bpf_skb_load_bytes_relative,
1824 .gpl_only = false,
1825 .ret_type = RET_INTEGER,
1826 .arg1_type = ARG_PTR_TO_CTX,
1827 .arg2_type = ARG_ANYTHING,
1828 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1829 .arg4_type = ARG_CONST_SIZE,
1830 .arg5_type = ARG_ANYTHING,
1831 };
1832
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1833 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1834 {
1835 /* Idea is the following: should the needed direct read/write
1836 * test fail during runtime, we can pull in more data and redo
1837 * again, since implicitly, we invalidate previous checks here.
1838 *
1839 * Or, since we know how much we need to make read/writeable,
1840 * this can be done once at the program beginning for direct
1841 * access case. By this we overcome limitations of only current
1842 * headroom being accessible.
1843 */
1844 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1845 }
1846
1847 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1848 .func = bpf_skb_pull_data,
1849 .gpl_only = false,
1850 .ret_type = RET_INTEGER,
1851 .arg1_type = ARG_PTR_TO_CTX,
1852 .arg2_type = ARG_ANYTHING,
1853 };
1854
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1855 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1856 {
1857 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1858 }
1859
1860 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1861 .func = bpf_sk_fullsock,
1862 .gpl_only = false,
1863 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1864 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1865 };
1866
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1867 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1868 unsigned int write_len)
1869 {
1870 return __bpf_try_make_writable(skb, write_len);
1871 }
1872
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1873 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1874 {
1875 /* Idea is the following: should the needed direct read/write
1876 * test fail during runtime, we can pull in more data and redo
1877 * again, since implicitly, we invalidate previous checks here.
1878 *
1879 * Or, since we know how much we need to make read/writeable,
1880 * this can be done once at the program beginning for direct
1881 * access case. By this we overcome limitations of only current
1882 * headroom being accessible.
1883 */
1884 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1885 }
1886
1887 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1888 .func = sk_skb_pull_data,
1889 .gpl_only = false,
1890 .ret_type = RET_INTEGER,
1891 .arg1_type = ARG_PTR_TO_CTX,
1892 .arg2_type = ARG_ANYTHING,
1893 };
1894
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1895 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1896 u64, from, u64, to, u64, flags)
1897 {
1898 __sum16 *ptr;
1899
1900 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1901 return -EINVAL;
1902 if (unlikely(offset > 0xffff || offset & 1))
1903 return -EFAULT;
1904 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1905 return -EFAULT;
1906
1907 ptr = (__sum16 *)(skb->data + offset);
1908 switch (flags & BPF_F_HDR_FIELD_MASK) {
1909 case 0:
1910 if (unlikely(from != 0))
1911 return -EINVAL;
1912
1913 csum_replace_by_diff(ptr, to);
1914 break;
1915 case 2:
1916 csum_replace2(ptr, from, to);
1917 break;
1918 case 4:
1919 csum_replace4(ptr, from, to);
1920 break;
1921 default:
1922 return -EINVAL;
1923 }
1924
1925 return 0;
1926 }
1927
1928 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1929 .func = bpf_l3_csum_replace,
1930 .gpl_only = false,
1931 .ret_type = RET_INTEGER,
1932 .arg1_type = ARG_PTR_TO_CTX,
1933 .arg2_type = ARG_ANYTHING,
1934 .arg3_type = ARG_ANYTHING,
1935 .arg4_type = ARG_ANYTHING,
1936 .arg5_type = ARG_ANYTHING,
1937 };
1938
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1939 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1940 u64, from, u64, to, u64, flags)
1941 {
1942 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1943 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1944 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1945 __sum16 *ptr;
1946
1947 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1948 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1949 return -EINVAL;
1950 if (unlikely(offset > 0xffff || offset & 1))
1951 return -EFAULT;
1952 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1953 return -EFAULT;
1954
1955 ptr = (__sum16 *)(skb->data + offset);
1956 if (is_mmzero && !do_mforce && !*ptr)
1957 return 0;
1958
1959 switch (flags & BPF_F_HDR_FIELD_MASK) {
1960 case 0:
1961 if (unlikely(from != 0))
1962 return -EINVAL;
1963
1964 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1965 break;
1966 case 2:
1967 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1968 break;
1969 case 4:
1970 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1971 break;
1972 default:
1973 return -EINVAL;
1974 }
1975
1976 if (is_mmzero && !*ptr)
1977 *ptr = CSUM_MANGLED_0;
1978 return 0;
1979 }
1980
1981 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1982 .func = bpf_l4_csum_replace,
1983 .gpl_only = false,
1984 .ret_type = RET_INTEGER,
1985 .arg1_type = ARG_PTR_TO_CTX,
1986 .arg2_type = ARG_ANYTHING,
1987 .arg3_type = ARG_ANYTHING,
1988 .arg4_type = ARG_ANYTHING,
1989 .arg5_type = ARG_ANYTHING,
1990 };
1991
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1992 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1993 __be32 *, to, u32, to_size, __wsum, seed)
1994 {
1995 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1996 u32 diff_size = from_size + to_size;
1997 int i, j = 0;
1998
1999 /* This is quite flexible, some examples:
2000 *
2001 * from_size == 0, to_size > 0, seed := csum --> pushing data
2002 * from_size > 0, to_size == 0, seed := csum --> pulling data
2003 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2004 *
2005 * Even for diffing, from_size and to_size don't need to be equal.
2006 */
2007 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2008 diff_size > sizeof(sp->diff)))
2009 return -EINVAL;
2010
2011 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2012 sp->diff[j] = ~from[i];
2013 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
2014 sp->diff[j] = to[i];
2015
2016 return csum_partial(sp->diff, diff_size, seed);
2017 }
2018
2019 static const struct bpf_func_proto bpf_csum_diff_proto = {
2020 .func = bpf_csum_diff,
2021 .gpl_only = false,
2022 .pkt_access = true,
2023 .ret_type = RET_INTEGER,
2024 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2026 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2027 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2028 .arg5_type = ARG_ANYTHING,
2029 };
2030
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2031 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2032 {
2033 /* The interface is to be used in combination with bpf_csum_diff()
2034 * for direct packet writes. csum rotation for alignment as well
2035 * as emulating csum_sub() can be done from the eBPF program.
2036 */
2037 if (skb->ip_summed == CHECKSUM_COMPLETE)
2038 return (skb->csum = csum_add(skb->csum, csum));
2039
2040 return -ENOTSUPP;
2041 }
2042
2043 static const struct bpf_func_proto bpf_csum_update_proto = {
2044 .func = bpf_csum_update,
2045 .gpl_only = false,
2046 .ret_type = RET_INTEGER,
2047 .arg1_type = ARG_PTR_TO_CTX,
2048 .arg2_type = ARG_ANYTHING,
2049 };
2050
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2051 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2052 {
2053 /* The interface is to be used in combination with bpf_skb_adjust_room()
2054 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2055 * is passed as flags, for example.
2056 */
2057 switch (level) {
2058 case BPF_CSUM_LEVEL_INC:
2059 __skb_incr_checksum_unnecessary(skb);
2060 break;
2061 case BPF_CSUM_LEVEL_DEC:
2062 __skb_decr_checksum_unnecessary(skb);
2063 break;
2064 case BPF_CSUM_LEVEL_RESET:
2065 __skb_reset_checksum_unnecessary(skb);
2066 break;
2067 case BPF_CSUM_LEVEL_QUERY:
2068 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2069 skb->csum_level : -EACCES;
2070 default:
2071 return -EINVAL;
2072 }
2073
2074 return 0;
2075 }
2076
2077 static const struct bpf_func_proto bpf_csum_level_proto = {
2078 .func = bpf_csum_level,
2079 .gpl_only = false,
2080 .ret_type = RET_INTEGER,
2081 .arg1_type = ARG_PTR_TO_CTX,
2082 .arg2_type = ARG_ANYTHING,
2083 };
2084
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2085 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2086 {
2087 return dev_forward_skb_nomtu(dev, skb);
2088 }
2089
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2090 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2091 struct sk_buff *skb)
2092 {
2093 int ret = ____dev_forward_skb(dev, skb, false);
2094
2095 if (likely(!ret)) {
2096 skb->dev = dev;
2097 ret = netif_rx(skb);
2098 }
2099
2100 return ret;
2101 }
2102
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2103 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105 int ret;
2106
2107 if (dev_xmit_recursion()) {
2108 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2109 kfree_skb(skb);
2110 return -ENETDOWN;
2111 }
2112
2113 skb->dev = dev;
2114 skb_clear_tstamp(skb);
2115
2116 dev_xmit_recursion_inc();
2117 ret = dev_queue_xmit(skb);
2118 dev_xmit_recursion_dec();
2119
2120 return ret;
2121 }
2122
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2123 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2124 u32 flags)
2125 {
2126 unsigned int mlen = skb_network_offset(skb);
2127
2128 if (unlikely(skb->len <= mlen)) {
2129 kfree_skb(skb);
2130 return -ERANGE;
2131 }
2132
2133 if (mlen) {
2134 __skb_pull(skb, mlen);
2135 if (unlikely(!skb->len)) {
2136 kfree_skb(skb);
2137 return -ERANGE;
2138 }
2139
2140 /* At ingress, the mac header has already been pulled once.
2141 * At egress, skb_pospull_rcsum has to be done in case that
2142 * the skb is originated from ingress (i.e. a forwarded skb)
2143 * to ensure that rcsum starts at net header.
2144 */
2145 if (!skb_at_tc_ingress(skb))
2146 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2147 }
2148 skb_pop_mac_header(skb);
2149 skb_reset_mac_len(skb);
2150 return flags & BPF_F_INGRESS ?
2151 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2152 }
2153
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2154 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2155 u32 flags)
2156 {
2157 /* Verify that a link layer header is carried */
2158 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2159 kfree_skb(skb);
2160 return -ERANGE;
2161 }
2162
2163 bpf_push_mac_rcsum(skb);
2164 return flags & BPF_F_INGRESS ?
2165 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2166 }
2167
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2168 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2169 u32 flags)
2170 {
2171 if (dev_is_mac_header_xmit(dev))
2172 return __bpf_redirect_common(skb, dev, flags);
2173 else
2174 return __bpf_redirect_no_mac(skb, dev, flags);
2175 }
2176
2177 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2178 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2179 struct net_device *dev, struct bpf_nh_params *nh)
2180 {
2181 u32 hh_len = LL_RESERVED_SPACE(dev);
2182 const struct in6_addr *nexthop;
2183 struct dst_entry *dst = NULL;
2184 struct neighbour *neigh;
2185
2186 if (dev_xmit_recursion()) {
2187 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2188 goto out_drop;
2189 }
2190
2191 skb->dev = dev;
2192 skb_clear_tstamp(skb);
2193
2194 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2195 skb = skb_expand_head(skb, hh_len);
2196 if (!skb)
2197 return -ENOMEM;
2198 }
2199
2200 rcu_read_lock_bh();
2201 if (!nh) {
2202 dst = skb_dst(skb);
2203 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2204 &ipv6_hdr(skb)->daddr);
2205 } else {
2206 nexthop = &nh->ipv6_nh;
2207 }
2208 neigh = ip_neigh_gw6(dev, nexthop);
2209 if (likely(!IS_ERR(neigh))) {
2210 int ret;
2211
2212 sock_confirm_neigh(skb, neigh);
2213 dev_xmit_recursion_inc();
2214 ret = neigh_output(neigh, skb, false);
2215 dev_xmit_recursion_dec();
2216 rcu_read_unlock_bh();
2217 return ret;
2218 }
2219 rcu_read_unlock_bh();
2220 if (dst)
2221 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2222 out_drop:
2223 kfree_skb(skb);
2224 return -ENETDOWN;
2225 }
2226
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2227 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2228 struct bpf_nh_params *nh)
2229 {
2230 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2231 struct net *net = dev_net(dev);
2232 int err, ret = NET_XMIT_DROP;
2233
2234 if (!nh) {
2235 struct dst_entry *dst;
2236 struct flowi6 fl6 = {
2237 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2238 .flowi6_mark = skb->mark,
2239 .flowlabel = ip6_flowinfo(ip6h),
2240 .flowi6_oif = dev->ifindex,
2241 .flowi6_proto = ip6h->nexthdr,
2242 .daddr = ip6h->daddr,
2243 .saddr = ip6h->saddr,
2244 };
2245
2246 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2247 if (IS_ERR(dst))
2248 goto out_drop;
2249
2250 skb_dst_set(skb, dst);
2251 } else if (nh->nh_family != AF_INET6) {
2252 goto out_drop;
2253 }
2254
2255 err = bpf_out_neigh_v6(net, skb, dev, nh);
2256 if (unlikely(net_xmit_eval(err)))
2257 dev->stats.tx_errors++;
2258 else
2259 ret = NET_XMIT_SUCCESS;
2260 goto out_xmit;
2261 out_drop:
2262 dev->stats.tx_errors++;
2263 kfree_skb(skb);
2264 out_xmit:
2265 return ret;
2266 }
2267 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2268 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2269 struct bpf_nh_params *nh)
2270 {
2271 kfree_skb(skb);
2272 return NET_XMIT_DROP;
2273 }
2274 #endif /* CONFIG_IPV6 */
2275
2276 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2277 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2278 struct net_device *dev, struct bpf_nh_params *nh)
2279 {
2280 u32 hh_len = LL_RESERVED_SPACE(dev);
2281 struct neighbour *neigh;
2282 bool is_v6gw = false;
2283
2284 if (dev_xmit_recursion()) {
2285 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2286 goto out_drop;
2287 }
2288
2289 skb->dev = dev;
2290 skb_clear_tstamp(skb);
2291
2292 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2293 skb = skb_expand_head(skb, hh_len);
2294 if (!skb)
2295 return -ENOMEM;
2296 }
2297
2298 rcu_read_lock_bh();
2299 if (!nh) {
2300 struct dst_entry *dst = skb_dst(skb);
2301 struct rtable *rt = container_of(dst, struct rtable, dst);
2302
2303 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2304 } else if (nh->nh_family == AF_INET6) {
2305 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2306 is_v6gw = true;
2307 } else if (nh->nh_family == AF_INET) {
2308 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2309 } else {
2310 rcu_read_unlock_bh();
2311 goto out_drop;
2312 }
2313
2314 if (likely(!IS_ERR(neigh))) {
2315 int ret;
2316
2317 sock_confirm_neigh(skb, neigh);
2318 dev_xmit_recursion_inc();
2319 ret = neigh_output(neigh, skb, is_v6gw);
2320 dev_xmit_recursion_dec();
2321 rcu_read_unlock_bh();
2322 return ret;
2323 }
2324 rcu_read_unlock_bh();
2325 out_drop:
2326 kfree_skb(skb);
2327 return -ENETDOWN;
2328 }
2329
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2330 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2331 struct bpf_nh_params *nh)
2332 {
2333 const struct iphdr *ip4h = ip_hdr(skb);
2334 struct net *net = dev_net(dev);
2335 int err, ret = NET_XMIT_DROP;
2336
2337 if (!nh) {
2338 struct flowi4 fl4 = {
2339 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2340 .flowi4_mark = skb->mark,
2341 .flowi4_tos = RT_TOS(ip4h->tos),
2342 .flowi4_oif = dev->ifindex,
2343 .flowi4_proto = ip4h->protocol,
2344 .daddr = ip4h->daddr,
2345 .saddr = ip4h->saddr,
2346 };
2347 struct rtable *rt;
2348
2349 rt = ip_route_output_flow(net, &fl4, NULL);
2350 if (IS_ERR(rt))
2351 goto out_drop;
2352 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2353 ip_rt_put(rt);
2354 goto out_drop;
2355 }
2356
2357 skb_dst_set(skb, &rt->dst);
2358 }
2359
2360 err = bpf_out_neigh_v4(net, skb, dev, nh);
2361 if (unlikely(net_xmit_eval(err)))
2362 dev->stats.tx_errors++;
2363 else
2364 ret = NET_XMIT_SUCCESS;
2365 goto out_xmit;
2366 out_drop:
2367 dev->stats.tx_errors++;
2368 kfree_skb(skb);
2369 out_xmit:
2370 return ret;
2371 }
2372 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2373 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2374 struct bpf_nh_params *nh)
2375 {
2376 kfree_skb(skb);
2377 return NET_XMIT_DROP;
2378 }
2379 #endif /* CONFIG_INET */
2380
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2381 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2382 struct bpf_nh_params *nh)
2383 {
2384 struct ethhdr *ethh = eth_hdr(skb);
2385
2386 if (unlikely(skb->mac_header >= skb->network_header))
2387 goto out;
2388 bpf_push_mac_rcsum(skb);
2389 if (is_multicast_ether_addr(ethh->h_dest))
2390 goto out;
2391
2392 skb_pull(skb, sizeof(*ethh));
2393 skb_unset_mac_header(skb);
2394 skb_reset_network_header(skb);
2395
2396 if (skb->protocol == htons(ETH_P_IP))
2397 return __bpf_redirect_neigh_v4(skb, dev, nh);
2398 else if (skb->protocol == htons(ETH_P_IPV6))
2399 return __bpf_redirect_neigh_v6(skb, dev, nh);
2400 out:
2401 kfree_skb(skb);
2402 return -ENOTSUPP;
2403 }
2404
2405 /* Internal, non-exposed redirect flags. */
2406 enum {
2407 BPF_F_NEIGH = (1ULL << 1),
2408 BPF_F_PEER = (1ULL << 2),
2409 BPF_F_NEXTHOP = (1ULL << 3),
2410 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2411 };
2412
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2413 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2414 {
2415 struct net_device *dev;
2416 struct sk_buff *clone;
2417 int ret;
2418
2419 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2420 return -EINVAL;
2421
2422 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2423 if (unlikely(!dev))
2424 return -EINVAL;
2425
2426 clone = skb_clone(skb, GFP_ATOMIC);
2427 if (unlikely(!clone))
2428 return -ENOMEM;
2429
2430 /* For direct write, we need to keep the invariant that the skbs
2431 * we're dealing with need to be uncloned. Should uncloning fail
2432 * here, we need to free the just generated clone to unclone once
2433 * again.
2434 */
2435 ret = bpf_try_make_head_writable(skb);
2436 if (unlikely(ret)) {
2437 kfree_skb(clone);
2438 return -ENOMEM;
2439 }
2440
2441 return __bpf_redirect(clone, dev, flags);
2442 }
2443
2444 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2445 .func = bpf_clone_redirect,
2446 .gpl_only = false,
2447 .ret_type = RET_INTEGER,
2448 .arg1_type = ARG_PTR_TO_CTX,
2449 .arg2_type = ARG_ANYTHING,
2450 .arg3_type = ARG_ANYTHING,
2451 };
2452
2453 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2454 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2455
skb_do_redirect(struct sk_buff * skb)2456 int skb_do_redirect(struct sk_buff *skb)
2457 {
2458 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2459 struct net *net = dev_net(skb->dev);
2460 struct net_device *dev;
2461 u32 flags = ri->flags;
2462
2463 dev = dev_get_by_index_rcu(net, ri->tgt_index);
2464 ri->tgt_index = 0;
2465 ri->flags = 0;
2466 if (unlikely(!dev))
2467 goto out_drop;
2468 if (flags & BPF_F_PEER) {
2469 const struct net_device_ops *ops = dev->netdev_ops;
2470
2471 if (unlikely(!ops->ndo_get_peer_dev ||
2472 !skb_at_tc_ingress(skb)))
2473 goto out_drop;
2474 dev = ops->ndo_get_peer_dev(dev);
2475 if (unlikely(!dev ||
2476 !(dev->flags & IFF_UP) ||
2477 net_eq(net, dev_net(dev))))
2478 goto out_drop;
2479 skb->dev = dev;
2480 return -EAGAIN;
2481 }
2482 return flags & BPF_F_NEIGH ?
2483 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2484 &ri->nh : NULL) :
2485 __bpf_redirect(skb, dev, flags);
2486 out_drop:
2487 kfree_skb(skb);
2488 return -EINVAL;
2489 }
2490
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2491 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2492 {
2493 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2494
2495 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2496 return TC_ACT_SHOT;
2497
2498 ri->flags = flags;
2499 ri->tgt_index = ifindex;
2500
2501 return TC_ACT_REDIRECT;
2502 }
2503
2504 static const struct bpf_func_proto bpf_redirect_proto = {
2505 .func = bpf_redirect,
2506 .gpl_only = false,
2507 .ret_type = RET_INTEGER,
2508 .arg1_type = ARG_ANYTHING,
2509 .arg2_type = ARG_ANYTHING,
2510 };
2511
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2512 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2513 {
2514 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2515
2516 if (unlikely(flags))
2517 return TC_ACT_SHOT;
2518
2519 ri->flags = BPF_F_PEER;
2520 ri->tgt_index = ifindex;
2521
2522 return TC_ACT_REDIRECT;
2523 }
2524
2525 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2526 .func = bpf_redirect_peer,
2527 .gpl_only = false,
2528 .ret_type = RET_INTEGER,
2529 .arg1_type = ARG_ANYTHING,
2530 .arg2_type = ARG_ANYTHING,
2531 };
2532
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2533 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2534 int, plen, u64, flags)
2535 {
2536 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2537
2538 if (unlikely((plen && plen < sizeof(*params)) || flags))
2539 return TC_ACT_SHOT;
2540
2541 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2542 ri->tgt_index = ifindex;
2543
2544 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2545 if (plen)
2546 memcpy(&ri->nh, params, sizeof(ri->nh));
2547
2548 return TC_ACT_REDIRECT;
2549 }
2550
2551 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2552 .func = bpf_redirect_neigh,
2553 .gpl_only = false,
2554 .ret_type = RET_INTEGER,
2555 .arg1_type = ARG_ANYTHING,
2556 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2557 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2558 .arg4_type = ARG_ANYTHING,
2559 };
2560
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2561 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2562 {
2563 msg->apply_bytes = bytes;
2564 return 0;
2565 }
2566
2567 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2568 .func = bpf_msg_apply_bytes,
2569 .gpl_only = false,
2570 .ret_type = RET_INTEGER,
2571 .arg1_type = ARG_PTR_TO_CTX,
2572 .arg2_type = ARG_ANYTHING,
2573 };
2574
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2575 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2576 {
2577 msg->cork_bytes = bytes;
2578 return 0;
2579 }
2580
2581 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2582 .func = bpf_msg_cork_bytes,
2583 .gpl_only = false,
2584 .ret_type = RET_INTEGER,
2585 .arg1_type = ARG_PTR_TO_CTX,
2586 .arg2_type = ARG_ANYTHING,
2587 };
2588
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2589 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2590 u32, end, u64, flags)
2591 {
2592 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2593 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2594 struct scatterlist *sge;
2595 u8 *raw, *to, *from;
2596 struct page *page;
2597
2598 if (unlikely(flags || end <= start))
2599 return -EINVAL;
2600
2601 /* First find the starting scatterlist element */
2602 i = msg->sg.start;
2603 do {
2604 offset += len;
2605 len = sk_msg_elem(msg, i)->length;
2606 if (start < offset + len)
2607 break;
2608 sk_msg_iter_var_next(i);
2609 } while (i != msg->sg.end);
2610
2611 if (unlikely(start >= offset + len))
2612 return -EINVAL;
2613
2614 first_sge = i;
2615 /* The start may point into the sg element so we need to also
2616 * account for the headroom.
2617 */
2618 bytes_sg_total = start - offset + bytes;
2619 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2620 goto out;
2621
2622 /* At this point we need to linearize multiple scatterlist
2623 * elements or a single shared page. Either way we need to
2624 * copy into a linear buffer exclusively owned by BPF. Then
2625 * place the buffer in the scatterlist and fixup the original
2626 * entries by removing the entries now in the linear buffer
2627 * and shifting the remaining entries. For now we do not try
2628 * to copy partial entries to avoid complexity of running out
2629 * of sg_entry slots. The downside is reading a single byte
2630 * will copy the entire sg entry.
2631 */
2632 do {
2633 copy += sk_msg_elem(msg, i)->length;
2634 sk_msg_iter_var_next(i);
2635 if (bytes_sg_total <= copy)
2636 break;
2637 } while (i != msg->sg.end);
2638 last_sge = i;
2639
2640 if (unlikely(bytes_sg_total > copy))
2641 return -EINVAL;
2642
2643 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2644 get_order(copy));
2645 if (unlikely(!page))
2646 return -ENOMEM;
2647
2648 raw = page_address(page);
2649 i = first_sge;
2650 do {
2651 sge = sk_msg_elem(msg, i);
2652 from = sg_virt(sge);
2653 len = sge->length;
2654 to = raw + poffset;
2655
2656 memcpy(to, from, len);
2657 poffset += len;
2658 sge->length = 0;
2659 put_page(sg_page(sge));
2660
2661 sk_msg_iter_var_next(i);
2662 } while (i != last_sge);
2663
2664 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2665
2666 /* To repair sg ring we need to shift entries. If we only
2667 * had a single entry though we can just replace it and
2668 * be done. Otherwise walk the ring and shift the entries.
2669 */
2670 WARN_ON_ONCE(last_sge == first_sge);
2671 shift = last_sge > first_sge ?
2672 last_sge - first_sge - 1 :
2673 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2674 if (!shift)
2675 goto out;
2676
2677 i = first_sge;
2678 sk_msg_iter_var_next(i);
2679 do {
2680 u32 move_from;
2681
2682 if (i + shift >= NR_MSG_FRAG_IDS)
2683 move_from = i + shift - NR_MSG_FRAG_IDS;
2684 else
2685 move_from = i + shift;
2686 if (move_from == msg->sg.end)
2687 break;
2688
2689 msg->sg.data[i] = msg->sg.data[move_from];
2690 msg->sg.data[move_from].length = 0;
2691 msg->sg.data[move_from].page_link = 0;
2692 msg->sg.data[move_from].offset = 0;
2693 sk_msg_iter_var_next(i);
2694 } while (1);
2695
2696 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2697 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2698 msg->sg.end - shift;
2699 out:
2700 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2701 msg->data_end = msg->data + bytes;
2702 return 0;
2703 }
2704
2705 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2706 .func = bpf_msg_pull_data,
2707 .gpl_only = false,
2708 .ret_type = RET_INTEGER,
2709 .arg1_type = ARG_PTR_TO_CTX,
2710 .arg2_type = ARG_ANYTHING,
2711 .arg3_type = ARG_ANYTHING,
2712 .arg4_type = ARG_ANYTHING,
2713 };
2714
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2715 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2716 u32, len, u64, flags)
2717 {
2718 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2719 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2720 u8 *raw, *to, *from;
2721 struct page *page;
2722
2723 if (unlikely(flags))
2724 return -EINVAL;
2725
2726 if (unlikely(len == 0))
2727 return 0;
2728
2729 /* First find the starting scatterlist element */
2730 i = msg->sg.start;
2731 do {
2732 offset += l;
2733 l = sk_msg_elem(msg, i)->length;
2734
2735 if (start < offset + l)
2736 break;
2737 sk_msg_iter_var_next(i);
2738 } while (i != msg->sg.end);
2739
2740 if (start >= offset + l)
2741 return -EINVAL;
2742
2743 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2744
2745 /* If no space available will fallback to copy, we need at
2746 * least one scatterlist elem available to push data into
2747 * when start aligns to the beginning of an element or two
2748 * when it falls inside an element. We handle the start equals
2749 * offset case because its the common case for inserting a
2750 * header.
2751 */
2752 if (!space || (space == 1 && start != offset))
2753 copy = msg->sg.data[i].length;
2754
2755 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2756 get_order(copy + len));
2757 if (unlikely(!page))
2758 return -ENOMEM;
2759
2760 if (copy) {
2761 int front, back;
2762
2763 raw = page_address(page);
2764
2765 psge = sk_msg_elem(msg, i);
2766 front = start - offset;
2767 back = psge->length - front;
2768 from = sg_virt(psge);
2769
2770 if (front)
2771 memcpy(raw, from, front);
2772
2773 if (back) {
2774 from += front;
2775 to = raw + front + len;
2776
2777 memcpy(to, from, back);
2778 }
2779
2780 put_page(sg_page(psge));
2781 } else if (start - offset) {
2782 psge = sk_msg_elem(msg, i);
2783 rsge = sk_msg_elem_cpy(msg, i);
2784
2785 psge->length = start - offset;
2786 rsge.length -= psge->length;
2787 rsge.offset += start;
2788
2789 sk_msg_iter_var_next(i);
2790 sg_unmark_end(psge);
2791 sg_unmark_end(&rsge);
2792 sk_msg_iter_next(msg, end);
2793 }
2794
2795 /* Slot(s) to place newly allocated data */
2796 new = i;
2797
2798 /* Shift one or two slots as needed */
2799 if (!copy) {
2800 sge = sk_msg_elem_cpy(msg, i);
2801
2802 sk_msg_iter_var_next(i);
2803 sg_unmark_end(&sge);
2804 sk_msg_iter_next(msg, end);
2805
2806 nsge = sk_msg_elem_cpy(msg, i);
2807 if (rsge.length) {
2808 sk_msg_iter_var_next(i);
2809 nnsge = sk_msg_elem_cpy(msg, i);
2810 }
2811
2812 while (i != msg->sg.end) {
2813 msg->sg.data[i] = sge;
2814 sge = nsge;
2815 sk_msg_iter_var_next(i);
2816 if (rsge.length) {
2817 nsge = nnsge;
2818 nnsge = sk_msg_elem_cpy(msg, i);
2819 } else {
2820 nsge = sk_msg_elem_cpy(msg, i);
2821 }
2822 }
2823 }
2824
2825 /* Place newly allocated data buffer */
2826 sk_mem_charge(msg->sk, len);
2827 msg->sg.size += len;
2828 __clear_bit(new, msg->sg.copy);
2829 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2830 if (rsge.length) {
2831 get_page(sg_page(&rsge));
2832 sk_msg_iter_var_next(new);
2833 msg->sg.data[new] = rsge;
2834 }
2835
2836 sk_msg_compute_data_pointers(msg);
2837 return 0;
2838 }
2839
2840 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2841 .func = bpf_msg_push_data,
2842 .gpl_only = false,
2843 .ret_type = RET_INTEGER,
2844 .arg1_type = ARG_PTR_TO_CTX,
2845 .arg2_type = ARG_ANYTHING,
2846 .arg3_type = ARG_ANYTHING,
2847 .arg4_type = ARG_ANYTHING,
2848 };
2849
sk_msg_shift_left(struct sk_msg * msg,int i)2850 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2851 {
2852 int prev;
2853
2854 do {
2855 prev = i;
2856 sk_msg_iter_var_next(i);
2857 msg->sg.data[prev] = msg->sg.data[i];
2858 } while (i != msg->sg.end);
2859
2860 sk_msg_iter_prev(msg, end);
2861 }
2862
sk_msg_shift_right(struct sk_msg * msg,int i)2863 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2864 {
2865 struct scatterlist tmp, sge;
2866
2867 sk_msg_iter_next(msg, end);
2868 sge = sk_msg_elem_cpy(msg, i);
2869 sk_msg_iter_var_next(i);
2870 tmp = sk_msg_elem_cpy(msg, i);
2871
2872 while (i != msg->sg.end) {
2873 msg->sg.data[i] = sge;
2874 sk_msg_iter_var_next(i);
2875 sge = tmp;
2876 tmp = sk_msg_elem_cpy(msg, i);
2877 }
2878 }
2879
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2880 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2881 u32, len, u64, flags)
2882 {
2883 u32 i = 0, l = 0, space, offset = 0;
2884 u64 last = start + len;
2885 int pop;
2886
2887 if (unlikely(flags))
2888 return -EINVAL;
2889
2890 /* First find the starting scatterlist element */
2891 i = msg->sg.start;
2892 do {
2893 offset += l;
2894 l = sk_msg_elem(msg, i)->length;
2895
2896 if (start < offset + l)
2897 break;
2898 sk_msg_iter_var_next(i);
2899 } while (i != msg->sg.end);
2900
2901 /* Bounds checks: start and pop must be inside message */
2902 if (start >= offset + l || last >= msg->sg.size)
2903 return -EINVAL;
2904
2905 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2906
2907 pop = len;
2908 /* --------------| offset
2909 * -| start |-------- len -------|
2910 *
2911 * |----- a ----|-------- pop -------|----- b ----|
2912 * |______________________________________________| length
2913 *
2914 *
2915 * a: region at front of scatter element to save
2916 * b: region at back of scatter element to save when length > A + pop
2917 * pop: region to pop from element, same as input 'pop' here will be
2918 * decremented below per iteration.
2919 *
2920 * Two top-level cases to handle when start != offset, first B is non
2921 * zero and second B is zero corresponding to when a pop includes more
2922 * than one element.
2923 *
2924 * Then if B is non-zero AND there is no space allocate space and
2925 * compact A, B regions into page. If there is space shift ring to
2926 * the rigth free'ing the next element in ring to place B, leaving
2927 * A untouched except to reduce length.
2928 */
2929 if (start != offset) {
2930 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2931 int a = start;
2932 int b = sge->length - pop - a;
2933
2934 sk_msg_iter_var_next(i);
2935
2936 if (pop < sge->length - a) {
2937 if (space) {
2938 sge->length = a;
2939 sk_msg_shift_right(msg, i);
2940 nsge = sk_msg_elem(msg, i);
2941 get_page(sg_page(sge));
2942 sg_set_page(nsge,
2943 sg_page(sge),
2944 b, sge->offset + pop + a);
2945 } else {
2946 struct page *page, *orig;
2947 u8 *to, *from;
2948
2949 page = alloc_pages(__GFP_NOWARN |
2950 __GFP_COMP | GFP_ATOMIC,
2951 get_order(a + b));
2952 if (unlikely(!page))
2953 return -ENOMEM;
2954
2955 sge->length = a;
2956 orig = sg_page(sge);
2957 from = sg_virt(sge);
2958 to = page_address(page);
2959 memcpy(to, from, a);
2960 memcpy(to + a, from + a + pop, b);
2961 sg_set_page(sge, page, a + b, 0);
2962 put_page(orig);
2963 }
2964 pop = 0;
2965 } else if (pop >= sge->length - a) {
2966 pop -= (sge->length - a);
2967 sge->length = a;
2968 }
2969 }
2970
2971 /* From above the current layout _must_ be as follows,
2972 *
2973 * -| offset
2974 * -| start
2975 *
2976 * |---- pop ---|---------------- b ------------|
2977 * |____________________________________________| length
2978 *
2979 * Offset and start of the current msg elem are equal because in the
2980 * previous case we handled offset != start and either consumed the
2981 * entire element and advanced to the next element OR pop == 0.
2982 *
2983 * Two cases to handle here are first pop is less than the length
2984 * leaving some remainder b above. Simply adjust the element's layout
2985 * in this case. Or pop >= length of the element so that b = 0. In this
2986 * case advance to next element decrementing pop.
2987 */
2988 while (pop) {
2989 struct scatterlist *sge = sk_msg_elem(msg, i);
2990
2991 if (pop < sge->length) {
2992 sge->length -= pop;
2993 sge->offset += pop;
2994 pop = 0;
2995 } else {
2996 pop -= sge->length;
2997 sk_msg_shift_left(msg, i);
2998 }
2999 sk_msg_iter_var_next(i);
3000 }
3001
3002 sk_mem_uncharge(msg->sk, len - pop);
3003 msg->sg.size -= (len - pop);
3004 sk_msg_compute_data_pointers(msg);
3005 return 0;
3006 }
3007
3008 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3009 .func = bpf_msg_pop_data,
3010 .gpl_only = false,
3011 .ret_type = RET_INTEGER,
3012 .arg1_type = ARG_PTR_TO_CTX,
3013 .arg2_type = ARG_ANYTHING,
3014 .arg3_type = ARG_ANYTHING,
3015 .arg4_type = ARG_ANYTHING,
3016 };
3017
3018 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3019 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3020 {
3021 return __task_get_classid(current);
3022 }
3023
3024 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3025 .func = bpf_get_cgroup_classid_curr,
3026 .gpl_only = false,
3027 .ret_type = RET_INTEGER,
3028 };
3029
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3030 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3031 {
3032 struct sock *sk = skb_to_full_sk(skb);
3033
3034 if (!sk || !sk_fullsock(sk))
3035 return 0;
3036
3037 return sock_cgroup_classid(&sk->sk_cgrp_data);
3038 }
3039
3040 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3041 .func = bpf_skb_cgroup_classid,
3042 .gpl_only = false,
3043 .ret_type = RET_INTEGER,
3044 .arg1_type = ARG_PTR_TO_CTX,
3045 };
3046 #endif
3047
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3048 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3049 {
3050 return task_get_classid(skb);
3051 }
3052
3053 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3054 .func = bpf_get_cgroup_classid,
3055 .gpl_only = false,
3056 .ret_type = RET_INTEGER,
3057 .arg1_type = ARG_PTR_TO_CTX,
3058 };
3059
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3060 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3061 {
3062 return dst_tclassid(skb);
3063 }
3064
3065 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3066 .func = bpf_get_route_realm,
3067 .gpl_only = false,
3068 .ret_type = RET_INTEGER,
3069 .arg1_type = ARG_PTR_TO_CTX,
3070 };
3071
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3072 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3073 {
3074 /* If skb_clear_hash() was called due to mangling, we can
3075 * trigger SW recalculation here. Later access to hash
3076 * can then use the inline skb->hash via context directly
3077 * instead of calling this helper again.
