1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57 #include "bpf_gen_internal.h"
58
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC 0xcafe4a11
61 #endif
62
63 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
64
65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
66 * compilation if user enables corresponding warning. Disable it explicitly.
67 */
68 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
69
70 #define __printf(a, b) __attribute__((format(printf, a, b)))
71
72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
74
__base_pr(enum libbpf_print_level level,const char * format,va_list args)75 static int __base_pr(enum libbpf_print_level level, const char *format,
76 va_list args)
77 {
78 if (level == LIBBPF_DEBUG)
79 return 0;
80
81 return vfprintf(stderr, format, args);
82 }
83
84 static libbpf_print_fn_t __libbpf_pr = __base_pr;
85
libbpf_set_print(libbpf_print_fn_t fn)86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
87 {
88 libbpf_print_fn_t old_print_fn = __libbpf_pr;
89
90 __libbpf_pr = fn;
91 return old_print_fn;
92 }
93
94 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)95 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
96 {
97 va_list args;
98
99 if (!__libbpf_pr)
100 return;
101
102 va_start(args, format);
103 __libbpf_pr(level, format, args);
104 va_end(args);
105 }
106
pr_perm_msg(int err)107 static void pr_perm_msg(int err)
108 {
109 struct rlimit limit;
110 char buf[100];
111
112 if (err != -EPERM || geteuid() != 0)
113 return;
114
115 err = getrlimit(RLIMIT_MEMLOCK, &limit);
116 if (err)
117 return;
118
119 if (limit.rlim_cur == RLIM_INFINITY)
120 return;
121
122 if (limit.rlim_cur < 1024)
123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
124 else if (limit.rlim_cur < 1024*1024)
125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
126 else
127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
128
129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
130 buf);
131 }
132
133 #define STRERR_BUFSIZE 128
134
135 /* Copied from tools/perf/util/util.h */
136 #ifndef zfree
137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
138 #endif
139
140 #ifndef zclose
141 # define zclose(fd) ({ \
142 int ___err = 0; \
143 if ((fd) >= 0) \
144 ___err = close((fd)); \
145 fd = -1; \
146 ___err; })
147 #endif
148
ptr_to_u64(const void * ptr)149 static inline __u64 ptr_to_u64(const void *ptr)
150 {
151 return (__u64) (unsigned long) ptr;
152 }
153
154 /* this goes away in libbpf 1.0 */
155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE;
156
libbpf_set_strict_mode(enum libbpf_strict_mode mode)157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
158 {
159 libbpf_mode = mode;
160 return 0;
161 }
162
libbpf_major_version(void)163 __u32 libbpf_major_version(void)
164 {
165 return LIBBPF_MAJOR_VERSION;
166 }
167
libbpf_minor_version(void)168 __u32 libbpf_minor_version(void)
169 {
170 return LIBBPF_MINOR_VERSION;
171 }
172
libbpf_version_string(void)173 const char *libbpf_version_string(void)
174 {
175 #define __S(X) #X
176 #define _S(X) __S(X)
177 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
178 #undef _S
179 #undef __S
180 }
181
182 enum reloc_type {
183 RELO_LD64,
184 RELO_CALL,
185 RELO_DATA,
186 RELO_EXTERN_VAR,
187 RELO_EXTERN_FUNC,
188 RELO_SUBPROG_ADDR,
189 RELO_CORE,
190 };
191
192 struct reloc_desc {
193 enum reloc_type type;
194 int insn_idx;
195 union {
196 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
197 struct {
198 int map_idx;
199 int sym_off;
200 };
201 };
202 };
203
204 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
205 enum sec_def_flags {
206 SEC_NONE = 0,
207 /* expected_attach_type is optional, if kernel doesn't support that */
208 SEC_EXP_ATTACH_OPT = 1,
209 /* legacy, only used by libbpf_get_type_names() and
210 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
211 * This used to be associated with cgroup (and few other) BPF programs
212 * that were attachable through BPF_PROG_ATTACH command. Pretty
213 * meaningless nowadays, though.
214 */
215 SEC_ATTACHABLE = 2,
216 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
217 /* attachment target is specified through BTF ID in either kernel or
218 * other BPF program's BTF object */
219 SEC_ATTACH_BTF = 4,
220 /* BPF program type allows sleeping/blocking in kernel */
221 SEC_SLEEPABLE = 8,
222 /* allow non-strict prefix matching */
223 SEC_SLOPPY_PFX = 16,
224 /* BPF program support non-linear XDP buffer */
225 SEC_XDP_FRAGS = 32,
226 /* deprecated sec definitions not supposed to be used */
227 SEC_DEPRECATED = 64,
228 };
229
230 struct bpf_sec_def {
231 char *sec;
232 enum bpf_prog_type prog_type;
233 enum bpf_attach_type expected_attach_type;
234 long cookie;
235 int handler_id;
236
237 libbpf_prog_setup_fn_t prog_setup_fn;
238 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
239 libbpf_prog_attach_fn_t prog_attach_fn;
240 };
241
242 /*
243 * bpf_prog should be a better name but it has been used in
244 * linux/filter.h.
245 */
246 struct bpf_program {
247 const struct bpf_sec_def *sec_def;
248 char *sec_name;
249 size_t sec_idx;
250 /* this program's instruction offset (in number of instructions)
251 * within its containing ELF section
252 */
253 size_t sec_insn_off;
254 /* number of original instructions in ELF section belonging to this
255 * program, not taking into account subprogram instructions possible
256 * appended later during relocation
257 */
258 size_t sec_insn_cnt;
259 /* Offset (in number of instructions) of the start of instruction
260 * belonging to this BPF program within its containing main BPF
261 * program. For the entry-point (main) BPF program, this is always
262 * zero. For a sub-program, this gets reset before each of main BPF
263 * programs are processed and relocated and is used to determined
264 * whether sub-program was already appended to the main program, and
265 * if yes, at which instruction offset.
266 */
267 size_t sub_insn_off;
268
269 char *name;
270 /* name with / replaced by _; makes recursive pinning
271 * in bpf_object__pin_programs easier
272 */
273 char *pin_name;
274
275 /* instructions that belong to BPF program; insns[0] is located at
276 * sec_insn_off instruction within its ELF section in ELF file, so
277 * when mapping ELF file instruction index to the local instruction,
278 * one needs to subtract sec_insn_off; and vice versa.
279 */
280 struct bpf_insn *insns;
281 /* actual number of instruction in this BPF program's image; for
282 * entry-point BPF programs this includes the size of main program
283 * itself plus all the used sub-programs, appended at the end
284 */
285 size_t insns_cnt;
286
287 struct reloc_desc *reloc_desc;
288 int nr_reloc;
289
290 /* BPF verifier log settings */
291 char *log_buf;
292 size_t log_size;
293 __u32 log_level;
294
295 struct {
296 int nr;
297 int *fds;
298 } instances;
299 bpf_program_prep_t preprocessor;
300
301 struct bpf_object *obj;
302 void *priv;
303 bpf_program_clear_priv_t clear_priv;
304
305 bool autoload;
306 bool mark_btf_static;
307 enum bpf_prog_type type;
308 enum bpf_attach_type expected_attach_type;
309 int prog_ifindex;
310 __u32 attach_btf_obj_fd;
311 __u32 attach_btf_id;
312 __u32 attach_prog_fd;
313 void *func_info;
314 __u32 func_info_rec_size;
315 __u32 func_info_cnt;
316
317 void *line_info;
318 __u32 line_info_rec_size;
319 __u32 line_info_cnt;
320 __u32 prog_flags;
321 };
322
323 struct bpf_struct_ops {
324 const char *tname;
325 const struct btf_type *type;
326 struct bpf_program **progs;
327 __u32 *kern_func_off;
328 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
329 void *data;
330 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
331 * btf_vmlinux's format.
332 * struct bpf_struct_ops_tcp_congestion_ops {
333 * [... some other kernel fields ...]
334 * struct tcp_congestion_ops data;
335 * }
336 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
337 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
338 * from "data".
339 */
340 void *kern_vdata;
341 __u32 type_id;
342 };
343
344 #define DATA_SEC ".data"
345 #define BSS_SEC ".bss"
346 #define RODATA_SEC ".rodata"
347 #define KCONFIG_SEC ".kconfig"
348 #define KSYMS_SEC ".ksyms"
349 #define STRUCT_OPS_SEC ".struct_ops"
350
351 enum libbpf_map_type {
352 LIBBPF_MAP_UNSPEC,
353 LIBBPF_MAP_DATA,
354 LIBBPF_MAP_BSS,
355 LIBBPF_MAP_RODATA,
356 LIBBPF_MAP_KCONFIG,
357 };
358
359 struct bpf_map {
360 struct bpf_object *obj;
361 char *name;
362 /* real_name is defined for special internal maps (.rodata*,
363 * .data*, .bss, .kconfig) and preserves their original ELF section
364 * name. This is important to be be able to find corresponding BTF
365 * DATASEC information.
366 */
367 char *real_name;
368 int fd;
369 int sec_idx;
370 size_t sec_offset;
371 int map_ifindex;
372 int inner_map_fd;
373 struct bpf_map_def def;
374 __u32 numa_node;
375 __u32 btf_var_idx;
376 __u32 btf_key_type_id;
377 __u32 btf_value_type_id;
378 __u32 btf_vmlinux_value_type_id;
379 void *priv;
380 bpf_map_clear_priv_t clear_priv;
381 enum libbpf_map_type libbpf_type;
382 void *mmaped;
383 struct bpf_struct_ops *st_ops;
384 struct bpf_map *inner_map;
385 void **init_slots;
386 int init_slots_sz;
387 char *pin_path;
388 bool pinned;
389 bool reused;
390 bool autocreate;
391 __u64 map_extra;
392 };
393
394 enum extern_type {
395 EXT_UNKNOWN,
396 EXT_KCFG,
397 EXT_KSYM,
398 };
399
400 enum kcfg_type {
401 KCFG_UNKNOWN,
402 KCFG_CHAR,
403 KCFG_BOOL,
404 KCFG_INT,
405 KCFG_TRISTATE,
406 KCFG_CHAR_ARR,
407 };
408
409 struct extern_desc {
410 enum extern_type type;
411 int sym_idx;
412 int btf_id;
413 int sec_btf_id;
414 const char *name;
415 bool is_set;
416 bool is_weak;
417 union {
418 struct {
419 enum kcfg_type type;
420 int sz;
421 int align;
422 int data_off;
423 bool is_signed;
424 } kcfg;
425 struct {
426 unsigned long long addr;
427
428 /* target btf_id of the corresponding kernel var. */
429 int kernel_btf_obj_fd;
430 int kernel_btf_id;
431
432 /* local btf_id of the ksym extern's type. */
433 __u32 type_id;
434 /* BTF fd index to be patched in for insn->off, this is
435 * 0 for vmlinux BTF, index in obj->fd_array for module
436 * BTF
437 */
438 __s16 btf_fd_idx;
439 } ksym;
440 };
441 };
442
443 static LIST_HEAD(bpf_objects_list);
444
445 struct module_btf {
446 struct btf *btf;
447 char *name;
448 __u32 id;
449 int fd;
450 int fd_array_idx;
451 };
452
453 enum sec_type {
454 SEC_UNUSED = 0,
455 SEC_RELO,
456 SEC_BSS,
457 SEC_DATA,
458 SEC_RODATA,
459 };
460
461 struct elf_sec_desc {
462 enum sec_type sec_type;
463 Elf64_Shdr *shdr;
464 Elf_Data *data;
465 };
466
467 struct elf_state {
468 int fd;
469 const void *obj_buf;
470 size_t obj_buf_sz;
471 Elf *elf;
472 Elf64_Ehdr *ehdr;
473 Elf_Data *symbols;
474 Elf_Data *st_ops_data;
475 size_t shstrndx; /* section index for section name strings */
476 size_t strtabidx;
477 struct elf_sec_desc *secs;
478 int sec_cnt;
479 int maps_shndx;
480 int btf_maps_shndx;
481 __u32 btf_maps_sec_btf_id;
482 int text_shndx;
483 int symbols_shndx;
484 int st_ops_shndx;
485 };
486
487 struct usdt_manager;
488
489 struct bpf_object {
490 char name[BPF_OBJ_NAME_LEN];
491 char license[64];
492 __u32 kern_version;
493
494 struct bpf_program *programs;
495 size_t nr_programs;
496 struct bpf_map *maps;
497 size_t nr_maps;
498 size_t maps_cap;
499
500 char *kconfig;
501 struct extern_desc *externs;
502 int nr_extern;
503 int kconfig_map_idx;
504
505 bool loaded;
506 bool has_subcalls;
507 bool has_rodata;
508
509 struct bpf_gen *gen_loader;
510
511 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
512 struct elf_state efile;
513 /*
514 * All loaded bpf_object are linked in a list, which is
515 * hidden to caller. bpf_objects__<func> handlers deal with
516 * all objects.
517 */
518 struct list_head list;
519
520 struct btf *btf;
521 struct btf_ext *btf_ext;
522
523 /* Parse and load BTF vmlinux if any of the programs in the object need
524 * it at load time.
525 */
526 struct btf *btf_vmlinux;
527 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
528 * override for vmlinux BTF.
529 */
530 char *btf_custom_path;
531 /* vmlinux BTF override for CO-RE relocations */
532 struct btf *btf_vmlinux_override;
533 /* Lazily initialized kernel module BTFs */
534 struct module_btf *btf_modules;
535 bool btf_modules_loaded;
536 size_t btf_module_cnt;
537 size_t btf_module_cap;
538
539 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
540 char *log_buf;
541 size_t log_size;
542 __u32 log_level;
543
544 void *priv;
545 bpf_object_clear_priv_t clear_priv;
546
547 int *fd_array;
548 size_t fd_array_cap;
549 size_t fd_array_cnt;
550
551 struct usdt_manager *usdt_man;
552
553 char path[];
554 };
555
556 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
557 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
558 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
559 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
560 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
561 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
562 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
563 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
564 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
565
bpf_program__unload(struct bpf_program * prog)566 void bpf_program__unload(struct bpf_program *prog)
567 {
568 int i;
569
570 if (!prog)
571 return;
572
573 /*
574 * If the object is opened but the program was never loaded,
575 * it is possible that prog->instances.nr == -1.
576 */
577 if (prog->instances.nr > 0) {
578 for (i = 0; i < prog->instances.nr; i++)
579 zclose(prog->instances.fds[i]);
580 } else if (prog->instances.nr != -1) {
581 pr_warn("Internal error: instances.nr is %d\n",
582 prog->instances.nr);
583 }
584
585 prog->instances.nr = -1;
586 zfree(&prog->instances.fds);
587
588 zfree(&prog->func_info);
589 zfree(&prog->line_info);
590 }
591
bpf_program__exit(struct bpf_program * prog)592 static void bpf_program__exit(struct bpf_program *prog)
593 {
594 if (!prog)
595 return;
596
597 if (prog->clear_priv)
598 prog->clear_priv(prog, prog->priv);
599
600 prog->priv = NULL;
601 prog->clear_priv = NULL;
602
603 bpf_program__unload(prog);
604 zfree(&prog->name);
605 zfree(&prog->sec_name);
606 zfree(&prog->pin_name);
607 zfree(&prog->insns);
608 zfree(&prog->reloc_desc);
609
610 prog->nr_reloc = 0;
611 prog->insns_cnt = 0;
612 prog->sec_idx = -1;
613 }
614
__bpf_program__pin_name(struct bpf_program * prog)615 static char *__bpf_program__pin_name(struct bpf_program *prog)
616 {
617 char *name, *p;
618
619 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME)
620 name = strdup(prog->name);
621 else
622 name = strdup(prog->sec_name);
623
624 if (!name)
625 return NULL;
626
627 p = name;
628
629 while ((p = strchr(p, '/')))
630 *p = '_';
631
632 return name;
633 }
634
insn_is_subprog_call(const struct bpf_insn * insn)635 static bool insn_is_subprog_call(const struct bpf_insn *insn)
636 {
637 return BPF_CLASS(insn->code) == BPF_JMP &&
638 BPF_OP(insn->code) == BPF_CALL &&
639 BPF_SRC(insn->code) == BPF_K &&
640 insn->src_reg == BPF_PSEUDO_CALL &&
641 insn->dst_reg == 0 &&
642 insn->off == 0;
643 }
644
is_call_insn(const struct bpf_insn * insn)645 static bool is_call_insn(const struct bpf_insn *insn)
646 {
647 return insn->code == (BPF_JMP | BPF_CALL);
648 }
649
insn_is_pseudo_func(struct bpf_insn * insn)650 static bool insn_is_pseudo_func(struct bpf_insn *insn)
651 {
652 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
653 }
654
655 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)656 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
657 const char *name, size_t sec_idx, const char *sec_name,
658 size_t sec_off, void *insn_data, size_t insn_data_sz)
659 {
660 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
661 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
662 sec_name, name, sec_off, insn_data_sz);
663 return -EINVAL;
664 }
665
666 memset(prog, 0, sizeof(*prog));
667 prog->obj = obj;
668
669 prog->sec_idx = sec_idx;
670 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
671 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
672 /* insns_cnt can later be increased by appending used subprograms */
673 prog->insns_cnt = prog->sec_insn_cnt;
674
675 prog->type = BPF_PROG_TYPE_UNSPEC;
676
677 /* libbpf's convention for SEC("?abc...") is that it's just like
678 * SEC("abc...") but the corresponding bpf_program starts out with
679 * autoload set to false.
680 */
681 if (sec_name[0] == '?') {
682 prog->autoload = false;
683 /* from now on forget there was ? in section name */
684 sec_name++;
685 } else {
686 prog->autoload = true;
687 }
688
689 prog->instances.fds = NULL;
690 prog->instances.nr = -1;
691
692 /* inherit object's log_level */
693 prog->log_level = obj->log_level;
694
695 prog->sec_name = strdup(sec_name);
696 if (!prog->sec_name)
697 goto errout;
698
699 prog->name = strdup(name);
700 if (!prog->name)
701 goto errout;
702
703 prog->pin_name = __bpf_program__pin_name(prog);
704 if (!prog->pin_name)
705 goto errout;
706
707 prog->insns = malloc(insn_data_sz);
708 if (!prog->insns)
709 goto errout;
710 memcpy(prog->insns, insn_data, insn_data_sz);
711
712 return 0;
713 errout:
714 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
715 bpf_program__exit(prog);
716 return -ENOMEM;
717 }
718
719 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)720 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
721 const char *sec_name, int sec_idx)
722 {
723 Elf_Data *symbols = obj->efile.symbols;
724 struct bpf_program *prog, *progs;
725 void *data = sec_data->d_buf;
726 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
727 int nr_progs, err, i;
728 const char *name;
729 Elf64_Sym *sym;
730
731 progs = obj->programs;
732 nr_progs = obj->nr_programs;
733 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
734 sec_off = 0;
735
736 for (i = 0; i < nr_syms; i++) {
737 sym = elf_sym_by_idx(obj, i);
738
739 if (sym->st_shndx != sec_idx)
740 continue;
741 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
742 continue;
743
744 prog_sz = sym->st_size;
745 sec_off = sym->st_value;
746
747 name = elf_sym_str(obj, sym->st_name);
748 if (!name) {
749 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
750 sec_name, sec_off);
751 return -LIBBPF_ERRNO__FORMAT;
752 }
753
754 if (sec_off + prog_sz > sec_sz) {
755 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
756 sec_name, sec_off);
757 return -LIBBPF_ERRNO__FORMAT;
758 }
759
760 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
761 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
762 return -ENOTSUP;
763 }
764
765 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
766 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
767
768 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
769 if (!progs) {
770 /*
771 * In this case the original obj->programs
772 * is still valid, so don't need special treat for
773 * bpf_close_object().
774 */
775 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
776 sec_name, name);
777 return -ENOMEM;
778 }
779 obj->programs = progs;
780
781 prog = &progs[nr_progs];
782
783 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
784 sec_off, data + sec_off, prog_sz);
785 if (err)
786 return err;
787
788 /* if function is a global/weak symbol, but has restricted
789 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
790 * as static to enable more permissive BPF verification mode
791 * with more outside context available to BPF verifier
792 */
793 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
794 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
795 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
796 prog->mark_btf_static = true;
797
798 nr_progs++;
799 obj->nr_programs = nr_progs;
800 }
801
802 return 0;
803 }
804
get_kernel_version(void)805 __u32 get_kernel_version(void)
806 {
807 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
808 * but Ubuntu provides /proc/version_signature file, as described at
809 * https://ubuntu.com/kernel, with an example contents below, which we
810 * can use to get a proper LINUX_VERSION_CODE.
811 *
812 * Ubuntu 5.4.0-12.15-generic 5.4.8
813 *
814 * In the above, 5.4.8 is what kernel is actually expecting, while
815 * uname() call will return 5.4.0 in info.release.
816 */
817 const char *ubuntu_kver_file = "/proc/version_signature";
818 __u32 major, minor, patch;
819 struct utsname info;
820
821 if (access(ubuntu_kver_file, R_OK) == 0) {
822 FILE *f;
823
824 f = fopen(ubuntu_kver_file, "r");
825 if (f) {
826 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
827 fclose(f);
828 return KERNEL_VERSION(major, minor, patch);
829 }
830 fclose(f);
831 }
832 /* something went wrong, fall back to uname() approach */
833 }
834
835 uname(&info);
836 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
837 return 0;
838 return KERNEL_VERSION(major, minor, patch);
839 }
840
841 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)842 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
843 {
844 struct btf_member *m;
845 int i;
846
847 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
848 if (btf_member_bit_offset(t, i) == bit_offset)
849 return m;
850 }
851
852 return NULL;
853 }
854
855 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)856 find_member_by_name(const struct btf *btf, const struct btf_type *t,
857 const char *name)
858 {
859 struct btf_member *m;
860 int i;
861
862 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
863 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
864 return m;
865 }
866
867 return NULL;
868 }
869
870 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
871 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
872 const char *name, __u32 kind);
873
874 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)875 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
876 const struct btf_type **type, __u32 *type_id,
877 const struct btf_type **vtype, __u32 *vtype_id,
878 const struct btf_member **data_member)
879 {
880 const struct btf_type *kern_type, *kern_vtype;
881 const struct btf_member *kern_data_member;
882 __s32 kern_vtype_id, kern_type_id;
883 __u32 i;
884
885 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
886 if (kern_type_id < 0) {
887 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
888 tname);
889 return kern_type_id;
890 }
891 kern_type = btf__type_by_id(btf, kern_type_id);
892
893 /* Find the corresponding "map_value" type that will be used
894 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
895 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
896 * btf_vmlinux.
897 */
898 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
899 tname, BTF_KIND_STRUCT);
900 if (kern_vtype_id < 0) {
901 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
902 STRUCT_OPS_VALUE_PREFIX, tname);
903 return kern_vtype_id;
904 }
905 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
906
907 /* Find "struct tcp_congestion_ops" from
908 * struct bpf_struct_ops_tcp_congestion_ops {
909 * [ ... ]
910 * struct tcp_congestion_ops data;
911 * }
912 */
913 kern_data_member = btf_members(kern_vtype);
914 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
915 if (kern_data_member->type == kern_type_id)
916 break;
917 }
918 if (i == btf_vlen(kern_vtype)) {
919 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
920 tname, STRUCT_OPS_VALUE_PREFIX, tname);
921 return -EINVAL;
922 }
923
924 *type = kern_type;
925 *type_id = kern_type_id;
926 *vtype = kern_vtype;
927 *vtype_id = kern_vtype_id;
928 *data_member = kern_data_member;
929
930 return 0;
931 }
932
bpf_map__is_struct_ops(const struct bpf_map * map)933 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
934 {
935 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
936 }
937
938 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)939 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
940 const struct btf *btf,
941 const struct btf *kern_btf)
942 {
943 const struct btf_member *member, *kern_member, *kern_data_member;
944 const struct btf_type *type, *kern_type, *kern_vtype;
945 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
946 struct bpf_struct_ops *st_ops;
947 void *data, *kern_data;
948 const char *tname;
949 int err;
950
951 st_ops = map->st_ops;
952 type = st_ops->type;
953 tname = st_ops->tname;
954 err = find_struct_ops_kern_types(kern_btf, tname,
955 &kern_type, &kern_type_id,
956 &kern_vtype, &kern_vtype_id,
957 &kern_data_member);
958 if (err)
959 return err;
960
961 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
962 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
963
964 map->def.value_size = kern_vtype->size;
965 map->btf_vmlinux_value_type_id = kern_vtype_id;
966
967 st_ops->kern_vdata = calloc(1, kern_vtype->size);
968 if (!st_ops->kern_vdata)
969 return -ENOMEM;
970
971 data = st_ops->data;
972 kern_data_off = kern_data_member->offset / 8;
973 kern_data = st_ops->kern_vdata + kern_data_off;
974
975 member = btf_members(type);
976 for (i = 0; i < btf_vlen(type); i++, member++) {
977 const struct btf_type *mtype, *kern_mtype;
978 __u32 mtype_id, kern_mtype_id;
979 void *mdata, *kern_mdata;
980 __s64 msize, kern_msize;
981 __u32 moff, kern_moff;
982 __u32 kern_member_idx;
983 const char *mname;
984
985 mname = btf__name_by_offset(btf, member->name_off);
986 kern_member = find_member_by_name(kern_btf, kern_type, mname);
987 if (!kern_member) {
988 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
989 map->name, mname);
990 return -ENOTSUP;
991 }
992
993 kern_member_idx = kern_member - btf_members(kern_type);
994 if (btf_member_bitfield_size(type, i) ||
995 btf_member_bitfield_size(kern_type, kern_member_idx)) {
996 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
997 map->name, mname);
998 return -ENOTSUP;
999 }
1000
1001 moff = member->offset / 8;
1002 kern_moff = kern_member->offset / 8;
1003
1004 mdata = data + moff;
1005 kern_mdata = kern_data + kern_moff;
1006
1007 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1008 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1009 &kern_mtype_id);
1010 if (BTF_INFO_KIND(mtype->info) !=
1011 BTF_INFO_KIND(kern_mtype->info)) {
1012 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1013 map->name, mname, BTF_INFO_KIND(mtype->info),
1014 BTF_INFO_KIND(kern_mtype->info));
1015 return -ENOTSUP;
1016 }
1017
1018 if (btf_is_ptr(mtype)) {
1019 struct bpf_program *prog;
1020
1021 prog = st_ops->progs[i];
1022 if (!prog)
1023 continue;
1024
1025 kern_mtype = skip_mods_and_typedefs(kern_btf,
1026 kern_mtype->type,
1027 &kern_mtype_id);
1028
1029 /* mtype->type must be a func_proto which was
1030 * guaranteed in bpf_object__collect_st_ops_relos(),
1031 * so only check kern_mtype for func_proto here.
