1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC 0xcafe4a11
60 #endif
61
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65 * compilation if user enables corresponding warning. Disable it explicitly.
66 */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68
69 #define __printf(a, b) __attribute__((format(printf, a, b)))
70
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73
74 static const char * const attach_type_name[] = {
75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
80 [BPF_CGROUP_DEVICE] = "cgroup_device",
81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
102 [BPF_LIRC_MODE2] = "lirc_mode2",
103 [BPF_FLOW_DISSECTOR] = "flow_dissector",
104 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
105 [BPF_TRACE_FENTRY] = "trace_fentry",
106 [BPF_TRACE_FEXIT] = "trace_fexit",
107 [BPF_MODIFY_RETURN] = "modify_return",
108 [BPF_LSM_MAC] = "lsm_mac",
109 [BPF_LSM_CGROUP] = "lsm_cgroup",
110 [BPF_SK_LOOKUP] = "sk_lookup",
111 [BPF_TRACE_ITER] = "trace_iter",
112 [BPF_XDP_DEVMAP] = "xdp_devmap",
113 [BPF_XDP_CPUMAP] = "xdp_cpumap",
114 [BPF_XDP] = "xdp",
115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
117 [BPF_PERF_EVENT] = "perf_event",
118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
119 [BPF_STRUCT_OPS] = "struct_ops",
120 [BPF_NETFILTER] = "netfilter",
121 [BPF_TCX_INGRESS] = "tcx_ingress",
122 [BPF_TCX_EGRESS] = "tcx_egress",
123 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi",
124 };
125
126 static const char * const link_type_name[] = {
127 [BPF_LINK_TYPE_UNSPEC] = "unspec",
128 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
129 [BPF_LINK_TYPE_TRACING] = "tracing",
130 [BPF_LINK_TYPE_CGROUP] = "cgroup",
131 [BPF_LINK_TYPE_ITER] = "iter",
132 [BPF_LINK_TYPE_NETNS] = "netns",
133 [BPF_LINK_TYPE_XDP] = "xdp",
134 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
135 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
136 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
137 [BPF_LINK_TYPE_NETFILTER] = "netfilter",
138 [BPF_LINK_TYPE_TCX] = "tcx",
139 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi",
140 };
141
142 static const char * const map_type_name[] = {
143 [BPF_MAP_TYPE_UNSPEC] = "unspec",
144 [BPF_MAP_TYPE_HASH] = "hash",
145 [BPF_MAP_TYPE_ARRAY] = "array",
146 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
147 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
148 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
149 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
150 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
151 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
152 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
153 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
154 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
155 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
156 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
157 [BPF_MAP_TYPE_DEVMAP] = "devmap",
158 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
159 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
160 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
161 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
162 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
163 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
164 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
165 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
166 [BPF_MAP_TYPE_QUEUE] = "queue",
167 [BPF_MAP_TYPE_STACK] = "stack",
168 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
169 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
170 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
171 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
172 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
173 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
174 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
175 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
176 };
177
178 static const char * const prog_type_name[] = {
179 [BPF_PROG_TYPE_UNSPEC] = "unspec",
180 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
181 [BPF_PROG_TYPE_KPROBE] = "kprobe",
182 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
183 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
184 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
185 [BPF_PROG_TYPE_XDP] = "xdp",
186 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
187 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
188 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
189 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
190 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
191 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
192 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
193 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
194 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
195 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
196 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
197 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
198 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
199 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
200 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
201 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
202 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
203 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
204 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
205 [BPF_PROG_TYPE_TRACING] = "tracing",
206 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
207 [BPF_PROG_TYPE_EXT] = "ext",
208 [BPF_PROG_TYPE_LSM] = "lsm",
209 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
210 [BPF_PROG_TYPE_SYSCALL] = "syscall",
211 [BPF_PROG_TYPE_NETFILTER] = "netfilter",
212 };
213
__base_pr(enum libbpf_print_level level,const char * format,va_list args)214 static int __base_pr(enum libbpf_print_level level, const char *format,
215 va_list args)
216 {
217 if (level == LIBBPF_DEBUG)
218 return 0;
219
220 return vfprintf(stderr, format, args);
221 }
222
223 static libbpf_print_fn_t __libbpf_pr = __base_pr;
224
libbpf_set_print(libbpf_print_fn_t fn)225 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
226 {
227 libbpf_print_fn_t old_print_fn;
228
229 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
230
231 return old_print_fn;
232 }
233
234 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)235 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
236 {
237 va_list args;
238 int old_errno;
239 libbpf_print_fn_t print_fn;
240
241 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
242 if (!print_fn)
243 return;
244
245 old_errno = errno;
246
247 va_start(args, format);
248 __libbpf_pr(level, format, args);
249 va_end(args);
250
251 errno = old_errno;
252 }
253
pr_perm_msg(int err)254 static void pr_perm_msg(int err)
255 {
256 struct rlimit limit;
257 char buf[100];
258
259 if (err != -EPERM || geteuid() != 0)
260 return;
261
262 err = getrlimit(RLIMIT_MEMLOCK, &limit);
263 if (err)
264 return;
265
266 if (limit.rlim_cur == RLIM_INFINITY)
267 return;
268
269 if (limit.rlim_cur < 1024)
270 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
271 else if (limit.rlim_cur < 1024*1024)
272 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
273 else
274 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
275
276 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
277 buf);
278 }
279
280 #define STRERR_BUFSIZE 128
281
282 /* Copied from tools/perf/util/util.h */
283 #ifndef zfree
284 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
285 #endif
286
287 #ifndef zclose
288 # define zclose(fd) ({ \
289 int ___err = 0; \
290 if ((fd) >= 0) \
291 ___err = close((fd)); \
292 fd = -1; \
293 ___err; })
294 #endif
295
ptr_to_u64(const void * ptr)296 static inline __u64 ptr_to_u64(const void *ptr)
297 {
298 return (__u64) (unsigned long) ptr;
299 }
300
libbpf_set_strict_mode(enum libbpf_strict_mode mode)301 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
302 {
303 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
304 return 0;
305 }
306
libbpf_major_version(void)307 __u32 libbpf_major_version(void)
308 {
309 return LIBBPF_MAJOR_VERSION;
310 }
311
libbpf_minor_version(void)312 __u32 libbpf_minor_version(void)
313 {
314 return LIBBPF_MINOR_VERSION;
315 }
316
libbpf_version_string(void)317 const char *libbpf_version_string(void)
318 {
319 #define __S(X) #X
320 #define _S(X) __S(X)
321 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
322 #undef _S
323 #undef __S
324 }
325
326 enum reloc_type {
327 RELO_LD64,
328 RELO_CALL,
329 RELO_DATA,
330 RELO_EXTERN_LD64,
331 RELO_EXTERN_CALL,
332 RELO_SUBPROG_ADDR,
333 RELO_CORE,
334 };
335
336 struct reloc_desc {
337 enum reloc_type type;
338 int insn_idx;
339 union {
340 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
341 struct {
342 int map_idx;
343 int sym_off;
344 int ext_idx;
345 };
346 };
347 };
348
349 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
350 enum sec_def_flags {
351 SEC_NONE = 0,
352 /* expected_attach_type is optional, if kernel doesn't support that */
353 SEC_EXP_ATTACH_OPT = 1,
354 /* legacy, only used by libbpf_get_type_names() and
355 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
356 * This used to be associated with cgroup (and few other) BPF programs
357 * that were attachable through BPF_PROG_ATTACH command. Pretty
358 * meaningless nowadays, though.
359 */
360 SEC_ATTACHABLE = 2,
361 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
362 /* attachment target is specified through BTF ID in either kernel or
363 * other BPF program's BTF object
364 */
365 SEC_ATTACH_BTF = 4,
366 /* BPF program type allows sleeping/blocking in kernel */
367 SEC_SLEEPABLE = 8,
368 /* BPF program support non-linear XDP buffer */
369 SEC_XDP_FRAGS = 16,
370 /* Setup proper attach type for usdt probes. */
371 SEC_USDT = 32,
372 };
373
374 struct bpf_sec_def {
375 char *sec;
376 enum bpf_prog_type prog_type;
377 enum bpf_attach_type expected_attach_type;
378 long cookie;
379 int handler_id;
380
381 libbpf_prog_setup_fn_t prog_setup_fn;
382 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
383 libbpf_prog_attach_fn_t prog_attach_fn;
384 };
385
386 /*
387 * bpf_prog should be a better name but it has been used in
388 * linux/filter.h.
389 */
390 struct bpf_program {
391 char *name;
392 char *sec_name;
393 size_t sec_idx;
394 const struct bpf_sec_def *sec_def;
395 /* this program's instruction offset (in number of instructions)
396 * within its containing ELF section
397 */
398 size_t sec_insn_off;
399 /* number of original instructions in ELF section belonging to this
400 * program, not taking into account subprogram instructions possible
401 * appended later during relocation
402 */
403 size_t sec_insn_cnt;
404 /* Offset (in number of instructions) of the start of instruction
405 * belonging to this BPF program within its containing main BPF
406 * program. For the entry-point (main) BPF program, this is always
407 * zero. For a sub-program, this gets reset before each of main BPF
408 * programs are processed and relocated and is used to determined
409 * whether sub-program was already appended to the main program, and
410 * if yes, at which instruction offset.
411 */
412 size_t sub_insn_off;
413
414 /* instructions that belong to BPF program; insns[0] is located at
415 * sec_insn_off instruction within its ELF section in ELF file, so
416 * when mapping ELF file instruction index to the local instruction,
417 * one needs to subtract sec_insn_off; and vice versa.
418 */
419 struct bpf_insn *insns;
420 /* actual number of instruction in this BPF program's image; for
421 * entry-point BPF programs this includes the size of main program
422 * itself plus all the used sub-programs, appended at the end
423 */
424 size_t insns_cnt;
425
426 struct reloc_desc *reloc_desc;
427 int nr_reloc;
428
429 /* BPF verifier log settings */
430 char *log_buf;
431 size_t log_size;
432 __u32 log_level;
433
434 struct bpf_object *obj;
435
436 int fd;
437 bool autoload;
438 bool autoattach;
439 bool mark_btf_static;
440 enum bpf_prog_type type;
441 enum bpf_attach_type expected_attach_type;
442
443 int prog_ifindex;
444 __u32 attach_btf_obj_fd;
445 __u32 attach_btf_id;
446 __u32 attach_prog_fd;
447
448 void *func_info;
449 __u32 func_info_rec_size;
450 __u32 func_info_cnt;
451
452 void *line_info;
453 __u32 line_info_rec_size;
454 __u32 line_info_cnt;
455 __u32 prog_flags;
456 };
457
458 struct bpf_struct_ops {
459 const char *tname;
460 const struct btf_type *type;
461 struct bpf_program **progs;
462 __u32 *kern_func_off;
463 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
464 void *data;
465 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
466 * btf_vmlinux's format.
467 * struct bpf_struct_ops_tcp_congestion_ops {
468 * [... some other kernel fields ...]
469 * struct tcp_congestion_ops data;
470 * }
471 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
472 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
473 * from "data".
474 */
475 void *kern_vdata;
476 __u32 type_id;
477 };
478
479 #define DATA_SEC ".data"
480 #define BSS_SEC ".bss"
481 #define RODATA_SEC ".rodata"
482 #define KCONFIG_SEC ".kconfig"
483 #define KSYMS_SEC ".ksyms"
484 #define STRUCT_OPS_SEC ".struct_ops"
485 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
486
487 enum libbpf_map_type {
488 LIBBPF_MAP_UNSPEC,
489 LIBBPF_MAP_DATA,
490 LIBBPF_MAP_BSS,
491 LIBBPF_MAP_RODATA,
492 LIBBPF_MAP_KCONFIG,
493 };
494
495 struct bpf_map_def {
496 unsigned int type;
497 unsigned int key_size;
498 unsigned int value_size;
499 unsigned int max_entries;
500 unsigned int map_flags;
501 };
502
503 struct bpf_map {
504 struct bpf_object *obj;
505 char *name;
506 /* real_name is defined for special internal maps (.rodata*,
507 * .data*, .bss, .kconfig) and preserves their original ELF section
508 * name. This is important to be able to find corresponding BTF
509 * DATASEC information.
510 */
511 char *real_name;
512 int fd;
513 int sec_idx;
514 size_t sec_offset;
515 int map_ifindex;
516 int inner_map_fd;
517 struct bpf_map_def def;
518 __u32 numa_node;
519 __u32 btf_var_idx;
520 __u32 btf_key_type_id;
521 __u32 btf_value_type_id;
522 __u32 btf_vmlinux_value_type_id;
523 enum libbpf_map_type libbpf_type;
524 void *mmaped;
525 struct bpf_struct_ops *st_ops;
526 struct bpf_map *inner_map;
527 void **init_slots;
528 int init_slots_sz;
529 char *pin_path;
530 bool pinned;
531 bool reused;
532 bool autocreate;
533 __u64 map_extra;
534 };
535
536 enum extern_type {
537 EXT_UNKNOWN,
538 EXT_KCFG,
539 EXT_KSYM,
540 };
541
542 enum kcfg_type {
543 KCFG_UNKNOWN,
544 KCFG_CHAR,
545 KCFG_BOOL,
546 KCFG_INT,
547 KCFG_TRISTATE,
548 KCFG_CHAR_ARR,
549 };
550
551 struct extern_desc {
552 enum extern_type type;
553 int sym_idx;
554 int btf_id;
555 int sec_btf_id;
556 const char *name;
557 char *essent_name;
558 bool is_set;
559 bool is_weak;
560 union {
561 struct {
562 enum kcfg_type type;
563 int sz;
564 int align;
565 int data_off;
566 bool is_signed;
567 } kcfg;
568 struct {
569 unsigned long long addr;
570
571 /* target btf_id of the corresponding kernel var. */
572 int kernel_btf_obj_fd;
573 int kernel_btf_id;
574
575 /* local btf_id of the ksym extern's type. */
576 __u32 type_id;
577 /* BTF fd index to be patched in for insn->off, this is
578 * 0 for vmlinux BTF, index in obj->fd_array for module
579 * BTF
580 */
581 __s16 btf_fd_idx;
582 } ksym;
583 };
584 };
585
586 struct module_btf {
587 struct btf *btf;
588 char *name;
589 __u32 id;
590 int fd;
591 int fd_array_idx;
592 };
593
594 enum sec_type {
595 SEC_UNUSED = 0,
596 SEC_RELO,
597 SEC_BSS,
598 SEC_DATA,
599 SEC_RODATA,
600 };
601
602 struct elf_sec_desc {
603 enum sec_type sec_type;
604 Elf64_Shdr *shdr;
605 Elf_Data *data;
606 };
607
608 struct elf_state {
609 int fd;
610 const void *obj_buf;
611 size_t obj_buf_sz;
612 Elf *elf;
613 Elf64_Ehdr *ehdr;
614 Elf_Data *symbols;
615 Elf_Data *st_ops_data;
616 Elf_Data *st_ops_link_data;
617 size_t shstrndx; /* section index for section name strings */
618 size_t strtabidx;
619 struct elf_sec_desc *secs;
620 size_t sec_cnt;
621 int btf_maps_shndx;
622 __u32 btf_maps_sec_btf_id;
623 int text_shndx;
624 int symbols_shndx;
625 int st_ops_shndx;
626 int st_ops_link_shndx;
627 };
628
629 struct usdt_manager;
630
631 struct bpf_object {
632 char name[BPF_OBJ_NAME_LEN];
633 char license[64];
634 __u32 kern_version;
635
636 struct bpf_program *programs;
637 size_t nr_programs;
638 struct bpf_map *maps;
639 size_t nr_maps;
640 size_t maps_cap;
641
642 char *kconfig;
643 struct extern_desc *externs;
644 int nr_extern;
645 int kconfig_map_idx;
646
647 bool loaded;
648 bool has_subcalls;
649 bool has_rodata;
650
651 struct bpf_gen *gen_loader;
652
653 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
654 struct elf_state efile;
655
656 struct btf *btf;
657 struct btf_ext *btf_ext;
658
659 /* Parse and load BTF vmlinux if any of the programs in the object need
660 * it at load time.
661 */
662 struct btf *btf_vmlinux;
663 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
664 * override for vmlinux BTF.
665 */
666 char *btf_custom_path;
667 /* vmlinux BTF override for CO-RE relocations */
668 struct btf *btf_vmlinux_override;
669 /* Lazily initialized kernel module BTFs */
670 struct module_btf *btf_modules;
671 bool btf_modules_loaded;
672 size_t btf_module_cnt;
673 size_t btf_module_cap;
674
675 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
676 char *log_buf;
677 size_t log_size;
678 __u32 log_level;
679
680 int *fd_array;
681 size_t fd_array_cap;
682 size_t fd_array_cnt;
683
684 struct usdt_manager *usdt_man;
685
686 char path[];
687 };
688
689 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
690 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
691 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
692 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
693 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
694 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
695 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
696 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
697 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
698
bpf_program__unload(struct bpf_program * prog)699 void bpf_program__unload(struct bpf_program *prog)
700 {
701 if (!prog)
702 return;
703
704 zclose(prog->fd);
705
706 zfree(&prog->func_info);
707 zfree(&prog->line_info);
708 }
709
bpf_program__exit(struct bpf_program * prog)710 static void bpf_program__exit(struct bpf_program *prog)
711 {
712 if (!prog)
713 return;
714
715 bpf_program__unload(prog);
716 zfree(&prog->name);
717 zfree(&prog->sec_name);
718 zfree(&prog->insns);
719 zfree(&prog->reloc_desc);
720
721 prog->nr_reloc = 0;
722 prog->insns_cnt = 0;
723 prog->sec_idx = -1;
724 }
725
insn_is_subprog_call(const struct bpf_insn * insn)726 static bool insn_is_subprog_call(const struct bpf_insn *insn)
727 {
728 return BPF_CLASS(insn->code) == BPF_JMP &&
729 BPF_OP(insn->code) == BPF_CALL &&
730 BPF_SRC(insn->code) == BPF_K &&
731 insn->src_reg == BPF_PSEUDO_CALL &&
732 insn->dst_reg == 0 &&
733 insn->off == 0;
734 }
735
is_call_insn(const struct bpf_insn * insn)736 static bool is_call_insn(const struct bpf_insn *insn)
737 {
738 return insn->code == (BPF_JMP | BPF_CALL);
739 }
740
insn_is_pseudo_func(struct bpf_insn * insn)741 static bool insn_is_pseudo_func(struct bpf_insn *insn)
742 {
743 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
744 }
745
746 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)747 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
748 const char *name, size_t sec_idx, const char *sec_name,
749 size_t sec_off, void *insn_data, size_t insn_data_sz)
750 {
751 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
752 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
753 sec_name, name, sec_off, insn_data_sz);
754 return -EINVAL;
755 }
756
757 memset(prog, 0, sizeof(*prog));
758 prog->obj = obj;
759
760 prog->sec_idx = sec_idx;
761 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
762 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
763 /* insns_cnt can later be increased by appending used subprograms */
764 prog->insns_cnt = prog->sec_insn_cnt;
765
766 prog->type = BPF_PROG_TYPE_UNSPEC;
767 prog->fd = -1;
768
769 /* libbpf's convention for SEC("?abc...") is that it's just like
770 * SEC("abc...") but the corresponding bpf_program starts out with
771 * autoload set to false.
772 */
773 if (sec_name[0] == '?') {
774 prog->autoload = false;
775 /* from now on forget there was ? in section name */
776 sec_name++;
777 } else {
778 prog->autoload = true;
779 }
780
781 prog->autoattach = true;
782
783 /* inherit object's log_level */
784 prog->log_level = obj->log_level;
785
786 prog->sec_name = strdup(sec_name);
787 if (!prog->sec_name)
788 goto errout;
789
790 prog->name = strdup(name);
791 if (!prog->name)
792 goto errout;
793
794 prog->insns = malloc(insn_data_sz);
795 if (!prog->insns)
796 goto errout;
797 memcpy(prog->insns, insn_data, insn_data_sz);
798
799 return 0;
800 errout:
801 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
802 bpf_program__exit(prog);
803 return -ENOMEM;
804 }
805
806 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)807 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
808 const char *sec_name, int sec_idx)
809 {
810 Elf_Data *symbols = obj->efile.symbols;
811 struct bpf_program *prog, *progs;
812 void *data = sec_data->d_buf;
813 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
814 int nr_progs, err, i;
815 const char *name;
816 Elf64_Sym *sym;
817
818 progs = obj->programs;
819 nr_progs = obj->nr_programs;
820 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
821
822 for (i = 0; i < nr_syms; i++) {
823 sym = elf_sym_by_idx(obj, i);
824
825 if (sym->st_shndx != sec_idx)
826 continue;
827 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
828 continue;
829
830 prog_sz = sym->st_size;
831 sec_off = sym->st_value;
832
833 name = elf_sym_str(obj, sym->st_name);
834 if (!name) {
835 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
836 sec_name, sec_off);
837 return -LIBBPF_ERRNO__FORMAT;
838 }
839
840 if (sec_off + prog_sz > sec_sz) {
841 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
842 sec_name, sec_off);
843 return -LIBBPF_ERRNO__FORMAT;
844 }
845
846 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
847 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
848 return -ENOTSUP;
849 }
850
851 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
852 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
853
854 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
855 if (!progs) {
856 /*
857 * In this case the original obj->programs
858 * is still valid, so don't need special treat for
859 * bpf_close_object().
860 */
861 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
862 sec_name, name);
863 return -ENOMEM;
864 }
865 obj->programs = progs;
866
867 prog = &progs[nr_progs];
868
869 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
870 sec_off, data + sec_off, prog_sz);
871 if (err)
872 return err;
873
874 /* if function is a global/weak symbol, but has restricted
875 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
876 * as static to enable more permissive BPF verification mode
877 * with more outside context available to BPF verifier
878 */
879 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
880 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
881 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
882 prog->mark_btf_static = true;
883
884 nr_progs++;
885 obj->nr_programs = nr_progs;
886 }
887
888 return 0;
889 }
890
891 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)892 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
893 {
894 struct btf_member *m;
895 int i;
896
897 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
898 if (btf_member_bit_offset(t, i) == bit_offset)
899 return m;
900 }
901
902 return NULL;
903 }
904
905 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)906 find_member_by_name(const struct btf *btf, const struct btf_type *t,
907 const char *name)
908 {
909 struct btf_member *m;
910 int i;
911
912 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
913 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
914 return m;
915 }
916
917 return NULL;
918 }
919
920 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
921 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
922 const char *name, __u32 kind);
923
924 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)925 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
926 const struct btf_type **type, __u32 *type_id,
927 const struct btf_type **vtype, __u32 *vtype_id,
928 const struct btf_member **data_member)
929 {
930 const struct btf_type *kern_type, *kern_vtype;
931 const struct btf_member *kern_data_member;
932 __s32 kern_vtype_id, kern_type_id;
933 __u32 i;
934
935 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
936 if (kern_type_id < 0) {
937 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
938 tname);
939 return kern_type_id;
940 }
941 kern_type = btf__type_by_id(btf, kern_type_id);
942
943 /* Find the corresponding "map_value" type that will be used
944 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
945 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
946 * btf_vmlinux.
947 */
948 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
949 tname, BTF_KIND_STRUCT);
950 if (kern_vtype_id < 0) {
951 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
952 STRUCT_OPS_VALUE_PREFIX, tname);
953 return kern_vtype_id;
954 }
955 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
956
957 /* Find "struct tcp_congestion_ops" from
958 * struct bpf_struct_ops_tcp_congestion_ops {
959 * [ ... ]
960 * struct tcp_congestion_ops data;
961 * }
962 */
963 kern_data_member = btf_members(kern_vtype);
964 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
965 if (kern_data_member->type == kern_type_id)
966 break;
967 }
968 if (i == btf_vlen(kern_vtype)) {
969 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
970 tname, STRUCT_OPS_VALUE_PREFIX, tname);
971 return -EINVAL;
972 }
973
974 *type = kern_type;
975 *type_id = kern_type_id;
976 *vtype = kern_vtype;
977 *vtype_id = kern_vtype_id;
978 *data_member = kern_data_member;
979
980 return 0;
981 }
982
bpf_map__is_struct_ops(const struct bpf_map * map)983 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
984 {
985 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
986 }
987
988 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)989 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
990 const struct btf *btf,
991 const struct btf *kern_btf)
992 {
993 const struct btf_member *member, *kern_member, *kern_data_member;
994 const struct btf_type *type, *kern_type, *kern_vtype;
995 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
996 struct bpf_struct_ops *st_ops;
997 void *data, *kern_data;
998 const char *tname;
999 int err;
1000
1001 st_ops = map->st_ops;
1002 type = st_ops->type;
1003 tname = st_ops->tname;
1004 err = find_struct_ops_kern_types(kern_btf, tname,
1005 &kern_type, &kern_type_id,
1006 &kern_vtype, &kern_vtype_id,
1007 &kern_data_member);
1008 if (err)
1009 return err;
1010
1011 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1012 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1013
1014 map->def.value_size = kern_vtype->size;
1015 map->btf_vmlinux_value_type_id = kern_vtype_id;
1016
1017 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1018 if (!st_ops->kern_vdata)
1019 return -ENOMEM;
1020
1021 data = st_ops->data;
1022 kern_data_off = kern_data_member->offset / 8;
1023 kern_data = st_ops->kern_vdata + kern_data_off;
1024
1025 member = btf_members(type);
1026 for (i = 0; i < btf_vlen(type); i++, member++) {
1027 const struct btf_type *mtype, *kern_mtype;
1028 __u32 mtype_id, kern_mtype_id;
1029 void *mdata, *kern_mdata;
1030 __s64 msize, kern_msize;
1031 __u32 moff, kern_moff;
1032 __u32 kern_member_idx;
1033 const char *mname;
1034
1035 mname = btf__name_by_offset(btf, member->name_off);
1036 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1037 if (!kern_member) {
1038 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1039 map->name, mname);
1040 return -ENOTSUP;
1041 }
1042
1043 kern_member_idx = kern_member - btf_members(kern_type);
1044 if (btf_member_bitfield_size(type, i) ||
1045 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1046 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1047 map->name, mname);
1048 return -ENOTSUP;
1049 }
1050
1051 moff = member->offset / 8;
1052 kern_moff = kern_member->offset / 8;
1053
1054 mdata = data + moff;
1055 kern_mdata = kern_data + kern_moff;
1056
1057 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1058 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1059 &kern_mtype_id);
1060 if (BTF_INFO_KIND(mtype->info) !=
1061 BTF_INFO_KIND(kern_mtype->info)) {
1062 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1063 map->name, mname, BTF_INFO_KIND(mtype->info),
1064 BTF_INFO_KIND(kern_mtype->info));
1065 return -ENOTSUP;
1066 }
1067
1068 if (btf_is_ptr(mtype)) {
1069 struct bpf_program *prog;
1070
1071 prog = st_ops->progs[i];
1072 if (!prog)
1073 continue;
1074
1075 kern_mtype = skip_mods_and_typedefs(kern_btf,
1076 kern_mtype->type,
1077 &kern_mtype_id);
1078
1079 /* mtype->type must be a func_proto which was
1080 * guaranteed in bpf_object__collect_st_ops_relos(),
1081 * so only check kern_mtype for func_proto here.
1082 */
1083 if (!btf_is_func_proto(kern_mtype)) {
1084 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1085 map->name, mname);
1086 return -ENOTSUP;
1087 }
1088
1089 prog->attach_btf_id = kern_type_id;
1090 prog->expected_attach_type = kern_member_idx;
1091
1092 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1093
1094 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1095 map->name, mname, prog->name, moff,
1096 kern_moff);
1097
1098 continue;
1099 }
1100
1101 msize = btf__resolve_size(btf, mtype_id);
1102 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1103 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1104 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1105 map->name, mname, (ssize_t)msize,
1106 (ssize_t)kern_msize);
1107 return -ENOTSUP;
1108 }
1109
1110 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1111 map->name, mname, (unsigned int)msize,
1112 moff, kern_moff);
1113 memcpy(kern_mdata, mdata, msize);
1114 }
1115
1116 return 0;
1117 }
1118
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1119 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1120 {
1121 struct bpf_map *map;
1122 size_t i;
1123 int err;
1124
1125 for (i = 0; i < obj->nr_maps; i++) {
1126 map = &obj->maps[i];
1127
1128 if (!bpf_map__is_struct_ops(map))
1129 continue;
1130
1131 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1132 obj->btf_vmlinux);
1133 if (err)
1134 return err;
1135 }
1136
1137 return 0;
1138 }
1139
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data,__u32 map_flags)1140 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1141 int shndx, Elf_Data *data, __u32 map_flags)
1142 {
1143 const struct btf_type *type, *datasec;
1144 const struct btf_var_secinfo *vsi;
1145 struct bpf_struct_ops *st_ops;
1146 const char *tname, *var_name;
1147 __s32 type_id, datasec_id;
1148 const struct btf *btf;
1149 struct bpf_map *map;
1150 __u32 i;
1151
1152 if (shndx == -1)
1153 return 0;
1154
1155 btf = obj->btf;
1156 datasec_id = btf__find_by_name_kind(btf, sec_name,
1157 BTF_KIND_DATASEC);
1158 if (datasec_id < 0) {
1159 pr_warn("struct_ops init: DATASEC %s not found\n",
1160 sec_name);
1161 return -EINVAL;
1162 }
1163
1164 datasec = btf__type_by_id(btf, datasec_id);
1165 vsi = btf_var_secinfos(datasec);
1166 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1167 type = btf__type_by_id(obj->btf, vsi->type);
1168 var_name = btf__name_by_offset(obj->btf, type->name_off);
1169
1170 type_id = btf__resolve_type(obj->btf, vsi->type);
1171 if (type_id < 0) {
1172 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1173 vsi->type, sec_name);
1174 return -EINVAL;
1175 }
1176
1177 type = btf__type_by_id(obj->btf, type_id);
1178 tname = btf__name_by_offset(obj->btf, type->name_off);
1179 if (!tname[0]) {
1180 pr_warn("struct_ops init: anonymous type is not supported\n");
1181 return -ENOTSUP;
1182 }
1183 if (!btf_is_struct(type)) {
1184 pr_warn("struct_ops init: %s is not a struct\n", tname);
1185 return -EINVAL;
1186 }
1187
1188 map = bpf_object__add_map(obj);
1189 if (IS_ERR(map))
1190 return PTR_ERR(map);
1191
1192 map->sec_idx = shndx;
1193 map->sec_offset = vsi->offset;
1194 map->name = strdup(var_name);
1195 if (!map->name)
1196 return -ENOMEM;
1197
1198 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1199 map->def.key_size = sizeof(int);
1200 map->def.value_size = type->size;
1201 map->def.max_entries = 1;
1202 map->def.map_flags = map_flags;
1203
1204 map->st_ops = calloc(1, sizeof(*map->st_ops));
1205 if (!map->st_ops)
1206 return -ENOMEM;
1207 st_ops = map->st_ops;
1208 st_ops->data = malloc(type->size);
1209 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1210 st_ops->kern_func_off = malloc(btf_vlen(type) *
1211 sizeof(*st_ops->kern_func_off));
1212 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1213 return -ENOMEM;
1214
1215 if (vsi->offset + type->size > data->d_size) {
1216 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1217 var_name, sec_name);
1218 return -EINVAL;
1219 }
1220
1221 memcpy(st_ops->data,
1222 data->d_buf + vsi->offset,
1223 type->size);
1224 st_ops->tname = tname;
1225 st_ops->type = type;
1226 st_ops->type_id = type_id;
1227
1228 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1229 tname, type_id, var_name, vsi->offset);
1230 }
1231
1232 return 0;
1233 }
1234
bpf_object_init_struct_ops(struct bpf_object * obj)1235 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1236 {
1237 int err;
1238
1239 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1240 obj->efile.st_ops_data, 0);
1241 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1242 obj->efile.st_ops_link_shndx,
1243 obj->efile.st_ops_link_data,
1244 BPF_F_LINK);
1245 return err;
1246 }
1247
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1248 static struct bpf_object *bpf_object__new(const char *path,
1249 const void *obj_buf,
1250 size_t obj_buf_sz,
1251 const char *obj_name)
1252 {
1253 struct bpf_object *obj;
1254 char *end;
1255
1256 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1257 if (!obj) {
1258 pr_warn("alloc memory failed for %s\n", path);
1259 return ERR_PTR(-ENOMEM);
1260 }
1261
1262 strcpy(obj->path, path);
1263 if (obj_name) {
1264 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1265 } else {
1266 /* Using basename() GNU version which doesn't modify arg. */
1267 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1268 end = strchr(obj->name, '.');
1269 if (end)
1270 *end = 0;
1271 }
1272
1273 obj->efile.fd = -1;
1274 /*
1275 * Caller of this function should also call
1276 * bpf_object__elf_finish() after data collection to return
1277 * obj_buf to user. If not, we should duplicate the buffer to
1278 * avoid user freeing them before elf finish.
1279 */
1280 obj->efile.obj_buf = obj_buf;
1281 obj->efile.obj_buf_sz = obj_buf_sz;
1282 obj->efile.btf_maps_shndx = -1;
1283 obj->efile.st_ops_shndx = -1;
1284 obj->efile.st_ops_link_shndx = -1;
1285 obj->kconfig_map_idx = -1;
1286
1287 obj->kern_version = get_kernel_version();
1288 obj->loaded = false;
1289
1290 return obj;
1291 }
1292
bpf_object__elf_finish(struct bpf_object * obj)1293 static void bpf_object__elf_finish(struct bpf_object *obj)
1294 {
1295 if (!obj->efile.elf)
1296 return;
1297
1298 elf_end(obj->efile.elf);
1299 obj->efile.elf = NULL;
1300 obj->efile.symbols = NULL;
1301 obj->efile.st_ops_data = NULL;
1302 obj->efile.st_ops_link_data = NULL;
1303
1304 zfree(&obj->efile.secs);
1305 obj->efile.sec_cnt = 0;
1306 zclose(obj->efile.fd);
1307 obj->efile.obj_buf = NULL;
1308 obj->efile.obj_buf_sz = 0;
1309 }
1310
bpf_object__elf_init(struct bpf_object * obj)1311 static int bpf_object__elf_init(struct bpf_object *obj)
1312 {
1313 Elf64_Ehdr *ehdr;
1314 int err = 0;
1315 Elf *elf;
1316
1317 if (obj->efile.elf) {
1318 pr_warn("elf: init internal error\n");
1319 return -LIBBPF_ERRNO__LIBELF;
1320 }
1321
1322 if (obj->efile.obj_buf_sz > 0) {
1323 /* obj_buf should have been validated by bpf_object__open_mem(). */
1324 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1325 } else {
1326 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1327 if (obj->efile.fd < 0) {
1328 char errmsg[STRERR_BUFSIZE], *cp;
1329
1330 err = -errno;
1331 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1332 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1333 return err;
1334 }
1335
1336 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1337 }
1338
1339 if (!elf) {
1340 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1341 err = -LIBBPF_ERRNO__LIBELF;
1342 goto errout;
1343 }
1344
1345 obj->efile.elf = elf;
1346
1347 if (elf_kind(elf) != ELF_K_ELF) {
1348 err = -LIBBPF_ERRNO__FORMAT;
1349 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1350 goto errout;
1351 }
1352
1353 if (gelf_getclass(elf) != ELFCLASS64) {
1354 err = -LIBBPF_ERRNO__FORMAT;
1355 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1356 goto errout;
1357 }
1358
1359 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1360 if (!obj->efile.ehdr) {
1361 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1362 err = -LIBBPF_ERRNO__FORMAT;
1363 goto errout;
1364 }
1365
1366 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1367 pr_warn("elf: failed to get section names section index for %s: %s\n",
1368 obj->path, elf_errmsg(-1));
1369 err = -LIBBPF_ERRNO__FORMAT;
1370 goto errout;
1371 }
1372
1373 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1374 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1375 pr_warn("elf: failed to get section names strings from %s: %s\n",
1376 obj->path, elf_errmsg(-1));
1377 err = -LIBBPF_ERRNO__FORMAT;
1378 goto errout;
1379 }
1380
1381 /* Old LLVM set e_machine to EM_NONE */
1382 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1383 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1384 err = -LIBBPF_ERRNO__FORMAT;
1385 goto errout;
1386 }
1387
1388 return 0;
1389 errout:
1390 bpf_object__elf_finish(obj);
1391 return err;
1392 }
1393
bpf_object__check_endianness(struct bpf_object * obj)1394 static int bpf_object__check_endianness(struct bpf_object *obj)
1395 {
1396 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1397 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1398 return 0;
1399 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1400 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1401 return 0;
1402 #else
1403 # error "Unrecognized __BYTE_ORDER__"
1404 #endif
1405 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1406 return -LIBBPF_ERRNO__ENDIAN;
1407 }
1408
1409 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1410 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1411 {
1412 if (!data) {
1413 pr_warn("invalid license section in %s\n", obj->path);
1414 return -LIBBPF_ERRNO__FORMAT;
1415 }
1416 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1417 * go over allowed ELF data section buffer
1418 */
1419 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1420 pr_debug("license of %s is %s\n", obj->path, obj->license);
1421 return 0;
1422 }
1423
1424 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1425 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1426 {
1427 __u32 kver;
1428
1429 if (!data || size != sizeof(kver)) {
1430 pr_warn("invalid kver section in %s\n", obj->path);
1431 return -LIBBPF_ERRNO__FORMAT;
1432 }
1433 memcpy(&kver, data, sizeof(kver));
1434 obj->kern_version = kver;
1435 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1436 return 0;
1437 }
1438
bpf_map_type__is_map_in_map(enum bpf_map_type type)1439 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1440 {
1441 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1442 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1443 return true;
1444 return false;
1445 }
1446
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1447 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1448 {
1449 Elf_Data *data;
1450 Elf_Scn *scn;
1451
1452 if (!name)
1453 return -EINVAL;
1454
1455 scn = elf_sec_by_name(obj, name);
1456 data = elf_sec_data(obj, scn);
1457 if (data) {
1458 *size = data->d_size;
1459 return 0; /* found it */
1460 }
1461
1462 return -ENOENT;
1463 }
1464
find_elf_var_sym(const struct bpf_object * obj,const char * name)1465 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1466 {
1467 Elf_Data *symbols = obj->efile.symbols;
1468 const char *sname;
1469 size_t si;
1470
1471 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1472 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1473
1474 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1475 continue;
1476
1477 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1478 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1479 continue;
1480
1481 sname = elf_sym_str(obj, sym->st_name);
1482 if (!sname) {
1483 pr_warn("failed to get sym name string for var %s\n", name);
1484 return ERR_PTR(-EIO);
1485 }
1486 if (strcmp(name, sname) == 0)
1487 return sym;
1488 }
1489
1490 return ERR_PTR(-ENOENT);
1491 }
1492
bpf_object__add_map(struct bpf_object * obj)1493 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1494 {
1495 struct bpf_map *map;
1496 int err;
1497
1498 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1499 sizeof(*obj->maps), obj->nr_maps + 1);
1500 if (err)
1501 return ERR_PTR(err);
1502
1503 map = &obj->maps[obj->nr_maps++];
1504 map->obj = obj;
1505 map->fd = -1;
1506 map->inner_map_fd = -1;
1507 map->autocreate = true;
1508
1509 return map;
1510 }
1511
bpf_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1512 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1513 {
1514 const long page_sz = sysconf(_SC_PAGE_SIZE);
1515 size_t map_sz;
1516
1517 map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1518 map_sz = roundup(map_sz, page_sz);
1519 return map_sz;
1520 }
1521
bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1522 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1523 {
1524 void *mmaped;
1525
1526 if (!map->mmaped)
1527 return -EINVAL;
1528
1529 if (old_sz == new_sz)
1530 return 0;
1531
1532 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1533 if (mmaped == MAP_FAILED)
1534 return -errno;
1535
1536 memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1537 munmap(map->mmaped, old_sz);
1538 map->mmaped = mmaped;
1539 return 0;
1540 }
1541
internal_map_name(struct bpf_object * obj,const char * real_name)1542 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1543 {
1544 char map_name[BPF_OBJ_NAME_LEN], *p;
1545 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1546
1547 /* This is one of the more confusing parts of libbpf for various
1548 * reasons, some of which are historical. The original idea for naming
1549 * internal names was to include as much of BPF object name prefix as
1550 * possible, so that it can be distinguished from similar internal
1551 * maps of a different BPF object.
1552 * As an example, let's say we have bpf_object named 'my_object_name'
1553 * and internal map corresponding to '.rodata' ELF section. The final
1554 * map name advertised to user and to the kernel will be
1555 * 'my_objec.rodata', taking first 8 characters of object name and
1556 * entire 7 characters of '.rodata'.
1557 * Somewhat confusingly, if internal map ELF section name is shorter
1558 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1559 * for the suffix, even though we only have 4 actual characters, and
1560 * resulting map will be called 'my_objec.bss', not even using all 15
1561 * characters allowed by the kernel. Oh well, at least the truncated
1562 * object name is somewhat consistent in this case. But if the map
1563 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1564 * (8 chars) and thus will be left with only first 7 characters of the
1565 * object name ('my_obje'). Happy guessing, user, that the final map
1566 * name will be "my_obje.kconfig".
1567 * Now, with libbpf starting to support arbitrarily named .rodata.*
1568 * and .data.* data sections, it's possible that ELF section name is
1569 * longer than allowed 15 chars, so we now need to be careful to take
1570 * only up to 15 first characters of ELF name, taking no BPF object
1571 * name characters at all. So '.rodata.abracadabra' will result in
1572 * '.rodata.abracad' kernel and user-visible name.
1573 * We need to keep this convoluted logic intact for .data, .bss and
1574 * .rodata maps, but for new custom .data.custom and .rodata.custom
1575 * maps we use their ELF names as is, not prepending bpf_object name
1576 * in front. We still need to truncate them to 15 characters for the
1577 * kernel. Full name can be recovered for such maps by using DATASEC
1578 * BTF type associated with such map's value type, though.
1579 */
1580 if (sfx_len >= BPF_OBJ_NAME_LEN)
1581 sfx_len = BPF_OBJ_NAME_LEN - 1;
1582
1583 /* if there are two or more dots in map name, it's a custom dot map */
1584 if (strchr(real_name + 1, '.') != NULL)
1585 pfx_len = 0;
1586 else
1587 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1588
1589 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1590 sfx_len, real_name);
1591
1592 /* sanitise map name to characters allowed by kernel */
1593 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1594 if (!isalnum(*p) && *p != '_' && *p != '.')
1595 *p = '_';
1596
1597 return strdup(map_name);
1598 }
1599
1600 static int
1601 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1602
1603 /* Internal BPF map is mmap()'able only if at least one of corresponding
1604 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1605 * variable and it's not marked as __hidden (which turns it into, effectively,
1606 * a STATIC variable).
1607 */
map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1608 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1609 {
1610 const struct btf_type *t, *vt;
1611 struct btf_var_secinfo *vsi;
1612 int i, n;
1613
1614 if (!map->btf_value_type_id)
1615 return false;
1616
1617 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1618 if (!btf_is_datasec(t))
1619 return false;
1620
1621 vsi = btf_var_secinfos(t);
1622 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1623 vt = btf__type_by_id(obj->btf, vsi->type);
1624 if (!btf_is_var(vt))
1625 continue;
1626
1627 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1628 return true;
1629 }
1630
1631 return false;
1632 }
1633
1634 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1635 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1636 const char *real_name, int sec_idx, void *data, size_t data_sz)
1637 {
1638 struct bpf_map_def *def;
1639 struct bpf_map *map;
1640 size_t mmap_sz;
1641 int err;
1642
1643 map = bpf_object__add_map(obj);
1644 if (IS_ERR(map))
1645 return PTR_ERR(map);
1646
1647 map->libbpf_type = type;
1648 map->sec_idx = sec_idx;
1649 map->sec_offset = 0;
1650 map->real_name = strdup(real_name);
1651 map->name = internal_map_name(obj, real_name);
1652 if (!map->real_name || !map->name) {
1653 zfree(&map->real_name);
1654 zfree(&map->name);
1655 return -ENOMEM;
1656 }
1657
1658 def = &map->def;
1659 def->type = BPF_MAP_TYPE_ARRAY;
1660 def->key_size = sizeof(int);
1661 def->value_size = data_sz;
1662 def->max_entries = 1;
1663 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1664 ? BPF_F_RDONLY_PROG : 0;
1665
1666 /* failures are fine because of maps like .rodata.str1.1 */
1667 (void) map_fill_btf_type_info(obj, map);
1668
1669 if (map_is_mmapable(obj, map))
1670 def->map_flags |= BPF_F_MMAPABLE;
1671
1672 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1673 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1674
1675 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1676 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1677 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1678 if (map->mmaped == MAP_FAILED) {
1679 err = -errno;
1680 map->mmaped = NULL;
1681 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1682 map->name, err);
1683 zfree(&map->real_name);
1684 zfree(&map->name);
1685 return err;
1686 }
1687
1688 if (data)
1689 memcpy(map->mmaped, data, data_sz);
1690
1691 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1692 return 0;
1693 }
1694
bpf_object__init_global_data_maps(struct bpf_object * obj)1695 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1696 {
1697 struct elf_sec_desc *sec_desc;
1698 const char *sec_name;
1699 int err = 0, sec_idx;
1700
1701 /*
1702 * Populate obj->maps with libbpf internal maps.