3078 */
3079 return skb_get_hash(skb);
3080 }
3081
3082 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3083 .func = bpf_get_hash_recalc,
3084 .gpl_only = false,
3085 .ret_type = RET_INTEGER,
3086 .arg1_type = ARG_PTR_TO_CTX,
3087 };
3088
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3089 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3090 {
3091 /* After all direct packet write, this can be used once for
3092 * triggering a lazy recalc on next skb_get_hash() invocation.
3093 */
3094 skb_clear_hash(skb);
3095 return 0;
3096 }
3097
3098 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3099 .func = bpf_set_hash_invalid,
3100 .gpl_only = false,
3101 .ret_type = RET_INTEGER,
3102 .arg1_type = ARG_PTR_TO_CTX,
3103 };
3104
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3105 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3106 {
3107 /* Set user specified hash as L4(+), so that it gets returned
3108 * on skb_get_hash() call unless BPF prog later on triggers a
3109 * skb_clear_hash().
3110 */
3111 __skb_set_sw_hash(skb, hash, true);
3112 return 0;
3113 }
3114
3115 static const struct bpf_func_proto bpf_set_hash_proto = {
3116 .func = bpf_set_hash,
3117 .gpl_only = false,
3118 .ret_type = RET_INTEGER,
3119 .arg1_type = ARG_PTR_TO_CTX,
3120 .arg2_type = ARG_ANYTHING,
3121 };
3122
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3123 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3124 u16, vlan_tci)
3125 {
3126 int ret;
3127
3128 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3129 vlan_proto != htons(ETH_P_8021AD)))
3130 vlan_proto = htons(ETH_P_8021Q);
3131
3132 bpf_push_mac_rcsum(skb);
3133 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3134 bpf_pull_mac_rcsum(skb);
3135
3136 bpf_compute_data_pointers(skb);
3137 return ret;
3138 }
3139
3140 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3141 .func = bpf_skb_vlan_push,
3142 .gpl_only = false,
3143 .ret_type = RET_INTEGER,
3144 .arg1_type = ARG_PTR_TO_CTX,
3145 .arg2_type = ARG_ANYTHING,
3146 .arg3_type = ARG_ANYTHING,
3147 };
3148
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3149 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3150 {
3151 int ret;
3152
3153 bpf_push_mac_rcsum(skb);
3154 ret = skb_vlan_pop(skb);
3155 bpf_pull_mac_rcsum(skb);
3156
3157 bpf_compute_data_pointers(skb);
3158 return ret;
3159 }
3160
3161 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3162 .func = bpf_skb_vlan_pop,
3163 .gpl_only = false,
3164 .ret_type = RET_INTEGER,
3165 .arg1_type = ARG_PTR_TO_CTX,
3166 };
3167
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3168 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3169 {
3170 /* Caller already did skb_cow() with len as headroom,
3171 * so no need to do it here.
3172 */
3173 skb_push(skb, len);
3174 memmove(skb->data, skb->data + len, off);
3175 memset(skb->data + off, 0, len);
3176
3177 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3178 * needed here as it does not change the skb->csum
3179 * result for checksum complete when summing over
3180 * zeroed blocks.
3181 */
3182 return 0;
3183 }
3184
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3185 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3186 {
3187 void *old_data;
3188
3189 /* skb_ensure_writable() is not needed here, as we're
3190 * already working on an uncloned skb.
3191 */
3192 if (unlikely(!pskb_may_pull(skb, off + len)))
3193 return -ENOMEM;
3194
3195 old_data = skb->data;
3196 __skb_pull(skb, len);
3197 skb_postpull_rcsum(skb, old_data + off, len);
3198 memmove(skb->data, old_data, off);
3199
3200 return 0;
3201 }
3202
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3203 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3204 {
3205 bool trans_same = skb->transport_header == skb->network_header;
3206 int ret;
3207
3208 /* There's no need for __skb_push()/__skb_pull() pair to
3209 * get to the start of the mac header as we're guaranteed
3210 * to always start from here under eBPF.
3211 */
3212 ret = bpf_skb_generic_push(skb, off, len);
3213 if (likely(!ret)) {
3214 skb->mac_header -= len;
3215 skb->network_header -= len;
3216 if (trans_same)
3217 skb->transport_header = skb->network_header;
3218 }
3219
3220 return ret;
3221 }
3222
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3223 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3224 {
3225 bool trans_same = skb->transport_header == skb->network_header;
3226 int ret;
3227
3228 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3229 ret = bpf_skb_generic_pop(skb, off, len);
3230 if (likely(!ret)) {
3231 skb->mac_header += len;
3232 skb->network_header += len;
3233 if (trans_same)
3234 skb->transport_header = skb->network_header;
3235 }
3236
3237 return ret;
3238 }
3239
bpf_skb_proto_4_to_6(struct sk_buff * skb)3240 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3241 {
3242 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3243 u32 off = skb_mac_header_len(skb);
3244 int ret;
3245
3246 ret = skb_cow(skb, len_diff);
3247 if (unlikely(ret < 0))
3248 return ret;
3249
3250 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3251 if (unlikely(ret < 0))
3252 return ret;
3253
3254 if (skb_is_gso(skb)) {
3255 struct skb_shared_info *shinfo = skb_shinfo(skb);
3256
3257 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3258 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3259 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3260 shinfo->gso_type |= SKB_GSO_TCPV6;
3261 }
3262 }
3263
3264 skb->protocol = htons(ETH_P_IPV6);
3265 skb_clear_hash(skb);
3266
3267 return 0;
3268 }
3269
bpf_skb_proto_6_to_4(struct sk_buff * skb)3270 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3271 {
3272 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3273 u32 off = skb_mac_header_len(skb);
3274 int ret;
3275
3276 ret = skb_unclone(skb, GFP_ATOMIC);
3277 if (unlikely(ret < 0))
3278 return ret;
3279
3280 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3281 if (unlikely(ret < 0))
3282 return ret;
3283
3284 if (skb_is_gso(skb)) {
3285 struct skb_shared_info *shinfo = skb_shinfo(skb);
3286
3287 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3288 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3289 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3290 shinfo->gso_type |= SKB_GSO_TCPV4;
3291 }
3292 }
3293
3294 skb->protocol = htons(ETH_P_IP);
3295 skb_clear_hash(skb);
3296
3297 return 0;
3298 }
3299
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3300 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3301 {
3302 __be16 from_proto = skb->protocol;
3303
3304 if (from_proto == htons(ETH_P_IP) &&
3305 to_proto == htons(ETH_P_IPV6))
3306 return bpf_skb_proto_4_to_6(skb);
3307
3308 if (from_proto == htons(ETH_P_IPV6) &&
3309 to_proto == htons(ETH_P_IP))
3310 return bpf_skb_proto_6_to_4(skb);
3311
3312 return -ENOTSUPP;
3313 }
3314
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3315 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3316 u64, flags)
3317 {
3318 int ret;
3319
3320 if (unlikely(flags))
3321 return -EINVAL;
3322
3323 /* General idea is that this helper does the basic groundwork
3324 * needed for changing the protocol, and eBPF program fills the
3325 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3326 * and other helpers, rather than passing a raw buffer here.
3327 *
3328 * The rationale is to keep this minimal and without a need to
3329 * deal with raw packet data. F.e. even if we would pass buffers
3330 * here, the program still needs to call the bpf_lX_csum_replace()
3331 * helpers anyway. Plus, this way we keep also separation of
3332 * concerns, since f.e. bpf_skb_store_bytes() should only take
3333 * care of stores.
3334 *
3335 * Currently, additional options and extension header space are
3336 * not supported, but flags register is reserved so we can adapt
3337 * that. For offloads, we mark packet as dodgy, so that headers
3338 * need to be verified first.
3339 */
3340 ret = bpf_skb_proto_xlat(skb, proto);
3341 bpf_compute_data_pointers(skb);
3342 return ret;
3343 }
3344
3345 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3346 .func = bpf_skb_change_proto,
3347 .gpl_only = false,
3348 .ret_type = RET_INTEGER,
3349 .arg1_type = ARG_PTR_TO_CTX,
3350 .arg2_type = ARG_ANYTHING,
3351 .arg3_type = ARG_ANYTHING,
3352 };
3353
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3354 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3355 {
3356 /* We only allow a restricted subset to be changed for now. */
3357 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3358 !skb_pkt_type_ok(pkt_type)))
3359 return -EINVAL;
3360
3361 skb->pkt_type = pkt_type;
3362 return 0;
3363 }
3364
3365 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3366 .func = bpf_skb_change_type,
3367 .gpl_only = false,
3368 .ret_type = RET_INTEGER,
3369 .arg1_type = ARG_PTR_TO_CTX,
3370 .arg2_type = ARG_ANYTHING,
3371 };
3372
bpf_skb_net_base_len(const struct sk_buff * skb)3373 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3374 {
3375 switch (skb->protocol) {
3376 case htons(ETH_P_IP):
3377 return sizeof(struct iphdr);
3378 case htons(ETH_P_IPV6):
3379 return sizeof(struct ipv6hdr);
3380 default:
3381 return ~0U;
3382 }
3383 }
3384
3385 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3386 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3387
3388 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3389 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3390 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3391 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3392 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3393 BPF_F_ADJ_ROOM_ENCAP_L2( \
3394 BPF_ADJ_ROOM_ENCAP_L2_MASK))
3395
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3396 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3397 u64 flags)
3398 {
3399 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3400 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3401 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3402 unsigned int gso_type = SKB_GSO_DODGY;
3403 int ret;
3404
3405 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3406 /* udp gso_size delineates datagrams, only allow if fixed */
3407 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3408 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3409 return -ENOTSUPP;
3410 }
3411
3412 ret = skb_cow_head(skb, len_diff);
3413 if (unlikely(ret < 0))
3414 return ret;
3415
3416 if (encap) {
3417 if (skb->protocol != htons(ETH_P_IP) &&
3418 skb->protocol != htons(ETH_P_IPV6))
3419 return -ENOTSUPP;
3420
3421 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3422 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3423 return -EINVAL;
3424
3425 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3426 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3427 return -EINVAL;
3428
3429 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3430 inner_mac_len < ETH_HLEN)
3431 return -EINVAL;
3432
3433 if (skb->encapsulation)
3434 return -EALREADY;
3435
3436 mac_len = skb->network_header - skb->mac_header;
3437 inner_net = skb->network_header;
3438 if (inner_mac_len > len_diff)
3439 return -EINVAL;
3440 inner_trans = skb->transport_header;
3441 }
3442
3443 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3444 if (unlikely(ret < 0))
3445 return ret;
3446
3447 if (encap) {
3448 skb->inner_mac_header = inner_net - inner_mac_len;
3449 skb->inner_network_header = inner_net;
3450 skb->inner_transport_header = inner_trans;
3451
3452 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3453 skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3454 else
3455 skb_set_inner_protocol(skb, skb->protocol);
3456
3457 skb->encapsulation = 1;
3458 skb_set_network_header(skb, mac_len);
3459
3460 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3461 gso_type |= SKB_GSO_UDP_TUNNEL;
3462 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3463 gso_type |= SKB_GSO_GRE;
3464 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3465 gso_type |= SKB_GSO_IPXIP6;
3466 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3467 gso_type |= SKB_GSO_IPXIP4;
3468
3469 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3470 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3471 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3472 sizeof(struct ipv6hdr) :
3473 sizeof(struct iphdr);
3474
3475 skb_set_transport_header(skb, mac_len + nh_len);
3476 }
3477
3478 /* Match skb->protocol to new outer l3 protocol */
3479 if (skb->protocol == htons(ETH_P_IP) &&
3480 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3481 skb->protocol = htons(ETH_P_IPV6);
3482 else if (skb->protocol == htons(ETH_P_IPV6) &&
3483 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3484 skb->protocol = htons(ETH_P_IP);
3485 }
3486
3487 if (skb_is_gso(skb)) {
3488 struct skb_shared_info *shinfo = skb_shinfo(skb);
3489
3490 /* Due to header grow, MSS needs to be downgraded. */
3491 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3492 skb_decrease_gso_size(shinfo, len_diff);
3493
3494 /* Header must be checked, and gso_segs recomputed. */
3495 shinfo->gso_type |= gso_type;
3496 shinfo->gso_segs = 0;
3497 }
3498
3499 return 0;
3500 }
3501
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3502 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3503 u64 flags)
3504 {
3505 int ret;
3506
3507 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3508 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3509 return -EINVAL;
3510
3511 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3512 /* udp gso_size delineates datagrams, only allow if fixed */
3513 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3514 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3515 return -ENOTSUPP;
3516 }
3517
3518 ret = skb_unclone(skb, GFP_ATOMIC);
3519 if (unlikely(ret < 0))
3520 return ret;
3521
3522 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3523 if (unlikely(ret < 0))
3524 return ret;
3525
3526 if (skb_is_gso(skb)) {
3527 struct skb_shared_info *shinfo = skb_shinfo(skb);
3528
3529 /* Due to header shrink, MSS can be upgraded. */
3530 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3531 skb_increase_gso_size(shinfo, len_diff);
3532
3533 /* Header must be checked, and gso_segs recomputed. */
3534 shinfo->gso_type |= SKB_GSO_DODGY;
3535 shinfo->gso_segs = 0;
3536 }
3537
3538 return 0;
3539 }
3540
3541 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3542
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3543 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3544 u32, mode, u64, flags)
3545 {
3546 u32 len_diff_abs = abs(len_diff);
3547 bool shrink = len_diff < 0;
3548 int ret = 0;
3549
3550 if (unlikely(flags || mode))
3551 return -EINVAL;
3552 if (unlikely(len_diff_abs > 0xfffU))
3553 return -EFAULT;
3554
3555 if (!shrink) {
3556 ret = skb_cow(skb, len_diff);
3557 if (unlikely(ret < 0))
3558 return ret;
3559 __skb_push(skb, len_diff_abs);
3560 memset(skb->data, 0, len_diff_abs);
3561 } else {
3562 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3563 return -ENOMEM;
3564 __skb_pull(skb, len_diff_abs);
3565 }
3566 if (tls_sw_has_ctx_rx(skb->sk)) {
3567 struct strp_msg *rxm = strp_msg(skb);
3568
3569 rxm->full_len += len_diff;
3570 }
3571 return ret;
3572 }
3573
3574 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3575 .func = sk_skb_adjust_room,
3576 .gpl_only = false,
3577 .ret_type = RET_INTEGER,
3578 .arg1_type = ARG_PTR_TO_CTX,
3579 .arg2_type = ARG_ANYTHING,
3580 .arg3_type = ARG_ANYTHING,
3581 .arg4_type = ARG_ANYTHING,
3582 };
3583
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3584 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3585 u32, mode, u64, flags)
3586 {
3587 u32 len_cur, len_diff_abs = abs(len_diff);
3588 u32 len_min = bpf_skb_net_base_len(skb);
3589 u32 len_max = BPF_SKB_MAX_LEN;
3590 __be16 proto = skb->protocol;
3591 bool shrink = len_diff < 0;
3592 u32 off;
3593 int ret;
3594
3595 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3596 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3597 return -EINVAL;
3598 if (unlikely(len_diff_abs > 0xfffU))
3599 return -EFAULT;
3600 if (unlikely(proto != htons(ETH_P_IP) &&
3601 proto != htons(ETH_P_IPV6)))
3602 return -ENOTSUPP;
3603
3604 off = skb_mac_header_len(skb);
3605 switch (mode) {
3606 case BPF_ADJ_ROOM_NET:
3607 off += bpf_skb_net_base_len(skb);
3608 break;
3609 case BPF_ADJ_ROOM_MAC:
3610 break;
3611 default:
3612 return -ENOTSUPP;
3613 }
3614
3615 len_cur = skb->len - skb_network_offset(skb);
3616 if ((shrink && (len_diff_abs >= len_cur ||
3617 len_cur - len_diff_abs < len_min)) ||
3618 (!shrink && (skb->len + len_diff_abs > len_max &&
3619 !skb_is_gso(skb))))
3620 return -ENOTSUPP;
3621
3622 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3623 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3624 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3625 __skb_reset_checksum_unnecessary(skb);
3626
3627 bpf_compute_data_pointers(skb);
3628 return ret;
3629 }
3630
3631 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3632 .func = bpf_skb_adjust_room,
3633 .gpl_only = false,
3634 .ret_type = RET_INTEGER,
3635 .arg1_type = ARG_PTR_TO_CTX,
3636 .arg2_type = ARG_ANYTHING,
3637 .arg3_type = ARG_ANYTHING,
3638 .arg4_type = ARG_ANYTHING,
3639 };
3640
__bpf_skb_min_len(const struct sk_buff * skb)3641 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3642 {
3643 u32 min_len = skb_network_offset(skb);
3644
3645 if (skb_transport_header_was_set(skb))
3646 min_len = skb_transport_offset(skb);
3647 if (skb->ip_summed == CHECKSUM_PARTIAL)
3648 min_len = skb_checksum_start_offset(skb) +
3649 skb->csum_offset + sizeof(__sum16);
3650 return min_len;
3651 }
3652
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3653 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3654 {
3655 unsigned int old_len = skb->len;
3656 int ret;
3657
3658 ret = __skb_grow_rcsum(skb, new_len);
3659 if (!ret)
3660 memset(skb->data + old_len, 0, new_len - old_len);
3661 return ret;
3662 }
3663
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3664 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3665 {
3666 return __skb_trim_rcsum(skb, new_len);
3667 }
3668
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3669 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3670 u64 flags)
3671 {
3672 u32 max_len = BPF_SKB_MAX_LEN;
3673 u32 min_len = __bpf_skb_min_len(skb);
3674 int ret;
3675
3676 if (unlikely(flags || new_len > max_len || new_len < min_len))
3677 return -EINVAL;
3678 if (skb->encapsulation)
3679 return -ENOTSUPP;
3680
3681 /* The basic idea of this helper is that it's performing the
3682 * needed work to either grow or trim an skb, and eBPF program
3683 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3684 * bpf_lX_csum_replace() and others rather than passing a raw
3685 * buffer here. This one is a slow path helper and intended
3686 * for replies with control messages.
3687 *
3688 * Like in bpf_skb_change_proto(), we want to keep this rather
3689 * minimal and without protocol specifics so that we are able
3690 * to separate concerns as in bpf_skb_store_bytes() should only
3691 * be the one responsible for writing buffers.
3692 *
3693 * It's really expected to be a slow path operation here for
3694 * control message replies, so we're implicitly linearizing,
3695 * uncloning and drop offloads from the skb by this.
3696 */
3697 ret = __bpf_try_make_writable(skb, skb->len);
3698 if (!ret) {
3699 if (new_len > skb->len)
3700 ret = bpf_skb_grow_rcsum(skb, new_len);
3701 else if (new_len < skb->len)
3702 ret = bpf_skb_trim_rcsum(skb, new_len);
3703 if (!ret && skb_is_gso(skb))
3704 skb_gso_reset(skb);
3705 }
3706 return ret;
3707 }
3708
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3709 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3710 u64, flags)
3711 {
3712 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3713
3714 bpf_compute_data_pointers(skb);
3715 return ret;
3716 }
3717
3718 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3719 .func = bpf_skb_change_tail,
3720 .gpl_only = false,
3721 .ret_type = RET_INTEGER,
3722 .arg1_type = ARG_PTR_TO_CTX,
3723 .arg2_type = ARG_ANYTHING,
3724 .arg3_type = ARG_ANYTHING,
3725 };
3726
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3727 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3728 u64, flags)
3729 {
3730 return __bpf_skb_change_tail(skb, new_len, flags);
3731 }
3732
3733 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3734 .func = sk_skb_change_tail,
3735 .gpl_only = false,
3736 .ret_type = RET_INTEGER,
3737 .arg1_type = ARG_PTR_TO_CTX,
3738 .arg2_type = ARG_ANYTHING,
3739 .arg3_type = ARG_ANYTHING,
3740 };
3741
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3742 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3743 u64 flags)
3744 {
3745 u32 max_len = BPF_SKB_MAX_LEN;
3746 u32 new_len = skb->len + head_room;
3747 int ret;
3748
3749 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3750 new_len < skb->len))
3751 return -EINVAL;
3752
3753 ret = skb_cow(skb, head_room);
3754 if (likely(!ret)) {
3755 /* Idea for this helper is that we currently only
3756 * allow to expand on mac header. This means that
3757 * skb->protocol network header, etc, stay as is.
3758 * Compared to bpf_skb_change_tail(), we're more
3759 * flexible due to not needing to linearize or
3760 * reset GSO. Intention for this helper is to be
3761 * used by an L3 skb that needs to push mac header
3762 * for redirection into L2 device.
3763 */
3764 __skb_push(skb, head_room);
3765 memset(skb->data, 0, head_room);
3766 skb_reset_mac_header(skb);
3767 skb_reset_mac_len(skb);
3768 }
3769
3770 return ret;
3771 }
3772
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3773 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3774 u64, flags)
3775 {
3776 int ret = __bpf_skb_change_head(skb, head_room, flags);
3777
3778 bpf_compute_data_pointers(skb);
3779 return ret;
3780 }
3781
3782 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3783 .func = bpf_skb_change_head,
3784 .gpl_only = false,
3785 .ret_type = RET_INTEGER,
3786 .arg1_type = ARG_PTR_TO_CTX,
3787 .arg2_type = ARG_ANYTHING,
3788 .arg3_type = ARG_ANYTHING,
3789 };
3790
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3791 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3792 u64, flags)
3793 {
3794 return __bpf_skb_change_head(skb, head_room, flags);
3795 }
3796
3797 static const struct bpf_func_proto sk_skb_change_head_proto = {
3798 .func = sk_skb_change_head,
3799 .gpl_only = false,
3800 .ret_type = RET_INTEGER,
3801 .arg1_type = ARG_PTR_TO_CTX,
3802 .arg2_type = ARG_ANYTHING,
3803 .arg3_type = ARG_ANYTHING,
3804 };
3805
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3806 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3807 {
3808 return xdp_get_buff_len(xdp);
3809 }
3810
3811 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3812 .func = bpf_xdp_get_buff_len,
3813 .gpl_only = false,
3814 .ret_type = RET_INTEGER,
3815 .arg1_type = ARG_PTR_TO_CTX,
3816 };
3817
3818 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3819
3820 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3821 .func = bpf_xdp_get_buff_len,
3822 .gpl_only = false,
3823 .arg1_type = ARG_PTR_TO_BTF_ID,
3824 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0],
3825 };
3826
xdp_get_metalen(const struct xdp_buff * xdp)3827 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3828 {
3829 return xdp_data_meta_unsupported(xdp) ? 0 :
3830 xdp->data - xdp->data_meta;
3831 }
3832
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3833 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3834 {
3835 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3836 unsigned long metalen = xdp_get_metalen(xdp);
3837 void *data_start = xdp_frame_end + metalen;
3838 void *data = xdp->data + offset;
3839
3840 if (unlikely(data < data_start ||
3841 data > xdp->data_end - ETH_HLEN))
3842 return -EINVAL;
3843
3844 if (metalen)
3845 memmove(xdp->data_meta + offset,
3846 xdp->data_meta, metalen);
3847 xdp->data_meta += offset;
3848 xdp->data = data;
3849
3850 return 0;
3851 }
3852
3853 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3854 .func = bpf_xdp_adjust_head,
3855 .gpl_only = false,
3856 .ret_type = RET_INTEGER,
3857 .arg1_type = ARG_PTR_TO_CTX,
3858 .arg2_type = ARG_ANYTHING,
3859 };
3860
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3861 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3862 void *buf, unsigned long len, bool flush)
3863 {
3864 unsigned long ptr_len, ptr_off = 0;
3865 skb_frag_t *next_frag, *end_frag;
3866 struct skb_shared_info *sinfo;
3867 void *src, *dst;
3868 u8 *ptr_buf;
3869
3870 if (likely(xdp->data_end - xdp->data >= off + len)) {
3871 src = flush ? buf : xdp->data + off;
3872 dst = flush ? xdp->data + off : buf;
3873 memcpy(dst, src, len);
3874 return;
3875 }
3876
3877 sinfo = xdp_get_shared_info_from_buff(xdp);
3878 end_frag = &sinfo->frags[sinfo->nr_frags];
3879 next_frag = &sinfo->frags[0];
3880
3881 ptr_len = xdp->data_end - xdp->data;
3882 ptr_buf = xdp->data;
3883
3884 while (true) {
3885 if (off < ptr_off + ptr_len) {
3886 unsigned long copy_off = off - ptr_off;
3887 unsigned long copy_len = min(len, ptr_len - copy_off);
3888
3889 src = flush ? buf : ptr_buf + copy_off;
3890 dst = flush ? ptr_buf + copy_off : buf;
3891 memcpy(dst, src, copy_len);
3892
3893 off += copy_len;
3894 len -= copy_len;
3895 buf += copy_len;
3896 }
3897
3898 if (!len || next_frag == end_frag)
3899 break;
3900
3901 ptr_off += ptr_len;
3902 ptr_buf = skb_frag_address(next_frag);
3903 ptr_len = skb_frag_size(next_frag);
3904 next_frag++;
3905 }
3906 }
3907
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)3908 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3909 {
3910 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3911 u32 size = xdp->data_end - xdp->data;
3912 void *addr = xdp->data;
3913 int i;
3914
3915 if (unlikely(offset > 0xffff || len > 0xffff))
3916 return ERR_PTR(-EFAULT);
3917
3918 if (offset + len > xdp_get_buff_len(xdp))
3919 return ERR_PTR(-EINVAL);
3920
3921 if (offset < size) /* linear area */
3922 goto out;
3923
3924 offset -= size;
3925 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3926 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3927
3928 if (offset < frag_size) {
3929 addr = skb_frag_address(&sinfo->frags[i]);
3930 size = frag_size;
3931 break;
3932 }
3933 offset -= frag_size;
3934 }
3935 out:
3936 return offset + len <= size ? addr + offset : NULL;
3937 }
3938
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)3939 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3940 void *, buf, u32, len)
3941 {
3942 void *ptr;
3943
3944 ptr = bpf_xdp_pointer(xdp, offset, len);
3945 if (IS_ERR(ptr))
3946 return PTR_ERR(ptr);
3947
3948 if (!ptr)
3949 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3950 else
3951 memcpy(buf, ptr, len);
3952
3953 return 0;
3954 }
3955
3956 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3957 .func = bpf_xdp_load_bytes,
3958 .gpl_only = false,
3959 .ret_type = RET_INTEGER,
3960 .arg1_type = ARG_PTR_TO_CTX,
3961 .arg2_type = ARG_ANYTHING,
3962 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
3963 .arg4_type = ARG_CONST_SIZE,
3964 };
3965
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)3966 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3967 void *, buf, u32, len)
3968 {
3969 void *ptr;
3970
3971 ptr = bpf_xdp_pointer(xdp, offset, len);
3972 if (IS_ERR(ptr))
3973 return PTR_ERR(ptr);
3974
3975 if (!ptr)
3976 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3977 else
3978 memcpy(ptr, buf, len);
3979
3980 return 0;
3981 }
3982
3983 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3984 .func = bpf_xdp_store_bytes,
3985 .gpl_only = false,
3986 .ret_type = RET_INTEGER,
3987 .arg1_type = ARG_PTR_TO_CTX,
3988 .arg2_type = ARG_ANYTHING,
3989 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
3990 .arg4_type = ARG_CONST_SIZE,
3991 };
3992
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)3993 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3994 {
3995 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3996 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3997 struct xdp_rxq_info *rxq = xdp->rxq;
3998 unsigned int tailroom;
3999
4000 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4001 return -EOPNOTSUPP;
4002
4003 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4004 if (unlikely(offset > tailroom))
4005 return -EINVAL;
4006
4007 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4008 skb_frag_size_add(frag, offset);
4009 sinfo->xdp_frags_size += offset;
4010
4011 return 0;
4012 }
4013
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4014 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4015 {
4016 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4017 int i, n_frags_free = 0, len_free = 0;
4018
4019 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4020 return -EINVAL;
4021
4022 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4023 skb_frag_t *frag = &sinfo->frags[i];
4024 int shrink = min_t(int, offset, skb_frag_size(frag));
4025
4026 len_free += shrink;
4027 offset -= shrink;
4028
4029 if (skb_frag_size(frag) == shrink) {
4030 struct page *page = skb_frag_page(frag);
4031
4032 __xdp_return(page_address(page), &xdp->rxq->mem,
4033 false, NULL);
4034 n_frags_free++;
4035 } else {
4036 skb_frag_size_sub(frag, shrink);
4037 break;
4038 }
4039 }
4040 sinfo->nr_frags -= n_frags_free;
4041 sinfo->xdp_frags_size -= len_free;
4042
4043 if (unlikely(!sinfo->nr_frags)) {
4044 xdp_buff_clear_frags_flag(xdp);
4045 xdp->data_end -= offset;
4046 }
4047
4048 return 0;
4049 }
4050
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4051 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4052 {
4053 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4054 void *data_end = xdp->data_end + offset;
4055
4056 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4057 if (offset < 0)
4058 return bpf_xdp_frags_shrink_tail(xdp, -offset);
4059
4060 return bpf_xdp_frags_increase_tail(xdp, offset);
4061 }
4062
4063 /* Notice that xdp_data_hard_end have reserved some tailroom */
4064 if (unlikely(data_end > data_hard_end))
4065 return -EINVAL;
4066
4067 /* ALL drivers MUST init xdp->frame_sz, chicken check below */
4068 if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4069 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4070 return -EINVAL;
4071 }
4072
4073 if (unlikely(data_end < xdp->data + ETH_HLEN))
4074 return -EINVAL;
4075
4076 /* Clear memory area on grow, can contain uninit kernel memory */
4077 if (offset > 0)
4078 memset(xdp->data_end, 0, offset);
4079
4080 xdp->data_end = data_end;
4081
4082 return 0;
4083 }
4084
4085 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4086 .func = bpf_xdp_adjust_tail,
4087 .gpl_only = false,
4088 .ret_type = RET_INTEGER,
4089 .arg1_type = ARG_PTR_TO_CTX,
4090 .arg2_type = ARG_ANYTHING,
4091 };
4092
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4093 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4094 {
4095 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4096 void *meta = xdp->data_meta + offset;
4097 unsigned long metalen = xdp->data - meta;
4098
4099 if (xdp_data_meta_unsupported(xdp))
4100 return -ENOTSUPP;
4101 if (unlikely(meta < xdp_frame_end ||
4102 meta > xdp->data))
4103 return -EINVAL;
4104 if (unlikely(xdp_metalen_invalid(metalen)))
4105 return -EACCES;
4106
4107 xdp->data_meta = meta;
4108
4109 return 0;
4110 }
4111
4112 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4113 .func = bpf_xdp_adjust_meta,
4114 .gpl_only = false,
4115 .ret_type = RET_INTEGER,
4116 .arg1_type = ARG_PTR_TO_CTX,
4117 .arg2_type = ARG_ANYTHING,
4118 };
4119
4120 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4121 * below:
4122 *
4123 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4124 * of the redirect and store it (along with some other metadata) in a per-CPU
4125 * struct bpf_redirect_info.
4126 *
4127 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4128 * call xdp_do_redirect() which will use the information in struct
4129 * bpf_redirect_info to actually enqueue the frame into a map type-specific
4130 * bulk queue structure.
4131 *
4132 * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4133 * which will flush all the different bulk queues, thus completing the
4134 * redirect.
4135 *
4136 * Pointers to the map entries will be kept around for this whole sequence of
4137 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4138 * the core code; instead, the RCU protection relies on everything happening
4139 * inside a single NAPI poll sequence, which means it's between a pair of calls
4140 * to local_bh_disable()/local_bh_enable().
4141 *
4142 * The map entries are marked as __rcu and the map code makes sure to
4143 * dereference those pointers with rcu_dereference_check() in a way that works
4144 * for both sections that to hold an rcu_read_lock() and sections that are
4145 * called from NAPI without a separate rcu_read_lock(). The code below does not
4146 * use RCU annotations, but relies on those in the map code.
4147 */
xdp_do_flush(void)4148 void xdp_do_flush(void)
4149 {
4150 __dev_flush();
4151 __cpu_map_flush();
4152 __xsk_map_flush();
4153 }
4154 EXPORT_SYMBOL_GPL(xdp_do_flush);
4155
bpf_clear_redirect_map(struct bpf_map * map)4156 void bpf_clear_redirect_map(struct bpf_map *map)
4157 {
4158 struct bpf_redirect_info *ri;
4159 int cpu;
4160
4161 for_each_possible_cpu(cpu) {
4162 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4163 /* Avoid polluting remote cacheline due to writes if
4164 * not needed. Once we pass this test, we need the
4165 * cmpxchg() to make sure it hasn't been changed in
4166 * the meantime by remote CPU.
4167 */
4168 if (unlikely(READ_ONCE(ri->map) == map))
4169 cmpxchg(&ri->map, map, NULL);
4170 }
4171 }
4172
4173 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4174 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4175
xdp_master_redirect(struct xdp_buff * xdp)4176 u32 xdp_master_redirect(struct xdp_buff *xdp)
4177 {
4178 struct net_device *master, *slave;
4179 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4180
4181 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4182 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4183 if (slave && slave != xdp->rxq->dev) {
4184 /* The target device is different from the receiving device, so
4185 * redirect it to the new device.
4186 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4187 * drivers to unmap the packet from their rx ring.
4188 */
4189 ri->tgt_index = slave->ifindex;
4190 ri->map_id = INT_MAX;
4191 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4192 return XDP_REDIRECT;
4193 }
4194 return XDP_TX;
4195 }
4196 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4197
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4198 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4199 struct net_device *dev,
4200 struct xdp_buff *xdp,
4201 struct bpf_prog *xdp_prog)
4202 {
4203 enum bpf_map_type map_type = ri->map_type;
4204 void *fwd = ri->tgt_value;
4205 u32 map_id = ri->map_id;
4206 int err;
4207
4208 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4209 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4210
4211 err = __xsk_map_redirect(fwd, xdp);
4212 if (unlikely(err))
4213 goto err;
4214
4215 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4216 return 0;
4217 err:
4218 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4219 return err;
4220 }
4221
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4222 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4223 struct net_device *dev,
4224 struct xdp_frame *xdpf,
4225 struct bpf_prog *xdp_prog)
4226 {
4227 enum bpf_map_type map_type = ri->map_type;
4228 void *fwd = ri->tgt_value;
4229 u32 map_id = ri->map_id;
4230 struct bpf_map *map;
4231 int err;
4232
4233 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4234 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4235
4236 if (unlikely(!xdpf)) {
4237 err = -EOVERFLOW;
4238 goto err;
4239 }
4240
4241 switch (map_type) {
4242 case BPF_MAP_TYPE_DEVMAP:
4243 fallthrough;
4244 case BPF_MAP_TYPE_DEVMAP_HASH:
4245 map = READ_ONCE(ri->map);
4246 if (unlikely(map)) {
4247 WRITE_ONCE(ri->map, NULL);
4248 err = dev_map_enqueue_multi(xdpf, dev, map,
4249 ri->flags & BPF_F_EXCLUDE_INGRESS);
4250 } else {
4251 err = dev_map_enqueue(fwd, xdpf, dev);
4252 }
4253 break;
4254 case BPF_MAP_TYPE_CPUMAP:
4255 err = cpu_map_enqueue(fwd, xdpf, dev);
4256 break;
4257 case BPF_MAP_TYPE_UNSPEC:
4258 if (map_id == INT_MAX) {
4259 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4260 if (unlikely(!fwd)) {
4261 err = -EINVAL;
4262 break;
4263 }
4264 err = dev_xdp_enqueue(fwd, xdpf, dev);
4265 break;
4266 }
4267 fallthrough;
4268 default:
4269 err = -EBADRQC;
4270 }
4271
4272 if (unlikely(err))
4273 goto err;
4274
4275 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4276 return 0;
4277 err:
4278 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4279 return err;
4280 }
4281
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4282 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4283 struct bpf_prog *xdp_prog)
4284 {
4285 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4286 enum bpf_map_type map_type = ri->map_type;
4287
4288 /* XDP_REDIRECT is not fully supported yet for xdp frags since
4289 * not all XDP capable drivers can map non-linear xdp_frame in
4290 * ndo_xdp_xmit.