1032 */
1033 if (!btf_is_func_proto(kern_mtype)) {
1034 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1035 map->name, mname);
1036 return -ENOTSUP;
1037 }
1038
1039 prog->attach_btf_id = kern_type_id;
1040 prog->expected_attach_type = kern_member_idx;
1041
1042 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1043
1044 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1045 map->name, mname, prog->name, moff,
1046 kern_moff);
1047
1048 continue;
1049 }
1050
1051 msize = btf__resolve_size(btf, mtype_id);
1052 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1053 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1054 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1055 map->name, mname, (ssize_t)msize,
1056 (ssize_t)kern_msize);
1057 return -ENOTSUP;
1058 }
1059
1060 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1061 map->name, mname, (unsigned int)msize,
1062 moff, kern_moff);
1063 memcpy(kern_mdata, mdata, msize);
1064 }
1065
1066 return 0;
1067 }
1068
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1069 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1070 {
1071 struct bpf_map *map;
1072 size_t i;
1073 int err;
1074
1075 for (i = 0; i < obj->nr_maps; i++) {
1076 map = &obj->maps[i];
1077
1078 if (!bpf_map__is_struct_ops(map))
1079 continue;
1080
1081 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1082 obj->btf_vmlinux);
1083 if (err)
1084 return err;
1085 }
1086
1087 return 0;
1088 }
1089
bpf_object__init_struct_ops_maps(struct bpf_object * obj)1090 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1091 {
1092 const struct btf_type *type, *datasec;
1093 const struct btf_var_secinfo *vsi;
1094 struct bpf_struct_ops *st_ops;
1095 const char *tname, *var_name;
1096 __s32 type_id, datasec_id;
1097 const struct btf *btf;
1098 struct bpf_map *map;
1099 __u32 i;
1100
1101 if (obj->efile.st_ops_shndx == -1)
1102 return 0;
1103
1104 btf = obj->btf;
1105 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1106 BTF_KIND_DATASEC);
1107 if (datasec_id < 0) {
1108 pr_warn("struct_ops init: DATASEC %s not found\n",
1109 STRUCT_OPS_SEC);
1110 return -EINVAL;
1111 }
1112
1113 datasec = btf__type_by_id(btf, datasec_id);
1114 vsi = btf_var_secinfos(datasec);
1115 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1116 type = btf__type_by_id(obj->btf, vsi->type);
1117 var_name = btf__name_by_offset(obj->btf, type->name_off);
1118
1119 type_id = btf__resolve_type(obj->btf, vsi->type);
1120 if (type_id < 0) {
1121 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1122 vsi->type, STRUCT_OPS_SEC);
1123 return -EINVAL;
1124 }
1125
1126 type = btf__type_by_id(obj->btf, type_id);
1127 tname = btf__name_by_offset(obj->btf, type->name_off);
1128 if (!tname[0]) {
1129 pr_warn("struct_ops init: anonymous type is not supported\n");
1130 return -ENOTSUP;
1131 }
1132 if (!btf_is_struct(type)) {
1133 pr_warn("struct_ops init: %s is not a struct\n", tname);
1134 return -EINVAL;
1135 }
1136
1137 map = bpf_object__add_map(obj);
1138 if (IS_ERR(map))
1139 return PTR_ERR(map);
1140
1141 map->sec_idx = obj->efile.st_ops_shndx;
1142 map->sec_offset = vsi->offset;
1143 map->name = strdup(var_name);
1144 if (!map->name)
1145 return -ENOMEM;
1146
1147 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1148 map->def.key_size = sizeof(int);
1149 map->def.value_size = type->size;
1150 map->def.max_entries = 1;
1151
1152 map->st_ops = calloc(1, sizeof(*map->st_ops));
1153 if (!map->st_ops)
1154 return -ENOMEM;
1155 st_ops = map->st_ops;
1156 st_ops->data = malloc(type->size);
1157 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1158 st_ops->kern_func_off = malloc(btf_vlen(type) *
1159 sizeof(*st_ops->kern_func_off));
1160 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1161 return -ENOMEM;
1162
1163 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1164 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1165 var_name, STRUCT_OPS_SEC);
1166 return -EINVAL;
1167 }
1168
1169 memcpy(st_ops->data,
1170 obj->efile.st_ops_data->d_buf + vsi->offset,
1171 type->size);
1172 st_ops->tname = tname;
1173 st_ops->type = type;
1174 st_ops->type_id = type_id;
1175
1176 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1177 tname, type_id, var_name, vsi->offset);
1178 }
1179
1180 return 0;
1181 }
1182
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1183 static struct bpf_object *bpf_object__new(const char *path,
1184 const void *obj_buf,
1185 size_t obj_buf_sz,
1186 const char *obj_name)
1187 {
1188 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST);
1189 struct bpf_object *obj;
1190 char *end;
1191
1192 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1193 if (!obj) {
1194 pr_warn("alloc memory failed for %s\n", path);
1195 return ERR_PTR(-ENOMEM);
1196 }
1197
1198 strcpy(obj->path, path);
1199 if (obj_name) {
1200 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1201 } else {
1202 /* Using basename() GNU version which doesn't modify arg. */
1203 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1204 end = strchr(obj->name, '.');
1205 if (end)
1206 *end = 0;
1207 }
1208
1209 obj->efile.fd = -1;
1210 /*
1211 * Caller of this function should also call
1212 * bpf_object__elf_finish() after data collection to return
1213 * obj_buf to user. If not, we should duplicate the buffer to
1214 * avoid user freeing them before elf finish.
1215 */
1216 obj->efile.obj_buf = obj_buf;
1217 obj->efile.obj_buf_sz = obj_buf_sz;
1218 obj->efile.maps_shndx = -1;
1219 obj->efile.btf_maps_shndx = -1;
1220 obj->efile.st_ops_shndx = -1;
1221 obj->kconfig_map_idx = -1;
1222
1223 obj->kern_version = get_kernel_version();
1224 obj->loaded = false;
1225
1226 INIT_LIST_HEAD(&obj->list);
1227 if (!strict)
1228 list_add(&obj->list, &bpf_objects_list);
1229 return obj;
1230 }
1231
bpf_object__elf_finish(struct bpf_object * obj)1232 static void bpf_object__elf_finish(struct bpf_object *obj)
1233 {
1234 if (!obj->efile.elf)
1235 return;
1236
1237 elf_end(obj->efile.elf);
1238 obj->efile.elf = NULL;
1239 obj->efile.symbols = NULL;
1240 obj->efile.st_ops_data = NULL;
1241
1242 zfree(&obj->efile.secs);
1243 obj->efile.sec_cnt = 0;
1244 zclose(obj->efile.fd);
1245 obj->efile.obj_buf = NULL;
1246 obj->efile.obj_buf_sz = 0;
1247 }
1248
bpf_object__elf_init(struct bpf_object * obj)1249 static int bpf_object__elf_init(struct bpf_object *obj)
1250 {
1251 Elf64_Ehdr *ehdr;
1252 int err = 0;
1253 Elf *elf;
1254
1255 if (obj->efile.elf) {
1256 pr_warn("elf: init internal error\n");
1257 return -LIBBPF_ERRNO__LIBELF;
1258 }
1259
1260 if (obj->efile.obj_buf_sz > 0) {
1261 /*
1262 * obj_buf should have been validated by
1263 * bpf_object__open_buffer().
1264 */
1265 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1266 } else {
1267 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1268 if (obj->efile.fd < 0) {
1269 char errmsg[STRERR_BUFSIZE], *cp;
1270
1271 err = -errno;
1272 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1273 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1274 return err;
1275 }
1276
1277 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1278 }
1279
1280 if (!elf) {
1281 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1282 err = -LIBBPF_ERRNO__LIBELF;
1283 goto errout;
1284 }
1285
1286 obj->efile.elf = elf;
1287
1288 if (elf_kind(elf) != ELF_K_ELF) {
1289 err = -LIBBPF_ERRNO__FORMAT;
1290 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1291 goto errout;
1292 }
1293
1294 if (gelf_getclass(elf) != ELFCLASS64) {
1295 err = -LIBBPF_ERRNO__FORMAT;
1296 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1297 goto errout;
1298 }
1299
1300 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1301 if (!obj->efile.ehdr) {
1302 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1303 err = -LIBBPF_ERRNO__FORMAT;
1304 goto errout;
1305 }
1306
1307 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1308 pr_warn("elf: failed to get section names section index for %s: %s\n",
1309 obj->path, elf_errmsg(-1));
1310 err = -LIBBPF_ERRNO__FORMAT;
1311 goto errout;
1312 }
1313
1314 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1315 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1316 pr_warn("elf: failed to get section names strings from %s: %s\n",
1317 obj->path, elf_errmsg(-1));
1318 err = -LIBBPF_ERRNO__FORMAT;
1319 goto errout;
1320 }
1321
1322 /* Old LLVM set e_machine to EM_NONE */
1323 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1324 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1325 err = -LIBBPF_ERRNO__FORMAT;
1326 goto errout;
1327 }
1328
1329 return 0;
1330 errout:
1331 bpf_object__elf_finish(obj);
1332 return err;
1333 }
1334
bpf_object__check_endianness(struct bpf_object * obj)1335 static int bpf_object__check_endianness(struct bpf_object *obj)
1336 {
1337 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1338 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1339 return 0;
1340 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1341 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1342 return 0;
1343 #else
1344 # error "Unrecognized __BYTE_ORDER__"
1345 #endif
1346 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1347 return -LIBBPF_ERRNO__ENDIAN;
1348 }
1349
1350 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1351 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1352 {
1353 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1354 * go over allowed ELF data section buffer
1355 */
1356 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1357 pr_debug("license of %s is %s\n", obj->path, obj->license);
1358 return 0;
1359 }
1360
1361 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1362 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1363 {
1364 __u32 kver;
1365
1366 if (size != sizeof(kver)) {
1367 pr_warn("invalid kver section in %s\n", obj->path);
1368 return -LIBBPF_ERRNO__FORMAT;
1369 }
1370 memcpy(&kver, data, sizeof(kver));
1371 obj->kern_version = kver;
1372 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1373 return 0;
1374 }
1375
bpf_map_type__is_map_in_map(enum bpf_map_type type)1376 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1377 {
1378 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1379 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1380 return true;
1381 return false;
1382 }
1383
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1384 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1385 {
1386 Elf_Data *data;
1387 Elf_Scn *scn;
1388
1389 if (!name)
1390 return -EINVAL;
1391
1392 scn = elf_sec_by_name(obj, name);
1393 data = elf_sec_data(obj, scn);
1394 if (data) {
1395 *size = data->d_size;
1396 return 0; /* found it */
1397 }
1398
1399 return -ENOENT;
1400 }
1401
find_elf_var_offset(const struct bpf_object * obj,const char * name,__u32 * off)1402 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1403 {
1404 Elf_Data *symbols = obj->efile.symbols;
1405 const char *sname;
1406 size_t si;
1407
1408 if (!name || !off)
1409 return -EINVAL;
1410
1411 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1412 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1413
1414 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1415 continue;
1416
1417 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1418 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1419 continue;
1420
1421 sname = elf_sym_str(obj, sym->st_name);
1422 if (!sname) {
1423 pr_warn("failed to get sym name string for var %s\n", name);
1424 return -EIO;
1425 }
1426 if (strcmp(name, sname) == 0) {
1427 *off = sym->st_value;
1428 return 0;
1429 }
1430 }
1431
1432 return -ENOENT;
1433 }
1434
bpf_object__add_map(struct bpf_object * obj)1435 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1436 {
1437 struct bpf_map *map;
1438 int err;
1439
1440 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1441 sizeof(*obj->maps), obj->nr_maps + 1);
1442 if (err)
1443 return ERR_PTR(err);
1444
1445 map = &obj->maps[obj->nr_maps++];
1446 map->obj = obj;
1447 map->fd = -1;
1448 map->inner_map_fd = -1;
1449 map->autocreate = true;
1450
1451 return map;
1452 }
1453
bpf_map_mmap_sz(const struct bpf_map * map)1454 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1455 {
1456 long page_sz = sysconf(_SC_PAGE_SIZE);
1457 size_t map_sz;
1458
1459 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1460 map_sz = roundup(map_sz, page_sz);
1461 return map_sz;
1462 }
1463
internal_map_name(struct bpf_object * obj,const char * real_name)1464 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1465 {
1466 char map_name[BPF_OBJ_NAME_LEN], *p;
1467 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1468
1469 /* This is one of the more confusing parts of libbpf for various
1470 * reasons, some of which are historical. The original idea for naming
1471 * internal names was to include as much of BPF object name prefix as
1472 * possible, so that it can be distinguished from similar internal
1473 * maps of a different BPF object.
1474 * As an example, let's say we have bpf_object named 'my_object_name'
1475 * and internal map corresponding to '.rodata' ELF section. The final
1476 * map name advertised to user and to the kernel will be
1477 * 'my_objec.rodata', taking first 8 characters of object name and
1478 * entire 7 characters of '.rodata'.
1479 * Somewhat confusingly, if internal map ELF section name is shorter
1480 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1481 * for the suffix, even though we only have 4 actual characters, and
1482 * resulting map will be called 'my_objec.bss', not even using all 15
1483 * characters allowed by the kernel. Oh well, at least the truncated
1484 * object name is somewhat consistent in this case. But if the map
1485 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1486 * (8 chars) and thus will be left with only first 7 characters of the
1487 * object name ('my_obje'). Happy guessing, user, that the final map
1488 * name will be "my_obje.kconfig".
1489 * Now, with libbpf starting to support arbitrarily named .rodata.*
1490 * and .data.* data sections, it's possible that ELF section name is
1491 * longer than allowed 15 chars, so we now need to be careful to take
1492 * only up to 15 first characters of ELF name, taking no BPF object
1493 * name characters at all. So '.rodata.abracadabra' will result in
1494 * '.rodata.abracad' kernel and user-visible name.
1495 * We need to keep this convoluted logic intact for .data, .bss and
1496 * .rodata maps, but for new custom .data.custom and .rodata.custom
1497 * maps we use their ELF names as is, not prepending bpf_object name
1498 * in front. We still need to truncate them to 15 characters for the
1499 * kernel. Full name can be recovered for such maps by using DATASEC
1500 * BTF type associated with such map's value type, though.
1501 */
1502 if (sfx_len >= BPF_OBJ_NAME_LEN)
1503 sfx_len = BPF_OBJ_NAME_LEN - 1;
1504
1505 /* if there are two or more dots in map name, it's a custom dot map */
1506 if (strchr(real_name + 1, '.') != NULL)
1507 pfx_len = 0;
1508 else
1509 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1510
1511 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1512 sfx_len, real_name);
1513
1514 /* sanitise map name to characters allowed by kernel */
1515 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1516 if (!isalnum(*p) && *p != '_' && *p != '.')
1517 *p = '_';
1518
1519 return strdup(map_name);
1520 }
1521
1522 static int
1523 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map);
1524
1525 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1526 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1527 const char *real_name, int sec_idx, void *data, size_t data_sz)
1528 {
1529 struct bpf_map_def *def;
1530 struct bpf_map *map;
1531 int err;
1532
1533 map = bpf_object__add_map(obj);
1534 if (IS_ERR(map))
1535 return PTR_ERR(map);
1536
1537 map->libbpf_type = type;
1538 map->sec_idx = sec_idx;
1539 map->sec_offset = 0;
1540 map->real_name = strdup(real_name);
1541 map->name = internal_map_name(obj, real_name);
1542 if (!map->real_name || !map->name) {
1543 zfree(&map->real_name);
1544 zfree(&map->name);
1545 return -ENOMEM;
1546 }
1547
1548 def = &map->def;
1549 def->type = BPF_MAP_TYPE_ARRAY;
1550 def->key_size = sizeof(int);
1551 def->value_size = data_sz;
1552 def->max_entries = 1;
1553 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1554 ? BPF_F_RDONLY_PROG : 0;
1555 def->map_flags |= BPF_F_MMAPABLE;
1556
1557 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1558 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1559
1560 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1561 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1562 if (map->mmaped == MAP_FAILED) {
1563 err = -errno;
1564 map->mmaped = NULL;
1565 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1566 map->name, err);
1567 zfree(&map->real_name);
1568 zfree(&map->name);
1569 return err;
1570 }
1571
1572 /* failures are fine because of maps like .rodata.str1.1 */
1573 (void) bpf_map_find_btf_info(obj, map);
1574
1575 if (data)
1576 memcpy(map->mmaped, data, data_sz);
1577
1578 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1579 return 0;
1580 }
1581
bpf_object__init_global_data_maps(struct bpf_object * obj)1582 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1583 {
1584 struct elf_sec_desc *sec_desc;
1585 const char *sec_name;
1586 int err = 0, sec_idx;
1587
1588 /*
1589 * Populate obj->maps with libbpf internal maps.
1590 */
1591 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1592 sec_desc = &obj->efile.secs[sec_idx];
1593
1594 switch (sec_desc->sec_type) {
1595 case SEC_DATA:
1596 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1597 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1598 sec_name, sec_idx,
1599 sec_desc->data->d_buf,
1600 sec_desc->data->d_size);
1601 break;
1602 case SEC_RODATA:
1603 obj->has_rodata = true;
1604 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1605 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1606 sec_name, sec_idx,
1607 sec_desc->data->d_buf,
1608 sec_desc->data->d_size);
1609 break;
1610 case SEC_BSS:
1611 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1612 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1613 sec_name, sec_idx,
1614 NULL,
1615 sec_desc->data->d_size);
1616 break;
1617 default:
1618 /* skip */
1619 break;
1620 }
1621 if (err)
1622 return err;
1623 }
1624 return 0;
1625 }
1626
1627
find_extern_by_name(const struct bpf_object * obj,const void * name)1628 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1629 const void *name)
1630 {
1631 int i;
1632
1633 for (i = 0; i < obj->nr_extern; i++) {
1634 if (strcmp(obj->externs[i].name, name) == 0)
1635 return &obj->externs[i];
1636 }
1637 return NULL;
1638 }
1639
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)1640 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1641 char value)
1642 {
1643 switch (ext->kcfg.type) {
1644 case KCFG_BOOL:
1645 if (value == 'm') {
1646 pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1647 ext->name, value);
1648 return -EINVAL;
1649 }
1650 *(bool *)ext_val = value == 'y' ? true : false;
1651 break;
1652 case KCFG_TRISTATE:
1653 if (value == 'y')
1654 *(enum libbpf_tristate *)ext_val = TRI_YES;
1655 else if (value == 'm')
1656 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1657 else /* value == 'n' */
1658 *(enum libbpf_tristate *)ext_val = TRI_NO;
1659 break;
1660 case KCFG_CHAR:
1661 *(char *)ext_val = value;
1662 break;
1663 case KCFG_UNKNOWN:
1664 case KCFG_INT:
1665 case KCFG_CHAR_ARR:
1666 default:
1667 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1668 ext->name, value);
1669 return -EINVAL;
1670 }
1671 ext->is_set = true;
1672 return 0;
1673 }
1674
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)1675 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1676 const char *value)
1677 {
1678 size_t len;
1679
1680 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1681 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1682 return -EINVAL;
1683 }
1684
1685 len = strlen(value);
1686 if (value[len - 1] != '"') {
1687 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1688 ext->name, value);
1689 return -EINVAL;
1690 }
1691
1692 /* strip quotes */
1693 len -= 2;
1694 if (len >= ext->kcfg.sz) {
1695 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1696 ext->name, value, len, ext->kcfg.sz - 1);
1697 len = ext->kcfg.sz - 1;
1698 }
1699 memcpy(ext_val, value + 1, len);
1700 ext_val[len] = '\0';
1701 ext->is_set = true;
1702 return 0;
1703 }
1704
parse_u64(const char * value,__u64 * res)1705 static int parse_u64(const char *value, __u64 *res)
1706 {
1707 char *value_end;
1708 int err;
1709
1710 errno = 0;
1711 *res = strtoull(value, &value_end, 0);
1712 if (errno) {
1713 err = -errno;
1714 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1715 return err;
1716 }
1717 if (*value_end) {
1718 pr_warn("failed to parse '%s' as integer completely\n", value);
1719 return -EINVAL;
1720 }
1721 return 0;
1722 }
1723
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)1724 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1725 {
1726 int bit_sz = ext->kcfg.sz * 8;
1727
1728 if (ext->kcfg.sz == 8)
1729 return true;
1730
1731 /* Validate that value stored in u64 fits in integer of `ext->sz`
1732 * bytes size without any loss of information. If the target integer
1733 * is signed, we rely on the following limits of integer type of
1734 * Y bits and subsequent transformation:
1735 *
1736 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1737 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1738 * 0 <= X + 2^(Y-1) < 2^Y
1739 *
1740 * For unsigned target integer, check that all the (64 - Y) bits are
1741 * zero.