1703 */
1704 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1705 sec_desc = &obj->efile.secs[sec_idx];
1706
1707 /* Skip recognized sections with size 0. */
1708 if (!sec_desc->data || sec_desc->data->d_size == 0)
1709 continue;
1710
1711 switch (sec_desc->sec_type) {
1712 case SEC_DATA:
1713 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1714 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1715 sec_name, sec_idx,
1716 sec_desc->data->d_buf,
1717 sec_desc->data->d_size);
1718 break;
1719 case SEC_RODATA:
1720 obj->has_rodata = true;
1721 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1722 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1723 sec_name, sec_idx,
1724 sec_desc->data->d_buf,
1725 sec_desc->data->d_size);
1726 break;
1727 case SEC_BSS:
1728 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1729 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1730 sec_name, sec_idx,
1731 NULL,
1732 sec_desc->data->d_size);
1733 break;
1734 default:
1735 /* skip */
1736 break;
1737 }
1738 if (err)
1739 return err;
1740 }
1741 return 0;
1742 }
1743
1744
find_extern_by_name(const struct bpf_object * obj,const void * name)1745 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1746 const void *name)
1747 {
1748 int i;
1749
1750 for (i = 0; i < obj->nr_extern; i++) {
1751 if (strcmp(obj->externs[i].name, name) == 0)
1752 return &obj->externs[i];
1753 }
1754 return NULL;
1755 }
1756
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)1757 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1758 char value)
1759 {
1760 switch (ext->kcfg.type) {
1761 case KCFG_BOOL:
1762 if (value == 'm') {
1763 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1764 ext->name, value);
1765 return -EINVAL;
1766 }
1767 *(bool *)ext_val = value == 'y' ? true : false;
1768 break;
1769 case KCFG_TRISTATE:
1770 if (value == 'y')
1771 *(enum libbpf_tristate *)ext_val = TRI_YES;
1772 else if (value == 'm')
1773 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1774 else /* value == 'n' */
1775 *(enum libbpf_tristate *)ext_val = TRI_NO;
1776 break;
1777 case KCFG_CHAR:
1778 *(char *)ext_val = value;
1779 break;
1780 case KCFG_UNKNOWN:
1781 case KCFG_INT:
1782 case KCFG_CHAR_ARR:
1783 default:
1784 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1785 ext->name, value);
1786 return -EINVAL;
1787 }
1788 ext->is_set = true;
1789 return 0;
1790 }
1791
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)1792 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1793 const char *value)
1794 {
1795 size_t len;
1796
1797 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1798 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1799 ext->name, value);
1800 return -EINVAL;
1801 }
1802
1803 len = strlen(value);
1804 if (value[len - 1] != '"') {
1805 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1806 ext->name, value);
1807 return -EINVAL;
1808 }
1809
1810 /* strip quotes */
1811 len -= 2;
1812 if (len >= ext->kcfg.sz) {
1813 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1814 ext->name, value, len, ext->kcfg.sz - 1);
1815 len = ext->kcfg.sz - 1;
1816 }
1817 memcpy(ext_val, value + 1, len);
1818 ext_val[len] = '\0';
1819 ext->is_set = true;
1820 return 0;
1821 }
1822
parse_u64(const char * value,__u64 * res)1823 static int parse_u64(const char *value, __u64 *res)
1824 {
1825 char *value_end;
1826 int err;
1827
1828 errno = 0;
1829 *res = strtoull(value, &value_end, 0);
1830 if (errno) {
1831 err = -errno;
1832 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1833 return err;
1834 }
1835 if (*value_end) {
1836 pr_warn("failed to parse '%s' as integer completely\n", value);
1837 return -EINVAL;
1838 }
1839 return 0;
1840 }
1841
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)1842 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1843 {
1844 int bit_sz = ext->kcfg.sz * 8;
1845
1846 if (ext->kcfg.sz == 8)
1847 return true;
1848
1849 /* Validate that value stored in u64 fits in integer of `ext->sz`
1850 * bytes size without any loss of information. If the target integer
1851 * is signed, we rely on the following limits of integer type of
1852 * Y bits and subsequent transformation:
1853 *
1854 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1855 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1856 * 0 <= X + 2^(Y-1) < 2^Y
1857 *
1858 * For unsigned target integer, check that all the (64 - Y) bits are
1859 * zero.
1860 */
1861 if (ext->kcfg.is_signed)
1862 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1863 else
1864 return (v >> bit_sz) == 0;
1865 }
1866
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)1867 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1868 __u64 value)
1869 {
1870 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1871 ext->kcfg.type != KCFG_BOOL) {
1872 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1873 ext->name, (unsigned long long)value);
1874 return -EINVAL;
1875 }
1876 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1877 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1878 ext->name, (unsigned long long)value);
1879 return -EINVAL;
1880
1881 }
1882 if (!is_kcfg_value_in_range(ext, value)) {
1883 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1884 ext->name, (unsigned long long)value, ext->kcfg.sz);
1885 return -ERANGE;
1886 }
1887 switch (ext->kcfg.sz) {
1888 case 1:
1889 *(__u8 *)ext_val = value;
1890 break;
1891 case 2:
1892 *(__u16 *)ext_val = value;
1893 break;
1894 case 4:
1895 *(__u32 *)ext_val = value;
1896 break;
1897 case 8:
1898 *(__u64 *)ext_val = value;
1899 break;
1900 default:
1901 return -EINVAL;
1902 }
1903 ext->is_set = true;
1904 return 0;
1905 }
1906
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)1907 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1908 char *buf, void *data)
1909 {
1910 struct extern_desc *ext;
1911 char *sep, *value;
1912 int len, err = 0;
1913 void *ext_val;
1914 __u64 num;
1915
1916 if (!str_has_pfx(buf, "CONFIG_"))
1917 return 0;
1918
1919 sep = strchr(buf, '=');
1920 if (!sep) {
1921 pr_warn("failed to parse '%s': no separator\n", buf);
1922 return -EINVAL;
1923 }
1924
1925 /* Trim ending '\n' */
1926 len = strlen(buf);
1927 if (buf[len - 1] == '\n')
1928 buf[len - 1] = '\0';
1929 /* Split on '=' and ensure that a value is present. */
1930 *sep = '\0';
1931 if (!sep[1]) {
1932 *sep = '=';
1933 pr_warn("failed to parse '%s': no value\n", buf);
1934 return -EINVAL;
1935 }
1936
1937 ext = find_extern_by_name(obj, buf);
1938 if (!ext || ext->is_set)
1939 return 0;
1940
1941 ext_val = data + ext->kcfg.data_off;
1942 value = sep + 1;
1943
1944 switch (*value) {
1945 case 'y': case 'n': case 'm':
1946 err = set_kcfg_value_tri(ext, ext_val, *value);
1947 break;
1948 case '"':
1949 err = set_kcfg_value_str(ext, ext_val, value);
1950 break;
1951 default:
1952 /* assume integer */
1953 err = parse_u64(value, &num);
1954 if (err) {
1955 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1956 return err;
1957 }
1958 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1959 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1960 return -EINVAL;
1961 }
1962 err = set_kcfg_value_num(ext, ext_val, num);
1963 break;
1964 }
1965 if (err)
1966 return err;
1967 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1968 return 0;
1969 }
1970
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)1971 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1972 {
1973 char buf[PATH_MAX];
1974 struct utsname uts;
1975 int len, err = 0;
1976 gzFile file;
1977
1978 uname(&uts);
1979 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1980 if (len < 0)
1981 return -EINVAL;
1982 else if (len >= PATH_MAX)
1983 return -ENAMETOOLONG;
1984
1985 /* gzopen also accepts uncompressed files. */
1986 file = gzopen(buf, "re");
1987 if (!file)
1988 file = gzopen("/proc/config.gz", "re");
1989
1990 if (!file) {
1991 pr_warn("failed to open system Kconfig\n");
1992 return -ENOENT;
1993 }
1994
1995 while (gzgets(file, buf, sizeof(buf))) {
1996 err = bpf_object__process_kconfig_line(obj, buf, data);
1997 if (err) {
1998 pr_warn("error parsing system Kconfig line '%s': %d\n",
1999 buf, err);
2000 goto out;
2001 }
2002 }
2003
2004 out:
2005 gzclose(file);
2006 return err;
2007 }
2008
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2009 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2010 const char *config, void *data)
2011 {
2012 char buf[PATH_MAX];
2013 int err = 0;
2014 FILE *file;
2015
2016 file = fmemopen((void *)config, strlen(config), "r");
2017 if (!file) {
2018 err = -errno;
2019 pr_warn("failed to open in-memory Kconfig: %d\n", err);
2020 return err;
2021 }
2022
2023 while (fgets(buf, sizeof(buf), file)) {
2024 err = bpf_object__process_kconfig_line(obj, buf, data);
2025 if (err) {
2026 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2027 buf, err);
2028 break;
2029 }
2030 }
2031
2032 fclose(file);
2033 return err;
2034 }
2035
bpf_object__init_kconfig_map(struct bpf_object * obj)2036 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2037 {
2038 struct extern_desc *last_ext = NULL, *ext;
2039 size_t map_sz;
2040 int i, err;
2041
2042 for (i = 0; i < obj->nr_extern; i++) {
2043 ext = &obj->externs[i];
2044 if (ext->type == EXT_KCFG)
2045 last_ext = ext;
2046 }
2047
2048 if (!last_ext)
2049 return 0;
2050
2051 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2052 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2053 ".kconfig", obj->efile.symbols_shndx,
2054 NULL, map_sz);
2055 if (err)
2056 return err;
2057
2058 obj->kconfig_map_idx = obj->nr_maps - 1;
2059
2060 return 0;
2061 }
2062
2063 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2064 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2065 {
2066 const struct btf_type *t = btf__type_by_id(btf, id);
2067
2068 if (res_id)
2069 *res_id = id;
2070
2071 while (btf_is_mod(t) || btf_is_typedef(t)) {
2072 if (res_id)
2073 *res_id = t->type;
2074 t = btf__type_by_id(btf, t->type);
2075 }
2076
2077 return t;
2078 }
2079
2080 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2081 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2082 {
2083 const struct btf_type *t;
2084
2085 t = skip_mods_and_typedefs(btf, id, NULL);
2086 if (!btf_is_ptr(t))
2087 return NULL;
2088
2089 t = skip_mods_and_typedefs(btf, t->type, res_id);
2090
2091 return btf_is_func_proto(t) ? t : NULL;
2092 }
2093
__btf_kind_str(__u16 kind)2094 static const char *__btf_kind_str(__u16 kind)
2095 {
2096 switch (kind) {
2097 case BTF_KIND_UNKN: return "void";
2098 case BTF_KIND_INT: return "int";
2099 case BTF_KIND_PTR: return "ptr";
2100 case BTF_KIND_ARRAY: return "array";
2101 case BTF_KIND_STRUCT: return "struct";
2102 case BTF_KIND_UNION: return "union";
2103 case BTF_KIND_ENUM: return "enum";
2104 case BTF_KIND_FWD: return "fwd";
2105 case BTF_KIND_TYPEDEF: return "typedef";
2106 case BTF_KIND_VOLATILE: return "volatile";
2107 case BTF_KIND_CONST: return "const";
2108 case BTF_KIND_RESTRICT: return "restrict";
2109 case BTF_KIND_FUNC: return "func";
2110 case BTF_KIND_FUNC_PROTO: return "func_proto";
2111 case BTF_KIND_VAR: return "var";
2112 case BTF_KIND_DATASEC: return "datasec";
2113 case BTF_KIND_FLOAT: return "float";
2114 case BTF_KIND_DECL_TAG: return "decl_tag";
2115 case BTF_KIND_TYPE_TAG: return "type_tag";
2116 case BTF_KIND_ENUM64: return "enum64";
2117 default: return "unknown";
2118 }
2119 }
2120
btf_kind_str(const struct btf_type * t)2121 const char *btf_kind_str(const struct btf_type *t)
2122 {
2123 return __btf_kind_str(btf_kind(t));
2124 }
2125
2126 /*
2127 * Fetch integer attribute of BTF map definition. Such attributes are
2128 * represented using a pointer to an array, in which dimensionality of array
2129 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2130 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2131 * type definition, while using only sizeof(void *) space in ELF data section.
2132 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2133 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2134 const struct btf_member *m, __u32 *res)
2135 {
2136 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2137 const char *name = btf__name_by_offset(btf, m->name_off);
2138 const struct btf_array *arr_info;
2139 const struct btf_type *arr_t;
2140
2141 if (!btf_is_ptr(t)) {
2142 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2143 map_name, name, btf_kind_str(t));
2144 return false;
2145 }
2146
2147 arr_t = btf__type_by_id(btf, t->type);
2148 if (!arr_t) {
2149 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2150 map_name, name, t->type);
2151 return false;
2152 }
2153 if (!btf_is_array(arr_t)) {
2154 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2155 map_name, name, btf_kind_str(arr_t));
2156 return false;
2157 }
2158 arr_info = btf_array(arr_t);
2159 *res = arr_info->nelems;
2160 return true;
2161 }
2162
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2163 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2164 {
2165 int len;
2166
2167 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2168 if (len < 0)
2169 return -EINVAL;
2170 if (len >= buf_sz)
2171 return -ENAMETOOLONG;
2172
2173 return 0;
2174 }
2175
build_map_pin_path(struct bpf_map * map,const char * path)2176 static int build_map_pin_path(struct bpf_map *map, const char *path)
2177 {
2178 char buf[PATH_MAX];
2179 int err;
2180
2181 if (!path)
2182 path = "/sys/fs/bpf";
2183
2184 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2185 if (err)
2186 return err;
2187
2188 return bpf_map__set_pin_path(map, buf);
2189 }
2190
2191 /* should match definition in bpf_helpers.h */
2192 enum libbpf_pin_type {
2193 LIBBPF_PIN_NONE,
2194 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2195 LIBBPF_PIN_BY_NAME,
2196 };
2197
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2198 int parse_btf_map_def(const char *map_name, struct btf *btf,
2199 const struct btf_type *def_t, bool strict,
2200 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2201 {
2202 const struct btf_type *t;
2203 const struct btf_member *m;
2204 bool is_inner = inner_def == NULL;
2205 int vlen, i;
2206
2207 vlen = btf_vlen(def_t);
2208 m = btf_members(def_t);
2209 for (i = 0; i < vlen; i++, m++) {
2210 const char *name = btf__name_by_offset(btf, m->name_off);
2211
2212 if (!name) {
2213 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2214 return -EINVAL;
2215 }
2216 if (strcmp(name, "type") == 0) {
2217 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2218 return -EINVAL;
2219 map_def->parts |= MAP_DEF_MAP_TYPE;
2220 } else if (strcmp(name, "max_entries") == 0) {
2221 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2222 return -EINVAL;
2223 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2224 } else if (strcmp(name, "map_flags") == 0) {
2225 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2226 return -EINVAL;
2227 map_def->parts |= MAP_DEF_MAP_FLAGS;
2228 } else if (strcmp(name, "numa_node") == 0) {
2229 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2230 return -EINVAL;
2231 map_def->parts |= MAP_DEF_NUMA_NODE;
2232 } else if (strcmp(name, "key_size") == 0) {
2233 __u32 sz;
2234
2235 if (!get_map_field_int(map_name, btf, m, &sz))
2236 return -EINVAL;
2237 if (map_def->key_size && map_def->key_size != sz) {
2238 pr_warn("map '%s': conflicting key size %u != %u.\n",
2239 map_name, map_def->key_size, sz);
2240 return -EINVAL;
2241 }
2242 map_def->key_size = sz;
2243 map_def->parts |= MAP_DEF_KEY_SIZE;
2244 } else if (strcmp(name, "key") == 0) {
2245 __s64 sz;
2246
2247 t = btf__type_by_id(btf, m->type);
2248 if (!t) {
2249 pr_warn("map '%s': key type [%d] not found.\n",
2250 map_name, m->type);
2251 return -EINVAL;
2252 }
2253 if (!btf_is_ptr(t)) {
2254 pr_warn("map '%s': key spec is not PTR: %s.\n",
2255 map_name, btf_kind_str(t));
2256 return -EINVAL;
2257 }
2258 sz = btf__resolve_size(btf, t->type);
2259 if (sz < 0) {
2260 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2261 map_name, t->type, (ssize_t)sz);
2262 return sz;
2263 }
2264 if (map_def->key_size && map_def->key_size != sz) {
2265 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2266 map_name, map_def->key_size, (ssize_t)sz);
2267 return -EINVAL;
2268 }
2269 map_def->key_size = sz;
2270 map_def->key_type_id = t->type;
2271 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2272 } else if (strcmp(name, "value_size") == 0) {
2273 __u32 sz;
2274
2275 if (!get_map_field_int(map_name, btf, m, &sz))
2276 return -EINVAL;
2277 if (map_def->value_size && map_def->value_size != sz) {
2278 pr_warn("map '%s': conflicting value size %u != %u.\n",
2279 map_name, map_def->value_size, sz);
2280 return -EINVAL;
2281 }
2282 map_def->value_size = sz;
2283 map_def->parts |= MAP_DEF_VALUE_SIZE;
2284 } else if (strcmp(name, "value") == 0) {
2285 __s64 sz;
2286
2287 t = btf__type_by_id(btf, m->type);
2288 if (!t) {
2289 pr_warn("map '%s': value type [%d] not found.\n",
2290 map_name, m->type);
2291 return -EINVAL;
2292 }
2293 if (!btf_is_ptr(t)) {
2294 pr_warn("map '%s': value spec is not PTR: %s.\n",
2295 map_name, btf_kind_str(t));
2296 return -EINVAL;
2297 }
2298 sz = btf__resolve_size(btf, t->type);
2299 if (sz < 0) {
2300 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2301 map_name, t->type, (ssize_t)sz);
2302 return sz;
2303 }
2304 if (map_def->value_size && map_def->value_size != sz) {
2305 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2306 map_name, map_def->value_size, (ssize_t)sz);
2307 return -EINVAL;
2308 }
2309 map_def->value_size = sz;
2310 map_def->value_type_id = t->type;
2311 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2312 }
2313 else if (strcmp(name, "values") == 0) {
2314 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2315 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2316 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2317 char inner_map_name[128];
2318 int err;
2319
2320 if (is_inner) {
2321 pr_warn("map '%s': multi-level inner maps not supported.\n",
2322 map_name);
2323 return -ENOTSUP;
2324 }
2325 if (i != vlen - 1) {
2326 pr_warn("map '%s': '%s' member should be last.\n",
2327 map_name, name);
2328 return -EINVAL;
2329 }
2330 if (!is_map_in_map && !is_prog_array) {
2331 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2332 map_name);
2333 return -ENOTSUP;
2334 }
2335 if (map_def->value_size && map_def->value_size != 4) {
2336 pr_warn("map '%s': conflicting value size %u != 4.\n",
2337 map_name, map_def->value_size);
2338 return -EINVAL;
2339 }
2340 map_def->value_size = 4;
2341 t = btf__type_by_id(btf, m->type);
2342 if (!t) {
2343 pr_warn("map '%s': %s type [%d] not found.\n",
2344 map_name, desc, m->type);
2345 return -EINVAL;
2346 }
2347 if (!btf_is_array(t) || btf_array(t)->nelems) {
2348 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2349 map_name, desc);
2350 return -EINVAL;
2351 }
2352 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2353 if (!btf_is_ptr(t)) {
2354 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2355 map_name, desc, btf_kind_str(t));
2356 return -EINVAL;
2357 }
2358 t = skip_mods_and_typedefs(btf, t->type, NULL);
2359 if (is_prog_array) {
2360 if (!btf_is_func_proto(t)) {
2361 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2362 map_name, btf_kind_str(t));
2363 return -EINVAL;
2364 }
2365 continue;
2366 }
2367 if (!btf_is_struct(t)) {
2368 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2369 map_name, btf_kind_str(t));
2370 return -EINVAL;
2371 }
2372
2373 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2374 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2375 if (err)
2376 return err;
2377
2378 map_def->parts |= MAP_DEF_INNER_MAP;
2379 } else if (strcmp(name, "pinning") == 0) {
2380 __u32 val;
2381
2382 if (is_inner) {
2383 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2384 return -EINVAL;
2385 }
2386 if (!get_map_field_int(map_name, btf, m, &val))
2387 return -EINVAL;
2388 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2389 pr_warn("map '%s': invalid pinning value %u.\n",
2390 map_name, val);
2391 return -EINVAL;
2392 }
2393 map_def->pinning = val;
2394 map_def->parts |= MAP_DEF_PINNING;
2395 } else if (strcmp(name, "map_extra") == 0) {
2396 __u32 map_extra;
2397
2398 if (!get_map_field_int(map_name, btf, m, &map_extra))
2399 return -EINVAL;
2400 map_def->map_extra = map_extra;
2401 map_def->parts |= MAP_DEF_MAP_EXTRA;
2402 } else {
2403 if (strict) {
2404 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2405 return -ENOTSUP;
2406 }
2407 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2408 }
2409 }
2410
2411 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2412 pr_warn("map '%s': map type isn't specified.\n", map_name);
2413 return -EINVAL;
2414 }
2415
2416 return 0;
2417 }
2418
adjust_ringbuf_sz(size_t sz)2419 static size_t adjust_ringbuf_sz(size_t sz)
2420 {
2421 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2422 __u32 mul;
2423
2424 /* if user forgot to set any size, make sure they see error */
2425 if (sz == 0)
2426 return 0;
2427 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2428 * a power-of-2 multiple of kernel's page size. If user diligently
2429 * satisified these conditions, pass the size through.
2430 */
2431 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2432 return sz;
2433
2434 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2435 * user-set size to satisfy both user size request and kernel
2436 * requirements and substitute correct max_entries for map creation.
2437 */
2438 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2439 if (mul * page_sz > sz)
2440 return mul * page_sz;
2441 }
2442
2443 /* if it's impossible to satisfy the conditions (i.e., user size is
2444 * very close to UINT_MAX but is not a power-of-2 multiple of
2445 * page_size) then just return original size and let kernel reject it
2446 */
2447 return sz;
2448 }
2449
map_is_ringbuf(const struct bpf_map * map)2450 static bool map_is_ringbuf(const struct bpf_map *map)
2451 {
2452 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2453 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2454 }
2455
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2456 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2457 {
2458 map->def.type = def->map_type;
2459 map->def.key_size = def->key_size;
2460 map->def.value_size = def->value_size;
2461 map->def.max_entries = def->max_entries;
2462 map->def.map_flags = def->map_flags;
2463 map->map_extra = def->map_extra;
2464
2465 map->numa_node = def->numa_node;
2466 map->btf_key_type_id = def->key_type_id;
2467 map->btf_value_type_id = def->value_type_id;
2468
2469 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2470 if (map_is_ringbuf(map))
2471 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2472
2473 if (def->parts & MAP_DEF_MAP_TYPE)
2474 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2475
2476 if (def->parts & MAP_DEF_KEY_TYPE)
2477 pr_debug("map '%s': found key [%u], sz = %u.\n",
2478 map->name, def->key_type_id, def->key_size);
2479 else if (def->parts & MAP_DEF_KEY_SIZE)
2480 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2481
2482 if (def->parts & MAP_DEF_VALUE_TYPE)
2483 pr_debug("map '%s': found value [%u], sz = %u.\n",
2484 map->name, def->value_type_id, def->value_size);
2485 else if (def->parts & MAP_DEF_VALUE_SIZE)
2486 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2487
2488 if (def->parts & MAP_DEF_MAX_ENTRIES)
2489 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2490 if (def->parts & MAP_DEF_MAP_FLAGS)
2491 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2492 if (def->parts & MAP_DEF_MAP_EXTRA)
2493 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2494 (unsigned long long)def->map_extra);
2495 if (def->parts & MAP_DEF_PINNING)
2496 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2497 if (def->parts & MAP_DEF_NUMA_NODE)
2498 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2499
2500 if (def->parts & MAP_DEF_INNER_MAP)
2501 pr_debug("map '%s': found inner map definition.\n", map->name);
2502 }
2503
btf_var_linkage_str(__u32 linkage)2504 static const char *btf_var_linkage_str(__u32 linkage)
2505 {
2506 switch (linkage) {
2507 case BTF_VAR_STATIC: return "static";
2508 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2509 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2510 default: return "unknown";
2511 }
2512 }
2513
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2514 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2515 const struct btf_type *sec,
2516 int var_idx, int sec_idx,
2517 const Elf_Data *data, bool strict,
2518 const char *pin_root_path)
2519 {
2520 struct btf_map_def map_def = {}, inner_def = {};
2521 const struct btf_type *var, *def;
2522 const struct btf_var_secinfo *vi;
2523 const struct btf_var *var_extra;
2524 const char *map_name;
2525 struct bpf_map *map;
2526 int err;
2527
2528 vi = btf_var_secinfos(sec) + var_idx;
2529 var = btf__type_by_id(obj->btf, vi->type);
2530 var_extra = btf_var(var);
2531 map_name = btf__name_by_offset(obj->btf, var->name_off);
2532
2533 if (map_name == NULL || map_name[0] == '\0') {
2534 pr_warn("map #%d: empty name.\n", var_idx);
2535 return -EINVAL;
2536 }
2537 if ((__u64)vi->offset + vi->size > data->d_size) {
2538 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2539 return -EINVAL;
2540 }
2541 if (!btf_is_var(var)) {
2542 pr_warn("map '%s': unexpected var kind %s.\n",
2543 map_name, btf_kind_str(var));
2544 return -EINVAL;
2545 }
2546 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2547 pr_warn("map '%s': unsupported map linkage %s.\n",
2548 map_name, btf_var_linkage_str(var_extra->linkage));
2549 return -EOPNOTSUPP;
2550 }
2551
2552 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2553 if (!btf_is_struct(def)) {
2554 pr_warn("map '%s': unexpected def kind %s.\n",
2555 map_name, btf_kind_str(var));
2556 return -EINVAL;
2557 }
2558 if (def->size > vi->size) {
2559 pr_warn("map '%s': invalid def size.\n", map_name);
2560 return -EINVAL;
2561 }
2562
2563 map = bpf_object__add_map(obj);
2564 if (IS_ERR(map))
2565 return PTR_ERR(map);
2566 map->name = strdup(map_name);
2567 if (!map->name) {
2568 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2569 return -ENOMEM;
2570 }
2571 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2572 map->def.type = BPF_MAP_TYPE_UNSPEC;
2573 map->sec_idx = sec_idx;
2574 map->sec_offset = vi->offset;
2575 map->btf_var_idx = var_idx;
2576 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2577 map_name, map->sec_idx, map->sec_offset);
2578
2579 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2580 if (err)
2581 return err;
2582
2583 fill_map_from_def(map, &map_def);
2584
2585 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2586 err = build_map_pin_path(map, pin_root_path);
2587 if (err) {
2588 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2589 return err;
2590 }
2591 }
2592
2593 if (map_def.parts & MAP_DEF_INNER_MAP) {
2594 map->inner_map = calloc(1, sizeof(*map->inner_map));
2595 if (!map->inner_map)
2596 return -ENOMEM;
2597 map->inner_map->fd = -1;
2598 map->inner_map->sec_idx = sec_idx;
2599 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2600 if (!map->inner_map->name)
2601 return -ENOMEM;
2602 sprintf(map->inner_map->name, "%s.inner", map_name);
2603
2604 fill_map_from_def(map->inner_map, &inner_def);
2605 }
2606
2607 err = map_fill_btf_type_info(obj, map);
2608 if (err)
2609 return err;
2610
2611 return 0;
2612 }
2613
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2614 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2615 const char *pin_root_path)
2616 {
2617 const struct btf_type *sec = NULL;
2618 int nr_types, i, vlen, err;
2619 const struct btf_type *t;
2620 const char *name;
2621 Elf_Data *data;
2622 Elf_Scn *scn;
2623
2624 if (obj->efile.btf_maps_shndx < 0)
2625 return 0;
2626
2627 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2628 data = elf_sec_data(obj, scn);
2629 if (!scn || !data) {
2630 pr_warn("elf: failed to get %s map definitions for %s\n",
2631 MAPS_ELF_SEC, obj->path);
2632 return -EINVAL;
2633 }
2634
2635 nr_types = btf__type_cnt(obj->btf);
2636 for (i = 1; i < nr_types; i++) {
2637 t = btf__type_by_id(obj->btf, i);
2638 if (!btf_is_datasec(t))
2639 continue;
2640 name = btf__name_by_offset(obj->btf, t->name_off);
2641 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2642 sec = t;
2643 obj->efile.btf_maps_sec_btf_id = i;
2644 break;
2645 }
2646 }
2647
2648 if (!sec) {
2649 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2650 return -ENOENT;
2651 }
2652
2653 vlen = btf_vlen(sec);
2654 for (i = 0; i < vlen; i++) {
2655 err = bpf_object__init_user_btf_map(obj, sec, i,
2656 obj->efile.btf_maps_shndx,
2657 data, strict,
2658 pin_root_path);
2659 if (err)
2660 return err;
2661 }
2662
2663 return 0;
2664 }
2665
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)2666 static int bpf_object__init_maps(struct bpf_object *obj,
2667 const struct bpf_object_open_opts *opts)
2668 {
2669 const char *pin_root_path;
2670 bool strict;
2671 int err = 0;
2672
2673 strict = !OPTS_GET(opts, relaxed_maps, false);
2674 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2675
2676 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2677 err = err ?: bpf_object__init_global_data_maps(obj);
2678 err = err ?: bpf_object__init_kconfig_map(obj);
2679 err = err ?: bpf_object_init_struct_ops(obj);
2680
2681 return err;
2682 }
2683
section_have_execinstr(struct bpf_object * obj,int idx)2684 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2685 {
2686 Elf64_Shdr *sh;
2687
2688 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2689 if (!sh)
2690 return false;
2691
2692 return sh->sh_flags & SHF_EXECINSTR;
2693 }
2694
btf_needs_sanitization(struct bpf_object * obj)2695 static bool btf_needs_sanitization(struct bpf_object *obj)
2696 {
2697 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2698 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2699 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2700 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2701 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2702 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2703 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2704
2705 return !has_func || !has_datasec || !has_func_global || !has_float ||
2706 !has_decl_tag || !has_type_tag || !has_enum64;
2707 }
2708
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)2709 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2710 {
2711 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2712 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2713 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2714 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2715 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2716 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2717 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2718 int enum64_placeholder_id = 0;
2719 struct btf_type *t;
2720 int i, j, vlen;
2721
2722 for (i = 1; i < btf__type_cnt(btf); i++) {
2723 t = (struct btf_type *)btf__type_by_id(btf, i);
2724
2725 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2726 /* replace VAR/DECL_TAG with INT */
2727 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2728 /*
2729 * using size = 1 is the safest choice, 4 will be too
2730 * big and cause kernel BTF validation failure if
2731 * original variable took less than 4 bytes
2732 */
2733 t->size = 1;
2734 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2735 } else if (!has_datasec && btf_is_datasec(t)) {
2736 /* replace DATASEC with STRUCT */
2737 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2738 struct btf_member *m = btf_members(t);
2739 struct btf_type *vt;
2740 char *name;
2741
2742 name = (char *)btf__name_by_offset(btf, t->name_off);
2743 while (*name) {
2744 if (*name == '.')
2745 *name = '_';
2746 name++;
2747 }
2748
2749 vlen = btf_vlen(t);
2750 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2751 for (j = 0; j < vlen; j++, v++, m++) {
2752 /* order of field assignments is important */
2753 m->offset = v->offset * 8;
2754 m->type = v->type;
2755 /* preserve variable name as member name */
2756 vt = (void *)btf__type_by_id(btf, v->type);
2757 m->name_off = vt->name_off;
2758 }
2759 } else if (!has_func && btf_is_func_proto(t)) {
2760 /* replace FUNC_PROTO with ENUM */
2761 vlen = btf_vlen(t);
2762 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2763 t->size = sizeof(__u32); /* kernel enforced */
2764 } else if (!has_func && btf_is_func(t)) {
2765 /* replace FUNC with TYPEDEF */
2766 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2767 } else if (!has_func_global && btf_is_func(t)) {
2768 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2769 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2770 } else if (!has_float && btf_is_float(t)) {
2771 /* replace FLOAT with an equally-sized empty STRUCT;
2772 * since C compilers do not accept e.g. "float" as a
2773 * valid struct name, make it anonymous
2774 */
2775 t->name_off = 0;
2776 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2777 } else if (!has_type_tag && btf_is_type_tag(t)) {
2778 /* replace TYPE_TAG with a CONST */
2779 t->name_off = 0;
2780 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2781 } else if (!has_enum64 && btf_is_enum(t)) {
2782 /* clear the kflag */
2783 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2784 } else if (!has_enum64 && btf_is_enum64(t)) {
2785 /* replace ENUM64 with a union */
2786 struct btf_member *m;
2787
2788 if (enum64_placeholder_id == 0) {
2789 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2790 if (enum64_placeholder_id < 0)
2791 return enum64_placeholder_id;
2792
2793 t = (struct btf_type *)btf__type_by_id(btf, i);
2794 }
2795
2796 m = btf_members(t);
2797 vlen = btf_vlen(t);
2798 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2799 for (j = 0; j < vlen; j++, m++) {
2800 m->type = enum64_placeholder_id;
2801 m->offset = 0;
2802 }
2803 }
2804 }
2805
2806 return 0;
2807 }
2808
libbpf_needs_btf(const struct bpf_object * obj)2809 static bool libbpf_needs_btf(const struct bpf_object *obj)
2810 {
2811 return obj->efile.btf_maps_shndx >= 0 ||
2812 obj->efile.st_ops_shndx >= 0 ||
2813 obj->efile.st_ops_link_shndx >= 0 ||
2814 obj->nr_extern > 0;
2815 }
2816
kernel_needs_btf(const struct bpf_object * obj)2817 static bool kernel_needs_btf(const struct bpf_object *obj)
2818 {
2819 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2820 }
2821
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)2822 static int bpf_object__init_btf(struct bpf_object *obj,
2823 Elf_Data *btf_data,
2824 Elf_Data *btf_ext_data)
2825 {
2826 int err = -ENOENT;
2827
2828 if (btf_data) {
2829 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2830 err = libbpf_get_error(obj->btf);
2831 if (err) {
2832 obj->btf = NULL;
2833 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2834 goto out;
2835 }
2836 /* enforce 8-byte pointers for BPF-targeted BTFs */
2837 btf__set_pointer_size(obj->btf, 8);
2838 }
2839 if (btf_ext_data) {
2840 struct btf_ext_info *ext_segs[3];
2841 int seg_num, sec_num;
2842
2843 if (!obj->btf) {
2844 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2845 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2846 goto out;
2847 }
2848 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2849 err = libbpf_get_error(obj->btf_ext);
2850 if (err) {
2851 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2852 BTF_EXT_ELF_SEC, err);
2853 obj->btf_ext = NULL;
2854 goto out;
2855 }
2856
2857 /* setup .BTF.ext to ELF section mapping */
2858 ext_segs[0] = &obj->btf_ext->func_info;
2859 ext_segs[1] = &obj->btf_ext->line_info;
2860 ext_segs[2] = &obj->btf_ext->core_relo_info;
2861 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2862 struct btf_ext_info *seg = ext_segs[seg_num];
2863 const struct btf_ext_info_sec *sec;
2864 const char *sec_name;
2865 Elf_Scn *scn;
2866
2867 if (seg->sec_cnt == 0)
2868 continue;
2869
2870 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2871 if (!seg->sec_idxs) {
2872 err = -ENOMEM;
2873 goto out;
2874 }
2875
2876 sec_num = 0;
2877 for_each_btf_ext_sec(seg, sec) {
2878 /* preventively increment index to avoid doing
2879 * this before every continue below
2880 */
2881 sec_num++;
2882
2883 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2884 if (str_is_empty(sec_name))
2885 continue;
2886 scn = elf_sec_by_name(obj, sec_name);
2887 if (!scn)
2888 continue;
2889
2890 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2891 }
2892 }
2893 }
2894 out:
2895 if (err && libbpf_needs_btf(obj)) {
2896 pr_warn("BTF is required, but is missing or corrupted.\n");
2897 return err;
2898 }
2899 return 0;
2900 }
2901
compare_vsi_off(const void * _a,const void * _b)2902 static int compare_vsi_off(const void *_a, const void *_b)
2903 {
2904 const struct btf_var_secinfo *a = _a;
2905 const struct btf_var_secinfo *b = _b;
2906
2907 return a->offset - b->offset;
2908 }
2909
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)2910 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2911 struct btf_type *t)
2912 {
2913 __u32 size = 0, i, vars = btf_vlen(t);
2914 const char *sec_name = btf__name_by_offset(btf, t->name_off);
2915 struct btf_var_secinfo *vsi;
2916 bool fixup_offsets = false;
2917 int err;
2918
2919 if (!sec_name) {
2920 pr_debug("No name found in string section for DATASEC kind.\n");
2921 return -ENOENT;
2922 }
2923
2924 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2925 * variable offsets set at the previous step. Further, not every
2926 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2927 * all fixups altogether for such sections and go straight to sorting
2928 * VARs within their DATASEC.
2929 */
2930 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2931 goto sort_vars;
2932
2933 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2934 * fix this up. But BPF static linker already fixes this up and fills
2935 * all the sizes and offsets during static linking. So this step has
2936 * to be optional. But the STV_HIDDEN handling is non-optional for any
2937 * non-extern DATASEC, so the variable fixup loop below handles both
2938 * functions at the same time, paying the cost of BTF VAR <-> ELF
2939 * symbol matching just once.
2940 */
2941 if (t->size == 0) {
2942 err = find_elf_sec_sz(obj, sec_name, &size);
2943 if (err || !size) {
2944 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2945 sec_name, size, err);
2946 return -ENOENT;
2947 }
2948
2949 t->size = size;
2950 fixup_offsets = true;
2951 }
2952
2953 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2954 const struct btf_type *t_var;
2955 struct btf_var *var;
2956 const char *var_name;
2957 Elf64_Sym *sym;
2958
2959 t_var = btf__type_by_id(btf, vsi->type);
2960 if (!t_var || !btf_is_var(t_var)) {
2961 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2962 return -EINVAL;
2963 }
2964
2965 var = btf_var(t_var);
2966 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2967 continue;
2968
2969 var_name = btf__name_by_offset(btf, t_var->name_off);
2970 if (!var_name) {
2971 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2972 sec_name, i);
2973 return -ENOENT;
2974 }
2975
2976 sym = find_elf_var_sym(obj, var_name);
2977 if (IS_ERR(sym)) {
2978 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2979 sec_name, var_name);
2980 return -ENOENT;
2981 }
2982
2983 if (fixup_offsets)
2984 vsi->offset = sym->st_value;
2985
2986 /* if variable is a global/weak symbol, but has restricted
2987 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2988 * as static. This follows similar logic for functions (BPF
2989 * subprogs) and influences libbpf's further decisions about
2990 * whether to make global data BPF array maps as
2991 * BPF_F_MMAPABLE.
2992 */
2993 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2994 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2995 var->linkage = BTF_VAR_STATIC;
2996 }
2997
2998 sort_vars:
2999 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3000 return 0;
3001 }
3002
bpf_object_fixup_btf(struct bpf_object * obj)3003 static int bpf_object_fixup_btf(struct bpf_object *obj)
3004 {
3005 int i, n, err = 0;
3006
3007 if (!obj->btf)
3008 return 0;
3009
3010 n = btf__type_cnt(obj->btf);
3011 for (i = 1; i < n; i++) {
3012 struct btf_type *t = btf_type_by_id(obj->btf, i);
3013
3014 /* Loader needs to fix up some of the things compiler
3015 * couldn't get its hands on while emitting BTF. This
3016 * is section size and global variable offset. We use
3017 * the info from the ELF itself for this purpose.
3018 */
3019 if (btf_is_datasec(t)) {
3020 err = btf_fixup_datasec(obj, obj->btf, t);
3021 if (err)
3022 return err;
3023 }
3024 }
3025
3026 return 0;
3027 }
3028
prog_needs_vmlinux_btf(struct bpf_program * prog)3029 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3030 {
3031 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3032 prog->type == BPF_PROG_TYPE_LSM)
3033 return true;
3034
3035 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3036 * also need vmlinux BTF
3037 */
3038 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3039 return true;
3040
3041 return false;
3042 }
3043
obj_needs_vmlinux_btf(const struct bpf_object * obj)3044 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3045 {
3046 struct bpf_program *prog;
3047 int i;
3048
3049 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3050 * is not specified
3051 */
3052 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3053 return true;
3054
3055 /* Support for typed ksyms needs kernel BTF */
3056 for (i = 0; i < obj->nr_extern; i++) {
3057 const struct extern_desc *ext;
3058
3059 ext = &obj->externs[i];
3060 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3061 return true;
3062 }
3063
3064 bpf_object__for_each_program(prog, obj) {
3065 if (!prog->autoload)
3066 continue;
3067 if (prog_needs_vmlinux_btf(prog))
3068 return true;
3069 }
3070
3071 return false;
3072 }
3073
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3074 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3075 {
3076 int err;
3077
3078 /* btf_vmlinux could be loaded earlier */
3079 if (obj->btf_vmlinux || obj->gen_loader)
3080 return 0;
3081
3082 if (!force && !obj_needs_vmlinux_btf(obj))
3083 return 0;
3084
3085 obj->btf_vmlinux = btf__load_vmlinux_btf();
3086 err = libbpf_get_error(obj->btf_vmlinux);
3087 if (err) {
3088 pr_warn("Error loading vmlinux BTF: %d\n", err);
3089 obj->btf_vmlinux = NULL;
3090 return err;
3091 }
3092 return 0;
3093 }
3094
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3095 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3096 {
3097 struct btf *kern_btf = obj->btf;
3098 bool btf_mandatory, sanitize;
3099 int i, err = 0;
3100
3101 if (!obj->btf)
3102 return 0;
3103
3104 if (!kernel_supports(obj, FEAT_BTF)) {
3105 if (kernel_needs_btf(obj)) {
3106 err = -EOPNOTSUPP;
3107 goto report;
3108 }
3109 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3110 return 0;
3111 }
3112
3113 /* Even though some subprogs are global/weak, user might prefer more
3114 * permissive BPF verification process that BPF verifier performs for
3115 * static functions, taking into account more context from the caller
3116 * functions. In such case, they need to mark such subprogs with
3117 * __attribute__((visibility("hidden"))) and libbpf will adjust
3118 * corresponding FUNC BTF type to be marked as static and trigger more
3119 * involved BPF verification process.
3120 */
3121 for (i = 0; i < obj->nr_programs; i++) {
3122 struct bpf_program *prog = &obj->programs[i];
3123 struct btf_type *t;
3124 const char *name;
3125 int j, n;
3126
3127 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3128 continue;
3129
3130 n = btf__type_cnt(obj->btf);
3131 for (j = 1; j < n; j++) {
3132 t = btf_type_by_id(obj->btf, j);
3133 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3134 continue;
3135
3136 name = btf__str_by_offset(obj->btf, t->name_off);
3137 if (strcmp(name, prog->name) != 0)
3138 continue;
3139
3140 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3141 break;
3142 }
3143 }
3144
3145 sanitize = btf_needs_sanitization(obj);
3146 if (sanitize) {
3147 const void *raw_data;
3148 __u32 sz;
3149
3150 /* clone BTF to sanitize a copy and leave the original intact */
3151 raw_data = btf__raw_data(obj->btf, &sz);
3152 kern_btf = btf__new(raw_data, sz);
3153 err = libbpf_get_error(kern_btf);
3154 if (err)
3155 return err;
3156
3157 /* enforce 8-byte pointers for BPF-targeted BTFs */
3158 btf__set_pointer_size(obj->btf, 8);
3159 err = bpf_object__sanitize_btf(obj, kern_btf);
3160 if (err)
3161 return err;
3162 }
3163
3164 if (obj->gen_loader) {
3165 __u32 raw_size = 0;
3166 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3167
3168 if (!raw_data)
3169 return -ENOMEM;
3170 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3171 /* Pretend to have valid FD to pass various fd >= 0 checks.
3172 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3173 */
3174 btf__set_fd(kern_btf, 0);
3175 } else {
3176 /* currently BPF_BTF_LOAD only supports log_level 1 */
3177 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3178 obj->log_level ? 1 : 0);
3179 }
3180 if (sanitize) {
3181 if (!err) {
3182 /* move fd to libbpf's BTF */
3183 btf__set_fd(obj->btf, btf__fd(kern_btf));
3184 btf__set_fd(kern_btf, -1);
3185 }
3186 btf__free(kern_btf);
3187 }
3188 report:
3189 if (err) {
3190 btf_mandatory = kernel_needs_btf(obj);
3191 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3192 btf_mandatory ? "BTF is mandatory, can't proceed."
3193 : "BTF is optional, ignoring.");
3194 if (!btf_mandatory)
3195 err = 0;
3196 }
3197 return err;
3198 }
3199
elf_sym_str(const struct bpf_object * obj,size_t off)3200 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3201 {
3202 const char *name;
3203
3204 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3205 if (!name) {
3206 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3207 off, obj->path, elf_errmsg(-1));
3208 return NULL;
3209 }
3210
3211 return name;
3212 }
3213
elf_sec_str(const struct bpf_object * obj,size_t off)3214 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3215 {
3216 const char *name;
3217
3218 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3219 if (!name) {
3220 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3221 off, obj->path, elf_errmsg(-1));
3222 return NULL;
3223 }
3224
3225 return name;
3226 }
3227
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3228 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3229 {
3230 Elf_Scn *scn;
3231
3232 scn = elf_getscn(obj->efile.elf, idx);
3233 if (!scn) {
3234 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3235 idx, obj->path, elf_errmsg(-1));
3236 return NULL;
3237 }
3238 return scn;
3239 }
3240
elf_sec_by_name(const struct bpf_object * obj,const char * name)3241 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3242 {
3243 Elf_Scn *scn = NULL;
3244 Elf *elf = obj->efile.elf;
3245 const char *sec_name;
3246
3247 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3248 sec_name = elf_sec_name(obj, scn);
3249 if (!sec_name)
3250 return NULL;
3251
3252 if (strcmp(sec_name, name) != 0)
3253 continue;
3254
3255 return scn;
3256 }
3257 return NULL;
3258 }
3259
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3260 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3261 {
3262 Elf64_Shdr *shdr;
3263
3264 if (!scn)
3265 return NULL;
3266
3267 shdr = elf64_getshdr(scn);
3268 if (!shdr) {
3269 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3270 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3271 return NULL;
3272 }
3273
3274 return shdr;
3275 }
3276
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3277 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3278 {
3279 const char *name;
3280 Elf64_Shdr *sh;
3281
3282 if (!scn)
3283 return NULL;
3284
3285 sh = elf_sec_hdr(obj, scn);
3286 if (!sh)
3287 return NULL;
3288
3289 name = elf_sec_str(obj, sh->sh_name);
3290 if (!name) {
3291 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3292 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3293 return NULL;
3294 }
3295
3296 return name;
3297 }
3298
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3299 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3300 {
3301 Elf_Data *data;
3302
3303 if (!scn)
3304 return NULL;
3305
3306 data = elf_getdata(scn, 0);
3307 if (!data) {
3308 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3309 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3310 obj->path, elf_errmsg(-1));
3311 return NULL;
3312 }
3313
3314 return data;
3315 }
3316
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3317 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3318 {
3319 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3320 return NULL;
3321
3322 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3323 }
3324
elf_rel_by_idx(Elf_Data * data,size_t idx)3325 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3326 {
3327 if (idx >= data->d_size / sizeof(Elf64_Rel))
3328 return NULL;
3329
3330 return (Elf64_Rel *)data->d_buf + idx;
3331 }
3332
is_sec_name_dwarf(const char * name)3333 static bool is_sec_name_dwarf(const char *name)
3334 {
3335 /* approximation, but the actual list is too long */
3336 return str_has_pfx(name, ".debug_");
3337 }
3338
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3339 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3340 {
3341 /* no special handling of .strtab */
3342 if (hdr->sh_type == SHT_STRTAB)
3343 return true;
3344
3345 /* ignore .llvm_addrsig section as well */
3346 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3347 return true;
3348
3349 /* no subprograms will lead to an empty .text section, ignore it */
3350 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3351 strcmp(name, ".text") == 0)
3352 return true;
3353
3354 /* DWARF sections */
3355 if (is_sec_name_dwarf(name))
3356 return true;
3357
3358 if (str_has_pfx(name, ".rel")) {
3359 name += sizeof(".rel") - 1;
3360 /* DWARF section relocations */
3361 if (is_sec_name_dwarf(name))
3362 return true;
3363
3364 /* .BTF and .BTF.ext don't need relocations */
3365 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3366 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3367 return true;
3368 }
3369
3370 return false;
3371 }
3372
cmp_progs(const void * _a,const void * _b)3373 static int cmp_progs(const void *_a, const void *_b)
3374 {
3375 const struct bpf_program *a = _a;
3376 const struct bpf_program *b = _b;
3377
3378 if (a->sec_idx != b->sec_idx)
3379 return a->sec_idx < b->sec_idx ? -1 : 1;
3380
3381 /* sec_insn_off can't be the same within the section */
3382 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3383 }
3384
bpf_object__elf_collect(struct bpf_object * obj)3385 static int bpf_object__elf_collect(struct bpf_object *obj)
3386 {
3387 struct elf_sec_desc *sec_desc;
3388 Elf *elf = obj->efile.elf;
3389 Elf_Data *btf_ext_data = NULL;
3390 Elf_Data *btf_data = NULL;
3391 int idx = 0, err = 0;
3392 const char *name;
3393 Elf_Data *data;
3394 Elf_Scn *scn;
3395 Elf64_Shdr *sh;
3396
3397 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3398 * section. Since section count retrieved by elf_getshdrnum() does
3399 * include sec #0, it is already the necessary size of an array to keep
3400 * all the sections.