4291 */
4292 if (unlikely(xdp_buff_has_frags(xdp) &&
4293 map_type != BPF_MAP_TYPE_CPUMAP))
4294 return -EOPNOTSUPP;
4295
4296 if (map_type == BPF_MAP_TYPE_XSKMAP)
4297 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4298
4299 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4300 xdp_prog);
4301 }
4302 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4303
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4304 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4305 struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4306 {
4307 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4308 enum bpf_map_type map_type = ri->map_type;
4309
4310 if (map_type == BPF_MAP_TYPE_XSKMAP)
4311 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4312
4313 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4314 }
4315 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4316
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id)4317 static int xdp_do_generic_redirect_map(struct net_device *dev,
4318 struct sk_buff *skb,
4319 struct xdp_buff *xdp,
4320 struct bpf_prog *xdp_prog,
4321 void *fwd,
4322 enum bpf_map_type map_type, u32 map_id)
4323 {
4324 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4325 struct bpf_map *map;
4326 int err;
4327
4328 switch (map_type) {
4329 case BPF_MAP_TYPE_DEVMAP:
4330 fallthrough;
4331 case BPF_MAP_TYPE_DEVMAP_HASH:
4332 map = READ_ONCE(ri->map);
4333 if (unlikely(map)) {
4334 WRITE_ONCE(ri->map, NULL);
4335 err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4336 ri->flags & BPF_F_EXCLUDE_INGRESS);
4337 } else {
4338 err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4339 }
4340 if (unlikely(err))
4341 goto err;
4342 break;
4343 case BPF_MAP_TYPE_XSKMAP:
4344 err = xsk_generic_rcv(fwd, xdp);
4345 if (err)
4346 goto err;
4347 consume_skb(skb);
4348 break;
4349 case BPF_MAP_TYPE_CPUMAP:
4350 err = cpu_map_generic_redirect(fwd, skb);
4351 if (unlikely(err))
4352 goto err;
4353 break;
4354 default:
4355 err = -EBADRQC;
4356 goto err;
4357 }
4358
4359 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4360 return 0;
4361 err:
4362 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4363 return err;
4364 }
4365
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4366 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4367 struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4368 {
4369 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4370 enum bpf_map_type map_type = ri->map_type;
4371 void *fwd = ri->tgt_value;
4372 u32 map_id = ri->map_id;
4373 int err;
4374
4375 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4376 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4377
4378 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4379 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4380 if (unlikely(!fwd)) {
4381 err = -EINVAL;
4382 goto err;
4383 }
4384
4385 err = xdp_ok_fwd_dev(fwd, skb->len);
4386 if (unlikely(err))
4387 goto err;
4388
4389 skb->dev = fwd;
4390 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4391 generic_xdp_tx(skb, xdp_prog);
4392 return 0;
4393 }
4394
4395 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4396 err:
4397 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4398 return err;
4399 }
4400
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4401 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4402 {
4403 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4404
4405 if (unlikely(flags))
4406 return XDP_ABORTED;
4407
4408 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4409 * by map_idr) is used for ifindex based XDP redirect.
4410 */
4411 ri->tgt_index = ifindex;
4412 ri->map_id = INT_MAX;
4413 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4414
4415 return XDP_REDIRECT;
4416 }
4417
4418 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4419 .func = bpf_xdp_redirect,
4420 .gpl_only = false,
4421 .ret_type = RET_INTEGER,
4422 .arg1_type = ARG_ANYTHING,
4423 .arg2_type = ARG_ANYTHING,
4424 };
4425
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)4426 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4427 u64, flags)
4428 {
4429 return map->ops->map_redirect(map, ifindex, flags);
4430 }
4431
4432 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4433 .func = bpf_xdp_redirect_map,
4434 .gpl_only = false,
4435 .ret_type = RET_INTEGER,
4436 .arg1_type = ARG_CONST_MAP_PTR,
4437 .arg2_type = ARG_ANYTHING,
4438 .arg3_type = ARG_ANYTHING,
4439 };
4440
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4441 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4442 unsigned long off, unsigned long len)
4443 {
4444 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4445
4446 if (unlikely(!ptr))
4447 return len;
4448 if (ptr != dst_buff)
4449 memcpy(dst_buff, ptr, len);
4450
4451 return 0;
4452 }
4453
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4454 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4455 u64, flags, void *, meta, u64, meta_size)
4456 {
4457 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4458
4459 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4460 return -EINVAL;
4461 if (unlikely(!skb || skb_size > skb->len))
4462 return -EFAULT;
4463
4464 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4465 bpf_skb_copy);
4466 }
4467
4468 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4469 .func = bpf_skb_event_output,
4470 .gpl_only = true,
4471 .ret_type = RET_INTEGER,
4472 .arg1_type = ARG_PTR_TO_CTX,
4473 .arg2_type = ARG_CONST_MAP_PTR,
4474 .arg3_type = ARG_ANYTHING,
4475 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4476 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4477 };
4478
4479 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4480
4481 const struct bpf_func_proto bpf_skb_output_proto = {
4482 .func = bpf_skb_event_output,
4483 .gpl_only = true,
4484 .ret_type = RET_INTEGER,
4485 .arg1_type = ARG_PTR_TO_BTF_ID,
4486 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4487 .arg2_type = ARG_CONST_MAP_PTR,
4488 .arg3_type = ARG_ANYTHING,
4489 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4490 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4491 };
4492
bpf_tunnel_key_af(u64 flags)4493 static unsigned short bpf_tunnel_key_af(u64 flags)
4494 {
4495 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4496 }
4497
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4498 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4499 u32, size, u64, flags)
4500 {
4501 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4502 u8 compat[sizeof(struct bpf_tunnel_key)];
4503 void *to_orig = to;
4504 int err;
4505
4506 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4507 BPF_F_TUNINFO_FLAGS)))) {
4508 err = -EINVAL;
4509 goto err_clear;
4510 }
4511 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4512 err = -EPROTO;
4513 goto err_clear;
4514 }
4515 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4516 err = -EINVAL;
4517 switch (size) {
4518 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4519 case offsetof(struct bpf_tunnel_key, tunnel_label):
4520 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4521 goto set_compat;
4522 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4523 /* Fixup deprecated structure layouts here, so we have
4524 * a common path later on.
4525 */
4526 if (ip_tunnel_info_af(info) != AF_INET)
4527 goto err_clear;
4528 set_compat:
4529 to = (struct bpf_tunnel_key *)compat;
4530 break;
4531 default:
4532 goto err_clear;
4533 }
4534 }
4535
4536 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4537 to->tunnel_tos = info->key.tos;
4538 to->tunnel_ttl = info->key.ttl;
4539 if (flags & BPF_F_TUNINFO_FLAGS)
4540 to->tunnel_flags = info->key.tun_flags;
4541 else
4542 to->tunnel_ext = 0;
4543
4544 if (flags & BPF_F_TUNINFO_IPV6) {
4545 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4546 sizeof(to->remote_ipv6));
4547 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4548 sizeof(to->local_ipv6));
4549 to->tunnel_label = be32_to_cpu(info->key.label);
4550 } else {
4551 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4552 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4553 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4554 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4555 to->tunnel_label = 0;
4556 }
4557
4558 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4559 memcpy(to_orig, to, size);
4560
4561 return 0;
4562 err_clear:
4563 memset(to_orig, 0, size);
4564 return err;
4565 }
4566
4567 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4568 .func = bpf_skb_get_tunnel_key,
4569 .gpl_only = false,
4570 .ret_type = RET_INTEGER,
4571 .arg1_type = ARG_PTR_TO_CTX,
4572 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4573 .arg3_type = ARG_CONST_SIZE,
4574 .arg4_type = ARG_ANYTHING,
4575 };
4576
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4577 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4578 {
4579 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4580 int err;
4581
4582 if (unlikely(!info ||
4583 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4584 err = -ENOENT;
4585 goto err_clear;
4586 }
4587 if (unlikely(size < info->options_len)) {
4588 err = -ENOMEM;
4589 goto err_clear;
4590 }
4591
4592 ip_tunnel_info_opts_get(to, info);
4593 if (size > info->options_len)
4594 memset(to + info->options_len, 0, size - info->options_len);
4595
4596 return info->options_len;
4597 err_clear:
4598 memset(to, 0, size);
4599 return err;
4600 }
4601
4602 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4603 .func = bpf_skb_get_tunnel_opt,
4604 .gpl_only = false,
4605 .ret_type = RET_INTEGER,
4606 .arg1_type = ARG_PTR_TO_CTX,
4607 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4608 .arg3_type = ARG_CONST_SIZE,
4609 };
4610
4611 static struct metadata_dst __percpu *md_dst;
4612
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4613 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4614 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4615 {
4616 struct metadata_dst *md = this_cpu_ptr(md_dst);
4617 u8 compat[sizeof(struct bpf_tunnel_key)];
4618 struct ip_tunnel_info *info;
4619
4620 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4621 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4622 return -EINVAL;
4623 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4624 switch (size) {
4625 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4626 case offsetof(struct bpf_tunnel_key, tunnel_label):
4627 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4628 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4629 /* Fixup deprecated structure layouts here, so we have
4630 * a common path later on.
4631 */
4632 memcpy(compat, from, size);
4633 memset(compat + size, 0, sizeof(compat) - size);
4634 from = (const struct bpf_tunnel_key *) compat;
4635 break;
4636 default:
4637 return -EINVAL;
4638 }
4639 }
4640 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4641 from->tunnel_ext))
4642 return -EINVAL;
4643
4644 skb_dst_drop(skb);
4645 dst_hold((struct dst_entry *) md);
4646 skb_dst_set(skb, (struct dst_entry *) md);
4647
4648 info = &md->u.tun_info;
4649 memset(info, 0, sizeof(*info));
4650 info->mode = IP_TUNNEL_INFO_TX;
4651
4652 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4653 if (flags & BPF_F_DONT_FRAGMENT)
4654 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4655 if (flags & BPF_F_ZERO_CSUM_TX)
4656 info->key.tun_flags &= ~TUNNEL_CSUM;
4657 if (flags & BPF_F_SEQ_NUMBER)
4658 info->key.tun_flags |= TUNNEL_SEQ;
4659
4660 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4661 info->key.tos = from->tunnel_tos;
4662 info->key.ttl = from->tunnel_ttl;
4663
4664 if (flags & BPF_F_TUNINFO_IPV6) {
4665 info->mode |= IP_TUNNEL_INFO_IPV6;
4666 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4667 sizeof(from->remote_ipv6));
4668 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4669 sizeof(from->local_ipv6));
4670 info->key.label = cpu_to_be32(from->tunnel_label) &
4671 IPV6_FLOWLABEL_MASK;
4672 } else {
4673 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4674 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4675 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4676 }
4677
4678 return 0;
4679 }
4680
4681 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4682 .func = bpf_skb_set_tunnel_key,
4683 .gpl_only = false,
4684 .ret_type = RET_INTEGER,
4685 .arg1_type = ARG_PTR_TO_CTX,
4686 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4687 .arg3_type = ARG_CONST_SIZE,
4688 .arg4_type = ARG_ANYTHING,
4689 };
4690
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4691 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4692 const u8 *, from, u32, size)
4693 {
4694 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4695 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4696
4697 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4698 return -EINVAL;
4699 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4700 return -ENOMEM;
4701
4702 ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4703
4704 return 0;
4705 }
4706
4707 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4708 .func = bpf_skb_set_tunnel_opt,
4709 .gpl_only = false,
4710 .ret_type = RET_INTEGER,
4711 .arg1_type = ARG_PTR_TO_CTX,
4712 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4713 .arg3_type = ARG_CONST_SIZE,
4714 };
4715
4716 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4717 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4718 {
4719 if (!md_dst) {
4720 struct metadata_dst __percpu *tmp;
4721
4722 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4723 METADATA_IP_TUNNEL,
4724 GFP_KERNEL);
4725 if (!tmp)
4726 return NULL;
4727 if (cmpxchg(&md_dst, NULL, tmp))
4728 metadata_dst_free_percpu(tmp);
4729 }
4730
4731 switch (which) {
4732 case BPF_FUNC_skb_set_tunnel_key:
4733 return &bpf_skb_set_tunnel_key_proto;
4734 case BPF_FUNC_skb_set_tunnel_opt:
4735 return &bpf_skb_set_tunnel_opt_proto;
4736 default:
4737 return NULL;
4738 }
4739 }
4740
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4741 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4742 u32, idx)
4743 {
4744 struct bpf_array *array = container_of(map, struct bpf_array, map);
4745 struct cgroup *cgrp;
4746 struct sock *sk;
4747
4748 sk = skb_to_full_sk(skb);
4749 if (!sk || !sk_fullsock(sk))
4750 return -ENOENT;
4751 if (unlikely(idx >= array->map.max_entries))
4752 return -E2BIG;
4753
4754 cgrp = READ_ONCE(array->ptrs[idx]);
4755 if (unlikely(!cgrp))
4756 return -EAGAIN;
4757
4758 return sk_under_cgroup_hierarchy(sk, cgrp);
4759 }
4760
4761 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4762 .func = bpf_skb_under_cgroup,
4763 .gpl_only = false,
4764 .ret_type = RET_INTEGER,
4765 .arg1_type = ARG_PTR_TO_CTX,
4766 .arg2_type = ARG_CONST_MAP_PTR,
4767 .arg3_type = ARG_ANYTHING,
4768 };
4769
4770 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4771 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4772 {
4773 struct cgroup *cgrp;
4774
4775 sk = sk_to_full_sk(sk);
4776 if (!sk || !sk_fullsock(sk))
4777 return 0;
4778
4779 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4780 return cgroup_id(cgrp);
4781 }
4782
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4783 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4784 {
4785 return __bpf_sk_cgroup_id(skb->sk);
4786 }
4787
4788 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4789 .func = bpf_skb_cgroup_id,
4790 .gpl_only = false,
4791 .ret_type = RET_INTEGER,
4792 .arg1_type = ARG_PTR_TO_CTX,
4793 };
4794
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4795 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4796 int ancestor_level)
4797 {
4798 struct cgroup *ancestor;
4799 struct cgroup *cgrp;
4800
4801 sk = sk_to_full_sk(sk);
4802 if (!sk || !sk_fullsock(sk))
4803 return 0;
4804
4805 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4806 ancestor = cgroup_ancestor(cgrp, ancestor_level);
4807 if (!ancestor)
4808 return 0;
4809
4810 return cgroup_id(ancestor);
4811 }
4812
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4813 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4814 ancestor_level)
4815 {
4816 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4817 }
4818
4819 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4820 .func = bpf_skb_ancestor_cgroup_id,
4821 .gpl_only = false,
4822 .ret_type = RET_INTEGER,
4823 .arg1_type = ARG_PTR_TO_CTX,
4824 .arg2_type = ARG_ANYTHING,
4825 };
4826
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4827 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4828 {
4829 return __bpf_sk_cgroup_id(sk);
4830 }
4831
4832 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4833 .func = bpf_sk_cgroup_id,
4834 .gpl_only = false,
4835 .ret_type = RET_INTEGER,
4836 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4837 };
4838
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4839 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4840 {
4841 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4842 }
4843
4844 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4845 .func = bpf_sk_ancestor_cgroup_id,
4846 .gpl_only = false,
4847 .ret_type = RET_INTEGER,
4848 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4849 .arg2_type = ARG_ANYTHING,
4850 };
4851 #endif
4852
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)4853 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4854 unsigned long off, unsigned long len)
4855 {
4856 struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4857
4858 bpf_xdp_copy_buf(xdp, off, dst, len, false);
4859 return 0;
4860 }
4861
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4862 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4863 u64, flags, void *, meta, u64, meta_size)
4864 {
4865 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4866
4867 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4868 return -EINVAL;
4869
4870 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4871 return -EFAULT;
4872
4873 return bpf_event_output(map, flags, meta, meta_size, xdp,
4874 xdp_size, bpf_xdp_copy);
4875 }
4876
4877 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4878 .func = bpf_xdp_event_output,
4879 .gpl_only = true,
4880 .ret_type = RET_INTEGER,
4881 .arg1_type = ARG_PTR_TO_CTX,
4882 .arg2_type = ARG_CONST_MAP_PTR,
4883 .arg3_type = ARG_ANYTHING,
4884 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4885 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4886 };
4887
4888 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4889
4890 const struct bpf_func_proto bpf_xdp_output_proto = {
4891 .func = bpf_xdp_event_output,
4892 .gpl_only = true,
4893 .ret_type = RET_INTEGER,
4894 .arg1_type = ARG_PTR_TO_BTF_ID,
4895 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
4896 .arg2_type = ARG_CONST_MAP_PTR,
4897 .arg3_type = ARG_ANYTHING,
4898 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4899 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4900 };
4901
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4902 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4903 {
4904 return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4905 }
4906
4907 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4908 .func = bpf_get_socket_cookie,
4909 .gpl_only = false,
4910 .ret_type = RET_INTEGER,
4911 .arg1_type = ARG_PTR_TO_CTX,
4912 };
4913
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4914 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4915 {
4916 return __sock_gen_cookie(ctx->sk);
4917 }
4918
4919 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4920 .func = bpf_get_socket_cookie_sock_addr,
4921 .gpl_only = false,
4922 .ret_type = RET_INTEGER,
4923 .arg1_type = ARG_PTR_TO_CTX,
4924 };
4925
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)4926 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4927 {
4928 return __sock_gen_cookie(ctx);
4929 }
4930
4931 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4932 .func = bpf_get_socket_cookie_sock,
4933 .gpl_only = false,
4934 .ret_type = RET_INTEGER,
4935 .arg1_type = ARG_PTR_TO_CTX,
4936 };
4937
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)4938 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4939 {
4940 return sk ? sock_gen_cookie(sk) : 0;
4941 }
4942
4943 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4944 .func = bpf_get_socket_ptr_cookie,
4945 .gpl_only = false,
4946 .ret_type = RET_INTEGER,
4947 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4948 };
4949
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4950 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4951 {
4952 return __sock_gen_cookie(ctx->sk);
4953 }
4954
4955 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4956 .func = bpf_get_socket_cookie_sock_ops,
4957 .gpl_only = false,
4958 .ret_type = RET_INTEGER,
4959 .arg1_type = ARG_PTR_TO_CTX,
4960 };
4961
__bpf_get_netns_cookie(struct sock * sk)4962 static u64 __bpf_get_netns_cookie(struct sock *sk)
4963 {
4964 const struct net *net = sk ? sock_net(sk) : &init_net;
4965
4966 return net->net_cookie;
4967 }
4968
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)4969 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4970 {
4971 return __bpf_get_netns_cookie(ctx);
4972 }
4973
4974 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4975 .func = bpf_get_netns_cookie_sock,
4976 .gpl_only = false,
4977 .ret_type = RET_INTEGER,
4978 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
4979 };
4980
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4981 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4982 {
4983 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4984 }
4985
4986 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4987 .func = bpf_get_netns_cookie_sock_addr,
4988 .gpl_only = false,
4989 .ret_type = RET_INTEGER,
4990 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
4991 };
4992
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4993 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4994 {
4995 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4996 }
4997
4998 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4999 .func = bpf_get_netns_cookie_sock_ops,
5000 .gpl_only = false,
5001 .ret_type = RET_INTEGER,
5002 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5003 };
5004
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5005 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5006 {
5007 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5008 }
5009
5010 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5011 .func = bpf_get_netns_cookie_sk_msg,
5012 .gpl_only = false,
5013 .ret_type = RET_INTEGER,
5014 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5015 };
5016
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5017 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5018 {
5019 struct sock *sk = sk_to_full_sk(skb->sk);
5020 kuid_t kuid;
5021
5022 if (!sk || !sk_fullsock(sk))
5023 return overflowuid;
5024 kuid = sock_net_uid(sock_net(sk), sk);
5025 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5026 }
5027
5028 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5029 .func = bpf_get_socket_uid,
5030 .gpl_only = false,
5031 .ret_type = RET_INTEGER,
5032 .arg1_type = ARG_PTR_TO_CTX,
5033 };
5034
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5035 static int sol_socket_sockopt(struct sock *sk, int optname,
5036 char *optval, int *optlen,
5037 bool getopt)
5038 {
5039 switch (optname) {
5040 case SO_REUSEADDR:
5041 case SO_SNDBUF:
5042 case SO_RCVBUF:
5043 case SO_KEEPALIVE:
5044 case SO_PRIORITY:
5045 case SO_REUSEPORT:
5046 case SO_RCVLOWAT:
5047 case SO_MARK:
5048 case SO_MAX_PACING_RATE:
5049 case SO_BINDTOIFINDEX:
5050 case SO_TXREHASH:
5051 if (*optlen != sizeof(int))
5052 return -EINVAL;
5053 break;
5054 case SO_BINDTODEVICE:
5055 break;
5056 default:
5057 return -EINVAL;
5058 }
5059
5060 if (getopt) {
5061 if (optname == SO_BINDTODEVICE)
5062 return -EINVAL;
5063 return sk_getsockopt(sk, SOL_SOCKET, optname,
5064 KERNEL_SOCKPTR(optval),
5065 KERNEL_SOCKPTR(optlen));
5066 }
5067
5068 return sk_setsockopt(sk, SOL_SOCKET, optname,
5069 KERNEL_SOCKPTR(optval), *optlen);
5070 }
5071
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5072 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5073 char *optval, int optlen)
5074 {
5075 struct tcp_sock *tp = tcp_sk(sk);
5076 unsigned long timeout;
5077 int val;
5078
5079 if (optlen != sizeof(int))
5080 return -EINVAL;
5081
5082 val = *(int *)optval;
5083
5084 /* Only some options are supported */
5085 switch (optname) {
5086 case TCP_BPF_IW:
5087 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5088 return -EINVAL;
5089 tcp_snd_cwnd_set(tp, val);
5090 break;
5091 case TCP_BPF_SNDCWND_CLAMP:
5092 if (val <= 0)
5093 return -EINVAL;
5094 tp->snd_cwnd_clamp = val;
5095 tp->snd_ssthresh = val;
5096 break;
5097 case TCP_BPF_DELACK_MAX:
5098 timeout = usecs_to_jiffies(val);
5099 if (timeout > TCP_DELACK_MAX ||
5100 timeout < TCP_TIMEOUT_MIN)
5101 return -EINVAL;
5102 inet_csk(sk)->icsk_delack_max = timeout;
5103 break;
5104 case TCP_BPF_RTO_MIN:
5105 timeout = usecs_to_jiffies(val);
5106 if (timeout > TCP_RTO_MIN ||
5107 timeout < TCP_TIMEOUT_MIN)
5108 return -EINVAL;
5109 inet_csk(sk)->icsk_rto_min = timeout;
5110 break;
5111 default:
5112 return -EINVAL;
5113 }
5114
5115 return 0;
5116 }
5117
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5118 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5119 int *optlen, bool getopt)
5120 {
5121 struct tcp_sock *tp;
5122 int ret;
5123
5124 if (*optlen < 2)
5125 return -EINVAL;
5126
5127 if (getopt) {
5128 if (!inet_csk(sk)->icsk_ca_ops)
5129 return -EINVAL;
5130 /* BPF expects NULL-terminated tcp-cc string */
5131 optval[--(*optlen)] = '\0';
5132 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5133 KERNEL_SOCKPTR(optval),
5134 KERNEL_SOCKPTR(optlen));
5135 }
5136
5137 /* "cdg" is the only cc that alloc a ptr
5138 * in inet_csk_ca area. The bpf-tcp-cc may
5139 * overwrite this ptr after switching to cdg.
5140 */
5141 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5142 return -ENOTSUPP;
5143
5144 /* It stops this looping
5145 *
5146 * .init => bpf_setsockopt(tcp_cc) => .init =>
5147 * bpf_setsockopt(tcp_cc)" => .init => ....
5148 *
5149 * The second bpf_setsockopt(tcp_cc) is not allowed
5150 * in order to break the loop when both .init
5151 * are the same bpf prog.
5152 *
5153 * This applies even the second bpf_setsockopt(tcp_cc)
5154 * does not cause a loop. This limits only the first
5155 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5156 * pick a fallback cc (eg. peer does not support ECN)
5157 * and the second '.init' cannot fallback to
5158 * another.
5159 */
5160 tp = tcp_sk(sk);
5161 if (tp->bpf_chg_cc_inprogress)
5162 return -EBUSY;
5163
5164 tp->bpf_chg_cc_inprogress = 1;
5165 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5166 KERNEL_SOCKPTR(optval), *optlen);
5167 tp->bpf_chg_cc_inprogress = 0;
5168 return ret;
5169 }
5170
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5171 static int sol_tcp_sockopt(struct sock *sk, int optname,
5172 char *optval, int *optlen,
5173 bool getopt)
5174 {
5175 if (sk->sk_prot->setsockopt != tcp_setsockopt)
5176 return -EINVAL;
5177
5178 switch (optname) {
5179 case TCP_NODELAY:
5180 case TCP_MAXSEG:
5181 case TCP_KEEPIDLE:
5182 case TCP_KEEPINTVL:
5183 case TCP_KEEPCNT:
5184 case TCP_SYNCNT:
5185 case TCP_WINDOW_CLAMP:
5186 case TCP_THIN_LINEAR_TIMEOUTS:
5187 case TCP_USER_TIMEOUT:
5188 case TCP_NOTSENT_LOWAT:
5189 case TCP_SAVE_SYN:
5190 if (*optlen != sizeof(int))
5191 return -EINVAL;
5192 break;
5193 case TCP_CONGESTION:
5194 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5195 case TCP_SAVED_SYN:
5196 if (*optlen < 1)
5197 return -EINVAL;
5198 break;
5199 default:
5200 if (getopt)
5201 return -EINVAL;
5202 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5203 }
5204
5205 if (getopt) {
5206 if (optname == TCP_SAVED_SYN) {
5207 struct tcp_sock *tp = tcp_sk(sk);
5208
5209 if (!tp->saved_syn ||
5210 *optlen > tcp_saved_syn_len(tp->saved_syn))
5211 return -EINVAL;
5212 memcpy(optval, tp->saved_syn->data, *optlen);
5213 /* It cannot free tp->saved_syn here because it
5214 * does not know if the user space still needs it.
5215 */
5216 return 0;
5217 }
5218
5219 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5220 KERNEL_SOCKPTR(optval),
5221 KERNEL_SOCKPTR(optlen));
5222 }
5223
5224 return do_tcp_setsockopt(sk, SOL_TCP, optname,
5225 KERNEL_SOCKPTR(optval), *optlen);
5226 }
5227
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5228 static int sol_ip_sockopt(struct sock *sk, int optname,
5229 char *optval, int *optlen,
5230 bool getopt)
5231 {
5232 if (sk->sk_family != AF_INET)
5233 return -EINVAL;
5234
5235 switch (optname) {
5236 case IP_TOS:
5237 if (*optlen != sizeof(int))
5238 return -EINVAL;
5239 break;
5240 default:
5241 return -EINVAL;
5242 }
5243
5244 if (getopt)
5245 return do_ip_getsockopt(sk, SOL_IP, optname,
5246 KERNEL_SOCKPTR(optval),
5247 KERNEL_SOCKPTR(optlen));
5248
5249 return do_ip_setsockopt(sk, SOL_IP, optname,
5250 KERNEL_SOCKPTR(optval), *optlen);
5251 }
5252
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5253 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5254 char *optval, int *optlen,
5255 bool getopt)
5256 {
5257 if (sk->sk_family != AF_INET6)
5258 return -EINVAL;
5259
5260 switch (optname) {
5261 case IPV6_TCLASS:
5262 case IPV6_AUTOFLOWLABEL:
5263 if (*optlen != sizeof(int))
5264 return -EINVAL;
5265 break;
5266 default:
5267 return -EINVAL;
5268 }
5269
5270 if (getopt)
5271 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5272 KERNEL_SOCKPTR(optval),
5273 KERNEL_SOCKPTR(optlen));
5274
5275 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5276 KERNEL_SOCKPTR(optval), *optlen);
5277 }
5278
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5279 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5280 char *optval, int optlen)
5281 {
5282 if (!sk_fullsock(sk))
5283 return -EINVAL;
5284
5285 if (level == SOL_SOCKET)
5286 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5287 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5288 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5289 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5290 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5291 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5292 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5293
5294 return -EINVAL;
5295 }
5296
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5297 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5298 char *optval, int optlen)
5299 {
5300 if (sk_fullsock(sk))
5301 sock_owned_by_me(sk);
5302 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5303 }
5304
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5305 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5306 char *optval, int optlen)
5307 {
5308 int err, saved_optlen = optlen;
5309
5310 if (!sk_fullsock(sk)) {
5311 err = -EINVAL;
5312 goto done;
5313 }
5314
5315 if (level == SOL_SOCKET)
5316 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5317 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5318 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5319 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5320 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5321 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5322 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5323 else
5324 err = -EINVAL;
5325
5326 done:
5327 if (err)
5328 optlen = 0;
5329 if (optlen < saved_optlen)
5330 memset(optval + optlen, 0, saved_optlen - optlen);
5331 return err;
5332 }
5333
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5334 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5335 char *optval, int optlen)
5336 {
5337 if (sk_fullsock(sk))
5338 sock_owned_by_me(sk);
5339 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5340 }
5341
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5342 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5343 int, optname, char *, optval, int, optlen)
5344 {
5345 return _bpf_setsockopt(sk, level, optname, optval, optlen);
5346 }
5347
5348 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5349 .func = bpf_sk_setsockopt,
5350 .gpl_only = false,
5351 .ret_type = RET_INTEGER,
5352 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5353 .arg2_type = ARG_ANYTHING,
5354 .arg3_type = ARG_ANYTHING,
5355 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5356 .arg5_type = ARG_CONST_SIZE,
5357 };
5358
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5359 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5360 int, optname, char *, optval, int, optlen)
5361 {
5362 return _bpf_getsockopt(sk, level, optname, optval, optlen);
5363 }
5364
5365 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5366 .func = bpf_sk_getsockopt,
5367 .gpl_only = false,
5368 .ret_type = RET_INTEGER,
5369 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5370 .arg2_type = ARG_ANYTHING,
5371 .arg3_type = ARG_ANYTHING,
5372 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5373 .arg5_type = ARG_CONST_SIZE,
5374 };
5375
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5376 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5377 int, optname, char *, optval, int, optlen)
5378 {
5379 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5380 }
5381
5382 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5383 .func = bpf_unlocked_sk_setsockopt,
5384 .gpl_only = false,
5385 .ret_type = RET_INTEGER,
5386 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5387 .arg2_type = ARG_ANYTHING,
5388 .arg3_type = ARG_ANYTHING,
5389 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5390 .arg5_type = ARG_CONST_SIZE,
5391 };
5392
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5393 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5394 int, optname, char *, optval, int, optlen)
5395 {
5396 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5397 }
5398
5399 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5400 .func = bpf_unlocked_sk_getsockopt,
5401 .gpl_only = false,
5402 .ret_type = RET_INTEGER,
5403 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5404 .arg2_type = ARG_ANYTHING,
5405 .arg3_type = ARG_ANYTHING,
5406 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5407 .arg5_type = ARG_CONST_SIZE,
5408 };
5409
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5410 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5411 int, level, int, optname, char *, optval, int, optlen)
5412 {
5413 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5414 }
5415
5416 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5417 .func = bpf_sock_addr_setsockopt,
5418 .gpl_only = false,
5419 .ret_type = RET_INTEGER,
5420 .arg1_type = ARG_PTR_TO_CTX,
5421 .arg2_type = ARG_ANYTHING,
5422 .arg3_type = ARG_ANYTHING,
5423 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5424 .arg5_type = ARG_CONST_SIZE,
5425 };
5426
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5427 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5428 int, level, int, optname, char *, optval, int, optlen)
5429 {
5430 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5431 }
5432
5433 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5434 .func = bpf_sock_addr_getsockopt,
5435 .gpl_only = false,
5436 .ret_type = RET_INTEGER,
5437 .arg1_type = ARG_PTR_TO_CTX,
5438 .arg2_type = ARG_ANYTHING,
5439 .arg3_type = ARG_ANYTHING,
5440 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5441 .arg5_type = ARG_CONST_SIZE,
5442 };
5443
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5444 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5445 int, level, int, optname, char *, optval, int, optlen)
5446 {
5447 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5448 }
5449
5450 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5451 .func = bpf_sock_ops_setsockopt,
5452 .gpl_only = false,
5453 .ret_type = RET_INTEGER,
5454 .arg1_type = ARG_PTR_TO_CTX,
5455 .arg2_type = ARG_ANYTHING,
5456 .arg3_type = ARG_ANYTHING,
5457 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5458 .arg5_type = ARG_CONST_SIZE,
5459 };
5460
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5461 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5462 int optname, const u8 **start)
5463 {
5464 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5465 const u8 *hdr_start;
5466 int ret;
5467
5468 if (syn_skb) {
5469 /* sk is a request_sock here */
5470
5471 if (optname == TCP_BPF_SYN) {
5472 hdr_start = syn_skb->data;
5473 ret = tcp_hdrlen(syn_skb);
5474 } else if (optname == TCP_BPF_SYN_IP) {
5475 hdr_start = skb_network_header(syn_skb);
5476 ret = skb_network_header_len(syn_skb) +
5477 tcp_hdrlen(syn_skb);
5478 } else {
5479 /* optname == TCP_BPF_SYN_MAC */
5480 hdr_start = skb_mac_header(syn_skb);
5481 ret = skb_mac_header_len(syn_skb) +
5482 skb_network_header_len(syn_skb) +
5483 tcp_hdrlen(syn_skb);
5484 }
5485 } else {
5486 struct sock *sk = bpf_sock->sk;
5487 struct saved_syn *saved_syn;
5488
5489 if (sk->sk_state == TCP_NEW_SYN_RECV)
5490 /* synack retransmit. bpf_sock->syn_skb will
5491 * not be available. It has to resort to
5492 * saved_syn (if it is saved).