1742 */
1743 if (ext->kcfg.is_signed)
1744 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1745 else
1746 return (v >> bit_sz) == 0;
1747 }
1748
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)1749 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1750 __u64 value)
1751 {
1752 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1753 pr_warn("extern (kcfg) %s=%llu should be integer\n",
1754 ext->name, (unsigned long long)value);
1755 return -EINVAL;
1756 }
1757 if (!is_kcfg_value_in_range(ext, value)) {
1758 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1759 ext->name, (unsigned long long)value, ext->kcfg.sz);
1760 return -ERANGE;
1761 }
1762 switch (ext->kcfg.sz) {
1763 case 1: *(__u8 *)ext_val = value; break;
1764 case 2: *(__u16 *)ext_val = value; break;
1765 case 4: *(__u32 *)ext_val = value; break;
1766 case 8: *(__u64 *)ext_val = value; break;
1767 default:
1768 return -EINVAL;
1769 }
1770 ext->is_set = true;
1771 return 0;
1772 }
1773
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)1774 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1775 char *buf, void *data)
1776 {
1777 struct extern_desc *ext;
1778 char *sep, *value;
1779 int len, err = 0;
1780 void *ext_val;
1781 __u64 num;
1782
1783 if (!str_has_pfx(buf, "CONFIG_"))
1784 return 0;
1785
1786 sep = strchr(buf, '=');
1787 if (!sep) {
1788 pr_warn("failed to parse '%s': no separator\n", buf);
1789 return -EINVAL;
1790 }
1791
1792 /* Trim ending '\n' */
1793 len = strlen(buf);
1794 if (buf[len - 1] == '\n')
1795 buf[len - 1] = '\0';
1796 /* Split on '=' and ensure that a value is present. */
1797 *sep = '\0';
1798 if (!sep[1]) {
1799 *sep = '=';
1800 pr_warn("failed to parse '%s': no value\n", buf);
1801 return -EINVAL;
1802 }
1803
1804 ext = find_extern_by_name(obj, buf);
1805 if (!ext || ext->is_set)
1806 return 0;
1807
1808 ext_val = data + ext->kcfg.data_off;
1809 value = sep + 1;
1810
1811 switch (*value) {
1812 case 'y': case 'n': case 'm':
1813 err = set_kcfg_value_tri(ext, ext_val, *value);
1814 break;
1815 case '"':
1816 err = set_kcfg_value_str(ext, ext_val, value);
1817 break;
1818 default:
1819 /* assume integer */
1820 err = parse_u64(value, &num);
1821 if (err) {
1822 pr_warn("extern (kcfg) %s=%s should be integer\n",
1823 ext->name, value);
1824 return err;
1825 }
1826 err = set_kcfg_value_num(ext, ext_val, num);
1827 break;
1828 }
1829 if (err)
1830 return err;
1831 pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1832 return 0;
1833 }
1834
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)1835 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1836 {
1837 char buf[PATH_MAX];
1838 struct utsname uts;
1839 int len, err = 0;
1840 gzFile file;
1841
1842 uname(&uts);
1843 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1844 if (len < 0)
1845 return -EINVAL;
1846 else if (len >= PATH_MAX)
1847 return -ENAMETOOLONG;
1848
1849 /* gzopen also accepts uncompressed files. */
1850 file = gzopen(buf, "r");
1851 if (!file)
1852 file = gzopen("/proc/config.gz", "r");
1853
1854 if (!file) {
1855 pr_warn("failed to open system Kconfig\n");
1856 return -ENOENT;
1857 }
1858
1859 while (gzgets(file, buf, sizeof(buf))) {
1860 err = bpf_object__process_kconfig_line(obj, buf, data);
1861 if (err) {
1862 pr_warn("error parsing system Kconfig line '%s': %d\n",
1863 buf, err);
1864 goto out;
1865 }
1866 }
1867
1868 out:
1869 gzclose(file);
1870 return err;
1871 }
1872
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)1873 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1874 const char *config, void *data)
1875 {
1876 char buf[PATH_MAX];
1877 int err = 0;
1878 FILE *file;
1879
1880 file = fmemopen((void *)config, strlen(config), "r");
1881 if (!file) {
1882 err = -errno;
1883 pr_warn("failed to open in-memory Kconfig: %d\n", err);
1884 return err;
1885 }
1886
1887 while (fgets(buf, sizeof(buf), file)) {
1888 err = bpf_object__process_kconfig_line(obj, buf, data);
1889 if (err) {
1890 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1891 buf, err);
1892 break;
1893 }
1894 }
1895
1896 fclose(file);
1897 return err;
1898 }
1899
bpf_object__init_kconfig_map(struct bpf_object * obj)1900 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1901 {
1902 struct extern_desc *last_ext = NULL, *ext;
1903 size_t map_sz;
1904 int i, err;
1905
1906 for (i = 0; i < obj->nr_extern; i++) {
1907 ext = &obj->externs[i];
1908 if (ext->type == EXT_KCFG)
1909 last_ext = ext;
1910 }
1911
1912 if (!last_ext)
1913 return 0;
1914
1915 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1916 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1917 ".kconfig", obj->efile.symbols_shndx,
1918 NULL, map_sz);
1919 if (err)
1920 return err;
1921
1922 obj->kconfig_map_idx = obj->nr_maps - 1;
1923
1924 return 0;
1925 }
1926
bpf_object__init_user_maps(struct bpf_object * obj,bool strict)1927 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1928 {
1929 Elf_Data *symbols = obj->efile.symbols;
1930 int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1931 Elf_Data *data = NULL;
1932 Elf_Scn *scn;
1933
1934 if (obj->efile.maps_shndx < 0)
1935 return 0;
1936
1937 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) {
1938 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n");
1939 return -EOPNOTSUPP;
1940 }
1941
1942 if (!symbols)
1943 return -EINVAL;
1944
1945 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1946 data = elf_sec_data(obj, scn);
1947 if (!scn || !data) {
1948 pr_warn("elf: failed to get legacy map definitions for %s\n",
1949 obj->path);
1950 return -EINVAL;
1951 }
1952
1953 /*
1954 * Count number of maps. Each map has a name.
1955 * Array of maps is not supported: only the first element is
1956 * considered.
1957 *
1958 * TODO: Detect array of map and report error.
1959 */
1960 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
1961 for (i = 0; i < nr_syms; i++) {
1962 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
1963
1964 if (sym->st_shndx != obj->efile.maps_shndx)
1965 continue;
1966 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION)
1967 continue;
1968 nr_maps++;
1969 }
1970 /* Assume equally sized map definitions */
1971 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1972 nr_maps, data->d_size, obj->path);
1973
1974 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1975 pr_warn("elf: unable to determine legacy map definition size in %s\n",
1976 obj->path);
1977 return -EINVAL;
1978 }
1979 map_def_sz = data->d_size / nr_maps;
1980
1981 /* Fill obj->maps using data in "maps" section. */
1982 for (i = 0; i < nr_syms; i++) {
1983 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
1984 const char *map_name;
1985 struct bpf_map_def *def;
1986 struct bpf_map *map;
1987
1988 if (sym->st_shndx != obj->efile.maps_shndx)
1989 continue;
1990 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION)
1991 continue;
1992
1993 map = bpf_object__add_map(obj);
1994 if (IS_ERR(map))
1995 return PTR_ERR(map);
1996
1997 map_name = elf_sym_str(obj, sym->st_name);
1998 if (!map_name) {
1999 pr_warn("failed to get map #%d name sym string for obj %s\n",
2000 i, obj->path);
2001 return -LIBBPF_ERRNO__FORMAT;
2002 }
2003
2004 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name);
2005
2006 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
2007 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name);
2008 return -ENOTSUP;
2009 }
2010
2011 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2012 map->sec_idx = sym->st_shndx;
2013 map->sec_offset = sym->st_value;
2014 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
2015 map_name, map->sec_idx, map->sec_offset);
2016 if (sym->st_value + map_def_sz > data->d_size) {
2017 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
2018 obj->path, map_name);
2019 return -EINVAL;
2020 }
2021
2022 map->name = strdup(map_name);
2023 if (!map->name) {
2024 pr_warn("map '%s': failed to alloc map name\n", map_name);
2025 return -ENOMEM;
2026 }
2027 pr_debug("map %d is \"%s\"\n", i, map->name);
2028 def = (struct bpf_map_def *)(data->d_buf + sym->st_value);
2029 /*
2030 * If the definition of the map in the object file fits in
2031 * bpf_map_def, copy it. Any extra fields in our version
2032 * of bpf_map_def will default to zero as a result of the
2033 * calloc above.
2034 */
2035 if (map_def_sz <= sizeof(struct bpf_map_def)) {
2036 memcpy(&map->def, def, map_def_sz);
2037 } else {
2038 /*
2039 * Here the map structure being read is bigger than what
2040 * we expect, truncate if the excess bits are all zero.
2041 * If they are not zero, reject this map as
2042 * incompatible.
2043 */
2044 char *b;
2045
2046 for (b = ((char *)def) + sizeof(struct bpf_map_def);
2047 b < ((char *)def) + map_def_sz; b++) {
2048 if (*b != 0) {
2049 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
2050 obj->path, map_name);
2051 if (strict)
2052 return -EINVAL;
2053 }
2054 }
2055 memcpy(&map->def, def, sizeof(struct bpf_map_def));
2056 }
2057
2058 /* btf info may not exist but fill it in if it does exist */
2059 (void) bpf_map_find_btf_info(obj, map);
2060 }
2061 return 0;
2062 }
2063
2064 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2065 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2066 {
2067 const struct btf_type *t = btf__type_by_id(btf, id);
2068
2069 if (res_id)
2070 *res_id = id;
2071
2072 while (btf_is_mod(t) || btf_is_typedef(t)) {
2073 if (res_id)
2074 *res_id = t->type;
2075 t = btf__type_by_id(btf, t->type);
2076 }
2077
2078 return t;
2079 }
2080
2081 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2082 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2083 {
2084 const struct btf_type *t;
2085
2086 t = skip_mods_and_typedefs(btf, id, NULL);
2087 if (!btf_is_ptr(t))
2088 return NULL;
2089
2090 t = skip_mods_and_typedefs(btf, t->type, res_id);
2091
2092 return btf_is_func_proto(t) ? t : NULL;
2093 }
2094
__btf_kind_str(__u16 kind)2095 static const char *__btf_kind_str(__u16 kind)
2096 {
2097 switch (kind) {
2098 case BTF_KIND_UNKN: return "void";
2099 case BTF_KIND_INT: return "int";
2100 case BTF_KIND_PTR: return "ptr";
2101 case BTF_KIND_ARRAY: return "array";
2102 case BTF_KIND_STRUCT: return "struct";
2103 case BTF_KIND_UNION: return "union";
2104 case BTF_KIND_ENUM: return "enum";
2105 case BTF_KIND_FWD: return "fwd";
2106 case BTF_KIND_TYPEDEF: return "typedef";
2107 case BTF_KIND_VOLATILE: return "volatile";
2108 case BTF_KIND_CONST: return "const";
2109 case BTF_KIND_RESTRICT: return "restrict";
2110 case BTF_KIND_FUNC: return "func";
2111 case BTF_KIND_FUNC_PROTO: return "func_proto";
2112 case BTF_KIND_VAR: return "var";
2113 case BTF_KIND_DATASEC: return "datasec";
2114 case BTF_KIND_FLOAT: return "float";
2115 case BTF_KIND_DECL_TAG: return "decl_tag";
2116 case BTF_KIND_TYPE_TAG: return "type_tag";
2117 default: return "unknown";
2118 }
2119 }
2120
btf_kind_str(const struct btf_type * t)2121 const char *btf_kind_str(const struct btf_type *t)
2122 {
2123 return __btf_kind_str(btf_kind(t));
2124 }
2125
2126 /*
2127 * Fetch integer attribute of BTF map definition. Such attributes are
2128 * represented using a pointer to an array, in which dimensionality of array
2129 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2130 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2131 * type definition, while using only sizeof(void *) space in ELF data section.
2132 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2133 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2134 const struct btf_member *m, __u32 *res)
2135 {
2136 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2137 const char *name = btf__name_by_offset(btf, m->name_off);
2138 const struct btf_array *arr_info;
2139 const struct btf_type *arr_t;
2140
2141 if (!btf_is_ptr(t)) {
2142 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2143 map_name, name, btf_kind_str(t));
2144 return false;
2145 }
2146
2147 arr_t = btf__type_by_id(btf, t->type);
2148 if (!arr_t) {
2149 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2150 map_name, name, t->type);
2151 return false;
2152 }
2153 if (!btf_is_array(arr_t)) {
2154 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2155 map_name, name, btf_kind_str(arr_t));
2156 return false;
2157 }
2158 arr_info = btf_array(arr_t);
2159 *res = arr_info->nelems;
2160 return true;
2161 }
2162
build_map_pin_path(struct bpf_map * map,const char * path)2163 static int build_map_pin_path(struct bpf_map *map, const char *path)
2164 {
2165 char buf[PATH_MAX];
2166 int len;
2167
2168 if (!path)
2169 path = "/sys/fs/bpf";
2170
2171 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2172 if (len < 0)
2173 return -EINVAL;
2174 else if (len >= PATH_MAX)
2175 return -ENAMETOOLONG;
2176
2177 return bpf_map__set_pin_path(map, buf);
2178 }
2179
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2180 int parse_btf_map_def(const char *map_name, struct btf *btf,
2181 const struct btf_type *def_t, bool strict,
2182 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2183 {
2184 const struct btf_type *t;
2185 const struct btf_member *m;
2186 bool is_inner = inner_def == NULL;
2187 int vlen, i;
2188
2189 vlen = btf_vlen(def_t);
2190 m = btf_members(def_t);
2191 for (i = 0; i < vlen; i++, m++) {
2192 const char *name = btf__name_by_offset(btf, m->name_off);
2193
2194 if (!name) {
2195 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2196 return -EINVAL;
2197 }
2198 if (strcmp(name, "type") == 0) {
2199 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2200 return -EINVAL;
2201 map_def->parts |= MAP_DEF_MAP_TYPE;
2202 } else if (strcmp(name, "max_entries") == 0) {
2203 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2204 return -EINVAL;
2205 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2206 } else if (strcmp(name, "map_flags") == 0) {
2207 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2208 return -EINVAL;
2209 map_def->parts |= MAP_DEF_MAP_FLAGS;
2210 } else if (strcmp(name, "numa_node") == 0) {
2211 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2212 return -EINVAL;
2213 map_def->parts |= MAP_DEF_NUMA_NODE;
2214 } else if (strcmp(name, "key_size") == 0) {
2215 __u32 sz;
2216
2217 if (!get_map_field_int(map_name, btf, m, &sz))
2218 return -EINVAL;
2219 if (map_def->key_size && map_def->key_size != sz) {
2220 pr_warn("map '%s': conflicting key size %u != %u.\n",
2221 map_name, map_def->key_size, sz);
2222 return -EINVAL;
2223 }
2224 map_def->key_size = sz;
2225 map_def->parts |= MAP_DEF_KEY_SIZE;
2226 } else if (strcmp(name, "key") == 0) {
2227 __s64 sz;
2228
2229 t = btf__type_by_id(btf, m->type);
2230 if (!t) {
2231 pr_warn("map '%s': key type [%d] not found.\n",
2232 map_name, m->type);
2233 return -EINVAL;
2234 }
2235 if (!btf_is_ptr(t)) {
2236 pr_warn("map '%s': key spec is not PTR: %s.\n",
2237 map_name, btf_kind_str(t));
2238 return -EINVAL;
2239 }
2240 sz = btf__resolve_size(btf, t->type);
2241 if (sz < 0) {
2242 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2243 map_name, t->type, (ssize_t)sz);
2244 return sz;
2245 }
2246 if (map_def->key_size && map_def->key_size != sz) {
2247 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2248 map_name, map_def->key_size, (ssize_t)sz);
2249 return -EINVAL;
2250 }
2251 map_def->key_size = sz;
2252 map_def->key_type_id = t->type;
2253 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2254 } else if (strcmp(name, "value_size") == 0) {
2255 __u32 sz;
2256
2257 if (!get_map_field_int(map_name, btf, m, &sz))
2258 return -EINVAL;
2259 if (map_def->value_size && map_def->value_size != sz) {
2260 pr_warn("map '%s': conflicting value size %u != %u.\n",
2261 map_name, map_def->value_size, sz);
2262 return -EINVAL;
2263 }
2264 map_def->value_size = sz;
2265 map_def->parts |= MAP_DEF_VALUE_SIZE;
2266 } else if (strcmp(name, "value") == 0) {
2267 __s64 sz;
2268
2269 t = btf__type_by_id(btf, m->type);
2270 if (!t) {
2271 pr_warn("map '%s': value type [%d] not found.\n",
2272 map_name, m->type);
2273 return -EINVAL;
2274 }
2275 if (!btf_is_ptr(t)) {
2276 pr_warn("map '%s': value spec is not PTR: %s.\n",
2277 map_name, btf_kind_str(t));
2278 return -EINVAL;
2279 }
2280 sz = btf__resolve_size(btf, t->type);
2281 if (sz < 0) {
2282 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2283 map_name, t->type, (ssize_t)sz);
2284 return sz;
2285 }
2286 if (map_def->value_size && map_def->value_size != sz) {
2287 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2288 map_name, map_def->value_size, (ssize_t)sz);
2289 return -EINVAL;
2290 }
2291 map_def->value_size = sz;
2292 map_def->value_type_id = t->type;
2293 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2294 }
2295 else if (strcmp(name, "values") == 0) {
2296 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2297 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2298 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2299 char inner_map_name[128];
2300 int err;
2301
2302 if (is_inner) {
2303 pr_warn("map '%s': multi-level inner maps not supported.\n",
2304 map_name);
2305 return -ENOTSUP;
2306 }
2307 if (i != vlen - 1) {
2308 pr_warn("map '%s': '%s' member should be last.\n",
2309 map_name, name);
2310 return -EINVAL;
2311 }
2312 if (!is_map_in_map && !is_prog_array) {
2313 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2314 map_name);
2315 return -ENOTSUP;
2316 }
2317 if (map_def->value_size && map_def->value_size != 4) {
2318 pr_warn("map '%s': conflicting value size %u != 4.\n",
2319 map_name, map_def->value_size);
2320 return -EINVAL;
2321 }
2322 map_def->value_size = 4;
2323 t = btf__type_by_id(btf, m->type);
2324 if (!t) {
2325 pr_warn("map '%s': %s type [%d] not found.\n",
2326 map_name, desc, m->type);
2327 return -EINVAL;
2328 }
2329 if (!btf_is_array(t) || btf_array(t)->nelems) {
2330 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2331 map_name, desc);
2332 return -EINVAL;
2333 }
2334 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2335 if (!btf_is_ptr(t)) {
2336 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2337 map_name, desc, btf_kind_str(t));
2338 return -EINVAL;
2339 }
2340 t = skip_mods_and_typedefs(btf, t->type, NULL);
2341 if (is_prog_array) {
2342 if (!btf_is_func_proto(t)) {
2343 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2344 map_name, btf_kind_str(t));
2345 return -EINVAL;
2346 }
2347 continue;
2348 }
2349 if (!btf_is_struct(t)) {
2350 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2351 map_name, btf_kind_str(t));
2352 return -EINVAL;
2353 }
2354
2355 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2356 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2357 if (err)
2358 return err;
2359
2360 map_def->parts |= MAP_DEF_INNER_MAP;
2361 } else if (strcmp(name, "pinning") == 0) {
2362 __u32 val;
2363
2364 if (is_inner) {
2365 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2366 return -EINVAL;
2367 }
2368 if (!get_map_field_int(map_name, btf, m, &val))
2369 return -EINVAL;
2370 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2371 pr_warn("map '%s': invalid pinning value %u.\n",
2372 map_name, val);
2373 return -EINVAL;
2374 }
2375 map_def->pinning = val;
2376 map_def->parts |= MAP_DEF_PINNING;
2377 } else if (strcmp(name, "map_extra") == 0) {
2378 __u32 map_extra;
2379
2380 if (!get_map_field_int(map_name, btf, m, &map_extra))
2381 return -EINVAL;
2382 map_def->map_extra = map_extra;
2383 map_def->parts |= MAP_DEF_MAP_EXTRA;
2384 } else {
2385 if (strict) {
2386 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2387 return -ENOTSUP;
2388 }
2389 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2390 }
2391 }
2392
2393 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2394 pr_warn("map '%s': map type isn't specified.\n", map_name);
2395 return -EINVAL;
2396 }
2397
2398 return 0;
2399 }
2400
adjust_ringbuf_sz(size_t sz)2401 static size_t adjust_ringbuf_sz(size_t sz)
2402 {
2403 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2404 __u32 mul;
2405
2406 /* if user forgot to set any size, make sure they see error */
2407 if (sz == 0)
2408 return 0;
2409 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2410 * a power-of-2 multiple of kernel's page size. If user diligently
2411 * satisified these conditions, pass the size through.
2412 */
2413 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2414 return sz;
2415
2416 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2417 * user-set size to satisfy both user size request and kernel
2418 * requirements and substitute correct max_entries for map creation.
2419 */
2420 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2421 if (mul * page_sz > sz)
2422 return mul * page_sz;
2423 }
2424
2425 /* if it's impossible to satisfy the conditions (i.e., user size is
2426 * very close to UINT_MAX but is not a power-of-2 multiple of
2427 * page_size) then just return original size and let kernel reject it
2428 */
2429 return sz;
2430 }
2431
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2432 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2433 {
2434 map->def.type = def->map_type;
2435 map->def.key_size = def->key_size;
2436 map->def.value_size = def->value_size;
2437 map->def.max_entries = def->max_entries;
2438 map->def.map_flags = def->map_flags;
2439 map->map_extra = def->map_extra;
2440
2441 map->numa_node = def->numa_node;
2442 map->btf_key_type_id = def->key_type_id;
2443 map->btf_value_type_id = def->value_type_id;
2444
2445 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2446 if (map->def.type == BPF_MAP_TYPE_RINGBUF)
2447 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2448
2449 if (def->parts & MAP_DEF_MAP_TYPE)
2450 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2451
2452 if (def->parts & MAP_DEF_KEY_TYPE)
2453 pr_debug("map '%s': found key [%u], sz = %u.\n",
2454 map->name, def->key_type_id, def->key_size);
2455 else if (def->parts & MAP_DEF_KEY_SIZE)
2456 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2457
2458 if (def->parts & MAP_DEF_VALUE_TYPE)
2459 pr_debug("map '%s': found value [%u], sz = %u.\n",
2460 map->name, def->value_type_id, def->value_size);
2461 else if (def->parts & MAP_DEF_VALUE_SIZE)
2462 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2463
2464 if (def->parts & MAP_DEF_MAX_ENTRIES)
2465 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2466 if (def->parts & MAP_DEF_MAP_FLAGS)
2467 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2468 if (def->parts & MAP_DEF_MAP_EXTRA)
2469 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2470 (unsigned long long)def->map_extra);
2471 if (def->parts & MAP_DEF_PINNING)
2472 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2473 if (def->parts & MAP_DEF_NUMA_NODE)
2474 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2475
2476 if (def->parts & MAP_DEF_INNER_MAP)
2477 pr_debug("map '%s': found inner map definition.\n", map->name);
2478 }
2479
btf_var_linkage_str(__u32 linkage)2480 static const char *btf_var_linkage_str(__u32 linkage)
2481 {
2482 switch (linkage) {
2483 case BTF_VAR_STATIC: return "static";
2484 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2485 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2486 default: return "unknown";
2487 }
2488 }
2489
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2490 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2491 const struct btf_type *sec,
2492 int var_idx, int sec_idx,
2493 const Elf_Data *data, bool strict,
2494 const char *pin_root_path)
2495 {
2496 struct btf_map_def map_def = {}, inner_def = {};
2497 const struct btf_type *var, *def;
2498 const struct btf_var_secinfo *vi;
2499 const struct btf_var *var_extra;
2500 const char *map_name;
2501 struct bpf_map *map;
2502 int err;
2503
2504 vi = btf_var_secinfos(sec) + var_idx;
2505 var = btf__type_by_id(obj->btf, vi->type);
2506 var_extra = btf_var(var);
2507 map_name = btf__name_by_offset(obj->btf, var->name_off);
2508
2509 if (map_name == NULL || map_name[0] == '\0') {
2510 pr_warn("map #%d: empty name.\n", var_idx);
2511 return -EINVAL;
2512 }
2513 if ((__u64)vi->offset + vi->size > data->d_size) {
2514 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2515 return -EINVAL;
2516 }
2517 if (!btf_is_var(var)) {
2518 pr_warn("map '%s': unexpected var kind %s.\n",
2519 map_name, btf_kind_str(var));
2520 return -EINVAL;
2521 }
2522 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2523 pr_warn("map '%s': unsupported map linkage %s.\n",
2524 map_name, btf_var_linkage_str(var_extra->linkage));
2525 return -EOPNOTSUPP;
2526 }
2527
2528 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2529 if (!btf_is_struct(def)) {
2530 pr_warn("map '%s': unexpected def kind %s.\n",
2531 map_name, btf_kind_str(var));
2532 return -EINVAL;
2533 }
2534 if (def->size > vi->size) {
2535 pr_warn("map '%s': invalid def size.\n", map_name);
2536 return -EINVAL;
2537 }
2538
2539 map = bpf_object__add_map(obj);
2540 if (IS_ERR(map))
2541 return PTR_ERR(map);
2542 map->name = strdup(map_name);
2543 if (!map->name) {
2544 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2545 return -ENOMEM;
2546 }
2547 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2548 map->def.type = BPF_MAP_TYPE_UNSPEC;
2549 map->sec_idx = sec_idx;
2550 map->sec_offset = vi->offset;
2551 map->btf_var_idx = var_idx;
2552 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2553 map_name, map->sec_idx, map->sec_offset);
2554
2555 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2556 if (err)
2557 return err;
2558
2559 fill_map_from_def(map, &map_def);
2560
2561 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2562 err = build_map_pin_path(map, pin_root_path);
2563 if (err) {
2564 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2565 return err;
2566 }
2567 }
2568
2569 if (map_def.parts & MAP_DEF_INNER_MAP) {
2570 map->inner_map = calloc(1, sizeof(*map->inner_map));
2571 if (!map->inner_map)
2572 return -ENOMEM;
2573 map->inner_map->fd = -1;
2574 map->inner_map->sec_idx = sec_idx;
2575 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2576 if (!map->inner_map->name)
2577 return -ENOMEM;
2578 sprintf(map->inner_map->name, "%s.inner", map_name);
2579
2580 fill_map_from_def(map->inner_map, &inner_def);
2581 }
2582
2583 err = bpf_map_find_btf_info(obj, map);
2584 if (err)
2585 return err;
2586
2587 return 0;
2588 }
2589
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2590 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2591 const char *pin_root_path)
2592 {
2593 const struct btf_type *sec = NULL;
2594 int nr_types, i, vlen, err;
2595 const struct btf_type *t;
2596 const char *name;
2597 Elf_Data *data;
2598 Elf_Scn *scn;
2599
2600 if (obj->efile.btf_maps_shndx < 0)
2601 return 0;
2602
2603 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2604 data = elf_sec_data(obj, scn);
2605 if (!scn || !data) {
2606 pr_warn("elf: failed to get %s map definitions for %s\n",
2607 MAPS_ELF_SEC, obj->path);
2608 return -EINVAL;
2609 }
2610
2611 nr_types = btf__type_cnt(obj->btf);
2612 for (i = 1; i < nr_types; i++) {
2613 t = btf__type_by_id(obj->btf, i);
2614 if (!btf_is_datasec(t))
2615 continue;
2616 name = btf__name_by_offset(obj->btf, t->name_off);
2617 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2618 sec = t;
2619 obj->efile.btf_maps_sec_btf_id = i;
2620 break;
2621 }
2622 }
2623
2624 if (!sec) {
2625 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2626 return -ENOENT;
2627 }
2628
2629 vlen = btf_vlen(sec);
2630 for (i = 0; i < vlen; i++) {
2631 err = bpf_object__init_user_btf_map(obj, sec, i,
2632 obj->efile.btf_maps_shndx,
2633 data, strict,
2634 pin_root_path);
2635 if (err)
2636 return err;
2637 }
2638
2639 return 0;
2640 }
2641
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)2642 static int bpf_object__init_maps(struct bpf_object *obj,
2643 const struct bpf_object_open_opts *opts)
2644 {
2645 const char *pin_root_path;
2646 bool strict;
2647 int err;
2648
2649 strict = !OPTS_GET(opts, relaxed_maps, false);
2650 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2651
2652 err = bpf_object__init_user_maps(obj, strict);
2653 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2654 err = err ?: bpf_object__init_global_data_maps(obj);
2655 err = err ?: bpf_object__init_kconfig_map(obj);
2656 err = err ?: bpf_object__init_struct_ops_maps(obj);
2657
2658 return err;
2659 }
2660
section_have_execinstr(struct bpf_object * obj,int idx)2661 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2662 {
2663 Elf64_Shdr *sh;
2664
2665 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2666 if (!sh)
2667 return false;
2668
2669 return sh->sh_flags & SHF_EXECINSTR;
2670 }
2671
btf_needs_sanitization(struct bpf_object * obj)2672 static bool btf_needs_sanitization(struct bpf_object *obj)
2673 {
2674 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2675 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2676 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2677 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2678 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2679 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2680
2681 return !has_func || !has_datasec || !has_func_global || !has_float ||
2682 !has_decl_tag || !has_type_tag;
2683 }
2684
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)2685 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2686 {
2687 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2688 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2689 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2690 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2691 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2692 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2693 struct btf_type *t;
2694 int i, j, vlen;
2695
2696 for (i = 1; i < btf__type_cnt(btf); i++) {
2697 t = (struct btf_type *)btf__type_by_id(btf, i);
2698
2699 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2700 /* replace VAR/DECL_TAG with INT */
2701 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2702 /*
2703 * using size = 1 is the safest choice, 4 will be too
2704 * big and cause kernel BTF validation failure if
2705 * original variable took less than 4 bytes
2706 */
2707 t->size = 1;
2708 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2709 } else if (!has_datasec && btf_is_datasec(t)) {
2710 /* replace DATASEC with STRUCT */
2711 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2712 struct btf_member *m = btf_members(t);
2713 struct btf_type *vt;
2714 char *name;
2715
2716 name = (char *)btf__name_by_offset(btf, t->name_off);
2717 while (*name) {
2718 if (*name == '.')