3401 */
3402 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3403 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3404 obj->path, elf_errmsg(-1));
3405 return -LIBBPF_ERRNO__FORMAT;
3406 }
3407 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3408 if (!obj->efile.secs)
3409 return -ENOMEM;
3410
3411 /* a bunch of ELF parsing functionality depends on processing symbols,
3412 * so do the first pass and find the symbol table
3413 */
3414 scn = NULL;
3415 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3416 sh = elf_sec_hdr(obj, scn);
3417 if (!sh)
3418 return -LIBBPF_ERRNO__FORMAT;
3419
3420 if (sh->sh_type == SHT_SYMTAB) {
3421 if (obj->efile.symbols) {
3422 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3423 return -LIBBPF_ERRNO__FORMAT;
3424 }
3425
3426 data = elf_sec_data(obj, scn);
3427 if (!data)
3428 return -LIBBPF_ERRNO__FORMAT;
3429
3430 idx = elf_ndxscn(scn);
3431
3432 obj->efile.symbols = data;
3433 obj->efile.symbols_shndx = idx;
3434 obj->efile.strtabidx = sh->sh_link;
3435 }
3436 }
3437
3438 if (!obj->efile.symbols) {
3439 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3440 obj->path);
3441 return -ENOENT;
3442 }
3443
3444 scn = NULL;
3445 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3446 idx = elf_ndxscn(scn);
3447 sec_desc = &obj->efile.secs[idx];
3448
3449 sh = elf_sec_hdr(obj, scn);
3450 if (!sh)
3451 return -LIBBPF_ERRNO__FORMAT;
3452
3453 name = elf_sec_str(obj, sh->sh_name);
3454 if (!name)
3455 return -LIBBPF_ERRNO__FORMAT;
3456
3457 if (ignore_elf_section(sh, name))
3458 continue;
3459
3460 data = elf_sec_data(obj, scn);
3461 if (!data)
3462 return -LIBBPF_ERRNO__FORMAT;
3463
3464 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3465 idx, name, (unsigned long)data->d_size,
3466 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3467 (int)sh->sh_type);
3468
3469 if (strcmp(name, "license") == 0) {
3470 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3471 if (err)
3472 return err;
3473 } else if (strcmp(name, "version") == 0) {
3474 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3475 if (err)
3476 return err;
3477 } else if (strcmp(name, "maps") == 0) {
3478 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3479 return -ENOTSUP;
3480 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3481 obj->efile.btf_maps_shndx = idx;
3482 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3483 if (sh->sh_type != SHT_PROGBITS)
3484 return -LIBBPF_ERRNO__FORMAT;
3485 btf_data = data;
3486 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3487 if (sh->sh_type != SHT_PROGBITS)
3488 return -LIBBPF_ERRNO__FORMAT;
3489 btf_ext_data = data;
3490 } else if (sh->sh_type == SHT_SYMTAB) {
3491 /* already processed during the first pass above */
3492 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3493 if (sh->sh_flags & SHF_EXECINSTR) {
3494 if (strcmp(name, ".text") == 0)
3495 obj->efile.text_shndx = idx;
3496 err = bpf_object__add_programs(obj, data, name, idx);
3497 if (err)
3498 return err;
3499 } else if (strcmp(name, DATA_SEC) == 0 ||
3500 str_has_pfx(name, DATA_SEC ".")) {
3501 sec_desc->sec_type = SEC_DATA;
3502 sec_desc->shdr = sh;
3503 sec_desc->data = data;
3504 } else if (strcmp(name, RODATA_SEC) == 0 ||
3505 str_has_pfx(name, RODATA_SEC ".")) {
3506 sec_desc->sec_type = SEC_RODATA;
3507 sec_desc->shdr = sh;
3508 sec_desc->data = data;
3509 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3510 obj->efile.st_ops_data = data;
3511 obj->efile.st_ops_shndx = idx;
3512 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3513 obj->efile.st_ops_link_data = data;
3514 obj->efile.st_ops_link_shndx = idx;
3515 } else {
3516 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3517 idx, name);
3518 }
3519 } else if (sh->sh_type == SHT_REL) {
3520 int targ_sec_idx = sh->sh_info; /* points to other section */
3521
3522 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3523 targ_sec_idx >= obj->efile.sec_cnt)
3524 return -LIBBPF_ERRNO__FORMAT;
3525
3526 /* Only do relo for section with exec instructions */
3527 if (!section_have_execinstr(obj, targ_sec_idx) &&
3528 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3529 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3530 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3531 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3532 idx, name, targ_sec_idx,
3533 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3534 continue;
3535 }
3536
3537 sec_desc->sec_type = SEC_RELO;
3538 sec_desc->shdr = sh;
3539 sec_desc->data = data;
3540 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3541 str_has_pfx(name, BSS_SEC "."))) {
3542 sec_desc->sec_type = SEC_BSS;
3543 sec_desc->shdr = sh;
3544 sec_desc->data = data;
3545 } else {
3546 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3547 (size_t)sh->sh_size);
3548 }
3549 }
3550
3551 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3552 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3553 return -LIBBPF_ERRNO__FORMAT;
3554 }
3555
3556 /* sort BPF programs by section name and in-section instruction offset
3557 * for faster search
3558 */
3559 if (obj->nr_programs)
3560 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3561
3562 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3563 }
3564
sym_is_extern(const Elf64_Sym * sym)3565 static bool sym_is_extern(const Elf64_Sym *sym)
3566 {
3567 int bind = ELF64_ST_BIND(sym->st_info);
3568 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3569 return sym->st_shndx == SHN_UNDEF &&
3570 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3571 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3572 }
3573
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)3574 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3575 {
3576 int bind = ELF64_ST_BIND(sym->st_info);
3577 int type = ELF64_ST_TYPE(sym->st_info);
3578
3579 /* in .text section */
3580 if (sym->st_shndx != text_shndx)
3581 return false;
3582
3583 /* local function */
3584 if (bind == STB_LOCAL && type == STT_SECTION)
3585 return true;
3586
3587 /* global function */
3588 return bind == STB_GLOBAL && type == STT_FUNC;
3589 }
3590
find_extern_btf_id(const struct btf * btf,const char * ext_name)3591 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3592 {
3593 const struct btf_type *t;
3594 const char *tname;
3595 int i, n;
3596
3597 if (!btf)
3598 return -ESRCH;
3599
3600 n = btf__type_cnt(btf);
3601 for (i = 1; i < n; i++) {
3602 t = btf__type_by_id(btf, i);
3603
3604 if (!btf_is_var(t) && !btf_is_func(t))
3605 continue;
3606
3607 tname = btf__name_by_offset(btf, t->name_off);
3608 if (strcmp(tname, ext_name))
3609 continue;
3610
3611 if (btf_is_var(t) &&
3612 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3613 return -EINVAL;
3614
3615 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3616 return -EINVAL;
3617
3618 return i;
3619 }
3620
3621 return -ENOENT;
3622 }
3623
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)3624 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3625 const struct btf_var_secinfo *vs;
3626 const struct btf_type *t;
3627 int i, j, n;
3628
3629 if (!btf)
3630 return -ESRCH;
3631
3632 n = btf__type_cnt(btf);
3633 for (i = 1; i < n; i++) {
3634 t = btf__type_by_id(btf, i);
3635
3636 if (!btf_is_datasec(t))
3637 continue;
3638
3639 vs = btf_var_secinfos(t);
3640 for (j = 0; j < btf_vlen(t); j++, vs++) {
3641 if (vs->type == ext_btf_id)
3642 return i;
3643 }
3644 }
3645
3646 return -ENOENT;
3647 }
3648
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)3649 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3650 bool *is_signed)
3651 {
3652 const struct btf_type *t;
3653 const char *name;
3654
3655 t = skip_mods_and_typedefs(btf, id, NULL);
3656 name = btf__name_by_offset(btf, t->name_off);
3657
3658 if (is_signed)
3659 *is_signed = false;
3660 switch (btf_kind(t)) {
3661 case BTF_KIND_INT: {
3662 int enc = btf_int_encoding(t);
3663
3664 if (enc & BTF_INT_BOOL)
3665 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3666 if (is_signed)
3667 *is_signed = enc & BTF_INT_SIGNED;
3668 if (t->size == 1)
3669 return KCFG_CHAR;
3670 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3671 return KCFG_UNKNOWN;
3672 return KCFG_INT;
3673 }
3674 case BTF_KIND_ENUM:
3675 if (t->size != 4)
3676 return KCFG_UNKNOWN;
3677 if (strcmp(name, "libbpf_tristate"))
3678 return KCFG_UNKNOWN;
3679 return KCFG_TRISTATE;
3680 case BTF_KIND_ENUM64:
3681 if (strcmp(name, "libbpf_tristate"))
3682 return KCFG_UNKNOWN;
3683 return KCFG_TRISTATE;
3684 case BTF_KIND_ARRAY:
3685 if (btf_array(t)->nelems == 0)
3686 return KCFG_UNKNOWN;
3687 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3688 return KCFG_UNKNOWN;
3689 return KCFG_CHAR_ARR;
3690 default:
3691 return KCFG_UNKNOWN;
3692 }
3693 }
3694
cmp_externs(const void * _a,const void * _b)3695 static int cmp_externs(const void *_a, const void *_b)
3696 {
3697 const struct extern_desc *a = _a;
3698 const struct extern_desc *b = _b;
3699
3700 if (a->type != b->type)
3701 return a->type < b->type ? -1 : 1;
3702
3703 if (a->type == EXT_KCFG) {
3704 /* descending order by alignment requirements */
3705 if (a->kcfg.align != b->kcfg.align)
3706 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3707 /* ascending order by size, within same alignment class */
3708 if (a->kcfg.sz != b->kcfg.sz)
3709 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3710 }
3711
3712 /* resolve ties by name */
3713 return strcmp(a->name, b->name);
3714 }
3715
find_int_btf_id(const struct btf * btf)3716 static int find_int_btf_id(const struct btf *btf)
3717 {
3718 const struct btf_type *t;
3719 int i, n;
3720
3721 n = btf__type_cnt(btf);
3722 for (i = 1; i < n; i++) {
3723 t = btf__type_by_id(btf, i);
3724
3725 if (btf_is_int(t) && btf_int_bits(t) == 32)
3726 return i;
3727 }
3728
3729 return 0;
3730 }
3731
add_dummy_ksym_var(struct btf * btf)3732 static int add_dummy_ksym_var(struct btf *btf)
3733 {
3734 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3735 const struct btf_var_secinfo *vs;
3736 const struct btf_type *sec;
3737
3738 if (!btf)
3739 return 0;
3740
3741 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3742 BTF_KIND_DATASEC);
3743 if (sec_btf_id < 0)
3744 return 0;
3745
3746 sec = btf__type_by_id(btf, sec_btf_id);
3747 vs = btf_var_secinfos(sec);
3748 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3749 const struct btf_type *vt;
3750
3751 vt = btf__type_by_id(btf, vs->type);
3752 if (btf_is_func(vt))
3753 break;
3754 }
3755
3756 /* No func in ksyms sec. No need to add dummy var. */
3757 if (i == btf_vlen(sec))
3758 return 0;
3759
3760 int_btf_id = find_int_btf_id(btf);
3761 dummy_var_btf_id = btf__add_var(btf,
3762 "dummy_ksym",
3763 BTF_VAR_GLOBAL_ALLOCATED,
3764 int_btf_id);
3765 if (dummy_var_btf_id < 0)
3766 pr_warn("cannot create a dummy_ksym var\n");
3767
3768 return dummy_var_btf_id;
3769 }
3770
bpf_object__collect_externs(struct bpf_object * obj)3771 static int bpf_object__collect_externs(struct bpf_object *obj)
3772 {
3773 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3774 const struct btf_type *t;
3775 struct extern_desc *ext;
3776 int i, n, off, dummy_var_btf_id;
3777 const char *ext_name, *sec_name;
3778 size_t ext_essent_len;
3779 Elf_Scn *scn;
3780 Elf64_Shdr *sh;
3781
3782 if (!obj->efile.symbols)
3783 return 0;
3784
3785 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3786 sh = elf_sec_hdr(obj, scn);
3787 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3788 return -LIBBPF_ERRNO__FORMAT;
3789
3790 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3791 if (dummy_var_btf_id < 0)
3792 return dummy_var_btf_id;
3793
3794 n = sh->sh_size / sh->sh_entsize;
3795 pr_debug("looking for externs among %d symbols...\n", n);
3796
3797 for (i = 0; i < n; i++) {
3798 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3799
3800 if (!sym)
3801 return -LIBBPF_ERRNO__FORMAT;
3802 if (!sym_is_extern(sym))
3803 continue;
3804 ext_name = elf_sym_str(obj, sym->st_name);
3805 if (!ext_name || !ext_name[0])
3806 continue;
3807
3808 ext = obj->externs;
3809 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3810 if (!ext)
3811 return -ENOMEM;
3812 obj->externs = ext;
3813 ext = &ext[obj->nr_extern];
3814 memset(ext, 0, sizeof(*ext));
3815 obj->nr_extern++;
3816
3817 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3818 if (ext->btf_id <= 0) {
3819 pr_warn("failed to find BTF for extern '%s': %d\n",
3820 ext_name, ext->btf_id);
3821 return ext->btf_id;
3822 }
3823 t = btf__type_by_id(obj->btf, ext->btf_id);
3824 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3825 ext->sym_idx = i;
3826 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3827
3828 ext_essent_len = bpf_core_essential_name_len(ext->name);
3829 ext->essent_name = NULL;
3830 if (ext_essent_len != strlen(ext->name)) {
3831 ext->essent_name = strndup(ext->name, ext_essent_len);
3832 if (!ext->essent_name)
3833 return -ENOMEM;
3834 }
3835
3836 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3837 if (ext->sec_btf_id <= 0) {
3838 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3839 ext_name, ext->btf_id, ext->sec_btf_id);
3840 return ext->sec_btf_id;
3841 }
3842 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3843 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3844
3845 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3846 if (btf_is_func(t)) {
3847 pr_warn("extern function %s is unsupported under %s section\n",
3848 ext->name, KCONFIG_SEC);
3849 return -ENOTSUP;
3850 }
3851 kcfg_sec = sec;
3852 ext->type = EXT_KCFG;
3853 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3854 if (ext->kcfg.sz <= 0) {
3855 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3856 ext_name, ext->kcfg.sz);
3857 return ext->kcfg.sz;
3858 }
3859 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3860 if (ext->kcfg.align <= 0) {
3861 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3862 ext_name, ext->kcfg.align);
3863 return -EINVAL;
3864 }
3865 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3866 &ext->kcfg.is_signed);
3867 if (ext->kcfg.type == KCFG_UNKNOWN) {
3868 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3869 return -ENOTSUP;
3870 }
3871 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3872 ksym_sec = sec;
3873 ext->type = EXT_KSYM;
3874 skip_mods_and_typedefs(obj->btf, t->type,
3875 &ext->ksym.type_id);
3876 } else {
3877 pr_warn("unrecognized extern section '%s'\n", sec_name);
3878 return -ENOTSUP;
3879 }
3880 }
3881 pr_debug("collected %d externs total\n", obj->nr_extern);
3882
3883 if (!obj->nr_extern)
3884 return 0;
3885
3886 /* sort externs by type, for kcfg ones also by (align, size, name) */
3887 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3888
3889 /* for .ksyms section, we need to turn all externs into allocated
3890 * variables in BTF to pass kernel verification; we do this by
3891 * pretending that each extern is a 8-byte variable
3892 */
3893 if (ksym_sec) {
3894 /* find existing 4-byte integer type in BTF to use for fake
3895 * extern variables in DATASEC
3896 */
3897 int int_btf_id = find_int_btf_id(obj->btf);
3898 /* For extern function, a dummy_var added earlier
3899 * will be used to replace the vs->type and
3900 * its name string will be used to refill
3901 * the missing param's name.
3902 */
3903 const struct btf_type *dummy_var;
3904
3905 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3906 for (i = 0; i < obj->nr_extern; i++) {
3907 ext = &obj->externs[i];
3908 if (ext->type != EXT_KSYM)
3909 continue;
3910 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3911 i, ext->sym_idx, ext->name);
3912 }
3913
3914 sec = ksym_sec;
3915 n = btf_vlen(sec);
3916 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3917 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3918 struct btf_type *vt;
3919
3920 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3921 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3922 ext = find_extern_by_name(obj, ext_name);
3923 if (!ext) {
3924 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3925 btf_kind_str(vt), ext_name);
3926 return -ESRCH;
3927 }
3928 if (btf_is_func(vt)) {
3929 const struct btf_type *func_proto;
3930 struct btf_param *param;
3931 int j;
3932
3933 func_proto = btf__type_by_id(obj->btf,
3934 vt->type);
3935 param = btf_params(func_proto);
3936 /* Reuse the dummy_var string if the
3937 * func proto does not have param name.
3938 */
3939 for (j = 0; j < btf_vlen(func_proto); j++)
3940 if (param[j].type && !param[j].name_off)
3941 param[j].name_off =
3942 dummy_var->name_off;
3943 vs->type = dummy_var_btf_id;
3944 vt->info &= ~0xffff;
3945 vt->info |= BTF_FUNC_GLOBAL;
3946 } else {
3947 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3948 vt->type = int_btf_id;
3949 }
3950 vs->offset = off;
3951 vs->size = sizeof(int);
3952 }
3953 sec->size = off;
3954 }
3955
3956 if (kcfg_sec) {
3957 sec = kcfg_sec;
3958 /* for kcfg externs calculate their offsets within a .kconfig map */
3959 off = 0;
3960 for (i = 0; i < obj->nr_extern; i++) {
3961 ext = &obj->externs[i];
3962 if (ext->type != EXT_KCFG)
3963 continue;
3964
3965 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3966 off = ext->kcfg.data_off + ext->kcfg.sz;
3967 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3968 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3969 }
3970 sec->size = off;
3971 n = btf_vlen(sec);
3972 for (i = 0; i < n; i++) {
3973 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3974
3975 t = btf__type_by_id(obj->btf, vs->type);
3976 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3977 ext = find_extern_by_name(obj, ext_name);
3978 if (!ext) {
3979 pr_warn("failed to find extern definition for BTF var '%s'\n",
3980 ext_name);
3981 return -ESRCH;
3982 }
3983 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3984 vs->offset = ext->kcfg.data_off;
3985 }
3986 }
3987 return 0;
3988 }
3989
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)3990 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3991 {
3992 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3993 }
3994
3995 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)3996 bpf_object__find_program_by_name(const struct bpf_object *obj,
3997 const char *name)
3998 {
3999 struct bpf_program *prog;
4000
4001 bpf_object__for_each_program(prog, obj) {
4002 if (prog_is_subprog(obj, prog))
4003 continue;
4004 if (!strcmp(prog->name, name))
4005 return prog;
4006 }
4007 return errno = ENOENT, NULL;
4008 }
4009
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4010 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4011 int shndx)
4012 {
4013 switch (obj->efile.secs[shndx].sec_type) {
4014 case SEC_BSS:
4015 case SEC_DATA:
4016 case SEC_RODATA:
4017 return true;
4018 default:
4019 return false;
4020 }
4021 }
4022
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4023 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4024 int shndx)
4025 {
4026 return shndx == obj->efile.btf_maps_shndx;
4027 }
4028
4029 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4030 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4031 {
4032 if (shndx == obj->efile.symbols_shndx)
4033 return LIBBPF_MAP_KCONFIG;
4034
4035 switch (obj->efile.secs[shndx].sec_type) {
4036 case SEC_BSS:
4037 return LIBBPF_MAP_BSS;
4038 case SEC_DATA:
4039 return LIBBPF_MAP_DATA;
4040 case SEC_RODATA:
4041 return LIBBPF_MAP_RODATA;
4042 default:
4043 return LIBBPF_MAP_UNSPEC;
4044 }
4045 }
4046
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4047 static int bpf_program__record_reloc(struct bpf_program *prog,
4048 struct reloc_desc *reloc_desc,
4049 __u32 insn_idx, const char *sym_name,
4050 const Elf64_Sym *sym, const Elf64_Rel *rel)
4051 {
4052 struct bpf_insn *insn = &prog->insns[insn_idx];
4053 size_t map_idx, nr_maps = prog->obj->nr_maps;
4054 struct bpf_object *obj = prog->obj;
4055 __u32 shdr_idx = sym->st_shndx;
4056 enum libbpf_map_type type;
4057 const char *sym_sec_name;
4058 struct bpf_map *map;
4059
4060 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4061 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4062 prog->name, sym_name, insn_idx, insn->code);
4063 return -LIBBPF_ERRNO__RELOC;
4064 }
4065
4066 if (sym_is_extern(sym)) {
4067 int sym_idx = ELF64_R_SYM(rel->r_info);
4068 int i, n = obj->nr_extern;
4069 struct extern_desc *ext;
4070
4071 for (i = 0; i < n; i++) {
4072 ext = &obj->externs[i];
4073 if (ext->sym_idx == sym_idx)
4074 break;
4075 }
4076 if (i >= n) {
4077 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4078 prog->name, sym_name, sym_idx);
4079 return -LIBBPF_ERRNO__RELOC;
4080 }
4081 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4082 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4083 if (insn->code == (BPF_JMP | BPF_CALL))
4084 reloc_desc->type = RELO_EXTERN_CALL;
4085 else
4086 reloc_desc->type = RELO_EXTERN_LD64;
4087 reloc_desc->insn_idx = insn_idx;
4088 reloc_desc->ext_idx = i;
4089 return 0;
4090 }
4091
4092 /* sub-program call relocation */
4093 if (is_call_insn(insn)) {
4094 if (insn->src_reg != BPF_PSEUDO_CALL) {
4095 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4096 return -LIBBPF_ERRNO__RELOC;
4097 }
4098 /* text_shndx can be 0, if no default "main" program exists */
4099 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4100 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4101 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4102 prog->name, sym_name, sym_sec_name);
4103 return -LIBBPF_ERRNO__RELOC;
4104 }
4105 if (sym->st_value % BPF_INSN_SZ) {
4106 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4107 prog->name, sym_name, (size_t)sym->st_value);
4108 return -LIBBPF_ERRNO__RELOC;
4109 }
4110 reloc_desc->type = RELO_CALL;
4111 reloc_desc->insn_idx = insn_idx;
4112 reloc_desc->sym_off = sym->st_value;
4113 return 0;
4114 }
4115
4116 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4117 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4118 prog->name, sym_name, shdr_idx);
4119 return -LIBBPF_ERRNO__RELOC;
4120 }
4121
4122 /* loading subprog addresses */
4123 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4124 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4125 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4126 */
4127 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4128 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4129 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4130 return -LIBBPF_ERRNO__RELOC;
4131 }
4132
4133 reloc_desc->type = RELO_SUBPROG_ADDR;
4134 reloc_desc->insn_idx = insn_idx;
4135 reloc_desc->sym_off = sym->st_value;
4136 return 0;
4137 }
4138
4139 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4140 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4141
4142 /* generic map reference relocation */
4143 if (type == LIBBPF_MAP_UNSPEC) {
4144 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4145 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4146 prog->name, sym_name, sym_sec_name);
4147 return -LIBBPF_ERRNO__RELOC;
4148 }
4149 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4150 map = &obj->maps[map_idx];
4151 if (map->libbpf_type != type ||
4152 map->sec_idx != sym->st_shndx ||
4153 map->sec_offset != sym->st_value)
4154 continue;
4155 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4156 prog->name, map_idx, map->name, map->sec_idx,
4157 map->sec_offset, insn_idx);
4158 break;
4159 }
4160 if (map_idx >= nr_maps) {
4161 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4162 prog->name, sym_sec_name, (size_t)sym->st_value);
4163 return -LIBBPF_ERRNO__RELOC;
4164 }
4165 reloc_desc->type = RELO_LD64;
4166 reloc_desc->insn_idx = insn_idx;
4167 reloc_desc->map_idx = map_idx;
4168 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4169 return 0;
4170 }
4171
4172 /* global data map relocation */
4173 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4174 pr_warn("prog '%s': bad data relo against section '%s'\n",
4175 prog->name, sym_sec_name);
4176 return -LIBBPF_ERRNO__RELOC;
4177 }
4178 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4179 map = &obj->maps[map_idx];
4180 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4181 continue;
4182 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4183 prog->name, map_idx, map->name, map->sec_idx,
4184 map->sec_offset, insn_idx);
4185 break;
4186 }
4187 if (map_idx >= nr_maps) {
4188 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4189 prog->name, sym_sec_name);
4190 return -LIBBPF_ERRNO__RELOC;
4191 }
4192
4193 reloc_desc->type = RELO_DATA;
4194 reloc_desc->insn_idx = insn_idx;
4195 reloc_desc->map_idx = map_idx;
4196 reloc_desc->sym_off = sym->st_value;
4197 return 0;
4198 }
4199
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4200 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4201 {
4202 return insn_idx >= prog->sec_insn_off &&
4203 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4204 }
4205
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4206 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4207 size_t sec_idx, size_t insn_idx)
4208 {
4209 int l = 0, r = obj->nr_programs - 1, m;
4210 struct bpf_program *prog;
4211
4212 if (!obj->nr_programs)
4213 return NULL;
4214
4215 while (l < r) {
4216 m = l + (r - l + 1) / 2;
4217 prog = &obj->programs[m];
4218
4219 if (prog->sec_idx < sec_idx ||
4220 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4221 l = m;
4222 else
4223 r = m - 1;
4224 }
4225 /* matching program could be at index l, but it still might be the
4226 * wrong one, so we need to double check conditions for the last time
4227 */
4228 prog = &obj->programs[l];
4229 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4230 return prog;
4231 return NULL;
4232 }
4233
4234 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4235 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4236 {
4237 const char *relo_sec_name, *sec_name;
4238 size_t sec_idx = shdr->sh_info, sym_idx;
4239 struct bpf_program *prog;
4240 struct reloc_desc *relos;
4241 int err, i, nrels;
4242 const char *sym_name;
4243 __u32 insn_idx;
4244 Elf_Scn *scn;
4245 Elf_Data *scn_data;
4246 Elf64_Sym *sym;
4247 Elf64_Rel *rel;
4248
4249 if (sec_idx >= obj->efile.sec_cnt)
4250 return -EINVAL;
4251
4252 scn = elf_sec_by_idx(obj, sec_idx);
4253 scn_data = elf_sec_data(obj, scn);
4254 if (!scn_data)
4255 return -LIBBPF_ERRNO__FORMAT;
4256
4257 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4258 sec_name = elf_sec_name(obj, scn);
4259 if (!relo_sec_name || !sec_name)
4260 return -EINVAL;
4261
4262 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4263 relo_sec_name, sec_idx, sec_name);
4264 nrels = shdr->sh_size / shdr->sh_entsize;
4265
4266 for (i = 0; i < nrels; i++) {
4267 rel = elf_rel_by_idx(data, i);
4268 if (!rel) {
4269 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4270 return -LIBBPF_ERRNO__FORMAT;
4271 }
4272
4273 sym_idx = ELF64_R_SYM(rel->r_info);
4274 sym = elf_sym_by_idx(obj, sym_idx);
4275 if (!sym) {
4276 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4277 relo_sec_name, sym_idx, i);
4278 return -LIBBPF_ERRNO__FORMAT;
4279 }
4280
4281 if (sym->st_shndx >= obj->efile.sec_cnt) {
4282 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4283 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4284 return -LIBBPF_ERRNO__FORMAT;
4285 }
4286
4287 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4288 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4289 relo_sec_name, (size_t)rel->r_offset, i);
4290 return -LIBBPF_ERRNO__FORMAT;
4291 }
4292
4293 insn_idx = rel->r_offset / BPF_INSN_SZ;
4294 /* relocations against static functions are recorded as
4295 * relocations against the section that contains a function;
4296 * in such case, symbol will be STT_SECTION and sym.st_name
4297 * will point to empty string (0), so fetch section name
4298 * instead
4299 */
4300 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4301 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4302 else
4303 sym_name = elf_sym_str(obj, sym->st_name);
4304 sym_name = sym_name ?: "<?";
4305
4306 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4307 relo_sec_name, i, insn_idx, sym_name);
4308
4309 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4310 if (!prog) {
4311 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4312 relo_sec_name, i, sec_name, insn_idx);
4313 continue;
4314 }
4315
4316 relos = libbpf_reallocarray(prog->reloc_desc,
4317 prog->nr_reloc + 1, sizeof(*relos));
4318 if (!relos)
4319 return -ENOMEM;
4320 prog->reloc_desc = relos;
4321
4322 /* adjust insn_idx to local BPF program frame of reference */
4323 insn_idx -= prog->sec_insn_off;
4324 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4325 insn_idx, sym_name, sym, rel);
4326 if (err)
4327 return err;
4328
4329 prog->nr_reloc++;
4330 }
4331 return 0;
4332 }
4333
map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4334 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4335 {
4336 int id;
4337
4338 if (!obj->btf)
4339 return -ENOENT;
4340
4341 /* if it's BTF-defined map, we don't need to search for type IDs.
4342 * For struct_ops map, it does not need btf_key_type_id and
4343 * btf_value_type_id.
4344 */
4345 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4346 return 0;
4347
4348 /*
4349 * LLVM annotates global data differently in BTF, that is,
4350 * only as '.data', '.bss' or '.rodata'.
4351 */
4352 if (!bpf_map__is_internal(map))
4353 return -ENOENT;
4354
4355 id = btf__find_by_name(obj->btf, map->real_name);
4356 if (id < 0)
4357 return id;
4358
4359 map->btf_key_type_id = 0;
4360 map->btf_value_type_id = id;
4361 return 0;
4362 }
4363
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4364 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4365 {
4366 char file[PATH_MAX], buff[4096];
4367 FILE *fp;
4368 __u32 val;
4369 int err;
4370
4371 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4372 memset(info, 0, sizeof(*info));
4373
4374 fp = fopen(file, "re");
4375 if (!fp) {
4376 err = -errno;
4377 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4378 err);
4379 return err;
4380 }
4381
4382 while (fgets(buff, sizeof(buff), fp)) {
4383 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4384 info->type = val;
4385 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4386 info->key_size = val;
4387 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4388 info->value_size = val;
4389 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4390 info->max_entries = val;
4391 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4392 info->map_flags = val;
4393 }
4394
4395 fclose(fp);
4396
4397 return 0;
4398 }
4399
bpf_map__autocreate(const struct bpf_map * map)4400 bool bpf_map__autocreate(const struct bpf_map *map)
4401 {
4402 return map->autocreate;
4403 }
4404
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4405 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4406 {
4407 if (map->obj->loaded)
4408 return libbpf_err(-EBUSY);
4409
4410 map->autocreate = autocreate;
4411 return 0;
4412 }
4413
bpf_map__reuse_fd(struct bpf_map * map,int fd)4414 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4415 {
4416 struct bpf_map_info info;
4417 __u32 len = sizeof(info), name_len;
4418 int new_fd, err;
4419 char *new_name;
4420
4421 memset(&info, 0, len);
4422 err = bpf_map_get_info_by_fd(fd, &info, &len);
4423 if (err && errno == EINVAL)
4424 err = bpf_get_map_info_from_fdinfo(fd, &info);
4425 if (err)
4426 return libbpf_err(err);
4427
4428 name_len = strlen(info.name);
4429 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4430 new_name = strdup(map->name);
4431 else
4432 new_name = strdup(info.name);
4433
4434 if (!new_name)
4435 return libbpf_err(-errno);
4436
4437 /*
4438 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4439 * This is similar to what we do in ensure_good_fd(), but without
4440 * closing original FD.
4441 */
4442 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4443 if (new_fd < 0) {
4444 err = -errno;
4445 goto err_free_new_name;
4446 }
4447
4448 err = zclose(map->fd);
4449 if (err) {
4450 err = -errno;
4451 goto err_close_new_fd;
4452 }
4453 free(map->name);
4454
4455 map->fd = new_fd;
4456 map->name = new_name;
4457 map->def.type = info.type;
4458 map->def.key_size = info.key_size;
4459 map->def.value_size = info.value_size;
4460 map->def.max_entries = info.max_entries;
4461 map->def.map_flags = info.map_flags;
4462 map->btf_key_type_id = info.btf_key_type_id;
4463 map->btf_value_type_id = info.btf_value_type_id;
4464 map->reused = true;
4465 map->map_extra = info.map_extra;
4466
4467 return 0;
4468
4469 err_close_new_fd:
4470 close(new_fd);
4471 err_free_new_name:
4472 free(new_name);
4473 return libbpf_err(err);
4474 }
4475
bpf_map__max_entries(const struct bpf_map * map)4476 __u32 bpf_map__max_entries(const struct bpf_map *map)
4477 {
4478 return map->def.max_entries;
4479 }
4480
bpf_map__inner_map(struct bpf_map * map)4481 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4482 {
4483 if (!bpf_map_type__is_map_in_map(map->def.type))
4484 return errno = EINVAL, NULL;
4485
4486 return map->inner_map;
4487 }
4488
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4489 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4490 {
4491 if (map->obj->loaded)
4492 return libbpf_err(-EBUSY);
4493
4494 map->def.max_entries = max_entries;
4495
4496 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4497 if (map_is_ringbuf(map))
4498 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4499
4500 return 0;
4501 }
4502
4503 static int
bpf_object__probe_loading(struct bpf_object * obj)4504 bpf_object__probe_loading(struct bpf_object *obj)
4505 {
4506 char *cp, errmsg[STRERR_BUFSIZE];
4507 struct bpf_insn insns[] = {
4508 BPF_MOV64_IMM(BPF_REG_0, 0),
4509 BPF_EXIT_INSN(),
4510 };
4511 int ret, insn_cnt = ARRAY_SIZE(insns);
4512
4513 if (obj->gen_loader)
4514 return 0;
4515
4516 ret = bump_rlimit_memlock();
4517 if (ret)
4518 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4519
4520 /* make sure basic loading works */
4521 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4522 if (ret < 0)
4523 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4524 if (ret < 0) {
4525 ret = errno;
4526 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4527 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4528 "program. Make sure your kernel supports BPF "
4529 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4530 "set to big enough value.\n", __func__, cp, ret);
4531 return -ret;
4532 }
4533 close(ret);
4534
4535 return 0;
4536 }
4537
probe_fd(int fd)4538 static int probe_fd(int fd)
4539 {
4540 if (fd >= 0)
4541 close(fd);
4542 return fd >= 0;
4543 }
4544
probe_kern_prog_name(void)4545 static int probe_kern_prog_name(void)
4546 {
4547 const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4548 struct bpf_insn insns[] = {
4549 BPF_MOV64_IMM(BPF_REG_0, 0),
4550 BPF_EXIT_INSN(),
4551 };
4552 union bpf_attr attr;
4553 int ret;
4554
4555 memset(&attr, 0, attr_sz);
4556 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4557 attr.license = ptr_to_u64("GPL");
4558 attr.insns = ptr_to_u64(insns);
4559 attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4560 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4561
4562 /* make sure loading with name works */
4563 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4564 return probe_fd(ret);
4565 }
4566
probe_kern_global_data(void)4567 static int probe_kern_global_data(void)
4568 {
4569 char *cp, errmsg[STRERR_BUFSIZE];
4570 struct bpf_insn insns[] = {
4571 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4572 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4573 BPF_MOV64_IMM(BPF_REG_0, 0),
4574 BPF_EXIT_INSN(),
4575 };
4576 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4577
4578 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4579 if (map < 0) {
4580 ret = -errno;
4581 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4582 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4583 __func__, cp, -ret);
4584 return ret;
4585 }
4586
4587 insns[0].imm = map;
4588
4589 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4590 close(map);
4591 return probe_fd(ret);
4592 }
4593
probe_kern_btf(void)4594 static int probe_kern_btf(void)
4595 {
4596 static const char strs[] = "\0int";
4597 __u32 types[] = {
4598 /* int */
4599 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4600 };
4601
4602 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4603 strs, sizeof(strs)));
4604 }
4605
probe_kern_btf_func(void)4606 static int probe_kern_btf_func(void)
4607 {
4608 static const char strs[] = "\0int\0x\0a";
4609 /* void x(int a) {} */
4610 __u32 types[] = {
4611 /* int */
4612 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4613 /* FUNC_PROTO */ /* [2] */
4614 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4615 BTF_PARAM_ENC(7, 1),
4616 /* FUNC x */ /* [3] */
4617 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4618 };
4619
4620 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4621 strs, sizeof(strs)));
4622 }
4623
probe_kern_btf_func_global(void)4624 static int probe_kern_btf_func_global(void)
4625 {
4626 static const char strs[] = "\0int\0x\0a";
4627 /* static void x(int a) {} */
4628 __u32 types[] = {
4629 /* int */
4630 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4631 /* FUNC_PROTO */ /* [2] */
4632 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4633 BTF_PARAM_ENC(7, 1),
4634 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4635 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4636 };
4637
4638 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4639 strs, sizeof(strs)));
4640 }
4641
probe_kern_btf_datasec(void)4642 static int probe_kern_btf_datasec(void)
4643 {
4644 static const char strs[] = "\0x\0.data";
4645 /* static int a; */
4646 __u32 types[] = {
4647 /* int */
4648 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4649 /* VAR x */ /* [2] */
4650 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4651 BTF_VAR_STATIC,
4652 /* DATASEC val */ /* [3] */
4653 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4654 BTF_VAR_SECINFO_ENC(2, 0, 4),
4655 };
4656
4657 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4658 strs, sizeof(strs)));
4659 }
4660
probe_kern_btf_float(void)4661 static int probe_kern_btf_float(void)
4662 {
4663 static const char strs[] = "\0float";
4664 __u32 types[] = {
4665 /* float */
4666 BTF_TYPE_FLOAT_ENC(1, 4),
4667 };
4668
4669 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4670 strs, sizeof(strs)));
4671 }
4672
probe_kern_btf_decl_tag(void)4673 static int probe_kern_btf_decl_tag(void)
4674 {
4675 static const char strs[] = "\0tag";
4676 __u32 types[] = {
4677 /* int */
4678 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4679 /* VAR x */ /* [2] */
4680 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4681 BTF_VAR_STATIC,
4682 /* attr */
4683 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4684 };
4685
4686 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4687 strs, sizeof(strs)));
4688 }
4689
probe_kern_btf_type_tag(void)4690 static int probe_kern_btf_type_tag(void)
4691 {
4692 static const char strs[] = "\0tag";
4693 __u32 types[] = {
4694 /* int */
4695 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4696 /* attr */
4697 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4698 /* ptr */
4699 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4700 };
4701
4702 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4703 strs, sizeof(strs)));
4704 }
4705
probe_kern_array_mmap(void)4706 static int probe_kern_array_mmap(void)
4707 {
4708 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4709 int fd;
4710
4711 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4712 return probe_fd(fd);
4713 }
4714
probe_kern_exp_attach_type(void)4715 static int probe_kern_exp_attach_type(void)
4716 {
4717 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4718 struct bpf_insn insns[] = {
4719 BPF_MOV64_IMM(BPF_REG_0, 0),
4720 BPF_EXIT_INSN(),
4721 };
4722 int fd, insn_cnt = ARRAY_SIZE(insns);
4723
4724 /* use any valid combination of program type and (optional)
4725 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4726 * to see if kernel supports expected_attach_type field for
4727 * BPF_PROG_LOAD command
4728 */
4729 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4730 return probe_fd(fd);
4731 }
4732
probe_kern_probe_read_kernel(void)4733 static int probe_kern_probe_read_kernel(void)
4734 {
4735 struct bpf_insn insns[] = {
4736 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4737 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4738 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4739 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4740 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4741 BPF_EXIT_INSN(),
4742 };
4743 int fd, insn_cnt = ARRAY_SIZE(insns);
4744
4745 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4746 return probe_fd(fd);
4747 }
4748
probe_prog_bind_map(void)4749 static int probe_prog_bind_map(void)
4750 {
4751 char *cp, errmsg[STRERR_BUFSIZE];
4752 struct bpf_insn insns[] = {
4753 BPF_MOV64_IMM(BPF_REG_0, 0),
4754 BPF_EXIT_INSN(),
4755 };
4756 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4757
4758 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4759 if (map < 0) {
4760 ret = -errno;
4761 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4762 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4763 __func__, cp, -ret);
4764 return ret;
4765 }
4766
4767 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4768 if (prog < 0) {
4769 close(map);
4770 return 0;
4771 }
4772
4773 ret = bpf_prog_bind_map(prog, map, NULL);
4774
4775 close(map);
4776 close(prog);
4777
4778 return ret >= 0;
4779 }
4780
probe_module_btf(void)4781 static int probe_module_btf(void)
4782 {
4783 static const char strs[] = "\0int";
4784 __u32 types[] = {
4785 /* int */
4786 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4787 };
4788 struct bpf_btf_info info;
4789 __u32 len = sizeof(info);
4790 char name[16];
4791 int fd, err;
4792
4793 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4794 if (fd < 0)
4795 return 0; /* BTF not supported at all */
4796
4797 memset(&info, 0, sizeof(info));
4798 info.name = ptr_to_u64(name);
4799 info.name_len = sizeof(name);
4800
4801 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4802 * kernel's module BTF support coincides with support for
4803 * name/name_len fields in struct bpf_btf_info.
4804 */
4805 err = bpf_btf_get_info_by_fd(fd, &info, &len);
4806 close(fd);
4807 return !err;
4808 }
4809
probe_perf_link(void)4810 static int probe_perf_link(void)
4811 {
4812 struct bpf_insn insns[] = {
4813 BPF_MOV64_IMM(BPF_REG_0, 0),
4814 BPF_EXIT_INSN(),
4815 };
4816 int prog_fd, link_fd, err;
4817
4818 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4819 insns, ARRAY_SIZE(insns), NULL);
4820 if (prog_fd < 0)
4821 return -errno;
4822
4823 /* use invalid perf_event FD to get EBADF, if link is supported;
4824 * otherwise EINVAL should be returned
4825 */
4826 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4827 err = -errno; /* close() can clobber errno */
4828
4829 if (link_fd >= 0)
4830 close(link_fd);
4831 close(prog_fd);
4832
4833 return link_fd < 0 && err == -EBADF;
4834 }
4835
probe_uprobe_multi_link(void)4836 static int probe_uprobe_multi_link(void)
4837 {
4838 LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
4839 .expected_attach_type = BPF_TRACE_UPROBE_MULTI,
4840 );
4841 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
4842 struct bpf_insn insns[] = {
4843 BPF_MOV64_IMM(BPF_REG_0, 0),
4844 BPF_EXIT_INSN(),
4845 };
4846 int prog_fd, link_fd, err;
4847 unsigned long offset = 0;
4848
4849 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
4850 insns, ARRAY_SIZE(insns), &load_opts);
4851 if (prog_fd < 0)
4852 return -errno;
4853
4854 /* Creating uprobe in '/' binary should fail with -EBADF. */
4855 link_opts.uprobe_multi.path = "/";
4856 link_opts.uprobe_multi.offsets = &offset;
4857 link_opts.uprobe_multi.cnt = 1;
4858
4859 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
4860 err = -errno; /* close() can clobber errno */
4861
4862 if (link_fd >= 0)
4863 close(link_fd);
4864 close(prog_fd);
4865
4866 return link_fd < 0 && err == -EBADF;
4867 }
4868
probe_kern_bpf_cookie(void)4869 static int probe_kern_bpf_cookie(void)
4870 {
4871 struct bpf_insn insns[] = {
4872 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4873 BPF_EXIT_INSN(),
4874 };
4875 int ret, insn_cnt = ARRAY_SIZE(insns);
4876
4877 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4878 return probe_fd(ret);
4879 }
4880
probe_kern_btf_enum64(void)4881 static int probe_kern_btf_enum64(void)
4882 {
4883 static const char strs[] = "\0enum64";
4884 __u32 types[] = {
4885 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4886 };
4887
4888 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4889 strs, sizeof(strs)));
4890 }
4891
4892 static int probe_kern_syscall_wrapper(void);
4893
4894 enum kern_feature_result {
4895 FEAT_UNKNOWN = 0,
4896 FEAT_SUPPORTED = 1,
4897 FEAT_MISSING = 2,
4898 };
4899
4900 typedef int (*feature_probe_fn)(void);
4901
4902 static struct kern_feature_desc {
4903 const char *desc;
4904 feature_probe_fn probe;
4905 enum kern_feature_result res;
4906 } feature_probes[__FEAT_CNT] = {
4907 [FEAT_PROG_NAME] = {
4908 "BPF program name", probe_kern_prog_name,
4909 },
4910 [FEAT_GLOBAL_DATA] = {
4911 "global variables", probe_kern_global_data,
4912 },
4913 [FEAT_BTF] = {
4914 "minimal BTF", probe_kern_btf,
4915 },
4916 [FEAT_BTF_FUNC] = {
4917 "BTF functions", probe_kern_btf_func,
4918 },
4919 [FEAT_BTF_GLOBAL_FUNC] = {
4920 "BTF global function", probe_kern_btf_func_global,
4921 },
4922 [FEAT_BTF_DATASEC] = {
4923 "BTF data section and variable", probe_kern_btf_datasec,
4924 },
4925 [FEAT_ARRAY_MMAP] = {
4926 "ARRAY map mmap()", probe_kern_array_mmap,
4927 },
4928 [FEAT_EXP_ATTACH_TYPE] = {
4929 "BPF_PROG_LOAD expected_attach_type attribute",
4930 probe_kern_exp_attach_type,
4931 },
4932 [FEAT_PROBE_READ_KERN] = {
4933 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4934 },
4935 [FEAT_PROG_BIND_MAP] = {
4936 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4937 },
4938 [FEAT_MODULE_BTF] = {
4939 "module BTF support", probe_module_btf,
4940 },
4941 [FEAT_BTF_FLOAT] = {
4942 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4943 },
4944 [FEAT_PERF_LINK] = {
4945 "BPF perf link support", probe_perf_link,
4946 },
4947 [FEAT_BTF_DECL_TAG] = {
4948 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4949 },
4950 [FEAT_BTF_TYPE_TAG] = {
4951 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4952 },
4953 [FEAT_MEMCG_ACCOUNT] = {
4954 "memcg-based memory accounting", probe_memcg_account,
4955 },
4956 [FEAT_BPF_COOKIE] = {
4957 "BPF cookie support", probe_kern_bpf_cookie,
4958 },
4959 [FEAT_BTF_ENUM64] = {
4960 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4961 },
4962 [FEAT_SYSCALL_WRAPPER] = {
4963 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4964 },
4965 [FEAT_UPROBE_MULTI_LINK] = {
4966 "BPF multi-uprobe link support", probe_uprobe_multi_link,
4967 },
4968 };
4969
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)4970 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4971 {
4972 struct kern_feature_desc *feat = &feature_probes[feat_id];
4973 int ret;
4974
4975 if (obj && obj->gen_loader)
4976 /* To generate loader program assume the latest kernel
4977 * to avoid doing extra prog_load, map_create syscalls.