5493 */
5494 saved_syn = inet_reqsk(sk)->saved_syn;
5495 else
5496 saved_syn = tcp_sk(sk)->saved_syn;
5497
5498 if (!saved_syn)
5499 return -ENOENT;
5500
5501 if (optname == TCP_BPF_SYN) {
5502 hdr_start = saved_syn->data +
5503 saved_syn->mac_hdrlen +
5504 saved_syn->network_hdrlen;
5505 ret = saved_syn->tcp_hdrlen;
5506 } else if (optname == TCP_BPF_SYN_IP) {
5507 hdr_start = saved_syn->data +
5508 saved_syn->mac_hdrlen;
5509 ret = saved_syn->network_hdrlen +
5510 saved_syn->tcp_hdrlen;
5511 } else {
5512 /* optname == TCP_BPF_SYN_MAC */
5513
5514 /* TCP_SAVE_SYN may not have saved the mac hdr */
5515 if (!saved_syn->mac_hdrlen)
5516 return -ENOENT;
5517
5518 hdr_start = saved_syn->data;
5519 ret = saved_syn->mac_hdrlen +
5520 saved_syn->network_hdrlen +
5521 saved_syn->tcp_hdrlen;
5522 }
5523 }
5524
5525 *start = hdr_start;
5526 return ret;
5527 }
5528
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5529 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5530 int, level, int, optname, char *, optval, int, optlen)
5531 {
5532 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5533 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5534 int ret, copy_len = 0;
5535 const u8 *start;
5536
5537 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5538 if (ret > 0) {
5539 copy_len = ret;
5540 if (optlen < copy_len) {
5541 copy_len = optlen;
5542 ret = -ENOSPC;
5543 }
5544
5545 memcpy(optval, start, copy_len);
5546 }
5547
5548 /* Zero out unused buffer at the end */
5549 memset(optval + copy_len, 0, optlen - copy_len);
5550
5551 return ret;
5552 }
5553
5554 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5555 }
5556
5557 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5558 .func = bpf_sock_ops_getsockopt,
5559 .gpl_only = false,
5560 .ret_type = RET_INTEGER,
5561 .arg1_type = ARG_PTR_TO_CTX,
5562 .arg2_type = ARG_ANYTHING,
5563 .arg3_type = ARG_ANYTHING,
5564 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5565 .arg5_type = ARG_CONST_SIZE,
5566 };
5567
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5568 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5569 int, argval)
5570 {
5571 struct sock *sk = bpf_sock->sk;
5572 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5573
5574 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5575 return -EINVAL;
5576
5577 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5578
5579 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5580 }
5581
5582 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5583 .func = bpf_sock_ops_cb_flags_set,
5584 .gpl_only = false,
5585 .ret_type = RET_INTEGER,
5586 .arg1_type = ARG_PTR_TO_CTX,
5587 .arg2_type = ARG_ANYTHING,
5588 };
5589
5590 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5591 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5592
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5593 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5594 int, addr_len)
5595 {
5596 #ifdef CONFIG_INET
5597 struct sock *sk = ctx->sk;
5598 u32 flags = BIND_FROM_BPF;
5599 int err;
5600
5601 err = -EINVAL;
5602 if (addr_len < offsetofend(struct sockaddr, sa_family))
5603 return err;
5604 if (addr->sa_family == AF_INET) {
5605 if (addr_len < sizeof(struct sockaddr_in))
5606 return err;
5607 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5608 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5609 return __inet_bind(sk, addr, addr_len, flags);
5610 #if IS_ENABLED(CONFIG_IPV6)
5611 } else if (addr->sa_family == AF_INET6) {
5612 if (addr_len < SIN6_LEN_RFC2133)
5613 return err;
5614 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5615 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5616 /* ipv6_bpf_stub cannot be NULL, since it's called from
5617 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5618 */
5619 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5620 #endif /* CONFIG_IPV6 */
5621 }
5622 #endif /* CONFIG_INET */
5623
5624 return -EAFNOSUPPORT;
5625 }
5626
5627 static const struct bpf_func_proto bpf_bind_proto = {
5628 .func = bpf_bind,
5629 .gpl_only = false,
5630 .ret_type = RET_INTEGER,
5631 .arg1_type = ARG_PTR_TO_CTX,
5632 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5633 .arg3_type = ARG_CONST_SIZE,
5634 };
5635
5636 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5637 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5638 struct bpf_xfrm_state *, to, u32, size, u64, flags)
5639 {
5640 const struct sec_path *sp = skb_sec_path(skb);
5641 const struct xfrm_state *x;
5642
5643 if (!sp || unlikely(index >= sp->len || flags))
5644 goto err_clear;
5645
5646 x = sp->xvec[index];
5647
5648 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5649 goto err_clear;
5650
5651 to->reqid = x->props.reqid;
5652 to->spi = x->id.spi;
5653 to->family = x->props.family;
5654 to->ext = 0;
5655
5656 if (to->family == AF_INET6) {
5657 memcpy(to->remote_ipv6, x->props.saddr.a6,
5658 sizeof(to->remote_ipv6));
5659 } else {
5660 to->remote_ipv4 = x->props.saddr.a4;
5661 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5662 }
5663
5664 return 0;
5665 err_clear:
5666 memset(to, 0, size);
5667 return -EINVAL;
5668 }
5669
5670 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5671 .func = bpf_skb_get_xfrm_state,
5672 .gpl_only = false,
5673 .ret_type = RET_INTEGER,
5674 .arg1_type = ARG_PTR_TO_CTX,
5675 .arg2_type = ARG_ANYTHING,
5676 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
5677 .arg4_type = ARG_CONST_SIZE,
5678 .arg5_type = ARG_ANYTHING,
5679 };
5680 #endif
5681
5682 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,const struct neighbour * neigh,const struct net_device * dev,u32 mtu)5683 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5684 const struct neighbour *neigh,
5685 const struct net_device *dev, u32 mtu)
5686 {
5687 memcpy(params->dmac, neigh->ha, ETH_ALEN);
5688 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5689 params->h_vlan_TCI = 0;
5690 params->h_vlan_proto = 0;
5691 if (mtu)
5692 params->mtu_result = mtu; /* union with tot_len */
5693
5694 return 0;
5695 }
5696 #endif
5697
5698 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5699 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5700 u32 flags, bool check_mtu)
5701 {
5702 struct fib_nh_common *nhc;
5703 struct in_device *in_dev;
5704 struct neighbour *neigh;
5705 struct net_device *dev;
5706 struct fib_result res;
5707 struct flowi4 fl4;
5708 u32 mtu = 0;
5709 int err;
5710
5711 dev = dev_get_by_index_rcu(net, params->ifindex);
5712 if (unlikely(!dev))
5713 return -ENODEV;
5714
5715 /* verify forwarding is enabled on this interface */
5716 in_dev = __in_dev_get_rcu(dev);
5717 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5718 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5719
5720 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5721 fl4.flowi4_iif = 1;
5722 fl4.flowi4_oif = params->ifindex;
5723 } else {
5724 fl4.flowi4_iif = params->ifindex;
5725 fl4.flowi4_oif = 0;
5726 }
5727 fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5728 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5729 fl4.flowi4_flags = 0;
5730
5731 fl4.flowi4_proto = params->l4_protocol;
5732 fl4.daddr = params->ipv4_dst;
5733 fl4.saddr = params->ipv4_src;
5734 fl4.fl4_sport = params->sport;
5735 fl4.fl4_dport = params->dport;
5736 fl4.flowi4_multipath_hash = 0;
5737
5738 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5739 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5740 struct fib_table *tb;
5741
5742 tb = fib_get_table(net, tbid);
5743 if (unlikely(!tb))
5744 return BPF_FIB_LKUP_RET_NOT_FWDED;
5745
5746 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5747 } else {
5748 fl4.flowi4_mark = 0;
5749 fl4.flowi4_secid = 0;
5750 fl4.flowi4_tun_key.tun_id = 0;
5751 fl4.flowi4_uid = sock_net_uid(net, NULL);
5752
5753 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5754 }
5755
5756 if (err) {
5757 /* map fib lookup errors to RTN_ type */
5758 if (err == -EINVAL)
5759 return BPF_FIB_LKUP_RET_BLACKHOLE;
5760 if (err == -EHOSTUNREACH)
5761 return BPF_FIB_LKUP_RET_UNREACHABLE;
5762 if (err == -EACCES)
5763 return BPF_FIB_LKUP_RET_PROHIBIT;
5764
5765 return BPF_FIB_LKUP_RET_NOT_FWDED;
5766 }
5767
5768 if (res.type != RTN_UNICAST)
5769 return BPF_FIB_LKUP_RET_NOT_FWDED;
5770
5771 if (fib_info_num_path(res.fi) > 1)
5772 fib_select_path(net, &res, &fl4, NULL);
5773
5774 if (check_mtu) {
5775 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5776 if (params->tot_len > mtu) {
5777 params->mtu_result = mtu; /* union with tot_len */
5778 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5779 }
5780 }
5781
5782 nhc = res.nhc;
5783
5784 /* do not handle lwt encaps right now */
5785 if (nhc->nhc_lwtstate)
5786 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5787
5788 dev = nhc->nhc_dev;
5789
5790 params->rt_metric = res.fi->fib_priority;
5791 params->ifindex = dev->ifindex;
5792
5793 /* xdp and cls_bpf programs are run in RCU-bh so
5794 * rcu_read_lock_bh is not needed here
5795 */
5796 if (likely(nhc->nhc_gw_family != AF_INET6)) {
5797 if (nhc->nhc_gw_family)
5798 params->ipv4_dst = nhc->nhc_gw.ipv4;
5799
5800 neigh = __ipv4_neigh_lookup_noref(dev,
5801 (__force u32)params->ipv4_dst);
5802 } else {
5803 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5804
5805 params->family = AF_INET6;
5806 *dst = nhc->nhc_gw.ipv6;
5807 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5808 }
5809
5810 if (!neigh)
5811 return BPF_FIB_LKUP_RET_NO_NEIGH;
5812
5813 return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5814 }
5815 #endif
5816
5817 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5818 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5819 u32 flags, bool check_mtu)
5820 {
5821 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5822 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5823 struct fib6_result res = {};
5824 struct neighbour *neigh;
5825 struct net_device *dev;
5826 struct inet6_dev *idev;
5827 struct flowi6 fl6;
5828 int strict = 0;
5829 int oif, err;
5830 u32 mtu = 0;
5831
5832 /* link local addresses are never forwarded */
5833 if (rt6_need_strict(dst) || rt6_need_strict(src))
5834 return BPF_FIB_LKUP_RET_NOT_FWDED;
5835
5836 dev = dev_get_by_index_rcu(net, params->ifindex);
5837 if (unlikely(!dev))
5838 return -ENODEV;
5839
5840 idev = __in6_dev_get_safely(dev);
5841 if (unlikely(!idev || !idev->cnf.forwarding))
5842 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5843
5844 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5845 fl6.flowi6_iif = 1;
5846 oif = fl6.flowi6_oif = params->ifindex;
5847 } else {
5848 oif = fl6.flowi6_iif = params->ifindex;
5849 fl6.flowi6_oif = 0;
5850 strict = RT6_LOOKUP_F_HAS_SADDR;
5851 }
5852 fl6.flowlabel = params->flowinfo;
5853 fl6.flowi6_scope = 0;
5854 fl6.flowi6_flags = 0;
5855 fl6.mp_hash = 0;
5856
5857 fl6.flowi6_proto = params->l4_protocol;
5858 fl6.daddr = *dst;
5859 fl6.saddr = *src;
5860 fl6.fl6_sport = params->sport;
5861 fl6.fl6_dport = params->dport;
5862
5863 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5864 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5865 struct fib6_table *tb;
5866
5867 tb = ipv6_stub->fib6_get_table(net, tbid);
5868 if (unlikely(!tb))
5869 return BPF_FIB_LKUP_RET_NOT_FWDED;
5870
5871 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5872 strict);
5873 } else {
5874 fl6.flowi6_mark = 0;
5875 fl6.flowi6_secid = 0;
5876 fl6.flowi6_tun_key.tun_id = 0;
5877 fl6.flowi6_uid = sock_net_uid(net, NULL);
5878
5879 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5880 }
5881
5882 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5883 res.f6i == net->ipv6.fib6_null_entry))
5884 return BPF_FIB_LKUP_RET_NOT_FWDED;
5885
5886 switch (res.fib6_type) {
5887 /* only unicast is forwarded */
5888 case RTN_UNICAST:
5889 break;
5890 case RTN_BLACKHOLE:
5891 return BPF_FIB_LKUP_RET_BLACKHOLE;
5892 case RTN_UNREACHABLE:
5893 return BPF_FIB_LKUP_RET_UNREACHABLE;
5894 case RTN_PROHIBIT:
5895 return BPF_FIB_LKUP_RET_PROHIBIT;
5896 default:
5897 return BPF_FIB_LKUP_RET_NOT_FWDED;
5898 }
5899
5900 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5901 fl6.flowi6_oif != 0, NULL, strict);
5902
5903 if (check_mtu) {
5904 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5905 if (params->tot_len > mtu) {
5906 params->mtu_result = mtu; /* union with tot_len */
5907 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5908 }
5909 }
5910
5911 if (res.nh->fib_nh_lws)
5912 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5913
5914 if (res.nh->fib_nh_gw_family)
5915 *dst = res.nh->fib_nh_gw6;
5916
5917 dev = res.nh->fib_nh_dev;
5918 params->rt_metric = res.f6i->fib6_metric;
5919 params->ifindex = dev->ifindex;
5920
5921 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5922 * not needed here.
5923 */
5924 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5925 if (!neigh)
5926 return BPF_FIB_LKUP_RET_NO_NEIGH;
5927
5928 return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5929 }
5930 #endif
5931
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)5932 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5933 struct bpf_fib_lookup *, params, int, plen, u32, flags)
5934 {
5935 if (plen < sizeof(*params))
5936 return -EINVAL;
5937
5938 if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5939 return -EINVAL;
5940
5941 switch (params->family) {
5942 #if IS_ENABLED(CONFIG_INET)
5943 case AF_INET:
5944 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5945 flags, true);
5946 #endif
5947 #if IS_ENABLED(CONFIG_IPV6)
5948 case AF_INET6:
5949 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5950 flags, true);
5951 #endif
5952 }
5953 return -EAFNOSUPPORT;
5954 }
5955
5956 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5957 .func = bpf_xdp_fib_lookup,
5958 .gpl_only = true,
5959 .ret_type = RET_INTEGER,
5960 .arg1_type = ARG_PTR_TO_CTX,
5961 .arg2_type = ARG_PTR_TO_MEM,
5962 .arg3_type = ARG_CONST_SIZE,
5963 .arg4_type = ARG_ANYTHING,
5964 };
5965
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)5966 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5967 struct bpf_fib_lookup *, params, int, plen, u32, flags)
5968 {
5969 struct net *net = dev_net(skb->dev);
5970 int rc = -EAFNOSUPPORT;
5971 bool check_mtu = false;
5972
5973 if (plen < sizeof(*params))
5974 return -EINVAL;
5975
5976 if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5977 return -EINVAL;
5978
5979 if (params->tot_len)
5980 check_mtu = true;
5981
5982 switch (params->family) {
5983 #if IS_ENABLED(CONFIG_INET)
5984 case AF_INET:
5985 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5986 break;
5987 #endif
5988 #if IS_ENABLED(CONFIG_IPV6)
5989 case AF_INET6:
5990 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5991 break;
5992 #endif
5993 }
5994
5995 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5996 struct net_device *dev;
5997
5998 /* When tot_len isn't provided by user, check skb
5999 * against MTU of FIB lookup resulting net_device
6000 */
6001 dev = dev_get_by_index_rcu(net, params->ifindex);
6002 if (!is_skb_forwardable(dev, skb))
6003 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6004
6005 params->mtu_result = dev->mtu; /* union with tot_len */
6006 }
6007
6008 return rc;
6009 }
6010
6011 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6012 .func = bpf_skb_fib_lookup,
6013 .gpl_only = true,
6014 .ret_type = RET_INTEGER,
6015 .arg1_type = ARG_PTR_TO_CTX,
6016 .arg2_type = ARG_PTR_TO_MEM,
6017 .arg3_type = ARG_CONST_SIZE,
6018 .arg4_type = ARG_ANYTHING,
6019 };
6020
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6021 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6022 u32 ifindex)
6023 {
6024 struct net *netns = dev_net(dev_curr);
6025
6026 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6027 if (ifindex == 0)
6028 return dev_curr;
6029
6030 return dev_get_by_index_rcu(netns, ifindex);
6031 }
6032
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6033 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6034 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6035 {
6036 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6037 struct net_device *dev = skb->dev;
6038 int skb_len, dev_len;
6039 int mtu;
6040
6041 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6042 return -EINVAL;
6043
6044 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6045 return -EINVAL;
6046
6047 dev = __dev_via_ifindex(dev, ifindex);
6048 if (unlikely(!dev))
6049 return -ENODEV;
6050
6051 mtu = READ_ONCE(dev->mtu);
6052
6053 dev_len = mtu + dev->hard_header_len;
6054
6055 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6056 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6057
6058 skb_len += len_diff; /* minus result pass check */
6059 if (skb_len <= dev_len) {
6060 ret = BPF_MTU_CHK_RET_SUCCESS;
6061 goto out;
6062 }
6063 /* At this point, skb->len exceed MTU, but as it include length of all
6064 * segments, it can still be below MTU. The SKB can possibly get
6065 * re-segmented in transmit path (see validate_xmit_skb). Thus, user
6066 * must choose if segs are to be MTU checked.
6067 */
6068 if (skb_is_gso(skb)) {
6069 ret = BPF_MTU_CHK_RET_SUCCESS;
6070
6071 if (flags & BPF_MTU_CHK_SEGS &&
6072 !skb_gso_validate_network_len(skb, mtu))
6073 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6074 }
6075 out:
6076 /* BPF verifier guarantees valid pointer */
6077 *mtu_len = mtu;
6078
6079 return ret;
6080 }
6081
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6082 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6083 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6084 {
6085 struct net_device *dev = xdp->rxq->dev;
6086 int xdp_len = xdp->data_end - xdp->data;
6087 int ret = BPF_MTU_CHK_RET_SUCCESS;
6088 int mtu, dev_len;
6089
6090 /* XDP variant doesn't support multi-buffer segment check (yet) */
6091 if (unlikely(flags))
6092 return -EINVAL;
6093
6094 dev = __dev_via_ifindex(dev, ifindex);
6095 if (unlikely(!dev))
6096 return -ENODEV;
6097
6098 mtu = READ_ONCE(dev->mtu);
6099
6100 /* Add L2-header as dev MTU is L3 size */
6101 dev_len = mtu + dev->hard_header_len;
6102
6103 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6104 if (*mtu_len)
6105 xdp_len = *mtu_len + dev->hard_header_len;
6106
6107 xdp_len += len_diff; /* minus result pass check */
6108 if (xdp_len > dev_len)
6109 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6110
6111 /* BPF verifier guarantees valid pointer */
6112 *mtu_len = mtu;
6113
6114 return ret;
6115 }
6116
6117 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6118 .func = bpf_skb_check_mtu,
6119 .gpl_only = true,
6120 .ret_type = RET_INTEGER,
6121 .arg1_type = ARG_PTR_TO_CTX,
6122 .arg2_type = ARG_ANYTHING,
6123 .arg3_type = ARG_PTR_TO_INT,
6124 .arg4_type = ARG_ANYTHING,
6125 .arg5_type = ARG_ANYTHING,
6126 };
6127
6128 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6129 .func = bpf_xdp_check_mtu,
6130 .gpl_only = true,
6131 .ret_type = RET_INTEGER,
6132 .arg1_type = ARG_PTR_TO_CTX,
6133 .arg2_type = ARG_ANYTHING,
6134 .arg3_type = ARG_PTR_TO_INT,
6135 .arg4_type = ARG_ANYTHING,
6136 .arg5_type = ARG_ANYTHING,
6137 };
6138
6139 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6140 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6141 {
6142 int err;
6143 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6144
6145 if (!seg6_validate_srh(srh, len, false))
6146 return -EINVAL;
6147
6148 switch (type) {
6149 case BPF_LWT_ENCAP_SEG6_INLINE:
6150 if (skb->protocol != htons(ETH_P_IPV6))
6151 return -EBADMSG;
6152
6153 err = seg6_do_srh_inline(skb, srh);
6154 break;
6155 case BPF_LWT_ENCAP_SEG6:
6156 skb_reset_inner_headers(skb);
6157 skb->encapsulation = 1;
6158 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6159 break;
6160 default:
6161 return -EINVAL;
6162 }
6163
6164 bpf_compute_data_pointers(skb);
6165 if (err)
6166 return err;
6167
6168 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6169
6170 return seg6_lookup_nexthop(skb, NULL, 0);
6171 }
6172 #endif /* CONFIG_IPV6_SEG6_BPF */
6173
6174 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6175 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6176 bool ingress)
6177 {
6178 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6179 }
6180 #endif
6181
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6182 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6183 u32, len)
6184 {
6185 switch (type) {
6186 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6187 case BPF_LWT_ENCAP_SEG6:
6188 case BPF_LWT_ENCAP_SEG6_INLINE:
6189 return bpf_push_seg6_encap(skb, type, hdr, len);
6190 #endif
6191 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6192 case BPF_LWT_ENCAP_IP:
6193 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6194 #endif
6195 default:
6196 return -EINVAL;
6197 }
6198 }
6199
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6200 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6201 void *, hdr, u32, len)
6202 {
6203 switch (type) {
6204 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6205 case BPF_LWT_ENCAP_IP:
6206 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6207 #endif
6208 default:
6209 return -EINVAL;
6210 }
6211 }
6212
6213 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6214 .func = bpf_lwt_in_push_encap,
6215 .gpl_only = false,
6216 .ret_type = RET_INTEGER,
6217 .arg1_type = ARG_PTR_TO_CTX,
6218 .arg2_type = ARG_ANYTHING,
6219 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6220 .arg4_type = ARG_CONST_SIZE
6221 };
6222
6223 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6224 .func = bpf_lwt_xmit_push_encap,
6225 .gpl_only = false,
6226 .ret_type = RET_INTEGER,
6227 .arg1_type = ARG_PTR_TO_CTX,
6228 .arg2_type = ARG_ANYTHING,
6229 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6230 .arg4_type = ARG_CONST_SIZE
6231 };
6232
6233 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6234 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6235 const void *, from, u32, len)
6236 {
6237 struct seg6_bpf_srh_state *srh_state =
6238 this_cpu_ptr(&seg6_bpf_srh_states);
6239 struct ipv6_sr_hdr *srh = srh_state->srh;
6240 void *srh_tlvs, *srh_end, *ptr;
6241 int srhoff = 0;
6242
6243 if (srh == NULL)
6244 return -EINVAL;
6245
6246 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6247 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6248
6249 ptr = skb->data + offset;
6250 if (ptr >= srh_tlvs && ptr + len <= srh_end)
6251 srh_state->valid = false;
6252 else if (ptr < (void *)&srh->flags ||
6253 ptr + len > (void *)&srh->segments)
6254 return -EFAULT;
6255
6256 if (unlikely(bpf_try_make_writable(skb, offset + len)))
6257 return -EFAULT;
6258 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6259 return -EINVAL;
6260 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6261
6262 memcpy(skb->data + offset, from, len);
6263 return 0;
6264 }
6265
6266 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6267 .func = bpf_lwt_seg6_store_bytes,
6268 .gpl_only = false,
6269 .ret_type = RET_INTEGER,
6270 .arg1_type = ARG_PTR_TO_CTX,
6271 .arg2_type = ARG_ANYTHING,
6272 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6273 .arg4_type = ARG_CONST_SIZE
6274 };
6275
bpf_update_srh_state(struct sk_buff * skb)6276 static void bpf_update_srh_state(struct sk_buff *skb)
6277 {
6278 struct seg6_bpf_srh_state *srh_state =
6279 this_cpu_ptr(&seg6_bpf_srh_states);
6280 int srhoff = 0;
6281
6282 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6283 srh_state->srh = NULL;
6284 } else {
6285 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6286 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6287 srh_state->valid = true;
6288 }
6289 }
6290
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6291 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6292 u32, action, void *, param, u32, param_len)
6293 {
6294 struct seg6_bpf_srh_state *srh_state =
6295 this_cpu_ptr(&seg6_bpf_srh_states);
6296 int hdroff = 0;
6297 int err;
6298
6299 switch (action) {
6300 case SEG6_LOCAL_ACTION_END_X:
6301 if (!seg6_bpf_has_valid_srh(skb))
6302 return -EBADMSG;
6303 if (param_len != sizeof(struct in6_addr))
6304 return -EINVAL;
6305 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6306 case SEG6_LOCAL_ACTION_END_T:
6307 if (!seg6_bpf_has_valid_srh(skb))
6308 return -EBADMSG;
6309 if (param_len != sizeof(int))
6310 return -EINVAL;
6311 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6312 case SEG6_LOCAL_ACTION_END_DT6:
6313 if (!seg6_bpf_has_valid_srh(skb))
6314 return -EBADMSG;
6315 if (param_len != sizeof(int))
6316 return -EINVAL;
6317
6318 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6319 return -EBADMSG;
6320 if (!pskb_pull(skb, hdroff))
6321 return -EBADMSG;
6322
6323 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6324 skb_reset_network_header(skb);
6325 skb_reset_transport_header(skb);
6326 skb->encapsulation = 0;
6327
6328 bpf_compute_data_pointers(skb);
6329 bpf_update_srh_state(skb);
6330 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6331 case SEG6_LOCAL_ACTION_END_B6:
6332 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6333 return -EBADMSG;
6334 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6335 param, param_len);
6336 if (!err)
6337 bpf_update_srh_state(skb);
6338
6339 return err;
6340 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6341 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6342 return -EBADMSG;
6343 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6344 param, param_len);
6345 if (!err)
6346 bpf_update_srh_state(skb);
6347
6348 return err;
6349 default:
6350 return -EINVAL;
6351 }
6352 }
6353
6354 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6355 .func = bpf_lwt_seg6_action,
6356 .gpl_only = false,
6357 .ret_type = RET_INTEGER,
6358 .arg1_type = ARG_PTR_TO_CTX,
6359 .arg2_type = ARG_ANYTHING,
6360 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6361 .arg4_type = ARG_CONST_SIZE
6362 };
6363
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6364 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6365 s32, len)
6366 {
6367 struct seg6_bpf_srh_state *srh_state =
6368 this_cpu_ptr(&seg6_bpf_srh_states);
6369 struct ipv6_sr_hdr *srh = srh_state->srh;
6370 void *srh_end, *srh_tlvs, *ptr;
6371 struct ipv6hdr *hdr;
6372 int srhoff = 0;
6373 int ret;
6374
6375 if (unlikely(srh == NULL))
6376 return -EINVAL;
6377
6378 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6379 ((srh->first_segment + 1) << 4));
6380 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6381 srh_state->hdrlen);
6382 ptr = skb->data + offset;
6383
6384 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6385 return -EFAULT;
6386 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6387 return -EFAULT;
6388
6389 if (len > 0) {
6390 ret = skb_cow_head(skb, len);
6391 if (unlikely(ret < 0))
6392 return ret;
6393
6394 ret = bpf_skb_net_hdr_push(skb, offset, len);
6395 } else {
6396 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6397 }
6398
6399 bpf_compute_data_pointers(skb);
6400 if (unlikely(ret < 0))
6401 return ret;
6402
6403 hdr = (struct ipv6hdr *)skb->data;
6404 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6405
6406 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6407 return -EINVAL;
6408 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6409 srh_state->hdrlen += len;
6410 srh_state->valid = false;
6411 return 0;
6412 }
6413
6414 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6415 .func = bpf_lwt_seg6_adjust_srh,
6416 .gpl_only = false,
6417 .ret_type = RET_INTEGER,
6418 .arg1_type = ARG_PTR_TO_CTX,
6419 .arg2_type = ARG_ANYTHING,
6420 .arg3_type = ARG_ANYTHING,
6421 };
6422 #endif /* CONFIG_IPV6_SEG6_BPF */
6423
6424 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6425 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6426 int dif, int sdif, u8 family, u8 proto)
6427 {
6428 struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6429 bool refcounted = false;
6430 struct sock *sk = NULL;
6431
6432 if (family == AF_INET) {
6433 __be32 src4 = tuple->ipv4.saddr;
6434 __be32 dst4 = tuple->ipv4.daddr;
6435
6436 if (proto == IPPROTO_TCP)
6437 sk = __inet_lookup(net, hinfo, NULL, 0,
6438 src4, tuple->ipv4.sport,
6439 dst4, tuple->ipv4.dport,
6440 dif, sdif, &refcounted);
6441 else
6442 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6443 dst4, tuple->ipv4.dport,
6444 dif, sdif, &udp_table, NULL);
6445 #if IS_ENABLED(CONFIG_IPV6)
6446 } else {
6447 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6448 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6449
6450 if (proto == IPPROTO_TCP)
6451 sk = __inet6_lookup(net, hinfo, NULL, 0,
6452 src6, tuple->ipv6.sport,
6453 dst6, ntohs(tuple->ipv6.dport),
6454 dif, sdif, &refcounted);
6455 else if (likely(ipv6_bpf_stub))
6456 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6457 src6, tuple->ipv6.sport,
6458 dst6, tuple->ipv6.dport,
6459 dif, sdif,
6460 &udp_table, NULL);
6461 #endif
6462 }
6463
6464 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6465 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6466 sk = NULL;
6467 }
6468 return sk;
6469 }
6470
6471 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6472 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6473 */
6474 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)6475 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6476 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6477 u64 flags)
6478 {
6479 struct sock *sk = NULL;
6480 struct net *net;
6481 u8 family;
6482 int sdif;
6483
6484 if (len == sizeof(tuple->ipv4))
6485 family = AF_INET;
6486 else if (len == sizeof(tuple->ipv6))
6487 family = AF_INET6;
6488 else
6489 return NULL;
6490
6491 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6492 goto out;
6493
6494 if (family == AF_INET)
6495 sdif = inet_sdif(skb);
6496 else
6497 sdif = inet6_sdif(skb);
6498
6499 if ((s32)netns_id < 0) {
6500 net = caller_net;
6501 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6502 } else {
6503 net = get_net_ns_by_id(caller_net, netns_id);
6504 if (unlikely(!net))
6505 goto out;
6506 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6507 put_net(net);
6508 }
6509
6510 out:
6511 return sk;
6512 }
6513
6514 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)6515 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6516 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6517 u64 flags)
6518 {
6519 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6520 ifindex, proto, netns_id, flags);
6521
6522 if (sk) {
6523 struct sock *sk2 = sk_to_full_sk(sk);
6524
6525 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6526 * sock refcnt is decremented to prevent a request_sock leak.
6527 */
6528 if (!sk_fullsock(sk2))
6529 sk2 = NULL;
6530 if (sk2 != sk) {
6531 sock_gen_put(sk);
6532 /* Ensure there is no need to bump sk2 refcnt */
6533 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6534 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6535 return NULL;
6536 }
6537 sk = sk2;
6538 }
6539 }
6540
6541 return sk;
6542 }
6543
6544 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6545 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6546 u8 proto, u64 netns_id, u64 flags)
6547 {
6548 struct net *caller_net;
6549 int ifindex;
6550
6551 if (skb->dev) {
6552 caller_net = dev_net(skb->dev);
6553 ifindex = skb->dev->ifindex;
6554 } else {
6555 caller_net = sock_net(skb->sk);
6556 ifindex = 0;
6557 }
6558
6559 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6560 netns_id, flags);
6561 }
6562
6563 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6564 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6565 u8 proto, u64 netns_id, u64 flags)
6566 {
6567 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6568 flags);
6569
6570 if (sk) {
6571 struct sock *sk2 = sk_to_full_sk(sk);
6572
6573 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6574 * sock refcnt is decremented to prevent a request_sock leak.
6575 */
6576 if (!sk_fullsock(sk2))
6577 sk2 = NULL;
6578 if (sk2 != sk) {
6579 sock_gen_put(sk);
6580 /* Ensure there is no need to bump sk2 refcnt */
6581 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6582 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6583 return NULL;
6584 }
6585 sk = sk2;
6586 }
6587 }
6588
6589 return sk;
6590 }
6591
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6592 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6593 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6594 {
6595 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6596 netns_id, flags);
6597 }
6598
6599 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6600 .func = bpf_skc_lookup_tcp,
6601 .gpl_only = false,
6602 .pkt_access = true,
6603 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6604 .arg1_type = ARG_PTR_TO_CTX,
6605 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6606 .arg3_type = ARG_CONST_SIZE,
6607 .arg4_type = ARG_ANYTHING,
6608 .arg5_type = ARG_ANYTHING,
6609 };
6610
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6611 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6612 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6613 {
6614 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6615 netns_id, flags);
6616 }
6617
6618 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6619 .func = bpf_sk_lookup_tcp,
6620 .gpl_only = false,
6621 .pkt_access = true,
6622 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6623 .arg1_type = ARG_PTR_TO_CTX,
6624 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6625 .arg3_type = ARG_CONST_SIZE,
6626 .arg4_type = ARG_ANYTHING,
6627 .arg5_type = ARG_ANYTHING,
6628 };
6629
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6630 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6631 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6632 {
6633 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6634 netns_id, flags);
6635 }
6636
6637 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6638 .func = bpf_sk_lookup_udp,
6639 .gpl_only = false,
6640 .pkt_access = true,
6641 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6642 .arg1_type = ARG_PTR_TO_CTX,
6643 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6644 .arg3_type = ARG_CONST_SIZE,
6645 .arg4_type = ARG_ANYTHING,
6646 .arg5_type = ARG_ANYTHING,
6647 };
6648
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6649 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6650 {
6651 if (sk && sk_is_refcounted(sk))
6652 sock_gen_put(sk);
6653 return 0;
6654 }
6655
6656 static const struct bpf_func_proto bpf_sk_release_proto = {
6657 .func = bpf_sk_release,
6658 .gpl_only = false,
6659 .ret_type = RET_INTEGER,
6660 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6661 };
6662
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6663 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6664 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6665 {
6666 struct net *caller_net = dev_net(ctx->rxq->dev);
6667 int ifindex = ctx->rxq->dev->ifindex;
6668
6669 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6670 ifindex, IPPROTO_UDP, netns_id,
6671 flags);
6672 }
6673
6674 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6675 .func = bpf_xdp_sk_lookup_udp,
6676 .gpl_only = false,
6677 .pkt_access = true,
6678 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6679 .arg1_type = ARG_PTR_TO_CTX,
6680 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6681 .arg3_type = ARG_CONST_SIZE,
6682 .arg4_type = ARG_ANYTHING,
6683 .arg5_type = ARG_ANYTHING,
6684 };
6685
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6686 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6687 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6688 {
6689 struct net *caller_net = dev_net(ctx->rxq->dev);
6690 int ifindex = ctx->rxq->dev->ifindex;
6691
6692 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6693 ifindex, IPPROTO_TCP, netns_id,
6694 flags);
6695 }
6696
6697 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6698 .func = bpf_xdp_skc_lookup_tcp,
6699 .gpl_only = false,
6700 .pkt_access = true,
6701 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6702 .arg1_type = ARG_PTR_TO_CTX,
6703 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6704 .arg3_type = ARG_CONST_SIZE,
6705 .arg4_type = ARG_ANYTHING,
6706 .arg5_type = ARG_ANYTHING,
6707 };
6708
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6709 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6710 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6711 {
6712 struct net *caller_net = dev_net(ctx->rxq->dev);
6713 int ifindex = ctx->rxq->dev->ifindex;
6714
6715 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6716 ifindex, IPPROTO_TCP, netns_id,
6717 flags);
6718 }
6719
6720 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6721 .func = bpf_xdp_sk_lookup_tcp,
6722 .gpl_only = false,
6723 .pkt_access = true,
6724 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6725 .arg1_type = ARG_PTR_TO_CTX,
6726 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6727 .arg3_type = ARG_CONST_SIZE,
6728 .arg4_type = ARG_ANYTHING,
6729 .arg5_type = ARG_ANYTHING,
6730 };
6731
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6732 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6733 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6734 {
6735 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6736 sock_net(ctx->sk), 0,
6737 IPPROTO_TCP, netns_id, flags);
6738 }
6739
6740 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6741 .func = bpf_sock_addr_skc_lookup_tcp,
6742 .gpl_only = false,
6743 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6744 .arg1_type = ARG_PTR_TO_CTX,
6745 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6746 .arg3_type = ARG_CONST_SIZE,
6747 .arg4_type = ARG_ANYTHING,
6748 .arg5_type = ARG_ANYTHING,
6749 };
6750
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6751 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6752 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6753 {
6754 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6755 sock_net(ctx->sk), 0, IPPROTO_TCP,
6756 netns_id, flags);
6757 }
6758
6759 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6760 .func = bpf_sock_addr_sk_lookup_tcp,
6761 .gpl_only = false,
6762 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6763 .arg1_type = ARG_PTR_TO_CTX,
6764 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6765 .arg3_type = ARG_CONST_SIZE,
6766 .arg4_type = ARG_ANYTHING,
6767 .arg5_type = ARG_ANYTHING,
6768 };
6769
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6770 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6771 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6772 {
6773 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6774 sock_net(ctx->sk), 0, IPPROTO_UDP,
6775 netns_id, flags);
6776 }
6777
6778 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6779 .func = bpf_sock_addr_sk_lookup_udp,
6780 .gpl_only = false,
6781 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6782 .arg1_type = ARG_PTR_TO_CTX,
6783 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6784 .arg3_type = ARG_CONST_SIZE,
6785 .arg4_type = ARG_ANYTHING,
6786 .arg5_type = ARG_ANYTHING,
6787 };
6788
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6789 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6790 struct bpf_insn_access_aux *info)
6791 {
6792 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6793 icsk_retransmits))
6794 return false;
6795
6796 if (off % size != 0)
6797 return false;
6798
6799 switch (off) {
6800 case offsetof(struct bpf_tcp_sock, bytes_received):
6801 case offsetof(struct bpf_tcp_sock, bytes_acked):
6802 return size == sizeof(__u64);
6803 default:
6804 return size == sizeof(__u32);
6805 }
6806 }
6807
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6808 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6809 const struct bpf_insn *si,
6810 struct bpf_insn *insn_buf,
6811 struct bpf_prog *prog, u32 *target_size)
6812 {
6813 struct bpf_insn *insn = insn_buf;
6814
6815 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
6816 do { \
6817 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
6818 sizeof_field(struct bpf_tcp_sock, FIELD)); \
6819 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6820 si->dst_reg, si->src_reg, \
6821 offsetof(struct tcp_sock, FIELD)); \
6822 } while (0)
6823
6824 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
6825 do { \
6826 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
6827 FIELD) > \
6828 sizeof_field(struct bpf_tcp_sock, FIELD)); \
6829 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
6830 struct inet_connection_sock, \
6831 FIELD), \
6832 si->dst_reg, si->src_reg, \
6833 offsetof( \
6834 struct inet_connection_sock, \
6835 FIELD)); \
6836 } while (0)
6837
6838 if (insn > insn_buf)
6839 return insn - insn_buf;
6840
6841 switch (si->off) {
6842 case offsetof(struct bpf_tcp_sock, rtt_min):
6843 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6844 sizeof(struct minmax));
6845 BUILD_BUG_ON(sizeof(struct minmax) <
6846 sizeof(struct minmax_sample));
6847
6848 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6849 offsetof(struct tcp_sock, rtt_min) +
6850 offsetof(struct minmax_sample, v));
6851 break;
6852 case offsetof(struct bpf_tcp_sock, snd_cwnd):
6853 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6854 break;
6855 case offsetof(struct bpf_tcp_sock, srtt_us):
6856 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6857 break;
6858 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6859 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6860 break;
6861 case offsetof(struct bpf_tcp_sock, rcv_nxt):
6862 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6863 break;
6864 case offsetof(struct bpf_tcp_sock, snd_nxt):
6865 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6866 break;
6867 case offsetof(struct bpf_tcp_sock, snd_una):
6868 BPF_TCP_SOCK_GET_COMMON(snd_una);
6869 break;
6870 case offsetof(struct bpf_tcp_sock, mss_cache):
6871 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6872 break;
6873 case offsetof(struct bpf_tcp_sock, ecn_flags):
6874 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6875 break;
6876 case offsetof(struct bpf_tcp_sock, rate_delivered):
6877 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6878 break;
6879 case offsetof(struct bpf_tcp_sock, rate_interval_us):
6880 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6881 break;
6882 case offsetof(struct bpf_tcp_sock, packets_out):
6883 BPF_TCP_SOCK_GET_COMMON(packets_out);
6884 break;
6885 case offsetof(struct bpf_tcp_sock, retrans_out):
6886 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6887 break;
6888 case offsetof(struct bpf_tcp_sock, total_retrans):
6889 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6890 break;
6891 case offsetof(struct bpf_tcp_sock, segs_in):
6892 BPF_TCP_SOCK_GET_COMMON(segs_in);
6893 break;
6894 case offsetof(struct bpf_tcp_sock, data_segs_in):
6895 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6896 break;
6897 case offsetof(struct bpf_tcp_sock, segs_out):
6898 BPF_TCP_SOCK_GET_COMMON(segs_out);
6899 break;
6900 case offsetof(struct bpf_tcp_sock, data_segs_out):
6901 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6902 break;
6903 case offsetof(struct bpf_tcp_sock, lost_out):
6904 BPF_TCP_SOCK_GET_COMMON(lost_out);
6905 break;
6906 case offsetof(struct bpf_tcp_sock, sacked_out):
6907 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6908 break;
6909 case offsetof(struct bpf_tcp_sock, bytes_received):
6910 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6911 break;
6912 case offsetof(struct bpf_tcp_sock, bytes_acked):
6913 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6914 break;
6915 case offsetof(struct bpf_tcp_sock, dsack_dups):
6916 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6917 break;
6918 case offsetof(struct bpf_tcp_sock, delivered):
6919 BPF_TCP_SOCK_GET_COMMON(delivered);
6920 break;
6921 case offsetof(struct bpf_tcp_sock, delivered_ce):
6922 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6923 break;
6924 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6925 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6926 break;
6927 }
6928
6929 return insn - insn_buf;
6930 }
6931
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)6932 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6933 {
6934 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6935 return (unsigned long)sk;
6936
6937 return (unsigned long)NULL;
6938 }
6939
6940 const struct bpf_func_proto bpf_tcp_sock_proto = {
6941 .func = bpf_tcp_sock,
6942 .gpl_only = false,
6943 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
6944 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
6945 };
6946
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)6947 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6948 {
6949 sk = sk_to_full_sk(sk);
6950
6951 if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6952 return (unsigned long)sk;
6953
6954 return (unsigned long)NULL;
6955 }
6956
6957 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6958 .func = bpf_get_listener_sock,
6959 .gpl_only = false,
6960 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6961 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
6962 };
6963
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)6964 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6965 {
6966 unsigned int iphdr_len;
6967
6968 switch (skb_protocol(skb, true)) {
6969 case cpu_to_be16(ETH_P_IP):
6970 iphdr_len = sizeof(struct iphdr);
6971 break;
6972 case cpu_to_be16(ETH_P_IPV6):
6973 iphdr_len = sizeof(struct ipv6hdr);
6974 break;
6975 default:
6976 return 0;
6977 }
6978
6979 if (skb_headlen(skb) < iphdr_len)
6980 return 0;
6981
6982 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6983 return 0;
6984
6985 return INET_ECN_set_ce(skb);
6986 }
6987
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6988 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6989 struct bpf_insn_access_aux *info)
6990 {
6991 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6992 return false;
6993
6994 if (off % size != 0)
6995 return false;
6996
6997 switch (off) {
6998 default:
6999 return size == sizeof(__u32);
7000 }
7001 }
7002
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7003 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7004 const struct bpf_insn *si,
7005 struct bpf_insn *insn_buf,
7006 struct bpf_prog *prog, u32 *target_size)
7007 {
7008 struct bpf_insn *insn = insn_buf;
7009
7010 #define BPF_XDP_SOCK_GET(FIELD) \
7011 do { \
7012 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
7013 sizeof_field(struct bpf_xdp_sock, FIELD)); \
7014 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7015 si->dst_reg, si->src_reg, \
7016 offsetof(struct xdp_sock, FIELD)); \
7017 } while (0)
7018
7019 switch (si->off) {
7020 case offsetof(struct bpf_xdp_sock, queue_id):
7021 BPF_XDP_SOCK_GET(queue_id);
7022 break;
7023 }
7024
7025 return insn - insn_buf;
7026 }
7027
7028 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7029 .func = bpf_skb_ecn_set_ce,
7030 .gpl_only = false,
7031 .ret_type = RET_INTEGER,
7032 .arg1_type = ARG_PTR_TO_CTX,
7033 };
7034
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7035 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7036 struct tcphdr *, th, u32, th_len)
7037 {
7038 #ifdef CONFIG_SYN_COOKIES
7039 u32 cookie;
7040 int ret;
7041
7042 if (unlikely(!sk || th_len < sizeof(*th)))
7043 return -EINVAL;
7044
7045 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7046 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7047 return -EINVAL;
7048
7049 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7050 return -EINVAL;
7051
7052 if (!th->ack || th->rst || th->syn)
7053 return -ENOENT;
7054
7055 if (unlikely(iph_len < sizeof(struct iphdr)))
7056 return -EINVAL;
7057
7058 if (tcp_synq_no_recent_overflow(sk))
7059 return -ENOENT;
7060
7061 cookie = ntohl(th->ack_seq) - 1;
7062
7063 /* Both struct iphdr and struct ipv6hdr have the version field at the
7064 * same offset so we can cast to the shorter header (struct iphdr).