2719 *name = '_';
2720 name++;
2721 }
2722
2723 vlen = btf_vlen(t);
2724 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2725 for (j = 0; j < vlen; j++, v++, m++) {
2726 /* order of field assignments is important */
2727 m->offset = v->offset * 8;
2728 m->type = v->type;
2729 /* preserve variable name as member name */
2730 vt = (void *)btf__type_by_id(btf, v->type);
2731 m->name_off = vt->name_off;
2732 }
2733 } else if (!has_func && btf_is_func_proto(t)) {
2734 /* replace FUNC_PROTO with ENUM */
2735 vlen = btf_vlen(t);
2736 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2737 t->size = sizeof(__u32); /* kernel enforced */
2738 } else if (!has_func && btf_is_func(t)) {
2739 /* replace FUNC with TYPEDEF */
2740 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2741 } else if (!has_func_global && btf_is_func(t)) {
2742 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2743 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2744 } else if (!has_float && btf_is_float(t)) {
2745 /* replace FLOAT with an equally-sized empty STRUCT;
2746 * since C compilers do not accept e.g. "float" as a
2747 * valid struct name, make it anonymous
2748 */
2749 t->name_off = 0;
2750 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2751 } else if (!has_type_tag && btf_is_type_tag(t)) {
2752 /* replace TYPE_TAG with a CONST */
2753 t->name_off = 0;
2754 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2755 }
2756 }
2757 }
2758
libbpf_needs_btf(const struct bpf_object * obj)2759 static bool libbpf_needs_btf(const struct bpf_object *obj)
2760 {
2761 return obj->efile.btf_maps_shndx >= 0 ||
2762 obj->efile.st_ops_shndx >= 0 ||
2763 obj->nr_extern > 0;
2764 }
2765
kernel_needs_btf(const struct bpf_object * obj)2766 static bool kernel_needs_btf(const struct bpf_object *obj)
2767 {
2768 return obj->efile.st_ops_shndx >= 0;
2769 }
2770
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)2771 static int bpf_object__init_btf(struct bpf_object *obj,
2772 Elf_Data *btf_data,
2773 Elf_Data *btf_ext_data)
2774 {
2775 int err = -ENOENT;
2776
2777 if (btf_data) {
2778 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2779 err = libbpf_get_error(obj->btf);
2780 if (err) {
2781 obj->btf = NULL;
2782 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2783 goto out;
2784 }
2785 /* enforce 8-byte pointers for BPF-targeted BTFs */
2786 btf__set_pointer_size(obj->btf, 8);
2787 }
2788 if (btf_ext_data) {
2789 struct btf_ext_info *ext_segs[3];
2790 int seg_num, sec_num;
2791
2792 if (!obj->btf) {
2793 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2794 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2795 goto out;
2796 }
2797 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2798 err = libbpf_get_error(obj->btf_ext);
2799 if (err) {
2800 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2801 BTF_EXT_ELF_SEC, err);
2802 obj->btf_ext = NULL;
2803 goto out;
2804 }
2805
2806 /* setup .BTF.ext to ELF section mapping */
2807 ext_segs[0] = &obj->btf_ext->func_info;
2808 ext_segs[1] = &obj->btf_ext->line_info;
2809 ext_segs[2] = &obj->btf_ext->core_relo_info;
2810 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2811 struct btf_ext_info *seg = ext_segs[seg_num];
2812 const struct btf_ext_info_sec *sec;
2813 const char *sec_name;
2814 Elf_Scn *scn;
2815
2816 if (seg->sec_cnt == 0)
2817 continue;
2818
2819 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2820 if (!seg->sec_idxs) {
2821 err = -ENOMEM;
2822 goto out;
2823 }
2824
2825 sec_num = 0;
2826 for_each_btf_ext_sec(seg, sec) {
2827 /* preventively increment index to avoid doing
2828 * this before every continue below
2829 */
2830 sec_num++;
2831
2832 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2833 if (str_is_empty(sec_name))
2834 continue;
2835 scn = elf_sec_by_name(obj, sec_name);
2836 if (!scn)
2837 continue;
2838
2839 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2840 }
2841 }
2842 }
2843 out:
2844 if (err && libbpf_needs_btf(obj)) {
2845 pr_warn("BTF is required, but is missing or corrupted.\n");
2846 return err;
2847 }
2848 return 0;
2849 }
2850
compare_vsi_off(const void * _a,const void * _b)2851 static int compare_vsi_off(const void *_a, const void *_b)
2852 {
2853 const struct btf_var_secinfo *a = _a;
2854 const struct btf_var_secinfo *b = _b;
2855
2856 return a->offset - b->offset;
2857 }
2858
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)2859 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2860 struct btf_type *t)
2861 {
2862 __u32 size = 0, off = 0, i, vars = btf_vlen(t);
2863 const char *name = btf__name_by_offset(btf, t->name_off);
2864 const struct btf_type *t_var;
2865 struct btf_var_secinfo *vsi;
2866 const struct btf_var *var;
2867 int ret;
2868
2869 if (!name) {
2870 pr_debug("No name found in string section for DATASEC kind.\n");
2871 return -ENOENT;
2872 }
2873
2874 /* .extern datasec size and var offsets were set correctly during
2875 * extern collection step, so just skip straight to sorting variables
2876 */
2877 if (t->size)
2878 goto sort_vars;
2879
2880 ret = find_elf_sec_sz(obj, name, &size);
2881 if (ret || !size) {
2882 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2883 return -ENOENT;
2884 }
2885
2886 t->size = size;
2887
2888 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2889 t_var = btf__type_by_id(btf, vsi->type);
2890 if (!t_var || !btf_is_var(t_var)) {
2891 pr_debug("Non-VAR type seen in section %s\n", name);
2892 return -EINVAL;
2893 }
2894
2895 var = btf_var(t_var);
2896 if (var->linkage == BTF_VAR_STATIC)
2897 continue;
2898
2899 name = btf__name_by_offset(btf, t_var->name_off);
2900 if (!name) {
2901 pr_debug("No name found in string section for VAR kind\n");
2902 return -ENOENT;
2903 }
2904
2905 ret = find_elf_var_offset(obj, name, &off);
2906 if (ret) {
2907 pr_debug("No offset found in symbol table for VAR %s\n",
2908 name);
2909 return -ENOENT;
2910 }
2911
2912 vsi->offset = off;
2913 }
2914
2915 sort_vars:
2916 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2917 return 0;
2918 }
2919
btf_finalize_data(struct bpf_object * obj,struct btf * btf)2920 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2921 {
2922 int err = 0;
2923 __u32 i, n = btf__type_cnt(btf);
2924
2925 for (i = 1; i < n; i++) {
2926 struct btf_type *t = btf_type_by_id(btf, i);
2927
2928 /* Loader needs to fix up some of the things compiler
2929 * couldn't get its hands on while emitting BTF. This
2930 * is section size and global variable offset. We use
2931 * the info from the ELF itself for this purpose.
2932 */
2933 if (btf_is_datasec(t)) {
2934 err = btf_fixup_datasec(obj, btf, t);
2935 if (err)
2936 break;
2937 }
2938 }
2939
2940 return libbpf_err(err);
2941 }
2942
btf__finalize_data(struct bpf_object * obj,struct btf * btf)2943 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
2944 {
2945 return btf_finalize_data(obj, btf);
2946 }
2947
bpf_object__finalize_btf(struct bpf_object * obj)2948 static int bpf_object__finalize_btf(struct bpf_object *obj)
2949 {
2950 int err;
2951
2952 if (!obj->btf)
2953 return 0;
2954
2955 err = btf_finalize_data(obj, obj->btf);
2956 if (err) {
2957 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2958 return err;
2959 }
2960
2961 return 0;
2962 }
2963
prog_needs_vmlinux_btf(struct bpf_program * prog)2964 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2965 {
2966 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2967 prog->type == BPF_PROG_TYPE_LSM)
2968 return true;
2969
2970 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2971 * also need vmlinux BTF
2972 */
2973 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2974 return true;
2975
2976 return false;
2977 }
2978
obj_needs_vmlinux_btf(const struct bpf_object * obj)2979 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2980 {
2981 struct bpf_program *prog;
2982 int i;
2983
2984 /* CO-RE relocations need kernel BTF, only when btf_custom_path
2985 * is not specified
2986 */
2987 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2988 return true;
2989
2990 /* Support for typed ksyms needs kernel BTF */
2991 for (i = 0; i < obj->nr_extern; i++) {
2992 const struct extern_desc *ext;
2993
2994 ext = &obj->externs[i];
2995 if (ext->type == EXT_KSYM && ext->ksym.type_id)
2996 return true;
2997 }
2998
2999 bpf_object__for_each_program(prog, obj) {
3000 if (!prog->autoload)
3001 continue;
3002 if (prog_needs_vmlinux_btf(prog))
3003 return true;
3004 }
3005
3006 return false;
3007 }
3008
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3009 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3010 {
3011 int err;
3012
3013 /* btf_vmlinux could be loaded earlier */
3014 if (obj->btf_vmlinux || obj->gen_loader)
3015 return 0;
3016
3017 if (!force && !obj_needs_vmlinux_btf(obj))
3018 return 0;
3019
3020 obj->btf_vmlinux = btf__load_vmlinux_btf();
3021 err = libbpf_get_error(obj->btf_vmlinux);
3022 if (err) {
3023 pr_warn("Error loading vmlinux BTF: %d\n", err);
3024 obj->btf_vmlinux = NULL;
3025 return err;
3026 }
3027 return 0;
3028 }
3029
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3030 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3031 {
3032 struct btf *kern_btf = obj->btf;
3033 bool btf_mandatory, sanitize;
3034 int i, err = 0;
3035
3036 if (!obj->btf)
3037 return 0;
3038
3039 if (!kernel_supports(obj, FEAT_BTF)) {
3040 if (kernel_needs_btf(obj)) {
3041 err = -EOPNOTSUPP;
3042 goto report;
3043 }
3044 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3045 return 0;
3046 }
3047
3048 /* Even though some subprogs are global/weak, user might prefer more
3049 * permissive BPF verification process that BPF verifier performs for
3050 * static functions, taking into account more context from the caller
3051 * functions. In such case, they need to mark such subprogs with
3052 * __attribute__((visibility("hidden"))) and libbpf will adjust
3053 * corresponding FUNC BTF type to be marked as static and trigger more
3054 * involved BPF verification process.
3055 */
3056 for (i = 0; i < obj->nr_programs; i++) {
3057 struct bpf_program *prog = &obj->programs[i];
3058 struct btf_type *t;
3059 const char *name;
3060 int j, n;
3061
3062 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3063 continue;
3064
3065 n = btf__type_cnt(obj->btf);
3066 for (j = 1; j < n; j++) {
3067 t = btf_type_by_id(obj->btf, j);
3068 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3069 continue;
3070
3071 name = btf__str_by_offset(obj->btf, t->name_off);
3072 if (strcmp(name, prog->name) != 0)
3073 continue;
3074
3075 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3076 break;
3077 }
3078 }
3079
3080 sanitize = btf_needs_sanitization(obj);
3081 if (sanitize) {
3082 const void *raw_data;
3083 __u32 sz;
3084
3085 /* clone BTF to sanitize a copy and leave the original intact */
3086 raw_data = btf__raw_data(obj->btf, &sz);
3087 kern_btf = btf__new(raw_data, sz);
3088 err = libbpf_get_error(kern_btf);
3089 if (err)
3090 return err;
3091
3092 /* enforce 8-byte pointers for BPF-targeted BTFs */
3093 btf__set_pointer_size(obj->btf, 8);
3094 bpf_object__sanitize_btf(obj, kern_btf);
3095 }
3096
3097 if (obj->gen_loader) {
3098 __u32 raw_size = 0;
3099 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3100
3101 if (!raw_data)
3102 return -ENOMEM;
3103 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3104 /* Pretend to have valid FD to pass various fd >= 0 checks.
3105 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3106 */
3107 btf__set_fd(kern_btf, 0);
3108 } else {
3109 /* currently BPF_BTF_LOAD only supports log_level 1 */
3110 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3111 obj->log_level ? 1 : 0);
3112 }
3113 if (sanitize) {
3114 if (!err) {
3115 /* move fd to libbpf's BTF */
3116 btf__set_fd(obj->btf, btf__fd(kern_btf));
3117 btf__set_fd(kern_btf, -1);
3118 }
3119 btf__free(kern_btf);
3120 }
3121 report:
3122 if (err) {
3123 btf_mandatory = kernel_needs_btf(obj);
3124 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3125 btf_mandatory ? "BTF is mandatory, can't proceed."
3126 : "BTF is optional, ignoring.");
3127 if (!btf_mandatory)
3128 err = 0;
3129 }
3130 return err;
3131 }
3132
elf_sym_str(const struct bpf_object * obj,size_t off)3133 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3134 {
3135 const char *name;
3136
3137 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3138 if (!name) {
3139 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3140 off, obj->path, elf_errmsg(-1));
3141 return NULL;
3142 }
3143
3144 return name;
3145 }
3146
elf_sec_str(const struct bpf_object * obj,size_t off)3147 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3148 {
3149 const char *name;
3150
3151 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3152 if (!name) {
3153 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3154 off, obj->path, elf_errmsg(-1));
3155 return NULL;
3156 }
3157
3158 return name;
3159 }
3160
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3161 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3162 {
3163 Elf_Scn *scn;
3164
3165 scn = elf_getscn(obj->efile.elf, idx);
3166 if (!scn) {
3167 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3168 idx, obj->path, elf_errmsg(-1));
3169 return NULL;
3170 }
3171 return scn;
3172 }
3173
elf_sec_by_name(const struct bpf_object * obj,const char * name)3174 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3175 {
3176 Elf_Scn *scn = NULL;
3177 Elf *elf = obj->efile.elf;
3178 const char *sec_name;
3179
3180 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3181 sec_name = elf_sec_name(obj, scn);
3182 if (!sec_name)
3183 return NULL;
3184
3185 if (strcmp(sec_name, name) != 0)
3186 continue;
3187
3188 return scn;
3189 }
3190 return NULL;
3191 }
3192
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3193 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3194 {
3195 Elf64_Shdr *shdr;
3196
3197 if (!scn)
3198 return NULL;
3199
3200 shdr = elf64_getshdr(scn);
3201 if (!shdr) {
3202 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3203 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3204 return NULL;
3205 }
3206
3207 return shdr;
3208 }
3209
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3210 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3211 {
3212 const char *name;
3213 Elf64_Shdr *sh;
3214
3215 if (!scn)
3216 return NULL;
3217
3218 sh = elf_sec_hdr(obj, scn);
3219 if (!sh)
3220 return NULL;
3221
3222 name = elf_sec_str(obj, sh->sh_name);
3223 if (!name) {
3224 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3225 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3226 return NULL;
3227 }
3228
3229 return name;
3230 }
3231
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3232 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3233 {
3234 Elf_Data *data;
3235
3236 if (!scn)
3237 return NULL;
3238
3239 data = elf_getdata(scn, 0);
3240 if (!data) {
3241 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3242 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3243 obj->path, elf_errmsg(-1));
3244 return NULL;
3245 }
3246
3247 return data;
3248 }
3249
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3250 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3251 {
3252 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3253 return NULL;
3254
3255 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3256 }
3257
elf_rel_by_idx(Elf_Data * data,size_t idx)3258 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3259 {
3260 if (idx >= data->d_size / sizeof(Elf64_Rel))
3261 return NULL;
3262
3263 return (Elf64_Rel *)data->d_buf + idx;
3264 }
3265
is_sec_name_dwarf(const char * name)3266 static bool is_sec_name_dwarf(const char *name)
3267 {
3268 /* approximation, but the actual list is too long */
3269 return str_has_pfx(name, ".debug_");
3270 }
3271
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3272 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3273 {
3274 /* no special handling of .strtab */
3275 if (hdr->sh_type == SHT_STRTAB)
3276 return true;
3277
3278 /* ignore .llvm_addrsig section as well */
3279 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3280 return true;
3281
3282 /* no subprograms will lead to an empty .text section, ignore it */
3283 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3284 strcmp(name, ".text") == 0)
3285 return true;
3286
3287 /* DWARF sections */
3288 if (is_sec_name_dwarf(name))
3289 return true;
3290
3291 if (str_has_pfx(name, ".rel")) {
3292 name += sizeof(".rel") - 1;
3293 /* DWARF section relocations */
3294 if (is_sec_name_dwarf(name))
3295 return true;
3296
3297 /* .BTF and .BTF.ext don't need relocations */
3298 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3299 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3300 return true;
3301 }
3302
3303 return false;
3304 }
3305
cmp_progs(const void * _a,const void * _b)3306 static int cmp_progs(const void *_a, const void *_b)
3307 {
3308 const struct bpf_program *a = _a;
3309 const struct bpf_program *b = _b;
3310
3311 if (a->sec_idx != b->sec_idx)
3312 return a->sec_idx < b->sec_idx ? -1 : 1;
3313
3314 /* sec_insn_off can't be the same within the section */
3315 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3316 }
3317
bpf_object__elf_collect(struct bpf_object * obj)3318 static int bpf_object__elf_collect(struct bpf_object *obj)
3319 {
3320 struct elf_sec_desc *sec_desc;
3321 Elf *elf = obj->efile.elf;
3322 Elf_Data *btf_ext_data = NULL;
3323 Elf_Data *btf_data = NULL;
3324 int idx = 0, err = 0;
3325 const char *name;
3326 Elf_Data *data;
3327 Elf_Scn *scn;
3328 Elf64_Shdr *sh;
3329
3330 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3331 * section. e_shnum does include sec #0, so e_shnum is the necessary
3332 * size of an array to keep all the sections.