4978 */
4979 return true;
4980
4981 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4982 ret = feat->probe();
4983 if (ret > 0) {
4984 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4985 } else if (ret == 0) {
4986 WRITE_ONCE(feat->res, FEAT_MISSING);
4987 } else {
4988 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4989 WRITE_ONCE(feat->res, FEAT_MISSING);
4990 }
4991 }
4992
4993 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4994 }
4995
map_is_reuse_compat(const struct bpf_map * map,int map_fd)4996 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4997 {
4998 struct bpf_map_info map_info;
4999 char msg[STRERR_BUFSIZE];
5000 __u32 map_info_len = sizeof(map_info);
5001 int err;
5002
5003 memset(&map_info, 0, map_info_len);
5004 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5005 if (err && errno == EINVAL)
5006 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5007 if (err) {
5008 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5009 libbpf_strerror_r(errno, msg, sizeof(msg)));
5010 return false;
5011 }
5012
5013 return (map_info.type == map->def.type &&
5014 map_info.key_size == map->def.key_size &&
5015 map_info.value_size == map->def.value_size &&
5016 map_info.max_entries == map->def.max_entries &&
5017 map_info.map_flags == map->def.map_flags &&
5018 map_info.map_extra == map->map_extra);
5019 }
5020
5021 static int
bpf_object__reuse_map(struct bpf_map * map)5022 bpf_object__reuse_map(struct bpf_map *map)
5023 {
5024 char *cp, errmsg[STRERR_BUFSIZE];
5025 int err, pin_fd;
5026
5027 pin_fd = bpf_obj_get(map->pin_path);
5028 if (pin_fd < 0) {
5029 err = -errno;
5030 if (err == -ENOENT) {
5031 pr_debug("found no pinned map to reuse at '%s'\n",
5032 map->pin_path);
5033 return 0;
5034 }
5035
5036 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5037 pr_warn("couldn't retrieve pinned map '%s': %s\n",
5038 map->pin_path, cp);
5039 return err;
5040 }
5041
5042 if (!map_is_reuse_compat(map, pin_fd)) {
5043 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5044 map->pin_path);
5045 close(pin_fd);
5046 return -EINVAL;
5047 }
5048
5049 err = bpf_map__reuse_fd(map, pin_fd);
5050 close(pin_fd);
5051 if (err)
5052 return err;
5053
5054 map->pinned = true;
5055 pr_debug("reused pinned map at '%s'\n", map->pin_path);
5056
5057 return 0;
5058 }
5059
5060 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5061 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5062 {
5063 enum libbpf_map_type map_type = map->libbpf_type;
5064 char *cp, errmsg[STRERR_BUFSIZE];
5065 int err, zero = 0;
5066
5067 if (obj->gen_loader) {
5068 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5069 map->mmaped, map->def.value_size);
5070 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5071 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5072 return 0;
5073 }
5074 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5075 if (err) {
5076 err = -errno;
5077 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5078 pr_warn("Error setting initial map(%s) contents: %s\n",
5079 map->name, cp);
5080 return err;
5081 }
5082
5083 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5084 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5085 err = bpf_map_freeze(map->fd);
5086 if (err) {
5087 err = -errno;
5088 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5089 pr_warn("Error freezing map(%s) as read-only: %s\n",
5090 map->name, cp);
5091 return err;
5092 }
5093 }
5094 return 0;
5095 }
5096
5097 static void bpf_map__destroy(struct bpf_map *map);
5098
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5099 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5100 {
5101 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5102 struct bpf_map_def *def = &map->def;
5103 const char *map_name = NULL;
5104 int err = 0;
5105
5106 if (kernel_supports(obj, FEAT_PROG_NAME))
5107 map_name = map->name;
5108 create_attr.map_ifindex = map->map_ifindex;
5109 create_attr.map_flags = def->map_flags;
5110 create_attr.numa_node = map->numa_node;
5111 create_attr.map_extra = map->map_extra;
5112
5113 if (bpf_map__is_struct_ops(map))
5114 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5115
5116 if (obj->btf && btf__fd(obj->btf) >= 0) {
5117 create_attr.btf_fd = btf__fd(obj->btf);
5118 create_attr.btf_key_type_id = map->btf_key_type_id;
5119 create_attr.btf_value_type_id = map->btf_value_type_id;
5120 }
5121
5122 if (bpf_map_type__is_map_in_map(def->type)) {
5123 if (map->inner_map) {
5124 err = bpf_object__create_map(obj, map->inner_map, true);
5125 if (err) {
5126 pr_warn("map '%s': failed to create inner map: %d\n",
5127 map->name, err);
5128 return err;
5129 }
5130 map->inner_map_fd = bpf_map__fd(map->inner_map);
5131 }
5132 if (map->inner_map_fd >= 0)
5133 create_attr.inner_map_fd = map->inner_map_fd;
5134 }
5135
5136 switch (def->type) {
5137 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5138 case BPF_MAP_TYPE_CGROUP_ARRAY:
5139 case BPF_MAP_TYPE_STACK_TRACE:
5140 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5141 case BPF_MAP_TYPE_HASH_OF_MAPS:
5142 case BPF_MAP_TYPE_DEVMAP:
5143 case BPF_MAP_TYPE_DEVMAP_HASH:
5144 case BPF_MAP_TYPE_CPUMAP:
5145 case BPF_MAP_TYPE_XSKMAP:
5146 case BPF_MAP_TYPE_SOCKMAP:
5147 case BPF_MAP_TYPE_SOCKHASH:
5148 case BPF_MAP_TYPE_QUEUE:
5149 case BPF_MAP_TYPE_STACK:
5150 create_attr.btf_fd = 0;
5151 create_attr.btf_key_type_id = 0;
5152 create_attr.btf_value_type_id = 0;
5153 map->btf_key_type_id = 0;
5154 map->btf_value_type_id = 0;
5155 default:
5156 break;
5157 }
5158
5159 if (obj->gen_loader) {
5160 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5161 def->key_size, def->value_size, def->max_entries,
5162 &create_attr, is_inner ? -1 : map - obj->maps);
5163 /* Pretend to have valid FD to pass various fd >= 0 checks.
5164 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5165 */
5166 map->fd = 0;
5167 } else {
5168 map->fd = bpf_map_create(def->type, map_name,
5169 def->key_size, def->value_size,
5170 def->max_entries, &create_attr);
5171 }
5172 if (map->fd < 0 && (create_attr.btf_key_type_id ||
5173 create_attr.btf_value_type_id)) {
5174 char *cp, errmsg[STRERR_BUFSIZE];
5175
5176 err = -errno;
5177 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5178 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5179 map->name, cp, err);
5180 create_attr.btf_fd = 0;
5181 create_attr.btf_key_type_id = 0;
5182 create_attr.btf_value_type_id = 0;
5183 map->btf_key_type_id = 0;
5184 map->btf_value_type_id = 0;
5185 map->fd = bpf_map_create(def->type, map_name,
5186 def->key_size, def->value_size,
5187 def->max_entries, &create_attr);
5188 }
5189
5190 err = map->fd < 0 ? -errno : 0;
5191
5192 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5193 if (obj->gen_loader)
5194 map->inner_map->fd = -1;
5195 bpf_map__destroy(map->inner_map);
5196 zfree(&map->inner_map);
5197 }
5198
5199 return err;
5200 }
5201
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5202 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5203 {
5204 const struct bpf_map *targ_map;
5205 unsigned int i;
5206 int fd, err = 0;
5207
5208 for (i = 0; i < map->init_slots_sz; i++) {
5209 if (!map->init_slots[i])
5210 continue;
5211
5212 targ_map = map->init_slots[i];
5213 fd = bpf_map__fd(targ_map);
5214
5215 if (obj->gen_loader) {
5216 bpf_gen__populate_outer_map(obj->gen_loader,
5217 map - obj->maps, i,
5218 targ_map - obj->maps);
5219 } else {
5220 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5221 }
5222 if (err) {
5223 err = -errno;
5224 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5225 map->name, i, targ_map->name, fd, err);
5226 return err;
5227 }
5228 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5229 map->name, i, targ_map->name, fd);
5230 }
5231
5232 zfree(&map->init_slots);
5233 map->init_slots_sz = 0;
5234
5235 return 0;
5236 }
5237
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5238 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5239 {
5240 const struct bpf_program *targ_prog;
5241 unsigned int i;
5242 int fd, err;
5243
5244 if (obj->gen_loader)
5245 return -ENOTSUP;
5246
5247 for (i = 0; i < map->init_slots_sz; i++) {
5248 if (!map->init_slots[i])
5249 continue;
5250
5251 targ_prog = map->init_slots[i];
5252 fd = bpf_program__fd(targ_prog);
5253
5254 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5255 if (err) {
5256 err = -errno;
5257 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5258 map->name, i, targ_prog->name, fd, err);
5259 return err;
5260 }
5261 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5262 map->name, i, targ_prog->name, fd);
5263 }
5264
5265 zfree(&map->init_slots);
5266 map->init_slots_sz = 0;
5267
5268 return 0;
5269 }
5270
bpf_object_init_prog_arrays(struct bpf_object * obj)5271 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5272 {
5273 struct bpf_map *map;
5274 int i, err;
5275
5276 for (i = 0; i < obj->nr_maps; i++) {
5277 map = &obj->maps[i];
5278
5279 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5280 continue;
5281
5282 err = init_prog_array_slots(obj, map);
5283 if (err < 0) {
5284 zclose(map->fd);
5285 return err;
5286 }
5287 }
5288 return 0;
5289 }
5290
map_set_def_max_entries(struct bpf_map * map)5291 static int map_set_def_max_entries(struct bpf_map *map)
5292 {
5293 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5294 int nr_cpus;
5295
5296 nr_cpus = libbpf_num_possible_cpus();
5297 if (nr_cpus < 0) {
5298 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5299 map->name, nr_cpus);
5300 return nr_cpus;
5301 }
5302 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5303 map->def.max_entries = nr_cpus;
5304 }
5305
5306 return 0;
5307 }
5308
5309 static int
bpf_object__create_maps(struct bpf_object * obj)5310 bpf_object__create_maps(struct bpf_object *obj)
5311 {
5312 struct bpf_map *map;
5313 char *cp, errmsg[STRERR_BUFSIZE];
5314 unsigned int i, j;
5315 int err;
5316 bool retried;
5317
5318 for (i = 0; i < obj->nr_maps; i++) {
5319 map = &obj->maps[i];
5320
5321 /* To support old kernels, we skip creating global data maps
5322 * (.rodata, .data, .kconfig, etc); later on, during program
5323 * loading, if we detect that at least one of the to-be-loaded
5324 * programs is referencing any global data map, we'll error
5325 * out with program name and relocation index logged.
5326 * This approach allows to accommodate Clang emitting
5327 * unnecessary .rodata.str1.1 sections for string literals,
5328 * but also it allows to have CO-RE applications that use
5329 * global variables in some of BPF programs, but not others.
5330 * If those global variable-using programs are not loaded at
5331 * runtime due to bpf_program__set_autoload(prog, false),
5332 * bpf_object loading will succeed just fine even on old
5333 * kernels.
5334 */
5335 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5336 map->autocreate = false;
5337
5338 if (!map->autocreate) {
5339 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5340 continue;
5341 }
5342
5343 err = map_set_def_max_entries(map);
5344 if (err)
5345 goto err_out;
5346
5347 retried = false;
5348 retry:
5349 if (map->pin_path) {
5350 err = bpf_object__reuse_map(map);
5351 if (err) {
5352 pr_warn("map '%s': error reusing pinned map\n",
5353 map->name);
5354 goto err_out;
5355 }
5356 if (retried && map->fd < 0) {
5357 pr_warn("map '%s': cannot find pinned map\n",
5358 map->name);
5359 err = -ENOENT;
5360 goto err_out;
5361 }
5362 }
5363
5364 if (map->fd >= 0) {
5365 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5366 map->name, map->fd);
5367 } else {
5368 err = bpf_object__create_map(obj, map, false);
5369 if (err)
5370 goto err_out;
5371
5372 pr_debug("map '%s': created successfully, fd=%d\n",
5373 map->name, map->fd);
5374
5375 if (bpf_map__is_internal(map)) {
5376 err = bpf_object__populate_internal_map(obj, map);
5377 if (err < 0) {
5378 zclose(map->fd);
5379 goto err_out;
5380 }
5381 }
5382
5383 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5384 err = init_map_in_map_slots(obj, map);
5385 if (err < 0) {
5386 zclose(map->fd);
5387 goto err_out;
5388 }
5389 }
5390 }
5391
5392 if (map->pin_path && !map->pinned) {
5393 err = bpf_map__pin(map, NULL);
5394 if (err) {
5395 zclose(map->fd);
5396 if (!retried && err == -EEXIST) {
5397 retried = true;
5398 goto retry;
5399 }
5400 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5401 map->name, map->pin_path, err);
5402 goto err_out;
5403 }
5404 }
5405 }
5406
5407 return 0;
5408
5409 err_out:
5410 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5411 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5412 pr_perm_msg(err);
5413 for (j = 0; j < i; j++)
5414 zclose(obj->maps[j].fd);
5415 return err;
5416 }
5417
bpf_core_is_flavor_sep(const char * s)5418 static bool bpf_core_is_flavor_sep(const char *s)
5419 {
5420 /* check X___Y name pattern, where X and Y are not underscores */
5421 return s[0] != '_' && /* X */
5422 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5423 s[4] != '_'; /* Y */
5424 }
5425
5426 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5427 * before last triple underscore. Struct name part after last triple
5428 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5429 */
bpf_core_essential_name_len(const char * name)5430 size_t bpf_core_essential_name_len(const char *name)
5431 {
5432 size_t n = strlen(name);
5433 int i;
5434
5435 for (i = n - 5; i >= 0; i--) {
5436 if (bpf_core_is_flavor_sep(name + i))
5437 return i + 1;
5438 }
5439 return n;
5440 }
5441
bpf_core_free_cands(struct bpf_core_cand_list * cands)5442 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5443 {
5444 if (!cands)
5445 return;
5446
5447 free(cands->cands);
5448 free(cands);
5449 }
5450
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5451 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5452 size_t local_essent_len,
5453 const struct btf *targ_btf,
5454 const char *targ_btf_name,
5455 int targ_start_id,
5456 struct bpf_core_cand_list *cands)
5457 {
5458 struct bpf_core_cand *new_cands, *cand;
5459 const struct btf_type *t, *local_t;
5460 const char *targ_name, *local_name;
5461 size_t targ_essent_len;
5462 int n, i;
5463
5464 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5465 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5466
5467 n = btf__type_cnt(targ_btf);
5468 for (i = targ_start_id; i < n; i++) {
5469 t = btf__type_by_id(targ_btf, i);
5470 if (!btf_kind_core_compat(t, local_t))
5471 continue;
5472
5473 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5474 if (str_is_empty(targ_name))
5475 continue;
5476
5477 targ_essent_len = bpf_core_essential_name_len(targ_name);
5478 if (targ_essent_len != local_essent_len)
5479 continue;
5480
5481 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5482 continue;
5483
5484 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5485 local_cand->id, btf_kind_str(local_t),
5486 local_name, i, btf_kind_str(t), targ_name,
5487 targ_btf_name);
5488 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5489 sizeof(*cands->cands));
5490 if (!new_cands)
5491 return -ENOMEM;
5492
5493 cand = &new_cands[cands->len];
5494 cand->btf = targ_btf;
5495 cand->id = i;
5496
5497 cands->cands = new_cands;
5498 cands->len++;
5499 }
5500 return 0;
5501 }
5502
load_module_btfs(struct bpf_object * obj)5503 static int load_module_btfs(struct bpf_object *obj)
5504 {
5505 struct bpf_btf_info info;
5506 struct module_btf *mod_btf;
5507 struct btf *btf;
5508 char name[64];
5509 __u32 id = 0, len;
5510 int err, fd;
5511
5512 if (obj->btf_modules_loaded)
5513 return 0;
5514
5515 if (obj->gen_loader)
5516 return 0;
5517
5518 /* don't do this again, even if we find no module BTFs */
5519 obj->btf_modules_loaded = true;
5520
5521 /* kernel too old to support module BTFs */
5522 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5523 return 0;
5524
5525 while (true) {
5526 err = bpf_btf_get_next_id(id, &id);
5527 if (err && errno == ENOENT)
5528 return 0;
5529 if (err && errno == EPERM) {
5530 pr_debug("skipping module BTFs loading, missing privileges\n");
5531 return 0;
5532 }
5533 if (err) {
5534 err = -errno;
5535 pr_warn("failed to iterate BTF objects: %d\n", err);
5536 return err;
5537 }
5538
5539 fd = bpf_btf_get_fd_by_id(id);
5540 if (fd < 0) {
5541 if (errno == ENOENT)
5542 continue; /* expected race: BTF was unloaded */
5543 err = -errno;
5544 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5545 return err;
5546 }
5547
5548 len = sizeof(info);
5549 memset(&info, 0, sizeof(info));
5550 info.name = ptr_to_u64(name);
5551 info.name_len = sizeof(name);
5552
5553 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5554 if (err) {
5555 err = -errno;
5556 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5557 goto err_out;
5558 }
5559
5560 /* ignore non-module BTFs */
5561 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5562 close(fd);
5563 continue;
5564 }
5565
5566 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5567 err = libbpf_get_error(btf);
5568 if (err) {
5569 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5570 name, id, err);
5571 goto err_out;
5572 }
5573
5574 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5575 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5576 if (err)
5577 goto err_out;
5578
5579 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5580
5581 mod_btf->btf = btf;
5582 mod_btf->id = id;
5583 mod_btf->fd = fd;
5584 mod_btf->name = strdup(name);
5585 if (!mod_btf->name) {
5586 err = -ENOMEM;
5587 goto err_out;
5588 }
5589 continue;
5590
5591 err_out:
5592 close(fd);
5593 return err;
5594 }
5595
5596 return 0;
5597 }
5598
5599 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5600 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5601 {
5602 struct bpf_core_cand local_cand = {};
5603 struct bpf_core_cand_list *cands;
5604 const struct btf *main_btf;
5605 const struct btf_type *local_t;
5606 const char *local_name;
5607 size_t local_essent_len;
5608 int err, i;
5609
5610 local_cand.btf = local_btf;
5611 local_cand.id = local_type_id;
5612 local_t = btf__type_by_id(local_btf, local_type_id);
5613 if (!local_t)
5614 return ERR_PTR(-EINVAL);
5615
5616 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5617 if (str_is_empty(local_name))
5618 return ERR_PTR(-EINVAL);
5619 local_essent_len = bpf_core_essential_name_len(local_name);
5620
5621 cands = calloc(1, sizeof(*cands));
5622 if (!cands)
5623 return ERR_PTR(-ENOMEM);
5624
5625 /* Attempt to find target candidates in vmlinux BTF first */
5626 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5627 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5628 if (err)
5629 goto err_out;
5630
5631 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5632 if (cands->len)
5633 return cands;
5634
5635 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5636 if (obj->btf_vmlinux_override)
5637 return cands;
5638
5639 /* now look through module BTFs, trying to still find candidates */
5640 err = load_module_btfs(obj);
5641 if (err)
5642 goto err_out;
5643
5644 for (i = 0; i < obj->btf_module_cnt; i++) {
5645 err = bpf_core_add_cands(&local_cand, local_essent_len,
5646 obj->btf_modules[i].btf,
5647 obj->btf_modules[i].name,
5648 btf__type_cnt(obj->btf_vmlinux),
5649 cands);
5650 if (err)
5651 goto err_out;
5652 }
5653
5654 return cands;
5655 err_out:
5656 bpf_core_free_cands(cands);
5657 return ERR_PTR(err);
5658 }
5659
5660 /* Check local and target types for compatibility. This check is used for
5661 * type-based CO-RE relocations and follow slightly different rules than
5662 * field-based relocations. This function assumes that root types were already
5663 * checked for name match. Beyond that initial root-level name check, names
5664 * are completely ignored. Compatibility rules are as follows:
5665 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5666 * kind should match for local and target types (i.e., STRUCT is not
5667 * compatible with UNION);
5668 * - for ENUMs, the size is ignored;
5669 * - for INT, size and signedness are ignored;
5670 * - for ARRAY, dimensionality is ignored, element types are checked for
5671 * compatibility recursively;
5672 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5673 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5674 * - FUNC_PROTOs are compatible if they have compatible signature: same
5675 * number of input args and compatible return and argument types.
5676 * These rules are not set in stone and probably will be adjusted as we get
5677 * more experience with using BPF CO-RE relocations.
5678 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5679 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5680 const struct btf *targ_btf, __u32 targ_id)
5681 {
5682 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5683 }
5684
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5685 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5686 const struct btf *targ_btf, __u32 targ_id)
5687 {
5688 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5689 }
5690
bpf_core_hash_fn(const long key,void * ctx)5691 static size_t bpf_core_hash_fn(const long key, void *ctx)
5692 {
5693 return key;
5694 }
5695
bpf_core_equal_fn(const long k1,const long k2,void * ctx)5696 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5697 {
5698 return k1 == k2;
5699 }
5700
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5701 static int record_relo_core(struct bpf_program *prog,
5702 const struct bpf_core_relo *core_relo, int insn_idx)
5703 {
5704 struct reloc_desc *relos, *relo;
5705
5706 relos = libbpf_reallocarray(prog->reloc_desc,
5707 prog->nr_reloc + 1, sizeof(*relos));
5708 if (!relos)
5709 return -ENOMEM;
5710 relo = &relos[prog->nr_reloc];
5711 relo->type = RELO_CORE;
5712 relo->insn_idx = insn_idx;
5713 relo->core_relo = core_relo;
5714 prog->reloc_desc = relos;
5715 prog->nr_reloc++;
5716 return 0;
5717 }
5718
find_relo_core(struct bpf_program * prog,int insn_idx)5719 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5720 {
5721 struct reloc_desc *relo;
5722 int i;
5723
5724 for (i = 0; i < prog->nr_reloc; i++) {
5725 relo = &prog->reloc_desc[i];
5726 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5727 continue;
5728
5729 return relo->core_relo;
5730 }
5731
5732 return NULL;
5733 }
5734
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5735 static int bpf_core_resolve_relo(struct bpf_program *prog,
5736 const struct bpf_core_relo *relo,
5737 int relo_idx,
5738 const struct btf *local_btf,
5739 struct hashmap *cand_cache,
5740 struct bpf_core_relo_res *targ_res)
5741 {
5742 struct bpf_core_spec specs_scratch[3] = {};
5743 struct bpf_core_cand_list *cands = NULL;
5744 const char *prog_name = prog->name;
5745 const struct btf_type *local_type;
5746 const char *local_name;
5747 __u32 local_id = relo->type_id;
5748 int err;
5749
5750 local_type = btf__type_by_id(local_btf, local_id);
5751 if (!local_type)
5752 return -EINVAL;
5753
5754 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5755 if (!local_name)
5756 return -EINVAL;
5757
5758 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5759 !hashmap__find(cand_cache, local_id, &cands)) {
5760 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5761 if (IS_ERR(cands)) {
5762 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5763 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5764 local_name, PTR_ERR(cands));
5765 return PTR_ERR(cands);
5766 }
5767 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5768 if (err) {
5769 bpf_core_free_cands(cands);
5770 return err;
5771 }
5772 }
5773
5774 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5775 targ_res);
5776 }
5777
5778 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5779 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5780 {
5781 const struct btf_ext_info_sec *sec;
5782 struct bpf_core_relo_res targ_res;
5783 const struct bpf_core_relo *rec;
5784 const struct btf_ext_info *seg;
5785 struct hashmap_entry *entry;
5786 struct hashmap *cand_cache = NULL;
5787 struct bpf_program *prog;
5788 struct bpf_insn *insn;
5789 const char *sec_name;
5790 int i, err = 0, insn_idx, sec_idx, sec_num;
5791
5792 if (obj->btf_ext->core_relo_info.len == 0)
5793 return 0;
5794
5795 if (targ_btf_path) {
5796 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5797 err = libbpf_get_error(obj->btf_vmlinux_override);
5798 if (err) {
5799 pr_warn("failed to parse target BTF: %d\n", err);
5800 return err;
5801 }
5802 }
5803
5804 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5805 if (IS_ERR(cand_cache)) {
5806 err = PTR_ERR(cand_cache);
5807 goto out;
5808 }
5809
5810 seg = &obj->btf_ext->core_relo_info;
5811 sec_num = 0;
5812 for_each_btf_ext_sec(seg, sec) {
5813 sec_idx = seg->sec_idxs[sec_num];
5814 sec_num++;
5815
5816 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5817 if (str_is_empty(sec_name)) {
5818 err = -EINVAL;
5819 goto out;
5820 }
5821
5822 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5823
5824 for_each_btf_ext_rec(seg, sec, i, rec) {
5825 if (rec->insn_off % BPF_INSN_SZ)
5826 return -EINVAL;
5827 insn_idx = rec->insn_off / BPF_INSN_SZ;
5828 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5829 if (!prog) {
5830 /* When __weak subprog is "overridden" by another instance
5831 * of the subprog from a different object file, linker still
5832 * appends all the .BTF.ext info that used to belong to that
5833 * eliminated subprogram.
5834 * This is similar to what x86-64 linker does for relocations.
5835 * So just ignore such relocations just like we ignore
5836 * subprog instructions when discovering subprograms.
5837 */
5838 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5839 sec_name, i, insn_idx);
5840 continue;
5841 }
5842 /* no need to apply CO-RE relocation if the program is
5843 * not going to be loaded
5844 */
5845 if (!prog->autoload)
5846 continue;
5847
5848 /* adjust insn_idx from section frame of reference to the local
5849 * program's frame of reference; (sub-)program code is not yet
5850 * relocated, so it's enough to just subtract in-section offset
5851 */
5852 insn_idx = insn_idx - prog->sec_insn_off;
5853 if (insn_idx >= prog->insns_cnt)
5854 return -EINVAL;
5855 insn = &prog->insns[insn_idx];
5856
5857 err = record_relo_core(prog, rec, insn_idx);
5858 if (err) {
5859 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5860 prog->name, i, err);
5861 goto out;
5862 }
5863
5864 if (prog->obj->gen_loader)
5865 continue;
5866
5867 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5868 if (err) {
5869 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5870 prog->name, i, err);
5871 goto out;
5872 }
5873
5874 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5875 if (err) {
5876 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5877 prog->name, i, insn_idx, err);
5878 goto out;
5879 }
5880 }
5881 }
5882
5883 out:
5884 /* obj->btf_vmlinux and module BTFs are freed after object load */
5885 btf__free(obj->btf_vmlinux_override);
5886 obj->btf_vmlinux_override = NULL;
5887
5888 if (!IS_ERR_OR_NULL(cand_cache)) {
5889 hashmap__for_each_entry(cand_cache, entry, i) {
5890 bpf_core_free_cands(entry->pvalue);
5891 }
5892 hashmap__free(cand_cache);
5893 }
5894 return err;
5895 }
5896
5897 /* base map load ldimm64 special constant, used also for log fixup logic */
5898 #define POISON_LDIMM64_MAP_BASE 2001000000
5899 #define POISON_LDIMM64_MAP_PFX "200100"
5900
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)5901 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5902 int insn_idx, struct bpf_insn *insn,
5903 int map_idx, const struct bpf_map *map)
5904 {
5905 int i;
5906
5907 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5908 prog->name, relo_idx, insn_idx, map_idx, map->name);
5909
5910 /* we turn single ldimm64 into two identical invalid calls */
5911 for (i = 0; i < 2; i++) {
5912 insn->code = BPF_JMP | BPF_CALL;
5913 insn->dst_reg = 0;
5914 insn->src_reg = 0;
5915 insn->off = 0;
5916 /* if this instruction is reachable (not a dead code),
5917 * verifier will complain with something like:
5918 * invalid func unknown#2001000123
5919 * where lower 123 is map index into obj->maps[] array
5920 */
5921 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5922
5923 insn++;
5924 }
5925 }
5926
5927 /* unresolved kfunc call special constant, used also for log fixup logic */
5928 #define POISON_CALL_KFUNC_BASE 2002000000
5929 #define POISON_CALL_KFUNC_PFX "2002"
5930
poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)5931 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5932 int insn_idx, struct bpf_insn *insn,
5933 int ext_idx, const struct extern_desc *ext)
5934 {
5935 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5936 prog->name, relo_idx, insn_idx, ext->name);
5937
5938 /* we turn kfunc call into invalid helper call with identifiable constant */
5939 insn->code = BPF_JMP | BPF_CALL;
5940 insn->dst_reg = 0;
5941 insn->src_reg = 0;
5942 insn->off = 0;
5943 /* if this instruction is reachable (not a dead code),
5944 * verifier will complain with something like:
5945 * invalid func unknown#2001000123
5946 * where lower 123 is extern index into obj->externs[] array
5947 */
5948 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5949 }
5950
5951 /* Relocate data references within program code:
5952 * - map references;
5953 * - global variable references;
5954 * - extern references.
5955 */
5956 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)5957 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5958 {
5959 int i;
5960
5961 for (i = 0; i < prog->nr_reloc; i++) {
5962 struct reloc_desc *relo = &prog->reloc_desc[i];
5963 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5964 const struct bpf_map *map;
5965 struct extern_desc *ext;
5966
5967 switch (relo->type) {
5968 case RELO_LD64:
5969 map = &obj->maps[relo->map_idx];
5970 if (obj->gen_loader) {
5971 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5972 insn[0].imm = relo->map_idx;
5973 } else if (map->autocreate) {
5974 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5975 insn[0].imm = map->fd;
5976 } else {
5977 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5978 relo->map_idx, map);
5979 }
5980 break;
5981 case RELO_DATA:
5982 map = &obj->maps[relo->map_idx];
5983 insn[1].imm = insn[0].imm + relo->sym_off;
5984 if (obj->gen_loader) {
5985 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5986 insn[0].imm = relo->map_idx;
5987 } else if (map->autocreate) {
5988 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5989 insn[0].imm = map->fd;
5990 } else {
5991 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5992 relo->map_idx, map);
5993 }
5994 break;
5995 case RELO_EXTERN_LD64:
5996 ext = &obj->externs[relo->ext_idx];
5997 if (ext->type == EXT_KCFG) {
5998 if (obj->gen_loader) {
5999 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6000 insn[0].imm = obj->kconfig_map_idx;
6001 } else {
6002 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6003 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6004 }
6005 insn[1].imm = ext->kcfg.data_off;
6006 } else /* EXT_KSYM */ {
6007 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6008 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6009 insn[0].imm = ext->ksym.kernel_btf_id;
6010 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6011 } else { /* typeless ksyms or unresolved typed ksyms */
6012 insn[0].imm = (__u32)ext->ksym.addr;
6013 insn[1].imm = ext->ksym.addr >> 32;
6014 }
6015 }
6016 break;
6017 case RELO_EXTERN_CALL:
6018 ext = &obj->externs[relo->ext_idx];
6019 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6020 if (ext->is_set) {
6021 insn[0].imm = ext->ksym.kernel_btf_id;
6022 insn[0].off = ext->ksym.btf_fd_idx;
6023 } else { /* unresolved weak kfunc call */
6024 poison_kfunc_call(prog, i, relo->insn_idx, insn,
6025 relo->ext_idx, ext);
6026 }
6027 break;
6028 case RELO_SUBPROG_ADDR:
6029 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6030 pr_warn("prog '%s': relo #%d: bad insn\n",
6031 prog->name, i);
6032 return -EINVAL;
6033 }
6034 /* handled already */
6035 break;
6036 case RELO_CALL:
6037 /* handled already */
6038 break;
6039 case RELO_CORE:
6040 /* will be handled by bpf_program_record_relos() */
6041 break;
6042 default:
6043 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6044 prog->name, i, relo->type);
6045 return -EINVAL;
6046 }
6047 }
6048
6049 return 0;
6050 }
6051
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6052 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6053 const struct bpf_program *prog,
6054 const struct btf_ext_info *ext_info,
6055 void **prog_info, __u32 *prog_rec_cnt,
6056 __u32 *prog_rec_sz)
6057 {
6058 void *copy_start = NULL, *copy_end = NULL;
6059 void *rec, *rec_end, *new_prog_info;
6060 const struct btf_ext_info_sec *sec;
6061 size_t old_sz, new_sz;
6062 int i, sec_num, sec_idx, off_adj;
6063
6064 sec_num = 0;
6065 for_each_btf_ext_sec(ext_info, sec) {
6066 sec_idx = ext_info->sec_idxs[sec_num];
6067 sec_num++;
6068 if (prog->sec_idx != sec_idx)
6069 continue;
6070
6071 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6072 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6073
6074 if (insn_off < prog->sec_insn_off)
6075 continue;
6076 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6077 break;
6078
6079 if (!copy_start)
6080 copy_start = rec;
6081 copy_end = rec + ext_info->rec_size;
6082 }
6083
6084 if (!copy_start)
6085 return -ENOENT;
6086
6087 /* append func/line info of a given (sub-)program to the main
6088 * program func/line info
6089 */
6090 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6091 new_sz = old_sz + (copy_end - copy_start);
6092 new_prog_info = realloc(*prog_info, new_sz);
6093 if (!new_prog_info)
6094 return -ENOMEM;
6095 *prog_info = new_prog_info;
6096 *prog_rec_cnt = new_sz / ext_info->rec_size;
6097 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6098
6099 /* Kernel instruction offsets are in units of 8-byte
6100 * instructions, while .BTF.ext instruction offsets generated
6101 * by Clang are in units of bytes. So convert Clang offsets
6102 * into kernel offsets and adjust offset according to program
6103 * relocated position.
6104 */
6105 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6106 rec = new_prog_info + old_sz;
6107 rec_end = new_prog_info + new_sz;
6108 for (; rec < rec_end; rec += ext_info->rec_size) {
6109 __u32 *insn_off = rec;
6110
6111 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6112 }
6113 *prog_rec_sz = ext_info->rec_size;
6114 return 0;
6115 }
6116
6117 return -ENOENT;
6118 }
6119
6120 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6121 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6122 struct bpf_program *main_prog,
6123 const struct bpf_program *prog)
6124 {
6125 int err;
6126
6127 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6128 * supprot func/line info
6129 */
6130 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6131 return 0;
6132
6133 /* only attempt func info relocation if main program's func_info
6134 * relocation was successful
6135 */
6136 if (main_prog != prog && !main_prog->func_info)
6137 goto line_info;
6138
6139 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6140 &main_prog->func_info,
6141 &main_prog->func_info_cnt,
6142 &main_prog->func_info_rec_size);
6143 if (err) {
6144 if (err != -ENOENT) {
6145 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6146 prog->name, err);
6147 return err;
6148 }
6149 if (main_prog->func_info) {
6150 /*
6151 * Some info has already been found but has problem
6152 * in the last btf_ext reloc. Must have to error out.
6153 */
6154 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6155 return err;
6156 }
6157 /* Have problem loading the very first info. Ignore the rest. */
6158 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6159 prog->name);
6160 }
6161
6162 line_info:
6163 /* don't relocate line info if main program's relocation failed */
6164 if (main_prog != prog && !main_prog->line_info)
6165 return 0;
6166
6167 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6168 &main_prog->line_info,
6169 &main_prog->line_info_cnt,
6170 &main_prog->line_info_rec_size);
6171 if (err) {
6172 if (err != -ENOENT) {
6173 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6174 prog->name, err);
6175 return err;
6176 }
6177 if (main_prog->line_info) {
6178 /*
6179 * Some info has already been found but has problem
6180 * in the last btf_ext reloc. Must have to error out.
6181 */
6182 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6183 return err;
6184 }
6185 /* Have problem loading the very first info. Ignore the rest. */
6186 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6187 prog->name);
6188 }
6189 return 0;
6190 }
6191
cmp_relo_by_insn_idx(const void * key,const void * elem)6192 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6193 {
6194 size_t insn_idx = *(const size_t *)key;
6195 const struct reloc_desc *relo = elem;
6196
6197 if (insn_idx == relo->insn_idx)
6198 return 0;
6199 return insn_idx < relo->insn_idx ? -1 : 1;
6200 }
6201
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6202 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6203 {
6204 if (!prog->nr_reloc)
6205 return NULL;
6206 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6207 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6208 }
6209
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6210 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6211 {
6212 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6213 struct reloc_desc *relos;
6214 int i;
6215
6216 if (main_prog == subprog)
6217 return 0;
6218 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6219 /* if new count is zero, reallocarray can return a valid NULL result;
6220 * in this case the previous pointer will be freed, so we *have to*
6221 * reassign old pointer to the new value (even if it's NULL)
6222 */
6223 if (!relos && new_cnt)
6224 return -ENOMEM;
6225 if (subprog->nr_reloc)
6226 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6227 sizeof(*relos) * subprog->nr_reloc);
6228
6229 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6230 relos[i].insn_idx += subprog->sub_insn_off;
6231 /* After insn_idx adjustment the 'relos' array is still sorted
6232 * by insn_idx and doesn't break bsearch.
6233 */
6234 main_prog->reloc_desc = relos;
6235 main_prog->nr_reloc = new_cnt;
6236 return 0;
6237 }
6238
6239 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6240 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6241 struct bpf_program *prog)
6242 {
6243 size_t sub_insn_idx, insn_idx, new_cnt;
6244 struct bpf_program *subprog;
6245 struct bpf_insn *insns, *insn;
6246 struct reloc_desc *relo;
6247 int err;
6248
6249 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6250 if (err)
6251 return err;
6252
6253 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6254 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6255 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6256 continue;
6257
6258 relo = find_prog_insn_relo(prog, insn_idx);
6259 if (relo && relo->type == RELO_EXTERN_CALL)
6260 /* kfunc relocations will be handled later
6261 * in bpf_object__relocate_data()
6262 */
6263 continue;
6264 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6265 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6266 prog->name, insn_idx, relo->type);
6267 return -LIBBPF_ERRNO__RELOC;
6268 }
6269 if (relo) {
6270 /* sub-program instruction index is a combination of
6271 * an offset of a symbol pointed to by relocation and
6272 * call instruction's imm field; for global functions,
6273 * call always has imm = -1, but for static functions
6274 * relocation is against STT_SECTION and insn->imm
6275 * points to a start of a static function
6276 *
6277 * for subprog addr relocation, the relo->sym_off + insn->imm is
6278 * the byte offset in the corresponding section.
6279 */
6280 if (relo->type == RELO_CALL)
6281 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6282 else
6283 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6284 } else if (insn_is_pseudo_func(insn)) {
6285 /*
6286 * RELO_SUBPROG_ADDR relo is always emitted even if both
6287 * functions are in the same section, so it shouldn't reach here.
6288 */
6289 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6290 prog->name, insn_idx);
6291 return -LIBBPF_ERRNO__RELOC;
6292 } else {
6293 /* if subprogram call is to a static function within
6294 * the same ELF section, there won't be any relocation
6295 * emitted, but it also means there is no additional
6296 * offset necessary, insns->imm is relative to
6297 * instruction's original position within the section
6298 */
6299 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6300 }
6301
6302 /* we enforce that sub-programs should be in .text section */
6303 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6304 if (!subprog) {
6305 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6306 prog->name);
6307 return -LIBBPF_ERRNO__RELOC;
6308 }
6309
6310 /* if it's the first call instruction calling into this
6311 * subprogram (meaning this subprog hasn't been processed
6312 * yet) within the context of current main program:
6313 * - append it at the end of main program's instructions blog;
6314 * - process is recursively, while current program is put on hold;
6315 * - if that subprogram calls some other not yet processes
6316 * subprogram, same thing will happen recursively until
6317 * there are no more unprocesses subprograms left to append
6318 * and relocate.
6319 */
6320 if (subprog->sub_insn_off == 0) {
6321 subprog->sub_insn_off = main_prog->insns_cnt;
6322
6323 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6324 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6325 if (!insns) {
6326 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6327 return -ENOMEM;
6328 }
6329 main_prog->insns = insns;
6330 main_prog->insns_cnt = new_cnt;
6331
6332 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6333 subprog->insns_cnt * sizeof(*insns));
6334
6335 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6336 main_prog->name, subprog->insns_cnt, subprog->name);
6337
6338 /* The subprog insns are now appended. Append its relos too. */
6339 err = append_subprog_relos(main_prog, subprog);
6340 if (err)
6341 return err;
6342 err = bpf_object__reloc_code(obj, main_prog, subprog);
6343 if (err)
6344 return err;
6345 }
6346
6347 /* main_prog->insns memory could have been re-allocated, so
6348 * calculate pointer again
6349 */
6350 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6351 /* calculate correct instruction position within current main
6352 * prog; each main prog can have a different set of
6353 * subprograms appended (potentially in different order as
6354 * well), so position of any subprog can be different for
6355 * different main programs
6356 */
6357 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6358
6359 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6360 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6361 }
6362
6363 return 0;
6364 }
6365
6366 /*
6367 * Relocate sub-program calls.
6368 *
6369 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6370 * main prog) is processed separately. For each subprog (non-entry functions,
6371 * that can be called from either entry progs or other subprogs) gets their
6372 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6373 * hasn't been yet appended and relocated within current main prog. Once its
6374 * relocated, sub_insn_off will point at the position within current main prog
6375 * where given subprog was appended. This will further be used to relocate all
6376 * the call instructions jumping into this subprog.
6377 *
6378 * We start with main program and process all call instructions. If the call
6379 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6380 * is zero), subprog instructions are appended at the end of main program's
6381 * instruction array. Then main program is "put on hold" while we recursively
6382 * process newly appended subprogram. If that subprogram calls into another
6383 * subprogram that hasn't been appended, new subprogram is appended again to
6384 * the *main* prog's instructions (subprog's instructions are always left
6385 * untouched, as they need to be in unmodified state for subsequent main progs
6386 * and subprog instructions are always sent only as part of a main prog) and
6387 * the process continues recursively. Once all the subprogs called from a main
6388 * prog or any of its subprogs are appended (and relocated), all their
6389 * positions within finalized instructions array are known, so it's easy to
6390 * rewrite call instructions with correct relative offsets, corresponding to
6391 * desired target subprog.
6392 *
6393 * Its important to realize that some subprogs might not be called from some
6394 * main prog and any of its called/used subprogs. Those will keep their
6395 * subprog->sub_insn_off as zero at all times and won't be appended to current
6396 * main prog and won't be relocated within the context of current main prog.
6397 * They might still be used from other main progs later.
6398 *
6399 * Visually this process can be shown as below. Suppose we have two main
6400 * programs mainA and mainB and BPF object contains three subprogs: subA,
6401 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6402 * subC both call subB:
6403 *
6404 * +--------+ +-------+
6405 * | v v |
6406 * +--+---+ +--+-+-+ +---+--+
6407 * | subA | | subB | | subC |
6408 * +--+---+ +------+ +---+--+
6409 * ^ ^
6410 * | |
6411 * +---+-------+ +------+----+
6412 * | mainA | | mainB |
6413 * +-----------+ +-----------+
6414 *
6415 * We'll start relocating mainA, will find subA, append it and start
6416 * processing sub A recursively:
6417 *
6418 * +-----------+------+
6419 * | mainA | subA |
6420 * +-----------+------+
6421 *
6422 * At this point we notice that subB is used from subA, so we append it and
6423 * relocate (there are no further subcalls from subB):
6424 *
6425 * +-----------+------+------+
6426 * | mainA | subA | subB |
6427 * +-----------+------+------+
6428 *
6429 * At this point, we relocate subA calls, then go one level up and finish with
6430 * relocatin mainA calls. mainA is done.
6431 *
6432 * For mainB process is similar but results in different order. We start with
6433 * mainB and skip subA and subB, as mainB never calls them (at least
6434 * directly), but we see subC is needed, so we append and start processing it:
6435 *
6436 * +-----------+------+
6437 * | mainB | subC |
6438 * +-----------+------+
6439 * Now we see subC needs subB, so we go back to it, append and relocate it:
6440 *
6441 * +-----------+------+------+
6442 * | mainB | subC | subB |
6443 * +-----------+------+------+
6444 *
6445 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6446 */
6447 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6448 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6449 {
6450 struct bpf_program *subprog;
6451 int i, err;
6452
6453 /* mark all subprogs as not relocated (yet) within the context of
6454 * current main program
6455 */
6456 for (i = 0; i < obj->nr_programs; i++) {
6457 subprog = &obj->programs[i];
6458 if (!prog_is_subprog(obj, subprog))
6459 continue;
6460
6461 subprog->sub_insn_off = 0;
6462 }
6463
6464 err = bpf_object__reloc_code(obj, prog, prog);
6465 if (err)
6466 return err;
6467
6468 return 0;
6469 }
6470
6471 static void
bpf_object__free_relocs(struct bpf_object * obj)6472 bpf_object__free_relocs(struct bpf_object *obj)
6473 {
6474 struct bpf_program *prog;
6475 int i;
6476
6477 /* free up relocation descriptors */
6478 for (i = 0; i < obj->nr_programs; i++) {
6479 prog = &obj->programs[i];
6480 zfree(&prog->reloc_desc);
6481 prog->nr_reloc = 0;
6482 }
6483 }
6484
cmp_relocs(const void * _a,const void * _b)6485 static int cmp_relocs(const void *_a, const void *_b)
6486 {
6487 const struct reloc_desc *a = _a;
6488 const struct reloc_desc *b = _b;
6489
6490 if (a->insn_idx != b->insn_idx)
6491 return a->insn_idx < b->insn_idx ? -1 : 1;
6492
6493 /* no two relocations should have the same insn_idx, but ... */
6494 if (a->type != b->type)
6495 return a->type < b->type ? -1 : 1;
6496
6497 return 0;
6498 }
6499
bpf_object__sort_relos(struct bpf_object * obj)6500 static void bpf_object__sort_relos(struct bpf_object *obj)
6501 {
6502 int i;
6503
6504 for (i = 0; i < obj->nr_programs; i++) {
6505 struct bpf_program *p = &obj->programs[i];
6506
6507 if (!p->nr_reloc)
6508 continue;
6509
6510 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6511 }
6512 }
6513
6514 static int
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)6515 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6516 {
6517 struct bpf_program *prog;
6518 size_t i, j;
6519 int err;
6520
6521 if (obj->btf_ext) {
6522 err = bpf_object__relocate_core(obj, targ_btf_path);
6523 if (err) {
6524 pr_warn("failed to perform CO-RE relocations: %d\n",
6525 err);
6526 return err;
6527 }
6528 bpf_object__sort_relos(obj);
6529 }
6530
6531 /* Before relocating calls pre-process relocations and mark
6532 * few ld_imm64 instructions that points to subprogs.
6533 * Otherwise bpf_object__reloc_code() later would have to consider
6534 * all ld_imm64 insns as relocation candidates. That would
6535 * reduce relocation speed, since amount of find_prog_insn_relo()
6536 * would increase and most of them will fail to find a relo.