7065 */
7066 switch (((struct iphdr *)iph)->version) {
7067 case 4:
7068 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7069 return -EINVAL;
7070
7071 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7072 break;
7073
7074 #if IS_BUILTIN(CONFIG_IPV6)
7075 case 6:
7076 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7077 return -EINVAL;
7078
7079 if (sk->sk_family != AF_INET6)
7080 return -EINVAL;
7081
7082 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7083 break;
7084 #endif /* CONFIG_IPV6 */
7085
7086 default:
7087 return -EPROTONOSUPPORT;
7088 }
7089
7090 if (ret > 0)
7091 return 0;
7092
7093 return -ENOENT;
7094 #else
7095 return -ENOTSUPP;
7096 #endif
7097 }
7098
7099 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7100 .func = bpf_tcp_check_syncookie,
7101 .gpl_only = true,
7102 .pkt_access = true,
7103 .ret_type = RET_INTEGER,
7104 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7105 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7106 .arg3_type = ARG_CONST_SIZE,
7107 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7108 .arg5_type = ARG_CONST_SIZE,
7109 };
7110
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7111 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7112 struct tcphdr *, th, u32, th_len)
7113 {
7114 #ifdef CONFIG_SYN_COOKIES
7115 u32 cookie;
7116 u16 mss;
7117
7118 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7119 return -EINVAL;
7120
7121 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7122 return -EINVAL;
7123
7124 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7125 return -ENOENT;
7126
7127 if (!th->syn || th->ack || th->fin || th->rst)
7128 return -EINVAL;
7129
7130 if (unlikely(iph_len < sizeof(struct iphdr)))
7131 return -EINVAL;
7132
7133 /* Both struct iphdr and struct ipv6hdr have the version field at the
7134 * same offset so we can cast to the shorter header (struct iphdr).
7135 */
7136 switch (((struct iphdr *)iph)->version) {
7137 case 4:
7138 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7139 return -EINVAL;
7140
7141 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7142 break;
7143
7144 #if IS_BUILTIN(CONFIG_IPV6)
7145 case 6:
7146 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7147 return -EINVAL;
7148
7149 if (sk->sk_family != AF_INET6)
7150 return -EINVAL;
7151
7152 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7153 break;
7154 #endif /* CONFIG_IPV6 */
7155
7156 default:
7157 return -EPROTONOSUPPORT;
7158 }
7159 if (mss == 0)
7160 return -ENOENT;
7161
7162 return cookie | ((u64)mss << 32);
7163 #else
7164 return -EOPNOTSUPP;
7165 #endif /* CONFIG_SYN_COOKIES */
7166 }
7167
7168 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7169 .func = bpf_tcp_gen_syncookie,
7170 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
7171 .pkt_access = true,
7172 .ret_type = RET_INTEGER,
7173 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7174 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7175 .arg3_type = ARG_CONST_SIZE,
7176 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7177 .arg5_type = ARG_CONST_SIZE,
7178 };
7179
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7180 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7181 {
7182 if (!sk || flags != 0)
7183 return -EINVAL;
7184 if (!skb_at_tc_ingress(skb))
7185 return -EOPNOTSUPP;
7186 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7187 return -ENETUNREACH;
7188 if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7189 return -ESOCKTNOSUPPORT;
7190 if (sk_is_refcounted(sk) &&
7191 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7192 return -ENOENT;
7193
7194 skb_orphan(skb);
7195 skb->sk = sk;
7196 skb->destructor = sock_pfree;
7197
7198 return 0;
7199 }
7200
7201 static const struct bpf_func_proto bpf_sk_assign_proto = {
7202 .func = bpf_sk_assign,
7203 .gpl_only = false,
7204 .ret_type = RET_INTEGER,
7205 .arg1_type = ARG_PTR_TO_CTX,
7206 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7207 .arg3_type = ARG_ANYTHING,
7208 };
7209
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7210 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7211 u8 search_kind, const u8 *magic,
7212 u8 magic_len, bool *eol)
7213 {
7214 u8 kind, kind_len;
7215
7216 *eol = false;
7217
7218 while (op < opend) {
7219 kind = op[0];
7220
7221 if (kind == TCPOPT_EOL) {
7222 *eol = true;
7223 return ERR_PTR(-ENOMSG);
7224 } else if (kind == TCPOPT_NOP) {
7225 op++;
7226 continue;
7227 }
7228
7229 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7230 /* Something is wrong in the received header.
7231 * Follow the TCP stack's tcp_parse_options()
7232 * and just bail here.
7233 */
7234 return ERR_PTR(-EFAULT);
7235
7236 kind_len = op[1];
7237 if (search_kind == kind) {
7238 if (!magic_len)
7239 return op;
7240
7241 if (magic_len > kind_len - 2)
7242 return ERR_PTR(-ENOMSG);
7243
7244 if (!memcmp(&op[2], magic, magic_len))
7245 return op;
7246 }
7247
7248 op += kind_len;
7249 }
7250
7251 return ERR_PTR(-ENOMSG);
7252 }
7253
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7254 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7255 void *, search_res, u32, len, u64, flags)
7256 {
7257 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7258 const u8 *op, *opend, *magic, *search = search_res;
7259 u8 search_kind, search_len, copy_len, magic_len;
7260 int ret;
7261
7262 /* 2 byte is the minimal option len except TCPOPT_NOP and
7263 * TCPOPT_EOL which are useless for the bpf prog to learn
7264 * and this helper disallow loading them also.
7265 */
7266 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7267 return -EINVAL;
7268
7269 search_kind = search[0];
7270 search_len = search[1];
7271
7272 if (search_len > len || search_kind == TCPOPT_NOP ||
7273 search_kind == TCPOPT_EOL)
7274 return -EINVAL;
7275
7276 if (search_kind == TCPOPT_EXP || search_kind == 253) {
7277 /* 16 or 32 bit magic. +2 for kind and kind length */
7278 if (search_len != 4 && search_len != 6)
7279 return -EINVAL;
7280 magic = &search[2];
7281 magic_len = search_len - 2;
7282 } else {
7283 if (search_len)
7284 return -EINVAL;
7285 magic = NULL;
7286 magic_len = 0;
7287 }
7288
7289 if (load_syn) {
7290 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7291 if (ret < 0)
7292 return ret;
7293
7294 opend = op + ret;
7295 op += sizeof(struct tcphdr);
7296 } else {
7297 if (!bpf_sock->skb ||
7298 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7299 /* This bpf_sock->op cannot call this helper */
7300 return -EPERM;
7301
7302 opend = bpf_sock->skb_data_end;
7303 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7304 }
7305
7306 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7307 &eol);
7308 if (IS_ERR(op))
7309 return PTR_ERR(op);
7310
7311 copy_len = op[1];
7312 ret = copy_len;
7313 if (copy_len > len) {
7314 ret = -ENOSPC;
7315 copy_len = len;
7316 }
7317
7318 memcpy(search_res, op, copy_len);
7319 return ret;
7320 }
7321
7322 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7323 .func = bpf_sock_ops_load_hdr_opt,
7324 .gpl_only = false,
7325 .ret_type = RET_INTEGER,
7326 .arg1_type = ARG_PTR_TO_CTX,
7327 .arg2_type = ARG_PTR_TO_MEM,
7328 .arg3_type = ARG_CONST_SIZE,
7329 .arg4_type = ARG_ANYTHING,
7330 };
7331
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7332 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7333 const void *, from, u32, len, u64, flags)
7334 {
7335 u8 new_kind, new_kind_len, magic_len = 0, *opend;
7336 const u8 *op, *new_op, *magic = NULL;
7337 struct sk_buff *skb;
7338 bool eol;
7339
7340 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7341 return -EPERM;
7342
7343 if (len < 2 || flags)
7344 return -EINVAL;
7345
7346 new_op = from;
7347 new_kind = new_op[0];
7348 new_kind_len = new_op[1];
7349
7350 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7351 new_kind == TCPOPT_EOL)
7352 return -EINVAL;
7353
7354 if (new_kind_len > bpf_sock->remaining_opt_len)
7355 return -ENOSPC;
7356
7357 /* 253 is another experimental kind */
7358 if (new_kind == TCPOPT_EXP || new_kind == 253) {
7359 if (new_kind_len < 4)
7360 return -EINVAL;
7361 /* Match for the 2 byte magic also.
7362 * RFC 6994: the magic could be 2 or 4 bytes.
7363 * Hence, matching by 2 byte only is on the
7364 * conservative side but it is the right
7365 * thing to do for the 'search-for-duplication'
7366 * purpose.
7367 */
7368 magic = &new_op[2];
7369 magic_len = 2;
7370 }
7371
7372 /* Check for duplication */
7373 skb = bpf_sock->skb;
7374 op = skb->data + sizeof(struct tcphdr);
7375 opend = bpf_sock->skb_data_end;
7376
7377 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7378 &eol);
7379 if (!IS_ERR(op))
7380 return -EEXIST;
7381
7382 if (PTR_ERR(op) != -ENOMSG)
7383 return PTR_ERR(op);
7384
7385 if (eol)
7386 /* The option has been ended. Treat it as no more
7387 * header option can be written.
7388 */
7389 return -ENOSPC;
7390
7391 /* No duplication found. Store the header option. */
7392 memcpy(opend, from, new_kind_len);
7393
7394 bpf_sock->remaining_opt_len -= new_kind_len;
7395 bpf_sock->skb_data_end += new_kind_len;
7396
7397 return 0;
7398 }
7399
7400 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7401 .func = bpf_sock_ops_store_hdr_opt,
7402 .gpl_only = false,
7403 .ret_type = RET_INTEGER,
7404 .arg1_type = ARG_PTR_TO_CTX,
7405 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7406 .arg3_type = ARG_CONST_SIZE,
7407 .arg4_type = ARG_ANYTHING,
7408 };
7409
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7410 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7411 u32, len, u64, flags)
7412 {
7413 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7414 return -EPERM;
7415
7416 if (flags || len < 2)
7417 return -EINVAL;
7418
7419 if (len > bpf_sock->remaining_opt_len)
7420 return -ENOSPC;
7421
7422 bpf_sock->remaining_opt_len -= len;
7423
7424 return 0;
7425 }
7426
7427 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7428 .func = bpf_sock_ops_reserve_hdr_opt,
7429 .gpl_only = false,
7430 .ret_type = RET_INTEGER,
7431 .arg1_type = ARG_PTR_TO_CTX,
7432 .arg2_type = ARG_ANYTHING,
7433 .arg3_type = ARG_ANYTHING,
7434 };
7435
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7436 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7437 u64, tstamp, u32, tstamp_type)
7438 {
7439 /* skb_clear_delivery_time() is done for inet protocol */
7440 if (skb->protocol != htons(ETH_P_IP) &&
7441 skb->protocol != htons(ETH_P_IPV6))
7442 return -EOPNOTSUPP;
7443
7444 switch (tstamp_type) {
7445 case BPF_SKB_TSTAMP_DELIVERY_MONO:
7446 if (!tstamp)
7447 return -EINVAL;
7448 skb->tstamp = tstamp;
7449 skb->mono_delivery_time = 1;
7450 break;
7451 case BPF_SKB_TSTAMP_UNSPEC:
7452 if (tstamp)
7453 return -EINVAL;
7454 skb->tstamp = 0;
7455 skb->mono_delivery_time = 0;
7456 break;
7457 default:
7458 return -EINVAL;
7459 }
7460
7461 return 0;
7462 }
7463
7464 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7465 .func = bpf_skb_set_tstamp,
7466 .gpl_only = false,
7467 .ret_type = RET_INTEGER,
7468 .arg1_type = ARG_PTR_TO_CTX,
7469 .arg2_type = ARG_ANYTHING,
7470 .arg3_type = ARG_ANYTHING,
7471 };
7472
7473 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7474 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7475 struct tcphdr *, th, u32, th_len)
7476 {
7477 u32 cookie;
7478 u16 mss;
7479
7480 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7481 return -EINVAL;
7482
7483 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7484 cookie = __cookie_v4_init_sequence(iph, th, &mss);
7485
7486 return cookie | ((u64)mss << 32);
7487 }
7488
7489 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7490 .func = bpf_tcp_raw_gen_syncookie_ipv4,
7491 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */
7492 .pkt_access = true,
7493 .ret_type = RET_INTEGER,
7494 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7495 .arg1_size = sizeof(struct iphdr),
7496 .arg2_type = ARG_PTR_TO_MEM,
7497 .arg3_type = ARG_CONST_SIZE,
7498 };
7499
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7500 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7501 struct tcphdr *, th, u32, th_len)
7502 {
7503 #if IS_BUILTIN(CONFIG_IPV6)
7504 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7505 sizeof(struct ipv6hdr);
7506 u32 cookie;
7507 u16 mss;
7508
7509 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7510 return -EINVAL;
7511
7512 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7513 cookie = __cookie_v6_init_sequence(iph, th, &mss);
7514
7515 return cookie | ((u64)mss << 32);
7516 #else
7517 return -EPROTONOSUPPORT;
7518 #endif
7519 }
7520
7521 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7522 .func = bpf_tcp_raw_gen_syncookie_ipv6,
7523 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */
7524 .pkt_access = true,
7525 .ret_type = RET_INTEGER,
7526 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7527 .arg1_size = sizeof(struct ipv6hdr),
7528 .arg2_type = ARG_PTR_TO_MEM,
7529 .arg3_type = ARG_CONST_SIZE,
7530 };
7531
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7532 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7533 struct tcphdr *, th)
7534 {
7535 u32 cookie = ntohl(th->ack_seq) - 1;
7536
7537 if (__cookie_v4_check(iph, th, cookie) > 0)
7538 return 0;
7539
7540 return -EACCES;
7541 }
7542
7543 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7544 .func = bpf_tcp_raw_check_syncookie_ipv4,
7545 .gpl_only = true, /* __cookie_v4_check is GPL */
7546 .pkt_access = true,
7547 .ret_type = RET_INTEGER,
7548 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7549 .arg1_size = sizeof(struct iphdr),
7550 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7551 .arg2_size = sizeof(struct tcphdr),
7552 };
7553
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7554 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7555 struct tcphdr *, th)
7556 {
7557 #if IS_BUILTIN(CONFIG_IPV6)
7558 u32 cookie = ntohl(th->ack_seq) - 1;
7559
7560 if (__cookie_v6_check(iph, th, cookie) > 0)
7561 return 0;
7562
7563 return -EACCES;
7564 #else
7565 return -EPROTONOSUPPORT;
7566 #endif
7567 }
7568
7569 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7570 .func = bpf_tcp_raw_check_syncookie_ipv6,
7571 .gpl_only = true, /* __cookie_v6_check is GPL */
7572 .pkt_access = true,
7573 .ret_type = RET_INTEGER,
7574 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7575 .arg1_size = sizeof(struct ipv6hdr),
7576 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7577 .arg2_size = sizeof(struct tcphdr),
7578 };
7579 #endif /* CONFIG_SYN_COOKIES */
7580
7581 #endif /* CONFIG_INET */
7582
bpf_helper_changes_pkt_data(void * func)7583 bool bpf_helper_changes_pkt_data(void *func)
7584 {
7585 if (func == bpf_skb_vlan_push ||
7586 func == bpf_skb_vlan_pop ||
7587 func == bpf_skb_store_bytes ||
7588 func == bpf_skb_change_proto ||
7589 func == bpf_skb_change_head ||
7590 func == sk_skb_change_head ||
7591 func == bpf_skb_change_tail ||
7592 func == sk_skb_change_tail ||
7593 func == bpf_skb_adjust_room ||
7594 func == sk_skb_adjust_room ||
7595 func == bpf_skb_pull_data ||
7596 func == sk_skb_pull_data ||
7597 func == bpf_clone_redirect ||
7598 func == bpf_l3_csum_replace ||
7599 func == bpf_l4_csum_replace ||
7600 func == bpf_xdp_adjust_head ||
7601 func == bpf_xdp_adjust_meta ||
7602 func == bpf_msg_pull_data ||
7603 func == bpf_msg_push_data ||
7604 func == bpf_msg_pop_data ||
7605 func == bpf_xdp_adjust_tail ||
7606 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7607 func == bpf_lwt_seg6_store_bytes ||
7608 func == bpf_lwt_seg6_adjust_srh ||
7609 func == bpf_lwt_seg6_action ||
7610 #endif
7611 #ifdef CONFIG_INET
7612 func == bpf_sock_ops_store_hdr_opt ||
7613 #endif
7614 func == bpf_lwt_in_push_encap ||
7615 func == bpf_lwt_xmit_push_encap)
7616 return true;
7617
7618 return false;
7619 }
7620
7621 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7622 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7623
7624 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7625 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7626 {
7627 const struct bpf_func_proto *func_proto;
7628
7629 func_proto = cgroup_common_func_proto(func_id, prog);
7630 if (func_proto)
7631 return func_proto;
7632
7633 func_proto = cgroup_current_func_proto(func_id, prog);
7634 if (func_proto)
7635 return func_proto;
7636
7637 switch (func_id) {
7638 case BPF_FUNC_get_socket_cookie:
7639 return &bpf_get_socket_cookie_sock_proto;
7640 case BPF_FUNC_get_netns_cookie:
7641 return &bpf_get_netns_cookie_sock_proto;
7642 case BPF_FUNC_perf_event_output:
7643 return &bpf_event_output_data_proto;
7644 case BPF_FUNC_sk_storage_get:
7645 return &bpf_sk_storage_get_cg_sock_proto;
7646 case BPF_FUNC_ktime_get_coarse_ns:
7647 return &bpf_ktime_get_coarse_ns_proto;
7648 default:
7649 return bpf_base_func_proto(func_id);
7650 }
7651 }
7652
7653 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7654 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7655 {
7656 const struct bpf_func_proto *func_proto;
7657
7658 func_proto = cgroup_common_func_proto(func_id, prog);
7659 if (func_proto)
7660 return func_proto;
7661
7662 func_proto = cgroup_current_func_proto(func_id, prog);
7663 if (func_proto)
7664 return func_proto;
7665
7666 switch (func_id) {
7667 case BPF_FUNC_bind:
7668 switch (prog->expected_attach_type) {
7669 case BPF_CGROUP_INET4_CONNECT:
7670 case BPF_CGROUP_INET6_CONNECT:
7671 return &bpf_bind_proto;
7672 default:
7673 return NULL;
7674 }
7675 case BPF_FUNC_get_socket_cookie:
7676 return &bpf_get_socket_cookie_sock_addr_proto;
7677 case BPF_FUNC_get_netns_cookie:
7678 return &bpf_get_netns_cookie_sock_addr_proto;
7679 case BPF_FUNC_perf_event_output:
7680 return &bpf_event_output_data_proto;
7681 #ifdef CONFIG_INET
7682 case BPF_FUNC_sk_lookup_tcp:
7683 return &bpf_sock_addr_sk_lookup_tcp_proto;
7684 case BPF_FUNC_sk_lookup_udp:
7685 return &bpf_sock_addr_sk_lookup_udp_proto;
7686 case BPF_FUNC_sk_release:
7687 return &bpf_sk_release_proto;
7688 case BPF_FUNC_skc_lookup_tcp:
7689 return &bpf_sock_addr_skc_lookup_tcp_proto;
7690 #endif /* CONFIG_INET */
7691 case BPF_FUNC_sk_storage_get:
7692 return &bpf_sk_storage_get_proto;
7693 case BPF_FUNC_sk_storage_delete:
7694 return &bpf_sk_storage_delete_proto;
7695 case BPF_FUNC_setsockopt:
7696 switch (prog->expected_attach_type) {
7697 case BPF_CGROUP_INET4_BIND:
7698 case BPF_CGROUP_INET6_BIND:
7699 case BPF_CGROUP_INET4_CONNECT:
7700 case BPF_CGROUP_INET6_CONNECT:
7701 case BPF_CGROUP_UDP4_RECVMSG:
7702 case BPF_CGROUP_UDP6_RECVMSG:
7703 case BPF_CGROUP_UDP4_SENDMSG:
7704 case BPF_CGROUP_UDP6_SENDMSG:
7705 case BPF_CGROUP_INET4_GETPEERNAME:
7706 case BPF_CGROUP_INET6_GETPEERNAME:
7707 case BPF_CGROUP_INET4_GETSOCKNAME:
7708 case BPF_CGROUP_INET6_GETSOCKNAME:
7709 return &bpf_sock_addr_setsockopt_proto;
7710 default:
7711 return NULL;
7712 }
7713 case BPF_FUNC_getsockopt:
7714 switch (prog->expected_attach_type) {
7715 case BPF_CGROUP_INET4_BIND:
7716 case BPF_CGROUP_INET6_BIND:
7717 case BPF_CGROUP_INET4_CONNECT:
7718 case BPF_CGROUP_INET6_CONNECT:
7719 case BPF_CGROUP_UDP4_RECVMSG:
7720 case BPF_CGROUP_UDP6_RECVMSG:
7721 case BPF_CGROUP_UDP4_SENDMSG:
7722 case BPF_CGROUP_UDP6_SENDMSG:
7723 case BPF_CGROUP_INET4_GETPEERNAME:
7724 case BPF_CGROUP_INET6_GETPEERNAME:
7725 case BPF_CGROUP_INET4_GETSOCKNAME:
7726 case BPF_CGROUP_INET6_GETSOCKNAME:
7727 return &bpf_sock_addr_getsockopt_proto;
7728 default:
7729 return NULL;
7730 }
7731 default:
7732 return bpf_sk_base_func_proto(func_id);
7733 }
7734 }
7735
7736 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7737 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7738 {
7739 switch (func_id) {
7740 case BPF_FUNC_skb_load_bytes:
7741 return &bpf_skb_load_bytes_proto;
7742 case BPF_FUNC_skb_load_bytes_relative:
7743 return &bpf_skb_load_bytes_relative_proto;
7744 case BPF_FUNC_get_socket_cookie:
7745 return &bpf_get_socket_cookie_proto;
7746 case BPF_FUNC_get_socket_uid:
7747 return &bpf_get_socket_uid_proto;
7748 case BPF_FUNC_perf_event_output:
7749 return &bpf_skb_event_output_proto;
7750 default:
7751 return bpf_sk_base_func_proto(func_id);
7752 }
7753 }
7754
7755 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7756 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7757
7758 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7759 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7760 {
7761 const struct bpf_func_proto *func_proto;
7762
7763 func_proto = cgroup_common_func_proto(func_id, prog);
7764 if (func_proto)
7765 return func_proto;
7766
7767 switch (func_id) {
7768 case BPF_FUNC_sk_fullsock:
7769 return &bpf_sk_fullsock_proto;
7770 case BPF_FUNC_sk_storage_get:
7771 return &bpf_sk_storage_get_proto;
7772 case BPF_FUNC_sk_storage_delete:
7773 return &bpf_sk_storage_delete_proto;
7774 case BPF_FUNC_perf_event_output:
7775 return &bpf_skb_event_output_proto;
7776 #ifdef CONFIG_SOCK_CGROUP_DATA
7777 case BPF_FUNC_skb_cgroup_id:
7778 return &bpf_skb_cgroup_id_proto;
7779 case BPF_FUNC_skb_ancestor_cgroup_id:
7780 return &bpf_skb_ancestor_cgroup_id_proto;
7781 case BPF_FUNC_sk_cgroup_id:
7782 return &bpf_sk_cgroup_id_proto;
7783 case BPF_FUNC_sk_ancestor_cgroup_id:
7784 return &bpf_sk_ancestor_cgroup_id_proto;
7785 #endif
7786 #ifdef CONFIG_INET
7787 case BPF_FUNC_sk_lookup_tcp:
7788 return &bpf_sk_lookup_tcp_proto;
7789 case BPF_FUNC_sk_lookup_udp:
7790 return &bpf_sk_lookup_udp_proto;
7791 case BPF_FUNC_sk_release:
7792 return &bpf_sk_release_proto;
7793 case BPF_FUNC_skc_lookup_tcp:
7794 return &bpf_skc_lookup_tcp_proto;
7795 case BPF_FUNC_tcp_sock:
7796 return &bpf_tcp_sock_proto;
7797 case BPF_FUNC_get_listener_sock:
7798 return &bpf_get_listener_sock_proto;
7799 case BPF_FUNC_skb_ecn_set_ce:
7800 return &bpf_skb_ecn_set_ce_proto;
7801 #endif
7802 default:
7803 return sk_filter_func_proto(func_id, prog);
7804 }
7805 }
7806
7807 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7808 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7809 {
7810 switch (func_id) {
7811 case BPF_FUNC_skb_store_bytes:
7812 return &bpf_skb_store_bytes_proto;
7813 case BPF_FUNC_skb_load_bytes:
7814 return &bpf_skb_load_bytes_proto;
7815 case BPF_FUNC_skb_load_bytes_relative:
7816 return &bpf_skb_load_bytes_relative_proto;
7817 case BPF_FUNC_skb_pull_data:
7818 return &bpf_skb_pull_data_proto;
7819 case BPF_FUNC_csum_diff:
7820 return &bpf_csum_diff_proto;
7821 case BPF_FUNC_csum_update:
7822 return &bpf_csum_update_proto;
7823 case BPF_FUNC_csum_level:
7824 return &bpf_csum_level_proto;
7825 case BPF_FUNC_l3_csum_replace:
7826 return &bpf_l3_csum_replace_proto;
7827 case BPF_FUNC_l4_csum_replace:
7828 return &bpf_l4_csum_replace_proto;
7829 case BPF_FUNC_clone_redirect:
7830 return &bpf_clone_redirect_proto;
7831 case BPF_FUNC_get_cgroup_classid:
7832 return &bpf_get_cgroup_classid_proto;
7833 case BPF_FUNC_skb_vlan_push:
7834 return &bpf_skb_vlan_push_proto;
7835 case BPF_FUNC_skb_vlan_pop:
7836 return &bpf_skb_vlan_pop_proto;
7837 case BPF_FUNC_skb_change_proto:
7838 return &bpf_skb_change_proto_proto;
7839 case BPF_FUNC_skb_change_type:
7840 return &bpf_skb_change_type_proto;
7841 case BPF_FUNC_skb_adjust_room:
7842 return &bpf_skb_adjust_room_proto;
7843 case BPF_FUNC_skb_change_tail:
7844 return &bpf_skb_change_tail_proto;
7845 case BPF_FUNC_skb_change_head:
7846 return &bpf_skb_change_head_proto;
7847 case BPF_FUNC_skb_get_tunnel_key:
7848 return &bpf_skb_get_tunnel_key_proto;
7849 case BPF_FUNC_skb_set_tunnel_key:
7850 return bpf_get_skb_set_tunnel_proto(func_id);
7851 case BPF_FUNC_skb_get_tunnel_opt:
7852 return &bpf_skb_get_tunnel_opt_proto;
7853 case BPF_FUNC_skb_set_tunnel_opt:
7854 return bpf_get_skb_set_tunnel_proto(func_id);
7855 case BPF_FUNC_redirect:
7856 return &bpf_redirect_proto;
7857 case BPF_FUNC_redirect_neigh:
7858 return &bpf_redirect_neigh_proto;
7859 case BPF_FUNC_redirect_peer:
7860 return &bpf_redirect_peer_proto;
7861 case BPF_FUNC_get_route_realm:
7862 return &bpf_get_route_realm_proto;
7863 case BPF_FUNC_get_hash_recalc:
7864 return &bpf_get_hash_recalc_proto;
7865 case BPF_FUNC_set_hash_invalid:
7866 return &bpf_set_hash_invalid_proto;
7867 case BPF_FUNC_set_hash:
7868 return &bpf_set_hash_proto;
7869 case BPF_FUNC_perf_event_output:
7870 return &bpf_skb_event_output_proto;
7871 case BPF_FUNC_get_smp_processor_id:
7872 return &bpf_get_smp_processor_id_proto;
7873 case BPF_FUNC_skb_under_cgroup:
7874 return &bpf_skb_under_cgroup_proto;
7875 case BPF_FUNC_get_socket_cookie:
7876 return &bpf_get_socket_cookie_proto;
7877 case BPF_FUNC_get_socket_uid:
7878 return &bpf_get_socket_uid_proto;
7879 case BPF_FUNC_fib_lookup:
7880 return &bpf_skb_fib_lookup_proto;
7881 case BPF_FUNC_check_mtu:
7882 return &bpf_skb_check_mtu_proto;
7883 case BPF_FUNC_sk_fullsock:
7884 return &bpf_sk_fullsock_proto;
7885 case BPF_FUNC_sk_storage_get:
7886 return &bpf_sk_storage_get_proto;
7887 case BPF_FUNC_sk_storage_delete:
7888 return &bpf_sk_storage_delete_proto;
7889 #ifdef CONFIG_XFRM
7890 case BPF_FUNC_skb_get_xfrm_state:
7891 return &bpf_skb_get_xfrm_state_proto;
7892 #endif
7893 #ifdef CONFIG_CGROUP_NET_CLASSID
7894 case BPF_FUNC_skb_cgroup_classid:
7895 return &bpf_skb_cgroup_classid_proto;
7896 #endif
7897 #ifdef CONFIG_SOCK_CGROUP_DATA
7898 case BPF_FUNC_skb_cgroup_id:
7899 return &bpf_skb_cgroup_id_proto;
7900 case BPF_FUNC_skb_ancestor_cgroup_id:
7901 return &bpf_skb_ancestor_cgroup_id_proto;
7902 #endif
7903 #ifdef CONFIG_INET
7904 case BPF_FUNC_sk_lookup_tcp:
7905 return &bpf_sk_lookup_tcp_proto;
7906 case BPF_FUNC_sk_lookup_udp:
7907 return &bpf_sk_lookup_udp_proto;
7908 case BPF_FUNC_sk_release:
7909 return &bpf_sk_release_proto;
7910 case BPF_FUNC_tcp_sock:
7911 return &bpf_tcp_sock_proto;
7912 case BPF_FUNC_get_listener_sock:
7913 return &bpf_get_listener_sock_proto;
7914 case BPF_FUNC_skc_lookup_tcp:
7915 return &bpf_skc_lookup_tcp_proto;
7916 case BPF_FUNC_tcp_check_syncookie:
7917 return &bpf_tcp_check_syncookie_proto;
7918 case BPF_FUNC_skb_ecn_set_ce:
7919 return &bpf_skb_ecn_set_ce_proto;
7920 case BPF_FUNC_tcp_gen_syncookie:
7921 return &bpf_tcp_gen_syncookie_proto;
7922 case BPF_FUNC_sk_assign:
7923 return &bpf_sk_assign_proto;
7924 case BPF_FUNC_skb_set_tstamp:
7925 return &bpf_skb_set_tstamp_proto;
7926 #ifdef CONFIG_SYN_COOKIES
7927 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7928 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7929 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7930 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7931 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7932 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7933 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7934 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7935 #endif
7936 #endif
7937 default:
7938 return bpf_sk_base_func_proto(func_id);
7939 }
7940 }
7941
7942 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7943 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7944 {
7945 switch (func_id) {
7946 case BPF_FUNC_perf_event_output:
7947 return &bpf_xdp_event_output_proto;
7948 case BPF_FUNC_get_smp_processor_id:
7949 return &bpf_get_smp_processor_id_proto;
7950 case BPF_FUNC_csum_diff:
7951 return &bpf_csum_diff_proto;
7952 case BPF_FUNC_xdp_adjust_head:
7953 return &bpf_xdp_adjust_head_proto;
7954 case BPF_FUNC_xdp_adjust_meta:
7955 return &bpf_xdp_adjust_meta_proto;
7956 case BPF_FUNC_redirect:
7957 return &bpf_xdp_redirect_proto;
7958 case BPF_FUNC_redirect_map:
7959 return &bpf_xdp_redirect_map_proto;
7960 case BPF_FUNC_xdp_adjust_tail:
7961 return &bpf_xdp_adjust_tail_proto;
7962 case BPF_FUNC_xdp_get_buff_len:
7963 return &bpf_xdp_get_buff_len_proto;
7964 case BPF_FUNC_xdp_load_bytes:
7965 return &bpf_xdp_load_bytes_proto;
7966 case BPF_FUNC_xdp_store_bytes:
7967 return &bpf_xdp_store_bytes_proto;
7968 case BPF_FUNC_fib_lookup:
7969 return &bpf_xdp_fib_lookup_proto;
7970 case BPF_FUNC_check_mtu:
7971 return &bpf_xdp_check_mtu_proto;
7972 #ifdef CONFIG_INET
7973 case BPF_FUNC_sk_lookup_udp:
7974 return &bpf_xdp_sk_lookup_udp_proto;
7975 case BPF_FUNC_sk_lookup_tcp:
7976 return &bpf_xdp_sk_lookup_tcp_proto;
7977 case BPF_FUNC_sk_release:
7978 return &bpf_sk_release_proto;
7979 case BPF_FUNC_skc_lookup_tcp:
7980 return &bpf_xdp_skc_lookup_tcp_proto;
7981 case BPF_FUNC_tcp_check_syncookie:
7982 return &bpf_tcp_check_syncookie_proto;
7983 case BPF_FUNC_tcp_gen_syncookie:
7984 return &bpf_tcp_gen_syncookie_proto;
7985 #ifdef CONFIG_SYN_COOKIES
7986 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7987 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7988 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7989 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7990 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7991 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7992 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7993 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7994 #endif
7995 #endif
7996 default:
7997 return bpf_sk_base_func_proto(func_id);
7998 }
7999
8000 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8001 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8002 * kfuncs are defined in two different modules, and we want to be able
8003 * to use them interchangably with the same BTF type ID. Because modules
8004 * can't de-duplicate BTF IDs between each other, we need the type to be
8005 * referenced in the vmlinux BTF or the verifier will get confused about
8006 * the different types. So we add this dummy type reference which will
8007 * be included in vmlinux BTF, allowing both modules to refer to the
8008 * same type ID.