3333 */
3334 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum;
3335 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3336 if (!obj->efile.secs)
3337 return -ENOMEM;
3338
3339 /* a bunch of ELF parsing functionality depends on processing symbols,
3340 * so do the first pass and find the symbol table
3341 */
3342 scn = NULL;
3343 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3344 sh = elf_sec_hdr(obj, scn);
3345 if (!sh)
3346 return -LIBBPF_ERRNO__FORMAT;
3347
3348 if (sh->sh_type == SHT_SYMTAB) {
3349 if (obj->efile.symbols) {
3350 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3351 return -LIBBPF_ERRNO__FORMAT;
3352 }
3353
3354 data = elf_sec_data(obj, scn);
3355 if (!data)
3356 return -LIBBPF_ERRNO__FORMAT;
3357
3358 idx = elf_ndxscn(scn);
3359
3360 obj->efile.symbols = data;
3361 obj->efile.symbols_shndx = idx;
3362 obj->efile.strtabidx = sh->sh_link;
3363 }
3364 }
3365
3366 if (!obj->efile.symbols) {
3367 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3368 obj->path);
3369 return -ENOENT;
3370 }
3371
3372 scn = NULL;
3373 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3374 idx = elf_ndxscn(scn);
3375 sec_desc = &obj->efile.secs[idx];
3376
3377 sh = elf_sec_hdr(obj, scn);
3378 if (!sh)
3379 return -LIBBPF_ERRNO__FORMAT;
3380
3381 name = elf_sec_str(obj, sh->sh_name);
3382 if (!name)
3383 return -LIBBPF_ERRNO__FORMAT;
3384
3385 if (ignore_elf_section(sh, name))
3386 continue;
3387
3388 data = elf_sec_data(obj, scn);
3389 if (!data)
3390 return -LIBBPF_ERRNO__FORMAT;
3391
3392 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3393 idx, name, (unsigned long)data->d_size,
3394 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3395 (int)sh->sh_type);
3396
3397 if (strcmp(name, "license") == 0) {
3398 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3399 if (err)
3400 return err;
3401 } else if (strcmp(name, "version") == 0) {
3402 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3403 if (err)
3404 return err;
3405 } else if (strcmp(name, "maps") == 0) {
3406 obj->efile.maps_shndx = idx;
3407 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3408 obj->efile.btf_maps_shndx = idx;
3409 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3410 if (sh->sh_type != SHT_PROGBITS)
3411 return -LIBBPF_ERRNO__FORMAT;
3412 btf_data = data;
3413 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3414 if (sh->sh_type != SHT_PROGBITS)
3415 return -LIBBPF_ERRNO__FORMAT;
3416 btf_ext_data = data;
3417 } else if (sh->sh_type == SHT_SYMTAB) {
3418 /* already processed during the first pass above */
3419 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3420 if (sh->sh_flags & SHF_EXECINSTR) {
3421 if (strcmp(name, ".text") == 0)
3422 obj->efile.text_shndx = idx;
3423 err = bpf_object__add_programs(obj, data, name, idx);
3424 if (err)
3425 return err;
3426 } else if (strcmp(name, DATA_SEC) == 0 ||
3427 str_has_pfx(name, DATA_SEC ".")) {
3428 sec_desc->sec_type = SEC_DATA;
3429 sec_desc->shdr = sh;
3430 sec_desc->data = data;
3431 } else if (strcmp(name, RODATA_SEC) == 0 ||
3432 str_has_pfx(name, RODATA_SEC ".")) {
3433 sec_desc->sec_type = SEC_RODATA;
3434 sec_desc->shdr = sh;
3435 sec_desc->data = data;
3436 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3437 obj->efile.st_ops_data = data;
3438 obj->efile.st_ops_shndx = idx;
3439 } else {
3440 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3441 idx, name);
3442 }
3443 } else if (sh->sh_type == SHT_REL) {
3444 int targ_sec_idx = sh->sh_info; /* points to other section */
3445
3446 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3447 targ_sec_idx >= obj->efile.sec_cnt)
3448 return -LIBBPF_ERRNO__FORMAT;
3449
3450 /* Only do relo for section with exec instructions */
3451 if (!section_have_execinstr(obj, targ_sec_idx) &&
3452 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3453 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3454 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3455 idx, name, targ_sec_idx,
3456 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3457 continue;
3458 }
3459
3460 sec_desc->sec_type = SEC_RELO;
3461 sec_desc->shdr = sh;
3462 sec_desc->data = data;
3463 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3464 sec_desc->sec_type = SEC_BSS;
3465 sec_desc->shdr = sh;
3466 sec_desc->data = data;
3467 } else {
3468 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3469 (size_t)sh->sh_size);
3470 }
3471 }
3472
3473 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3474 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3475 return -LIBBPF_ERRNO__FORMAT;
3476 }
3477
3478 /* sort BPF programs by section name and in-section instruction offset
3479 * for faster search */
3480 if (obj->nr_programs)
3481 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3482
3483 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3484 }
3485
sym_is_extern(const Elf64_Sym * sym)3486 static bool sym_is_extern(const Elf64_Sym *sym)
3487 {
3488 int bind = ELF64_ST_BIND(sym->st_info);
3489 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3490 return sym->st_shndx == SHN_UNDEF &&
3491 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3492 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3493 }
3494
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)3495 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3496 {
3497 int bind = ELF64_ST_BIND(sym->st_info);
3498 int type = ELF64_ST_TYPE(sym->st_info);
3499
3500 /* in .text section */
3501 if (sym->st_shndx != text_shndx)
3502 return false;
3503
3504 /* local function */
3505 if (bind == STB_LOCAL && type == STT_SECTION)
3506 return true;
3507
3508 /* global function */
3509 return bind == STB_GLOBAL && type == STT_FUNC;
3510 }
3511
find_extern_btf_id(const struct btf * btf,const char * ext_name)3512 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3513 {
3514 const struct btf_type *t;
3515 const char *tname;
3516 int i, n;
3517
3518 if (!btf)
3519 return -ESRCH;
3520
3521 n = btf__type_cnt(btf);
3522 for (i = 1; i < n; i++) {
3523 t = btf__type_by_id(btf, i);
3524
3525 if (!btf_is_var(t) && !btf_is_func(t))
3526 continue;
3527
3528 tname = btf__name_by_offset(btf, t->name_off);
3529 if (strcmp(tname, ext_name))
3530 continue;
3531
3532 if (btf_is_var(t) &&
3533 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3534 return -EINVAL;
3535
3536 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3537 return -EINVAL;
3538
3539 return i;
3540 }
3541
3542 return -ENOENT;
3543 }
3544
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)3545 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3546 const struct btf_var_secinfo *vs;
3547 const struct btf_type *t;
3548 int i, j, n;
3549
3550 if (!btf)
3551 return -ESRCH;
3552
3553 n = btf__type_cnt(btf);
3554 for (i = 1; i < n; i++) {
3555 t = btf__type_by_id(btf, i);
3556
3557 if (!btf_is_datasec(t))
3558 continue;
3559
3560 vs = btf_var_secinfos(t);
3561 for (j = 0; j < btf_vlen(t); j++, vs++) {
3562 if (vs->type == ext_btf_id)
3563 return i;
3564 }
3565 }
3566
3567 return -ENOENT;
3568 }
3569
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)3570 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3571 bool *is_signed)
3572 {
3573 const struct btf_type *t;
3574 const char *name;
3575
3576 t = skip_mods_and_typedefs(btf, id, NULL);
3577 name = btf__name_by_offset(btf, t->name_off);
3578
3579 if (is_signed)
3580 *is_signed = false;
3581 switch (btf_kind(t)) {
3582 case BTF_KIND_INT: {
3583 int enc = btf_int_encoding(t);
3584
3585 if (enc & BTF_INT_BOOL)
3586 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3587 if (is_signed)
3588 *is_signed = enc & BTF_INT_SIGNED;
3589 if (t->size == 1)
3590 return KCFG_CHAR;
3591 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3592 return KCFG_UNKNOWN;
3593 return KCFG_INT;
3594 }
3595 case BTF_KIND_ENUM:
3596 if (t->size != 4)
3597 return KCFG_UNKNOWN;
3598 if (strcmp(name, "libbpf_tristate"))
3599 return KCFG_UNKNOWN;
3600 return KCFG_TRISTATE;
3601 case BTF_KIND_ARRAY:
3602 if (btf_array(t)->nelems == 0)
3603 return KCFG_UNKNOWN;
3604 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3605 return KCFG_UNKNOWN;
3606 return KCFG_CHAR_ARR;
3607 default:
3608 return KCFG_UNKNOWN;
3609 }
3610 }
3611
cmp_externs(const void * _a,const void * _b)3612 static int cmp_externs(const void *_a, const void *_b)
3613 {
3614 const struct extern_desc *a = _a;
3615 const struct extern_desc *b = _b;
3616
3617 if (a->type != b->type)
3618 return a->type < b->type ? -1 : 1;
3619
3620 if (a->type == EXT_KCFG) {
3621 /* descending order by alignment requirements */
3622 if (a->kcfg.align != b->kcfg.align)
3623 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3624 /* ascending order by size, within same alignment class */
3625 if (a->kcfg.sz != b->kcfg.sz)
3626 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3627 }
3628
3629 /* resolve ties by name */
3630 return strcmp(a->name, b->name);
3631 }
3632
find_int_btf_id(const struct btf * btf)3633 static int find_int_btf_id(const struct btf *btf)
3634 {
3635 const struct btf_type *t;
3636 int i, n;
3637
3638 n = btf__type_cnt(btf);
3639 for (i = 1; i < n; i++) {
3640 t = btf__type_by_id(btf, i);
3641
3642 if (btf_is_int(t) && btf_int_bits(t) == 32)
3643 return i;
3644 }
3645
3646 return 0;
3647 }
3648
add_dummy_ksym_var(struct btf * btf)3649 static int add_dummy_ksym_var(struct btf *btf)
3650 {
3651 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3652 const struct btf_var_secinfo *vs;
3653 const struct btf_type *sec;
3654
3655 if (!btf)
3656 return 0;
3657
3658 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3659 BTF_KIND_DATASEC);
3660 if (sec_btf_id < 0)
3661 return 0;
3662
3663 sec = btf__type_by_id(btf, sec_btf_id);
3664 vs = btf_var_secinfos(sec);
3665 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3666 const struct btf_type *vt;
3667
3668 vt = btf__type_by_id(btf, vs->type);
3669 if (btf_is_func(vt))
3670 break;
3671 }
3672
3673 /* No func in ksyms sec. No need to add dummy var. */
3674 if (i == btf_vlen(sec))
3675 return 0;
3676
3677 int_btf_id = find_int_btf_id(btf);
3678 dummy_var_btf_id = btf__add_var(btf,
3679 "dummy_ksym",
3680 BTF_VAR_GLOBAL_ALLOCATED,
3681 int_btf_id);
3682 if (dummy_var_btf_id < 0)
3683 pr_warn("cannot create a dummy_ksym var\n");
3684
3685 return dummy_var_btf_id;
3686 }
3687
bpf_object__collect_externs(struct bpf_object * obj)3688 static int bpf_object__collect_externs(struct bpf_object *obj)
3689 {
3690 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3691 const struct btf_type *t;
3692 struct extern_desc *ext;
3693 int i, n, off, dummy_var_btf_id;
3694 const char *ext_name, *sec_name;
3695 Elf_Scn *scn;
3696 Elf64_Shdr *sh;
3697
3698 if (!obj->efile.symbols)
3699 return 0;
3700
3701 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3702 sh = elf_sec_hdr(obj, scn);
3703 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3704 return -LIBBPF_ERRNO__FORMAT;
3705
3706 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3707 if (dummy_var_btf_id < 0)
3708 return dummy_var_btf_id;
3709
3710 n = sh->sh_size / sh->sh_entsize;
3711 pr_debug("looking for externs among %d symbols...\n", n);
3712
3713 for (i = 0; i < n; i++) {
3714 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3715
3716 if (!sym)
3717 return -LIBBPF_ERRNO__FORMAT;
3718 if (!sym_is_extern(sym))
3719 continue;
3720 ext_name = elf_sym_str(obj, sym->st_name);
3721 if (!ext_name || !ext_name[0])
3722 continue;
3723
3724 ext = obj->externs;
3725 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3726 if (!ext)
3727 return -ENOMEM;
3728 obj->externs = ext;
3729 ext = &ext[obj->nr_extern];
3730 memset(ext, 0, sizeof(*ext));
3731 obj->nr_extern++;
3732
3733 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3734 if (ext->btf_id <= 0) {
3735 pr_warn("failed to find BTF for extern '%s': %d\n",
3736 ext_name, ext->btf_id);
3737 return ext->btf_id;
3738 }
3739 t = btf__type_by_id(obj->btf, ext->btf_id);
3740 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3741 ext->sym_idx = i;
3742 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3743
3744 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3745 if (ext->sec_btf_id <= 0) {
3746 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3747 ext_name, ext->btf_id, ext->sec_btf_id);
3748 return ext->sec_btf_id;
3749 }
3750 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3751 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3752
3753 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3754 if (btf_is_func(t)) {
3755 pr_warn("extern function %s is unsupported under %s section\n",
3756 ext->name, KCONFIG_SEC);
3757 return -ENOTSUP;
3758 }
3759 kcfg_sec = sec;
3760 ext->type = EXT_KCFG;
3761 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3762 if (ext->kcfg.sz <= 0) {
3763 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3764 ext_name, ext->kcfg.sz);
3765 return ext->kcfg.sz;
3766 }
3767 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3768 if (ext->kcfg.align <= 0) {
3769 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3770 ext_name, ext->kcfg.align);
3771 return -EINVAL;
3772 }
3773 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3774 &ext->kcfg.is_signed);
3775 if (ext->kcfg.type == KCFG_UNKNOWN) {
3776 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3777 return -ENOTSUP;
3778 }
3779 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3780 ksym_sec = sec;
3781 ext->type = EXT_KSYM;
3782 skip_mods_and_typedefs(obj->btf, t->type,
3783 &ext->ksym.type_id);
3784 } else {
3785 pr_warn("unrecognized extern section '%s'\n", sec_name);
3786 return -ENOTSUP;
3787 }
3788 }
3789 pr_debug("collected %d externs total\n", obj->nr_extern);
3790
3791 if (!obj->nr_extern)
3792 return 0;
3793
3794 /* sort externs by type, for kcfg ones also by (align, size, name) */
3795 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3796
3797 /* for .ksyms section, we need to turn all externs into allocated
3798 * variables in BTF to pass kernel verification; we do this by
3799 * pretending that each extern is a 8-byte variable
3800 */
3801 if (ksym_sec) {
3802 /* find existing 4-byte integer type in BTF to use for fake
3803 * extern variables in DATASEC
3804 */
3805 int int_btf_id = find_int_btf_id(obj->btf);
3806 /* For extern function, a dummy_var added earlier
3807 * will be used to replace the vs->type and
3808 * its name string will be used to refill
3809 * the missing param's name.
3810 */
3811 const struct btf_type *dummy_var;
3812
3813 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3814 for (i = 0; i < obj->nr_extern; i++) {
3815 ext = &obj->externs[i];
3816 if (ext->type != EXT_KSYM)
3817 continue;
3818 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3819 i, ext->sym_idx, ext->name);
3820 }
3821
3822 sec = ksym_sec;
3823 n = btf_vlen(sec);
3824 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3825 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3826 struct btf_type *vt;
3827
3828 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3829 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3830 ext = find_extern_by_name(obj, ext_name);
3831 if (!ext) {
3832 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3833 btf_kind_str(vt), ext_name);
3834 return -ESRCH;
3835 }
3836 if (btf_is_func(vt)) {
3837 const struct btf_type *func_proto;
3838 struct btf_param *param;
3839 int j;
3840
3841 func_proto = btf__type_by_id(obj->btf,
3842 vt->type);
3843 param = btf_params(func_proto);
3844 /* Reuse the dummy_var string if the
3845 * func proto does not have param name.
3846 */
3847 for (j = 0; j < btf_vlen(func_proto); j++)
3848 if (param[j].type && !param[j].name_off)
3849 param[j].name_off =
3850 dummy_var->name_off;
3851 vs->type = dummy_var_btf_id;
3852 vt->info &= ~0xffff;
3853 vt->info |= BTF_FUNC_GLOBAL;
3854 } else {
3855 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3856 vt->type = int_btf_id;
3857 }
3858 vs->offset = off;
3859 vs->size = sizeof(int);
3860 }
3861 sec->size = off;
3862 }
3863
3864 if (kcfg_sec) {
3865 sec = kcfg_sec;
3866 /* for kcfg externs calculate their offsets within a .kconfig map */
3867 off = 0;
3868 for (i = 0; i < obj->nr_extern; i++) {
3869 ext = &obj->externs[i];
3870 if (ext->type != EXT_KCFG)
3871 continue;
3872
3873 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3874 off = ext->kcfg.data_off + ext->kcfg.sz;
3875 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3876 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3877 }
3878 sec->size = off;
3879 n = btf_vlen(sec);
3880 for (i = 0; i < n; i++) {
3881 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3882
3883 t = btf__type_by_id(obj->btf, vs->type);
3884 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3885 ext = find_extern_by_name(obj, ext_name);
3886 if (!ext) {
3887 pr_warn("failed to find extern definition for BTF var '%s'\n",
3888 ext_name);
3889 return -ESRCH;
3890 }
3891 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3892 vs->offset = ext->kcfg.data_off;
3893 }
3894 }
3895 return 0;
3896 }
3897
3898 struct bpf_program *
bpf_object__find_program_by_title(const struct bpf_object * obj,const char * title)3899 bpf_object__find_program_by_title(const struct bpf_object *obj,
3900 const char *title)
3901 {
3902 struct bpf_program *pos;
3903
3904 bpf_object__for_each_program(pos, obj) {
3905 if (pos->sec_name && !strcmp(pos->sec_name, title))
3906 return pos;
3907 }
3908 return errno = ENOENT, NULL;
3909 }
3910
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)3911 static bool prog_is_subprog(const struct bpf_object *obj,
3912 const struct bpf_program *prog)
3913 {
3914 /* For legacy reasons, libbpf supports an entry-point BPF programs
3915 * without SEC() attribute, i.e., those in the .text section. But if
3916 * there are 2 or more such programs in the .text section, they all
3917 * must be subprograms called from entry-point BPF programs in
3918 * designated SEC()'tions, otherwise there is no way to distinguish
3919 * which of those programs should be loaded vs which are a subprogram.
3920 * Similarly, if there is a function/program in .text and at least one
3921 * other BPF program with custom SEC() attribute, then we just assume
3922 * .text programs are subprograms (even if they are not called from
3923 * other programs), because libbpf never explicitly supported mixing
3924 * SEC()-designated BPF programs and .text entry-point BPF programs.
3925 *
3926 * In libbpf 1.0 strict mode, we always consider .text
3927 * programs to be subprograms.
3928 */
3929
3930 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME)
3931 return prog->sec_idx == obj->efile.text_shndx;
3932
3933 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3934 }
3935
3936 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)3937 bpf_object__find_program_by_name(const struct bpf_object *obj,
3938 const char *name)
3939 {
3940 struct bpf_program *prog;
3941
3942 bpf_object__for_each_program(prog, obj) {
3943 if (prog_is_subprog(obj, prog))
3944 continue;
3945 if (!strcmp(prog->name, name))
3946 return prog;
3947 }
3948 return errno = ENOENT, NULL;
3949 }
3950
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)3951 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3952 int shndx)
3953 {
3954 switch (obj->efile.secs[shndx].sec_type) {
3955 case SEC_BSS:
3956 case SEC_DATA:
3957 case SEC_RODATA:
3958 return true;
3959 default:
3960 return false;
3961 }
3962 }
3963
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)3964 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3965 int shndx)
3966 {
3967 return shndx == obj->efile.maps_shndx ||
3968 shndx == obj->efile.btf_maps_shndx;
3969 }
3970
3971 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)3972 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3973 {
3974 if (shndx == obj->efile.symbols_shndx)
3975 return LIBBPF_MAP_KCONFIG;
3976
3977 switch (obj->efile.secs[shndx].sec_type) {
3978 case SEC_BSS:
3979 return LIBBPF_MAP_BSS;
3980 case SEC_DATA:
3981 return LIBBPF_MAP_DATA;
3982 case SEC_RODATA:
3983 return LIBBPF_MAP_RODATA;
3984 default:
3985 return LIBBPF_MAP_UNSPEC;
3986 }
3987 }
3988
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)3989 static int bpf_program__record_reloc(struct bpf_program *prog,
3990 struct reloc_desc *reloc_desc,
3991 __u32 insn_idx, const char *sym_name,
3992 const Elf64_Sym *sym, const Elf64_Rel *rel)
3993 {
3994 struct bpf_insn *insn = &prog->insns[insn_idx];
3995 size_t map_idx, nr_maps = prog->obj->nr_maps;
3996 struct bpf_object *obj = prog->obj;
3997 __u32 shdr_idx = sym->st_shndx;
3998 enum libbpf_map_type type;
3999 const char *sym_sec_name;
4000 struct bpf_map *map;
4001
4002 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4003 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4004 prog->name, sym_name, insn_idx, insn->code);
4005 return -LIBBPF_ERRNO__RELOC;
4006 }
4007
4008 if (sym_is_extern(sym)) {
4009 int sym_idx = ELF64_R_SYM(rel->r_info);
4010 int i, n = obj->nr_extern;
4011 struct extern_desc *ext;
4012
4013 for (i = 0; i < n; i++) {
4014 ext = &obj->externs[i];
4015 if (ext->sym_idx == sym_idx)
4016 break;
4017 }
4018 if (i >= n) {
4019 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4020 prog->name, sym_name, sym_idx);
4021 return -LIBBPF_ERRNO__RELOC;
4022 }
4023 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4024 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4025 if (insn->code == (BPF_JMP | BPF_CALL))
4026 reloc_desc->type = RELO_EXTERN_FUNC;
4027 else
4028 reloc_desc->type = RELO_EXTERN_VAR;
4029 reloc_desc->insn_idx = insn_idx;
4030 reloc_desc->sym_off = i; /* sym_off stores extern index */
4031 return 0;
4032 }
4033
4034 /* sub-program call relocation */
4035 if (is_call_insn(insn)) {
4036 if (insn->src_reg != BPF_PSEUDO_CALL) {
4037 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4038 return -LIBBPF_ERRNO__RELOC;
4039 }
4040 /* text_shndx can be 0, if no default "main" program exists */
4041 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4042 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4043 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4044 prog->name, sym_name, sym_sec_name);
4045 return -LIBBPF_ERRNO__RELOC;
4046 }
4047 if (sym->st_value % BPF_INSN_SZ) {
4048 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4049 prog->name, sym_name, (size_t)sym->st_value);
4050 return -LIBBPF_ERRNO__RELOC;
4051 }
4052 reloc_desc->type = RELO_CALL;
4053 reloc_desc->insn_idx = insn_idx;
4054 reloc_desc->sym_off = sym->st_value;
4055 return 0;
4056 }
4057
4058 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4059 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4060 prog->name, sym_name, shdr_idx);
4061 return -LIBBPF_ERRNO__RELOC;
4062 }
4063
4064 /* loading subprog addresses */
4065 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4066 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4067 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4068 */
4069 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4070 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4071 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4072 return -LIBBPF_ERRNO__RELOC;
4073 }
4074
4075 reloc_desc->type = RELO_SUBPROG_ADDR;
4076 reloc_desc->insn_idx = insn_idx;
4077 reloc_desc->sym_off = sym->st_value;
4078 return 0;
4079 }
4080
4081 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4082 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4083
4084 /* generic map reference relocation */
4085 if (type == LIBBPF_MAP_UNSPEC) {
4086 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4087 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4088 prog->name, sym_name, sym_sec_name);
4089 return -LIBBPF_ERRNO__RELOC;
4090 }
4091 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4092 map = &obj->maps[map_idx];
4093 if (map->libbpf_type != type ||
4094 map->sec_idx != sym->st_shndx ||
4095 map->sec_offset != sym->st_value)
4096 continue;
4097 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4098 prog->name, map_idx, map->name, map->sec_idx,
4099 map->sec_offset, insn_idx);
4100 break;
4101 }
4102 if (map_idx >= nr_maps) {
4103 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4104 prog->name, sym_sec_name, (size_t)sym->st_value);
4105 return -LIBBPF_ERRNO__RELOC;
4106 }
4107 reloc_desc->type = RELO_LD64;
4108 reloc_desc->insn_idx = insn_idx;
4109 reloc_desc->map_idx = map_idx;
4110 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4111 return 0;
4112 }
4113
4114 /* global data map relocation */
4115 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4116 pr_warn("prog '%s': bad data relo against section '%s'\n",
4117 prog->name, sym_sec_name);
4118 return -LIBBPF_ERRNO__RELOC;
4119 }
4120 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4121 map = &obj->maps[map_idx];
4122 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4123 continue;
4124 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4125 prog->name, map_idx, map->name, map->sec_idx,
4126 map->sec_offset, insn_idx);
4127 break;
4128 }
4129 if (map_idx >= nr_maps) {
4130 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4131 prog->name, sym_sec_name);
4132 return -LIBBPF_ERRNO__RELOC;
4133 }
4134
4135 reloc_desc->type = RELO_DATA;
4136 reloc_desc->insn_idx = insn_idx;
4137 reloc_desc->map_idx = map_idx;
4138 reloc_desc->sym_off = sym->st_value;
4139 return 0;
4140 }
4141
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4142 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4143 {
4144 return insn_idx >= prog->sec_insn_off &&
4145 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4146 }
4147
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4148 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4149 size_t sec_idx, size_t insn_idx)
4150 {
4151 int l = 0, r = obj->nr_programs - 1, m;
4152 struct bpf_program *prog;
4153
4154 while (l < r) {
4155 m = l + (r - l + 1) / 2;
4156 prog = &obj->programs[m];
4157
4158 if (prog->sec_idx < sec_idx ||
4159 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4160 l = m;
4161 else
4162 r = m - 1;
4163 }
4164 /* matching program could be at index l, but it still might be the
4165 * wrong one, so we need to double check conditions for the last time
4166 */
4167 prog = &obj->programs[l];
4168 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4169 return prog;
4170 return NULL;
4171 }
4172
4173 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4174 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4175 {
4176 const char *relo_sec_name, *sec_name;
4177 size_t sec_idx = shdr->sh_info, sym_idx;
4178 struct bpf_program *prog;
4179 struct reloc_desc *relos;
4180 int err, i, nrels;
4181 const char *sym_name;
4182 __u32 insn_idx;
4183 Elf_Scn *scn;
4184 Elf_Data *scn_data;
4185 Elf64_Sym *sym;
4186 Elf64_Rel *rel;
4187
4188 if (sec_idx >= obj->efile.sec_cnt)
4189 return -EINVAL;
4190
4191 scn = elf_sec_by_idx(obj, sec_idx);
4192 scn_data = elf_sec_data(obj, scn);
4193
4194 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4195 sec_name = elf_sec_name(obj, scn);
4196 if (!relo_sec_name || !sec_name)
4197 return -EINVAL;
4198
4199 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4200 relo_sec_name, sec_idx, sec_name);
4201 nrels = shdr->sh_size / shdr->sh_entsize;
4202
4203 for (i = 0; i < nrels; i++) {
4204 rel = elf_rel_by_idx(data, i);
4205 if (!rel) {
4206 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4207 return -LIBBPF_ERRNO__FORMAT;
4208 }
4209
4210 sym_idx = ELF64_R_SYM(rel->r_info);
4211 sym = elf_sym_by_idx(obj, sym_idx);
4212 if (!sym) {
4213 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4214 relo_sec_name, sym_idx, i);
4215 return -LIBBPF_ERRNO__FORMAT;
4216 }
4217
4218 if (sym->st_shndx >= obj->efile.sec_cnt) {
4219 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4220 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4221 return -LIBBPF_ERRNO__FORMAT;
4222 }
4223
4224 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4225 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4226 relo_sec_name, (size_t)rel->r_offset, i);
4227 return -LIBBPF_ERRNO__FORMAT;
4228 }
4229
4230 insn_idx = rel->r_offset / BPF_INSN_SZ;
4231 /* relocations against static functions are recorded as
4232 * relocations against the section that contains a function;
4233 * in such case, symbol will be STT_SECTION and sym.st_name
4234 * will point to empty string (0), so fetch section name
4235 * instead
4236 */
4237 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4238 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4239 else
4240 sym_name = elf_sym_str(obj, sym->st_name);
4241 sym_name = sym_name ?: "<?";
4242
4243 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4244 relo_sec_name, i, insn_idx, sym_name);
4245
4246 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4247 if (!prog) {
4248 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4249 relo_sec_name, i, sec_name, insn_idx);
4250 continue;
4251 }
4252
4253 relos = libbpf_reallocarray(prog->reloc_desc,
4254 prog->nr_reloc + 1, sizeof(*relos));
4255 if (!relos)
4256 return -ENOMEM;
4257 prog->reloc_desc = relos;
4258
4259 /* adjust insn_idx to local BPF program frame of reference */
4260 insn_idx -= prog->sec_insn_off;
4261 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4262 insn_idx, sym_name, sym, rel);
4263 if (err)
4264 return err;
4265
4266 prog->nr_reloc++;
4267 }
4268 return 0;
4269 }
4270
bpf_map_find_btf_info(struct bpf_object * obj,struct bpf_map * map)4271 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4272 {
4273 struct bpf_map_def *def = &map->def;
4274 __u32 key_type_id = 0, value_type_id = 0;
4275 int ret;
4276
4277 if (!obj->btf)
4278 return -ENOENT;
4279
4280 /* if it's BTF-defined map, we don't need to search for type IDs.