6537 */
6538 for (i = 0; i < obj->nr_programs; i++) {
6539 prog = &obj->programs[i];
6540 for (j = 0; j < prog->nr_reloc; j++) {
6541 struct reloc_desc *relo = &prog->reloc_desc[j];
6542 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6543
6544 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6545 if (relo->type == RELO_SUBPROG_ADDR)
6546 insn[0].src_reg = BPF_PSEUDO_FUNC;
6547 }
6548 }
6549
6550 /* relocate subprogram calls and append used subprograms to main
6551 * programs; each copy of subprogram code needs to be relocated
6552 * differently for each main program, because its code location might
6553 * have changed.
6554 * Append subprog relos to main programs to allow data relos to be
6555 * processed after text is completely relocated.
6556 */
6557 for (i = 0; i < obj->nr_programs; i++) {
6558 prog = &obj->programs[i];
6559 /* sub-program's sub-calls are relocated within the context of
6560 * its main program only
6561 */
6562 if (prog_is_subprog(obj, prog))
6563 continue;
6564 if (!prog->autoload)
6565 continue;
6566
6567 err = bpf_object__relocate_calls(obj, prog);
6568 if (err) {
6569 pr_warn("prog '%s': failed to relocate calls: %d\n",
6570 prog->name, err);
6571 return err;
6572 }
6573 }
6574 /* Process data relos for main programs */
6575 for (i = 0; i < obj->nr_programs; i++) {
6576 prog = &obj->programs[i];
6577 if (prog_is_subprog(obj, prog))
6578 continue;
6579 if (!prog->autoload)
6580 continue;
6581 err = bpf_object__relocate_data(obj, prog);
6582 if (err) {
6583 pr_warn("prog '%s': failed to relocate data references: %d\n",
6584 prog->name, err);
6585 return err;
6586 }
6587 }
6588
6589 return 0;
6590 }
6591
6592 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6593 Elf64_Shdr *shdr, Elf_Data *data);
6594
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)6595 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6596 Elf64_Shdr *shdr, Elf_Data *data)
6597 {
6598 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6599 int i, j, nrels, new_sz;
6600 const struct btf_var_secinfo *vi = NULL;
6601 const struct btf_type *sec, *var, *def;
6602 struct bpf_map *map = NULL, *targ_map = NULL;
6603 struct bpf_program *targ_prog = NULL;
6604 bool is_prog_array, is_map_in_map;
6605 const struct btf_member *member;
6606 const char *name, *mname, *type;
6607 unsigned int moff;
6608 Elf64_Sym *sym;
6609 Elf64_Rel *rel;
6610 void *tmp;
6611
6612 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6613 return -EINVAL;
6614 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6615 if (!sec)
6616 return -EINVAL;
6617
6618 nrels = shdr->sh_size / shdr->sh_entsize;
6619 for (i = 0; i < nrels; i++) {
6620 rel = elf_rel_by_idx(data, i);
6621 if (!rel) {
6622 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6623 return -LIBBPF_ERRNO__FORMAT;
6624 }
6625
6626 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6627 if (!sym) {
6628 pr_warn(".maps relo #%d: symbol %zx not found\n",
6629 i, (size_t)ELF64_R_SYM(rel->r_info));
6630 return -LIBBPF_ERRNO__FORMAT;
6631 }
6632 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6633
6634 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6635 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6636 (size_t)rel->r_offset, sym->st_name, name);
6637
6638 for (j = 0; j < obj->nr_maps; j++) {
6639 map = &obj->maps[j];
6640 if (map->sec_idx != obj->efile.btf_maps_shndx)
6641 continue;
6642
6643 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6644 if (vi->offset <= rel->r_offset &&
6645 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6646 break;
6647 }
6648 if (j == obj->nr_maps) {
6649 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6650 i, name, (size_t)rel->r_offset);
6651 return -EINVAL;
6652 }
6653
6654 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6655 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6656 type = is_map_in_map ? "map" : "prog";
6657 if (is_map_in_map) {
6658 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6659 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6660 i, name);
6661 return -LIBBPF_ERRNO__RELOC;
6662 }
6663 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6664 map->def.key_size != sizeof(int)) {
6665 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6666 i, map->name, sizeof(int));
6667 return -EINVAL;
6668 }
6669 targ_map = bpf_object__find_map_by_name(obj, name);
6670 if (!targ_map) {
6671 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6672 i, name);
6673 return -ESRCH;
6674 }
6675 } else if (is_prog_array) {
6676 targ_prog = bpf_object__find_program_by_name(obj, name);
6677 if (!targ_prog) {
6678 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6679 i, name);
6680 return -ESRCH;
6681 }
6682 if (targ_prog->sec_idx != sym->st_shndx ||
6683 targ_prog->sec_insn_off * 8 != sym->st_value ||
6684 prog_is_subprog(obj, targ_prog)) {
6685 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6686 i, name);
6687 return -LIBBPF_ERRNO__RELOC;
6688 }
6689 } else {
6690 return -EINVAL;
6691 }
6692
6693 var = btf__type_by_id(obj->btf, vi->type);
6694 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6695 if (btf_vlen(def) == 0)
6696 return -EINVAL;
6697 member = btf_members(def) + btf_vlen(def) - 1;
6698 mname = btf__name_by_offset(obj->btf, member->name_off);
6699 if (strcmp(mname, "values"))
6700 return -EINVAL;
6701
6702 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6703 if (rel->r_offset - vi->offset < moff)
6704 return -EINVAL;
6705
6706 moff = rel->r_offset - vi->offset - moff;
6707 /* here we use BPF pointer size, which is always 64 bit, as we
6708 * are parsing ELF that was built for BPF target
6709 */
6710 if (moff % bpf_ptr_sz)
6711 return -EINVAL;
6712 moff /= bpf_ptr_sz;
6713 if (moff >= map->init_slots_sz) {
6714 new_sz = moff + 1;
6715 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6716 if (!tmp)
6717 return -ENOMEM;
6718 map->init_slots = tmp;
6719 memset(map->init_slots + map->init_slots_sz, 0,
6720 (new_sz - map->init_slots_sz) * host_ptr_sz);
6721 map->init_slots_sz = new_sz;
6722 }
6723 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6724
6725 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6726 i, map->name, moff, type, name);
6727 }
6728
6729 return 0;
6730 }
6731
bpf_object__collect_relos(struct bpf_object * obj)6732 static int bpf_object__collect_relos(struct bpf_object *obj)
6733 {
6734 int i, err;
6735
6736 for (i = 0; i < obj->efile.sec_cnt; i++) {
6737 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6738 Elf64_Shdr *shdr;
6739 Elf_Data *data;
6740 int idx;
6741
6742 if (sec_desc->sec_type != SEC_RELO)
6743 continue;
6744
6745 shdr = sec_desc->shdr;
6746 data = sec_desc->data;
6747 idx = shdr->sh_info;
6748
6749 if (shdr->sh_type != SHT_REL) {
6750 pr_warn("internal error at %d\n", __LINE__);
6751 return -LIBBPF_ERRNO__INTERNAL;
6752 }
6753
6754 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
6755 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6756 else if (idx == obj->efile.btf_maps_shndx)
6757 err = bpf_object__collect_map_relos(obj, shdr, data);
6758 else
6759 err = bpf_object__collect_prog_relos(obj, shdr, data);
6760 if (err)
6761 return err;
6762 }
6763
6764 bpf_object__sort_relos(obj);
6765 return 0;
6766 }
6767
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)6768 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6769 {
6770 if (BPF_CLASS(insn->code) == BPF_JMP &&
6771 BPF_OP(insn->code) == BPF_CALL &&
6772 BPF_SRC(insn->code) == BPF_K &&
6773 insn->src_reg == 0 &&
6774 insn->dst_reg == 0) {
6775 *func_id = insn->imm;
6776 return true;
6777 }
6778 return false;
6779 }
6780
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)6781 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6782 {
6783 struct bpf_insn *insn = prog->insns;
6784 enum bpf_func_id func_id;
6785 int i;
6786
6787 if (obj->gen_loader)
6788 return 0;
6789
6790 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6791 if (!insn_is_helper_call(insn, &func_id))
6792 continue;
6793
6794 /* on kernels that don't yet support
6795 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6796 * to bpf_probe_read() which works well for old kernels
6797 */
6798 switch (func_id) {
6799 case BPF_FUNC_probe_read_kernel:
6800 case BPF_FUNC_probe_read_user:
6801 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6802 insn->imm = BPF_FUNC_probe_read;
6803 break;
6804 case BPF_FUNC_probe_read_kernel_str:
6805 case BPF_FUNC_probe_read_user_str:
6806 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6807 insn->imm = BPF_FUNC_probe_read_str;
6808 break;
6809 default:
6810 break;
6811 }
6812 }
6813 return 0;
6814 }
6815
6816 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6817 int *btf_obj_fd, int *btf_type_id);
6818
6819 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)6820 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6821 struct bpf_prog_load_opts *opts, long cookie)
6822 {
6823 enum sec_def_flags def = cookie;
6824
6825 /* old kernels might not support specifying expected_attach_type */
6826 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6827 opts->expected_attach_type = 0;
6828
6829 if (def & SEC_SLEEPABLE)
6830 opts->prog_flags |= BPF_F_SLEEPABLE;
6831
6832 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6833 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6834
6835 /* special check for usdt to use uprobe_multi link */
6836 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
6837 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
6838
6839 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6840 int btf_obj_fd = 0, btf_type_id = 0, err;
6841 const char *attach_name;
6842
6843 attach_name = strchr(prog->sec_name, '/');
6844 if (!attach_name) {
6845 /* if BPF program is annotated with just SEC("fentry")
6846 * (or similar) without declaratively specifying
6847 * target, then it is expected that target will be
6848 * specified with bpf_program__set_attach_target() at
6849 * runtime before BPF object load step. If not, then
6850 * there is nothing to load into the kernel as BPF
6851 * verifier won't be able to validate BPF program
6852 * correctness anyways.
6853 */
6854 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6855 prog->name);
6856 return -EINVAL;
6857 }
6858 attach_name++; /* skip over / */
6859
6860 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6861 if (err)
6862 return err;
6863
6864 /* cache resolved BTF FD and BTF type ID in the prog */
6865 prog->attach_btf_obj_fd = btf_obj_fd;
6866 prog->attach_btf_id = btf_type_id;
6867
6868 /* but by now libbpf common logic is not utilizing
6869 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6870 * this callback is called after opts were populated by
6871 * libbpf, so this callback has to update opts explicitly here
6872 */
6873 opts->attach_btf_obj_fd = btf_obj_fd;
6874 opts->attach_btf_id = btf_type_id;
6875 }
6876 return 0;
6877 }
6878
6879 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6880
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)6881 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6882 struct bpf_insn *insns, int insns_cnt,
6883 const char *license, __u32 kern_version, int *prog_fd)
6884 {
6885 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6886 const char *prog_name = NULL;
6887 char *cp, errmsg[STRERR_BUFSIZE];
6888 size_t log_buf_size = 0;
6889 char *log_buf = NULL, *tmp;
6890 int btf_fd, ret, err;
6891 bool own_log_buf = true;
6892 __u32 log_level = prog->log_level;
6893
6894 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6895 /*
6896 * The program type must be set. Most likely we couldn't find a proper
6897 * section definition at load time, and thus we didn't infer the type.
6898 */
6899 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6900 prog->name, prog->sec_name);
6901 return -EINVAL;
6902 }
6903
6904 if (!insns || !insns_cnt)
6905 return -EINVAL;
6906
6907 if (kernel_supports(obj, FEAT_PROG_NAME))
6908 prog_name = prog->name;
6909 load_attr.attach_prog_fd = prog->attach_prog_fd;
6910 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6911 load_attr.attach_btf_id = prog->attach_btf_id;
6912 load_attr.kern_version = kern_version;
6913 load_attr.prog_ifindex = prog->prog_ifindex;
6914
6915 /* specify func_info/line_info only if kernel supports them */
6916 btf_fd = bpf_object__btf_fd(obj);
6917 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6918 load_attr.prog_btf_fd = btf_fd;
6919 load_attr.func_info = prog->func_info;
6920 load_attr.func_info_rec_size = prog->func_info_rec_size;
6921 load_attr.func_info_cnt = prog->func_info_cnt;
6922 load_attr.line_info = prog->line_info;
6923 load_attr.line_info_rec_size = prog->line_info_rec_size;
6924 load_attr.line_info_cnt = prog->line_info_cnt;
6925 }
6926 load_attr.log_level = log_level;
6927 load_attr.prog_flags = prog->prog_flags;
6928 load_attr.fd_array = obj->fd_array;
6929
6930 /* adjust load_attr if sec_def provides custom preload callback */
6931 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6932 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6933 if (err < 0) {
6934 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6935 prog->name, err);
6936 return err;
6937 }
6938 insns = prog->insns;
6939 insns_cnt = prog->insns_cnt;
6940 }
6941
6942 /* allow prog_prepare_load_fn to change expected_attach_type */
6943 load_attr.expected_attach_type = prog->expected_attach_type;
6944
6945 if (obj->gen_loader) {
6946 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6947 license, insns, insns_cnt, &load_attr,
6948 prog - obj->programs);
6949 *prog_fd = -1;
6950 return 0;
6951 }
6952
6953 retry_load:
6954 /* if log_level is zero, we don't request logs initially even if
6955 * custom log_buf is specified; if the program load fails, then we'll
6956 * bump log_level to 1 and use either custom log_buf or we'll allocate
6957 * our own and retry the load to get details on what failed
6958 */
6959 if (log_level) {
6960 if (prog->log_buf) {
6961 log_buf = prog->log_buf;
6962 log_buf_size = prog->log_size;
6963 own_log_buf = false;
6964 } else if (obj->log_buf) {
6965 log_buf = obj->log_buf;
6966 log_buf_size = obj->log_size;
6967 own_log_buf = false;
6968 } else {
6969 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6970 tmp = realloc(log_buf, log_buf_size);
6971 if (!tmp) {
6972 ret = -ENOMEM;
6973 goto out;
6974 }
6975 log_buf = tmp;
6976 log_buf[0] = '\0';
6977 own_log_buf = true;
6978 }
6979 }
6980
6981 load_attr.log_buf = log_buf;
6982 load_attr.log_size = log_buf_size;
6983 load_attr.log_level = log_level;
6984
6985 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6986 if (ret >= 0) {
6987 if (log_level && own_log_buf) {
6988 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6989 prog->name, log_buf);
6990 }
6991
6992 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6993 struct bpf_map *map;
6994 int i;
6995
6996 for (i = 0; i < obj->nr_maps; i++) {
6997 map = &prog->obj->maps[i];
6998 if (map->libbpf_type != LIBBPF_MAP_RODATA)
6999 continue;
7000
7001 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
7002 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7003 pr_warn("prog '%s': failed to bind map '%s': %s\n",
7004 prog->name, map->real_name, cp);
7005 /* Don't fail hard if can't bind rodata. */
7006 }
7007 }
7008 }
7009
7010 *prog_fd = ret;
7011 ret = 0;
7012 goto out;
7013 }
7014
7015 if (log_level == 0) {
7016 log_level = 1;
7017 goto retry_load;
7018 }
7019 /* On ENOSPC, increase log buffer size and retry, unless custom
7020 * log_buf is specified.
7021 * Be careful to not overflow u32, though. Kernel's log buf size limit
7022 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7023 * multiply by 2 unless we are sure we'll fit within 32 bits.
7024 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7025 */
7026 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7027 goto retry_load;
7028
7029 ret = -errno;
7030
7031 /* post-process verifier log to improve error descriptions */
7032 fixup_verifier_log(prog, log_buf, log_buf_size);
7033
7034 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7035 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7036 pr_perm_msg(ret);
7037
7038 if (own_log_buf && log_buf && log_buf[0] != '\0') {
7039 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7040 prog->name, log_buf);
7041 }
7042
7043 out:
7044 if (own_log_buf)
7045 free(log_buf);
7046 return ret;
7047 }
7048
find_prev_line(char * buf,char * cur)7049 static char *find_prev_line(char *buf, char *cur)
7050 {
7051 char *p;
7052
7053 if (cur == buf) /* end of a log buf */
7054 return NULL;
7055
7056 p = cur - 1;
7057 while (p - 1 >= buf && *(p - 1) != '\n')
7058 p--;
7059
7060 return p;
7061 }
7062
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7063 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7064 char *orig, size_t orig_sz, const char *patch)
7065 {
7066 /* size of the remaining log content to the right from the to-be-replaced part */
7067 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7068 size_t patch_sz = strlen(patch);
7069
7070 if (patch_sz != orig_sz) {
7071 /* If patch line(s) are longer than original piece of verifier log,
7072 * shift log contents by (patch_sz - orig_sz) bytes to the right
7073 * starting from after to-be-replaced part of the log.
7074 *
7075 * If patch line(s) are shorter than original piece of verifier log,
7076 * shift log contents by (orig_sz - patch_sz) bytes to the left
7077 * starting from after to-be-replaced part of the log
7078 *
7079 * We need to be careful about not overflowing available
7080 * buf_sz capacity. If that's the case, we'll truncate the end
7081 * of the original log, as necessary.
7082 */
7083 if (patch_sz > orig_sz) {
7084 if (orig + patch_sz >= buf + buf_sz) {
7085 /* patch is big enough to cover remaining space completely */
7086 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7087 rem_sz = 0;
7088 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7089 /* patch causes part of remaining log to be truncated */
7090 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7091 }
7092 }
7093 /* shift remaining log to the right by calculated amount */
7094 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7095 }
7096
7097 memcpy(orig, patch, patch_sz);
7098 }
7099
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7100 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7101 char *buf, size_t buf_sz, size_t log_sz,
7102 char *line1, char *line2, char *line3)
7103 {
7104 /* Expected log for failed and not properly guarded CO-RE relocation:
7105 * line1 -> 123: (85) call unknown#195896080
7106 * line2 -> invalid func unknown#195896080
7107 * line3 -> <anything else or end of buffer>
7108 *
7109 * "123" is the index of the instruction that was poisoned. We extract
7110 * instruction index to find corresponding CO-RE relocation and
7111 * replace this part of the log with more relevant information about
7112 * failed CO-RE relocation.
7113 */
7114 const struct bpf_core_relo *relo;
7115 struct bpf_core_spec spec;
7116 char patch[512], spec_buf[256];
7117 int insn_idx, err, spec_len;
7118
7119 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7120 return;
7121
7122 relo = find_relo_core(prog, insn_idx);
7123 if (!relo)
7124 return;
7125
7126 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7127 if (err)
7128 return;
7129
7130 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7131 snprintf(patch, sizeof(patch),
7132 "%d: <invalid CO-RE relocation>\n"
7133 "failed to resolve CO-RE relocation %s%s\n",
7134 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7135
7136 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7137 }
7138
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7139 static void fixup_log_missing_map_load(struct bpf_program *prog,
7140 char *buf, size_t buf_sz, size_t log_sz,
7141 char *line1, char *line2, char *line3)
7142 {
7143 /* Expected log for failed and not properly guarded map reference:
7144 * line1 -> 123: (85) call unknown#2001000345
7145 * line2 -> invalid func unknown#2001000345
7146 * line3 -> <anything else or end of buffer>
7147 *
7148 * "123" is the index of the instruction that was poisoned.
7149 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7150 */
7151 struct bpf_object *obj = prog->obj;
7152 const struct bpf_map *map;
7153 int insn_idx, map_idx;
7154 char patch[128];
7155
7156 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7157 return;
7158
7159 map_idx -= POISON_LDIMM64_MAP_BASE;
7160 if (map_idx < 0 || map_idx >= obj->nr_maps)
7161 return;
7162 map = &obj->maps[map_idx];
7163
7164 snprintf(patch, sizeof(patch),
7165 "%d: <invalid BPF map reference>\n"
7166 "BPF map '%s' is referenced but wasn't created\n",
7167 insn_idx, map->name);
7168
7169 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7170 }
7171
fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7172 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7173 char *buf, size_t buf_sz, size_t log_sz,
7174 char *line1, char *line2, char *line3)
7175 {
7176 /* Expected log for failed and not properly guarded kfunc call:
7177 * line1 -> 123: (85) call unknown#2002000345
7178 * line2 -> invalid func unknown#2002000345
7179 * line3 -> <anything else or end of buffer>
7180 *
7181 * "123" is the index of the instruction that was poisoned.
7182 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7183 */
7184 struct bpf_object *obj = prog->obj;
7185 const struct extern_desc *ext;
7186 int insn_idx, ext_idx;
7187 char patch[128];
7188
7189 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7190 return;
7191
7192 ext_idx -= POISON_CALL_KFUNC_BASE;
7193 if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7194 return;
7195 ext = &obj->externs[ext_idx];
7196
7197 snprintf(patch, sizeof(patch),
7198 "%d: <invalid kfunc call>\n"
7199 "kfunc '%s' is referenced but wasn't resolved\n",
7200 insn_idx, ext->name);
7201
7202 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7203 }
7204
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7205 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7206 {
7207 /* look for familiar error patterns in last N lines of the log */
7208 const size_t max_last_line_cnt = 10;
7209 char *prev_line, *cur_line, *next_line;
7210 size_t log_sz;
7211 int i;
7212
7213 if (!buf)
7214 return;
7215
7216 log_sz = strlen(buf) + 1;
7217 next_line = buf + log_sz - 1;
7218
7219 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7220 cur_line = find_prev_line(buf, next_line);
7221 if (!cur_line)
7222 return;
7223
7224 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7225 prev_line = find_prev_line(buf, cur_line);
7226 if (!prev_line)
7227 continue;
7228
7229 /* failed CO-RE relocation case */
7230 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7231 prev_line, cur_line, next_line);
7232 return;
7233 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7234 prev_line = find_prev_line(buf, cur_line);
7235 if (!prev_line)
7236 continue;
7237
7238 /* reference to uncreated BPF map */
7239 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7240 prev_line, cur_line, next_line);
7241 return;
7242 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7243 prev_line = find_prev_line(buf, cur_line);
7244 if (!prev_line)
7245 continue;
7246
7247 /* reference to unresolved kfunc */
7248 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7249 prev_line, cur_line, next_line);
7250 return;
7251 }
7252 }
7253 }
7254
bpf_program_record_relos(struct bpf_program * prog)7255 static int bpf_program_record_relos(struct bpf_program *prog)
7256 {
7257 struct bpf_object *obj = prog->obj;
7258 int i;
7259
7260 for (i = 0; i < prog->nr_reloc; i++) {
7261 struct reloc_desc *relo = &prog->reloc_desc[i];
7262 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7263 int kind;
7264
7265 switch (relo->type) {
7266 case RELO_EXTERN_LD64:
7267 if (ext->type != EXT_KSYM)
7268 continue;
7269 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7270 BTF_KIND_VAR : BTF_KIND_FUNC;
7271 bpf_gen__record_extern(obj->gen_loader, ext->name,
7272 ext->is_weak, !ext->ksym.type_id,
7273 true, kind, relo->insn_idx);
7274 break;
7275 case RELO_EXTERN_CALL:
7276 bpf_gen__record_extern(obj->gen_loader, ext->name,
7277 ext->is_weak, false, false, BTF_KIND_FUNC,
7278 relo->insn_idx);
7279 break;
7280 case RELO_CORE: {
7281 struct bpf_core_relo cr = {
7282 .insn_off = relo->insn_idx * 8,
7283 .type_id = relo->core_relo->type_id,
7284 .access_str_off = relo->core_relo->access_str_off,
7285 .kind = relo->core_relo->kind,
7286 };
7287
7288 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7289 break;
7290 }
7291 default:
7292 continue;
7293 }
7294 }
7295 return 0;
7296 }
7297
7298 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7299 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7300 {
7301 struct bpf_program *prog;
7302 size_t i;
7303 int err;
7304
7305 for (i = 0; i < obj->nr_programs; i++) {
7306 prog = &obj->programs[i];
7307 err = bpf_object__sanitize_prog(obj, prog);
7308 if (err)
7309 return err;
7310 }
7311
7312 for (i = 0; i < obj->nr_programs; i++) {
7313 prog = &obj->programs[i];
7314 if (prog_is_subprog(obj, prog))
7315 continue;
7316 if (!prog->autoload) {
7317 pr_debug("prog '%s': skipped loading\n", prog->name);
7318 continue;
7319 }
7320 prog->log_level |= log_level;
7321
7322 if (obj->gen_loader)
7323 bpf_program_record_relos(prog);
7324
7325 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7326 obj->license, obj->kern_version, &prog->fd);
7327 if (err) {
7328 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7329 return err;
7330 }
7331 }
7332
7333 bpf_object__free_relocs(obj);
7334 return 0;
7335 }
7336
7337 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7338
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7339 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7340 {
7341 struct bpf_program *prog;
7342 int err;
7343
7344 bpf_object__for_each_program(prog, obj) {
7345 prog->sec_def = find_sec_def(prog->sec_name);
7346 if (!prog->sec_def) {
7347 /* couldn't guess, but user might manually specify */
7348 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7349 prog->name, prog->sec_name);
7350 continue;
7351 }
7352
7353 prog->type = prog->sec_def->prog_type;
7354 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7355
7356 /* sec_def can have custom callback which should be called
7357 * after bpf_program is initialized to adjust its properties
7358 */
7359 if (prog->sec_def->prog_setup_fn) {
7360 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7361 if (err < 0) {
7362 pr_warn("prog '%s': failed to initialize: %d\n",
7363 prog->name, err);
7364 return err;
7365 }
7366 }
7367 }
7368
7369 return 0;
7370 }
7371
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7372 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7373 const struct bpf_object_open_opts *opts)
7374 {
7375 const char *obj_name, *kconfig, *btf_tmp_path;
7376 struct bpf_object *obj;
7377 char tmp_name[64];
7378 int err;
7379 char *log_buf;
7380 size_t log_size;
7381 __u32 log_level;
7382
7383 if (elf_version(EV_CURRENT) == EV_NONE) {
7384 pr_warn("failed to init libelf for %s\n",
7385 path ? : "(mem buf)");
7386 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7387 }
7388
7389 if (!OPTS_VALID(opts, bpf_object_open_opts))
7390 return ERR_PTR(-EINVAL);
7391
7392 obj_name = OPTS_GET(opts, object_name, NULL);
7393 if (obj_buf) {
7394 if (!obj_name) {
7395 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7396 (unsigned long)obj_buf,
7397 (unsigned long)obj_buf_sz);
7398 obj_name = tmp_name;
7399 }
7400 path = obj_name;
7401 pr_debug("loading object '%s' from buffer\n", obj_name);
7402 }
7403
7404 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7405 log_size = OPTS_GET(opts, kernel_log_size, 0);
7406 log_level = OPTS_GET(opts, kernel_log_level, 0);
7407 if (log_size > UINT_MAX)
7408 return ERR_PTR(-EINVAL);
7409 if (log_size && !log_buf)
7410 return ERR_PTR(-EINVAL);
7411
7412 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7413 if (IS_ERR(obj))
7414 return obj;
7415
7416 obj->log_buf = log_buf;
7417 obj->log_size = log_size;
7418 obj->log_level = log_level;
7419
7420 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7421 if (btf_tmp_path) {
7422 if (strlen(btf_tmp_path) >= PATH_MAX) {
7423 err = -ENAMETOOLONG;
7424 goto out;
7425 }
7426 obj->btf_custom_path = strdup(btf_tmp_path);
7427 if (!obj->btf_custom_path) {
7428 err = -ENOMEM;
7429 goto out;
7430 }
7431 }
7432
7433 kconfig = OPTS_GET(opts, kconfig, NULL);
7434 if (kconfig) {
7435 obj->kconfig = strdup(kconfig);
7436 if (!obj->kconfig) {
7437 err = -ENOMEM;
7438 goto out;
7439 }
7440 }
7441
7442 err = bpf_object__elf_init(obj);
7443 err = err ? : bpf_object__check_endianness(obj);
7444 err = err ? : bpf_object__elf_collect(obj);
7445 err = err ? : bpf_object__collect_externs(obj);
7446 err = err ? : bpf_object_fixup_btf(obj);
7447 err = err ? : bpf_object__init_maps(obj, opts);
7448 err = err ? : bpf_object_init_progs(obj, opts);
7449 err = err ? : bpf_object__collect_relos(obj);
7450 if (err)
7451 goto out;
7452
7453 bpf_object__elf_finish(obj);
7454
7455 return obj;
7456 out:
7457 bpf_object__close(obj);
7458 return ERR_PTR(err);
7459 }
7460
7461 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)7462 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7463 {
7464 if (!path)
7465 return libbpf_err_ptr(-EINVAL);
7466
7467 pr_debug("loading %s\n", path);
7468
7469 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7470 }
7471
bpf_object__open(const char * path)7472 struct bpf_object *bpf_object__open(const char *path)
7473 {
7474 return bpf_object__open_file(path, NULL);
7475 }
7476
7477 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7478 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7479 const struct bpf_object_open_opts *opts)
7480 {
7481 if (!obj_buf || obj_buf_sz == 0)
7482 return libbpf_err_ptr(-EINVAL);
7483
7484 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7485 }
7486
bpf_object_unload(struct bpf_object * obj)7487 static int bpf_object_unload(struct bpf_object *obj)
7488 {
7489 size_t i;
7490
7491 if (!obj)
7492 return libbpf_err(-EINVAL);
7493
7494 for (i = 0; i < obj->nr_maps; i++) {
7495 zclose(obj->maps[i].fd);
7496 if (obj->maps[i].st_ops)
7497 zfree(&obj->maps[i].st_ops->kern_vdata);
7498 }
7499
7500 for (i = 0; i < obj->nr_programs; i++)
7501 bpf_program__unload(&obj->programs[i]);
7502
7503 return 0;
7504 }
7505
bpf_object__sanitize_maps(struct bpf_object * obj)7506 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7507 {
7508 struct bpf_map *m;
7509
7510 bpf_object__for_each_map(m, obj) {
7511 if (!bpf_map__is_internal(m))
7512 continue;
7513 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7514 m->def.map_flags &= ~BPF_F_MMAPABLE;
7515 }
7516
7517 return 0;
7518 }
7519
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)7520 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7521 {
7522 char sym_type, sym_name[500];
7523 unsigned long long sym_addr;
7524 int ret, err = 0;
7525 FILE *f;
7526
7527 f = fopen("/proc/kallsyms", "re");
7528 if (!f) {
7529 err = -errno;
7530 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7531 return err;
7532 }
7533
7534 while (true) {
7535 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7536 &sym_addr, &sym_type, sym_name);
7537 if (ret == EOF && feof(f))
7538 break;
7539 if (ret != 3) {
7540 pr_warn("failed to read kallsyms entry: %d\n", ret);
7541 err = -EINVAL;
7542 break;
7543 }
7544
7545 err = cb(sym_addr, sym_type, sym_name, ctx);
7546 if (err)
7547 break;
7548 }
7549
7550 fclose(f);
7551 return err;
7552 }
7553
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)7554 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7555 const char *sym_name, void *ctx)
7556 {
7557 struct bpf_object *obj = ctx;
7558 const struct btf_type *t;
7559 struct extern_desc *ext;
7560
7561 ext = find_extern_by_name(obj, sym_name);
7562 if (!ext || ext->type != EXT_KSYM)
7563 return 0;
7564
7565 t = btf__type_by_id(obj->btf, ext->btf_id);
7566 if (!btf_is_var(t))
7567 return 0;
7568
7569 if (ext->is_set && ext->ksym.addr != sym_addr) {
7570 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7571 sym_name, ext->ksym.addr, sym_addr);
7572 return -EINVAL;
7573 }
7574 if (!ext->is_set) {
7575 ext->is_set = true;
7576 ext->ksym.addr = sym_addr;
7577 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7578 }
7579 return 0;
7580 }
7581
bpf_object__read_kallsyms_file(struct bpf_object * obj)7582 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7583 {
7584 return libbpf_kallsyms_parse(kallsyms_cb, obj);
7585 }
7586
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)7587 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7588 __u16 kind, struct btf **res_btf,
7589 struct module_btf **res_mod_btf)
7590 {
7591 struct module_btf *mod_btf;
7592 struct btf *btf;
7593 int i, id, err;
7594
7595 btf = obj->btf_vmlinux;
7596 mod_btf = NULL;
7597 id = btf__find_by_name_kind(btf, ksym_name, kind);
7598
7599 if (id == -ENOENT) {
7600 err = load_module_btfs(obj);
7601 if (err)
7602 return err;
7603
7604 for (i = 0; i < obj->btf_module_cnt; i++) {
7605 /* we assume module_btf's BTF FD is always >0 */
7606 mod_btf = &obj->btf_modules[i];
7607 btf = mod_btf->btf;
7608 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7609 if (id != -ENOENT)
7610 break;
7611 }
7612 }
7613 if (id <= 0)
7614 return -ESRCH;
7615
7616 *res_btf = btf;
7617 *res_mod_btf = mod_btf;
7618 return id;
7619 }
7620
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)7621 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7622 struct extern_desc *ext)
7623 {
7624 const struct btf_type *targ_var, *targ_type;
7625 __u32 targ_type_id, local_type_id;
7626 struct module_btf *mod_btf = NULL;
7627 const char *targ_var_name;
7628 struct btf *btf = NULL;
7629 int id, err;
7630
7631 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7632 if (id < 0) {
7633 if (id == -ESRCH && ext->is_weak)
7634 return 0;
7635 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7636 ext->name);
7637 return id;
7638 }
7639
7640 /* find local type_id */
7641 local_type_id = ext->ksym.type_id;
7642
7643 /* find target type_id */
7644 targ_var = btf__type_by_id(btf, id);
7645 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7646 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7647
7648 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7649 btf, targ_type_id);
7650 if (err <= 0) {
7651 const struct btf_type *local_type;
7652 const char *targ_name, *local_name;
7653
7654 local_type = btf__type_by_id(obj->btf, local_type_id);
7655 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7656 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7657
7658 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7659 ext->name, local_type_id,
7660 btf_kind_str(local_type), local_name, targ_type_id,
7661 btf_kind_str(targ_type), targ_name);
7662 return -EINVAL;
7663 }
7664
7665 ext->is_set = true;
7666 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7667 ext->ksym.kernel_btf_id = id;
7668 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7669 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7670
7671 return 0;
7672 }
7673
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)7674 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7675 struct extern_desc *ext)
7676 {
7677 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7678 struct module_btf *mod_btf = NULL;
7679 const struct btf_type *kern_func;
7680 struct btf *kern_btf = NULL;
7681 int ret;
7682
7683 local_func_proto_id = ext->ksym.type_id;
7684
7685 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
7686 &mod_btf);
7687 if (kfunc_id < 0) {
7688 if (kfunc_id == -ESRCH && ext->is_weak)
7689 return 0;
7690 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7691 ext->name);
7692 return kfunc_id;
7693 }
7694
7695 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7696 kfunc_proto_id = kern_func->type;
7697
7698 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7699 kern_btf, kfunc_proto_id);
7700 if (ret <= 0) {
7701 if (ext->is_weak)
7702 return 0;
7703
7704 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
7705 ext->name, local_func_proto_id,
7706 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
7707 return -EINVAL;
7708 }
7709
7710 /* set index for module BTF fd in fd_array, if unset */
7711 if (mod_btf && !mod_btf->fd_array_idx) {
7712 /* insn->off is s16 */
7713 if (obj->fd_array_cnt == INT16_MAX) {
7714 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7715 ext->name, mod_btf->fd_array_idx);
7716 return -E2BIG;
7717 }
7718 /* Cannot use index 0 for module BTF fd */
7719 if (!obj->fd_array_cnt)
7720 obj->fd_array_cnt = 1;
7721
7722 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7723 obj->fd_array_cnt + 1);
7724 if (ret)
7725 return ret;
7726 mod_btf->fd_array_idx = obj->fd_array_cnt;
7727 /* we assume module BTF FD is always >0 */
7728 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7729 }
7730
7731 ext->is_set = true;
7732 ext->ksym.kernel_btf_id = kfunc_id;
7733 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7734 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
7735 * populates FD into ld_imm64 insn when it's used to point to kfunc.
7736 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
7737 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
7738 */
7739 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7740 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
7741 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
7742
7743 return 0;
7744 }
7745
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)7746 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7747 {
7748 const struct btf_type *t;
7749 struct extern_desc *ext;
7750 int i, err;
7751
7752 for (i = 0; i < obj->nr_extern; i++) {
7753 ext = &obj->externs[i];
7754 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7755 continue;
7756
7757 if (obj->gen_loader) {
7758 ext->is_set = true;
7759 ext->ksym.kernel_btf_obj_fd = 0;
7760 ext->ksym.kernel_btf_id = 0;
7761 continue;
7762 }
7763 t = btf__type_by_id(obj->btf, ext->btf_id);
7764 if (btf_is_var(t))
7765 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7766 else
7767 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7768 if (err)
7769 return err;
7770 }
7771 return 0;
7772 }
7773
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)7774 static int bpf_object__resolve_externs(struct bpf_object *obj,
7775 const char *extra_kconfig)
7776 {
7777 bool need_config = false, need_kallsyms = false;
7778 bool need_vmlinux_btf = false;
7779 struct extern_desc *ext;
7780 void *kcfg_data = NULL;
7781 int err, i;
7782
7783 if (obj->nr_extern == 0)
7784 return 0;
7785
7786 if (obj->kconfig_map_idx >= 0)
7787 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7788
7789 for (i = 0; i < obj->nr_extern; i++) {
7790 ext = &obj->externs[i];
7791
7792 if (ext->type == EXT_KSYM) {
7793 if (ext->ksym.type_id)
7794 need_vmlinux_btf = true;
7795 else
7796 need_kallsyms = true;
7797 continue;
7798 } else if (ext->type == EXT_KCFG) {
7799 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7800 __u64 value = 0;
7801
7802 /* Kconfig externs need actual /proc/config.gz */
7803 if (str_has_pfx(ext->name, "CONFIG_")) {
7804 need_config = true;
7805 continue;
7806 }
7807
7808 /* Virtual kcfg externs are customly handled by libbpf */
7809 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7810 value = get_kernel_version();
7811 if (!value) {
7812 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7813 return -EINVAL;
7814 }
7815 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7816 value = kernel_supports(obj, FEAT_BPF_COOKIE);
7817 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7818 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7819 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7820 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7821 * __kconfig externs, where LINUX_ ones are virtual and filled out
7822 * customly by libbpf (their values don't come from Kconfig).
7823 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7824 * __weak, it defaults to zero value, just like for CONFIG_xxx
7825 * externs.
7826 */
7827 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7828 return -EINVAL;
7829 }
7830
7831 err = set_kcfg_value_num(ext, ext_ptr, value);
7832 if (err)
7833 return err;
7834 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7835 ext->name, (long long)value);
7836 } else {
7837 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7838 return -EINVAL;
7839 }
7840 }
7841 if (need_config && extra_kconfig) {
7842 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7843 if (err)
7844 return -EINVAL;
7845 need_config = false;
7846 for (i = 0; i < obj->nr_extern; i++) {
7847 ext = &obj->externs[i];
7848 if (ext->type == EXT_KCFG && !ext->is_set) {
7849 need_config = true;
7850 break;
7851 }
7852 }
7853 }
7854 if (need_config) {
7855 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7856 if (err)
7857 return -EINVAL;
7858 }
7859 if (need_kallsyms) {
7860 err = bpf_object__read_kallsyms_file(obj);
7861 if (err)
7862 return -EINVAL;
7863 }
7864 if (need_vmlinux_btf) {
7865 err = bpf_object__resolve_ksyms_btf_id(obj);
7866 if (err)
7867 return -EINVAL;
7868 }
7869 for (i = 0; i < obj->nr_extern; i++) {
7870 ext = &obj->externs[i];
7871
7872 if (!ext->is_set && !ext->is_weak) {
7873 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7874 return -ESRCH;
7875 } else if (!ext->is_set) {
7876 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7877 ext->name);
7878 }
7879 }
7880
7881 return 0;
7882 }
7883
bpf_map_prepare_vdata(const struct bpf_map * map)7884 static void bpf_map_prepare_vdata(const struct bpf_map *map)
7885 {
7886 struct bpf_struct_ops *st_ops;
7887 __u32 i;
7888
7889 st_ops = map->st_ops;
7890 for (i = 0; i < btf_vlen(st_ops->type); i++) {
7891 struct bpf_program *prog = st_ops->progs[i];
7892 void *kern_data;
7893 int prog_fd;
7894
7895 if (!prog)
7896 continue;
7897
7898 prog_fd = bpf_program__fd(prog);
7899 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
7900 *(unsigned long *)kern_data = prog_fd;
7901 }
7902 }
7903
bpf_object_prepare_struct_ops(struct bpf_object * obj)7904 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
7905 {
7906 int i;
7907
7908 for (i = 0; i < obj->nr_maps; i++)
7909 if (bpf_map__is_struct_ops(&obj->maps[i]))
7910 bpf_map_prepare_vdata(&obj->maps[i]);
7911
7912 return 0;
7913 }
7914
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)7915 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7916 {
7917 int err, i;
7918
7919 if (!obj)
7920 return libbpf_err(-EINVAL);
7921
7922 if (obj->loaded) {
7923 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7924 return libbpf_err(-EINVAL);
7925 }
7926
7927 if (obj->gen_loader)
7928 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7929
7930 err = bpf_object__probe_loading(obj);
7931 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7932 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7933 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7934 err = err ? : bpf_object__sanitize_maps(obj);
7935 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7936 err = err ? : bpf_object__create_maps(obj);
7937 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7938 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7939 err = err ? : bpf_object_init_prog_arrays(obj);
7940 err = err ? : bpf_object_prepare_struct_ops(obj);
7941
7942 if (obj->gen_loader) {
7943 /* reset FDs */
7944 if (obj->btf)
7945 btf__set_fd(obj->btf, -1);
7946 for (i = 0; i < obj->nr_maps; i++)
7947 obj->maps[i].fd = -1;
7948 if (!err)
7949 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7950 }
7951
7952 /* clean up fd_array */
7953 zfree(&obj->fd_array);
7954
7955 /* clean up module BTFs */
7956 for (i = 0; i < obj->btf_module_cnt; i++) {
7957 close(obj->btf_modules[i].fd);
7958 btf__free(obj->btf_modules[i].btf);
7959 free(obj->btf_modules[i].name);
7960 }
7961 free(obj->btf_modules);
7962
7963 /* clean up vmlinux BTF */
7964 btf__free(obj->btf_vmlinux);
7965 obj->btf_vmlinux = NULL;
7966
7967 obj->loaded = true; /* doesn't matter if successfully or not */
7968
7969 if (err)
7970 goto out;
7971
7972 return 0;
7973 out:
7974 /* unpin any maps that were auto-pinned during load */
7975 for (i = 0; i < obj->nr_maps; i++)
7976 if (obj->maps[i].pinned && !obj->maps[i].reused)
7977 bpf_map__unpin(&obj->maps[i], NULL);
7978
7979 bpf_object_unload(obj);
7980 pr_warn("failed to load object '%s'\n", obj->path);
7981 return libbpf_err(err);
7982 }
7983
bpf_object__load(struct bpf_object * obj)7984 int bpf_object__load(struct bpf_object *obj)
7985 {
7986 return bpf_object_load(obj, 0, NULL);
7987 }
7988
make_parent_dir(const char * path)7989 static int make_parent_dir(const char *path)
7990 {
7991 char *cp, errmsg[STRERR_BUFSIZE];
7992 char *dname, *dir;
7993 int err = 0;
7994
7995 dname = strdup(path);
7996 if (dname == NULL)
7997 return -ENOMEM;
7998
7999 dir = dirname(dname);
8000 if (mkdir(dir, 0700) && errno != EEXIST)
8001 err = -errno;
8002
8003 free(dname);
8004 if (err) {
8005 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8006 pr_warn("failed to mkdir %s: %s\n", path, cp);
8007 }
8008 return err;
8009 }
8010
check_path(const char * path)8011 static int check_path(const char *path)
8012 {
8013 char *cp, errmsg[STRERR_BUFSIZE];
8014 struct statfs st_fs;
8015 char *dname, *dir;
8016 int err = 0;
8017
8018 if (path == NULL)
8019 return -EINVAL;
8020
8021 dname = strdup(path);
8022 if (dname == NULL)
8023 return -ENOMEM;
8024
8025 dir = dirname(dname);
8026 if (statfs(dir, &st_fs)) {
8027 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8028 pr_warn("failed to statfs %s: %s\n", dir, cp);
8029 err = -errno;
8030 }
8031 free(dname);
8032
8033 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8034 pr_warn("specified path %s is not on BPF FS\n", path);
8035 err = -EINVAL;
8036 }
8037
8038 return err;
8039 }
8040
bpf_program__pin(struct bpf_program * prog,const char * path)8041 int bpf_program__pin(struct bpf_program *prog, const char *path)
8042 {
8043 char *cp, errmsg[STRERR_BUFSIZE];
8044 int err;
8045
8046 if (prog->fd < 0) {
8047 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8048 return libbpf_err(-EINVAL);
8049 }
8050
8051 err = make_parent_dir(path);
8052 if (err)
8053 return libbpf_err(err);
8054
8055 err = check_path(path);
8056 if (err)
8057 return libbpf_err(err);
8058
8059 if (bpf_obj_pin(prog->fd, path)) {
8060 err = -errno;
8061 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8062 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8063 return libbpf_err(err);
8064 }
8065
8066 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8067 return 0;
8068 }
8069
bpf_program__unpin(struct bpf_program * prog,const char * path)8070 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8071 {
8072 int err;
8073
8074 if (prog->fd < 0) {
8075 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8076 return libbpf_err(-EINVAL);
8077 }
8078
8079 err = check_path(path);
8080 if (err)
8081 return libbpf_err(err);
8082
8083 err = unlink(path);
8084 if (err)
8085 return libbpf_err(-errno);
8086
8087 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8088 return 0;
8089 }
8090
bpf_map__pin(struct bpf_map * map,const char * path)8091 int bpf_map__pin(struct bpf_map *map, const char *path)
8092 {
8093 char *cp, errmsg[STRERR_BUFSIZE];
8094 int err;
8095
8096 if (map == NULL) {
8097 pr_warn("invalid map pointer\n");
8098 return libbpf_err(-EINVAL);
8099 }
8100
8101 if (map->pin_path) {
8102 if (path && strcmp(path, map->pin_path)) {
8103 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8104 bpf_map__name(map), map->pin_path, path);
8105 return libbpf_err(-EINVAL);
8106 } else if (map->pinned) {
8107 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8108 bpf_map__name(map), map->pin_path);
8109 return 0;
8110 }
8111 } else {
8112 if (!path) {
8113 pr_warn("missing a path to pin map '%s' at\n",
8114 bpf_map__name(map));
8115 return libbpf_err(-EINVAL);
8116 } else if (map->pinned) {
8117 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8118 return libbpf_err(-EEXIST);
8119 }
8120
8121 map->pin_path = strdup(path);
8122 if (!map->pin_path) {
8123 err = -errno;
8124 goto out_err;
8125 }
8126 }
8127
8128 err = make_parent_dir(map->pin_path);
8129 if (err)
8130 return libbpf_err(err);
8131
8132 err = check_path(map->pin_path);
8133 if (err)
8134 return libbpf_err(err);
8135
8136 if (bpf_obj_pin(map->fd, map->pin_path)) {
8137 err = -errno;
8138 goto out_err;
8139 }
8140
8141 map->pinned = true;
8142 pr_debug("pinned map '%s'\n", map->pin_path);
8143
8144 return 0;
8145
8146 out_err:
8147 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8148 pr_warn("failed to pin map: %s\n", cp);
8149 return libbpf_err(err);
8150 }
8151
bpf_map__unpin(struct bpf_map * map,const char * path)8152 int bpf_map__unpin(struct bpf_map *map, const char *path)
8153 {
8154 int err;
8155
8156 if (map == NULL) {
8157 pr_warn("invalid map pointer\n");
8158 return libbpf_err(-EINVAL);
8159 }
8160
8161 if (map->pin_path) {
8162 if (path && strcmp(path, map->pin_path)) {
8163 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8164 bpf_map__name(map), map->pin_path, path);
8165 return libbpf_err(-EINVAL);
8166 }
8167 path = map->pin_path;
8168 } else if (!path) {
8169 pr_warn("no path to unpin map '%s' from\n",
8170 bpf_map__name(map));
8171 return libbpf_err(-EINVAL);
8172 }
8173
8174 err = check_path(path);
8175 if (err)
8176 return libbpf_err(err);
8177
8178 err = unlink(path);
8179 if (err != 0)
8180 return libbpf_err(-errno);
8181
8182 map->pinned = false;
8183 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8184
8185 return 0;
8186 }
8187
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8188 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8189 {
8190 char *new = NULL;
8191
8192 if (path) {
8193 new = strdup(path);
8194 if (!new)
8195 return libbpf_err(-errno);
8196 }
8197
8198 free(map->pin_path);
8199 map->pin_path = new;
8200 return 0;
8201 }
8202
8203 __alias(bpf_map__pin_path)
8204 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8205
bpf_map__pin_path(const struct bpf_map * map)8206 const char *bpf_map__pin_path(const struct bpf_map *map)
8207 {
8208 return map->pin_path;
8209 }
8210
bpf_map__is_pinned(const struct bpf_map * map)8211 bool bpf_map__is_pinned(const struct bpf_map *map)
8212 {
8213 return map->pinned;
8214 }
8215
sanitize_pin_path(char * s)8216 static void sanitize_pin_path(char *s)
8217 {
8218 /* bpffs disallows periods in path names */
8219 while (*s) {
8220 if (*s == '.')