8009 */
8010 BTF_TYPE_EMIT(struct nf_conn___init);
8011 #endif
8012 }
8013
8014 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8015 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8016
8017 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8018 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8019 {
8020 const struct bpf_func_proto *func_proto;
8021
8022 func_proto = cgroup_common_func_proto(func_id, prog);
8023 if (func_proto)
8024 return func_proto;
8025
8026 switch (func_id) {
8027 case BPF_FUNC_setsockopt:
8028 return &bpf_sock_ops_setsockopt_proto;
8029 case BPF_FUNC_getsockopt:
8030 return &bpf_sock_ops_getsockopt_proto;
8031 case BPF_FUNC_sock_ops_cb_flags_set:
8032 return &bpf_sock_ops_cb_flags_set_proto;
8033 case BPF_FUNC_sock_map_update:
8034 return &bpf_sock_map_update_proto;
8035 case BPF_FUNC_sock_hash_update:
8036 return &bpf_sock_hash_update_proto;
8037 case BPF_FUNC_get_socket_cookie:
8038 return &bpf_get_socket_cookie_sock_ops_proto;
8039 case BPF_FUNC_perf_event_output:
8040 return &bpf_event_output_data_proto;
8041 case BPF_FUNC_sk_storage_get:
8042 return &bpf_sk_storage_get_proto;
8043 case BPF_FUNC_sk_storage_delete:
8044 return &bpf_sk_storage_delete_proto;
8045 case BPF_FUNC_get_netns_cookie:
8046 return &bpf_get_netns_cookie_sock_ops_proto;
8047 #ifdef CONFIG_INET
8048 case BPF_FUNC_load_hdr_opt:
8049 return &bpf_sock_ops_load_hdr_opt_proto;
8050 case BPF_FUNC_store_hdr_opt:
8051 return &bpf_sock_ops_store_hdr_opt_proto;
8052 case BPF_FUNC_reserve_hdr_opt:
8053 return &bpf_sock_ops_reserve_hdr_opt_proto;
8054 case BPF_FUNC_tcp_sock:
8055 return &bpf_tcp_sock_proto;
8056 #endif /* CONFIG_INET */
8057 default:
8058 return bpf_sk_base_func_proto(func_id);
8059 }
8060 }
8061
8062 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8063 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8064
8065 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8066 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8067 {
8068 switch (func_id) {
8069 case BPF_FUNC_msg_redirect_map:
8070 return &bpf_msg_redirect_map_proto;
8071 case BPF_FUNC_msg_redirect_hash:
8072 return &bpf_msg_redirect_hash_proto;
8073 case BPF_FUNC_msg_apply_bytes:
8074 return &bpf_msg_apply_bytes_proto;
8075 case BPF_FUNC_msg_cork_bytes:
8076 return &bpf_msg_cork_bytes_proto;
8077 case BPF_FUNC_msg_pull_data:
8078 return &bpf_msg_pull_data_proto;
8079 case BPF_FUNC_msg_push_data:
8080 return &bpf_msg_push_data_proto;
8081 case BPF_FUNC_msg_pop_data:
8082 return &bpf_msg_pop_data_proto;
8083 case BPF_FUNC_perf_event_output:
8084 return &bpf_event_output_data_proto;
8085 case BPF_FUNC_get_current_uid_gid:
8086 return &bpf_get_current_uid_gid_proto;
8087 case BPF_FUNC_get_current_pid_tgid:
8088 return &bpf_get_current_pid_tgid_proto;
8089 case BPF_FUNC_sk_storage_get:
8090 return &bpf_sk_storage_get_proto;
8091 case BPF_FUNC_sk_storage_delete:
8092 return &bpf_sk_storage_delete_proto;
8093 case BPF_FUNC_get_netns_cookie:
8094 return &bpf_get_netns_cookie_sk_msg_proto;
8095 #ifdef CONFIG_CGROUPS
8096 case BPF_FUNC_get_current_cgroup_id:
8097 return &bpf_get_current_cgroup_id_proto;
8098 case BPF_FUNC_get_current_ancestor_cgroup_id:
8099 return &bpf_get_current_ancestor_cgroup_id_proto;
8100 #endif
8101 #ifdef CONFIG_CGROUP_NET_CLASSID
8102 case BPF_FUNC_get_cgroup_classid:
8103 return &bpf_get_cgroup_classid_curr_proto;
8104 #endif
8105 default:
8106 return bpf_sk_base_func_proto(func_id);
8107 }
8108 }
8109
8110 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8111 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8112
8113 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8114 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8115 {
8116 switch (func_id) {
8117 case BPF_FUNC_skb_store_bytes:
8118 return &bpf_skb_store_bytes_proto;
8119 case BPF_FUNC_skb_load_bytes:
8120 return &bpf_skb_load_bytes_proto;
8121 case BPF_FUNC_skb_pull_data:
8122 return &sk_skb_pull_data_proto;
8123 case BPF_FUNC_skb_change_tail:
8124 return &sk_skb_change_tail_proto;
8125 case BPF_FUNC_skb_change_head:
8126 return &sk_skb_change_head_proto;
8127 case BPF_FUNC_skb_adjust_room:
8128 return &sk_skb_adjust_room_proto;
8129 case BPF_FUNC_get_socket_cookie:
8130 return &bpf_get_socket_cookie_proto;
8131 case BPF_FUNC_get_socket_uid:
8132 return &bpf_get_socket_uid_proto;
8133 case BPF_FUNC_sk_redirect_map:
8134 return &bpf_sk_redirect_map_proto;
8135 case BPF_FUNC_sk_redirect_hash:
8136 return &bpf_sk_redirect_hash_proto;
8137 case BPF_FUNC_perf_event_output:
8138 return &bpf_skb_event_output_proto;
8139 #ifdef CONFIG_INET
8140 case BPF_FUNC_sk_lookup_tcp:
8141 return &bpf_sk_lookup_tcp_proto;
8142 case BPF_FUNC_sk_lookup_udp:
8143 return &bpf_sk_lookup_udp_proto;
8144 case BPF_FUNC_sk_release:
8145 return &bpf_sk_release_proto;
8146 case BPF_FUNC_skc_lookup_tcp:
8147 return &bpf_skc_lookup_tcp_proto;
8148 #endif
8149 default:
8150 return bpf_sk_base_func_proto(func_id);
8151 }
8152 }
8153
8154 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8155 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8156 {
8157 switch (func_id) {
8158 case BPF_FUNC_skb_load_bytes:
8159 return &bpf_flow_dissector_load_bytes_proto;
8160 default:
8161 return bpf_sk_base_func_proto(func_id);
8162 }
8163 }
8164
8165 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8166 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8167 {
8168 switch (func_id) {
8169 case BPF_FUNC_skb_load_bytes:
8170 return &bpf_skb_load_bytes_proto;
8171 case BPF_FUNC_skb_pull_data:
8172 return &bpf_skb_pull_data_proto;
8173 case BPF_FUNC_csum_diff:
8174 return &bpf_csum_diff_proto;
8175 case BPF_FUNC_get_cgroup_classid:
8176 return &bpf_get_cgroup_classid_proto;
8177 case BPF_FUNC_get_route_realm:
8178 return &bpf_get_route_realm_proto;
8179 case BPF_FUNC_get_hash_recalc:
8180 return &bpf_get_hash_recalc_proto;
8181 case BPF_FUNC_perf_event_output:
8182 return &bpf_skb_event_output_proto;
8183 case BPF_FUNC_get_smp_processor_id:
8184 return &bpf_get_smp_processor_id_proto;
8185 case BPF_FUNC_skb_under_cgroup:
8186 return &bpf_skb_under_cgroup_proto;
8187 default:
8188 return bpf_sk_base_func_proto(func_id);
8189 }
8190 }
8191
8192 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8193 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8194 {
8195 switch (func_id) {
8196 case BPF_FUNC_lwt_push_encap:
8197 return &bpf_lwt_in_push_encap_proto;
8198 default:
8199 return lwt_out_func_proto(func_id, prog);
8200 }
8201 }
8202
8203 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8204 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8205 {
8206 switch (func_id) {
8207 case BPF_FUNC_skb_get_tunnel_key:
8208 return &bpf_skb_get_tunnel_key_proto;
8209 case BPF_FUNC_skb_set_tunnel_key:
8210 return bpf_get_skb_set_tunnel_proto(func_id);
8211 case BPF_FUNC_skb_get_tunnel_opt:
8212 return &bpf_skb_get_tunnel_opt_proto;
8213 case BPF_FUNC_skb_set_tunnel_opt:
8214 return bpf_get_skb_set_tunnel_proto(func_id);
8215 case BPF_FUNC_redirect:
8216 return &bpf_redirect_proto;
8217 case BPF_FUNC_clone_redirect:
8218 return &bpf_clone_redirect_proto;
8219 case BPF_FUNC_skb_change_tail:
8220 return &bpf_skb_change_tail_proto;
8221 case BPF_FUNC_skb_change_head:
8222 return &bpf_skb_change_head_proto;
8223 case BPF_FUNC_skb_store_bytes:
8224 return &bpf_skb_store_bytes_proto;
8225 case BPF_FUNC_csum_update:
8226 return &bpf_csum_update_proto;
8227 case BPF_FUNC_csum_level:
8228 return &bpf_csum_level_proto;
8229 case BPF_FUNC_l3_csum_replace:
8230 return &bpf_l3_csum_replace_proto;
8231 case BPF_FUNC_l4_csum_replace:
8232 return &bpf_l4_csum_replace_proto;
8233 case BPF_FUNC_set_hash_invalid:
8234 return &bpf_set_hash_invalid_proto;
8235 case BPF_FUNC_lwt_push_encap:
8236 return &bpf_lwt_xmit_push_encap_proto;
8237 default:
8238 return lwt_out_func_proto(func_id, prog);
8239 }
8240 }
8241
8242 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8243 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8244 {
8245 switch (func_id) {
8246 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8247 case BPF_FUNC_lwt_seg6_store_bytes:
8248 return &bpf_lwt_seg6_store_bytes_proto;
8249 case BPF_FUNC_lwt_seg6_action:
8250 return &bpf_lwt_seg6_action_proto;
8251 case BPF_FUNC_lwt_seg6_adjust_srh:
8252 return &bpf_lwt_seg6_adjust_srh_proto;
8253 #endif
8254 default:
8255 return lwt_out_func_proto(func_id, prog);
8256 }
8257 }
8258
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8259 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8260 const struct bpf_prog *prog,
8261 struct bpf_insn_access_aux *info)
8262 {
8263 const int size_default = sizeof(__u32);
8264
8265 if (off < 0 || off >= sizeof(struct __sk_buff))
8266 return false;
8267
8268 /* The verifier guarantees that size > 0. */
8269 if (off % size != 0)
8270 return false;
8271
8272 switch (off) {
8273 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8274 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8275 return false;
8276 break;
8277 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8278 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8279 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8280 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8281 case bpf_ctx_range(struct __sk_buff, data):
8282 case bpf_ctx_range(struct __sk_buff, data_meta):
8283 case bpf_ctx_range(struct __sk_buff, data_end):
8284 if (size != size_default)
8285 return false;
8286 break;
8287 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8288 return false;
8289 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8290 if (type == BPF_WRITE || size != sizeof(__u64))
8291 return false;
8292 break;
8293 case bpf_ctx_range(struct __sk_buff, tstamp):
8294 if (size != sizeof(__u64))
8295 return false;
8296 break;
8297 case offsetof(struct __sk_buff, sk):
8298 if (type == BPF_WRITE || size != sizeof(__u64))
8299 return false;
8300 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8301 break;
8302 case offsetof(struct __sk_buff, tstamp_type):
8303 return false;
8304 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8305 /* Explicitly prohibit access to padding in __sk_buff. */
8306 return false;
8307 default:
8308 /* Only narrow read access allowed for now. */
8309 if (type == BPF_WRITE) {
8310 if (size != size_default)
8311 return false;
8312 } else {
8313 bpf_ctx_record_field_size(info, size_default);
8314 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8315 return false;
8316 }
8317 }
8318
8319 return true;
8320 }
8321
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8322 static bool sk_filter_is_valid_access(int off, int size,
8323 enum bpf_access_type type,
8324 const struct bpf_prog *prog,
8325 struct bpf_insn_access_aux *info)
8326 {
8327 switch (off) {
8328 case bpf_ctx_range(struct __sk_buff, tc_classid):
8329 case bpf_ctx_range(struct __sk_buff, data):
8330 case bpf_ctx_range(struct __sk_buff, data_meta):
8331 case bpf_ctx_range(struct __sk_buff, data_end):
8332 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8333 case bpf_ctx_range(struct __sk_buff, tstamp):
8334 case bpf_ctx_range(struct __sk_buff, wire_len):
8335 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8336 return false;
8337 }
8338
8339 if (type == BPF_WRITE) {
8340 switch (off) {
8341 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8342 break;
8343 default:
8344 return false;
8345 }
8346 }
8347
8348 return bpf_skb_is_valid_access(off, size, type, prog, info);
8349 }
8350
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8351 static bool cg_skb_is_valid_access(int off, int size,
8352 enum bpf_access_type type,
8353 const struct bpf_prog *prog,
8354 struct bpf_insn_access_aux *info)
8355 {
8356 switch (off) {
8357 case bpf_ctx_range(struct __sk_buff, tc_classid):
8358 case bpf_ctx_range(struct __sk_buff, data_meta):
8359 case bpf_ctx_range(struct __sk_buff, wire_len):
8360 return false;
8361 case bpf_ctx_range(struct __sk_buff, data):
8362 case bpf_ctx_range(struct __sk_buff, data_end):
8363 if (!bpf_capable())
8364 return false;
8365 break;
8366 }
8367
8368 if (type == BPF_WRITE) {
8369 switch (off) {
8370 case bpf_ctx_range(struct __sk_buff, mark):
8371 case bpf_ctx_range(struct __sk_buff, priority):
8372 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8373 break;
8374 case bpf_ctx_range(struct __sk_buff, tstamp):
8375 if (!bpf_capable())
8376 return false;
8377 break;
8378 default:
8379 return false;
8380 }
8381 }
8382
8383 switch (off) {
8384 case bpf_ctx_range(struct __sk_buff, data):
8385 info->reg_type = PTR_TO_PACKET;
8386 break;
8387 case bpf_ctx_range(struct __sk_buff, data_end):
8388 info->reg_type = PTR_TO_PACKET_END;
8389 break;
8390 }
8391
8392 return bpf_skb_is_valid_access(off, size, type, prog, info);
8393 }
8394
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8395 static bool lwt_is_valid_access(int off, int size,
8396 enum bpf_access_type type,
8397 const struct bpf_prog *prog,
8398 struct bpf_insn_access_aux *info)
8399 {
8400 switch (off) {
8401 case bpf_ctx_range(struct __sk_buff, tc_classid):
8402 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8403 case bpf_ctx_range(struct __sk_buff, data_meta):
8404 case bpf_ctx_range(struct __sk_buff, tstamp):
8405 case bpf_ctx_range(struct __sk_buff, wire_len):
8406 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8407 return false;
8408 }
8409
8410 if (type == BPF_WRITE) {
8411 switch (off) {
8412 case bpf_ctx_range(struct __sk_buff, mark):
8413 case bpf_ctx_range(struct __sk_buff, priority):
8414 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8415 break;
8416 default:
8417 return false;
8418 }
8419 }
8420
8421 switch (off) {
8422 case bpf_ctx_range(struct __sk_buff, data):
8423 info->reg_type = PTR_TO_PACKET;
8424 break;
8425 case bpf_ctx_range(struct __sk_buff, data_end):
8426 info->reg_type = PTR_TO_PACKET_END;
8427 break;
8428 }
8429
8430 return bpf_skb_is_valid_access(off, size, type, prog, info);
8431 }
8432
8433 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8434 static bool __sock_filter_check_attach_type(int off,
8435 enum bpf_access_type access_type,
8436 enum bpf_attach_type attach_type)
8437 {
8438 switch (off) {
8439 case offsetof(struct bpf_sock, bound_dev_if):
8440 case offsetof(struct bpf_sock, mark):
8441 case offsetof(struct bpf_sock, priority):
8442 switch (attach_type) {
8443 case BPF_CGROUP_INET_SOCK_CREATE:
8444 case BPF_CGROUP_INET_SOCK_RELEASE:
8445 goto full_access;
8446 default:
8447 return false;
8448 }
8449 case bpf_ctx_range(struct bpf_sock, src_ip4):
8450 switch (attach_type) {
8451 case BPF_CGROUP_INET4_POST_BIND:
8452 goto read_only;
8453 default:
8454 return false;
8455 }
8456 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8457 switch (attach_type) {
8458 case BPF_CGROUP_INET6_POST_BIND:
8459 goto read_only;
8460 default:
8461 return false;
8462 }
8463 case bpf_ctx_range(struct bpf_sock, src_port):
8464 switch (attach_type) {
8465 case BPF_CGROUP_INET4_POST_BIND:
8466 case BPF_CGROUP_INET6_POST_BIND:
8467 goto read_only;
8468 default:
8469 return false;
8470 }
8471 }
8472 read_only:
8473 return access_type == BPF_READ;
8474 full_access:
8475 return true;
8476 }
8477
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8478 bool bpf_sock_common_is_valid_access(int off, int size,
8479 enum bpf_access_type type,
8480 struct bpf_insn_access_aux *info)
8481 {
8482 switch (off) {
8483 case bpf_ctx_range_till(struct bpf_sock, type, priority):
8484 return false;
8485 default:
8486 return bpf_sock_is_valid_access(off, size, type, info);
8487 }
8488 }
8489
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8490 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8491 struct bpf_insn_access_aux *info)
8492 {
8493 const int size_default = sizeof(__u32);
8494 int field_size;
8495
8496 if (off < 0 || off >= sizeof(struct bpf_sock))
8497 return false;
8498 if (off % size != 0)
8499 return false;
8500
8501 switch (off) {
8502 case offsetof(struct bpf_sock, state):
8503 case offsetof(struct bpf_sock, family):
8504 case offsetof(struct bpf_sock, type):
8505 case offsetof(struct bpf_sock, protocol):
8506 case offsetof(struct bpf_sock, src_port):
8507 case offsetof(struct bpf_sock, rx_queue_mapping):
8508 case bpf_ctx_range(struct bpf_sock, src_ip4):
8509 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8510 case bpf_ctx_range(struct bpf_sock, dst_ip4):
8511 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8512 bpf_ctx_record_field_size(info, size_default);
8513 return bpf_ctx_narrow_access_ok(off, size, size_default);
8514 case bpf_ctx_range(struct bpf_sock, dst_port):
8515 field_size = size == size_default ?
8516 size_default : sizeof_field(struct bpf_sock, dst_port);
8517 bpf_ctx_record_field_size(info, field_size);
8518 return bpf_ctx_narrow_access_ok(off, size, field_size);
8519 case offsetofend(struct bpf_sock, dst_port) ...
8520 offsetof(struct bpf_sock, dst_ip4) - 1:
8521 return false;
8522 }
8523
8524 return size == size_default;
8525 }
8526
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8527 static bool sock_filter_is_valid_access(int off, int size,
8528 enum bpf_access_type type,
8529 const struct bpf_prog *prog,
8530 struct bpf_insn_access_aux *info)
8531 {
8532 if (!bpf_sock_is_valid_access(off, size, type, info))
8533 return false;
8534 return __sock_filter_check_attach_type(off, type,
8535 prog->expected_attach_type);
8536 }
8537
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8538 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8539 const struct bpf_prog *prog)
8540 {
8541 /* Neither direct read nor direct write requires any preliminary
8542 * action.
8543 */
8544 return 0;
8545 }
8546
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8547 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8548 const struct bpf_prog *prog, int drop_verdict)
8549 {
8550 struct bpf_insn *insn = insn_buf;
8551
8552 if (!direct_write)
8553 return 0;
8554
8555 /* if (!skb->cloned)
8556 * goto start;
8557 *
8558 * (Fast-path, otherwise approximation that we might be
8559 * a clone, do the rest in helper.)
8560 */
8561 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8562 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8563 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8564
8565 /* ret = bpf_skb_pull_data(skb, 0); */
8566 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8567 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8568 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8569 BPF_FUNC_skb_pull_data);
8570 /* if (!ret)
8571 * goto restore;
8572 * return TC_ACT_SHOT;
8573 */
8574 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8575 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8576 *insn++ = BPF_EXIT_INSN();
8577
8578 /* restore: */
8579 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8580 /* start: */
8581 *insn++ = prog->insnsi[0];
8582
8583 return insn - insn_buf;
8584 }
8585
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8586 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8587 struct bpf_insn *insn_buf)
8588 {
8589 bool indirect = BPF_MODE(orig->code) == BPF_IND;
8590 struct bpf_insn *insn = insn_buf;
8591
8592 if (!indirect) {
8593 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8594 } else {
8595 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8596 if (orig->imm)
8597 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8598 }
8599 /* We're guaranteed here that CTX is in R6. */
8600 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8601
8602 switch (BPF_SIZE(orig->code)) {
8603 case BPF_B:
8604 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8605 break;
8606 case BPF_H:
8607 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8608 break;
8609 case BPF_W:
8610 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8611 break;
8612 }
8613
8614 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8615 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8616 *insn++ = BPF_EXIT_INSN();
8617
8618 return insn - insn_buf;
8619 }
8620
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8621 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8622 const struct bpf_prog *prog)
8623 {
8624 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8625 }
8626
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8627 static bool tc_cls_act_is_valid_access(int off, int size,
8628 enum bpf_access_type type,
8629 const struct bpf_prog *prog,
8630 struct bpf_insn_access_aux *info)
8631 {
8632 if (type == BPF_WRITE) {
8633 switch (off) {
8634 case bpf_ctx_range(struct __sk_buff, mark):
8635 case bpf_ctx_range(struct __sk_buff, tc_index):
8636 case bpf_ctx_range(struct __sk_buff, priority):
8637 case bpf_ctx_range(struct __sk_buff, tc_classid):
8638 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8639 case bpf_ctx_range(struct __sk_buff, tstamp):
8640 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8641 break;
8642 default:
8643 return false;
8644 }
8645 }
8646
8647 switch (off) {
8648 case bpf_ctx_range(struct __sk_buff, data):
8649 info->reg_type = PTR_TO_PACKET;
8650 break;
8651 case bpf_ctx_range(struct __sk_buff, data_meta):
8652 info->reg_type = PTR_TO_PACKET_META;
8653 break;
8654 case bpf_ctx_range(struct __sk_buff, data_end):
8655 info->reg_type = PTR_TO_PACKET_END;
8656 break;
8657 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8658 return false;
8659 case offsetof(struct __sk_buff, tstamp_type):
8660 /* The convert_ctx_access() on reading and writing
8661 * __sk_buff->tstamp depends on whether the bpf prog
8662 * has used __sk_buff->tstamp_type or not.
8663 * Thus, we need to set prog->tstamp_type_access
8664 * earlier during is_valid_access() here.
8665 */
8666 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8667 return size == sizeof(__u8);
8668 }
8669
8670 return bpf_skb_is_valid_access(off, size, type, prog, info);
8671 }
8672
8673 DEFINE_MUTEX(nf_conn_btf_access_lock);
8674 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8675
8676 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, const struct btf *btf,
8677 const struct btf_type *t, int off, int size,
8678 enum bpf_access_type atype, u32 *next_btf_id,
8679 enum bpf_type_flag *flag);
8680 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8681
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag)8682 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8683 const struct btf *btf,
8684 const struct btf_type *t, int off,
8685 int size, enum bpf_access_type atype,
8686 u32 *next_btf_id,
8687 enum bpf_type_flag *flag)
8688 {
8689 int ret = -EACCES;
8690
8691 if (atype == BPF_READ)
8692 return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8693 flag);
8694
8695 mutex_lock(&nf_conn_btf_access_lock);
8696 if (nfct_btf_struct_access)
8697 ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8698 mutex_unlock(&nf_conn_btf_access_lock);
8699
8700 return ret;
8701 }
8702
__is_valid_xdp_access(int off,int size)8703 static bool __is_valid_xdp_access(int off, int size)
8704 {
8705 if (off < 0 || off >= sizeof(struct xdp_md))
8706 return false;
8707 if (off % size != 0)
8708 return false;
8709 if (size != sizeof(__u32))
8710 return false;
8711
8712 return true;
8713 }
8714
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8715 static bool xdp_is_valid_access(int off, int size,
8716 enum bpf_access_type type,
8717 const struct bpf_prog *prog,
8718 struct bpf_insn_access_aux *info)
8719 {
8720 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8721 switch (off) {
8722 case offsetof(struct xdp_md, egress_ifindex):
8723 return false;
8724 }
8725 }
8726
8727 if (type == BPF_WRITE) {
8728 if (bpf_prog_is_dev_bound(prog->aux)) {
8729 switch (off) {
8730 case offsetof(struct xdp_md, rx_queue_index):
8731 return __is_valid_xdp_access(off, size);
8732 }
8733 }
8734 return false;
8735 }
8736
8737 switch (off) {
8738 case offsetof(struct xdp_md, data):
8739 info->reg_type = PTR_TO_PACKET;
8740 break;
8741 case offsetof(struct xdp_md, data_meta):
8742 info->reg_type = PTR_TO_PACKET_META;
8743 break;
8744 case offsetof(struct xdp_md, data_end):
8745 info->reg_type = PTR_TO_PACKET_END;
8746 break;
8747 }
8748
8749 return __is_valid_xdp_access(off, size);
8750 }
8751
bpf_warn_invalid_xdp_action(struct net_device * dev,struct bpf_prog * prog,u32 act)8752 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8753 {
8754 const u32 act_max = XDP_REDIRECT;
8755
8756 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8757 act > act_max ? "Illegal" : "Driver unsupported",
8758 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8759 }
8760 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8761
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag)8762 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8763 const struct btf *btf,
8764 const struct btf_type *t, int off,
8765 int size, enum bpf_access_type atype,
8766 u32 *next_btf_id,
8767 enum bpf_type_flag *flag)
8768 {
8769 int ret = -EACCES;
8770
8771 if (atype == BPF_READ)
8772 return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8773 flag);
8774
8775 mutex_lock(&nf_conn_btf_access_lock);
8776 if (nfct_btf_struct_access)
8777 ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8778 mutex_unlock(&nf_conn_btf_access_lock);
8779
8780 return ret;
8781 }
8782
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8783 static bool sock_addr_is_valid_access(int off, int size,
8784 enum bpf_access_type type,
8785 const struct bpf_prog *prog,
8786 struct bpf_insn_access_aux *info)
8787 {
8788 const int size_default = sizeof(__u32);
8789
8790 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8791 return false;
8792 if (off % size != 0)
8793 return false;
8794
8795 /* Disallow access to IPv6 fields from IPv4 contex and vise
8796 * versa.
8797 */
8798 switch (off) {
8799 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8800 switch (prog->expected_attach_type) {
8801 case BPF_CGROUP_INET4_BIND:
8802 case BPF_CGROUP_INET4_CONNECT:
8803 case BPF_CGROUP_INET4_GETPEERNAME:
8804 case BPF_CGROUP_INET4_GETSOCKNAME:
8805 case BPF_CGROUP_UDP4_SENDMSG:
8806 case BPF_CGROUP_UDP4_RECVMSG:
8807 break;
8808 default:
8809 return false;
8810 }
8811 break;
8812 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8813 switch (prog->expected_attach_type) {
8814 case BPF_CGROUP_INET6_BIND:
8815 case BPF_CGROUP_INET6_CONNECT:
8816 case BPF_CGROUP_INET6_GETPEERNAME:
8817 case BPF_CGROUP_INET6_GETSOCKNAME:
8818 case BPF_CGROUP_UDP6_SENDMSG:
8819 case BPF_CGROUP_UDP6_RECVMSG:
8820 break;
8821 default:
8822 return false;
8823 }
8824 break;
8825 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8826 switch (prog->expected_attach_type) {
8827 case BPF_CGROUP_UDP4_SENDMSG:
8828 break;
8829 default:
8830 return false;
8831 }
8832 break;
8833 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8834 msg_src_ip6[3]):
8835 switch (prog->expected_attach_type) {
8836 case BPF_CGROUP_UDP6_SENDMSG:
8837 break;
8838 default:
8839 return false;
8840 }
8841 break;
8842 }
8843
8844 switch (off) {
8845 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8846 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8847 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8848 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8849 msg_src_ip6[3]):
8850 case bpf_ctx_range(struct bpf_sock_addr, user_port):
8851 if (type == BPF_READ) {
8852 bpf_ctx_record_field_size(info, size_default);
8853
8854 if (bpf_ctx_wide_access_ok(off, size,
8855 struct bpf_sock_addr,
8856 user_ip6))
8857 return true;
8858
8859 if (bpf_ctx_wide_access_ok(off, size,
8860 struct bpf_sock_addr,
8861 msg_src_ip6))
8862 return true;
8863
8864 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8865 return false;
8866 } else {
8867 if (bpf_ctx_wide_access_ok(off, size,
8868 struct bpf_sock_addr,
8869 user_ip6))
8870 return true;
8871
8872 if (bpf_ctx_wide_access_ok(off, size,
8873 struct bpf_sock_addr,
8874 msg_src_ip6))
8875 return true;
8876
8877 if (size != size_default)
8878 return false;
8879 }
8880 break;
8881 case offsetof(struct bpf_sock_addr, sk):
8882 if (type != BPF_READ)
8883 return false;
8884 if (size != sizeof(__u64))
8885 return false;
8886 info->reg_type = PTR_TO_SOCKET;
8887 break;
8888 default:
8889 if (type == BPF_READ) {
8890 if (size != size_default)
8891 return false;
8892 } else {
8893 return false;
8894 }
8895 }
8896
8897 return true;
8898 }
8899
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8900 static bool sock_ops_is_valid_access(int off, int size,
8901 enum bpf_access_type type,
8902 const struct bpf_prog *prog,
8903 struct bpf_insn_access_aux *info)
8904 {
8905 const int size_default = sizeof(__u32);
8906
8907 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8908 return false;
8909
8910 /* The verifier guarantees that size > 0. */
8911 if (off % size != 0)
8912 return false;
8913
8914 if (type == BPF_WRITE) {
8915 switch (off) {
8916 case offsetof(struct bpf_sock_ops, reply):
8917 case offsetof(struct bpf_sock_ops, sk_txhash):
8918 if (size != size_default)
8919 return false;
8920 break;
8921 default:
8922 return false;
8923 }
8924 } else {
8925 switch (off) {
8926 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8927 bytes_acked):
8928 if (size != sizeof(__u64))
8929 return false;
8930 break;
8931 case offsetof(struct bpf_sock_ops, sk):
8932 if (size != sizeof(__u64))
8933 return false;
8934 info->reg_type = PTR_TO_SOCKET_OR_NULL;
8935 break;
8936 case offsetof(struct bpf_sock_ops, skb_data):
8937 if (size != sizeof(__u64))
8938 return false;
8939 info->reg_type = PTR_TO_PACKET;
8940 break;
8941 case offsetof(struct bpf_sock_ops, skb_data_end):
8942 if (size != sizeof(__u64))
8943 return false;
8944 info->reg_type = PTR_TO_PACKET_END;
8945 break;
8946 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8947 bpf_ctx_record_field_size(info, size_default);
8948 return bpf_ctx_narrow_access_ok(off, size,
8949 size_default);
8950 default:
8951 if (size != size_default)
8952 return false;
8953 break;
8954 }
8955 }
8956
8957 return true;
8958 }
8959
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8960 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8961 const struct bpf_prog *prog)
8962 {
8963 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8964 }
8965
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8966 static bool sk_skb_is_valid_access(int off, int size,
8967 enum bpf_access_type type,
8968 const struct bpf_prog *prog,
8969 struct bpf_insn_access_aux *info)
8970 {
8971 switch (off) {
8972 case bpf_ctx_range(struct __sk_buff, tc_classid):
8973 case bpf_ctx_range(struct __sk_buff, data_meta):
8974 case bpf_ctx_range(struct __sk_buff, tstamp):
8975 case bpf_ctx_range(struct __sk_buff, wire_len):
8976 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8977 return false;
8978 }
8979
8980 if (type == BPF_WRITE) {
8981 switch (off) {
8982 case bpf_ctx_range(struct __sk_buff, tc_index):
8983 case bpf_ctx_range(struct __sk_buff, priority):
8984 break;
8985 default:
8986 return false;
8987 }
8988 }
8989
8990 switch (off) {
8991 case bpf_ctx_range(struct __sk_buff, mark):
8992 return false;
8993 case bpf_ctx_range(struct __sk_buff, data):
8994 info->reg_type = PTR_TO_PACKET;
8995 break;
8996 case bpf_ctx_range(struct __sk_buff, data_end):
8997 info->reg_type = PTR_TO_PACKET_END;
8998 break;
8999 }
9000
9001 return bpf_skb_is_valid_access(off, size, type, prog, info);
9002 }
9003
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9004 static bool sk_msg_is_valid_access(int off, int size,
9005 enum bpf_access_type type,
9006 const struct bpf_prog *prog,
9007 struct bpf_insn_access_aux *info)
9008 {
9009 if (type == BPF_WRITE)
9010 return false;
9011
9012 if (off % size != 0)
9013 return false;
9014
9015 switch (off) {
9016 case offsetof(struct sk_msg_md, data):
9017 info->reg_type = PTR_TO_PACKET;
9018 if (size != sizeof(__u64))
9019 return false;
9020 break;
9021 case offsetof(struct sk_msg_md, data_end):
9022 info->reg_type = PTR_TO_PACKET_END;
9023 if (size != sizeof(__u64))
9024 return false;
9025 break;
9026 case offsetof(struct sk_msg_md, sk):
9027 if (size != sizeof(__u64))
9028 return false;
9029 info->reg_type = PTR_TO_SOCKET;
9030 break;
9031 case bpf_ctx_range(struct sk_msg_md, family):
9032 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9033 case bpf_ctx_range(struct sk_msg_md, local_ip4):
9034 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9035 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9036 case bpf_ctx_range(struct sk_msg_md, remote_port):
9037 case bpf_ctx_range(struct sk_msg_md, local_port):
9038 case bpf_ctx_range(struct sk_msg_md, size):
9039 if (size != sizeof(__u32))
9040 return false;
9041 break;
9042 default:
9043 return false;
9044 }
9045 return true;
9046 }
9047
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9048 static bool flow_dissector_is_valid_access(int off, int size,
9049 enum bpf_access_type type,
9050 const struct bpf_prog *prog,
9051 struct bpf_insn_access_aux *info)
9052 {
9053 const int size_default = sizeof(__u32);
9054
9055 if (off < 0 || off >= sizeof(struct __sk_buff))
9056 return false;
9057
9058 if (type == BPF_WRITE)
9059 return false;
9060
9061 switch (off) {
9062 case bpf_ctx_range(struct __sk_buff, data):
9063 if (size != size_default)
9064 return false;
9065 info->reg_type = PTR_TO_PACKET;
9066 return true;
9067 case bpf_ctx_range(struct __sk_buff, data_end):
9068 if (size != size_default)
9069 return false;
9070 info->reg_type = PTR_TO_PACKET_END;
9071 return true;
9072 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9073 if (size != sizeof(__u64))
9074 return false;
9075 info->reg_type = PTR_TO_FLOW_KEYS;
9076 return true;
9077 default:
9078 return false;
9079 }
9080 }
9081
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9082 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9083 const struct bpf_insn *si,
9084 struct bpf_insn *insn_buf,
9085 struct bpf_prog *prog,
9086 u32 *target_size)
9087
9088 {
9089 struct bpf_insn *insn = insn_buf;
9090
9091 switch (si->off) {
9092 case offsetof(struct __sk_buff, data):
9093 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9094 si->dst_reg, si->src_reg,
9095 offsetof(struct bpf_flow_dissector, data));
9096 break;
9097
9098 case offsetof(struct __sk_buff, data_end):
9099 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9100 si->dst_reg, si->src_reg,
9101 offsetof(struct bpf_flow_dissector, data_end));
9102 break;
9103
9104 case offsetof(struct __sk_buff, flow_keys):
9105 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9106 si->dst_reg, si->src_reg,
9107 offsetof(struct bpf_flow_dissector, flow_keys));
9108 break;
9109 }
9110
9111 return insn - insn_buf;
9112 }
9113
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9114 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9115 struct bpf_insn *insn)
9116 {
9117 __u8 value_reg = si->dst_reg;
9118 __u8 skb_reg = si->src_reg;
9119 /* AX is needed because src_reg and dst_reg could be the same */
9120 __u8 tmp_reg = BPF_REG_AX;
9121
9122 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9123 PKT_VLAN_PRESENT_OFFSET);
9124 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9125 SKB_MONO_DELIVERY_TIME_MASK, 2);
9126 *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9127 *insn++ = BPF_JMP_A(1);
9128 *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9129
9130 return insn;
9131 }
9132
bpf_convert_shinfo_access(const struct bpf_insn * si,struct bpf_insn * insn)9133 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9134 struct bpf_insn *insn)
9135 {
9136 /* si->dst_reg = skb_shinfo(SKB); */
9137 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9138 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9139 BPF_REG_AX, si->src_reg,
9140 offsetof(struct sk_buff, end));
9141 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9142 si->dst_reg, si->src_reg,
9143 offsetof(struct sk_buff, head));
9144 *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9145 #else
9146 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9147 si->dst_reg, si->src_reg,
9148 offsetof(struct sk_buff, end));
9149 #endif
9150
9151 return insn;
9152 }
9153
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9154 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9155 const struct bpf_insn *si,
9156 struct bpf_insn *insn)
9157 {
9158 __u8 value_reg = si->dst_reg;
9159 __u8 skb_reg = si->src_reg;
9160
9161 #ifdef CONFIG_NET_CLS_ACT
9162 /* If the tstamp_type is read,
9163 * the bpf prog is aware the tstamp could have delivery time.