4281 * For struct_ops map, it does not need btf_key_type_id and
4282 * btf_value_type_id.
4283 */
4284 if (map->sec_idx == obj->efile.btf_maps_shndx ||
4285 bpf_map__is_struct_ops(map))
4286 return 0;
4287
4288 if (!bpf_map__is_internal(map)) {
4289 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n");
4290 #pragma GCC diagnostic push
4291 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
4292 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
4293 def->value_size, &key_type_id,
4294 &value_type_id);
4295 #pragma GCC diagnostic pop
4296 } else {
4297 /*
4298 * LLVM annotates global data differently in BTF, that is,
4299 * only as '.data', '.bss' or '.rodata'.
4300 */
4301 ret = btf__find_by_name(obj->btf, map->real_name);
4302 }
4303 if (ret < 0)
4304 return ret;
4305
4306 map->btf_key_type_id = key_type_id;
4307 map->btf_value_type_id = bpf_map__is_internal(map) ?
4308 ret : value_type_id;
4309 return 0;
4310 }
4311
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4312 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4313 {
4314 char file[PATH_MAX], buff[4096];
4315 FILE *fp;
4316 __u32 val;
4317 int err;
4318
4319 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4320 memset(info, 0, sizeof(*info));
4321
4322 fp = fopen(file, "r");
4323 if (!fp) {
4324 err = -errno;
4325 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4326 err);
4327 return err;
4328 }
4329
4330 while (fgets(buff, sizeof(buff), fp)) {
4331 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4332 info->type = val;
4333 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4334 info->key_size = val;
4335 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4336 info->value_size = val;
4337 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4338 info->max_entries = val;
4339 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4340 info->map_flags = val;
4341 }
4342
4343 fclose(fp);
4344
4345 return 0;
4346 }
4347
bpf_map__autocreate(const struct bpf_map * map)4348 bool bpf_map__autocreate(const struct bpf_map *map)
4349 {
4350 return map->autocreate;
4351 }
4352
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4353 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4354 {
4355 if (map->obj->loaded)
4356 return libbpf_err(-EBUSY);
4357
4358 map->autocreate = autocreate;
4359 return 0;
4360 }
4361
bpf_map__reuse_fd(struct bpf_map * map,int fd)4362 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4363 {
4364 struct bpf_map_info info = {};
4365 __u32 len = sizeof(info), name_len;
4366 int new_fd, err;
4367 char *new_name;
4368
4369 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4370 if (err && errno == EINVAL)
4371 err = bpf_get_map_info_from_fdinfo(fd, &info);
4372 if (err)
4373 return libbpf_err(err);
4374
4375 name_len = strlen(info.name);
4376 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4377 new_name = strdup(map->name);
4378 else
4379 new_name = strdup(info.name);
4380
4381 if (!new_name)
4382 return libbpf_err(-errno);
4383
4384 new_fd = open("/", O_RDONLY | O_CLOEXEC);
4385 if (new_fd < 0) {
4386 err = -errno;
4387 goto err_free_new_name;
4388 }
4389
4390 new_fd = dup3(fd, new_fd, O_CLOEXEC);
4391 if (new_fd < 0) {
4392 err = -errno;
4393 goto err_close_new_fd;
4394 }
4395
4396 err = zclose(map->fd);
4397 if (err) {
4398 err = -errno;
4399 goto err_close_new_fd;
4400 }
4401 free(map->name);
4402
4403 map->fd = new_fd;
4404 map->name = new_name;
4405 map->def.type = info.type;
4406 map->def.key_size = info.key_size;
4407 map->def.value_size = info.value_size;
4408 map->def.max_entries = info.max_entries;
4409 map->def.map_flags = info.map_flags;
4410 map->btf_key_type_id = info.btf_key_type_id;
4411 map->btf_value_type_id = info.btf_value_type_id;
4412 map->reused = true;
4413 map->map_extra = info.map_extra;
4414
4415 return 0;
4416
4417 err_close_new_fd:
4418 close(new_fd);
4419 err_free_new_name:
4420 free(new_name);
4421 return libbpf_err(err);
4422 }
4423
bpf_map__max_entries(const struct bpf_map * map)4424 __u32 bpf_map__max_entries(const struct bpf_map *map)
4425 {
4426 return map->def.max_entries;
4427 }
4428
bpf_map__inner_map(struct bpf_map * map)4429 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4430 {
4431 if (!bpf_map_type__is_map_in_map(map->def.type))
4432 return errno = EINVAL, NULL;
4433
4434 return map->inner_map;
4435 }
4436
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4437 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4438 {
4439 if (map->obj->loaded)
4440 return libbpf_err(-EBUSY);
4441
4442 map->def.max_entries = max_entries;
4443
4444 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4445 if (map->def.type == BPF_MAP_TYPE_RINGBUF)
4446 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4447
4448 return 0;
4449 }
4450
bpf_map__resize(struct bpf_map * map,__u32 max_entries)4451 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
4452 {
4453 if (!map || !max_entries)
4454 return libbpf_err(-EINVAL);
4455
4456 return bpf_map__set_max_entries(map, max_entries);
4457 }
4458
4459 static int
bpf_object__probe_loading(struct bpf_object * obj)4460 bpf_object__probe_loading(struct bpf_object *obj)
4461 {
4462 char *cp, errmsg[STRERR_BUFSIZE];
4463 struct bpf_insn insns[] = {
4464 BPF_MOV64_IMM(BPF_REG_0, 0),
4465 BPF_EXIT_INSN(),
4466 };
4467 int ret, insn_cnt = ARRAY_SIZE(insns);
4468
4469 if (obj->gen_loader)
4470 return 0;
4471
4472 ret = bump_rlimit_memlock();
4473 if (ret)
4474 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4475
4476 /* make sure basic loading works */
4477 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4478 if (ret < 0)
4479 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4480 if (ret < 0) {
4481 ret = errno;
4482 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4483 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4484 "program. Make sure your kernel supports BPF "
4485 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4486 "set to big enough value.\n", __func__, cp, ret);
4487 return -ret;
4488 }
4489 close(ret);
4490
4491 return 0;
4492 }
4493
probe_fd(int fd)4494 static int probe_fd(int fd)
4495 {
4496 if (fd >= 0)
4497 close(fd);
4498 return fd >= 0;
4499 }
4500
probe_kern_prog_name(void)4501 static int probe_kern_prog_name(void)
4502 {
4503 struct bpf_insn insns[] = {
4504 BPF_MOV64_IMM(BPF_REG_0, 0),
4505 BPF_EXIT_INSN(),
4506 };
4507 int ret, insn_cnt = ARRAY_SIZE(insns);
4508
4509 /* make sure loading with name works */
4510 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL);
4511 return probe_fd(ret);
4512 }
4513
probe_kern_global_data(void)4514 static int probe_kern_global_data(void)
4515 {
4516 char *cp, errmsg[STRERR_BUFSIZE];
4517 struct bpf_insn insns[] = {
4518 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4519 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4520 BPF_MOV64_IMM(BPF_REG_0, 0),
4521 BPF_EXIT_INSN(),
4522 };
4523 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4524
4525 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4526 if (map < 0) {
4527 ret = -errno;
4528 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4529 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4530 __func__, cp, -ret);
4531 return ret;
4532 }
4533
4534 insns[0].imm = map;
4535
4536 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4537 close(map);
4538 return probe_fd(ret);
4539 }
4540
probe_kern_btf(void)4541 static int probe_kern_btf(void)
4542 {
4543 static const char strs[] = "\0int";
4544 __u32 types[] = {
4545 /* int */
4546 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4547 };
4548
4549 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4550 strs, sizeof(strs)));
4551 }
4552
probe_kern_btf_func(void)4553 static int probe_kern_btf_func(void)
4554 {
4555 static const char strs[] = "\0int\0x\0a";
4556 /* void x(int a) {} */
4557 __u32 types[] = {
4558 /* int */
4559 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4560 /* FUNC_PROTO */ /* [2] */
4561 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4562 BTF_PARAM_ENC(7, 1),
4563 /* FUNC x */ /* [3] */
4564 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4565 };
4566
4567 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4568 strs, sizeof(strs)));
4569 }
4570
probe_kern_btf_func_global(void)4571 static int probe_kern_btf_func_global(void)
4572 {
4573 static const char strs[] = "\0int\0x\0a";
4574 /* static void x(int a) {} */
4575 __u32 types[] = {
4576 /* int */
4577 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4578 /* FUNC_PROTO */ /* [2] */
4579 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4580 BTF_PARAM_ENC(7, 1),
4581 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4582 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4583 };
4584
4585 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4586 strs, sizeof(strs)));
4587 }
4588
probe_kern_btf_datasec(void)4589 static int probe_kern_btf_datasec(void)
4590 {
4591 static const char strs[] = "\0x\0.data";
4592 /* static int a; */
4593 __u32 types[] = {
4594 /* int */
4595 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4596 /* VAR x */ /* [2] */
4597 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4598 BTF_VAR_STATIC,
4599 /* DATASEC val */ /* [3] */
4600 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4601 BTF_VAR_SECINFO_ENC(2, 0, 4),
4602 };
4603
4604 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4605 strs, sizeof(strs)));
4606 }
4607
probe_kern_btf_float(void)4608 static int probe_kern_btf_float(void)
4609 {
4610 static const char strs[] = "\0float";
4611 __u32 types[] = {
4612 /* float */
4613 BTF_TYPE_FLOAT_ENC(1, 4),
4614 };
4615
4616 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4617 strs, sizeof(strs)));
4618 }
4619
probe_kern_btf_decl_tag(void)4620 static int probe_kern_btf_decl_tag(void)
4621 {
4622 static const char strs[] = "\0tag";
4623 __u32 types[] = {
4624 /* int */
4625 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4626 /* VAR x */ /* [2] */
4627 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4628 BTF_VAR_STATIC,
4629 /* attr */
4630 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4631 };
4632
4633 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4634 strs, sizeof(strs)));
4635 }
4636
probe_kern_btf_type_tag(void)4637 static int probe_kern_btf_type_tag(void)
4638 {
4639 static const char strs[] = "\0tag";
4640 __u32 types[] = {
4641 /* int */
4642 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4643 /* attr */
4644 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4645 /* ptr */
4646 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4647 };
4648
4649 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4650 strs, sizeof(strs)));
4651 }
4652
probe_kern_array_mmap(void)4653 static int probe_kern_array_mmap(void)
4654 {
4655 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4656 int fd;
4657
4658 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts);
4659 return probe_fd(fd);
4660 }
4661
probe_kern_exp_attach_type(void)4662 static int probe_kern_exp_attach_type(void)
4663 {
4664 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4665 struct bpf_insn insns[] = {
4666 BPF_MOV64_IMM(BPF_REG_0, 0),
4667 BPF_EXIT_INSN(),
4668 };
4669 int fd, insn_cnt = ARRAY_SIZE(insns);
4670
4671 /* use any valid combination of program type and (optional)
4672 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4673 * to see if kernel supports expected_attach_type field for
4674 * BPF_PROG_LOAD command
4675 */
4676 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4677 return probe_fd(fd);
4678 }
4679
probe_kern_probe_read_kernel(void)4680 static int probe_kern_probe_read_kernel(void)
4681 {
4682 struct bpf_insn insns[] = {
4683 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4684 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4685 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4686 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4687 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4688 BPF_EXIT_INSN(),
4689 };
4690 int fd, insn_cnt = ARRAY_SIZE(insns);
4691
4692 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4693 return probe_fd(fd);
4694 }
4695
probe_prog_bind_map(void)4696 static int probe_prog_bind_map(void)
4697 {
4698 char *cp, errmsg[STRERR_BUFSIZE];
4699 struct bpf_insn insns[] = {
4700 BPF_MOV64_IMM(BPF_REG_0, 0),
4701 BPF_EXIT_INSN(),
4702 };
4703 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4704
4705 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4706 if (map < 0) {
4707 ret = -errno;
4708 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4709 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4710 __func__, cp, -ret);
4711 return ret;
4712 }
4713
4714 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4715 if (prog < 0) {
4716 close(map);
4717 return 0;
4718 }
4719
4720 ret = bpf_prog_bind_map(prog, map, NULL);
4721
4722 close(map);
4723 close(prog);
4724
4725 return ret >= 0;
4726 }
4727
probe_module_btf(void)4728 static int probe_module_btf(void)
4729 {
4730 static const char strs[] = "\0int";
4731 __u32 types[] = {
4732 /* int */
4733 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4734 };
4735 struct bpf_btf_info info;
4736 __u32 len = sizeof(info);
4737 char name[16];
4738 int fd, err;
4739
4740 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4741 if (fd < 0)
4742 return 0; /* BTF not supported at all */
4743
4744 memset(&info, 0, sizeof(info));
4745 info.name = ptr_to_u64(name);
4746 info.name_len = sizeof(name);
4747
4748 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4749 * kernel's module BTF support coincides with support for
4750 * name/name_len fields in struct bpf_btf_info.
4751 */
4752 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4753 close(fd);
4754 return !err;
4755 }
4756
probe_perf_link(void)4757 static int probe_perf_link(void)
4758 {
4759 struct bpf_insn insns[] = {
4760 BPF_MOV64_IMM(BPF_REG_0, 0),
4761 BPF_EXIT_INSN(),
4762 };
4763 int prog_fd, link_fd, err;
4764
4765 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4766 insns, ARRAY_SIZE(insns), NULL);
4767 if (prog_fd < 0)
4768 return -errno;
4769
4770 /* use invalid perf_event FD to get EBADF, if link is supported;
4771 * otherwise EINVAL should be returned
4772 */
4773 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4774 err = -errno; /* close() can clobber errno */
4775
4776 if (link_fd >= 0)
4777 close(link_fd);
4778 close(prog_fd);
4779
4780 return link_fd < 0 && err == -EBADF;
4781 }
4782
probe_kern_bpf_cookie(void)4783 static int probe_kern_bpf_cookie(void)
4784 {
4785 struct bpf_insn insns[] = {
4786 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4787 BPF_EXIT_INSN(),
4788 };
4789 int ret, insn_cnt = ARRAY_SIZE(insns);
4790
4791 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4792 return probe_fd(ret);
4793 }
4794
4795 enum kern_feature_result {
4796 FEAT_UNKNOWN = 0,
4797 FEAT_SUPPORTED = 1,
4798 FEAT_MISSING = 2,
4799 };
4800
4801 typedef int (*feature_probe_fn)(void);
4802
4803 static struct kern_feature_desc {
4804 const char *desc;
4805 feature_probe_fn probe;
4806 enum kern_feature_result res;
4807 } feature_probes[__FEAT_CNT] = {
4808 [FEAT_PROG_NAME] = {
4809 "BPF program name", probe_kern_prog_name,
4810 },
4811 [FEAT_GLOBAL_DATA] = {
4812 "global variables", probe_kern_global_data,
4813 },
4814 [FEAT_BTF] = {
4815 "minimal BTF", probe_kern_btf,
4816 },
4817 [FEAT_BTF_FUNC] = {
4818 "BTF functions", probe_kern_btf_func,
4819 },
4820 [FEAT_BTF_GLOBAL_FUNC] = {
4821 "BTF global function", probe_kern_btf_func_global,
4822 },
4823 [FEAT_BTF_DATASEC] = {
4824 "BTF data section and variable", probe_kern_btf_datasec,
4825 },
4826 [FEAT_ARRAY_MMAP] = {
4827 "ARRAY map mmap()", probe_kern_array_mmap,
4828 },
4829 [FEAT_EXP_ATTACH_TYPE] = {
4830 "BPF_PROG_LOAD expected_attach_type attribute",
4831 probe_kern_exp_attach_type,
4832 },
4833 [FEAT_PROBE_READ_KERN] = {
4834 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4835 },
4836 [FEAT_PROG_BIND_MAP] = {
4837 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4838 },
4839 [FEAT_MODULE_BTF] = {
4840 "module BTF support", probe_module_btf,
4841 },
4842 [FEAT_BTF_FLOAT] = {
4843 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4844 },
4845 [FEAT_PERF_LINK] = {
4846 "BPF perf link support", probe_perf_link,
4847 },
4848 [FEAT_BTF_DECL_TAG] = {
4849 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4850 },
4851 [FEAT_BTF_TYPE_TAG] = {
4852 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4853 },
4854 [FEAT_MEMCG_ACCOUNT] = {
4855 "memcg-based memory accounting", probe_memcg_account,
4856 },
4857 [FEAT_BPF_COOKIE] = {
4858 "BPF cookie support", probe_kern_bpf_cookie,
4859 },
4860 };
4861
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)4862 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4863 {
4864 struct kern_feature_desc *feat = &feature_probes[feat_id];
4865 int ret;
4866
4867 if (obj && obj->gen_loader)
4868 /* To generate loader program assume the latest kernel
4869 * to avoid doing extra prog_load, map_create syscalls.
4870 */
4871 return true;
4872
4873 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4874 ret = feat->probe();
4875 if (ret > 0) {
4876 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4877 } else if (ret == 0) {
4878 WRITE_ONCE(feat->res, FEAT_MISSING);
4879 } else {
4880 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4881 WRITE_ONCE(feat->res, FEAT_MISSING);
4882 }
4883 }
4884
4885 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4886 }
4887
map_is_reuse_compat(const struct bpf_map * map,int map_fd)4888 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4889 {
4890 struct bpf_map_info map_info = {};
4891 char msg[STRERR_BUFSIZE];
4892 __u32 map_info_len;
4893 int err;
4894
4895 map_info_len = sizeof(map_info);
4896
4897 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4898 if (err && errno == EINVAL)
4899 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4900 if (err) {
4901 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4902 libbpf_strerror_r(errno, msg, sizeof(msg)));
4903 return false;
4904 }
4905
4906 return (map_info.type == map->def.type &&
4907 map_info.key_size == map->def.key_size &&
4908 map_info.value_size == map->def.value_size &&
4909 map_info.max_entries == map->def.max_entries &&
4910 map_info.map_flags == map->def.map_flags &&
4911 map_info.map_extra == map->map_extra);
4912 }
4913
4914 static int
bpf_object__reuse_map(struct bpf_map * map)4915 bpf_object__reuse_map(struct bpf_map *map)
4916 {
4917 char *cp, errmsg[STRERR_BUFSIZE];
4918 int err, pin_fd;
4919
4920 pin_fd = bpf_obj_get(map->pin_path);
4921 if (pin_fd < 0) {
4922 err = -errno;
4923 if (err == -ENOENT) {
4924 pr_debug("found no pinned map to reuse at '%s'\n",
4925 map->pin_path);
4926 return 0;
4927 }
4928
4929 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4930 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4931 map->pin_path, cp);
4932 return err;
4933 }
4934
4935 if (!map_is_reuse_compat(map, pin_fd)) {
4936 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4937 map->pin_path);
4938 close(pin_fd);
4939 return -EINVAL;
4940 }
4941
4942 err = bpf_map__reuse_fd(map, pin_fd);
4943 close(pin_fd);
4944 if (err) {
4945 return err;
4946 }
4947 map->pinned = true;
4948 pr_debug("reused pinned map at '%s'\n", map->pin_path);
4949
4950 return 0;
4951 }
4952
4953 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)4954 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4955 {
4956 enum libbpf_map_type map_type = map->libbpf_type;
4957 char *cp, errmsg[STRERR_BUFSIZE];
4958 int err, zero = 0;
4959
4960 if (obj->gen_loader) {
4961 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4962 map->mmaped, map->def.value_size);
4963 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4964 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4965 return 0;
4966 }
4967 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4968 if (err) {
4969 err = -errno;
4970 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4971 pr_warn("Error setting initial map(%s) contents: %s\n",
4972 map->name, cp);
4973 return err;
4974 }
4975
4976 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
4977 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4978 err = bpf_map_freeze(map->fd);
4979 if (err) {
4980 err = -errno;
4981 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4982 pr_warn("Error freezing map(%s) as read-only: %s\n",
4983 map->name, cp);
4984 return err;
4985 }
4986 }
4987 return 0;
4988 }
4989
4990 static void bpf_map__destroy(struct bpf_map *map);
4991
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)4992 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4993 {
4994 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4995 struct bpf_map_def *def = &map->def;
4996 const char *map_name = NULL;
4997 int err = 0;
4998
4999 if (kernel_supports(obj, FEAT_PROG_NAME))
5000 map_name = map->name;
5001 create_attr.map_ifindex = map->map_ifindex;
5002 create_attr.map_flags = def->map_flags;
5003 create_attr.numa_node = map->numa_node;
5004 create_attr.map_extra = map->map_extra;
5005
5006 if (bpf_map__is_struct_ops(map))
5007 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5008
5009 if (obj->btf && btf__fd(obj->btf) >= 0) {
5010 create_attr.btf_fd = btf__fd(obj->btf);
5011 create_attr.btf_key_type_id = map->btf_key_type_id;
5012 create_attr.btf_value_type_id = map->btf_value_type_id;
5013 }
5014
5015 if (bpf_map_type__is_map_in_map(def->type)) {
5016 if (map->inner_map) {
5017 err = bpf_object__create_map(obj, map->inner_map, true);
5018 if (err) {
5019 pr_warn("map '%s': failed to create inner map: %d\n",
5020 map->name, err);
5021 return err;
5022 }
5023 map->inner_map_fd = bpf_map__fd(map->inner_map);
5024 }
5025 if (map->inner_map_fd >= 0)
5026 create_attr.inner_map_fd = map->inner_map_fd;
5027 }
5028
5029 switch (def->type) {
5030 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5031 case BPF_MAP_TYPE_CGROUP_ARRAY:
5032 case BPF_MAP_TYPE_STACK_TRACE:
5033 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5034 case BPF_MAP_TYPE_HASH_OF_MAPS:
5035 case BPF_MAP_TYPE_DEVMAP:
5036 case BPF_MAP_TYPE_DEVMAP_HASH:
5037 case BPF_MAP_TYPE_CPUMAP:
5038 case BPF_MAP_TYPE_XSKMAP:
5039 case BPF_MAP_TYPE_SOCKMAP:
5040 case BPF_MAP_TYPE_SOCKHASH:
5041 case BPF_MAP_TYPE_QUEUE:
5042 case BPF_MAP_TYPE_STACK:
5043 create_attr.btf_fd = 0;
5044 create_attr.btf_key_type_id = 0;
5045 create_attr.btf_value_type_id = 0;
5046 map->btf_key_type_id = 0;
5047 map->btf_value_type_id = 0;
5048 default:
5049 break;
5050 }
5051
5052 if (obj->gen_loader) {
5053 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5054 def->key_size, def->value_size, def->max_entries,
5055 &create_attr, is_inner ? -1 : map - obj->maps);
5056 /* Pretend to have valid FD to pass various fd >= 0 checks.