8221 *s = '_';
8222 s++;
8223 }
8224 }
8225
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8226 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8227 {
8228 struct bpf_map *map;
8229 int err;
8230
8231 if (!obj)
8232 return libbpf_err(-ENOENT);
8233
8234 if (!obj->loaded) {
8235 pr_warn("object not yet loaded; load it first\n");
8236 return libbpf_err(-ENOENT);
8237 }
8238
8239 bpf_object__for_each_map(map, obj) {
8240 char *pin_path = NULL;
8241 char buf[PATH_MAX];
8242
8243 if (!map->autocreate)
8244 continue;
8245
8246 if (path) {
8247 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8248 if (err)
8249 goto err_unpin_maps;
8250 sanitize_pin_path(buf);
8251 pin_path = buf;
8252 } else if (!map->pin_path) {
8253 continue;
8254 }
8255
8256 err = bpf_map__pin(map, pin_path);
8257 if (err)
8258 goto err_unpin_maps;
8259 }
8260
8261 return 0;
8262
8263 err_unpin_maps:
8264 while ((map = bpf_object__prev_map(obj, map))) {
8265 if (!map->pin_path)
8266 continue;
8267
8268 bpf_map__unpin(map, NULL);
8269 }
8270
8271 return libbpf_err(err);
8272 }
8273
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8274 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8275 {
8276 struct bpf_map *map;
8277 int err;
8278
8279 if (!obj)
8280 return libbpf_err(-ENOENT);
8281
8282 bpf_object__for_each_map(map, obj) {
8283 char *pin_path = NULL;
8284 char buf[PATH_MAX];
8285
8286 if (path) {
8287 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8288 if (err)
8289 return libbpf_err(err);
8290 sanitize_pin_path(buf);
8291 pin_path = buf;
8292 } else if (!map->pin_path) {
8293 continue;
8294 }
8295
8296 err = bpf_map__unpin(map, pin_path);
8297 if (err)
8298 return libbpf_err(err);
8299 }
8300
8301 return 0;
8302 }
8303
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8304 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8305 {
8306 struct bpf_program *prog;
8307 char buf[PATH_MAX];
8308 int err;
8309
8310 if (!obj)
8311 return libbpf_err(-ENOENT);
8312
8313 if (!obj->loaded) {
8314 pr_warn("object not yet loaded; load it first\n");
8315 return libbpf_err(-ENOENT);
8316 }
8317
8318 bpf_object__for_each_program(prog, obj) {
8319 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8320 if (err)
8321 goto err_unpin_programs;
8322
8323 err = bpf_program__pin(prog, buf);
8324 if (err)
8325 goto err_unpin_programs;
8326 }
8327
8328 return 0;
8329
8330 err_unpin_programs:
8331 while ((prog = bpf_object__prev_program(obj, prog))) {
8332 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8333 continue;
8334
8335 bpf_program__unpin(prog, buf);
8336 }
8337
8338 return libbpf_err(err);
8339 }
8340
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8341 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8342 {
8343 struct bpf_program *prog;
8344 int err;
8345
8346 if (!obj)
8347 return libbpf_err(-ENOENT);
8348
8349 bpf_object__for_each_program(prog, obj) {
8350 char buf[PATH_MAX];
8351
8352 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8353 if (err)
8354 return libbpf_err(err);
8355
8356 err = bpf_program__unpin(prog, buf);
8357 if (err)
8358 return libbpf_err(err);
8359 }
8360
8361 return 0;
8362 }
8363
bpf_object__pin(struct bpf_object * obj,const char * path)8364 int bpf_object__pin(struct bpf_object *obj, const char *path)
8365 {
8366 int err;
8367
8368 err = bpf_object__pin_maps(obj, path);
8369 if (err)
8370 return libbpf_err(err);
8371
8372 err = bpf_object__pin_programs(obj, path);
8373 if (err) {
8374 bpf_object__unpin_maps(obj, path);
8375 return libbpf_err(err);
8376 }
8377
8378 return 0;
8379 }
8380
bpf_object__unpin(struct bpf_object * obj,const char * path)8381 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8382 {
8383 int err;
8384
8385 err = bpf_object__unpin_programs(obj, path);
8386 if (err)
8387 return libbpf_err(err);
8388
8389 err = bpf_object__unpin_maps(obj, path);
8390 if (err)
8391 return libbpf_err(err);
8392
8393 return 0;
8394 }
8395
bpf_map__destroy(struct bpf_map * map)8396 static void bpf_map__destroy(struct bpf_map *map)
8397 {
8398 if (map->inner_map) {
8399 bpf_map__destroy(map->inner_map);
8400 zfree(&map->inner_map);
8401 }
8402
8403 zfree(&map->init_slots);
8404 map->init_slots_sz = 0;
8405
8406 if (map->mmaped) {
8407 size_t mmap_sz;
8408
8409 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8410 munmap(map->mmaped, mmap_sz);
8411 map->mmaped = NULL;
8412 }
8413
8414 if (map->st_ops) {
8415 zfree(&map->st_ops->data);
8416 zfree(&map->st_ops->progs);
8417 zfree(&map->st_ops->kern_func_off);
8418 zfree(&map->st_ops);
8419 }
8420
8421 zfree(&map->name);
8422 zfree(&map->real_name);
8423 zfree(&map->pin_path);
8424
8425 if (map->fd >= 0)
8426 zclose(map->fd);
8427 }
8428
bpf_object__close(struct bpf_object * obj)8429 void bpf_object__close(struct bpf_object *obj)
8430 {
8431 size_t i;
8432
8433 if (IS_ERR_OR_NULL(obj))
8434 return;
8435
8436 usdt_manager_free(obj->usdt_man);
8437 obj->usdt_man = NULL;
8438
8439 bpf_gen__free(obj->gen_loader);
8440 bpf_object__elf_finish(obj);
8441 bpf_object_unload(obj);
8442 btf__free(obj->btf);
8443 btf__free(obj->btf_vmlinux);
8444 btf_ext__free(obj->btf_ext);
8445
8446 for (i = 0; i < obj->nr_maps; i++)
8447 bpf_map__destroy(&obj->maps[i]);
8448
8449 zfree(&obj->btf_custom_path);
8450 zfree(&obj->kconfig);
8451
8452 for (i = 0; i < obj->nr_extern; i++)
8453 zfree(&obj->externs[i].essent_name);
8454
8455 zfree(&obj->externs);
8456 obj->nr_extern = 0;
8457
8458 zfree(&obj->maps);
8459 obj->nr_maps = 0;
8460
8461 if (obj->programs && obj->nr_programs) {
8462 for (i = 0; i < obj->nr_programs; i++)
8463 bpf_program__exit(&obj->programs[i]);
8464 }
8465 zfree(&obj->programs);
8466
8467 free(obj);
8468 }
8469
bpf_object__name(const struct bpf_object * obj)8470 const char *bpf_object__name(const struct bpf_object *obj)
8471 {
8472 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8473 }
8474
bpf_object__kversion(const struct bpf_object * obj)8475 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8476 {
8477 return obj ? obj->kern_version : 0;
8478 }
8479
bpf_object__btf(const struct bpf_object * obj)8480 struct btf *bpf_object__btf(const struct bpf_object *obj)
8481 {
8482 return obj ? obj->btf : NULL;
8483 }
8484
bpf_object__btf_fd(const struct bpf_object * obj)8485 int bpf_object__btf_fd(const struct bpf_object *obj)
8486 {
8487 return obj->btf ? btf__fd(obj->btf) : -1;
8488 }
8489
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)8490 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8491 {
8492 if (obj->loaded)
8493 return libbpf_err(-EINVAL);
8494
8495 obj->kern_version = kern_version;
8496
8497 return 0;
8498 }
8499
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)8500 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8501 {
8502 struct bpf_gen *gen;
8503
8504 if (!opts)
8505 return -EFAULT;
8506 if (!OPTS_VALID(opts, gen_loader_opts))
8507 return -EINVAL;
8508 gen = calloc(sizeof(*gen), 1);
8509 if (!gen)
8510 return -ENOMEM;
8511 gen->opts = opts;
8512 obj->gen_loader = gen;
8513 return 0;
8514 }
8515
8516 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)8517 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8518 bool forward)
8519 {
8520 size_t nr_programs = obj->nr_programs;
8521 ssize_t idx;
8522
8523 if (!nr_programs)
8524 return NULL;
8525
8526 if (!p)
8527 /* Iter from the beginning */
8528 return forward ? &obj->programs[0] :
8529 &obj->programs[nr_programs - 1];
8530
8531 if (p->obj != obj) {
8532 pr_warn("error: program handler doesn't match object\n");
8533 return errno = EINVAL, NULL;
8534 }
8535
8536 idx = (p - obj->programs) + (forward ? 1 : -1);
8537 if (idx >= obj->nr_programs || idx < 0)
8538 return NULL;
8539 return &obj->programs[idx];
8540 }
8541
8542 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)8543 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8544 {
8545 struct bpf_program *prog = prev;
8546
8547 do {
8548 prog = __bpf_program__iter(prog, obj, true);
8549 } while (prog && prog_is_subprog(obj, prog));
8550
8551 return prog;
8552 }
8553
8554 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)8555 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8556 {
8557 struct bpf_program *prog = next;
8558
8559 do {
8560 prog = __bpf_program__iter(prog, obj, false);
8561 } while (prog && prog_is_subprog(obj, prog));
8562
8563 return prog;
8564 }
8565
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)8566 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8567 {
8568 prog->prog_ifindex = ifindex;
8569 }
8570
bpf_program__name(const struct bpf_program * prog)8571 const char *bpf_program__name(const struct bpf_program *prog)
8572 {
8573 return prog->name;
8574 }
8575
bpf_program__section_name(const struct bpf_program * prog)8576 const char *bpf_program__section_name(const struct bpf_program *prog)
8577 {
8578 return prog->sec_name;
8579 }
8580
bpf_program__autoload(const struct bpf_program * prog)8581 bool bpf_program__autoload(const struct bpf_program *prog)
8582 {
8583 return prog->autoload;
8584 }
8585
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)8586 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8587 {
8588 if (prog->obj->loaded)
8589 return libbpf_err(-EINVAL);
8590
8591 prog->autoload = autoload;
8592 return 0;
8593 }
8594
bpf_program__autoattach(const struct bpf_program * prog)8595 bool bpf_program__autoattach(const struct bpf_program *prog)
8596 {
8597 return prog->autoattach;
8598 }
8599
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)8600 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8601 {
8602 prog->autoattach = autoattach;
8603 }
8604
bpf_program__insns(const struct bpf_program * prog)8605 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8606 {
8607 return prog->insns;
8608 }
8609
bpf_program__insn_cnt(const struct bpf_program * prog)8610 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8611 {
8612 return prog->insns_cnt;
8613 }
8614
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)8615 int bpf_program__set_insns(struct bpf_program *prog,
8616 struct bpf_insn *new_insns, size_t new_insn_cnt)
8617 {
8618 struct bpf_insn *insns;
8619
8620 if (prog->obj->loaded)
8621 return -EBUSY;
8622
8623 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8624 /* NULL is a valid return from reallocarray if the new count is zero */
8625 if (!insns && new_insn_cnt) {
8626 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8627 return -ENOMEM;
8628 }
8629 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8630
8631 prog->insns = insns;
8632 prog->insns_cnt = new_insn_cnt;
8633 return 0;
8634 }
8635
bpf_program__fd(const struct bpf_program * prog)8636 int bpf_program__fd(const struct bpf_program *prog)
8637 {
8638 if (!prog)
8639 return libbpf_err(-EINVAL);
8640
8641 if (prog->fd < 0)
8642 return libbpf_err(-ENOENT);
8643
8644 return prog->fd;
8645 }
8646
8647 __alias(bpf_program__type)
8648 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8649
bpf_program__type(const struct bpf_program * prog)8650 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8651 {
8652 return prog->type;
8653 }
8654
8655 static size_t custom_sec_def_cnt;
8656 static struct bpf_sec_def *custom_sec_defs;
8657 static struct bpf_sec_def custom_fallback_def;
8658 static bool has_custom_fallback_def;
8659 static int last_custom_sec_def_handler_id;
8660
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)8661 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8662 {
8663 if (prog->obj->loaded)
8664 return libbpf_err(-EBUSY);
8665
8666 /* if type is not changed, do nothing */
8667 if (prog->type == type)
8668 return 0;
8669
8670 prog->type = type;
8671
8672 /* If a program type was changed, we need to reset associated SEC()
8673 * handler, as it will be invalid now. The only exception is a generic
8674 * fallback handler, which by definition is program type-agnostic and
8675 * is a catch-all custom handler, optionally set by the application,
8676 * so should be able to handle any type of BPF program.
8677 */
8678 if (prog->sec_def != &custom_fallback_def)
8679 prog->sec_def = NULL;
8680 return 0;
8681 }
8682
8683 __alias(bpf_program__expected_attach_type)
8684 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8685
bpf_program__expected_attach_type(const struct bpf_program * prog)8686 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8687 {
8688 return prog->expected_attach_type;
8689 }
8690
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)8691 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8692 enum bpf_attach_type type)
8693 {
8694 if (prog->obj->loaded)
8695 return libbpf_err(-EBUSY);
8696
8697 prog->expected_attach_type = type;
8698 return 0;
8699 }
8700
bpf_program__flags(const struct bpf_program * prog)8701 __u32 bpf_program__flags(const struct bpf_program *prog)
8702 {
8703 return prog->prog_flags;
8704 }
8705
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)8706 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8707 {
8708 if (prog->obj->loaded)
8709 return libbpf_err(-EBUSY);
8710
8711 prog->prog_flags = flags;
8712 return 0;
8713 }
8714
bpf_program__log_level(const struct bpf_program * prog)8715 __u32 bpf_program__log_level(const struct bpf_program *prog)
8716 {
8717 return prog->log_level;
8718 }
8719
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)8720 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8721 {
8722 if (prog->obj->loaded)
8723 return libbpf_err(-EBUSY);
8724
8725 prog->log_level = log_level;
8726 return 0;
8727 }
8728
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)8729 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8730 {
8731 *log_size = prog->log_size;
8732 return prog->log_buf;
8733 }
8734
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)8735 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8736 {
8737 if (log_size && !log_buf)
8738 return -EINVAL;
8739 if (prog->log_size > UINT_MAX)
8740 return -EINVAL;
8741 if (prog->obj->loaded)
8742 return -EBUSY;
8743
8744 prog->log_buf = log_buf;
8745 prog->log_size = log_size;
8746 return 0;
8747 }
8748
8749 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8750 .sec = (char *)sec_pfx, \
8751 .prog_type = BPF_PROG_TYPE_##ptype, \
8752 .expected_attach_type = atype, \
8753 .cookie = (long)(flags), \
8754 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
8755 __VA_ARGS__ \
8756 }
8757
8758 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8759 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8760 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8761 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8762 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8763 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8764 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8765 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8766 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8767 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8768 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8769
8770 static const struct bpf_sec_def section_defs[] = {
8771 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
8772 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8773 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8774 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8775 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8776 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8777 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8778 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8779 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8780 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8781 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8782 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8783 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8784 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8785 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8786 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8787 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8788 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt),
8789 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
8790 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
8791 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */
8792 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
8793 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
8794 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8795 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8796 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8797 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8798 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8799 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8800 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8801 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8802 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8803 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8804 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8805 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8806 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8807 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8808 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8809 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8810 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
8811 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8812 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8813 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8814 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8815 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8816 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
8817 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8818 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8819 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8820 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8821 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
8822 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8823 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
8824 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
8825 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
8826 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
8827 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
8828 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8829 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8830 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8831 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
8832 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8833 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8834 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8835 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8836 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8837 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
8838 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8839 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8840 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8841 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8842 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8843 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8844 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8845 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8846 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8847 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8848 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8849 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8850 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8851 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8852 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8853 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8854 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8855 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8856 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8857 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8858 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8859 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
8860 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
8861 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8862 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE),
8863 };
8864
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)8865 int libbpf_register_prog_handler(const char *sec,
8866 enum bpf_prog_type prog_type,
8867 enum bpf_attach_type exp_attach_type,
8868 const struct libbpf_prog_handler_opts *opts)
8869 {
8870 struct bpf_sec_def *sec_def;
8871
8872 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8873 return libbpf_err(-EINVAL);
8874
8875 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8876 return libbpf_err(-E2BIG);
8877
8878 if (sec) {
8879 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8880 sizeof(*sec_def));
8881 if (!sec_def)
8882 return libbpf_err(-ENOMEM);
8883
8884 custom_sec_defs = sec_def;
8885 sec_def = &custom_sec_defs[custom_sec_def_cnt];
8886 } else {
8887 if (has_custom_fallback_def)
8888 return libbpf_err(-EBUSY);
8889
8890 sec_def = &custom_fallback_def;
8891 }
8892
8893 sec_def->sec = sec ? strdup(sec) : NULL;
8894 if (sec && !sec_def->sec)
8895 return libbpf_err(-ENOMEM);
8896
8897 sec_def->prog_type = prog_type;
8898 sec_def->expected_attach_type = exp_attach_type;
8899 sec_def->cookie = OPTS_GET(opts, cookie, 0);
8900
8901 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8902 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8903 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8904
8905 sec_def->handler_id = ++last_custom_sec_def_handler_id;
8906
8907 if (sec)
8908 custom_sec_def_cnt++;
8909 else
8910 has_custom_fallback_def = true;
8911
8912 return sec_def->handler_id;
8913 }
8914
libbpf_unregister_prog_handler(int handler_id)8915 int libbpf_unregister_prog_handler(int handler_id)
8916 {
8917 struct bpf_sec_def *sec_defs;
8918 int i;
8919
8920 if (handler_id <= 0)
8921 return libbpf_err(-EINVAL);
8922
8923 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8924 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8925 has_custom_fallback_def = false;
8926 return 0;
8927 }
8928
8929 for (i = 0; i < custom_sec_def_cnt; i++) {
8930 if (custom_sec_defs[i].handler_id == handler_id)
8931 break;
8932 }
8933
8934 if (i == custom_sec_def_cnt)
8935 return libbpf_err(-ENOENT);
8936
8937 free(custom_sec_defs[i].sec);
8938 for (i = i + 1; i < custom_sec_def_cnt; i++)
8939 custom_sec_defs[i - 1] = custom_sec_defs[i];
8940 custom_sec_def_cnt--;
8941
8942 /* try to shrink the array, but it's ok if we couldn't */
8943 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8944 /* if new count is zero, reallocarray can return a valid NULL result;
8945 * in this case the previous pointer will be freed, so we *have to*
8946 * reassign old pointer to the new value (even if it's NULL)
8947 */
8948 if (sec_defs || custom_sec_def_cnt == 0)
8949 custom_sec_defs = sec_defs;
8950
8951 return 0;
8952 }
8953
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)8954 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8955 {
8956 size_t len = strlen(sec_def->sec);
8957
8958 /* "type/" always has to have proper SEC("type/extras") form */
8959 if (sec_def->sec[len - 1] == '/') {
8960 if (str_has_pfx(sec_name, sec_def->sec))
8961 return true;
8962 return false;
8963 }
8964
8965 /* "type+" means it can be either exact SEC("type") or
8966 * well-formed SEC("type/extras") with proper '/' separator
8967 */
8968 if (sec_def->sec[len - 1] == '+') {
8969 len--;
8970 /* not even a prefix */
8971 if (strncmp(sec_name, sec_def->sec, len) != 0)
8972 return false;
8973 /* exact match or has '/' separator */
8974 if (sec_name[len] == '\0' || sec_name[len] == '/')
8975 return true;
8976 return false;
8977 }
8978
8979 return strcmp(sec_name, sec_def->sec) == 0;
8980 }
8981
find_sec_def(const char * sec_name)8982 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8983 {
8984 const struct bpf_sec_def *sec_def;
8985 int i, n;
8986
8987 n = custom_sec_def_cnt;
8988 for (i = 0; i < n; i++) {
8989 sec_def = &custom_sec_defs[i];
8990 if (sec_def_matches(sec_def, sec_name))
8991 return sec_def;
8992 }
8993
8994 n = ARRAY_SIZE(section_defs);
8995 for (i = 0; i < n; i++) {
8996 sec_def = §ion_defs[i];
8997 if (sec_def_matches(sec_def, sec_name))
8998 return sec_def;
8999 }
9000
9001 if (has_custom_fallback_def)
9002 return &custom_fallback_def;
9003
9004 return NULL;
9005 }
9006
9007 #define MAX_TYPE_NAME_SIZE 32
9008
libbpf_get_type_names(bool attach_type)9009 static char *libbpf_get_type_names(bool attach_type)
9010 {
9011 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9012 char *buf;
9013
9014 buf = malloc(len);
9015 if (!buf)
9016 return NULL;
9017
9018 buf[0] = '\0';
9019 /* Forge string buf with all available names */
9020 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9021 const struct bpf_sec_def *sec_def = §ion_defs[i];
9022
9023 if (attach_type) {
9024 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9025 continue;
9026
9027 if (!(sec_def->cookie & SEC_ATTACHABLE))
9028 continue;
9029 }
9030
9031 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9032 free(buf);
9033 return NULL;
9034 }
9035 strcat(buf, " ");
9036 strcat(buf, section_defs[i].sec);
9037 }
9038
9039 return buf;
9040 }
9041
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9042 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9043 enum bpf_attach_type *expected_attach_type)
9044 {
9045 const struct bpf_sec_def *sec_def;
9046 char *type_names;
9047
9048 if (!name)
9049 return libbpf_err(-EINVAL);
9050
9051 sec_def = find_sec_def(name);
9052 if (sec_def) {
9053 *prog_type = sec_def->prog_type;
9054 *expected_attach_type = sec_def->expected_attach_type;
9055 return 0;
9056 }
9057
9058 pr_debug("failed to guess program type from ELF section '%s'\n", name);
9059 type_names = libbpf_get_type_names(false);
9060 if (type_names != NULL) {
9061 pr_debug("supported section(type) names are:%s\n", type_names);
9062 free(type_names);
9063 }
9064
9065 return libbpf_err(-ESRCH);
9066 }
9067
libbpf_bpf_attach_type_str(enum bpf_attach_type t)9068 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9069 {
9070 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9071 return NULL;
9072
9073 return attach_type_name[t];
9074 }
9075
libbpf_bpf_link_type_str(enum bpf_link_type t)9076 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9077 {
9078 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9079 return NULL;
9080
9081 return link_type_name[t];
9082 }
9083
libbpf_bpf_map_type_str(enum bpf_map_type t)9084 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9085 {
9086 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9087 return NULL;
9088
9089 return map_type_name[t];
9090 }
9091
libbpf_bpf_prog_type_str(enum bpf_prog_type t)9092 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9093 {
9094 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9095 return NULL;
9096
9097 return prog_type_name[t];
9098 }
9099
find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9100 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9101 int sec_idx,
9102 size_t offset)
9103 {
9104 struct bpf_map *map;
9105 size_t i;
9106
9107 for (i = 0; i < obj->nr_maps; i++) {
9108 map = &obj->maps[i];
9109 if (!bpf_map__is_struct_ops(map))
9110 continue;
9111 if (map->sec_idx == sec_idx &&
9112 map->sec_offset <= offset &&
9113 offset - map->sec_offset < map->def.value_size)
9114 return map;
9115 }
9116
9117 return NULL;
9118 }
9119
9120 /* Collect the reloc from ELF and populate the st_ops->progs[] */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9121 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9122 Elf64_Shdr *shdr, Elf_Data *data)
9123 {
9124 const struct btf_member *member;
9125 struct bpf_struct_ops *st_ops;
9126 struct bpf_program *prog;
9127 unsigned int shdr_idx;
9128 const struct btf *btf;
9129 struct bpf_map *map;
9130 unsigned int moff, insn_idx;
9131 const char *name;
9132 __u32 member_idx;
9133 Elf64_Sym *sym;
9134 Elf64_Rel *rel;
9135 int i, nrels;
9136
9137 btf = obj->btf;
9138 nrels = shdr->sh_size / shdr->sh_entsize;
9139 for (i = 0; i < nrels; i++) {
9140 rel = elf_rel_by_idx(data, i);
9141 if (!rel) {
9142 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9143 return -LIBBPF_ERRNO__FORMAT;
9144 }
9145
9146 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9147 if (!sym) {
9148 pr_warn("struct_ops reloc: symbol %zx not found\n",
9149 (size_t)ELF64_R_SYM(rel->r_info));
9150 return -LIBBPF_ERRNO__FORMAT;
9151 }
9152
9153 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9154 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9155 if (!map) {
9156 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9157 (size_t)rel->r_offset);
9158 return -EINVAL;
9159 }
9160
9161 moff = rel->r_offset - map->sec_offset;
9162 shdr_idx = sym->st_shndx;
9163 st_ops = map->st_ops;
9164 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9165 map->name,
9166 (long long)(rel->r_info >> 32),
9167 (long long)sym->st_value,
9168 shdr_idx, (size_t)rel->r_offset,
9169 map->sec_offset, sym->st_name, name);
9170
9171 if (shdr_idx >= SHN_LORESERVE) {
9172 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9173 map->name, (size_t)rel->r_offset, shdr_idx);
9174 return -LIBBPF_ERRNO__RELOC;
9175 }
9176 if (sym->st_value % BPF_INSN_SZ) {
9177 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9178 map->name, (unsigned long long)sym->st_value);
9179 return -LIBBPF_ERRNO__FORMAT;
9180 }
9181 insn_idx = sym->st_value / BPF_INSN_SZ;
9182
9183 member = find_member_by_offset(st_ops->type, moff * 8);
9184 if (!member) {
9185 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9186 map->name, moff);
9187 return -EINVAL;
9188 }
9189 member_idx = member - btf_members(st_ops->type);
9190 name = btf__name_by_offset(btf, member->name_off);
9191
9192 if (!resolve_func_ptr(btf, member->type, NULL)) {
9193 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9194 map->name, name);
9195 return -EINVAL;
9196 }
9197
9198 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9199 if (!prog) {
9200 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9201 map->name, shdr_idx, name);
9202 return -EINVAL;
9203 }
9204
9205 /* prevent the use of BPF prog with invalid type */
9206 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9207 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9208 map->name, prog->name);
9209 return -EINVAL;
9210 }
9211
9212 /* if we haven't yet processed this BPF program, record proper
9213 * attach_btf_id and member_idx
9214 */
9215 if (!prog->attach_btf_id) {
9216 prog->attach_btf_id = st_ops->type_id;
9217 prog->expected_attach_type = member_idx;
9218 }
9219
9220 /* struct_ops BPF prog can be re-used between multiple
9221 * .struct_ops & .struct_ops.link as long as it's the
9222 * same struct_ops struct definition and the same
9223 * function pointer field
9224 */
9225 if (prog->attach_btf_id != st_ops->type_id ||
9226 prog->expected_attach_type != member_idx) {
9227 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9228 map->name, prog->name, prog->sec_name, prog->type,
9229 prog->attach_btf_id, prog->expected_attach_type, name);
9230 return -EINVAL;
9231 }
9232
9233 st_ops->progs[member_idx] = prog;
9234 }
9235
9236 return 0;
9237 }
9238
9239 #define BTF_TRACE_PREFIX "btf_trace_"
9240 #define BTF_LSM_PREFIX "bpf_lsm_"
9241 #define BTF_ITER_PREFIX "bpf_iter_"
9242 #define BTF_MAX_NAME_SIZE 128
9243
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9244 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9245 const char **prefix, int *kind)
9246 {
9247 switch (attach_type) {
9248 case BPF_TRACE_RAW_TP:
9249 *prefix = BTF_TRACE_PREFIX;
9250 *kind = BTF_KIND_TYPEDEF;
9251 break;
9252 case BPF_LSM_MAC:
9253 case BPF_LSM_CGROUP:
9254 *prefix = BTF_LSM_PREFIX;
9255 *kind = BTF_KIND_FUNC;
9256 break;
9257 case BPF_TRACE_ITER:
9258 *prefix = BTF_ITER_PREFIX;
9259 *kind = BTF_KIND_FUNC;
9260 break;
9261 default:
9262 *prefix = "";
9263 *kind = BTF_KIND_FUNC;
9264 }
9265 }
9266
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)9267 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9268 const char *name, __u32 kind)
9269 {
9270 char btf_type_name[BTF_MAX_NAME_SIZE];
9271 int ret;
9272
9273 ret = snprintf(btf_type_name, sizeof(btf_type_name),
9274 "%s%s", prefix, name);
9275 /* snprintf returns the number of characters written excluding the
9276 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9277 * indicates truncation.
9278 */
9279 if (ret < 0 || ret >= sizeof(btf_type_name))
9280 return -ENAMETOOLONG;
9281 return btf__find_by_name_kind(btf, btf_type_name, kind);
9282 }
9283
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)9284 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9285 enum bpf_attach_type attach_type)
9286 {
9287 const char *prefix;
9288 int kind;
9289
9290 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9291 return find_btf_by_prefix_kind(btf, prefix, name, kind);
9292 }
9293
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)9294 int libbpf_find_vmlinux_btf_id(const char *name,
9295 enum bpf_attach_type attach_type)
9296 {
9297 struct btf *btf;
9298 int err;
9299
9300 btf = btf__load_vmlinux_btf();
9301 err = libbpf_get_error(btf);
9302 if (err) {
9303 pr_warn("vmlinux BTF is not found\n");
9304 return libbpf_err(err);
9305 }
9306
9307 err = find_attach_btf_id(btf, name, attach_type);
9308 if (err <= 0)
9309 pr_warn("%s is not found in vmlinux BTF\n", name);
9310
9311 btf__free(btf);
9312 return libbpf_err(err);
9313 }
9314
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)9315 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9316 {
9317 struct bpf_prog_info info;
9318 __u32 info_len = sizeof(info);
9319 struct btf *btf;
9320 int err;
9321
9322 memset(&info, 0, info_len);
9323 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9324 if (err) {
9325 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9326 attach_prog_fd, err);
9327 return err;
9328 }
9329
9330 err = -EINVAL;
9331 if (!info.btf_id) {
9332 pr_warn("The target program doesn't have BTF\n");
9333 goto out;
9334 }
9335 btf = btf__load_from_kernel_by_id(info.btf_id);
9336 err = libbpf_get_error(btf);
9337 if (err) {
9338 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9339 goto out;
9340 }
9341 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9342 btf__free(btf);
9343 if (err <= 0) {
9344 pr_warn("%s is not found in prog's BTF\n", name);
9345 goto out;
9346 }
9347 out:
9348 return err;
9349 }
9350
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9351 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9352 enum bpf_attach_type attach_type,
9353 int *btf_obj_fd, int *btf_type_id)
9354 {
9355 int ret, i;
9356
9357 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9358 if (ret > 0) {
9359 *btf_obj_fd = 0; /* vmlinux BTF */
9360 *btf_type_id = ret;
9361 return 0;
9362 }
9363 if (ret != -ENOENT)
9364 return ret;
9365
9366 ret = load_module_btfs(obj);
9367 if (ret)
9368 return ret;
9369
9370 for (i = 0; i < obj->btf_module_cnt; i++) {
9371 const struct module_btf *mod = &obj->btf_modules[i];
9372
9373 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9374 if (ret > 0) {
9375 *btf_obj_fd = mod->fd;
9376 *btf_type_id = ret;
9377 return 0;
9378 }
9379 if (ret == -ENOENT)
9380 continue;
9381
9382 return ret;
9383 }
9384
9385 return -ESRCH;
9386 }
9387
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)9388 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9389 int *btf_obj_fd, int *btf_type_id)
9390 {
9391 enum bpf_attach_type attach_type = prog->expected_attach_type;
9392 __u32 attach_prog_fd = prog->attach_prog_fd;
9393 int err = 0;
9394
9395 /* BPF program's BTF ID */
9396 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9397 if (!attach_prog_fd) {
9398 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9399 return -EINVAL;
9400 }
9401 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9402 if (err < 0) {
9403 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9404 prog->name, attach_prog_fd, attach_name, err);
9405 return err;
9406 }
9407 *btf_obj_fd = 0;
9408 *btf_type_id = err;
9409 return 0;
9410 }
9411
9412 /* kernel/module BTF ID */
9413 if (prog->obj->gen_loader) {
9414 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9415 *btf_obj_fd = 0;
9416 *btf_type_id = 1;
9417 } else {
9418 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9419 }
9420 if (err) {
9421 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9422 prog->name, attach_name, err);
9423 return err;
9424 }
9425 return 0;
9426 }
9427
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)9428 int libbpf_attach_type_by_name(const char *name,
9429 enum bpf_attach_type *attach_type)
9430 {
9431 char *type_names;
9432 const struct bpf_sec_def *sec_def;
9433
9434 if (!name)
9435 return libbpf_err(-EINVAL);
9436
9437 sec_def = find_sec_def(name);
9438 if (!sec_def) {
9439 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9440 type_names = libbpf_get_type_names(true);
9441 if (type_names != NULL) {
9442 pr_debug("attachable section(type) names are:%s\n", type_names);
9443 free(type_names);
9444 }
9445
9446 return libbpf_err(-EINVAL);
9447 }
9448
9449 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9450 return libbpf_err(-EINVAL);
9451 if (!(sec_def->cookie & SEC_ATTACHABLE))
9452 return libbpf_err(-EINVAL);
9453
9454 *attach_type = sec_def->expected_attach_type;
9455 return 0;
9456 }
9457
bpf_map__fd(const struct bpf_map * map)9458 int bpf_map__fd(const struct bpf_map *map)
9459 {
9460 return map ? map->fd : libbpf_err(-EINVAL);
9461 }
9462
map_uses_real_name(const struct bpf_map * map)9463 static bool map_uses_real_name(const struct bpf_map *map)
9464 {
9465 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9466 * their user-visible name differs from kernel-visible name. Users see
9467 * such map's corresponding ELF section name as a map name.
9468 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9469 * maps to know which name has to be returned to the user.
9470 */
9471 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9472 return true;
9473 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9474 return true;
9475 return false;
9476 }
9477
bpf_map__name(const struct bpf_map * map)9478 const char *bpf_map__name(const struct bpf_map *map)
9479 {
9480 if (!map)
9481 return NULL;
9482
9483 if (map_uses_real_name(map))
9484 return map->real_name;
9485
9486 return map->name;
9487 }
9488
bpf_map__type(const struct bpf_map * map)9489 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9490 {
9491 return map->def.type;
9492 }
9493
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)9494 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9495 {
9496 if (map->fd >= 0)
9497 return libbpf_err(-EBUSY);
9498 map->def.type = type;
9499 return 0;
9500 }
9501
bpf_map__map_flags(const struct bpf_map * map)9502 __u32 bpf_map__map_flags(const struct bpf_map *map)
9503 {
9504 return map->def.map_flags;
9505 }
9506
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)9507 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9508 {
9509 if (map->fd >= 0)
9510 return libbpf_err(-EBUSY);
9511 map->def.map_flags = flags;
9512 return 0;
9513 }
9514
bpf_map__map_extra(const struct bpf_map * map)9515 __u64 bpf_map__map_extra(const struct bpf_map *map)
9516 {
9517 return map->map_extra;
9518 }
9519
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)9520 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9521 {
9522 if (map->fd >= 0)
9523 return libbpf_err(-EBUSY);
9524 map->map_extra = map_extra;
9525 return 0;
9526 }
9527
bpf_map__numa_node(const struct bpf_map * map)9528 __u32 bpf_map__numa_node(const struct bpf_map *map)
9529 {
9530 return map->numa_node;
9531 }
9532
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)9533 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9534 {
9535 if (map->fd >= 0)
9536 return libbpf_err(-EBUSY);
9537 map->numa_node = numa_node;
9538 return 0;
9539 }
9540
bpf_map__key_size(const struct bpf_map * map)9541 __u32 bpf_map__key_size(const struct bpf_map *map)
9542 {
9543 return map->def.key_size;
9544 }
9545
bpf_map__set_key_size(struct bpf_map * map,__u32 size)9546 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9547 {
9548 if (map->fd >= 0)
9549 return libbpf_err(-EBUSY);
9550 map->def.key_size = size;
9551 return 0;
9552 }
9553
bpf_map__value_size(const struct bpf_map * map)9554 __u32 bpf_map__value_size(const struct bpf_map *map)
9555 {
9556 return map->def.value_size;
9557 }
9558
map_btf_datasec_resize(struct bpf_map * map,__u32 size)9559 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
9560 {
9561 struct btf *btf;
9562 struct btf_type *datasec_type, *var_type;
9563 struct btf_var_secinfo *var;
9564 const struct btf_type *array_type;
9565 const struct btf_array *array;
9566 int vlen, element_sz, new_array_id;
9567 __u32 nr_elements;
9568
9569 /* check btf existence */
9570 btf = bpf_object__btf(map->obj);
9571 if (!btf)
9572 return -ENOENT;
9573
9574 /* verify map is datasec */
9575 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
9576 if (!btf_is_datasec(datasec_type)) {
9577 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
9578 bpf_map__name(map));
9579 return -EINVAL;
9580 }
9581
9582 /* verify datasec has at least one var */
9583 vlen = btf_vlen(datasec_type);
9584 if (vlen == 0) {
9585 pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
9586 bpf_map__name(map));
9587 return -EINVAL;
9588 }
9589
9590 /* verify last var in the datasec is an array */
9591 var = &btf_var_secinfos(datasec_type)[vlen - 1];
9592 var_type = btf_type_by_id(btf, var->type);
9593 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
9594 if (!btf_is_array(array_type)) {
9595 pr_warn("map '%s': cannot be resized, last var must be an array\n",
9596 bpf_map__name(map));
9597 return -EINVAL;
9598 }
9599
9600 /* verify request size aligns with array */
9601 array = btf_array(array_type);
9602 element_sz = btf__resolve_size(btf, array->type);
9603 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
9604 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
9605 bpf_map__name(map), element_sz, size);
9606 return -EINVAL;
9607 }
9608
9609 /* create a new array based on the existing array, but with new length */
9610 nr_elements = (size - var->offset) / element_sz;
9611 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
9612 if (new_array_id < 0)
9613 return new_array_id;
9614
9615 /* adding a new btf type invalidates existing pointers to btf objects,
9616 * so refresh pointers before proceeding
9617 */
9618 datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
9619 var = &btf_var_secinfos(datasec_type)[vlen - 1];
9620 var_type = btf_type_by_id(btf, var->type);
9621
9622 /* finally update btf info */
9623 datasec_type->size = size;
9624 var->size = size - var->offset;
9625 var_type->type = new_array_id;
9626
9627 return 0;
9628 }
9629
bpf_map__set_value_size(struct bpf_map * map,__u32 size)9630 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9631 {
9632 if (map->fd >= 0)
9633 return libbpf_err(-EBUSY);
9634
9635 if (map->mmaped) {
9636 int err;
9637 size_t mmap_old_sz, mmap_new_sz;
9638
9639 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
9640 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
9641 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
9642 if (err) {
9643 pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
9644 bpf_map__name(map), err);
9645 return err;
9646 }
9647 err = map_btf_datasec_resize(map, size);
9648 if (err && err != -ENOENT) {
9649 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
9650 bpf_map__name(map), err);
9651 map->btf_value_type_id = 0;
9652 map->btf_key_type_id = 0;
9653 }
9654 }
9655
9656 map->def.value_size = size;
9657 return 0;
9658 }
9659
bpf_map__btf_key_type_id(const struct bpf_map * map)9660 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9661 {
9662 return map ? map->btf_key_type_id : 0;
9663 }
9664
bpf_map__btf_value_type_id(const struct bpf_map * map)9665 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9666 {
9667 return map ? map->btf_value_type_id : 0;
9668 }
9669
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)9670 int bpf_map__set_initial_value(struct bpf_map *map,
9671 const void *data, size_t size)
9672 {
9673 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9674 size != map->def.value_size || map->fd >= 0)
9675 return libbpf_err(-EINVAL);
9676
9677 memcpy(map->mmaped, data, size);
9678 return 0;
9679 }
9680
bpf_map__initial_value(struct bpf_map * map,size_t * psize)9681 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9682 {
9683 if (!map->mmaped)
9684 return NULL;
9685 *psize = map->def.value_size;
9686 return map->mmaped;
9687 }
9688
bpf_map__is_internal(const struct bpf_map * map)9689 bool bpf_map__is_internal(const struct bpf_map *map)
9690 {
9691 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9692 }
9693
bpf_map__ifindex(const struct bpf_map * map)9694 __u32 bpf_map__ifindex(const struct bpf_map *map)
9695 {
9696 return map->map_ifindex;
9697 }
9698
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)9699 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9700 {
9701 if (map->fd >= 0)
9702 return libbpf_err(-EBUSY);
9703 map->map_ifindex = ifindex;
9704 return 0;
9705 }
9706
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)9707 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9708 {
9709 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9710 pr_warn("error: unsupported map type\n");
9711 return libbpf_err(-EINVAL);
9712 }
9713 if (map->inner_map_fd != -1) {
9714 pr_warn("error: inner_map_fd already specified\n");
9715 return libbpf_err(-EINVAL);
9716 }
9717 if (map->inner_map) {
9718 bpf_map__destroy(map->inner_map);
9719 zfree(&map->inner_map);
9720 }
9721 map->inner_map_fd = fd;
9722 return 0;
9723 }
9724
9725 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)9726 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9727 {
9728 ssize_t idx;
9729 struct bpf_map *s, *e;
9730
9731 if (!obj || !obj->maps)
9732 return errno = EINVAL, NULL;
9733
9734 s = obj->maps;
9735 e = obj->maps + obj->nr_maps;
9736
9737 if ((m < s) || (m >= e)) {
9738 pr_warn("error in %s: map handler doesn't belong to object\n",
9739 __func__);
9740 return errno = EINVAL, NULL;
9741 }
9742
9743 idx = (m - obj->maps) + i;
9744 if (idx >= obj->nr_maps || idx < 0)
9745 return NULL;
9746 return &obj->maps[idx];
9747 }
9748
9749 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)9750 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9751 {
9752 if (prev == NULL)
9753 return obj->maps;
9754
9755 return __bpf_map__iter(prev, obj, 1);
9756 }
9757
9758 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)9759 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9760 {
9761 if (next == NULL) {
9762 if (!obj->nr_maps)
9763 return NULL;
9764 return obj->maps + obj->nr_maps - 1;
9765 }
9766
9767 return __bpf_map__iter(next, obj, -1);
9768 }
9769
9770 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)9771 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9772 {
9773 struct bpf_map *pos;
9774
9775 bpf_object__for_each_map(pos, obj) {
9776 /* if it's a special internal map name (which always starts
9777 * with dot) then check if that special name matches the
9778 * real map name (ELF section name)
9779 */
9780 if (name[0] == '.') {
9781 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9782 return pos;
9783 continue;
9784 }
9785 /* otherwise map name has to be an exact match */
9786 if (map_uses_real_name(pos)) {
9787 if (strcmp(pos->real_name, name) == 0)
9788 return pos;
9789 continue;
9790 }
9791 if (strcmp(pos->name, name) == 0)
9792 return pos;
9793 }
9794 return errno = ENOENT, NULL;
9795 }
9796
9797 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)9798 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9799 {
9800 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9801 }
9802
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)9803 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9804 size_t value_sz, bool check_value_sz)
9805 {
9806 if (map->fd <= 0)
9807 return -ENOENT;
9808
9809 if (map->def.key_size != key_sz) {
9810 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9811 map->name, key_sz, map->def.key_size);
9812 return -EINVAL;
9813 }
9814
9815 if (!check_value_sz)
9816 return 0;
9817
9818 switch (map->def.type) {
9819 case BPF_MAP_TYPE_PERCPU_ARRAY:
9820 case BPF_MAP_TYPE_PERCPU_HASH:
9821 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9822 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9823 int num_cpu = libbpf_num_possible_cpus();
9824 size_t elem_sz = roundup(map->def.value_size, 8);
9825
9826 if (value_sz != num_cpu * elem_sz) {
9827 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9828 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9829 return -EINVAL;
9830 }
9831 break;
9832 }
9833 default:
9834 if (map->def.value_size != value_sz) {
9835 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9836 map->name, value_sz, map->def.value_size);
9837 return -EINVAL;
9838 }
9839 break;
9840 }
9841 return 0;
9842 }
9843
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9844 int bpf_map__lookup_elem(const struct bpf_map *map,
9845 const void *key, size_t key_sz,
9846 void *value, size_t value_sz, __u64 flags)
9847 {
9848 int err;
9849
9850 err = validate_map_op(map, key_sz, value_sz, true);
9851 if (err)
9852 return libbpf_err(err);
9853
9854 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9855 }
9856
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)9857 int bpf_map__update_elem(const struct bpf_map *map,
9858 const void *key, size_t key_sz,
9859 const void *value, size_t value_sz, __u64 flags)
9860 {
9861 int err;
9862
9863 err = validate_map_op(map, key_sz, value_sz, true);
9864 if (err)
9865 return libbpf_err(err);
9866
9867 return bpf_map_update_elem(map->fd, key, value, flags);
9868 }
9869
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)9870 int bpf_map__delete_elem(const struct bpf_map *map,
9871 const void *key, size_t key_sz, __u64 flags)
9872 {
9873 int err;
9874
9875 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9876 if (err)
9877 return libbpf_err(err);
9878
9879 return bpf_map_delete_elem_flags(map->fd, key, flags);
9880 }
9881
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9882 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9883 const void *key, size_t key_sz,
9884 void *value, size_t value_sz, __u64 flags)
9885 {
9886 int err;
9887
9888 err = validate_map_op(map, key_sz, value_sz, true);
9889 if (err)
9890 return libbpf_err(err);
9891
9892 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9893 }
9894
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)9895 int bpf_map__get_next_key(const struct bpf_map *map,
9896 const void *cur_key, void *next_key, size_t key_sz)
9897 {
9898 int err;
9899
9900 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9901 if (err)
9902 return libbpf_err(err);
9903
9904 return bpf_map_get_next_key(map->fd, cur_key, next_key);
9905 }
9906
libbpf_get_error(const void * ptr)9907 long libbpf_get_error(const void *ptr)
9908 {
9909 if (!IS_ERR_OR_NULL(ptr))
9910 return 0;
9911
9912 if (IS_ERR(ptr))
9913 errno = -PTR_ERR(ptr);
9914
9915 /* If ptr == NULL, then errno should be already set by the failing
9916 * API, because libbpf never returns NULL on success and it now always
9917 * sets errno on error. So no extra errno handling for ptr == NULL
9918 * case.