9164 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9165 */
9166 if (!prog->tstamp_type_access) {
9167 /* AX is needed because src_reg and dst_reg could be the same */
9168 __u8 tmp_reg = BPF_REG_AX;
9169
9170 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9171 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9172 TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9173 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9174 TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9175 /* skb->tc_at_ingress && skb->mono_delivery_time,
9176 * read 0 as the (rcv) timestamp.
9177 */
9178 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9179 *insn++ = BPF_JMP_A(1);
9180 }
9181 #endif
9182
9183 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9184 offsetof(struct sk_buff, tstamp));
9185 return insn;
9186 }
9187
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9188 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9189 const struct bpf_insn *si,
9190 struct bpf_insn *insn)
9191 {
9192 __u8 value_reg = si->src_reg;
9193 __u8 skb_reg = si->dst_reg;
9194
9195 #ifdef CONFIG_NET_CLS_ACT
9196 /* If the tstamp_type is read,
9197 * the bpf prog is aware the tstamp could have delivery time.
9198 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9199 * Otherwise, writing at ingress will have to clear the
9200 * mono_delivery_time bit also.
9201 */
9202 if (!prog->tstamp_type_access) {
9203 __u8 tmp_reg = BPF_REG_AX;
9204
9205 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9206 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9207 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9208 /* goto <store> */
9209 *insn++ = BPF_JMP_A(2);
9210 /* <clear>: mono_delivery_time */
9211 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9212 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9213 }
9214 #endif
9215
9216 /* <store>: skb->tstamp = tstamp */
9217 *insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9218 offsetof(struct sk_buff, tstamp));
9219 return insn;
9220 }
9221
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9222 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9223 const struct bpf_insn *si,
9224 struct bpf_insn *insn_buf,
9225 struct bpf_prog *prog, u32 *target_size)
9226 {
9227 struct bpf_insn *insn = insn_buf;
9228 int off;
9229
9230 switch (si->off) {
9231 case offsetof(struct __sk_buff, len):
9232 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9233 bpf_target_off(struct sk_buff, len, 4,
9234 target_size));
9235 break;
9236
9237 case offsetof(struct __sk_buff, protocol):
9238 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9239 bpf_target_off(struct sk_buff, protocol, 2,
9240 target_size));
9241 break;
9242
9243 case offsetof(struct __sk_buff, vlan_proto):
9244 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9245 bpf_target_off(struct sk_buff, vlan_proto, 2,
9246 target_size));
9247 break;
9248
9249 case offsetof(struct __sk_buff, priority):
9250 if (type == BPF_WRITE)
9251 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9252 bpf_target_off(struct sk_buff, priority, 4,
9253 target_size));
9254 else
9255 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9256 bpf_target_off(struct sk_buff, priority, 4,
9257 target_size));
9258 break;
9259
9260 case offsetof(struct __sk_buff, ingress_ifindex):
9261 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9262 bpf_target_off(struct sk_buff, skb_iif, 4,
9263 target_size));
9264 break;
9265
9266 case offsetof(struct __sk_buff, ifindex):
9267 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9268 si->dst_reg, si->src_reg,
9269 offsetof(struct sk_buff, dev));
9270 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9271 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9272 bpf_target_off(struct net_device, ifindex, 4,
9273 target_size));
9274 break;
9275
9276 case offsetof(struct __sk_buff, hash):
9277 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9278 bpf_target_off(struct sk_buff, hash, 4,
9279 target_size));
9280 break;
9281
9282 case offsetof(struct __sk_buff, mark):
9283 if (type == BPF_WRITE)
9284 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9285 bpf_target_off(struct sk_buff, mark, 4,
9286 target_size));
9287 else
9288 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9289 bpf_target_off(struct sk_buff, mark, 4,
9290 target_size));
9291 break;
9292
9293 case offsetof(struct __sk_buff, pkt_type):
9294 *target_size = 1;
9295 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9296 PKT_TYPE_OFFSET);
9297 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9298 #ifdef __BIG_ENDIAN_BITFIELD
9299 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9300 #endif
9301 break;
9302
9303 case offsetof(struct __sk_buff, queue_mapping):
9304 if (type == BPF_WRITE) {
9305 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9306 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9307 bpf_target_off(struct sk_buff,
9308 queue_mapping,
9309 2, target_size));
9310 } else {
9311 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9312 bpf_target_off(struct sk_buff,
9313 queue_mapping,
9314 2, target_size));
9315 }
9316 break;
9317
9318 case offsetof(struct __sk_buff, vlan_present):
9319 *target_size = 1;
9320 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9321 PKT_VLAN_PRESENT_OFFSET);
9322 if (PKT_VLAN_PRESENT_BIT)
9323 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9324 if (PKT_VLAN_PRESENT_BIT < 7)
9325 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9326 break;
9327
9328 case offsetof(struct __sk_buff, vlan_tci):
9329 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9330 bpf_target_off(struct sk_buff, vlan_tci, 2,
9331 target_size));
9332 break;
9333
9334 case offsetof(struct __sk_buff, cb[0]) ...
9335 offsetofend(struct __sk_buff, cb[4]) - 1:
9336 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9337 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9338 offsetof(struct qdisc_skb_cb, data)) %
9339 sizeof(__u64));
9340
9341 prog->cb_access = 1;
9342 off = si->off;
9343 off -= offsetof(struct __sk_buff, cb[0]);
9344 off += offsetof(struct sk_buff, cb);
9345 off += offsetof(struct qdisc_skb_cb, data);
9346 if (type == BPF_WRITE)
9347 *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9348 si->src_reg, off);
9349 else
9350 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9351 si->src_reg, off);
9352 break;
9353
9354 case offsetof(struct __sk_buff, tc_classid):
9355 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9356
9357 off = si->off;
9358 off -= offsetof(struct __sk_buff, tc_classid);
9359 off += offsetof(struct sk_buff, cb);
9360 off += offsetof(struct qdisc_skb_cb, tc_classid);
9361 *target_size = 2;
9362 if (type == BPF_WRITE)
9363 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9364 si->src_reg, off);
9365 else
9366 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9367 si->src_reg, off);
9368 break;
9369
9370 case offsetof(struct __sk_buff, data):
9371 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9372 si->dst_reg, si->src_reg,
9373 offsetof(struct sk_buff, data));
9374 break;
9375
9376 case offsetof(struct __sk_buff, data_meta):
9377 off = si->off;
9378 off -= offsetof(struct __sk_buff, data_meta);
9379 off += offsetof(struct sk_buff, cb);
9380 off += offsetof(struct bpf_skb_data_end, data_meta);
9381 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9382 si->src_reg, off);
9383 break;
9384
9385 case offsetof(struct __sk_buff, data_end):
9386 off = si->off;
9387 off -= offsetof(struct __sk_buff, data_end);
9388 off += offsetof(struct sk_buff, cb);
9389 off += offsetof(struct bpf_skb_data_end, data_end);
9390 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9391 si->src_reg, off);
9392 break;
9393
9394 case offsetof(struct __sk_buff, tc_index):
9395 #ifdef CONFIG_NET_SCHED
9396 if (type == BPF_WRITE)
9397 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9398 bpf_target_off(struct sk_buff, tc_index, 2,
9399 target_size));
9400 else
9401 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9402 bpf_target_off(struct sk_buff, tc_index, 2,
9403 target_size));
9404 #else
9405 *target_size = 2;
9406 if (type == BPF_WRITE)
9407 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9408 else
9409 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9410 #endif
9411 break;
9412
9413 case offsetof(struct __sk_buff, napi_id):
9414 #if defined(CONFIG_NET_RX_BUSY_POLL)
9415 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9416 bpf_target_off(struct sk_buff, napi_id, 4,
9417 target_size));
9418 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9419 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9420 #else
9421 *target_size = 4;
9422 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9423 #endif
9424 break;
9425 case offsetof(struct __sk_buff, family):
9426 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9427
9428 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9429 si->dst_reg, si->src_reg,
9430 offsetof(struct sk_buff, sk));
9431 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9432 bpf_target_off(struct sock_common,
9433 skc_family,
9434 2, target_size));
9435 break;
9436 case offsetof(struct __sk_buff, remote_ip4):
9437 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9438
9439 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9440 si->dst_reg, si->src_reg,
9441 offsetof(struct sk_buff, sk));
9442 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9443 bpf_target_off(struct sock_common,
9444 skc_daddr,
9445 4, target_size));
9446 break;
9447 case offsetof(struct __sk_buff, local_ip4):
9448 BUILD_BUG_ON(sizeof_field(struct sock_common,
9449 skc_rcv_saddr) != 4);
9450
9451 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9452 si->dst_reg, si->src_reg,
9453 offsetof(struct sk_buff, sk));
9454 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9455 bpf_target_off(struct sock_common,
9456 skc_rcv_saddr,
9457 4, target_size));
9458 break;
9459 case offsetof(struct __sk_buff, remote_ip6[0]) ...
9460 offsetof(struct __sk_buff, remote_ip6[3]):
9461 #if IS_ENABLED(CONFIG_IPV6)
9462 BUILD_BUG_ON(sizeof_field(struct sock_common,
9463 skc_v6_daddr.s6_addr32[0]) != 4);
9464
9465 off = si->off;
9466 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9467
9468 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9469 si->dst_reg, si->src_reg,
9470 offsetof(struct sk_buff, sk));
9471 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9472 offsetof(struct sock_common,
9473 skc_v6_daddr.s6_addr32[0]) +
9474 off);
9475 #else
9476 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9477 #endif
9478 break;
9479 case offsetof(struct __sk_buff, local_ip6[0]) ...
9480 offsetof(struct __sk_buff, local_ip6[3]):
9481 #if IS_ENABLED(CONFIG_IPV6)
9482 BUILD_BUG_ON(sizeof_field(struct sock_common,
9483 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9484
9485 off = si->off;
9486 off -= offsetof(struct __sk_buff, local_ip6[0]);
9487
9488 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9489 si->dst_reg, si->src_reg,
9490 offsetof(struct sk_buff, sk));
9491 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9492 offsetof(struct sock_common,
9493 skc_v6_rcv_saddr.s6_addr32[0]) +
9494 off);
9495 #else
9496 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9497 #endif
9498 break;
9499
9500 case offsetof(struct __sk_buff, remote_port):
9501 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9502
9503 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9504 si->dst_reg, si->src_reg,
9505 offsetof(struct sk_buff, sk));
9506 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9507 bpf_target_off(struct sock_common,
9508 skc_dport,
9509 2, target_size));
9510 #ifndef __BIG_ENDIAN_BITFIELD
9511 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9512 #endif
9513 break;
9514
9515 case offsetof(struct __sk_buff, local_port):
9516 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9517
9518 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9519 si->dst_reg, si->src_reg,
9520 offsetof(struct sk_buff, sk));
9521 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9522 bpf_target_off(struct sock_common,
9523 skc_num, 2, target_size));
9524 break;
9525
9526 case offsetof(struct __sk_buff, tstamp):
9527 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9528
9529 if (type == BPF_WRITE)
9530 insn = bpf_convert_tstamp_write(prog, si, insn);
9531 else
9532 insn = bpf_convert_tstamp_read(prog, si, insn);
9533 break;
9534
9535 case offsetof(struct __sk_buff, tstamp_type):
9536 insn = bpf_convert_tstamp_type_read(si, insn);
9537 break;
9538
9539 case offsetof(struct __sk_buff, gso_segs):
9540 insn = bpf_convert_shinfo_access(si, insn);
9541 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9542 si->dst_reg, si->dst_reg,
9543 bpf_target_off(struct skb_shared_info,
9544 gso_segs, 2,
9545 target_size));
9546 break;
9547 case offsetof(struct __sk_buff, gso_size):
9548 insn = bpf_convert_shinfo_access(si, insn);
9549 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9550 si->dst_reg, si->dst_reg,
9551 bpf_target_off(struct skb_shared_info,
9552 gso_size, 2,
9553 target_size));
9554 break;
9555 case offsetof(struct __sk_buff, wire_len):
9556 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9557
9558 off = si->off;
9559 off -= offsetof(struct __sk_buff, wire_len);
9560 off += offsetof(struct sk_buff, cb);
9561 off += offsetof(struct qdisc_skb_cb, pkt_len);
9562 *target_size = 4;
9563 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9564 break;
9565
9566 case offsetof(struct __sk_buff, sk):
9567 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9568 si->dst_reg, si->src_reg,
9569 offsetof(struct sk_buff, sk));
9570 break;
9571 case offsetof(struct __sk_buff, hwtstamp):
9572 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9573 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9574
9575 insn = bpf_convert_shinfo_access(si, insn);
9576 *insn++ = BPF_LDX_MEM(BPF_DW,
9577 si->dst_reg, si->dst_reg,
9578 bpf_target_off(struct skb_shared_info,
9579 hwtstamps, 8,
9580 target_size));
9581 break;
9582 }
9583
9584 return insn - insn_buf;
9585 }
9586
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9587 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9588 const struct bpf_insn *si,
9589 struct bpf_insn *insn_buf,
9590 struct bpf_prog *prog, u32 *target_size)
9591 {
9592 struct bpf_insn *insn = insn_buf;
9593 int off;
9594
9595 switch (si->off) {
9596 case offsetof(struct bpf_sock, bound_dev_if):
9597 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9598
9599 if (type == BPF_WRITE)
9600 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9601 offsetof(struct sock, sk_bound_dev_if));
9602 else
9603 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9604 offsetof(struct sock, sk_bound_dev_if));
9605 break;
9606
9607 case offsetof(struct bpf_sock, mark):
9608 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9609
9610 if (type == BPF_WRITE)
9611 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9612 offsetof(struct sock, sk_mark));
9613 else
9614 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9615 offsetof(struct sock, sk_mark));
9616 break;
9617
9618 case offsetof(struct bpf_sock, priority):
9619 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9620
9621 if (type == BPF_WRITE)
9622 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9623 offsetof(struct sock, sk_priority));
9624 else
9625 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9626 offsetof(struct sock, sk_priority));
9627 break;
9628
9629 case offsetof(struct bpf_sock, family):
9630 *insn++ = BPF_LDX_MEM(
9631 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9632 si->dst_reg, si->src_reg,
9633 bpf_target_off(struct sock_common,
9634 skc_family,
9635 sizeof_field(struct sock_common,
9636 skc_family),
9637 target_size));
9638 break;
9639
9640 case offsetof(struct bpf_sock, type):
9641 *insn++ = BPF_LDX_MEM(
9642 BPF_FIELD_SIZEOF(struct sock, sk_type),
9643 si->dst_reg, si->src_reg,
9644 bpf_target_off(struct sock, sk_type,
9645 sizeof_field(struct sock, sk_type),
9646 target_size));
9647 break;
9648
9649 case offsetof(struct bpf_sock, protocol):
9650 *insn++ = BPF_LDX_MEM(
9651 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9652 si->dst_reg, si->src_reg,
9653 bpf_target_off(struct sock, sk_protocol,
9654 sizeof_field(struct sock, sk_protocol),
9655 target_size));
9656 break;
9657
9658 case offsetof(struct bpf_sock, src_ip4):
9659 *insn++ = BPF_LDX_MEM(
9660 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9661 bpf_target_off(struct sock_common, skc_rcv_saddr,
9662 sizeof_field(struct sock_common,
9663 skc_rcv_saddr),
9664 target_size));
9665 break;
9666
9667 case offsetof(struct bpf_sock, dst_ip4):
9668 *insn++ = BPF_LDX_MEM(
9669 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9670 bpf_target_off(struct sock_common, skc_daddr,
9671 sizeof_field(struct sock_common,
9672 skc_daddr),
9673 target_size));
9674 break;
9675
9676 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9677 #if IS_ENABLED(CONFIG_IPV6)
9678 off = si->off;
9679 off -= offsetof(struct bpf_sock, src_ip6[0]);
9680 *insn++ = BPF_LDX_MEM(
9681 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9682 bpf_target_off(
9683 struct sock_common,
9684 skc_v6_rcv_saddr.s6_addr32[0],
9685 sizeof_field(struct sock_common,
9686 skc_v6_rcv_saddr.s6_addr32[0]),
9687 target_size) + off);
9688 #else
9689 (void)off;
9690 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9691 #endif
9692 break;
9693
9694 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9695 #if IS_ENABLED(CONFIG_IPV6)
9696 off = si->off;
9697 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9698 *insn++ = BPF_LDX_MEM(
9699 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9700 bpf_target_off(struct sock_common,
9701 skc_v6_daddr.s6_addr32[0],
9702 sizeof_field(struct sock_common,
9703 skc_v6_daddr.s6_addr32[0]),
9704 target_size) + off);
9705 #else
9706 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9707 *target_size = 4;
9708 #endif
9709 break;
9710
9711 case offsetof(struct bpf_sock, src_port):
9712 *insn++ = BPF_LDX_MEM(
9713 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9714 si->dst_reg, si->src_reg,
9715 bpf_target_off(struct sock_common, skc_num,
9716 sizeof_field(struct sock_common,
9717 skc_num),
9718 target_size));
9719 break;
9720
9721 case offsetof(struct bpf_sock, dst_port):
9722 *insn++ = BPF_LDX_MEM(
9723 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9724 si->dst_reg, si->src_reg,
9725 bpf_target_off(struct sock_common, skc_dport,
9726 sizeof_field(struct sock_common,
9727 skc_dport),
9728 target_size));
9729 break;
9730
9731 case offsetof(struct bpf_sock, state):
9732 *insn++ = BPF_LDX_MEM(
9733 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9734 si->dst_reg, si->src_reg,
9735 bpf_target_off(struct sock_common, skc_state,
9736 sizeof_field(struct sock_common,
9737 skc_state),
9738 target_size));
9739 break;
9740 case offsetof(struct bpf_sock, rx_queue_mapping):
9741 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9742 *insn++ = BPF_LDX_MEM(
9743 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9744 si->dst_reg, si->src_reg,
9745 bpf_target_off(struct sock, sk_rx_queue_mapping,
9746 sizeof_field(struct sock,
9747 sk_rx_queue_mapping),
9748 target_size));
9749 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9750 1);
9751 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9752 #else
9753 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9754 *target_size = 2;
9755 #endif
9756 break;
9757 }
9758
9759 return insn - insn_buf;
9760 }
9761
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9762 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9763 const struct bpf_insn *si,
9764 struct bpf_insn *insn_buf,
9765 struct bpf_prog *prog, u32 *target_size)
9766 {
9767 struct bpf_insn *insn = insn_buf;
9768
9769 switch (si->off) {
9770 case offsetof(struct __sk_buff, ifindex):
9771 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9772 si->dst_reg, si->src_reg,
9773 offsetof(struct sk_buff, dev));
9774 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9775 bpf_target_off(struct net_device, ifindex, 4,
9776 target_size));
9777 break;
9778 default:
9779 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9780 target_size);
9781 }
9782
9783 return insn - insn_buf;
9784 }
9785
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9786 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9787 const struct bpf_insn *si,
9788 struct bpf_insn *insn_buf,
9789 struct bpf_prog *prog, u32 *target_size)
9790 {
9791 struct bpf_insn *insn = insn_buf;
9792
9793 switch (si->off) {
9794 case offsetof(struct xdp_md, data):
9795 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9796 si->dst_reg, si->src_reg,
9797 offsetof(struct xdp_buff, data));
9798 break;
9799 case offsetof(struct xdp_md, data_meta):
9800 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9801 si->dst_reg, si->src_reg,
9802 offsetof(struct xdp_buff, data_meta));
9803 break;
9804 case offsetof(struct xdp_md, data_end):
9805 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9806 si->dst_reg, si->src_reg,
9807 offsetof(struct xdp_buff, data_end));
9808 break;
9809 case offsetof(struct xdp_md, ingress_ifindex):
9810 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9811 si->dst_reg, si->src_reg,
9812 offsetof(struct xdp_buff, rxq));
9813 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9814 si->dst_reg, si->dst_reg,
9815 offsetof(struct xdp_rxq_info, dev));
9816 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9817 offsetof(struct net_device, ifindex));
9818 break;
9819 case offsetof(struct xdp_md, rx_queue_index):
9820 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9821 si->dst_reg, si->src_reg,
9822 offsetof(struct xdp_buff, rxq));
9823 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9824 offsetof(struct xdp_rxq_info,
9825 queue_index));
9826 break;
9827 case offsetof(struct xdp_md, egress_ifindex):
9828 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9829 si->dst_reg, si->src_reg,
9830 offsetof(struct xdp_buff, txq));
9831 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9832 si->dst_reg, si->dst_reg,
9833 offsetof(struct xdp_txq_info, dev));
9834 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9835 offsetof(struct net_device, ifindex));
9836 break;
9837 }
9838
9839 return insn - insn_buf;
9840 }
9841
9842 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9843 * context Structure, F is Field in context structure that contains a pointer
9844 * to Nested Structure of type NS that has the field NF.
9845 *
9846 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9847 * sure that SIZE is not greater than actual size of S.F.NF.
9848 *
9849 * If offset OFF is provided, the load happens from that offset relative to
9850 * offset of NF.
9851 */
9852 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
9853 do { \
9854 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
9855 si->src_reg, offsetof(S, F)); \
9856 *insn++ = BPF_LDX_MEM( \
9857 SIZE, si->dst_reg, si->dst_reg, \
9858 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
9859 target_size) \
9860 + OFF); \
9861 } while (0)
9862
9863 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
9864 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
9865 BPF_FIELD_SIZEOF(NS, NF), 0)
9866
9867 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9868 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9869 *
9870 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9871 * "register" since two registers available in convert_ctx_access are not
9872 * enough: we can't override neither SRC, since it contains value to store, nor
9873 * DST since it contains pointer to context that may be used by later
9874 * instructions. But we need a temporary place to save pointer to nested
9875 * structure whose field we want to store to.
9876 */
9877 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
9878 do { \
9879 int tmp_reg = BPF_REG_9; \
9880 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
9881 --tmp_reg; \
9882 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
9883 --tmp_reg; \
9884 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
9885 offsetof(S, TF)); \
9886 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
9887 si->dst_reg, offsetof(S, F)); \
9888 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg, \
9889 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
9890 target_size) \
9891 + OFF); \
9892 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
9893 offsetof(S, TF)); \
9894 } while (0)
9895
9896 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9897 TF) \
9898 do { \
9899 if (type == BPF_WRITE) { \
9900 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
9901 OFF, TF); \
9902 } else { \
9903 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
9904 S, NS, F, NF, SIZE, OFF); \
9905 } \
9906 } while (0)
9907
9908 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \
9909 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \
9910 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9911
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9912 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9913 const struct bpf_insn *si,
9914 struct bpf_insn *insn_buf,
9915 struct bpf_prog *prog, u32 *target_size)
9916 {
9917 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9918 struct bpf_insn *insn = insn_buf;
9919
9920 switch (si->off) {
9921 case offsetof(struct bpf_sock_addr, user_family):
9922 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9923 struct sockaddr, uaddr, sa_family);
9924 break;
9925
9926 case offsetof(struct bpf_sock_addr, user_ip4):
9927 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9928 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9929 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9930 break;
9931
9932 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9933 off = si->off;
9934 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9935 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9936 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9937 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9938 tmp_reg);
9939 break;
9940
9941 case offsetof(struct bpf_sock_addr, user_port):
9942 /* To get port we need to know sa_family first and then treat
9943 * sockaddr as either sockaddr_in or sockaddr_in6.
9944 * Though we can simplify since port field has same offset and
9945 * size in both structures.
9946 * Here we check this invariant and use just one of the
9947 * structures if it's true.
9948 */
9949 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9950 offsetof(struct sockaddr_in6, sin6_port));
9951 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9952 sizeof_field(struct sockaddr_in6, sin6_port));
9953 /* Account for sin6_port being smaller than user_port. */
9954 port_size = min(port_size, BPF_LDST_BYTES(si));
9955 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9956 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9957 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9958 break;
9959
9960 case offsetof(struct bpf_sock_addr, family):
9961 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9962 struct sock, sk, sk_family);
9963 break;
9964
9965 case offsetof(struct bpf_sock_addr, type):
9966 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9967 struct sock, sk, sk_type);
9968 break;
9969
9970 case offsetof(struct bpf_sock_addr, protocol):
9971 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9972 struct sock, sk, sk_protocol);
9973 break;
9974
9975 case offsetof(struct bpf_sock_addr, msg_src_ip4):
9976 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9977 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9978 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9979 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9980 break;
9981
9982 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9983 msg_src_ip6[3]):
9984 off = si->off;
9985 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9986 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9987 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9988 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9989 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9990 break;
9991 case offsetof(struct bpf_sock_addr, sk):
9992 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9993 si->dst_reg, si->src_reg,
9994 offsetof(struct bpf_sock_addr_kern, sk));
9995 break;
9996 }
9997
9998 return insn - insn_buf;
9999 }
10000
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10001 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10002 const struct bpf_insn *si,
10003 struct bpf_insn *insn_buf,
10004 struct bpf_prog *prog,
10005 u32 *target_size)
10006 {
10007 struct bpf_insn *insn = insn_buf;
10008 int off;
10009
10010 /* Helper macro for adding read access to tcp_sock or sock fields. */
10011 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10012 do { \
10013 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
10014 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10015 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10016 if (si->dst_reg == reg || si->src_reg == reg) \
10017 reg--; \
10018 if (si->dst_reg == reg || si->src_reg == reg) \
10019 reg--; \
10020 if (si->dst_reg == si->src_reg) { \
10021 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10022 offsetof(struct bpf_sock_ops_kern, \
10023 temp)); \
10024 fullsock_reg = reg; \
10025 jmp += 2; \
10026 } \
10027 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10028 struct bpf_sock_ops_kern, \
10029 is_fullsock), \
10030 fullsock_reg, si->src_reg, \
10031 offsetof(struct bpf_sock_ops_kern, \
10032 is_fullsock)); \
10033 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10034 if (si->dst_reg == si->src_reg) \
10035 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10036 offsetof(struct bpf_sock_ops_kern, \
10037 temp)); \
10038 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10039 struct bpf_sock_ops_kern, sk),\
10040 si->dst_reg, si->src_reg, \
10041 offsetof(struct bpf_sock_ops_kern, sk));\
10042 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
10043 OBJ_FIELD), \
10044 si->dst_reg, si->dst_reg, \
10045 offsetof(OBJ, OBJ_FIELD)); \
10046 if (si->dst_reg == si->src_reg) { \
10047 *insn++ = BPF_JMP_A(1); \
10048 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10049 offsetof(struct bpf_sock_ops_kern, \
10050 temp)); \
10051 } \
10052 } while (0)
10053
10054 #define SOCK_OPS_GET_SK() \
10055 do { \
10056 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
10057 if (si->dst_reg == reg || si->src_reg == reg) \
10058 reg--; \
10059 if (si->dst_reg == reg || si->src_reg == reg) \
10060 reg--; \
10061 if (si->dst_reg == si->src_reg) { \
10062 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10063 offsetof(struct bpf_sock_ops_kern, \
10064 temp)); \
10065 fullsock_reg = reg; \
10066 jmp += 2; \
10067 } \
10068 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10069 struct bpf_sock_ops_kern, \
10070 is_fullsock), \
10071 fullsock_reg, si->src_reg, \
10072 offsetof(struct bpf_sock_ops_kern, \
10073 is_fullsock)); \
10074 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10075 if (si->dst_reg == si->src_reg) \
10076 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10077 offsetof(struct bpf_sock_ops_kern, \
10078 temp)); \
10079 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10080 struct bpf_sock_ops_kern, sk),\
10081 si->dst_reg, si->src_reg, \
10082 offsetof(struct bpf_sock_ops_kern, sk));\
10083 if (si->dst_reg == si->src_reg) { \
10084 *insn++ = BPF_JMP_A(1); \
10085 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10086 offsetof(struct bpf_sock_ops_kern, \
10087 temp)); \
10088 } \
10089 } while (0)
10090
10091 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10092 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10093
10094 /* Helper macro for adding write access to tcp_sock or sock fields.
10095 * The macro is called with two registers, dst_reg which contains a pointer
10096 * to ctx (context) and src_reg which contains the value that should be
10097 * stored. However, we need an additional register since we cannot overwrite
10098 * dst_reg because it may be used later in the program.
10099 * Instead we "borrow" one of the other register. We first save its value
10100 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10101 * it at the end of the macro.
10102 */
10103 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10104 do { \
10105 int reg = BPF_REG_9; \
10106 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10107 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10108 if (si->dst_reg == reg || si->src_reg == reg) \
10109 reg--; \
10110 if (si->dst_reg == reg || si->src_reg == reg) \
10111 reg--; \
10112 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
10113 offsetof(struct bpf_sock_ops_kern, \
10114 temp)); \
10115 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10116 struct bpf_sock_ops_kern, \
10117 is_fullsock), \
10118 reg, si->dst_reg, \
10119 offsetof(struct bpf_sock_ops_kern, \
10120 is_fullsock)); \
10121 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
10122 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10123 struct bpf_sock_ops_kern, sk),\
10124 reg, si->dst_reg, \
10125 offsetof(struct bpf_sock_ops_kern, sk));\
10126 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD), \
10127 reg, si->src_reg, \
10128 offsetof(OBJ, OBJ_FIELD)); \
10129 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
10130 offsetof(struct bpf_sock_ops_kern, \
10131 temp)); \
10132 } while (0)
10133
10134 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
10135 do { \
10136 if (TYPE == BPF_WRITE) \
10137 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10138 else \
10139 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10140 } while (0)
10141
10142 if (insn > insn_buf)
10143 return insn - insn_buf;
10144
10145 switch (si->off) {
10146 case offsetof(struct bpf_sock_ops, op):
10147 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10148 op),
10149 si->dst_reg, si->src_reg,
10150 offsetof(struct bpf_sock_ops_kern, op));
10151 break;
10152
10153 case offsetof(struct bpf_sock_ops, replylong[0]) ...