5057 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5058 */
5059 map->fd = 0;
5060 } else {
5061 map->fd = bpf_map_create(def->type, map_name,
5062 def->key_size, def->value_size,
5063 def->max_entries, &create_attr);
5064 }
5065 if (map->fd < 0 && (create_attr.btf_key_type_id ||
5066 create_attr.btf_value_type_id)) {
5067 char *cp, errmsg[STRERR_BUFSIZE];
5068
5069 err = -errno;
5070 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5071 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5072 map->name, cp, err);
5073 create_attr.btf_fd = 0;
5074 create_attr.btf_key_type_id = 0;
5075 create_attr.btf_value_type_id = 0;
5076 map->btf_key_type_id = 0;
5077 map->btf_value_type_id = 0;
5078 map->fd = bpf_map_create(def->type, map_name,
5079 def->key_size, def->value_size,
5080 def->max_entries, &create_attr);
5081 }
5082
5083 err = map->fd < 0 ? -errno : 0;
5084
5085 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5086 if (obj->gen_loader)
5087 map->inner_map->fd = -1;
5088 bpf_map__destroy(map->inner_map);
5089 zfree(&map->inner_map);
5090 }
5091
5092 return err;
5093 }
5094
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5095 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5096 {
5097 const struct bpf_map *targ_map;
5098 unsigned int i;
5099 int fd, err = 0;
5100
5101 for (i = 0; i < map->init_slots_sz; i++) {
5102 if (!map->init_slots[i])
5103 continue;
5104
5105 targ_map = map->init_slots[i];
5106 fd = bpf_map__fd(targ_map);
5107
5108 if (obj->gen_loader) {
5109 bpf_gen__populate_outer_map(obj->gen_loader,
5110 map - obj->maps, i,
5111 targ_map - obj->maps);
5112 } else {
5113 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5114 }
5115 if (err) {
5116 err = -errno;
5117 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5118 map->name, i, targ_map->name, fd, err);
5119 return err;
5120 }
5121 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5122 map->name, i, targ_map->name, fd);
5123 }
5124
5125 zfree(&map->init_slots);
5126 map->init_slots_sz = 0;
5127
5128 return 0;
5129 }
5130
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5131 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5132 {
5133 const struct bpf_program *targ_prog;
5134 unsigned int i;
5135 int fd, err;
5136
5137 if (obj->gen_loader)
5138 return -ENOTSUP;
5139
5140 for (i = 0; i < map->init_slots_sz; i++) {
5141 if (!map->init_slots[i])
5142 continue;
5143
5144 targ_prog = map->init_slots[i];
5145 fd = bpf_program__fd(targ_prog);
5146
5147 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5148 if (err) {
5149 err = -errno;
5150 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5151 map->name, i, targ_prog->name, fd, err);
5152 return err;
5153 }
5154 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5155 map->name, i, targ_prog->name, fd);
5156 }
5157
5158 zfree(&map->init_slots);
5159 map->init_slots_sz = 0;
5160
5161 return 0;
5162 }
5163
bpf_object_init_prog_arrays(struct bpf_object * obj)5164 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5165 {
5166 struct bpf_map *map;
5167 int i, err;
5168
5169 for (i = 0; i < obj->nr_maps; i++) {
5170 map = &obj->maps[i];
5171
5172 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5173 continue;
5174
5175 err = init_prog_array_slots(obj, map);
5176 if (err < 0) {
5177 zclose(map->fd);
5178 return err;
5179 }
5180 }
5181 return 0;
5182 }
5183
map_set_def_max_entries(struct bpf_map * map)5184 static int map_set_def_max_entries(struct bpf_map *map)
5185 {
5186 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5187 int nr_cpus;
5188
5189 nr_cpus = libbpf_num_possible_cpus();
5190 if (nr_cpus < 0) {
5191 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5192 map->name, nr_cpus);
5193 return nr_cpus;
5194 }
5195 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5196 map->def.max_entries = nr_cpus;
5197 }
5198
5199 return 0;
5200 }
5201
5202 static int
bpf_object__create_maps(struct bpf_object * obj)5203 bpf_object__create_maps(struct bpf_object *obj)
5204 {
5205 struct bpf_map *map;
5206 char *cp, errmsg[STRERR_BUFSIZE];
5207 unsigned int i, j;
5208 int err;
5209 bool retried;
5210
5211 for (i = 0; i < obj->nr_maps; i++) {
5212 map = &obj->maps[i];
5213
5214 /* To support old kernels, we skip creating global data maps
5215 * (.rodata, .data, .kconfig, etc); later on, during program
5216 * loading, if we detect that at least one of the to-be-loaded
5217 * programs is referencing any global data map, we'll error
5218 * out with program name and relocation index logged.
5219 * This approach allows to accommodate Clang emitting
5220 * unnecessary .rodata.str1.1 sections for string literals,
5221 * but also it allows to have CO-RE applications that use
5222 * global variables in some of BPF programs, but not others.
5223 * If those global variable-using programs are not loaded at
5224 * runtime due to bpf_program__set_autoload(prog, false),
5225 * bpf_object loading will succeed just fine even on old
5226 * kernels.
5227 */
5228 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5229 map->autocreate = false;
5230
5231 if (!map->autocreate) {
5232 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5233 continue;
5234 }
5235
5236 err = map_set_def_max_entries(map);
5237 if (err)
5238 goto err_out;
5239
5240 retried = false;
5241 retry:
5242 if (map->pin_path) {
5243 err = bpf_object__reuse_map(map);
5244 if (err) {
5245 pr_warn("map '%s': error reusing pinned map\n",
5246 map->name);
5247 goto err_out;
5248 }
5249 if (retried && map->fd < 0) {
5250 pr_warn("map '%s': cannot find pinned map\n",
5251 map->name);
5252 err = -ENOENT;
5253 goto err_out;
5254 }
5255 }
5256
5257 if (map->fd >= 0) {
5258 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5259 map->name, map->fd);
5260 } else {
5261 err = bpf_object__create_map(obj, map, false);
5262 if (err)
5263 goto err_out;
5264
5265 pr_debug("map '%s': created successfully, fd=%d\n",
5266 map->name, map->fd);
5267
5268 if (bpf_map__is_internal(map)) {
5269 err = bpf_object__populate_internal_map(obj, map);
5270 if (err < 0) {
5271 zclose(map->fd);
5272 goto err_out;
5273 }
5274 }
5275
5276 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5277 err = init_map_in_map_slots(obj, map);
5278 if (err < 0) {
5279 zclose(map->fd);
5280 goto err_out;
5281 }
5282 }
5283 }
5284
5285 if (map->pin_path && !map->pinned) {
5286 err = bpf_map__pin(map, NULL);
5287 if (err) {
5288 zclose(map->fd);
5289 if (!retried && err == -EEXIST) {
5290 retried = true;
5291 goto retry;
5292 }
5293 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5294 map->name, map->pin_path, err);
5295 goto err_out;
5296 }
5297 }
5298 }
5299
5300 return 0;
5301
5302 err_out:
5303 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5304 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5305 pr_perm_msg(err);
5306 for (j = 0; j < i; j++)
5307 zclose(obj->maps[j].fd);
5308 return err;
5309 }
5310
bpf_core_is_flavor_sep(const char * s)5311 static bool bpf_core_is_flavor_sep(const char *s)
5312 {
5313 /* check X___Y name pattern, where X and Y are not underscores */
5314 return s[0] != '_' && /* X */
5315 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5316 s[4] != '_'; /* Y */
5317 }
5318
5319 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5320 * before last triple underscore. Struct name part after last triple
5321 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5322 */
bpf_core_essential_name_len(const char * name)5323 size_t bpf_core_essential_name_len(const char *name)
5324 {
5325 size_t n = strlen(name);
5326 int i;
5327
5328 for (i = n - 5; i >= 0; i--) {
5329 if (bpf_core_is_flavor_sep(name + i))
5330 return i + 1;
5331 }
5332 return n;
5333 }
5334
bpf_core_free_cands(struct bpf_core_cand_list * cands)5335 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5336 {
5337 if (!cands)
5338 return;
5339
5340 free(cands->cands);
5341 free(cands);
5342 }
5343
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5344 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5345 size_t local_essent_len,
5346 const struct btf *targ_btf,
5347 const char *targ_btf_name,
5348 int targ_start_id,
5349 struct bpf_core_cand_list *cands)
5350 {
5351 struct bpf_core_cand *new_cands, *cand;
5352 const struct btf_type *t, *local_t;
5353 const char *targ_name, *local_name;
5354 size_t targ_essent_len;
5355 int n, i;
5356
5357 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5358 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5359
5360 n = btf__type_cnt(targ_btf);
5361 for (i = targ_start_id; i < n; i++) {
5362 t = btf__type_by_id(targ_btf, i);
5363 if (btf_kind(t) != btf_kind(local_t))
5364 continue;
5365
5366 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5367 if (str_is_empty(targ_name))
5368 continue;
5369
5370 targ_essent_len = bpf_core_essential_name_len(targ_name);
5371 if (targ_essent_len != local_essent_len)
5372 continue;
5373
5374 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5375 continue;
5376
5377 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5378 local_cand->id, btf_kind_str(local_t),
5379 local_name, i, btf_kind_str(t), targ_name,
5380 targ_btf_name);
5381 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5382 sizeof(*cands->cands));
5383 if (!new_cands)
5384 return -ENOMEM;
5385
5386 cand = &new_cands[cands->len];
5387 cand->btf = targ_btf;
5388 cand->id = i;
5389
5390 cands->cands = new_cands;
5391 cands->len++;
5392 }
5393 return 0;
5394 }
5395
load_module_btfs(struct bpf_object * obj)5396 static int load_module_btfs(struct bpf_object *obj)
5397 {
5398 struct bpf_btf_info info;
5399 struct module_btf *mod_btf;
5400 struct btf *btf;
5401 char name[64];
5402 __u32 id = 0, len;
5403 int err, fd;
5404
5405 if (obj->btf_modules_loaded)
5406 return 0;
5407
5408 if (obj->gen_loader)
5409 return 0;
5410
5411 /* don't do this again, even if we find no module BTFs */
5412 obj->btf_modules_loaded = true;
5413
5414 /* kernel too old to support module BTFs */
5415 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5416 return 0;
5417
5418 while (true) {
5419 err = bpf_btf_get_next_id(id, &id);
5420 if (err && errno == ENOENT)
5421 return 0;
5422 if (err) {
5423 err = -errno;
5424 pr_warn("failed to iterate BTF objects: %d\n", err);
5425 return err;
5426 }
5427
5428 fd = bpf_btf_get_fd_by_id(id);
5429 if (fd < 0) {
5430 if (errno == ENOENT)
5431 continue; /* expected race: BTF was unloaded */
5432 err = -errno;
5433 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5434 return err;
5435 }
5436
5437 len = sizeof(info);
5438 memset(&info, 0, sizeof(info));
5439 info.name = ptr_to_u64(name);
5440 info.name_len = sizeof(name);
5441
5442 err = bpf_obj_get_info_by_fd(fd, &info, &len);
5443 if (err) {
5444 err = -errno;
5445 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5446 goto err_out;
5447 }
5448
5449 /* ignore non-module BTFs */
5450 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5451 close(fd);
5452 continue;
5453 }
5454
5455 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5456 err = libbpf_get_error(btf);
5457 if (err) {
5458 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5459 name, id, err);
5460 goto err_out;
5461 }
5462
5463 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5464 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5465 if (err)
5466 goto err_out;
5467
5468 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5469
5470 mod_btf->btf = btf;
5471 mod_btf->id = id;
5472 mod_btf->fd = fd;
5473 mod_btf->name = strdup(name);
5474 if (!mod_btf->name) {
5475 err = -ENOMEM;
5476 goto err_out;
5477 }
5478 continue;
5479
5480 err_out:
5481 close(fd);
5482 return err;
5483 }
5484
5485 return 0;
5486 }
5487
5488 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5489 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5490 {
5491 struct bpf_core_cand local_cand = {};
5492 struct bpf_core_cand_list *cands;
5493 const struct btf *main_btf;
5494 const struct btf_type *local_t;
5495 const char *local_name;
5496 size_t local_essent_len;
5497 int err, i;
5498
5499 local_cand.btf = local_btf;
5500 local_cand.id = local_type_id;
5501 local_t = btf__type_by_id(local_btf, local_type_id);
5502 if (!local_t)
5503 return ERR_PTR(-EINVAL);
5504
5505 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5506 if (str_is_empty(local_name))
5507 return ERR_PTR(-EINVAL);
5508 local_essent_len = bpf_core_essential_name_len(local_name);
5509
5510 cands = calloc(1, sizeof(*cands));
5511 if (!cands)
5512 return ERR_PTR(-ENOMEM);
5513
5514 /* Attempt to find target candidates in vmlinux BTF first */
5515 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5516 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5517 if (err)
5518 goto err_out;
5519
5520 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5521 if (cands->len)
5522 return cands;
5523
5524 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5525 if (obj->btf_vmlinux_override)
5526 return cands;
5527
5528 /* now look through module BTFs, trying to still find candidates */
5529 err = load_module_btfs(obj);
5530 if (err)
5531 goto err_out;
5532
5533 for (i = 0; i < obj->btf_module_cnt; i++) {
5534 err = bpf_core_add_cands(&local_cand, local_essent_len,
5535 obj->btf_modules[i].btf,
5536 obj->btf_modules[i].name,
5537 btf__type_cnt(obj->btf_vmlinux),
5538 cands);
5539 if (err)
5540 goto err_out;
5541 }
5542
5543 return cands;
5544 err_out:
5545 bpf_core_free_cands(cands);
5546 return ERR_PTR(err);
5547 }
5548
5549 /* Check local and target types for compatibility. This check is used for
5550 * type-based CO-RE relocations and follow slightly different rules than
5551 * field-based relocations. This function assumes that root types were already
5552 * checked for name match. Beyond that initial root-level name check, names
5553 * are completely ignored. Compatibility rules are as follows:
5554 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5555 * kind should match for local and target types (i.e., STRUCT is not
5556 * compatible with UNION);
5557 * - for ENUMs, the size is ignored;
5558 * - for INT, size and signedness are ignored;
5559 * - for ARRAY, dimensionality is ignored, element types are checked for
5560 * compatibility recursively;
5561 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5562 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5563 * - FUNC_PROTOs are compatible if they have compatible signature: same
5564 * number of input args and compatible return and argument types.
5565 * These rules are not set in stone and probably will be adjusted as we get
5566 * more experience with using BPF CO-RE relocations.
5567 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5568 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5569 const struct btf *targ_btf, __u32 targ_id)
5570 {
5571 const struct btf_type *local_type, *targ_type;
5572 int depth = 32; /* max recursion depth */
5573
5574 /* caller made sure that names match (ignoring flavor suffix) */
5575 local_type = btf__type_by_id(local_btf, local_id);
5576 targ_type = btf__type_by_id(targ_btf, targ_id);
5577 if (btf_kind(local_type) != btf_kind(targ_type))
5578 return 0;
5579
5580 recur:
5581 depth--;
5582 if (depth < 0)
5583 return -EINVAL;
5584
5585 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5586 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5587 if (!local_type || !targ_type)
5588 return -EINVAL;
5589
5590 if (btf_kind(local_type) != btf_kind(targ_type))
5591 return 0;
5592
5593 switch (btf_kind(local_type)) {
5594 case BTF_KIND_UNKN:
5595 case BTF_KIND_STRUCT:
5596 case BTF_KIND_UNION:
5597 case BTF_KIND_ENUM:
5598 case BTF_KIND_FWD:
5599 return 1;
5600 case BTF_KIND_INT:
5601 /* just reject deprecated bitfield-like integers; all other
5602 * integers are by default compatible between each other
5603 */
5604 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
5605 case BTF_KIND_PTR:
5606 local_id = local_type->type;
5607 targ_id = targ_type->type;
5608 goto recur;
5609 case BTF_KIND_ARRAY:
5610 local_id = btf_array(local_type)->type;
5611 targ_id = btf_array(targ_type)->type;
5612 goto recur;
5613 case BTF_KIND_FUNC_PROTO: {
5614 struct btf_param *local_p = btf_params(local_type);
5615 struct btf_param *targ_p = btf_params(targ_type);
5616 __u16 local_vlen = btf_vlen(local_type);
5617 __u16 targ_vlen = btf_vlen(targ_type);
5618 int i, err;
5619
5620 if (local_vlen != targ_vlen)
5621 return 0;
5622
5623 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
5624 skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
5625 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
5626 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
5627 if (err <= 0)
5628 return err;
5629 }
5630
5631 /* tail recurse for return type check */
5632 skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
5633 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
5634 goto recur;
5635 }
5636 default:
5637 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
5638 btf_kind_str(local_type), local_id, targ_id);
5639 return 0;
5640 }
5641 }
5642
bpf_core_hash_fn(const void * key,void * ctx)5643 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5644 {
5645 return (size_t)key;
5646 }
5647
bpf_core_equal_fn(const void * k1,const void * k2,void * ctx)5648 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5649 {
5650 return k1 == k2;
5651 }
5652
u32_as_hash_key(__u32 x)5653 static void *u32_as_hash_key(__u32 x)
5654 {
5655 return (void *)(uintptr_t)x;
5656 }
5657
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5658 static int record_relo_core(struct bpf_program *prog,
5659 const struct bpf_core_relo *core_relo, int insn_idx)
5660 {
5661 struct reloc_desc *relos, *relo;
5662
5663 relos = libbpf_reallocarray(prog->reloc_desc,
5664 prog->nr_reloc + 1, sizeof(*relos));
5665 if (!relos)
5666 return -ENOMEM;
5667 relo = &relos[prog->nr_reloc];
5668 relo->type = RELO_CORE;
5669 relo->insn_idx = insn_idx;
5670 relo->core_relo = core_relo;
5671 prog->reloc_desc = relos;
5672 prog->nr_reloc++;
5673 return 0;
5674 }
5675
find_relo_core(struct bpf_program * prog,int insn_idx)5676 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5677 {
5678 struct reloc_desc *relo;
5679 int i;
5680
5681 for (i = 0; i < prog->nr_reloc; i++) {
5682 relo = &prog->reloc_desc[i];
5683 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5684 continue;
5685
5686 return relo->core_relo;
5687 }
5688
5689 return NULL;
5690 }
5691
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5692 static int bpf_core_resolve_relo(struct bpf_program *prog,
5693 const struct bpf_core_relo *relo,
5694 int relo_idx,
5695 const struct btf *local_btf,
5696 struct hashmap *cand_cache,
5697 struct bpf_core_relo_res *targ_res)
5698 {
5699 struct bpf_core_spec specs_scratch[3] = {};
5700 const void *type_key = u32_as_hash_key(relo->type_id);
5701 struct bpf_core_cand_list *cands = NULL;
5702 const char *prog_name = prog->name;
5703 const struct btf_type *local_type;
5704 const char *local_name;
5705 __u32 local_id = relo->type_id;
5706 int err;
5707
5708 local_type = btf__type_by_id(local_btf, local_id);
5709 if (!local_type)
5710 return -EINVAL;
5711
5712 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5713 if (!local_name)
5714 return -EINVAL;
5715
5716 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5717 !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5718 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5719 if (IS_ERR(cands)) {
5720 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5721 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5722 local_name, PTR_ERR(cands));
5723 return PTR_ERR(cands);
5724 }
5725 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5726 if (err) {
5727 bpf_core_free_cands(cands);
5728 return err;
5729 }
5730 }
5731
5732 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5733 targ_res);
5734 }
5735
5736 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5737 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5738 {
5739 const struct btf_ext_info_sec *sec;
5740 struct bpf_core_relo_res targ_res;
5741 const struct bpf_core_relo *rec;
5742 const struct btf_ext_info *seg;
5743 struct hashmap_entry *entry;
5744 struct hashmap *cand_cache = NULL;
5745 struct bpf_program *prog;
5746 struct bpf_insn *insn;
5747 const char *sec_name;
5748 int i, err = 0, insn_idx, sec_idx, sec_num;
5749
5750 if (obj->btf_ext->core_relo_info.len == 0)
5751 return 0;
5752
5753 if (targ_btf_path) {
5754 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5755 err = libbpf_get_error(obj->btf_vmlinux_override);
5756 if (err) {
5757 pr_warn("failed to parse target BTF: %d\n", err);
5758 return err;
5759 }
5760 }
5761
5762 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5763 if (IS_ERR(cand_cache)) {
5764 err = PTR_ERR(cand_cache);
5765 goto out;
5766 }
5767
5768 seg = &obj->btf_ext->core_relo_info;
5769 sec_num = 0;
5770 for_each_btf_ext_sec(seg, sec) {
5771 sec_idx = seg->sec_idxs[sec_num];
5772 sec_num++;
5773
5774 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5775 if (str_is_empty(sec_name)) {
5776 err = -EINVAL;
5777 goto out;
5778 }
5779
5780 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5781
5782 for_each_btf_ext_rec(seg, sec, i, rec) {
5783 if (rec->insn_off % BPF_INSN_SZ)
5784 return -EINVAL;
5785 insn_idx = rec->insn_off / BPF_INSN_SZ;
5786 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5787 if (!prog) {
5788 /* When __weak subprog is "overridden" by another instance
5789 * of the subprog from a different object file, linker still
5790 * appends all the .BTF.ext info that used to belong to that
5791 * eliminated subprogram.
5792 * This is similar to what x86-64 linker does for relocations.
5793 * So just ignore such relocations just like we ignore
5794 * subprog instructions when discovering subprograms.
5795 */
5796 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5797 sec_name, i, insn_idx);
5798 continue;
5799 }
5800 /* no need to apply CO-RE relocation if the program is
5801 * not going to be loaded
5802 */
5803 if (!prog->autoload)
5804 continue;
5805
5806 /* adjust insn_idx from section frame of reference to the local
5807 * program's frame of reference; (sub-)program code is not yet
5808 * relocated, so it's enough to just subtract in-section offset
5809 */
5810 insn_idx = insn_idx - prog->sec_insn_off;
5811 if (insn_idx >= prog->insns_cnt)
5812 return -EINVAL;
5813 insn = &prog->insns[insn_idx];
5814
5815 err = record_relo_core(prog, rec, insn_idx);
5816 if (err) {
5817 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5818 prog->name, i, err);
5819 goto out;
5820 }
5821
5822 if (prog->obj->gen_loader)
5823 continue;
5824
5825 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5826 if (err) {
5827 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5828 prog->name, i, err);
5829 goto out;
5830 }
5831
5832 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5833 if (err) {
5834 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5835 prog->name, i, insn_idx, err);
5836 goto out;
5837 }
5838 }
5839 }
5840
5841 out:
5842 /* obj->btf_vmlinux and module BTFs are freed after object load */
5843 btf__free(obj->btf_vmlinux_override);
5844 obj->btf_vmlinux_override = NULL;
5845
5846 if (!IS_ERR_OR_NULL(cand_cache)) {
5847 hashmap__for_each_entry(cand_cache, entry, i) {
5848 bpf_core_free_cands(entry->value);
5849 }
5850 hashmap__free(cand_cache);
5851 }
5852 return err;
5853 }
5854
5855 /* base map load ldimm64 special constant, used also for log fixup logic */
5856 #define MAP_LDIMM64_POISON_BASE 2001000000
5857 #define MAP_LDIMM64_POISON_PFX "200100"
5858
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)5859 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5860 int insn_idx, struct bpf_insn *insn,
5861 int map_idx, const struct bpf_map *map)
5862 {
5863 int i;
5864
5865 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5866 prog->name, relo_idx, insn_idx, map_idx, map->name);
5867
5868 /* we turn single ldimm64 into two identical invalid calls */
5869 for (i = 0; i < 2; i++) {
5870 insn->code = BPF_JMP | BPF_CALL;
5871 insn->dst_reg = 0;
5872 insn->src_reg = 0;
5873 insn->off = 0;
5874 /* if this instruction is reachable (not a dead code),
5875 * verifier will complain with something like:
5876 * invalid func unknown#2001000123
5877 * where lower 123 is map index into obj->maps[] array
5878 */
5879 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx;
5880
5881 insn++;
5882 }
5883 }
5884
5885 /* Relocate data references within program code:
5886 * - map references;
5887 * - global variable references;
5888 * - extern references.