9919 */
9920 return -errno;
9921 }
9922
9923 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)9924 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9925 {
9926 int ret;
9927
9928 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9929 return libbpf_err_errno(ret);
9930 }
9931
9932 /* Release "ownership" of underlying BPF resource (typically, BPF program
9933 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9934 * link, when destructed through bpf_link__destroy() call won't attempt to
9935 * detach/unregisted that BPF resource. This is useful in situations where,
9936 * say, attached BPF program has to outlive userspace program that attached it
9937 * in the system. Depending on type of BPF program, though, there might be
9938 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9939 * exit of userspace program doesn't trigger automatic detachment and clean up
9940 * inside the kernel.
9941 */
bpf_link__disconnect(struct bpf_link * link)9942 void bpf_link__disconnect(struct bpf_link *link)
9943 {
9944 link->disconnected = true;
9945 }
9946
bpf_link__destroy(struct bpf_link * link)9947 int bpf_link__destroy(struct bpf_link *link)
9948 {
9949 int err = 0;
9950
9951 if (IS_ERR_OR_NULL(link))
9952 return 0;
9953
9954 if (!link->disconnected && link->detach)
9955 err = link->detach(link);
9956 if (link->pin_path)
9957 free(link->pin_path);
9958 if (link->dealloc)
9959 link->dealloc(link);
9960 else
9961 free(link);
9962
9963 return libbpf_err(err);
9964 }
9965
bpf_link__fd(const struct bpf_link * link)9966 int bpf_link__fd(const struct bpf_link *link)
9967 {
9968 return link->fd;
9969 }
9970
bpf_link__pin_path(const struct bpf_link * link)9971 const char *bpf_link__pin_path(const struct bpf_link *link)
9972 {
9973 return link->pin_path;
9974 }
9975
bpf_link__detach_fd(struct bpf_link * link)9976 static int bpf_link__detach_fd(struct bpf_link *link)
9977 {
9978 return libbpf_err_errno(close(link->fd));
9979 }
9980
bpf_link__open(const char * path)9981 struct bpf_link *bpf_link__open(const char *path)
9982 {
9983 struct bpf_link *link;
9984 int fd;
9985
9986 fd = bpf_obj_get(path);
9987 if (fd < 0) {
9988 fd = -errno;
9989 pr_warn("failed to open link at %s: %d\n", path, fd);
9990 return libbpf_err_ptr(fd);
9991 }
9992
9993 link = calloc(1, sizeof(*link));
9994 if (!link) {
9995 close(fd);
9996 return libbpf_err_ptr(-ENOMEM);
9997 }
9998 link->detach = &bpf_link__detach_fd;
9999 link->fd = fd;
10000
10001 link->pin_path = strdup(path);
10002 if (!link->pin_path) {
10003 bpf_link__destroy(link);
10004 return libbpf_err_ptr(-ENOMEM);
10005 }
10006
10007 return link;
10008 }
10009
bpf_link__detach(struct bpf_link * link)10010 int bpf_link__detach(struct bpf_link *link)
10011 {
10012 return bpf_link_detach(link->fd) ? -errno : 0;
10013 }
10014
bpf_link__pin(struct bpf_link * link,const char * path)10015 int bpf_link__pin(struct bpf_link *link, const char *path)
10016 {
10017 int err;
10018
10019 if (link->pin_path)
10020 return libbpf_err(-EBUSY);
10021 err = make_parent_dir(path);
10022 if (err)
10023 return libbpf_err(err);
10024 err = check_path(path);
10025 if (err)
10026 return libbpf_err(err);
10027
10028 link->pin_path = strdup(path);
10029 if (!link->pin_path)
10030 return libbpf_err(-ENOMEM);
10031
10032 if (bpf_obj_pin(link->fd, link->pin_path)) {
10033 err = -errno;
10034 zfree(&link->pin_path);
10035 return libbpf_err(err);
10036 }
10037
10038 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10039 return 0;
10040 }
10041
bpf_link__unpin(struct bpf_link * link)10042 int bpf_link__unpin(struct bpf_link *link)
10043 {
10044 int err;
10045
10046 if (!link->pin_path)
10047 return libbpf_err(-EINVAL);
10048
10049 err = unlink(link->pin_path);
10050 if (err != 0)
10051 return -errno;
10052
10053 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10054 zfree(&link->pin_path);
10055 return 0;
10056 }
10057
10058 struct bpf_link_perf {
10059 struct bpf_link link;
10060 int perf_event_fd;
10061 /* legacy kprobe support: keep track of probe identifier and type */
10062 char *legacy_probe_name;
10063 bool legacy_is_kprobe;
10064 bool legacy_is_retprobe;
10065 };
10066
10067 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10068 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10069
bpf_link_perf_detach(struct bpf_link * link)10070 static int bpf_link_perf_detach(struct bpf_link *link)
10071 {
10072 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10073 int err = 0;
10074
10075 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10076 err = -errno;
10077
10078 if (perf_link->perf_event_fd != link->fd)
10079 close(perf_link->perf_event_fd);
10080 close(link->fd);
10081
10082 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10083 if (perf_link->legacy_probe_name) {
10084 if (perf_link->legacy_is_kprobe) {
10085 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10086 perf_link->legacy_is_retprobe);
10087 } else {
10088 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10089 perf_link->legacy_is_retprobe);
10090 }
10091 }
10092
10093 return err;
10094 }
10095
bpf_link_perf_dealloc(struct bpf_link * link)10096 static void bpf_link_perf_dealloc(struct bpf_link *link)
10097 {
10098 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10099
10100 free(perf_link->legacy_probe_name);
10101 free(perf_link);
10102 }
10103
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10104 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10105 const struct bpf_perf_event_opts *opts)
10106 {
10107 char errmsg[STRERR_BUFSIZE];
10108 struct bpf_link_perf *link;
10109 int prog_fd, link_fd = -1, err;
10110 bool force_ioctl_attach;
10111
10112 if (!OPTS_VALID(opts, bpf_perf_event_opts))
10113 return libbpf_err_ptr(-EINVAL);
10114
10115 if (pfd < 0) {
10116 pr_warn("prog '%s': invalid perf event FD %d\n",
10117 prog->name, pfd);
10118 return libbpf_err_ptr(-EINVAL);
10119 }
10120 prog_fd = bpf_program__fd(prog);
10121 if (prog_fd < 0) {
10122 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10123 prog->name);
10124 return libbpf_err_ptr(-EINVAL);
10125 }
10126
10127 link = calloc(1, sizeof(*link));
10128 if (!link)
10129 return libbpf_err_ptr(-ENOMEM);
10130 link->link.detach = &bpf_link_perf_detach;
10131 link->link.dealloc = &bpf_link_perf_dealloc;
10132 link->perf_event_fd = pfd;
10133
10134 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10135 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10136 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10137 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10138
10139 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10140 if (link_fd < 0) {
10141 err = -errno;
10142 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10143 prog->name, pfd,
10144 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10145 goto err_out;
10146 }
10147 link->link.fd = link_fd;
10148 } else {
10149 if (OPTS_GET(opts, bpf_cookie, 0)) {
10150 pr_warn("prog '%s': user context value is not supported\n", prog->name);
10151 err = -EOPNOTSUPP;
10152 goto err_out;
10153 }
10154
10155 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10156 err = -errno;
10157 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10158 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10159 if (err == -EPROTO)
10160 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10161 prog->name, pfd);
10162 goto err_out;
10163 }
10164 link->link.fd = pfd;
10165 }
10166 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10167 err = -errno;
10168 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10169 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10170 goto err_out;
10171 }
10172
10173 return &link->link;
10174 err_out:
10175 if (link_fd >= 0)
10176 close(link_fd);
10177 free(link);
10178 return libbpf_err_ptr(err);
10179 }
10180
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10181 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10182 {
10183 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10184 }
10185
10186 /*
10187 * this function is expected to parse integer in the range of [0, 2^31-1] from
10188 * given file using scanf format string fmt. If actual parsed value is
10189 * negative, the result might be indistinguishable from error
10190 */
parse_uint_from_file(const char * file,const char * fmt)10191 static int parse_uint_from_file(const char *file, const char *fmt)
10192 {
10193 char buf[STRERR_BUFSIZE];
10194 int err, ret;
10195 FILE *f;
10196
10197 f = fopen(file, "re");
10198 if (!f) {
10199 err = -errno;
10200 pr_debug("failed to open '%s': %s\n", file,
10201 libbpf_strerror_r(err, buf, sizeof(buf)));
10202 return err;
10203 }
10204 err = fscanf(f, fmt, &ret);
10205 if (err != 1) {
10206 err = err == EOF ? -EIO : -errno;
10207 pr_debug("failed to parse '%s': %s\n", file,
10208 libbpf_strerror_r(err, buf, sizeof(buf)));
10209 fclose(f);
10210 return err;
10211 }
10212 fclose(f);
10213 return ret;
10214 }
10215
determine_kprobe_perf_type(void)10216 static int determine_kprobe_perf_type(void)
10217 {
10218 const char *file = "/sys/bus/event_source/devices/kprobe/type";
10219
10220 return parse_uint_from_file(file, "%d\n");
10221 }
10222
determine_uprobe_perf_type(void)10223 static int determine_uprobe_perf_type(void)
10224 {
10225 const char *file = "/sys/bus/event_source/devices/uprobe/type";
10226
10227 return parse_uint_from_file(file, "%d\n");
10228 }
10229
determine_kprobe_retprobe_bit(void)10230 static int determine_kprobe_retprobe_bit(void)
10231 {
10232 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10233
10234 return parse_uint_from_file(file, "config:%d\n");
10235 }
10236
determine_uprobe_retprobe_bit(void)10237 static int determine_uprobe_retprobe_bit(void)
10238 {
10239 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10240
10241 return parse_uint_from_file(file, "config:%d\n");
10242 }
10243
10244 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10245 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10246
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)10247 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10248 uint64_t offset, int pid, size_t ref_ctr_off)
10249 {
10250 const size_t attr_sz = sizeof(struct perf_event_attr);
10251 struct perf_event_attr attr;
10252 char errmsg[STRERR_BUFSIZE];
10253 int type, pfd;
10254
10255 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10256 return -EINVAL;
10257
10258 memset(&attr, 0, attr_sz);
10259
10260 type = uprobe ? determine_uprobe_perf_type()
10261 : determine_kprobe_perf_type();
10262 if (type < 0) {
10263 pr_warn("failed to determine %s perf type: %s\n",
10264 uprobe ? "uprobe" : "kprobe",
10265 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10266 return type;
10267 }
10268 if (retprobe) {
10269 int bit = uprobe ? determine_uprobe_retprobe_bit()
10270 : determine_kprobe_retprobe_bit();
10271
10272 if (bit < 0) {
10273 pr_warn("failed to determine %s retprobe bit: %s\n",
10274 uprobe ? "uprobe" : "kprobe",
10275 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10276 return bit;
10277 }
10278 attr.config |= 1 << bit;
10279 }
10280 attr.size = attr_sz;
10281 attr.type = type;
10282 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10283 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10284 attr.config2 = offset; /* kprobe_addr or probe_offset */
10285
10286 /* pid filter is meaningful only for uprobes */
10287 pfd = syscall(__NR_perf_event_open, &attr,
10288 pid < 0 ? -1 : pid /* pid */,
10289 pid == -1 ? 0 : -1 /* cpu */,
10290 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10291 return pfd >= 0 ? pfd : -errno;
10292 }
10293
append_to_file(const char * file,const char * fmt,...)10294 static int append_to_file(const char *file, const char *fmt, ...)
10295 {
10296 int fd, n, err = 0;
10297 va_list ap;
10298 char buf[1024];
10299
10300 va_start(ap, fmt);
10301 n = vsnprintf(buf, sizeof(buf), fmt, ap);
10302 va_end(ap);
10303
10304 if (n < 0 || n >= sizeof(buf))
10305 return -EINVAL;
10306
10307 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10308 if (fd < 0)
10309 return -errno;
10310
10311 if (write(fd, buf, n) < 0)
10312 err = -errno;
10313
10314 close(fd);
10315 return err;
10316 }
10317
10318 #define DEBUGFS "/sys/kernel/debug/tracing"
10319 #define TRACEFS "/sys/kernel/tracing"
10320
use_debugfs(void)10321 static bool use_debugfs(void)
10322 {
10323 static int has_debugfs = -1;
10324
10325 if (has_debugfs < 0)
10326 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10327
10328 return has_debugfs == 1;
10329 }
10330
tracefs_path(void)10331 static const char *tracefs_path(void)
10332 {
10333 return use_debugfs() ? DEBUGFS : TRACEFS;
10334 }
10335
tracefs_kprobe_events(void)10336 static const char *tracefs_kprobe_events(void)
10337 {
10338 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10339 }
10340
tracefs_uprobe_events(void)10341 static const char *tracefs_uprobe_events(void)
10342 {
10343 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10344 }
10345
tracefs_available_filter_functions(void)10346 static const char *tracefs_available_filter_functions(void)
10347 {
10348 return use_debugfs() ? DEBUGFS"/available_filter_functions"
10349 : TRACEFS"/available_filter_functions";
10350 }
10351
tracefs_available_filter_functions_addrs(void)10352 static const char *tracefs_available_filter_functions_addrs(void)
10353 {
10354 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10355 : TRACEFS"/available_filter_functions_addrs";
10356 }
10357
gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)10358 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10359 const char *kfunc_name, size_t offset)
10360 {
10361 static int index = 0;
10362 int i;
10363
10364 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10365 __sync_fetch_and_add(&index, 1));
10366
10367 /* sanitize binary_path in the probe name */
10368 for (i = 0; buf[i]; i++) {
10369 if (!isalnum(buf[i]))
10370 buf[i] = '_';
10371 }
10372 }
10373
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)10374 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10375 const char *kfunc_name, size_t offset)
10376 {
10377 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10378 retprobe ? 'r' : 'p',
10379 retprobe ? "kretprobes" : "kprobes",
10380 probe_name, kfunc_name, offset);
10381 }
10382
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)10383 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10384 {
10385 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10386 retprobe ? "kretprobes" : "kprobes", probe_name);
10387 }
10388
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)10389 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10390 {
10391 char file[256];
10392
10393 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10394 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10395
10396 return parse_uint_from_file(file, "%d\n");
10397 }
10398
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)10399 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10400 const char *kfunc_name, size_t offset, int pid)
10401 {
10402 const size_t attr_sz = sizeof(struct perf_event_attr);
10403 struct perf_event_attr attr;
10404 char errmsg[STRERR_BUFSIZE];
10405 int type, pfd, err;
10406
10407 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10408 if (err < 0) {
10409 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10410 kfunc_name, offset,
10411 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10412 return err;
10413 }
10414 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10415 if (type < 0) {
10416 err = type;
10417 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10418 kfunc_name, offset,
10419 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10420 goto err_clean_legacy;
10421 }
10422
10423 memset(&attr, 0, attr_sz);
10424 attr.size = attr_sz;
10425 attr.config = type;
10426 attr.type = PERF_TYPE_TRACEPOINT;
10427
10428 pfd = syscall(__NR_perf_event_open, &attr,
10429 pid < 0 ? -1 : pid, /* pid */
10430 pid == -1 ? 0 : -1, /* cpu */
10431 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10432 if (pfd < 0) {
10433 err = -errno;
10434 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10435 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10436 goto err_clean_legacy;
10437 }
10438 return pfd;
10439
10440 err_clean_legacy:
10441 /* Clear the newly added legacy kprobe_event */
10442 remove_kprobe_event_legacy(probe_name, retprobe);
10443 return err;
10444 }
10445
arch_specific_syscall_pfx(void)10446 static const char *arch_specific_syscall_pfx(void)
10447 {
10448 #if defined(__x86_64__)
10449 return "x64";
10450 #elif defined(__i386__)
10451 return "ia32";
10452 #elif defined(__s390x__)
10453 return "s390x";
10454 #elif defined(__s390__)
10455 return "s390";
10456 #elif defined(__arm__)
10457 return "arm";
10458 #elif defined(__aarch64__)
10459 return "arm64";
10460 #elif defined(__mips__)
10461 return "mips";
10462 #elif defined(__riscv)
10463 return "riscv";
10464 #elif defined(__powerpc__)
10465 return "powerpc";
10466 #elif defined(__powerpc64__)
10467 return "powerpc64";
10468 #else
10469 return NULL;
10470 #endif
10471 }
10472
probe_kern_syscall_wrapper(void)10473 static int probe_kern_syscall_wrapper(void)
10474 {
10475 char syscall_name[64];
10476 const char *ksys_pfx;
10477
10478 ksys_pfx = arch_specific_syscall_pfx();
10479 if (!ksys_pfx)
10480 return 0;
10481
10482 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10483
10484 if (determine_kprobe_perf_type() >= 0) {
10485 int pfd;
10486
10487 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10488 if (pfd >= 0)
10489 close(pfd);
10490
10491 return pfd >= 0 ? 1 : 0;
10492 } else { /* legacy mode */
10493 char probe_name[128];
10494
10495 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10496 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10497 return 0;
10498
10499 (void)remove_kprobe_event_legacy(probe_name, false);
10500 return 1;
10501 }
10502 }
10503
10504 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)10505 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10506 const char *func_name,
10507 const struct bpf_kprobe_opts *opts)
10508 {
10509 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10510 enum probe_attach_mode attach_mode;
10511 char errmsg[STRERR_BUFSIZE];
10512 char *legacy_probe = NULL;
10513 struct bpf_link *link;
10514 size_t offset;
10515 bool retprobe, legacy;
10516 int pfd, err;
10517
10518 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10519 return libbpf_err_ptr(-EINVAL);
10520
10521 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10522 retprobe = OPTS_GET(opts, retprobe, false);
10523 offset = OPTS_GET(opts, offset, 0);
10524 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10525
10526 legacy = determine_kprobe_perf_type() < 0;
10527 switch (attach_mode) {
10528 case PROBE_ATTACH_MODE_LEGACY:
10529 legacy = true;
10530 pe_opts.force_ioctl_attach = true;
10531 break;
10532 case PROBE_ATTACH_MODE_PERF:
10533 if (legacy)
10534 return libbpf_err_ptr(-ENOTSUP);
10535 pe_opts.force_ioctl_attach = true;
10536 break;
10537 case PROBE_ATTACH_MODE_LINK:
10538 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10539 return libbpf_err_ptr(-ENOTSUP);
10540 break;
10541 case PROBE_ATTACH_MODE_DEFAULT:
10542 break;
10543 default:
10544 return libbpf_err_ptr(-EINVAL);
10545 }
10546
10547 if (!legacy) {
10548 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10549 func_name, offset,
10550 -1 /* pid */, 0 /* ref_ctr_off */);
10551 } else {
10552 char probe_name[256];
10553
10554 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10555 func_name, offset);
10556
10557 legacy_probe = strdup(probe_name);
10558 if (!legacy_probe)
10559 return libbpf_err_ptr(-ENOMEM);
10560
10561 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10562 offset, -1 /* pid */);
10563 }
10564 if (pfd < 0) {
10565 err = -errno;
10566 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10567 prog->name, retprobe ? "kretprobe" : "kprobe",
10568 func_name, offset,
10569 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10570 goto err_out;
10571 }
10572 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10573 err = libbpf_get_error(link);
10574 if (err) {
10575 close(pfd);
10576 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10577 prog->name, retprobe ? "kretprobe" : "kprobe",
10578 func_name, offset,
10579 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10580 goto err_clean_legacy;
10581 }
10582 if (legacy) {
10583 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10584
10585 perf_link->legacy_probe_name = legacy_probe;
10586 perf_link->legacy_is_kprobe = true;
10587 perf_link->legacy_is_retprobe = retprobe;
10588 }
10589
10590 return link;
10591
10592 err_clean_legacy:
10593 if (legacy)
10594 remove_kprobe_event_legacy(legacy_probe, retprobe);
10595 err_out:
10596 free(legacy_probe);
10597 return libbpf_err_ptr(err);
10598 }
10599
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)10600 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10601 bool retprobe,
10602 const char *func_name)
10603 {
10604 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10605 .retprobe = retprobe,
10606 );
10607
10608 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10609 }
10610
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)10611 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10612 const char *syscall_name,
10613 const struct bpf_ksyscall_opts *opts)
10614 {
10615 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10616 char func_name[128];
10617
10618 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10619 return libbpf_err_ptr(-EINVAL);
10620
10621 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10622 /* arch_specific_syscall_pfx() should never return NULL here
10623 * because it is guarded by kernel_supports(). However, since
10624 * compiler does not know that we have an explicit conditional
10625 * as well.
10626 */
10627 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10628 arch_specific_syscall_pfx() ? : "", syscall_name);
10629 } else {
10630 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10631 }
10632
10633 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10634 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10635
10636 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10637 }
10638
10639 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)10640 bool glob_match(const char *str, const char *pat)
10641 {
10642 while (*str && *pat && *pat != '*') {
10643 if (*pat == '?') { /* Matches any single character */
10644 str++;
10645 pat++;
10646 continue;
10647 }
10648 if (*str != *pat)
10649 return false;
10650 str++;
10651 pat++;
10652 }
10653 /* Check wild card */
10654 if (*pat == '*') {
10655 while (*pat == '*')
10656 pat++;
10657 if (!*pat) /* Tail wild card matches all */
10658 return true;
10659 while (*str)
10660 if (glob_match(str++, pat))
10661 return true;
10662 }
10663 return !*str && !*pat;
10664 }
10665
10666 struct kprobe_multi_resolve {
10667 const char *pattern;
10668 unsigned long *addrs;
10669 size_t cap;
10670 size_t cnt;
10671 };
10672
10673 struct avail_kallsyms_data {
10674 char **syms;
10675 size_t cnt;
10676 struct kprobe_multi_resolve *res;
10677 };
10678
avail_func_cmp(const void * a,const void * b)10679 static int avail_func_cmp(const void *a, const void *b)
10680 {
10681 return strcmp(*(const char **)a, *(const char **)b);
10682 }
10683
avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)10684 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
10685 const char *sym_name, void *ctx)
10686 {
10687 struct avail_kallsyms_data *data = ctx;
10688 struct kprobe_multi_resolve *res = data->res;
10689 int err;
10690
10691 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
10692 return 0;
10693
10694 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
10695 if (err)
10696 return err;
10697
10698 res->addrs[res->cnt++] = (unsigned long)sym_addr;
10699 return 0;
10700 }
10701
libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)10702 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
10703 {
10704 const char *available_functions_file = tracefs_available_filter_functions();
10705 struct avail_kallsyms_data data;
10706 char sym_name[500];
10707 FILE *f;
10708 int err = 0, ret, i;
10709 char **syms = NULL;
10710 size_t cap = 0, cnt = 0;
10711
10712 f = fopen(available_functions_file, "re");
10713 if (!f) {
10714 err = -errno;
10715 pr_warn("failed to open %s: %d\n", available_functions_file, err);
10716 return err;
10717 }
10718
10719 while (true) {
10720 char *name;
10721
10722 ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
10723 if (ret == EOF && feof(f))
10724 break;
10725
10726 if (ret != 1) {
10727 pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
10728 err = -EINVAL;
10729 goto cleanup;
10730 }
10731
10732 if (!glob_match(sym_name, res->pattern))
10733 continue;
10734
10735 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
10736 if (err)
10737 goto cleanup;
10738
10739 name = strdup(sym_name);
10740 if (!name) {
10741 err = -errno;
10742 goto cleanup;
10743 }
10744
10745 syms[cnt++] = name;
10746 }
10747
10748 /* no entries found, bail out */
10749 if (cnt == 0) {
10750 err = -ENOENT;
10751 goto cleanup;
10752 }
10753
10754 /* sort available functions */
10755 qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
10756
10757 data.syms = syms;
10758 data.res = res;
10759 data.cnt = cnt;
10760 libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
10761
10762 if (res->cnt == 0)
10763 err = -ENOENT;
10764
10765 cleanup:
10766 for (i = 0; i < cnt; i++)
10767 free((char *)syms[i]);
10768 free(syms);
10769
10770 fclose(f);
10771 return err;
10772 }
10773
has_available_filter_functions_addrs(void)10774 static bool has_available_filter_functions_addrs(void)
10775 {
10776 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
10777 }
10778
libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)10779 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
10780 {
10781 const char *available_path = tracefs_available_filter_functions_addrs();
10782 char sym_name[500];
10783 FILE *f;
10784 int ret, err = 0;
10785 unsigned long long sym_addr;
10786
10787 f = fopen(available_path, "re");
10788 if (!f) {
10789 err = -errno;
10790 pr_warn("failed to open %s: %d\n", available_path, err);
10791 return err;
10792 }
10793
10794 while (true) {
10795 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
10796 if (ret == EOF && feof(f))
10797 break;
10798
10799 if (ret != 2) {
10800 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
10801 ret);
10802 err = -EINVAL;
10803 goto cleanup;
10804 }
10805
10806 if (!glob_match(sym_name, res->pattern))
10807 continue;
10808
10809 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
10810 sizeof(*res->addrs), res->cnt + 1);
10811 if (err)
10812 goto cleanup;
10813
10814 res->addrs[res->cnt++] = (unsigned long)sym_addr;
10815 }
10816
10817 if (res->cnt == 0)
10818 err = -ENOENT;
10819
10820 cleanup:
10821 fclose(f);
10822 return err;
10823 }
10824
10825 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)10826 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10827 const char *pattern,
10828 const struct bpf_kprobe_multi_opts *opts)
10829 {
10830 LIBBPF_OPTS(bpf_link_create_opts, lopts);
10831 struct kprobe_multi_resolve res = {
10832 .pattern = pattern,
10833 };
10834 struct bpf_link *link = NULL;
10835 char errmsg[STRERR_BUFSIZE];
10836 const unsigned long *addrs;
10837 int err, link_fd, prog_fd;
10838 const __u64 *cookies;
10839 const char **syms;
10840 bool retprobe;
10841 size_t cnt;
10842
10843 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10844 return libbpf_err_ptr(-EINVAL);
10845
10846 syms = OPTS_GET(opts, syms, false);
10847 addrs = OPTS_GET(opts, addrs, false);
10848 cnt = OPTS_GET(opts, cnt, false);
10849 cookies = OPTS_GET(opts, cookies, false);
10850
10851 if (!pattern && !addrs && !syms)
10852 return libbpf_err_ptr(-EINVAL);
10853 if (pattern && (addrs || syms || cookies || cnt))
10854 return libbpf_err_ptr(-EINVAL);
10855 if (!pattern && !cnt)
10856 return libbpf_err_ptr(-EINVAL);
10857 if (addrs && syms)
10858 return libbpf_err_ptr(-EINVAL);
10859
10860 if (pattern) {
10861 if (has_available_filter_functions_addrs())
10862 err = libbpf_available_kprobes_parse(&res);
10863 else
10864 err = libbpf_available_kallsyms_parse(&res);
10865 if (err)
10866 goto error;
10867 addrs = res.addrs;
10868 cnt = res.cnt;
10869 }
10870
10871 retprobe = OPTS_GET(opts, retprobe, false);
10872
10873 lopts.kprobe_multi.syms = syms;
10874 lopts.kprobe_multi.addrs = addrs;
10875 lopts.kprobe_multi.cookies = cookies;
10876 lopts.kprobe_multi.cnt = cnt;
10877 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10878
10879 link = calloc(1, sizeof(*link));
10880 if (!link) {
10881 err = -ENOMEM;
10882 goto error;
10883 }
10884 link->detach = &bpf_link__detach_fd;
10885
10886 prog_fd = bpf_program__fd(prog);
10887 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10888 if (link_fd < 0) {
10889 err = -errno;
10890 pr_warn("prog '%s': failed to attach: %s\n",
10891 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10892 goto error;
10893 }
10894 link->fd = link_fd;
10895 free(res.addrs);
10896 return link;
10897
10898 error:
10899 free(link);
10900 free(res.addrs);
10901 return libbpf_err_ptr(err);
10902 }
10903
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10904 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10905 {
10906 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10907 unsigned long offset = 0;
10908 const char *func_name;
10909 char *func;
10910 int n;
10911
10912 *link = NULL;
10913
10914 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10915 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10916 return 0;
10917
10918 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10919 if (opts.retprobe)
10920 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10921 else
10922 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10923
10924 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10925 if (n < 1) {
10926 pr_warn("kprobe name is invalid: %s\n", func_name);
10927 return -EINVAL;
10928 }
10929 if (opts.retprobe && offset != 0) {
10930 free(func);
10931 pr_warn("kretprobes do not support offset specification\n");
10932 return -EINVAL;
10933 }
10934
10935 opts.offset = offset;
10936 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10937 free(func);
10938 return libbpf_get_error(*link);
10939 }
10940
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10941 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10942 {
10943 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10944 const char *syscall_name;
10945
10946 *link = NULL;
10947
10948 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10949 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10950 return 0;
10951
10952 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10953 if (opts.retprobe)
10954 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10955 else
10956 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10957
10958 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10959 return *link ? 0 : -errno;
10960 }
10961
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10962 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10963 {
10964 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10965 const char *spec;
10966 char *pattern;
10967 int n;
10968
10969 *link = NULL;
10970
10971 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10972 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10973 strcmp(prog->sec_name, "kretprobe.multi") == 0)
10974 return 0;
10975
10976 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10977 if (opts.retprobe)
10978 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10979 else
10980 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10981
10982 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10983 if (n < 1) {
10984 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10985 return -EINVAL;
10986 }
10987
10988 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10989 free(pattern);
10990 return libbpf_get_error(*link);
10991 }
10992
attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10993 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10994 {
10995 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10996 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
10997 int n, ret = -EINVAL;
10998
10999 *link = NULL;
11000
11001 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%ms",
11002 &probe_type, &binary_path, &func_name);
11003 switch (n) {
11004 case 1:
11005 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11006 ret = 0;
11007 break;
11008 case 3:
11009 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11010 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11011 ret = libbpf_get_error(*link);
11012 break;
11013 default:
11014 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11015 prog->sec_name);
11016 break;
11017 }
11018 free(probe_type);
11019 free(binary_path);
11020 free(func_name);
11021 return ret;
11022 }
11023
gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)11024 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11025 const char *binary_path, uint64_t offset)
11026 {
11027 int i;
11028
11029 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11030
11031 /* sanitize binary_path in the probe name */
11032 for (i = 0; buf[i]; i++) {
11033 if (!isalnum(buf[i]))
11034 buf[i] = '_';
11035 }
11036 }
11037
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11038 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11039 const char *binary_path, size_t offset)
11040 {
11041 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11042 retprobe ? 'r' : 'p',
11043 retprobe ? "uretprobes" : "uprobes",
11044 probe_name, binary_path, offset);
11045 }
11046
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11047 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11048 {
11049 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11050 retprobe ? "uretprobes" : "uprobes", probe_name);
11051 }
11052
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11053 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11054 {
11055 char file[512];
11056
11057 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11058 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11059
11060 return parse_uint_from_file(file, "%d\n");
11061 }
11062
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11063 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11064 const char *binary_path, size_t offset, int pid)
11065 {
11066 const size_t attr_sz = sizeof(struct perf_event_attr);
11067 struct perf_event_attr attr;
11068 int type, pfd, err;
11069
11070 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11071 if (err < 0) {
11072 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11073 binary_path, (size_t)offset, err);
11074 return err;
11075 }
11076 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11077 if (type < 0) {
11078 err = type;
11079 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11080 binary_path, offset, err);
11081 goto err_clean_legacy;
11082 }
11083
11084 memset(&attr, 0, attr_sz);
11085 attr.size = attr_sz;
11086 attr.config = type;
11087 attr.type = PERF_TYPE_TRACEPOINT;
11088
11089 pfd = syscall(__NR_perf_event_open, &attr,
11090 pid < 0 ? -1 : pid, /* pid */
11091 pid == -1 ? 0 : -1, /* cpu */
11092 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11093 if (pfd < 0) {
11094 err = -errno;
11095 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11096 goto err_clean_legacy;
11097 }
11098 return pfd;
11099
11100 err_clean_legacy:
11101 /* Clear the newly added legacy uprobe_event */
11102 remove_uprobe_event_legacy(probe_name, retprobe);
11103 return err;
11104 }
11105
11106 /* Find offset of function name in archive specified by path. Currently
11107 * supported are .zip files that do not compress their contents, as used on
11108 * Android in the form of APKs, for example. "file_name" is the name of the ELF
11109 * file inside the archive. "func_name" matches symbol name or name@@LIB for
11110 * library functions.
11111 *
11112 * An overview of the APK format specifically provided here:
11113 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11114 */
elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)11115 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11116 const char *func_name)
11117 {
11118 struct zip_archive *archive;
11119 struct zip_entry entry;
11120 long ret;
11121 Elf *elf;
11122
11123 archive = zip_archive_open(archive_path);
11124 if (IS_ERR(archive)) {
11125 ret = PTR_ERR(archive);
11126 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11127 return ret;
11128 }
11129
11130 ret = zip_archive_find_entry(archive, file_name, &entry);
11131 if (ret) {
11132 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11133 archive_path, ret);
11134 goto out;
11135 }
11136 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11137 (unsigned long)entry.data_offset);
11138
11139 if (entry.compression) {
11140 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11141 archive_path);
11142 ret = -LIBBPF_ERRNO__FORMAT;
11143 goto out;
11144 }
11145
11146 elf = elf_memory((void *)entry.data, entry.data_length);
11147 if (!elf) {
11148 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11149 elf_errmsg(-1));
11150 ret = -LIBBPF_ERRNO__LIBELF;
11151 goto out;
11152 }
11153
11154 ret = elf_find_func_offset(elf, file_name, func_name);
11155 if (ret > 0) {
11156 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11157 func_name, file_name, archive_path, entry.data_offset, ret,
11158 ret + entry.data_offset);
11159 ret += entry.data_offset;
11160 }
11161 elf_end(elf);
11162
11163 out:
11164 zip_archive_close(archive);
11165 return ret;
11166 }
11167
arch_specific_lib_paths(void)11168 static const char *arch_specific_lib_paths(void)
11169 {
11170 /*
11171 * Based on https://packages.debian.org/sid/libc6.
11172 *
11173 * Assume that the traced program is built for the same architecture
11174 * as libbpf, which should cover the vast majority of cases.
11175 */
11176 #if defined(__x86_64__)
11177 return "/lib/x86_64-linux-gnu";
11178 #elif defined(__i386__)
11179 return "/lib/i386-linux-gnu";
11180 #elif defined(__s390x__)
11181 return "/lib/s390x-linux-gnu";
11182 #elif defined(__s390__)
11183 return "/lib/s390-linux-gnu";
11184 #elif defined(__arm__) && defined(__SOFTFP__)
11185 return "/lib/arm-linux-gnueabi";
11186 #elif defined(__arm__) && !defined(__SOFTFP__)
11187 return "/lib/arm-linux-gnueabihf";
11188 #elif defined(__aarch64__)
11189 return "/lib/aarch64-linux-gnu";
11190 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11191 return "/lib/mips64el-linux-gnuabi64";
11192 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11193 return "/lib/mipsel-linux-gnu";
11194 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11195 return "/lib/powerpc64le-linux-gnu";
11196 #elif defined(__sparc__) && defined(__arch64__)
11197 return "/lib/sparc64-linux-gnu";
11198 #elif defined(__riscv) && __riscv_xlen == 64
11199 return "/lib/riscv64-linux-gnu";
11200 #else
11201 return NULL;
11202 #endif
11203 }
11204
11205 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)11206 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11207 {
11208 const char *search_paths[3] = {};
11209 int i, perm;
11210
11211 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11212 search_paths[0] = getenv("LD_LIBRARY_PATH");
11213 search_paths[1] = "/usr/lib64:/usr/lib";
11214 search_paths[2] = arch_specific_lib_paths();
11215 perm = R_OK;
11216 } else {
11217 search_paths[0] = getenv("PATH");
11218 search_paths[1] = "/usr/bin:/usr/sbin";
11219 perm = R_OK | X_OK;
11220 }
11221
11222 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11223 const char *s;
11224
11225 if (!search_paths[i])
11226 continue;
11227 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11228 char *next_path;
11229 int seg_len;
11230
11231 if (s[0] == ':')
11232 s++;
11233 next_path = strchr(s, ':');
11234 seg_len = next_path ? next_path - s : strlen(s);
11235 if (!seg_len)
11236 continue;
11237 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11238 /* ensure it has required permissions */
11239 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11240 continue;
11241 pr_debug("resolved '%s' to '%s'\n", file, result);
11242 return 0;
11243 }
11244 }
11245 return -ENOENT;
11246 }
11247
11248 struct bpf_link *
bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)11249 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11250 pid_t pid,
11251 const char *path,
11252 const char *func_pattern,
11253 const struct bpf_uprobe_multi_opts *opts)
11254 {
11255 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11256 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11257 unsigned long *resolved_offsets = NULL;
11258 int err = 0, link_fd, prog_fd;
11259 struct bpf_link *link = NULL;
11260 char errmsg[STRERR_BUFSIZE];
11261 char full_path[PATH_MAX];
11262 const __u64 *cookies;
11263 const char **syms;
11264 size_t cnt;
11265
11266 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11267 return libbpf_err_ptr(-EINVAL);
11268
11269 syms = OPTS_GET(opts, syms, NULL);
11270 offsets = OPTS_GET(opts, offsets, NULL);
11271 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11272 cookies = OPTS_GET(opts, cookies, NULL);
11273 cnt = OPTS_GET(opts, cnt, 0);
11274
11275 /*
11276 * User can specify 2 mutually exclusive set of inputs:
11277 *
11278 * 1) use only path/func_pattern/pid arguments
11279 *
11280 * 2) use path/pid with allowed combinations of:
11281 * syms/offsets/ref_ctr_offsets/cookies/cnt
11282 *
11283 * - syms and offsets are mutually exclusive
11284 * - ref_ctr_offsets and cookies are optional
11285 *
11286 * Any other usage results in error.
11287 */
11288
11289 if (!path)
11290 return libbpf_err_ptr(-EINVAL);
11291 if (!func_pattern && cnt == 0)
11292 return libbpf_err_ptr(-EINVAL);
11293
11294 if (func_pattern) {
11295 if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11296 return libbpf_err_ptr(-EINVAL);
11297 } else {
11298 if (!!syms == !!offsets)
11299 return libbpf_err_ptr(-EINVAL);
11300 }
11301
11302 if (func_pattern) {
11303 if (!strchr(path, '/')) {
11304 err = resolve_full_path(path, full_path, sizeof(full_path));
11305 if (err) {
11306 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11307 prog->name, path, err);
11308 return libbpf_err_ptr(err);
11309 }
11310 path = full_path;
11311 }
11312
11313 err = elf_resolve_pattern_offsets(path, func_pattern,
11314 &resolved_offsets, &cnt);
11315 if (err < 0)
11316 return libbpf_err_ptr(err);
11317 offsets = resolved_offsets;
11318 } else if (syms) {
11319 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets);
11320 if (err < 0)
11321 return libbpf_err_ptr(err);
11322 offsets = resolved_offsets;
11323 }
11324
11325 lopts.uprobe_multi.path = path;
11326 lopts.uprobe_multi.offsets = offsets;
11327 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11328 lopts.uprobe_multi.cookies = cookies;
11329 lopts.uprobe_multi.cnt = cnt;
11330 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11331
11332 if (pid == 0)
11333 pid = getpid();
11334 if (pid > 0)
11335 lopts.uprobe_multi.pid = pid;
11336
11337 link = calloc(1, sizeof(*link));
11338 if (!link) {
11339 err = -ENOMEM;
11340 goto error;
11341 }
11342 link->detach = &bpf_link__detach_fd;
11343
11344 prog_fd = bpf_program__fd(prog);
11345 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11346 if (link_fd < 0) {
11347 err = -errno;
11348 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11349 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11350 goto error;
11351 }
11352 link->fd = link_fd;
11353 free(resolved_offsets);
11354 return link;
11355
11356 error:
11357 free(resolved_offsets);
11358 free(link);
11359 return libbpf_err_ptr(err);
11360 }
11361
11362 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)11363 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11364 const char *binary_path, size_t func_offset,
11365 const struct bpf_uprobe_opts *opts)
11366 {
11367 const char *archive_path = NULL, *archive_sep = NULL;
11368 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11369 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11370 enum probe_attach_mode attach_mode;
11371 char full_path[PATH_MAX];
11372 struct bpf_link *link;
11373 size_t ref_ctr_off;
11374 int pfd, err;
11375 bool retprobe, legacy;
11376 const char *func_name;
11377
11378 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11379 return libbpf_err_ptr(-EINVAL);
11380
11381 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11382 retprobe = OPTS_GET(opts, retprobe, false);
11383 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11384 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11385
11386 if (!binary_path)
11387 return libbpf_err_ptr(-EINVAL);
11388
11389 /* Check if "binary_path" refers to an archive. */
11390 archive_sep = strstr(binary_path, "!/");
11391 if (archive_sep) {
11392 full_path[0] = '\0';
11393 libbpf_strlcpy(full_path, binary_path,
11394 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11395 archive_path = full_path;
11396 binary_path = archive_sep + 2;
11397 } else if (!strchr(binary_path, '/')) {
11398 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11399 if (err) {
11400 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11401 prog->name, binary_path, err);
11402 return libbpf_err_ptr(err);
11403 }
11404 binary_path = full_path;
11405 }
11406 func_name = OPTS_GET(opts, func_name, NULL);
11407 if (func_name) {
11408 long sym_off;
11409
11410 if (archive_path) {
11411 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11412 func_name);
11413 binary_path = archive_path;
11414 } else {
11415 sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11416 }
11417 if (sym_off < 0)
11418 return libbpf_err_ptr(sym_off);
11419 func_offset += sym_off;
11420 }
11421
11422 legacy = determine_uprobe_perf_type() < 0;
11423 switch (attach_mode) {
11424 case PROBE_ATTACH_MODE_LEGACY:
11425 legacy = true;
11426 pe_opts.force_ioctl_attach = true;
11427 break;
11428 case PROBE_ATTACH_MODE_PERF:
11429 if (legacy)
11430 return libbpf_err_ptr(-ENOTSUP);
11431 pe_opts.force_ioctl_attach = true;
11432 break;
11433 case PROBE_ATTACH_MODE_LINK:
11434 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11435 return libbpf_err_ptr(-ENOTSUP);
11436 break;
11437 case PROBE_ATTACH_MODE_DEFAULT:
11438 break;
11439 default:
11440 return libbpf_err_ptr(-EINVAL);
11441 }
11442
11443 if (!legacy) {
11444 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11445 func_offset, pid, ref_ctr_off);
11446 } else {
11447 char probe_name[PATH_MAX + 64];
11448
11449 if (ref_ctr_off)
11450 return libbpf_err_ptr(-EINVAL);
11451
11452 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11453 binary_path, func_offset);
11454
11455 legacy_probe = strdup(probe_name);
11456 if (!legacy_probe)
11457 return libbpf_err_ptr(-ENOMEM);
11458
11459 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11460 binary_path, func_offset, pid);
11461 }
11462 if (pfd < 0) {
11463 err = -errno;
11464 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11465 prog->name, retprobe ? "uretprobe" : "uprobe",
11466 binary_path, func_offset,
11467 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11468 goto err_out;
11469 }
11470
11471 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11472 err = libbpf_get_error(link);
11473 if (err) {
11474 close(pfd);
11475 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11476 prog->name, retprobe ? "uretprobe" : "uprobe",
11477 binary_path, func_offset,
11478 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11479 goto err_clean_legacy;
11480 }
11481 if (legacy) {
11482 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11483
11484 perf_link->legacy_probe_name = legacy_probe;
11485 perf_link->legacy_is_kprobe = false;
11486 perf_link->legacy_is_retprobe = retprobe;
11487 }
11488 return link;
11489
11490 err_clean_legacy:
11491 if (legacy)
11492 remove_uprobe_event_legacy(legacy_probe, retprobe);
11493 err_out:
11494 free(legacy_probe);
11495 return libbpf_err_ptr(err);
11496 }
11497
11498 /* Format of u[ret]probe section definition supporting auto-attach:
11499 * u[ret]probe/binary:function[+offset]
11500 *
11501 * binary can be an absolute/relative path or a filename; the latter is resolved to a
11502 * full binary path via bpf_program__attach_uprobe_opts.
11503 *
11504 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11505 * specified (and auto-attach is not possible) or the above format is specified for
11506 * auto-attach.
11507 */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11508 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11509 {
11510 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11511 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11512 int n, ret = -EINVAL;
11513 long offset = 0;
11514
11515 *link = NULL;
11516
11517 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
11518 &probe_type, &binary_path, &func_name, &offset);
11519 switch (n) {
11520 case 1:
11521 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11522 ret = 0;
11523 break;
11524 case 2:
11525 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11526 prog->name, prog->sec_name);
11527 break;
11528 case 3:
11529 case 4:
11530 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
11531 strcmp(probe_type, "uretprobe.s") == 0;
11532 if (opts.retprobe && offset != 0) {
11533 pr_warn("prog '%s': uretprobes do not support offset specification\n",
11534 prog->name);
11535 break;
11536 }
11537 opts.func_name = func_name;
11538 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11539 ret = libbpf_get_error(*link);
11540 break;
11541 default:
11542 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11543 prog->sec_name);
11544 break;
11545 }
11546 free(probe_type);
11547 free(binary_path);
11548 free(func_name);
11549
11550 return ret;
11551 }
11552
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)11553 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11554 bool retprobe, pid_t pid,
11555 const char *binary_path,
11556 size_t func_offset)
11557 {
11558 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11559
11560 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11561 }
11562
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)11563 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11564 pid_t pid, const char *binary_path,
11565 const char *usdt_provider, const char *usdt_name,
11566 const struct bpf_usdt_opts *opts)
11567 {
11568 char resolved_path[512];
11569 struct bpf_object *obj = prog->obj;
11570 struct bpf_link *link;
11571 __u64 usdt_cookie;
11572 int err;
11573
11574 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11575 return libbpf_err_ptr(-EINVAL);
11576
11577 if (bpf_program__fd(prog) < 0) {
11578 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11579 prog->name);
11580 return libbpf_err_ptr(-EINVAL);
11581 }
11582
11583 if (!binary_path)
11584 return libbpf_err_ptr(-EINVAL);
11585
11586 if (!strchr(binary_path, '/')) {
11587 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11588 if (err) {
11589 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11590 prog->name, binary_path, err);
11591 return libbpf_err_ptr(err);
11592 }
11593 binary_path = resolved_path;
11594 }
11595
11596 /* USDT manager is instantiated lazily on first USDT attach. It will
11597 * be destroyed together with BPF object in bpf_object__close().