10154 offsetof(struct bpf_sock_ops, replylong[3]):
10155 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10156 sizeof_field(struct bpf_sock_ops_kern, reply));
10157 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10158 sizeof_field(struct bpf_sock_ops_kern, replylong));
10159 off = si->off;
10160 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10161 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10162 if (type == BPF_WRITE)
10163 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10164 off);
10165 else
10166 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10167 off);
10168 break;
10169
10170 case offsetof(struct bpf_sock_ops, family):
10171 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10172
10173 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10174 struct bpf_sock_ops_kern, sk),
10175 si->dst_reg, si->src_reg,
10176 offsetof(struct bpf_sock_ops_kern, sk));
10177 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10178 offsetof(struct sock_common, skc_family));
10179 break;
10180
10181 case offsetof(struct bpf_sock_ops, remote_ip4):
10182 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10183
10184 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10185 struct bpf_sock_ops_kern, sk),
10186 si->dst_reg, si->src_reg,
10187 offsetof(struct bpf_sock_ops_kern, sk));
10188 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10189 offsetof(struct sock_common, skc_daddr));
10190 break;
10191
10192 case offsetof(struct bpf_sock_ops, local_ip4):
10193 BUILD_BUG_ON(sizeof_field(struct sock_common,
10194 skc_rcv_saddr) != 4);
10195
10196 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10197 struct bpf_sock_ops_kern, sk),
10198 si->dst_reg, si->src_reg,
10199 offsetof(struct bpf_sock_ops_kern, sk));
10200 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10201 offsetof(struct sock_common,
10202 skc_rcv_saddr));
10203 break;
10204
10205 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10206 offsetof(struct bpf_sock_ops, remote_ip6[3]):
10207 #if IS_ENABLED(CONFIG_IPV6)
10208 BUILD_BUG_ON(sizeof_field(struct sock_common,
10209 skc_v6_daddr.s6_addr32[0]) != 4);
10210
10211 off = si->off;
10212 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10213 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10214 struct bpf_sock_ops_kern, sk),
10215 si->dst_reg, si->src_reg,
10216 offsetof(struct bpf_sock_ops_kern, sk));
10217 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10218 offsetof(struct sock_common,
10219 skc_v6_daddr.s6_addr32[0]) +
10220 off);
10221 #else
10222 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10223 #endif
10224 break;
10225
10226 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10227 offsetof(struct bpf_sock_ops, local_ip6[3]):
10228 #if IS_ENABLED(CONFIG_IPV6)
10229 BUILD_BUG_ON(sizeof_field(struct sock_common,
10230 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10231
10232 off = si->off;
10233 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10234 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10235 struct bpf_sock_ops_kern, sk),
10236 si->dst_reg, si->src_reg,
10237 offsetof(struct bpf_sock_ops_kern, sk));
10238 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10239 offsetof(struct sock_common,
10240 skc_v6_rcv_saddr.s6_addr32[0]) +
10241 off);
10242 #else
10243 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10244 #endif
10245 break;
10246
10247 case offsetof(struct bpf_sock_ops, remote_port):
10248 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10249
10250 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10251 struct bpf_sock_ops_kern, sk),
10252 si->dst_reg, si->src_reg,
10253 offsetof(struct bpf_sock_ops_kern, sk));
10254 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10255 offsetof(struct sock_common, skc_dport));
10256 #ifndef __BIG_ENDIAN_BITFIELD
10257 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10258 #endif
10259 break;
10260
10261 case offsetof(struct bpf_sock_ops, local_port):
10262 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10263
10264 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10265 struct bpf_sock_ops_kern, sk),
10266 si->dst_reg, si->src_reg,
10267 offsetof(struct bpf_sock_ops_kern, sk));
10268 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10269 offsetof(struct sock_common, skc_num));
10270 break;
10271
10272 case offsetof(struct bpf_sock_ops, is_fullsock):
10273 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10274 struct bpf_sock_ops_kern,
10275 is_fullsock),
10276 si->dst_reg, si->src_reg,
10277 offsetof(struct bpf_sock_ops_kern,
10278 is_fullsock));
10279 break;
10280
10281 case offsetof(struct bpf_sock_ops, state):
10282 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10283
10284 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10285 struct bpf_sock_ops_kern, sk),
10286 si->dst_reg, si->src_reg,
10287 offsetof(struct bpf_sock_ops_kern, sk));
10288 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10289 offsetof(struct sock_common, skc_state));
10290 break;
10291
10292 case offsetof(struct bpf_sock_ops, rtt_min):
10293 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10294 sizeof(struct minmax));
10295 BUILD_BUG_ON(sizeof(struct minmax) <
10296 sizeof(struct minmax_sample));
10297
10298 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10299 struct bpf_sock_ops_kern, sk),
10300 si->dst_reg, si->src_reg,
10301 offsetof(struct bpf_sock_ops_kern, sk));
10302 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10303 offsetof(struct tcp_sock, rtt_min) +
10304 sizeof_field(struct minmax_sample, t));
10305 break;
10306
10307 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10308 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10309 struct tcp_sock);
10310 break;
10311
10312 case offsetof(struct bpf_sock_ops, sk_txhash):
10313 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10314 struct sock, type);
10315 break;
10316 case offsetof(struct bpf_sock_ops, snd_cwnd):
10317 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10318 break;
10319 case offsetof(struct bpf_sock_ops, srtt_us):
10320 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10321 break;
10322 case offsetof(struct bpf_sock_ops, snd_ssthresh):
10323 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10324 break;
10325 case offsetof(struct bpf_sock_ops, rcv_nxt):
10326 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10327 break;
10328 case offsetof(struct bpf_sock_ops, snd_nxt):
10329 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10330 break;
10331 case offsetof(struct bpf_sock_ops, snd_una):
10332 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10333 break;
10334 case offsetof(struct bpf_sock_ops, mss_cache):
10335 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10336 break;
10337 case offsetof(struct bpf_sock_ops, ecn_flags):
10338 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10339 break;
10340 case offsetof(struct bpf_sock_ops, rate_delivered):
10341 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10342 break;
10343 case offsetof(struct bpf_sock_ops, rate_interval_us):
10344 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10345 break;
10346 case offsetof(struct bpf_sock_ops, packets_out):
10347 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10348 break;
10349 case offsetof(struct bpf_sock_ops, retrans_out):
10350 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10351 break;
10352 case offsetof(struct bpf_sock_ops, total_retrans):
10353 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10354 break;
10355 case offsetof(struct bpf_sock_ops, segs_in):
10356 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10357 break;
10358 case offsetof(struct bpf_sock_ops, data_segs_in):
10359 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10360 break;
10361 case offsetof(struct bpf_sock_ops, segs_out):
10362 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10363 break;
10364 case offsetof(struct bpf_sock_ops, data_segs_out):
10365 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10366 break;
10367 case offsetof(struct bpf_sock_ops, lost_out):
10368 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10369 break;
10370 case offsetof(struct bpf_sock_ops, sacked_out):
10371 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10372 break;
10373 case offsetof(struct bpf_sock_ops, bytes_received):
10374 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10375 break;
10376 case offsetof(struct bpf_sock_ops, bytes_acked):
10377 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10378 break;
10379 case offsetof(struct bpf_sock_ops, sk):
10380 SOCK_OPS_GET_SK();
10381 break;
10382 case offsetof(struct bpf_sock_ops, skb_data_end):
10383 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10384 skb_data_end),
10385 si->dst_reg, si->src_reg,
10386 offsetof(struct bpf_sock_ops_kern,
10387 skb_data_end));
10388 break;
10389 case offsetof(struct bpf_sock_ops, skb_data):
10390 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10391 skb),
10392 si->dst_reg, si->src_reg,
10393 offsetof(struct bpf_sock_ops_kern,
10394 skb));
10395 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10396 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10397 si->dst_reg, si->dst_reg,
10398 offsetof(struct sk_buff, data));
10399 break;
10400 case offsetof(struct bpf_sock_ops, skb_len):
10401 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10402 skb),
10403 si->dst_reg, si->src_reg,
10404 offsetof(struct bpf_sock_ops_kern,
10405 skb));
10406 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10407 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10408 si->dst_reg, si->dst_reg,
10409 offsetof(struct sk_buff, len));
10410 break;
10411 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10412 off = offsetof(struct sk_buff, cb);
10413 off += offsetof(struct tcp_skb_cb, tcp_flags);
10414 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10415 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10416 skb),
10417 si->dst_reg, si->src_reg,
10418 offsetof(struct bpf_sock_ops_kern,
10419 skb));
10420 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10421 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10422 tcp_flags),
10423 si->dst_reg, si->dst_reg, off);
10424 break;
10425 }
10426 return insn - insn_buf;
10427 }
10428
10429 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10430 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10431 struct bpf_insn *insn)
10432 {
10433 int reg;
10434 int temp_reg_off = offsetof(struct sk_buff, cb) +
10435 offsetof(struct sk_skb_cb, temp_reg);
10436
10437 if (si->src_reg == si->dst_reg) {
10438 /* We need an extra register, choose and save a register. */
10439 reg = BPF_REG_9;
10440 if (si->src_reg == reg || si->dst_reg == reg)
10441 reg--;
10442 if (si->src_reg == reg || si->dst_reg == reg)
10443 reg--;
10444 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10445 } else {
10446 reg = si->dst_reg;
10447 }
10448
10449 /* reg = skb->data */
10450 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10451 reg, si->src_reg,
10452 offsetof(struct sk_buff, data));
10453 /* AX = skb->len */
10454 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10455 BPF_REG_AX, si->src_reg,
10456 offsetof(struct sk_buff, len));
10457 /* reg = skb->data + skb->len */
10458 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10459 /* AX = skb->data_len */
10460 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10461 BPF_REG_AX, si->src_reg,
10462 offsetof(struct sk_buff, data_len));
10463
10464 /* reg = skb->data + skb->len - skb->data_len */
10465 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10466
10467 if (si->src_reg == si->dst_reg) {
10468 /* Restore the saved register */
10469 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10470 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10471 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10472 }
10473
10474 return insn;
10475 }
10476
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10477 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10478 const struct bpf_insn *si,
10479 struct bpf_insn *insn_buf,
10480 struct bpf_prog *prog, u32 *target_size)
10481 {
10482 struct bpf_insn *insn = insn_buf;
10483 int off;
10484
10485 switch (si->off) {
10486 case offsetof(struct __sk_buff, data_end):
10487 insn = bpf_convert_data_end_access(si, insn);
10488 break;
10489 case offsetof(struct __sk_buff, cb[0]) ...
10490 offsetofend(struct __sk_buff, cb[4]) - 1:
10491 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10492 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10493 offsetof(struct sk_skb_cb, data)) %
10494 sizeof(__u64));
10495
10496 prog->cb_access = 1;
10497 off = si->off;
10498 off -= offsetof(struct __sk_buff, cb[0]);
10499 off += offsetof(struct sk_buff, cb);
10500 off += offsetof(struct sk_skb_cb, data);
10501 if (type == BPF_WRITE)
10502 *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10503 si->src_reg, off);
10504 else
10505 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10506 si->src_reg, off);
10507 break;
10508
10509
10510 default:
10511 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10512 target_size);
10513 }
10514
10515 return insn - insn_buf;
10516 }
10517
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10518 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10519 const struct bpf_insn *si,
10520 struct bpf_insn *insn_buf,
10521 struct bpf_prog *prog, u32 *target_size)
10522 {
10523 struct bpf_insn *insn = insn_buf;
10524 #if IS_ENABLED(CONFIG_IPV6)
10525 int off;
10526 #endif
10527
10528 /* convert ctx uses the fact sg element is first in struct */
10529 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10530
10531 switch (si->off) {
10532 case offsetof(struct sk_msg_md, data):
10533 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10534 si->dst_reg, si->src_reg,
10535 offsetof(struct sk_msg, data));
10536 break;
10537 case offsetof(struct sk_msg_md, data_end):
10538 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10539 si->dst_reg, si->src_reg,
10540 offsetof(struct sk_msg, data_end));
10541 break;
10542 case offsetof(struct sk_msg_md, family):
10543 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10544
10545 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10546 struct sk_msg, sk),
10547 si->dst_reg, si->src_reg,
10548 offsetof(struct sk_msg, sk));
10549 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10550 offsetof(struct sock_common, skc_family));
10551 break;
10552
10553 case offsetof(struct sk_msg_md, remote_ip4):
10554 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10555
10556 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10557 struct sk_msg, sk),
10558 si->dst_reg, si->src_reg,
10559 offsetof(struct sk_msg, sk));
10560 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10561 offsetof(struct sock_common, skc_daddr));
10562 break;
10563
10564 case offsetof(struct sk_msg_md, local_ip4):
10565 BUILD_BUG_ON(sizeof_field(struct sock_common,
10566 skc_rcv_saddr) != 4);
10567
10568 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10569 struct sk_msg, sk),
10570 si->dst_reg, si->src_reg,
10571 offsetof(struct sk_msg, sk));
10572 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10573 offsetof(struct sock_common,
10574 skc_rcv_saddr));
10575 break;
10576
10577 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10578 offsetof(struct sk_msg_md, remote_ip6[3]):
10579 #if IS_ENABLED(CONFIG_IPV6)
10580 BUILD_BUG_ON(sizeof_field(struct sock_common,
10581 skc_v6_daddr.s6_addr32[0]) != 4);
10582
10583 off = si->off;
10584 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10585 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10586 struct sk_msg, sk),
10587 si->dst_reg, si->src_reg,
10588 offsetof(struct sk_msg, sk));
10589 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10590 offsetof(struct sock_common,
10591 skc_v6_daddr.s6_addr32[0]) +
10592 off);
10593 #else
10594 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10595 #endif
10596 break;
10597
10598 case offsetof(struct sk_msg_md, local_ip6[0]) ...
10599 offsetof(struct sk_msg_md, local_ip6[3]):
10600 #if IS_ENABLED(CONFIG_IPV6)
10601 BUILD_BUG_ON(sizeof_field(struct sock_common,
10602 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10603
10604 off = si->off;
10605 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10606 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10607 struct sk_msg, sk),
10608 si->dst_reg, si->src_reg,
10609 offsetof(struct sk_msg, sk));
10610 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10611 offsetof(struct sock_common,
10612 skc_v6_rcv_saddr.s6_addr32[0]) +
10613 off);
10614 #else
10615 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10616 #endif
10617 break;
10618
10619 case offsetof(struct sk_msg_md, remote_port):
10620 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10621
10622 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10623 struct sk_msg, sk),
10624 si->dst_reg, si->src_reg,
10625 offsetof(struct sk_msg, sk));
10626 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10627 offsetof(struct sock_common, skc_dport));
10628 #ifndef __BIG_ENDIAN_BITFIELD
10629 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10630 #endif
10631 break;
10632
10633 case offsetof(struct sk_msg_md, local_port):
10634 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10635
10636 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10637 struct sk_msg, sk),
10638 si->dst_reg, si->src_reg,
10639 offsetof(struct sk_msg, sk));
10640 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10641 offsetof(struct sock_common, skc_num));
10642 break;
10643
10644 case offsetof(struct sk_msg_md, size):
10645 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10646 si->dst_reg, si->src_reg,
10647 offsetof(struct sk_msg_sg, size));
10648 break;
10649
10650 case offsetof(struct sk_msg_md, sk):
10651 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10652 si->dst_reg, si->src_reg,
10653 offsetof(struct sk_msg, sk));
10654 break;
10655 }
10656
10657 return insn - insn_buf;
10658 }
10659
10660 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10661 .get_func_proto = sk_filter_func_proto,
10662 .is_valid_access = sk_filter_is_valid_access,
10663 .convert_ctx_access = bpf_convert_ctx_access,
10664 .gen_ld_abs = bpf_gen_ld_abs,
10665 };
10666
10667 const struct bpf_prog_ops sk_filter_prog_ops = {
10668 .test_run = bpf_prog_test_run_skb,
10669 };
10670
10671 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10672 .get_func_proto = tc_cls_act_func_proto,
10673 .is_valid_access = tc_cls_act_is_valid_access,
10674 .convert_ctx_access = tc_cls_act_convert_ctx_access,
10675 .gen_prologue = tc_cls_act_prologue,
10676 .gen_ld_abs = bpf_gen_ld_abs,
10677 .btf_struct_access = tc_cls_act_btf_struct_access,
10678 };
10679
10680 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10681 .test_run = bpf_prog_test_run_skb,
10682 };
10683
10684 const struct bpf_verifier_ops xdp_verifier_ops = {
10685 .get_func_proto = xdp_func_proto,
10686 .is_valid_access = xdp_is_valid_access,
10687 .convert_ctx_access = xdp_convert_ctx_access,
10688 .gen_prologue = bpf_noop_prologue,
10689 .btf_struct_access = xdp_btf_struct_access,
10690 };
10691
10692 const struct bpf_prog_ops xdp_prog_ops = {
10693 .test_run = bpf_prog_test_run_xdp,
10694 };
10695
10696 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10697 .get_func_proto = cg_skb_func_proto,
10698 .is_valid_access = cg_skb_is_valid_access,
10699 .convert_ctx_access = bpf_convert_ctx_access,
10700 };
10701
10702 const struct bpf_prog_ops cg_skb_prog_ops = {
10703 .test_run = bpf_prog_test_run_skb,
10704 };
10705
10706 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10707 .get_func_proto = lwt_in_func_proto,
10708 .is_valid_access = lwt_is_valid_access,
10709 .convert_ctx_access = bpf_convert_ctx_access,
10710 };
10711
10712 const struct bpf_prog_ops lwt_in_prog_ops = {
10713 .test_run = bpf_prog_test_run_skb,
10714 };
10715
10716 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10717 .get_func_proto = lwt_out_func_proto,
10718 .is_valid_access = lwt_is_valid_access,
10719 .convert_ctx_access = bpf_convert_ctx_access,
10720 };
10721
10722 const struct bpf_prog_ops lwt_out_prog_ops = {
10723 .test_run = bpf_prog_test_run_skb,
10724 };
10725
10726 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10727 .get_func_proto = lwt_xmit_func_proto,
10728 .is_valid_access = lwt_is_valid_access,
10729 .convert_ctx_access = bpf_convert_ctx_access,
10730 .gen_prologue = tc_cls_act_prologue,
10731 };
10732
10733 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10734 .test_run = bpf_prog_test_run_skb,
10735 };
10736
10737 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10738 .get_func_proto = lwt_seg6local_func_proto,
10739 .is_valid_access = lwt_is_valid_access,
10740 .convert_ctx_access = bpf_convert_ctx_access,
10741 };
10742
10743 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10744 .test_run = bpf_prog_test_run_skb,
10745 };
10746
10747 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10748 .get_func_proto = sock_filter_func_proto,
10749 .is_valid_access = sock_filter_is_valid_access,
10750 .convert_ctx_access = bpf_sock_convert_ctx_access,
10751 };
10752
10753 const struct bpf_prog_ops cg_sock_prog_ops = {
10754 };
10755
10756 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10757 .get_func_proto = sock_addr_func_proto,
10758 .is_valid_access = sock_addr_is_valid_access,
10759 .convert_ctx_access = sock_addr_convert_ctx_access,
10760 };
10761
10762 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10763 };
10764
10765 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10766 .get_func_proto = sock_ops_func_proto,
10767 .is_valid_access = sock_ops_is_valid_access,
10768 .convert_ctx_access = sock_ops_convert_ctx_access,
10769 };
10770
10771 const struct bpf_prog_ops sock_ops_prog_ops = {
10772 };
10773
10774 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10775 .get_func_proto = sk_skb_func_proto,
10776 .is_valid_access = sk_skb_is_valid_access,
10777 .convert_ctx_access = sk_skb_convert_ctx_access,
10778 .gen_prologue = sk_skb_prologue,
10779 };
10780
10781 const struct bpf_prog_ops sk_skb_prog_ops = {
10782 };
10783
10784 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10785 .get_func_proto = sk_msg_func_proto,
10786 .is_valid_access = sk_msg_is_valid_access,
10787 .convert_ctx_access = sk_msg_convert_ctx_access,
10788 .gen_prologue = bpf_noop_prologue,
10789 };
10790
10791 const struct bpf_prog_ops sk_msg_prog_ops = {
10792 };
10793
10794 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10795 .get_func_proto = flow_dissector_func_proto,
10796 .is_valid_access = flow_dissector_is_valid_access,
10797 .convert_ctx_access = flow_dissector_convert_ctx_access,
10798 };
10799
10800 const struct bpf_prog_ops flow_dissector_prog_ops = {
10801 .test_run = bpf_prog_test_run_flow_dissector,
10802 };
10803
sk_detach_filter(struct sock * sk)10804 int sk_detach_filter(struct sock *sk)
10805 {
10806 int ret = -ENOENT;
10807 struct sk_filter *filter;
10808
10809 if (sock_flag(sk, SOCK_FILTER_LOCKED))
10810 return -EPERM;
10811
10812 filter = rcu_dereference_protected(sk->sk_filter,
10813 lockdep_sock_is_held(sk));
10814 if (filter) {
10815 RCU_INIT_POINTER(sk->sk_filter, NULL);
10816 sk_filter_uncharge(sk, filter);
10817 ret = 0;
10818 }
10819
10820 return ret;
10821 }
10822 EXPORT_SYMBOL_GPL(sk_detach_filter);
10823
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)10824 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10825 {
10826 struct sock_fprog_kern *fprog;
10827 struct sk_filter *filter;
10828 int ret = 0;
10829
10830 sockopt_lock_sock(sk);
10831 filter = rcu_dereference_protected(sk->sk_filter,
10832 lockdep_sock_is_held(sk));
10833 if (!filter)
10834 goto out;
10835
10836 /* We're copying the filter that has been originally attached,
10837 * so no conversion/decode needed anymore. eBPF programs that
10838 * have no original program cannot be dumped through this.
10839 */
10840 ret = -EACCES;
10841 fprog = filter->prog->orig_prog;
10842 if (!fprog)
10843 goto out;
10844
10845 ret = fprog->len;
10846 if (!len)
10847 /* User space only enquires number of filter blocks. */
10848 goto out;
10849
10850 ret = -EINVAL;
10851 if (len < fprog->len)
10852 goto out;
10853
10854 ret = -EFAULT;
10855 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10856 goto out;
10857
10858 /* Instead of bytes, the API requests to return the number
10859 * of filter blocks.
10860 */
10861 ret = fprog->len;
10862 out:
10863 sockopt_release_sock(sk);
10864 return ret;
10865 }
10866
10867 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)10868 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10869 struct sock_reuseport *reuse,
10870 struct sock *sk, struct sk_buff *skb,
10871 struct sock *migrating_sk,
10872 u32 hash)
10873 {
10874 reuse_kern->skb = skb;
10875 reuse_kern->sk = sk;
10876 reuse_kern->selected_sk = NULL;
10877 reuse_kern->migrating_sk = migrating_sk;
10878 reuse_kern->data_end = skb->data + skb_headlen(skb);
10879 reuse_kern->hash = hash;
10880 reuse_kern->reuseport_id = reuse->reuseport_id;
10881 reuse_kern->bind_inany = reuse->bind_inany;
10882 }
10883
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)10884 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10885 struct bpf_prog *prog, struct sk_buff *skb,
10886 struct sock *migrating_sk,
10887 u32 hash)
10888 {
10889 struct sk_reuseport_kern reuse_kern;
10890 enum sk_action action;
10891
10892 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10893 action = bpf_prog_run(prog, &reuse_kern);
10894
10895 if (action == SK_PASS)
10896 return reuse_kern.selected_sk;
10897 else
10898 return ERR_PTR(-ECONNREFUSED);
10899 }
10900
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)10901 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10902 struct bpf_map *, map, void *, key, u32, flags)
10903 {
10904 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10905 struct sock_reuseport *reuse;
10906 struct sock *selected_sk;
10907
10908 selected_sk = map->ops->map_lookup_elem(map, key);
10909 if (!selected_sk)
10910 return -ENOENT;
10911
10912 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10913 if (!reuse) {
10914 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10915 if (sk_is_refcounted(selected_sk))
10916 sock_put(selected_sk);
10917
10918 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10919 * The only (!reuse) case here is - the sk has already been
10920 * unhashed (e.g. by close()), so treat it as -ENOENT.
10921 *
10922 * Other maps (e.g. sock_map) do not provide this guarantee and
10923 * the sk may never be in the reuseport group to begin with.
10924 */
10925 return is_sockarray ? -ENOENT : -EINVAL;
10926 }
10927
10928 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10929 struct sock *sk = reuse_kern->sk;
10930
10931 if (sk->sk_protocol != selected_sk->sk_protocol)
10932 return -EPROTOTYPE;
10933 else if (sk->sk_family != selected_sk->sk_family)
10934 return -EAFNOSUPPORT;
10935
10936 /* Catch all. Likely bound to a different sockaddr. */
10937 return -EBADFD;
10938 }
10939
10940 reuse_kern->selected_sk = selected_sk;
10941
10942 return 0;
10943 }
10944
10945 static const struct bpf_func_proto sk_select_reuseport_proto = {
10946 .func = sk_select_reuseport,
10947 .gpl_only = false,
10948 .ret_type = RET_INTEGER,
10949 .arg1_type = ARG_PTR_TO_CTX,
10950 .arg2_type = ARG_CONST_MAP_PTR,
10951 .arg3_type = ARG_PTR_TO_MAP_KEY,
10952 .arg4_type = ARG_ANYTHING,
10953 };
10954
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)10955 BPF_CALL_4(sk_reuseport_load_bytes,
10956 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10957 void *, to, u32, len)
10958 {
10959 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10960 }
10961
10962 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10963 .func = sk_reuseport_load_bytes,
10964 .gpl_only = false,
10965 .ret_type = RET_INTEGER,
10966 .arg1_type = ARG_PTR_TO_CTX,
10967 .arg2_type = ARG_ANYTHING,
10968 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
10969 .arg4_type = ARG_CONST_SIZE,
10970 };
10971
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)10972 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10973 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10974 void *, to, u32, len, u32, start_header)
10975 {
10976 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10977 len, start_header);
10978 }
10979
10980 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10981 .func = sk_reuseport_load_bytes_relative,
10982 .gpl_only = false,
10983 .ret_type = RET_INTEGER,
10984 .arg1_type = ARG_PTR_TO_CTX,
10985 .arg2_type = ARG_ANYTHING,
10986 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
10987 .arg4_type = ARG_CONST_SIZE,
10988 .arg5_type = ARG_ANYTHING,
10989 };
10990
10991 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10992 sk_reuseport_func_proto(enum bpf_func_id func_id,
10993 const struct bpf_prog *prog)
10994 {
10995 switch (func_id) {
10996 case BPF_FUNC_sk_select_reuseport:
10997 return &sk_select_reuseport_proto;
10998 case BPF_FUNC_skb_load_bytes:
10999 return &sk_reuseport_load_bytes_proto;
11000 case BPF_FUNC_skb_load_bytes_relative:
11001 return &sk_reuseport_load_bytes_relative_proto;
11002 case BPF_FUNC_get_socket_cookie:
11003 return &bpf_get_socket_ptr_cookie_proto;
11004 case BPF_FUNC_ktime_get_coarse_ns:
11005 return &bpf_ktime_get_coarse_ns_proto;
11006 default:
11007 return bpf_base_func_proto(func_id);
11008 }
11009 }
11010
11011 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11012 sk_reuseport_is_valid_access(int off, int size,
11013 enum bpf_access_type type,
11014 const struct bpf_prog *prog,
11015 struct bpf_insn_access_aux *info)
11016 {
11017 const u32 size_default = sizeof(__u32);
11018
11019 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11020 off % size || type != BPF_READ)
11021 return false;
11022
11023 switch (off) {
11024 case offsetof(struct sk_reuseport_md, data):
11025 info->reg_type = PTR_TO_PACKET;
11026 return size == sizeof(__u64);
11027
11028 case offsetof(struct sk_reuseport_md, data_end):
11029 info->reg_type = PTR_TO_PACKET_END;
11030 return size == sizeof(__u64);
11031
11032 case offsetof(struct sk_reuseport_md, hash):
11033 return size == size_default;
11034
11035 case offsetof(struct sk_reuseport_md, sk):
11036 info->reg_type = PTR_TO_SOCKET;
11037 return size == sizeof(__u64);
11038
11039 case offsetof(struct sk_reuseport_md, migrating_sk):
11040 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11041 return size == sizeof(__u64);
11042
11043 /* Fields that allow narrowing */
11044 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11045 if (size < sizeof_field(struct sk_buff, protocol))
11046 return false;
11047 fallthrough;
11048 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11049 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11050 case bpf_ctx_range(struct sk_reuseport_md, len):
11051 bpf_ctx_record_field_size(info, size_default);
11052 return bpf_ctx_narrow_access_ok(off, size, size_default);
11053
11054 default:
11055 return false;
11056 }
11057 }
11058
11059 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
11060 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11061 si->dst_reg, si->src_reg, \
11062 bpf_target_off(struct sk_reuseport_kern, F, \
11063 sizeof_field(struct sk_reuseport_kern, F), \
11064 target_size)); \
11065 })
11066
11067 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
11068 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11069 struct sk_buff, \
11070 skb, \
11071 SKB_FIELD)
11072
11073 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
11074 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11075 struct sock, \
11076 sk, \
11077 SK_FIELD)
11078
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11079 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11080 const struct bpf_insn *si,
11081 struct bpf_insn *insn_buf,
11082 struct bpf_prog *prog,
11083 u32 *target_size)
11084 {
11085 struct bpf_insn *insn = insn_buf;
11086
11087 switch (si->off) {
11088 case offsetof(struct sk_reuseport_md, data):
11089 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11090 break;
11091
11092 case offsetof(struct sk_reuseport_md, len):
11093 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11094 break;
11095
11096 case offsetof(struct sk_reuseport_md, eth_protocol):
11097 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11098 break;
11099
11100 case offsetof(struct sk_reuseport_md, ip_protocol):
11101 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11102 break;
11103
11104 case offsetof(struct sk_reuseport_md, data_end):
11105 SK_REUSEPORT_LOAD_FIELD(data_end);
11106 break;
11107
11108 case offsetof(struct sk_reuseport_md, hash):
11109 SK_REUSEPORT_LOAD_FIELD(hash);
11110 break;
11111
11112 case offsetof(struct sk_reuseport_md, bind_inany):
11113 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11114 break;
11115
11116 case offsetof(struct sk_reuseport_md, sk):
11117 SK_REUSEPORT_LOAD_FIELD(sk);
11118 break;
11119
11120 case offsetof(struct sk_reuseport_md, migrating_sk):
11121 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11122 break;
11123 }
11124
11125 return insn - insn_buf;
11126 }
11127
11128 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11129 .get_func_proto = sk_reuseport_func_proto,
11130 .is_valid_access = sk_reuseport_is_valid_access,
11131 .convert_ctx_access = sk_reuseport_convert_ctx_access,
11132 };
11133
11134 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11135 };
11136
11137 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11138 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11139
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11140 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11141 struct sock *, sk, u64, flags)
11142 {
11143 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11144 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11145 return -EINVAL;
11146 if (unlikely(sk && sk_is_refcounted(sk)))
11147 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11148 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11149 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11150 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11151 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11152
11153 /* Check if socket is suitable for packet L3/L4 protocol */
11154 if (sk && sk->sk_protocol != ctx->protocol)
11155 return -EPROTOTYPE;
11156 if (sk && sk->sk_family != ctx->family &&
11157 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11158 return -EAFNOSUPPORT;
11159
11160 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11161 return -EEXIST;
11162
11163 /* Select socket as lookup result */
11164 ctx->selected_sk = sk;
11165 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11166 return 0;
11167 }
11168
11169 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11170 .func = bpf_sk_lookup_assign,
11171 .gpl_only = false,
11172 .ret_type = RET_INTEGER,
11173 .arg1_type = ARG_PTR_TO_CTX,
11174 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
11175 .arg3_type = ARG_ANYTHING,
11176 };
11177
11178 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11179 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11180 {
11181 switch (func_id) {
11182 case BPF_FUNC_perf_event_output:
11183 return &bpf_event_output_data_proto;
11184 case BPF_FUNC_sk_assign:
11185 return &bpf_sk_lookup_assign_proto;
11186 case BPF_FUNC_sk_release:
11187 return &bpf_sk_release_proto;
11188 default:
11189 return bpf_sk_base_func_proto(func_id);
11190 }
11191 }
11192
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11193 static bool sk_lookup_is_valid_access(int off, int size,
11194 enum bpf_access_type type,
11195 const struct bpf_prog *prog,
11196 struct bpf_insn_access_aux *info)
11197 {
11198 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11199 return false;
11200 if (off % size != 0)
11201 return false;
11202 if (type != BPF_READ)
11203 return false;
11204
11205 switch (off) {
11206 case offsetof(struct bpf_sk_lookup, sk):
11207 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11208 return size == sizeof(__u64);
11209
11210 case bpf_ctx_range(struct bpf_sk_lookup, family):
11211 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11212 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11213 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11214 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11215 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11216 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11217 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11218 bpf_ctx_record_field_size(info, sizeof(__u32));
11219 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11220
11221 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11222 /* Allow 4-byte access to 2-byte field for backward compatibility */
11223 if (size == sizeof(__u32))
11224 return true;
11225 bpf_ctx_record_field_size(info, sizeof(__be16));
11226 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11227
11228 case offsetofend(struct bpf_sk_lookup, remote_port) ...
11229 offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11230 /* Allow access to zero padding for backward compatibility */
11231 bpf_ctx_record_field_size(info, sizeof(__u16));
11232 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11233
11234 default:
11235 return false;
11236 }
11237 }
11238
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11239 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11240 const struct bpf_insn *si,
11241 struct bpf_insn *insn_buf,
11242 struct bpf_prog *prog,
11243 u32 *target_size)
11244 {
11245 struct bpf_insn *insn = insn_buf;
11246
11247 switch (si->off) {
11248 case offsetof(struct bpf_sk_lookup, sk):
11249 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11250 offsetof(struct bpf_sk_lookup_kern, selected_sk));
11251 break;
11252
11253 case offsetof(struct bpf_sk_lookup, family):
11254 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11255 bpf_target_off(struct bpf_sk_lookup_kern,
11256 family, 2, target_size));
11257 break;
11258
11259 case offsetof(struct bpf_sk_lookup, protocol):
11260 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11261 bpf_target_off(struct bpf_sk_lookup_kern,
11262 protocol, 2, target_size));
11263 break;
11264
11265 case offsetof(struct bpf_sk_lookup, remote_ip4):
11266 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11267 bpf_target_off(struct bpf_sk_lookup_kern,
11268 v4.saddr, 4, target_size));
11269 break;
11270
11271 case offsetof(struct bpf_sk_lookup, local_ip4):
11272 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11273 bpf_target_off(struct bpf_sk_lookup_kern,
11274 v4.daddr, 4, target_size));
11275 break;
11276
11277 case bpf_ctx_range_till(struct bpf_sk_lookup,
11278 remote_ip6[0], remote_ip6[3]): {
11279 #if IS_ENABLED(CONFIG_IPV6)
11280 int off = si->off;
11281
11282 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11283 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11284 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11285 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11286 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11287 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11288 #else
11289 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11290 #endif
11291 break;
11292 }
11293 case bpf_ctx_range_till(struct bpf_sk_lookup,
11294 local_ip6[0], local_ip6[3]): {
11295 #if IS_ENABLED(CONFIG_IPV6)
11296 int off = si->off;
11297
11298 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11299 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11300 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11301 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11302 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11303 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11304 #else
11305 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11306 #endif
11307 break;
11308 }
11309 case offsetof(struct bpf_sk_lookup, remote_port):
11310 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11311 bpf_target_off(struct bpf_sk_lookup_kern,
11312 sport, 2, target_size));
11313 break;
11314
11315 case offsetofend(struct bpf_sk_lookup, remote_port):
11316 *target_size = 2;
11317 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11318 break;
11319
11320 case offsetof(struct bpf_sk_lookup, local_port):
11321 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11322 bpf_target_off(struct bpf_sk_lookup_kern,
11323 dport, 2, target_size));
11324 break;
11325
11326 case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11327 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11328 bpf_target_off(struct bpf_sk_lookup_kern,
11329 ingress_ifindex, 4, target_size));
11330 break;
11331 }
11332
11333 return insn - insn_buf;
11334 }
11335
11336 const struct bpf_prog_ops sk_lookup_prog_ops = {
11337 .test_run = bpf_prog_test_run_sk_lookup,
11338 };
11339
11340 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11341 .get_func_proto = sk_lookup_func_proto,
11342 .is_valid_access = sk_lookup_is_valid_access,
11343 .convert_ctx_access = sk_lookup_convert_ctx_access,
11344 };
11345
11346 #endif /* CONFIG_INET */
11347
DEFINE_BPF_DISPATCHER(xdp)11348 DEFINE_BPF_DISPATCHER(xdp)
11349
11350 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11351 {
11352 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11353 }
11354
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11355 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11356 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11357 BTF_SOCK_TYPE_xxx
11358 #undef BTF_SOCK_TYPE
11359
11360 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11361 {
11362 /* tcp6_sock type is not generated in dwarf and hence btf,
11363 * trigger an explicit type generation here.
11364 */
11365 BTF_TYPE_EMIT(struct tcp6_sock);
11366 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11367 sk->sk_family == AF_INET6)
11368 return (unsigned long)sk;
11369
11370 return (unsigned long)NULL;
11371 }
11372
11373 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11374 .func = bpf_skc_to_tcp6_sock,
11375 .gpl_only = false,
11376 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11377 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11378 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11379 };
11380
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11381 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11382 {
11383 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11384 return (unsigned long)sk;
11385
11386 return (unsigned long)NULL;
11387 }
11388
11389 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11390 .func = bpf_skc_to_tcp_sock,
11391 .gpl_only = false,
11392 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11393 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11394 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11395 };
11396
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11397 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11398 {
11399 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11400 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11401 */
11402 BTF_TYPE_EMIT(struct inet_timewait_sock);
11403 BTF_TYPE_EMIT(struct tcp_timewait_sock);
11404
11405 #ifdef CONFIG_INET
11406 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11407 return (unsigned long)sk;
11408 #endif
11409
11410 #if IS_BUILTIN(CONFIG_IPV6)
11411 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11412 return (unsigned long)sk;
11413 #endif
11414
11415 return (unsigned long)NULL;
11416 }
11417
11418 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11419 .func = bpf_skc_to_tcp_timewait_sock,
11420 .gpl_only = false,
11421 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11422 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11423 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11424 };
11425
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11426 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11427 {
11428 #ifdef CONFIG_INET
11429 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11430 return (unsigned long)sk;
11431 #endif
11432
11433 #if IS_BUILTIN(CONFIG_IPV6)
11434 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11435 return (unsigned long)sk;
11436 #endif
11437
11438 return (unsigned long)NULL;
11439 }
11440
11441 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11442 .func = bpf_skc_to_tcp_request_sock,
11443 .gpl_only = false,
11444 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11445 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11446 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11447 };
11448
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11449 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11450 {
11451 /* udp6_sock type is not generated in dwarf and hence btf,
11452 * trigger an explicit type generation here.
11453 */
11454 BTF_TYPE_EMIT(struct udp6_sock);
11455 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11456 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11457 return (unsigned long)sk;
11458
11459 return (unsigned long)NULL;
11460 }
11461
11462 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11463 .func = bpf_skc_to_udp6_sock,
11464 .gpl_only = false,
11465 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11466 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11467 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11468 };
11469
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11470 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11471 {
11472 /* unix_sock type is not generated in dwarf and hence btf,
11473 * trigger an explicit type generation here.
11474 */
11475 BTF_TYPE_EMIT(struct unix_sock);
11476 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11477 return (unsigned long)sk;
11478
11479 return (unsigned long)NULL;
11480 }
11481
11482 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11483 .func = bpf_skc_to_unix_sock,
11484 .gpl_only = false,
11485 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11486 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11487 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11488 };
11489
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11490 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11491 {
11492 BTF_TYPE_EMIT(struct mptcp_sock);
11493 return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11494 }
11495
11496 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11497 .func = bpf_skc_to_mptcp_sock,
11498 .gpl_only = false,
11499 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11500 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
11501 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11502 };
11503
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11504 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11505 {
11506 return (unsigned long)sock_from_file(file);
11507 }
11508
11509 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11510 BTF_ID(struct, socket)
11511 BTF_ID(struct, file)
11512
11513 const struct bpf_func_proto bpf_sock_from_file_proto = {
11514 .func = bpf_sock_from_file,
11515 .gpl_only = false,
11516 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11517 .ret_btf_id = &bpf_sock_from_file_btf_ids[0],
11518 .arg1_type = ARG_PTR_TO_BTF_ID,
11519 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1],
11520 };
11521
11522 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)11523 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11524 {
11525 const struct bpf_func_proto *func;
11526
11527 switch (func_id) {
11528 case BPF_FUNC_skc_to_tcp6_sock:
11529 func = &bpf_skc_to_tcp6_sock_proto;
11530 break;
11531 case BPF_FUNC_skc_to_tcp_sock:
11532 func = &bpf_skc_to_tcp_sock_proto;
11533 break;
11534 case BPF_FUNC_skc_to_tcp_timewait_sock:
11535 func = &bpf_skc_to_tcp_timewait_sock_proto;
11536 break;
11537 case BPF_FUNC_skc_to_tcp_request_sock:
11538 func = &bpf_skc_to_tcp_request_sock_proto;
11539 break;
11540 case BPF_FUNC_skc_to_udp6_sock:
11541 func = &bpf_skc_to_udp6_sock_proto;
11542 break;
11543 case BPF_FUNC_skc_to_unix_sock:
11544 func = &bpf_skc_to_unix_sock_proto;
11545 break;
11546 case BPF_FUNC_skc_to_mptcp_sock:
11547 func = &bpf_skc_to_mptcp_sock_proto;
11548 break;
11549 case BPF_FUNC_ktime_get_coarse_ns:
11550 return &bpf_ktime_get_coarse_ns_proto;
11551 default:
11552 return bpf_base_func_proto(func_id);
11553 }
11554
11555 if (!perfmon_capable())
11556 return NULL;
11557
11558 return func;
11559 }
11560