11598 */
11599 if (IS_ERR(obj->usdt_man))
11600 return libbpf_ptr(obj->usdt_man);
11601 if (!obj->usdt_man) {
11602 obj->usdt_man = usdt_manager_new(obj);
11603 if (IS_ERR(obj->usdt_man))
11604 return libbpf_ptr(obj->usdt_man);
11605 }
11606
11607 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11608 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11609 usdt_provider, usdt_name, usdt_cookie);
11610 err = libbpf_get_error(link);
11611 if (err)
11612 return libbpf_err_ptr(err);
11613 return link;
11614 }
11615
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11616 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11617 {
11618 char *path = NULL, *provider = NULL, *name = NULL;
11619 const char *sec_name;
11620 int n, err;
11621
11622 sec_name = bpf_program__section_name(prog);
11623 if (strcmp(sec_name, "usdt") == 0) {
11624 /* no auto-attach for just SEC("usdt") */
11625 *link = NULL;
11626 return 0;
11627 }
11628
11629 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11630 if (n != 3) {
11631 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11632 sec_name);
11633 err = -EINVAL;
11634 } else {
11635 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11636 provider, name, NULL);
11637 err = libbpf_get_error(*link);
11638 }
11639 free(path);
11640 free(provider);
11641 free(name);
11642 return err;
11643 }
11644
determine_tracepoint_id(const char * tp_category,const char * tp_name)11645 static int determine_tracepoint_id(const char *tp_category,
11646 const char *tp_name)
11647 {
11648 char file[PATH_MAX];
11649 int ret;
11650
11651 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11652 tracefs_path(), tp_category, tp_name);
11653 if (ret < 0)
11654 return -errno;
11655 if (ret >= sizeof(file)) {
11656 pr_debug("tracepoint %s/%s path is too long\n",
11657 tp_category, tp_name);
11658 return -E2BIG;
11659 }
11660 return parse_uint_from_file(file, "%d\n");
11661 }
11662
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)11663 static int perf_event_open_tracepoint(const char *tp_category,
11664 const char *tp_name)
11665 {
11666 const size_t attr_sz = sizeof(struct perf_event_attr);
11667 struct perf_event_attr attr;
11668 char errmsg[STRERR_BUFSIZE];
11669 int tp_id, pfd, err;
11670
11671 tp_id = determine_tracepoint_id(tp_category, tp_name);
11672 if (tp_id < 0) {
11673 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11674 tp_category, tp_name,
11675 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11676 return tp_id;
11677 }
11678
11679 memset(&attr, 0, attr_sz);
11680 attr.type = PERF_TYPE_TRACEPOINT;
11681 attr.size = attr_sz;
11682 attr.config = tp_id;
11683
11684 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11685 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11686 if (pfd < 0) {
11687 err = -errno;
11688 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11689 tp_category, tp_name,
11690 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11691 return err;
11692 }
11693 return pfd;
11694 }
11695
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)11696 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11697 const char *tp_category,
11698 const char *tp_name,
11699 const struct bpf_tracepoint_opts *opts)
11700 {
11701 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11702 char errmsg[STRERR_BUFSIZE];
11703 struct bpf_link *link;
11704 int pfd, err;
11705
11706 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11707 return libbpf_err_ptr(-EINVAL);
11708
11709 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11710
11711 pfd = perf_event_open_tracepoint(tp_category, tp_name);
11712 if (pfd < 0) {
11713 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11714 prog->name, tp_category, tp_name,
11715 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11716 return libbpf_err_ptr(pfd);
11717 }
11718 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11719 err = libbpf_get_error(link);
11720 if (err) {
11721 close(pfd);
11722 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11723 prog->name, tp_category, tp_name,
11724 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11725 return libbpf_err_ptr(err);
11726 }
11727 return link;
11728 }
11729
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)11730 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11731 const char *tp_category,
11732 const char *tp_name)
11733 {
11734 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11735 }
11736
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11737 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11738 {
11739 char *sec_name, *tp_cat, *tp_name;
11740
11741 *link = NULL;
11742
11743 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
11744 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11745 return 0;
11746
11747 sec_name = strdup(prog->sec_name);
11748 if (!sec_name)
11749 return -ENOMEM;
11750
11751 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11752 if (str_has_pfx(prog->sec_name, "tp/"))
11753 tp_cat = sec_name + sizeof("tp/") - 1;
11754 else
11755 tp_cat = sec_name + sizeof("tracepoint/") - 1;
11756 tp_name = strchr(tp_cat, '/');
11757 if (!tp_name) {
11758 free(sec_name);
11759 return -EINVAL;
11760 }
11761 *tp_name = '\0';
11762 tp_name++;
11763
11764 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11765 free(sec_name);
11766 return libbpf_get_error(*link);
11767 }
11768
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)11769 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11770 const char *tp_name)
11771 {
11772 char errmsg[STRERR_BUFSIZE];
11773 struct bpf_link *link;
11774 int prog_fd, pfd;
11775
11776 prog_fd = bpf_program__fd(prog);
11777 if (prog_fd < 0) {
11778 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11779 return libbpf_err_ptr(-EINVAL);
11780 }
11781
11782 link = calloc(1, sizeof(*link));
11783 if (!link)
11784 return libbpf_err_ptr(-ENOMEM);
11785 link->detach = &bpf_link__detach_fd;
11786
11787 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11788 if (pfd < 0) {
11789 pfd = -errno;
11790 free(link);
11791 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11792 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11793 return libbpf_err_ptr(pfd);
11794 }
11795 link->fd = pfd;
11796 return link;
11797 }
11798
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11799 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11800 {
11801 static const char *const prefixes[] = {
11802 "raw_tp",
11803 "raw_tracepoint",
11804 "raw_tp.w",
11805 "raw_tracepoint.w",
11806 };
11807 size_t i;
11808 const char *tp_name = NULL;
11809
11810 *link = NULL;
11811
11812 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11813 size_t pfx_len;
11814
11815 if (!str_has_pfx(prog->sec_name, prefixes[i]))
11816 continue;
11817
11818 pfx_len = strlen(prefixes[i]);
11819 /* no auto-attach case of, e.g., SEC("raw_tp") */
11820 if (prog->sec_name[pfx_len] == '\0')
11821 return 0;
11822
11823 if (prog->sec_name[pfx_len] != '/')
11824 continue;
11825
11826 tp_name = prog->sec_name + pfx_len + 1;
11827 break;
11828 }
11829
11830 if (!tp_name) {
11831 pr_warn("prog '%s': invalid section name '%s'\n",
11832 prog->name, prog->sec_name);
11833 return -EINVAL;
11834 }
11835
11836 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11837 return libbpf_get_error(*link);
11838 }
11839
11840 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11841 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11842 const struct bpf_trace_opts *opts)
11843 {
11844 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11845 char errmsg[STRERR_BUFSIZE];
11846 struct bpf_link *link;
11847 int prog_fd, pfd;
11848
11849 if (!OPTS_VALID(opts, bpf_trace_opts))
11850 return libbpf_err_ptr(-EINVAL);
11851
11852 prog_fd = bpf_program__fd(prog);
11853 if (prog_fd < 0) {
11854 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11855 return libbpf_err_ptr(-EINVAL);
11856 }
11857
11858 link = calloc(1, sizeof(*link));
11859 if (!link)
11860 return libbpf_err_ptr(-ENOMEM);
11861 link->detach = &bpf_link__detach_fd;
11862
11863 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11864 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11865 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11866 if (pfd < 0) {
11867 pfd = -errno;
11868 free(link);
11869 pr_warn("prog '%s': failed to attach: %s\n",
11870 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11871 return libbpf_err_ptr(pfd);
11872 }
11873 link->fd = pfd;
11874 return link;
11875 }
11876
bpf_program__attach_trace(const struct bpf_program * prog)11877 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11878 {
11879 return bpf_program__attach_btf_id(prog, NULL);
11880 }
11881
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11882 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11883 const struct bpf_trace_opts *opts)
11884 {
11885 return bpf_program__attach_btf_id(prog, opts);
11886 }
11887
bpf_program__attach_lsm(const struct bpf_program * prog)11888 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11889 {
11890 return bpf_program__attach_btf_id(prog, NULL);
11891 }
11892
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11893 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11894 {
11895 *link = bpf_program__attach_trace(prog);
11896 return libbpf_get_error(*link);
11897 }
11898
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11899 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11900 {
11901 *link = bpf_program__attach_lsm(prog);
11902 return libbpf_get_error(*link);
11903 }
11904
11905 static struct bpf_link *
bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)11906 bpf_program_attach_fd(const struct bpf_program *prog,
11907 int target_fd, const char *target_name,
11908 const struct bpf_link_create_opts *opts)
11909 {
11910 enum bpf_attach_type attach_type;
11911 char errmsg[STRERR_BUFSIZE];
11912 struct bpf_link *link;
11913 int prog_fd, link_fd;
11914
11915 prog_fd = bpf_program__fd(prog);
11916 if (prog_fd < 0) {
11917 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11918 return libbpf_err_ptr(-EINVAL);
11919 }
11920
11921 link = calloc(1, sizeof(*link));
11922 if (!link)
11923 return libbpf_err_ptr(-ENOMEM);
11924 link->detach = &bpf_link__detach_fd;
11925
11926 attach_type = bpf_program__expected_attach_type(prog);
11927 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
11928 if (link_fd < 0) {
11929 link_fd = -errno;
11930 free(link);
11931 pr_warn("prog '%s': failed to attach to %s: %s\n",
11932 prog->name, target_name,
11933 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11934 return libbpf_err_ptr(link_fd);
11935 }
11936 link->fd = link_fd;
11937 return link;
11938 }
11939
11940 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)11941 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11942 {
11943 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
11944 }
11945
11946 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)11947 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11948 {
11949 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
11950 }
11951
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)11952 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11953 {
11954 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11955 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
11956 }
11957
11958 struct bpf_link *
bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)11959 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
11960 const struct bpf_tcx_opts *opts)
11961 {
11962 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11963 __u32 relative_id;
11964 int relative_fd;
11965
11966 if (!OPTS_VALID(opts, bpf_tcx_opts))
11967 return libbpf_err_ptr(-EINVAL);
11968
11969 relative_id = OPTS_GET(opts, relative_id, 0);
11970 relative_fd = OPTS_GET(opts, relative_fd, 0);
11971
11972 /* validate we don't have unexpected combinations of non-zero fields */
11973 if (!ifindex) {
11974 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
11975 prog->name);
11976 return libbpf_err_ptr(-EINVAL);
11977 }
11978 if (relative_fd && relative_id) {
11979 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
11980 prog->name);
11981 return libbpf_err_ptr(-EINVAL);
11982 }
11983
11984 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
11985 link_create_opts.tcx.relative_fd = relative_fd;
11986 link_create_opts.tcx.relative_id = relative_id;
11987 link_create_opts.flags = OPTS_GET(opts, flags, 0);
11988
11989 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11990 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
11991 }
11992
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)11993 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11994 int target_fd,
11995 const char *attach_func_name)
11996 {
11997 int btf_id;
11998
11999 if (!!target_fd != !!attach_func_name) {
12000 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12001 prog->name);
12002 return libbpf_err_ptr(-EINVAL);
12003 }
12004
12005 if (prog->type != BPF_PROG_TYPE_EXT) {
12006 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12007 prog->name);
12008 return libbpf_err_ptr(-EINVAL);
12009 }
12010
12011 if (target_fd) {
12012 LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12013
12014 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12015 if (btf_id < 0)
12016 return libbpf_err_ptr(btf_id);
12017
12018 target_opts.target_btf_id = btf_id;
12019
12020 return bpf_program_attach_fd(prog, target_fd, "freplace",
12021 &target_opts);
12022 } else {
12023 /* no target, so use raw_tracepoint_open for compatibility
12024 * with old kernels
12025 */
12026 return bpf_program__attach_trace(prog);
12027 }
12028 }
12029
12030 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)12031 bpf_program__attach_iter(const struct bpf_program *prog,
12032 const struct bpf_iter_attach_opts *opts)
12033 {
12034 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12035 char errmsg[STRERR_BUFSIZE];
12036 struct bpf_link *link;
12037 int prog_fd, link_fd;
12038 __u32 target_fd = 0;
12039
12040 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12041 return libbpf_err_ptr(-EINVAL);
12042
12043 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12044 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12045
12046 prog_fd = bpf_program__fd(prog);
12047 if (prog_fd < 0) {
12048 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12049 return libbpf_err_ptr(-EINVAL);
12050 }
12051
12052 link = calloc(1, sizeof(*link));
12053 if (!link)
12054 return libbpf_err_ptr(-ENOMEM);
12055 link->detach = &bpf_link__detach_fd;
12056
12057 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12058 &link_create_opts);
12059 if (link_fd < 0) {
12060 link_fd = -errno;
12061 free(link);
12062 pr_warn("prog '%s': failed to attach to iterator: %s\n",
12063 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12064 return libbpf_err_ptr(link_fd);
12065 }
12066 link->fd = link_fd;
12067 return link;
12068 }
12069
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12070 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12071 {
12072 *link = bpf_program__attach_iter(prog, NULL);
12073 return libbpf_get_error(*link);
12074 }
12075
bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)12076 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12077 const struct bpf_netfilter_opts *opts)
12078 {
12079 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12080 struct bpf_link *link;
12081 int prog_fd, link_fd;
12082
12083 if (!OPTS_VALID(opts, bpf_netfilter_opts))
12084 return libbpf_err_ptr(-EINVAL);
12085
12086 prog_fd = bpf_program__fd(prog);
12087 if (prog_fd < 0) {
12088 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12089 return libbpf_err_ptr(-EINVAL);
12090 }
12091
12092 link = calloc(1, sizeof(*link));
12093 if (!link)
12094 return libbpf_err_ptr(-ENOMEM);
12095
12096 link->detach = &bpf_link__detach_fd;
12097
12098 lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12099 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12100 lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12101 lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12102
12103 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12104 if (link_fd < 0) {
12105 char errmsg[STRERR_BUFSIZE];
12106
12107 link_fd = -errno;
12108 free(link);
12109 pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12110 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12111 return libbpf_err_ptr(link_fd);
12112 }
12113 link->fd = link_fd;
12114
12115 return link;
12116 }
12117
bpf_program__attach(const struct bpf_program * prog)12118 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12119 {
12120 struct bpf_link *link = NULL;
12121 int err;
12122
12123 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12124 return libbpf_err_ptr(-EOPNOTSUPP);
12125
12126 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12127 if (err)
12128 return libbpf_err_ptr(err);
12129
12130 /* When calling bpf_program__attach() explicitly, auto-attach support
12131 * is expected to work, so NULL returned link is considered an error.
12132 * This is different for skeleton's attach, see comment in
12133 * bpf_object__attach_skeleton().
12134 */
12135 if (!link)
12136 return libbpf_err_ptr(-EOPNOTSUPP);
12137
12138 return link;
12139 }
12140
12141 struct bpf_link_struct_ops {
12142 struct bpf_link link;
12143 int map_fd;
12144 };
12145
bpf_link__detach_struct_ops(struct bpf_link * link)12146 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12147 {
12148 struct bpf_link_struct_ops *st_link;
12149 __u32 zero = 0;
12150
12151 st_link = container_of(link, struct bpf_link_struct_ops, link);
12152
12153 if (st_link->map_fd < 0)
12154 /* w/o a real link */
12155 return bpf_map_delete_elem(link->fd, &zero);
12156
12157 return close(link->fd);
12158 }
12159
bpf_map__attach_struct_ops(const struct bpf_map * map)12160 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12161 {
12162 struct bpf_link_struct_ops *link;
12163 __u32 zero = 0;
12164 int err, fd;
12165
12166 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12167 return libbpf_err_ptr(-EINVAL);
12168
12169 link = calloc(1, sizeof(*link));
12170 if (!link)
12171 return libbpf_err_ptr(-EINVAL);
12172
12173 /* kern_vdata should be prepared during the loading phase. */
12174 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12175 /* It can be EBUSY if the map has been used to create or
12176 * update a link before. We don't allow updating the value of
12177 * a struct_ops once it is set. That ensures that the value
12178 * never changed. So, it is safe to skip EBUSY.
12179 */
12180 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12181 free(link);
12182 return libbpf_err_ptr(err);
12183 }
12184
12185 link->link.detach = bpf_link__detach_struct_ops;
12186
12187 if (!(map->def.map_flags & BPF_F_LINK)) {
12188 /* w/o a real link */
12189 link->link.fd = map->fd;
12190 link->map_fd = -1;
12191 return &link->link;
12192 }
12193
12194 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12195 if (fd < 0) {
12196 free(link);
12197 return libbpf_err_ptr(fd);
12198 }
12199
12200 link->link.fd = fd;
12201 link->map_fd = map->fd;
12202
12203 return &link->link;
12204 }
12205
12206 /*
12207 * Swap the back struct_ops of a link with a new struct_ops map.
12208 */
bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)12209 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12210 {
12211 struct bpf_link_struct_ops *st_ops_link;
12212 __u32 zero = 0;
12213 int err;
12214
12215 if (!bpf_map__is_struct_ops(map) || map->fd < 0)
12216 return -EINVAL;
12217
12218 st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12219 /* Ensure the type of a link is correct */
12220 if (st_ops_link->map_fd < 0)
12221 return -EINVAL;
12222
12223 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12224 /* It can be EBUSY if the map has been used to create or
12225 * update a link before. We don't allow updating the value of
12226 * a struct_ops once it is set. That ensures that the value
12227 * never changed. So, it is safe to skip EBUSY.
12228 */
12229 if (err && err != -EBUSY)
12230 return err;
12231
12232 err = bpf_link_update(link->fd, map->fd, NULL);
12233 if (err < 0)
12234 return err;
12235
12236 st_ops_link->map_fd = map->fd;
12237
12238 return 0;
12239 }
12240
12241 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12242 void *private_data);
12243
12244 static enum bpf_perf_event_ret
perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)12245 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12246 void **copy_mem, size_t *copy_size,
12247 bpf_perf_event_print_t fn, void *private_data)
12248 {
12249 struct perf_event_mmap_page *header = mmap_mem;
12250 __u64 data_head = ring_buffer_read_head(header);
12251 __u64 data_tail = header->data_tail;
12252 void *base = ((__u8 *)header) + page_size;
12253 int ret = LIBBPF_PERF_EVENT_CONT;
12254 struct perf_event_header *ehdr;
12255 size_t ehdr_size;
12256
12257 while (data_head != data_tail) {
12258 ehdr = base + (data_tail & (mmap_size - 1));
12259 ehdr_size = ehdr->size;
12260
12261 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12262 void *copy_start = ehdr;
12263 size_t len_first = base + mmap_size - copy_start;
12264 size_t len_secnd = ehdr_size - len_first;
12265
12266 if (*copy_size < ehdr_size) {
12267 free(*copy_mem);
12268 *copy_mem = malloc(ehdr_size);
12269 if (!*copy_mem) {
12270 *copy_size = 0;
12271 ret = LIBBPF_PERF_EVENT_ERROR;
12272 break;
12273 }
12274 *copy_size = ehdr_size;
12275 }
12276
12277 memcpy(*copy_mem, copy_start, len_first);
12278 memcpy(*copy_mem + len_first, base, len_secnd);
12279 ehdr = *copy_mem;
12280 }
12281
12282 ret = fn(ehdr, private_data);
12283 data_tail += ehdr_size;
12284 if (ret != LIBBPF_PERF_EVENT_CONT)
12285 break;
12286 }
12287
12288 ring_buffer_write_tail(header, data_tail);
12289 return libbpf_err(ret);
12290 }
12291
12292 struct perf_buffer;
12293
12294 struct perf_buffer_params {
12295 struct perf_event_attr *attr;
12296 /* if event_cb is specified, it takes precendence */
12297 perf_buffer_event_fn event_cb;
12298 /* sample_cb and lost_cb are higher-level common-case callbacks */
12299 perf_buffer_sample_fn sample_cb;
12300 perf_buffer_lost_fn lost_cb;
12301 void *ctx;
12302 int cpu_cnt;
12303 int *cpus;
12304 int *map_keys;
12305 };
12306
12307 struct perf_cpu_buf {
12308 struct perf_buffer *pb;
12309 void *base; /* mmap()'ed memory */
12310 void *buf; /* for reconstructing segmented data */
12311 size_t buf_size;
12312 int fd;
12313 int cpu;
12314 int map_key;
12315 };
12316
12317 struct perf_buffer {
12318 perf_buffer_event_fn event_cb;
12319 perf_buffer_sample_fn sample_cb;
12320 perf_buffer_lost_fn lost_cb;
12321 void *ctx; /* passed into callbacks */
12322
12323 size_t page_size;
12324 size_t mmap_size;
12325 struct perf_cpu_buf **cpu_bufs;
12326 struct epoll_event *events;
12327 int cpu_cnt; /* number of allocated CPU buffers */
12328 int epoll_fd; /* perf event FD */
12329 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12330 };
12331
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12332 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12333 struct perf_cpu_buf *cpu_buf)
12334 {
12335 if (!cpu_buf)
12336 return;
12337 if (cpu_buf->base &&
12338 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12339 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12340 if (cpu_buf->fd >= 0) {
12341 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12342 close(cpu_buf->fd);
12343 }
12344 free(cpu_buf->buf);
12345 free(cpu_buf);
12346 }
12347
perf_buffer__free(struct perf_buffer * pb)12348 void perf_buffer__free(struct perf_buffer *pb)
12349 {
12350 int i;
12351
12352 if (IS_ERR_OR_NULL(pb))
12353 return;
12354 if (pb->cpu_bufs) {
12355 for (i = 0; i < pb->cpu_cnt; i++) {
12356 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12357
12358 if (!cpu_buf)
12359 continue;
12360
12361 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12362 perf_buffer__free_cpu_buf(pb, cpu_buf);
12363 }
12364 free(pb->cpu_bufs);
12365 }
12366 if (pb->epoll_fd >= 0)
12367 close(pb->epoll_fd);
12368 free(pb->events);
12369 free(pb);
12370 }
12371
12372 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)12373 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12374 int cpu, int map_key)
12375 {
12376 struct perf_cpu_buf *cpu_buf;
12377 char msg[STRERR_BUFSIZE];
12378 int err;
12379
12380 cpu_buf = calloc(1, sizeof(*cpu_buf));
12381 if (!cpu_buf)
12382 return ERR_PTR(-ENOMEM);
12383
12384 cpu_buf->pb = pb;
12385 cpu_buf->cpu = cpu;
12386 cpu_buf->map_key = map_key;
12387
12388 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12389 -1, PERF_FLAG_FD_CLOEXEC);
12390 if (cpu_buf->fd < 0) {
12391 err = -errno;
12392 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12393 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12394 goto error;
12395 }
12396
12397 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12398 PROT_READ | PROT_WRITE, MAP_SHARED,
12399 cpu_buf->fd, 0);
12400 if (cpu_buf->base == MAP_FAILED) {
12401 cpu_buf->base = NULL;
12402 err = -errno;
12403 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12404 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12405 goto error;
12406 }
12407
12408 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12409 err = -errno;
12410 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12411 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12412 goto error;
12413 }
12414
12415 return cpu_buf;
12416
12417 error:
12418 perf_buffer__free_cpu_buf(pb, cpu_buf);
12419 return (struct perf_cpu_buf *)ERR_PTR(err);
12420 }
12421
12422 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12423 struct perf_buffer_params *p);
12424
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)12425 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12426 perf_buffer_sample_fn sample_cb,
12427 perf_buffer_lost_fn lost_cb,
12428 void *ctx,
12429 const struct perf_buffer_opts *opts)
12430 {
12431 const size_t attr_sz = sizeof(struct perf_event_attr);
12432 struct perf_buffer_params p = {};
12433 struct perf_event_attr attr;
12434 __u32 sample_period;
12435
12436 if (!OPTS_VALID(opts, perf_buffer_opts))
12437 return libbpf_err_ptr(-EINVAL);
12438
12439 sample_period = OPTS_GET(opts, sample_period, 1);
12440 if (!sample_period)
12441 sample_period = 1;
12442
12443 memset(&attr, 0, attr_sz);
12444 attr.size = attr_sz;
12445 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12446 attr.type = PERF_TYPE_SOFTWARE;
12447 attr.sample_type = PERF_SAMPLE_RAW;
12448 attr.sample_period = sample_period;
12449 attr.wakeup_events = sample_period;
12450
12451 p.attr = &attr;
12452 p.sample_cb = sample_cb;
12453 p.lost_cb = lost_cb;
12454 p.ctx = ctx;
12455
12456 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12457 }
12458
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)12459 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12460 struct perf_event_attr *attr,
12461 perf_buffer_event_fn event_cb, void *ctx,
12462 const struct perf_buffer_raw_opts *opts)
12463 {
12464 struct perf_buffer_params p = {};
12465
12466 if (!attr)
12467 return libbpf_err_ptr(-EINVAL);
12468
12469 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12470 return libbpf_err_ptr(-EINVAL);
12471
12472 p.attr = attr;
12473 p.event_cb = event_cb;
12474 p.ctx = ctx;
12475 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12476 p.cpus = OPTS_GET(opts, cpus, NULL);
12477 p.map_keys = OPTS_GET(opts, map_keys, NULL);
12478
12479 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12480 }
12481
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)12482 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12483 struct perf_buffer_params *p)
12484 {
12485 const char *online_cpus_file = "/sys/devices/system/cpu/online";
12486 struct bpf_map_info map;
12487 char msg[STRERR_BUFSIZE];
12488 struct perf_buffer *pb;
12489 bool *online = NULL;
12490 __u32 map_info_len;
12491 int err, i, j, n;
12492
12493 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12494 pr_warn("page count should be power of two, but is %zu\n",
12495 page_cnt);
12496 return ERR_PTR(-EINVAL);
12497 }
12498
12499 /* best-effort sanity checks */
12500 memset(&map, 0, sizeof(map));
12501 map_info_len = sizeof(map);
12502 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
12503 if (err) {
12504 err = -errno;
12505 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12506 * -EBADFD, -EFAULT, or -E2BIG on real error
12507 */
12508 if (err != -EINVAL) {
12509 pr_warn("failed to get map info for map FD %d: %s\n",
12510 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12511 return ERR_PTR(err);
12512 }
12513 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12514 map_fd);
12515 } else {
12516 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12517 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12518 map.name);
12519 return ERR_PTR(-EINVAL);
12520 }
12521 }
12522
12523 pb = calloc(1, sizeof(*pb));
12524 if (!pb)
12525 return ERR_PTR(-ENOMEM);
12526
12527 pb->event_cb = p->event_cb;
12528 pb->sample_cb = p->sample_cb;
12529 pb->lost_cb = p->lost_cb;
12530 pb->ctx = p->ctx;
12531
12532 pb->page_size = getpagesize();
12533 pb->mmap_size = pb->page_size * page_cnt;
12534 pb->map_fd = map_fd;
12535
12536 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12537 if (pb->epoll_fd < 0) {
12538 err = -errno;
12539 pr_warn("failed to create epoll instance: %s\n",
12540 libbpf_strerror_r(err, msg, sizeof(msg)));
12541 goto error;
12542 }
12543
12544 if (p->cpu_cnt > 0) {
12545 pb->cpu_cnt = p->cpu_cnt;
12546 } else {
12547 pb->cpu_cnt = libbpf_num_possible_cpus();
12548 if (pb->cpu_cnt < 0) {
12549 err = pb->cpu_cnt;
12550 goto error;
12551 }
12552 if (map.max_entries && map.max_entries < pb->cpu_cnt)
12553 pb->cpu_cnt = map.max_entries;
12554 }
12555
12556 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12557 if (!pb->events) {
12558 err = -ENOMEM;
12559 pr_warn("failed to allocate events: out of memory\n");
12560 goto error;
12561 }
12562 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12563 if (!pb->cpu_bufs) {
12564 err = -ENOMEM;
12565 pr_warn("failed to allocate buffers: out of memory\n");
12566 goto error;
12567 }
12568
12569 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12570 if (err) {
12571 pr_warn("failed to get online CPU mask: %d\n", err);
12572 goto error;
12573 }
12574
12575 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12576 struct perf_cpu_buf *cpu_buf;
12577 int cpu, map_key;
12578
12579 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12580 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12581
12582 /* in case user didn't explicitly requested particular CPUs to
12583 * be attached to, skip offline/not present CPUs
12584 */
12585 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12586 continue;
12587
12588 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12589 if (IS_ERR(cpu_buf)) {
12590 err = PTR_ERR(cpu_buf);
12591 goto error;
12592 }
12593
12594 pb->cpu_bufs[j] = cpu_buf;
12595
12596 err = bpf_map_update_elem(pb->map_fd, &map_key,
12597 &cpu_buf->fd, 0);
12598 if (err) {
12599 err = -errno;
12600 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12601 cpu, map_key, cpu_buf->fd,
12602 libbpf_strerror_r(err, msg, sizeof(msg)));
12603 goto error;
12604 }
12605
12606 pb->events[j].events = EPOLLIN;
12607 pb->events[j].data.ptr = cpu_buf;
12608 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12609 &pb->events[j]) < 0) {
12610 err = -errno;
12611 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12612 cpu, cpu_buf->fd,
12613 libbpf_strerror_r(err, msg, sizeof(msg)));
12614 goto error;
12615 }
12616 j++;
12617 }
12618 pb->cpu_cnt = j;
12619 free(online);
12620
12621 return pb;
12622
12623 error:
12624 free(online);
12625 if (pb)
12626 perf_buffer__free(pb);
12627 return ERR_PTR(err);
12628 }
12629
12630 struct perf_sample_raw {
12631 struct perf_event_header header;
12632 uint32_t size;
12633 char data[];
12634 };
12635
12636 struct perf_sample_lost {
12637 struct perf_event_header header;
12638 uint64_t id;
12639 uint64_t lost;
12640 uint64_t sample_id;
12641 };
12642
12643 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)12644 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12645 {
12646 struct perf_cpu_buf *cpu_buf = ctx;
12647 struct perf_buffer *pb = cpu_buf->pb;
12648 void *data = e;
12649
12650 /* user wants full control over parsing perf event */
12651 if (pb->event_cb)
12652 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12653
12654 switch (e->type) {
12655 case PERF_RECORD_SAMPLE: {
12656 struct perf_sample_raw *s = data;
12657
12658 if (pb->sample_cb)
12659 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12660 break;
12661 }
12662 case PERF_RECORD_LOST: {
12663 struct perf_sample_lost *s = data;
12664
12665 if (pb->lost_cb)
12666 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12667 break;
12668 }
12669 default:
12670 pr_warn("unknown perf sample type %d\n", e->type);
12671 return LIBBPF_PERF_EVENT_ERROR;
12672 }
12673 return LIBBPF_PERF_EVENT_CONT;
12674 }
12675
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12676 static int perf_buffer__process_records(struct perf_buffer *pb,
12677 struct perf_cpu_buf *cpu_buf)
12678 {
12679 enum bpf_perf_event_ret ret;
12680
12681 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12682 pb->page_size, &cpu_buf->buf,
12683 &cpu_buf->buf_size,
12684 perf_buffer__process_record, cpu_buf);
12685 if (ret != LIBBPF_PERF_EVENT_CONT)
12686 return ret;
12687 return 0;
12688 }
12689
perf_buffer__epoll_fd(const struct perf_buffer * pb)12690 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12691 {
12692 return pb->epoll_fd;
12693 }
12694
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)12695 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12696 {
12697 int i, cnt, err;
12698
12699 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12700 if (cnt < 0)
12701 return -errno;
12702
12703 for (i = 0; i < cnt; i++) {
12704 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12705
12706 err = perf_buffer__process_records(pb, cpu_buf);
12707 if (err) {
12708 pr_warn("error while processing records: %d\n", err);
12709 return libbpf_err(err);
12710 }
12711 }
12712 return cnt;
12713 }
12714
12715 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12716 * manager.
12717 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)12718 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12719 {
12720 return pb->cpu_cnt;
12721 }
12722
12723 /*
12724 * Return perf_event FD of a ring buffer in *buf_idx* slot of
12725 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12726 * select()/poll()/epoll() Linux syscalls.
12727 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)12728 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12729 {
12730 struct perf_cpu_buf *cpu_buf;
12731
12732 if (buf_idx >= pb->cpu_cnt)
12733 return libbpf_err(-EINVAL);
12734
12735 cpu_buf = pb->cpu_bufs[buf_idx];
12736 if (!cpu_buf)
12737 return libbpf_err(-ENOENT);
12738
12739 return cpu_buf->fd;
12740 }
12741
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)12742 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12743 {
12744 struct perf_cpu_buf *cpu_buf;
12745
12746 if (buf_idx >= pb->cpu_cnt)
12747 return libbpf_err(-EINVAL);
12748
12749 cpu_buf = pb->cpu_bufs[buf_idx];
12750 if (!cpu_buf)
12751 return libbpf_err(-ENOENT);
12752
12753 *buf = cpu_buf->base;
12754 *buf_size = pb->mmap_size;
12755 return 0;
12756 }
12757
12758 /*
12759 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12760 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12761 * consume, do nothing and return success.
12762 * Returns:
12763 * - 0 on success;
12764 * - <0 on failure.
12765 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)12766 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12767 {
12768 struct perf_cpu_buf *cpu_buf;
12769
12770 if (buf_idx >= pb->cpu_cnt)
12771 return libbpf_err(-EINVAL);
12772
12773 cpu_buf = pb->cpu_bufs[buf_idx];
12774 if (!cpu_buf)
12775 return libbpf_err(-ENOENT);
12776
12777 return perf_buffer__process_records(pb, cpu_buf);
12778 }
12779
perf_buffer__consume(struct perf_buffer * pb)12780 int perf_buffer__consume(struct perf_buffer *pb)
12781 {
12782 int i, err;
12783
12784 for (i = 0; i < pb->cpu_cnt; i++) {
12785 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12786
12787 if (!cpu_buf)
12788 continue;
12789
12790 err = perf_buffer__process_records(pb, cpu_buf);
12791 if (err) {
12792 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12793 return libbpf_err(err);
12794 }
12795 }
12796 return 0;
12797 }
12798
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)12799 int bpf_program__set_attach_target(struct bpf_program *prog,
12800 int attach_prog_fd,
12801 const char *attach_func_name)
12802 {
12803 int btf_obj_fd = 0, btf_id = 0, err;
12804
12805 if (!prog || attach_prog_fd < 0)
12806 return libbpf_err(-EINVAL);
12807
12808 if (prog->obj->loaded)
12809 return libbpf_err(-EINVAL);
12810
12811 if (attach_prog_fd && !attach_func_name) {
12812 /* remember attach_prog_fd and let bpf_program__load() find
12813 * BTF ID during the program load
12814 */
12815 prog->attach_prog_fd = attach_prog_fd;
12816 return 0;
12817 }
12818
12819 if (attach_prog_fd) {
12820 btf_id = libbpf_find_prog_btf_id(attach_func_name,
12821 attach_prog_fd);
12822 if (btf_id < 0)
12823 return libbpf_err(btf_id);
12824 } else {
12825 if (!attach_func_name)
12826 return libbpf_err(-EINVAL);
12827
12828 /* load btf_vmlinux, if not yet */
12829 err = bpf_object__load_vmlinux_btf(prog->obj, true);
12830 if (err)
12831 return libbpf_err(err);
12832 err = find_kernel_btf_id(prog->obj, attach_func_name,
12833 prog->expected_attach_type,
12834 &btf_obj_fd, &btf_id);
12835 if (err)
12836 return libbpf_err(err);
12837 }
12838
12839 prog->attach_btf_id = btf_id;
12840 prog->attach_btf_obj_fd = btf_obj_fd;
12841 prog->attach_prog_fd = attach_prog_fd;
12842 return 0;
12843 }
12844
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)12845 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12846 {
12847 int err = 0, n, len, start, end = -1;
12848 bool *tmp;
12849
12850 *mask = NULL;
12851 *mask_sz = 0;
12852
12853 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12854 while (*s) {
12855 if (*s == ',' || *s == '\n') {
12856 s++;
12857 continue;
12858 }
12859 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12860 if (n <= 0 || n > 2) {
12861 pr_warn("Failed to get CPU range %s: %d\n", s, n);
12862 err = -EINVAL;
12863 goto cleanup;
12864 } else if (n == 1) {
12865 end = start;
12866 }
12867 if (start < 0 || start > end) {
12868 pr_warn("Invalid CPU range [%d,%d] in %s\n",
12869 start, end, s);
12870 err = -EINVAL;
12871 goto cleanup;
12872 }
12873 tmp = realloc(*mask, end + 1);
12874 if (!tmp) {
12875 err = -ENOMEM;
12876 goto cleanup;
12877 }
12878 *mask = tmp;
12879 memset(tmp + *mask_sz, 0, start - *mask_sz);
12880 memset(tmp + start, 1, end - start + 1);
12881 *mask_sz = end + 1;
12882 s += len;
12883 }
12884 if (!*mask_sz) {
12885 pr_warn("Empty CPU range\n");
12886 return -EINVAL;
12887 }
12888 return 0;
12889 cleanup:
12890 free(*mask);
12891 *mask = NULL;
12892 return err;
12893 }
12894
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)12895 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12896 {
12897 int fd, err = 0, len;
12898 char buf[128];
12899
12900 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12901 if (fd < 0) {
12902 err = -errno;
12903 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12904 return err;
12905 }
12906 len = read(fd, buf, sizeof(buf));
12907 close(fd);
12908 if (len <= 0) {
12909 err = len ? -errno : -EINVAL;
12910 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12911 return err;
12912 }
12913 if (len >= sizeof(buf)) {
12914 pr_warn("CPU mask is too big in file %s\n", fcpu);
12915 return -E2BIG;
12916 }
12917 buf[len] = '\0';
12918
12919 return parse_cpu_mask_str(buf, mask, mask_sz);
12920 }
12921
libbpf_num_possible_cpus(void)12922 int libbpf_num_possible_cpus(void)
12923 {
12924 static const char *fcpu = "/sys/devices/system/cpu/possible";
12925 static int cpus;
12926 int err, n, i, tmp_cpus;
12927 bool *mask;
12928
12929 tmp_cpus = READ_ONCE(cpus);
12930 if (tmp_cpus > 0)
12931 return tmp_cpus;
12932
12933 err = parse_cpu_mask_file(fcpu, &mask, &n);
12934 if (err)
12935 return libbpf_err(err);
12936
12937 tmp_cpus = 0;
12938 for (i = 0; i < n; i++) {
12939 if (mask[i])
12940 tmp_cpus++;
12941 }
12942 free(mask);
12943
12944 WRITE_ONCE(cpus, tmp_cpus);
12945 return tmp_cpus;
12946 }
12947
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt)12948 static int populate_skeleton_maps(const struct bpf_object *obj,
12949 struct bpf_map_skeleton *maps,
12950 size_t map_cnt)
12951 {
12952 int i;
12953
12954 for (i = 0; i < map_cnt; i++) {
12955 struct bpf_map **map = maps[i].map;
12956 const char *name = maps[i].name;
12957 void **mmaped = maps[i].mmaped;
12958
12959 *map = bpf_object__find_map_by_name(obj, name);
12960 if (!*map) {
12961 pr_warn("failed to find skeleton map '%s'\n", name);
12962 return -ESRCH;
12963 }
12964
12965 /* externs shouldn't be pre-setup from user code */
12966 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12967 *mmaped = (*map)->mmaped;
12968 }
12969 return 0;
12970 }
12971
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt)12972 static int populate_skeleton_progs(const struct bpf_object *obj,
12973 struct bpf_prog_skeleton *progs,
12974 size_t prog_cnt)
12975 {
12976 int i;
12977
12978 for (i = 0; i < prog_cnt; i++) {
12979 struct bpf_program **prog = progs[i].prog;
12980 const char *name = progs[i].name;
12981
12982 *prog = bpf_object__find_program_by_name(obj, name);
12983 if (!*prog) {
12984 pr_warn("failed to find skeleton program '%s'\n", name);
12985 return -ESRCH;
12986 }
12987 }
12988 return 0;
12989 }
12990
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)12991 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12992 const struct bpf_object_open_opts *opts)
12993 {
12994 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12995 .object_name = s->name,
12996 );
12997 struct bpf_object *obj;
12998 int err;
12999
13000 /* Attempt to preserve opts->object_name, unless overriden by user
13001 * explicitly. Overwriting object name for skeletons is discouraged,
13002 * as it breaks global data maps, because they contain object name
13003 * prefix as their own map name prefix. When skeleton is generated,
13004 * bpftool is making an assumption that this name will stay the same.
13005 */
13006 if (opts) {
13007 memcpy(&skel_opts, opts, sizeof(*opts));
13008 if (!opts->object_name)
13009 skel_opts.object_name = s->name;
13010 }
13011
13012 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13013 err = libbpf_get_error(obj);
13014 if (err) {
13015 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13016 s->name, err);
13017 return libbpf_err(err);
13018 }
13019
13020 *s->obj = obj;
13021 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13022 if (err) {
13023 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13024 return libbpf_err(err);
13025 }
13026
13027 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13028 if (err) {
13029 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13030 return libbpf_err(err);
13031 }
13032
13033 return 0;
13034 }
13035
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13036 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13037 {
13038 int err, len, var_idx, i;
13039 const char *var_name;
13040 const struct bpf_map *map;
13041 struct btf *btf;
13042 __u32 map_type_id;
13043 const struct btf_type *map_type, *var_type;
13044 const struct bpf_var_skeleton *var_skel;
13045 struct btf_var_secinfo *var;
13046
13047 if (!s->obj)
13048 return libbpf_err(-EINVAL);
13049
13050 btf = bpf_object__btf(s->obj);
13051 if (!btf) {
13052 pr_warn("subskeletons require BTF at runtime (object %s)\n",
13053 bpf_object__name(s->obj));
13054 return libbpf_err(-errno);
13055 }
13056
13057 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13058 if (err) {
13059 pr_warn("failed to populate subskeleton maps: %d\n", err);
13060 return libbpf_err(err);
13061 }
13062
13063 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13064 if (err) {
13065 pr_warn("failed to populate subskeleton maps: %d\n", err);
13066 return libbpf_err(err);
13067 }
13068
13069 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13070 var_skel = &s->vars[var_idx];
13071 map = *var_skel->map;
13072 map_type_id = bpf_map__btf_value_type_id(map);
13073 map_type = btf__type_by_id(btf, map_type_id);
13074
13075 if (!btf_is_datasec(map_type)) {
13076 pr_warn("type for map '%1$s' is not a datasec: %2$s",
13077 bpf_map__name(map),
13078 __btf_kind_str(btf_kind(map_type)));
13079 return libbpf_err(-EINVAL);
13080 }
13081
13082 len = btf_vlen(map_type);
13083 var = btf_var_secinfos(map_type);
13084 for (i = 0; i < len; i++, var++) {
13085 var_type = btf__type_by_id(btf, var->type);
13086 var_name = btf__name_by_offset(btf, var_type->name_off);
13087 if (strcmp(var_name, var_skel->name) == 0) {
13088 *var_skel->addr = map->mmaped + var->offset;
13089 break;
13090 }
13091 }
13092 }
13093 return 0;
13094 }
13095
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)13096 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13097 {
13098 if (!s)
13099 return;
13100 free(s->maps);
13101 free(s->progs);
13102 free(s->vars);
13103 free(s);
13104 }
13105
bpf_object__load_skeleton(struct bpf_object_skeleton * s)13106 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13107 {
13108 int i, err;
13109
13110 err = bpf_object__load(*s->obj);
13111 if (err) {
13112 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13113 return libbpf_err(err);
13114 }
13115
13116 for (i = 0; i < s->map_cnt; i++) {
13117 struct bpf_map *map = *s->maps[i].map;
13118 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13119 int prot, map_fd = bpf_map__fd(map);
13120 void **mmaped = s->maps[i].mmaped;
13121
13122 if (!mmaped)
13123 continue;
13124
13125 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13126 *mmaped = NULL;
13127 continue;
13128 }
13129
13130 if (map->def.map_flags & BPF_F_RDONLY_PROG)
13131 prot = PROT_READ;
13132 else
13133 prot = PROT_READ | PROT_WRITE;
13134
13135 /* Remap anonymous mmap()-ed "map initialization image" as
13136 * a BPF map-backed mmap()-ed memory, but preserving the same
13137 * memory address. This will cause kernel to change process'
13138 * page table to point to a different piece of kernel memory,
13139 * but from userspace point of view memory address (and its
13140 * contents, being identical at this point) will stay the
13141 * same. This mapping will be released by bpf_object__close()
13142 * as per normal clean up procedure, so we don't need to worry
13143 * about it from skeleton's clean up perspective.
13144 */
13145 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13146 if (*mmaped == MAP_FAILED) {
13147 err = -errno;
13148 *mmaped = NULL;
13149 pr_warn("failed to re-mmap() map '%s': %d\n",
13150 bpf_map__name(map), err);
13151 return libbpf_err(err);
13152 }
13153 }
13154
13155 return 0;
13156 }
13157
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)13158 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13159 {
13160 int i, err;
13161
13162 for (i = 0; i < s->prog_cnt; i++) {
13163 struct bpf_program *prog = *s->progs[i].prog;
13164 struct bpf_link **link = s->progs[i].link;
13165
13166 if (!prog->autoload || !prog->autoattach)
13167 continue;
13168
13169 /* auto-attaching not supported for this program */
13170 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13171 continue;
13172
13173 /* if user already set the link manually, don't attempt auto-attach */
13174 if (*link)
13175 continue;
13176
13177 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13178 if (err) {
13179 pr_warn("prog '%s': failed to auto-attach: %d\n",
13180 bpf_program__name(prog), err);
13181 return libbpf_err(err);
13182 }
13183
13184 /* It's possible that for some SEC() definitions auto-attach
13185 * is supported in some cases (e.g., if definition completely
13186 * specifies target information), but is not in other cases.
13187 * SEC("uprobe") is one such case. If user specified target
13188 * binary and function name, such BPF program can be
13189 * auto-attached. But if not, it shouldn't trigger skeleton's
13190 * attach to fail. It should just be skipped.
13191 * attach_fn signals such case with returning 0 (no error) and
13192 * setting link to NULL.
13193 */
13194 }
13195
13196 return 0;
13197 }
13198
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)13199 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13200 {
13201 int i;
13202
13203 for (i = 0; i < s->prog_cnt; i++) {
13204 struct bpf_link **link = s->progs[i].link;
13205
13206 bpf_link__destroy(*link);
13207 *link = NULL;
13208 }
13209 }
13210
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)13211 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13212 {
13213 if (!s)
13214 return;
13215
13216 if (s->progs)
13217 bpf_object__detach_skeleton(s);
13218 if (s->obj)
13219 bpf_object__close(*s->obj);
13220 free(s->maps);
13221 free(s->progs);
13222 free(s);
13223 }
13224