5889 */
5890 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)5891 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5892 {
5893 int i;
5894
5895 for (i = 0; i < prog->nr_reloc; i++) {
5896 struct reloc_desc *relo = &prog->reloc_desc[i];
5897 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5898 const struct bpf_map *map;
5899 struct extern_desc *ext;
5900
5901 switch (relo->type) {
5902 case RELO_LD64:
5903 map = &obj->maps[relo->map_idx];
5904 if (obj->gen_loader) {
5905 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5906 insn[0].imm = relo->map_idx;
5907 } else if (map->autocreate) {
5908 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5909 insn[0].imm = map->fd;
5910 } else {
5911 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5912 relo->map_idx, map);
5913 }
5914 break;
5915 case RELO_DATA:
5916 map = &obj->maps[relo->map_idx];
5917 insn[1].imm = insn[0].imm + relo->sym_off;
5918 if (obj->gen_loader) {
5919 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5920 insn[0].imm = relo->map_idx;
5921 } else if (map->autocreate) {
5922 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5923 insn[0].imm = map->fd;
5924 } else {
5925 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5926 relo->map_idx, map);
5927 }
5928 break;
5929 case RELO_EXTERN_VAR:
5930 ext = &obj->externs[relo->sym_off];
5931 if (ext->type == EXT_KCFG) {
5932 if (obj->gen_loader) {
5933 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5934 insn[0].imm = obj->kconfig_map_idx;
5935 } else {
5936 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5937 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5938 }
5939 insn[1].imm = ext->kcfg.data_off;
5940 } else /* EXT_KSYM */ {
5941 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5942 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5943 insn[0].imm = ext->ksym.kernel_btf_id;
5944 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5945 } else { /* typeless ksyms or unresolved typed ksyms */
5946 insn[0].imm = (__u32)ext->ksym.addr;
5947 insn[1].imm = ext->ksym.addr >> 32;
5948 }
5949 }
5950 break;
5951 case RELO_EXTERN_FUNC:
5952 ext = &obj->externs[relo->sym_off];
5953 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5954 if (ext->is_set) {
5955 insn[0].imm = ext->ksym.kernel_btf_id;
5956 insn[0].off = ext->ksym.btf_fd_idx;
5957 } else { /* unresolved weak kfunc */
5958 insn[0].imm = 0;
5959 insn[0].off = 0;
5960 }
5961 break;
5962 case RELO_SUBPROG_ADDR:
5963 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5964 pr_warn("prog '%s': relo #%d: bad insn\n",
5965 prog->name, i);
5966 return -EINVAL;
5967 }
5968 /* handled already */
5969 break;
5970 case RELO_CALL:
5971 /* handled already */
5972 break;
5973 case RELO_CORE:
5974 /* will be handled by bpf_program_record_relos() */
5975 break;
5976 default:
5977 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5978 prog->name, i, relo->type);
5979 return -EINVAL;
5980 }
5981 }
5982
5983 return 0;
5984 }
5985
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)5986 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5987 const struct bpf_program *prog,
5988 const struct btf_ext_info *ext_info,
5989 void **prog_info, __u32 *prog_rec_cnt,
5990 __u32 *prog_rec_sz)
5991 {
5992 void *copy_start = NULL, *copy_end = NULL;
5993 void *rec, *rec_end, *new_prog_info;
5994 const struct btf_ext_info_sec *sec;
5995 size_t old_sz, new_sz;
5996 int i, sec_num, sec_idx, off_adj;
5997
5998 sec_num = 0;
5999 for_each_btf_ext_sec(ext_info, sec) {
6000 sec_idx = ext_info->sec_idxs[sec_num];
6001 sec_num++;
6002 if (prog->sec_idx != sec_idx)
6003 continue;
6004
6005 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6006 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6007
6008 if (insn_off < prog->sec_insn_off)
6009 continue;
6010 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6011 break;
6012
6013 if (!copy_start)
6014 copy_start = rec;
6015 copy_end = rec + ext_info->rec_size;
6016 }
6017
6018 if (!copy_start)
6019 return -ENOENT;
6020
6021 /* append func/line info of a given (sub-)program to the main
6022 * program func/line info
6023 */
6024 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6025 new_sz = old_sz + (copy_end - copy_start);
6026 new_prog_info = realloc(*prog_info, new_sz);
6027 if (!new_prog_info)
6028 return -ENOMEM;
6029 *prog_info = new_prog_info;
6030 *prog_rec_cnt = new_sz / ext_info->rec_size;
6031 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6032
6033 /* Kernel instruction offsets are in units of 8-byte
6034 * instructions, while .BTF.ext instruction offsets generated
6035 * by Clang are in units of bytes. So convert Clang offsets
6036 * into kernel offsets and adjust offset according to program
6037 * relocated position.
6038 */
6039 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6040 rec = new_prog_info + old_sz;
6041 rec_end = new_prog_info + new_sz;
6042 for (; rec < rec_end; rec += ext_info->rec_size) {
6043 __u32 *insn_off = rec;
6044
6045 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6046 }
6047 *prog_rec_sz = ext_info->rec_size;
6048 return 0;
6049 }
6050
6051 return -ENOENT;
6052 }
6053
6054 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6055 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6056 struct bpf_program *main_prog,
6057 const struct bpf_program *prog)
6058 {
6059 int err;
6060
6061 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6062 * supprot func/line info
6063 */
6064 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6065 return 0;
6066
6067 /* only attempt func info relocation if main program's func_info
6068 * relocation was successful
6069 */
6070 if (main_prog != prog && !main_prog->func_info)
6071 goto line_info;
6072
6073 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6074 &main_prog->func_info,
6075 &main_prog->func_info_cnt,
6076 &main_prog->func_info_rec_size);
6077 if (err) {
6078 if (err != -ENOENT) {
6079 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6080 prog->name, err);
6081 return err;
6082 }
6083 if (main_prog->func_info) {
6084 /*
6085 * Some info has already been found but has problem
6086 * in the last btf_ext reloc. Must have to error out.
6087 */
6088 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6089 return err;
6090 }
6091 /* Have problem loading the very first info. Ignore the rest. */
6092 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6093 prog->name);
6094 }
6095
6096 line_info:
6097 /* don't relocate line info if main program's relocation failed */
6098 if (main_prog != prog && !main_prog->line_info)
6099 return 0;
6100
6101 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6102 &main_prog->line_info,
6103 &main_prog->line_info_cnt,
6104 &main_prog->line_info_rec_size);
6105 if (err) {
6106 if (err != -ENOENT) {
6107 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6108 prog->name, err);
6109 return err;
6110 }
6111 if (main_prog->line_info) {
6112 /*
6113 * Some info has already been found but has problem
6114 * in the last btf_ext reloc. Must have to error out.
6115 */
6116 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6117 return err;
6118 }
6119 /* Have problem loading the very first info. Ignore the rest. */
6120 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6121 prog->name);
6122 }
6123 return 0;
6124 }
6125
cmp_relo_by_insn_idx(const void * key,const void * elem)6126 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6127 {
6128 size_t insn_idx = *(const size_t *)key;
6129 const struct reloc_desc *relo = elem;
6130
6131 if (insn_idx == relo->insn_idx)
6132 return 0;
6133 return insn_idx < relo->insn_idx ? -1 : 1;
6134 }
6135
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6136 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6137 {
6138 if (!prog->nr_reloc)
6139 return NULL;
6140 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6141 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6142 }
6143
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6144 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6145 {
6146 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6147 struct reloc_desc *relos;
6148 int i;
6149
6150 if (main_prog == subprog)
6151 return 0;
6152 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6153 if (!relos)
6154 return -ENOMEM;
6155 if (subprog->nr_reloc)
6156 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6157 sizeof(*relos) * subprog->nr_reloc);
6158
6159 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6160 relos[i].insn_idx += subprog->sub_insn_off;
6161 /* After insn_idx adjustment the 'relos' array is still sorted
6162 * by insn_idx and doesn't break bsearch.
6163 */
6164 main_prog->reloc_desc = relos;
6165 main_prog->nr_reloc = new_cnt;
6166 return 0;
6167 }
6168
6169 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6170 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6171 struct bpf_program *prog)
6172 {
6173 size_t sub_insn_idx, insn_idx, new_cnt;
6174 struct bpf_program *subprog;
6175 struct bpf_insn *insns, *insn;
6176 struct reloc_desc *relo;
6177 int err;
6178
6179 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6180 if (err)
6181 return err;
6182
6183 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6184 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6185 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6186 continue;
6187
6188 relo = find_prog_insn_relo(prog, insn_idx);
6189 if (relo && relo->type == RELO_EXTERN_FUNC)
6190 /* kfunc relocations will be handled later
6191 * in bpf_object__relocate_data()
6192 */
6193 continue;
6194 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6195 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6196 prog->name, insn_idx, relo->type);
6197 return -LIBBPF_ERRNO__RELOC;
6198 }
6199 if (relo) {
6200 /* sub-program instruction index is a combination of
6201 * an offset of a symbol pointed to by relocation and
6202 * call instruction's imm field; for global functions,
6203 * call always has imm = -1, but for static functions
6204 * relocation is against STT_SECTION and insn->imm
6205 * points to a start of a static function
6206 *
6207 * for subprog addr relocation, the relo->sym_off + insn->imm is
6208 * the byte offset in the corresponding section.
6209 */
6210 if (relo->type == RELO_CALL)
6211 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6212 else
6213 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6214 } else if (insn_is_pseudo_func(insn)) {
6215 /*
6216 * RELO_SUBPROG_ADDR relo is always emitted even if both
6217 * functions are in the same section, so it shouldn't reach here.
6218 */
6219 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6220 prog->name, insn_idx);
6221 return -LIBBPF_ERRNO__RELOC;
6222 } else {
6223 /* if subprogram call is to a static function within
6224 * the same ELF section, there won't be any relocation
6225 * emitted, but it also means there is no additional
6226 * offset necessary, insns->imm is relative to
6227 * instruction's original position within the section
6228 */
6229 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6230 }
6231
6232 /* we enforce that sub-programs should be in .text section */
6233 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6234 if (!subprog) {
6235 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6236 prog->name);
6237 return -LIBBPF_ERRNO__RELOC;
6238 }
6239
6240 /* if it's the first call instruction calling into this
6241 * subprogram (meaning this subprog hasn't been processed
6242 * yet) within the context of current main program:
6243 * - append it at the end of main program's instructions blog;
6244 * - process is recursively, while current program is put on hold;
6245 * - if that subprogram calls some other not yet processes
6246 * subprogram, same thing will happen recursively until
6247 * there are no more unprocesses subprograms left to append
6248 * and relocate.
6249 */
6250 if (subprog->sub_insn_off == 0) {
6251 subprog->sub_insn_off = main_prog->insns_cnt;
6252
6253 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6254 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6255 if (!insns) {
6256 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6257 return -ENOMEM;
6258 }
6259 main_prog->insns = insns;
6260 main_prog->insns_cnt = new_cnt;
6261
6262 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6263 subprog->insns_cnt * sizeof(*insns));
6264
6265 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6266 main_prog->name, subprog->insns_cnt, subprog->name);
6267
6268 /* The subprog insns are now appended. Append its relos too. */
6269 err = append_subprog_relos(main_prog, subprog);
6270 if (err)
6271 return err;
6272 err = bpf_object__reloc_code(obj, main_prog, subprog);
6273 if (err)
6274 return err;
6275 }
6276
6277 /* main_prog->insns memory could have been re-allocated, so
6278 * calculate pointer again
6279 */
6280 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6281 /* calculate correct instruction position within current main
6282 * prog; each main prog can have a different set of
6283 * subprograms appended (potentially in different order as
6284 * well), so position of any subprog can be different for
6285 * different main programs */
6286 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6287
6288 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6289 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6290 }
6291
6292 return 0;
6293 }
6294
6295 /*
6296 * Relocate sub-program calls.
6297 *
6298 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6299 * main prog) is processed separately. For each subprog (non-entry functions,
6300 * that can be called from either entry progs or other subprogs) gets their
6301 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6302 * hasn't been yet appended and relocated within current main prog. Once its
6303 * relocated, sub_insn_off will point at the position within current main prog
6304 * where given subprog was appended. This will further be used to relocate all
6305 * the call instructions jumping into this subprog.
6306 *
6307 * We start with main program and process all call instructions. If the call
6308 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6309 * is zero), subprog instructions are appended at the end of main program's
6310 * instruction array. Then main program is "put on hold" while we recursively
6311 * process newly appended subprogram. If that subprogram calls into another
6312 * subprogram that hasn't been appended, new subprogram is appended again to
6313 * the *main* prog's instructions (subprog's instructions are always left
6314 * untouched, as they need to be in unmodified state for subsequent main progs
6315 * and subprog instructions are always sent only as part of a main prog) and
6316 * the process continues recursively. Once all the subprogs called from a main
6317 * prog or any of its subprogs are appended (and relocated), all their
6318 * positions within finalized instructions array are known, so it's easy to
6319 * rewrite call instructions with correct relative offsets, corresponding to
6320 * desired target subprog.
6321 *
6322 * Its important to realize that some subprogs might not be called from some
6323 * main prog and any of its called/used subprogs. Those will keep their
6324 * subprog->sub_insn_off as zero at all times and won't be appended to current
6325 * main prog and won't be relocated within the context of current main prog.
6326 * They might still be used from other main progs later.
6327 *
6328 * Visually this process can be shown as below. Suppose we have two main
6329 * programs mainA and mainB and BPF object contains three subprogs: subA,
6330 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6331 * subC both call subB:
6332 *
6333 * +--------+ +-------+
6334 * | v v |
6335 * +--+---+ +--+-+-+ +---+--+
6336 * | subA | | subB | | subC |
6337 * +--+---+ +------+ +---+--+
6338 * ^ ^
6339 * | |
6340 * +---+-------+ +------+----+
6341 * | mainA | | mainB |
6342 * +-----------+ +-----------+
6343 *
6344 * We'll start relocating mainA, will find subA, append it and start
6345 * processing sub A recursively:
6346 *
6347 * +-----------+------+
6348 * | mainA | subA |
6349 * +-----------+------+
6350 *
6351 * At this point we notice that subB is used from subA, so we append it and
6352 * relocate (there are no further subcalls from subB):
6353 *
6354 * +-----------+------+------+
6355 * | mainA | subA | subB |
6356 * +-----------+------+------+
6357 *
6358 * At this point, we relocate subA calls, then go one level up and finish with
6359 * relocatin mainA calls. mainA is done.
6360 *
6361 * For mainB process is similar but results in different order. We start with
6362 * mainB and skip subA and subB, as mainB never calls them (at least
6363 * directly), but we see subC is needed, so we append and start processing it:
6364 *
6365 * +-----------+------+
6366 * | mainB | subC |
6367 * +-----------+------+
6368 * Now we see subC needs subB, so we go back to it, append and relocate it:
6369 *
6370 * +-----------+------+------+
6371 * | mainB | subC | subB |
6372 * +-----------+------+------+
6373 *
6374 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6375 */
6376 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6377 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6378 {
6379 struct bpf_program *subprog;
6380 int i, err;
6381
6382 /* mark all subprogs as not relocated (yet) within the context of
6383 * current main program
6384 */
6385 for (i = 0; i < obj->nr_programs; i++) {
6386 subprog = &obj->programs[i];
6387 if (!prog_is_subprog(obj, subprog))
6388 continue;
6389
6390 subprog->sub_insn_off = 0;
6391 }
6392
6393 err = bpf_object__reloc_code(obj, prog, prog);
6394 if (err)
6395 return err;
6396
6397 return 0;
6398 }
6399
6400 static void
bpf_object__free_relocs(struct bpf_object * obj)6401 bpf_object__free_relocs(struct bpf_object *obj)
6402 {
6403 struct bpf_program *prog;
6404 int i;
6405
6406 /* free up relocation descriptors */
6407 for (i = 0; i < obj->nr_programs; i++) {
6408 prog = &obj->programs[i];
6409 zfree(&prog->reloc_desc);
6410 prog->nr_reloc = 0;
6411 }
6412 }
6413
cmp_relocs(const void * _a,const void * _b)6414 static int cmp_relocs(const void *_a, const void *_b)
6415 {
6416 const struct reloc_desc *a = _a;
6417 const struct reloc_desc *b = _b;
6418
6419 if (a->insn_idx != b->insn_idx)
6420 return a->insn_idx < b->insn_idx ? -1 : 1;
6421
6422 /* no two relocations should have the same insn_idx, but ... */
6423 if (a->type != b->type)
6424 return a->type < b->type ? -1 : 1;
6425
6426 return 0;
6427 }
6428
bpf_object__sort_relos(struct bpf_object * obj)6429 static void bpf_object__sort_relos(struct bpf_object *obj)
6430 {
6431 int i;
6432
6433 for (i = 0; i < obj->nr_programs; i++) {
6434 struct bpf_program *p = &obj->programs[i];
6435
6436 if (!p->nr_reloc)
6437 continue;
6438
6439 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6440 }
6441 }
6442
6443 static int
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)6444 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6445 {
6446 struct bpf_program *prog;
6447 size_t i, j;
6448 int err;
6449
6450 if (obj->btf_ext) {
6451 err = bpf_object__relocate_core(obj, targ_btf_path);
6452 if (err) {
6453 pr_warn("failed to perform CO-RE relocations: %d\n",
6454 err);
6455 return err;
6456 }
6457 bpf_object__sort_relos(obj);
6458 }
6459
6460 /* Before relocating calls pre-process relocations and mark
6461 * few ld_imm64 instructions that points to subprogs.
6462 * Otherwise bpf_object__reloc_code() later would have to consider
6463 * all ld_imm64 insns as relocation candidates. That would
6464 * reduce relocation speed, since amount of find_prog_insn_relo()
6465 * would increase and most of them will fail to find a relo.
6466 */
6467 for (i = 0; i < obj->nr_programs; i++) {
6468 prog = &obj->programs[i];
6469 for (j = 0; j < prog->nr_reloc; j++) {
6470 struct reloc_desc *relo = &prog->reloc_desc[j];
6471 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6472
6473 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6474 if (relo->type == RELO_SUBPROG_ADDR)
6475 insn[0].src_reg = BPF_PSEUDO_FUNC;
6476 }
6477 }
6478
6479 /* relocate subprogram calls and append used subprograms to main
6480 * programs; each copy of subprogram code needs to be relocated
6481 * differently for each main program, because its code location might
6482 * have changed.
6483 * Append subprog relos to main programs to allow data relos to be
6484 * processed after text is completely relocated.
6485 */
6486 for (i = 0; i < obj->nr_programs; i++) {
6487 prog = &obj->programs[i];
6488 /* sub-program's sub-calls are relocated within the context of
6489 * its main program only
6490 */
6491 if (prog_is_subprog(obj, prog))
6492 continue;
6493 if (!prog->autoload)
6494 continue;
6495
6496 err = bpf_object__relocate_calls(obj, prog);
6497 if (err) {
6498 pr_warn("prog '%s': failed to relocate calls: %d\n",
6499 prog->name, err);
6500 return err;
6501 }
6502 }
6503 /* Process data relos for main programs */
6504 for (i = 0; i < obj->nr_programs; i++) {
6505 prog = &obj->programs[i];
6506 if (prog_is_subprog(obj, prog))
6507 continue;
6508 if (!prog->autoload)
6509 continue;
6510 err = bpf_object__relocate_data(obj, prog);
6511 if (err) {
6512 pr_warn("prog '%s': failed to relocate data references: %d\n",
6513 prog->name, err);
6514 return err;
6515 }
6516 }
6517
6518 return 0;
6519 }
6520
6521 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6522 Elf64_Shdr *shdr, Elf_Data *data);
6523
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)6524 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6525 Elf64_Shdr *shdr, Elf_Data *data)
6526 {
6527 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6528 int i, j, nrels, new_sz;
6529 const struct btf_var_secinfo *vi = NULL;
6530 const struct btf_type *sec, *var, *def;
6531 struct bpf_map *map = NULL, *targ_map = NULL;
6532 struct bpf_program *targ_prog = NULL;
6533 bool is_prog_array, is_map_in_map;
6534 const struct btf_member *member;
6535 const char *name, *mname, *type;
6536 unsigned int moff;
6537 Elf64_Sym *sym;
6538 Elf64_Rel *rel;
6539 void *tmp;
6540
6541 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6542 return -EINVAL;
6543 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6544 if (!sec)
6545 return -EINVAL;
6546
6547 nrels = shdr->sh_size / shdr->sh_entsize;
6548 for (i = 0; i < nrels; i++) {
6549 rel = elf_rel_by_idx(data, i);
6550 if (!rel) {
6551 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6552 return -LIBBPF_ERRNO__FORMAT;
6553 }
6554
6555 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6556 if (!sym) {
6557 pr_warn(".maps relo #%d: symbol %zx not found\n",
6558 i, (size_t)ELF64_R_SYM(rel->r_info));
6559 return -LIBBPF_ERRNO__FORMAT;
6560 }
6561 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6562
6563 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6564 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6565 (size_t)rel->r_offset, sym->st_name, name);
6566
6567 for (j = 0; j < obj->nr_maps; j++) {
6568 map = &obj->maps[j];
6569 if (map->sec_idx != obj->efile.btf_maps_shndx)
6570 continue;
6571
6572 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6573 if (vi->offset <= rel->r_offset &&
6574 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6575 break;
6576 }
6577 if (j == obj->nr_maps) {
6578 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6579 i, name, (size_t)rel->r_offset);
6580 return -EINVAL;
6581 }
6582
6583 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6584 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6585 type = is_map_in_map ? "map" : "prog";
6586 if (is_map_in_map) {
6587 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6588 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6589 i, name);
6590 return -LIBBPF_ERRNO__RELOC;
6591 }
6592 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6593 map->def.key_size != sizeof(int)) {
6594 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6595 i, map->name, sizeof(int));
6596 return -EINVAL;
6597 }
6598 targ_map = bpf_object__find_map_by_name(obj, name);
6599 if (!targ_map) {
6600 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6601 i, name);
6602 return -ESRCH;
6603 }
6604 } else if (is_prog_array) {
6605 targ_prog = bpf_object__find_program_by_name(obj, name);
6606 if (!targ_prog) {
6607 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6608 i, name);
6609 return -ESRCH;
6610 }
6611 if (targ_prog->sec_idx != sym->st_shndx ||
6612 targ_prog->sec_insn_off * 8 != sym->st_value ||
6613 prog_is_subprog(obj, targ_prog)) {
6614 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6615 i, name);
6616 return -LIBBPF_ERRNO__RELOC;
6617 }
6618 } else {
6619 return -EINVAL;
6620 }
6621
6622 var = btf__type_by_id(obj->btf, vi->type);
6623 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6624 if (btf_vlen(def) == 0)
6625 return -EINVAL;
6626 member = btf_members(def) + btf_vlen(def) - 1;
6627 mname = btf__name_by_offset(obj->btf, member->name_off);
6628 if (strcmp(mname, "values"))
6629 return -EINVAL;
6630
6631 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6632 if (rel->r_offset - vi->offset < moff)
6633 return -EINVAL;
6634
6635 moff = rel->r_offset - vi->offset - moff;
6636 /* here we use BPF pointer size, which is always 64 bit, as we
6637 * are parsing ELF that was built for BPF target
6638 */
6639 if (moff % bpf_ptr_sz)
6640 return -EINVAL;
6641 moff /= bpf_ptr_sz;
6642 if (moff >= map->init_slots_sz) {
6643 new_sz = moff + 1;
6644 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6645 if (!tmp)
6646 return -ENOMEM;
6647 map->init_slots = tmp;
6648 memset(map->init_slots + map->init_slots_sz, 0,
6649 (new_sz - map->init_slots_sz) * host_ptr_sz);
6650 map->init_slots_sz = new_sz;
6651 }
6652 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6653
6654 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6655 i, map->name, moff, type, name);
6656 }
6657
6658 return 0;
6659 }
6660
bpf_object__collect_relos(struct bpf_object * obj)6661 static int bpf_object__collect_relos(struct bpf_object *obj)
6662 {
6663 int i, err;
6664
6665 for (i = 0; i < obj->efile.sec_cnt; i++) {
6666 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6667 Elf64_Shdr *shdr;
6668 Elf_Data *data;
6669 int idx;
6670
6671 if (sec_desc->sec_type != SEC_RELO)
6672 continue;
6673
6674 shdr = sec_desc->shdr;
6675 data = sec_desc->data;
6676 idx = shdr->sh_info;
6677
6678 if (shdr->sh_type != SHT_REL) {
6679 pr_warn("internal error at %d\n", __LINE__);
6680 return -LIBBPF_ERRNO__INTERNAL;
6681 }
6682
6683 if (idx == obj->efile.st_ops_shndx)
6684 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6685 else if (idx == obj->efile.btf_maps_shndx)
6686 err = bpf_object__collect_map_relos(obj, shdr, data);
6687 else
6688 err = bpf_object__collect_prog_relos(obj, shdr, data);
6689 if (err)
6690 return err;
6691 }
6692
6693 bpf_object__sort_relos(obj);
6694 return 0;
6695 }
6696
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)6697 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6698 {
6699 if (BPF_CLASS(insn->code) == BPF_JMP &&
6700 BPF_OP(insn->code) == BPF_CALL &&
6701 BPF_SRC(insn->code) == BPF_K &&
6702 insn->src_reg == 0 &&
6703 insn->dst_reg == 0) {
6704 *func_id = insn->imm;
6705 return true;
6706 }
6707 return false;
6708 }
6709
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)6710 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6711 {
6712 struct bpf_insn *insn = prog->insns;
6713 enum bpf_func_id func_id;
6714 int i;
6715
6716 if (obj->gen_loader)
6717 return 0;
6718
6719 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6720 if (!insn_is_helper_call(insn, &func_id))
6721 continue;
6722
6723 /* on kernels that don't yet support
6724 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6725 * to bpf_probe_read() which works well for old kernels
6726 */
6727 switch (func_id) {
6728 case BPF_FUNC_probe_read_kernel:
6729 case BPF_FUNC_probe_read_user:
6730 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6731 insn->imm = BPF_FUNC_probe_read;
6732 break;
6733 case BPF_FUNC_probe_read_kernel_str:
6734 case BPF_FUNC_probe_read_user_str:
6735 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6736 insn->imm = BPF_FUNC_probe_read_str;
6737 break;
6738 default:
6739 break;
6740 }
6741 }
6742 return 0;
6743 }
6744
6745 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6746 int *btf_obj_fd, int *btf_type_id);
6747
6748 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)6749 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6750 struct bpf_prog_load_opts *opts, long cookie)
6751 {
6752 enum sec_def_flags def = cookie;
6753
6754 /* old kernels might not support specifying expected_attach_type */
6755 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6756 opts->expected_attach_type = 0;
6757
6758 if (def & SEC_SLEEPABLE)
6759 opts->prog_flags |= BPF_F_SLEEPABLE;
6760
6761 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6762 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6763
6764 if (def & SEC_DEPRECATED) {
6765 pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n",
6766 prog->sec_name);
6767 }
6768
6769 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6770 int btf_obj_fd = 0, btf_type_id = 0, err;
6771 const char *attach_name;
6772
6773 attach_name = strchr(prog->sec_name, '/');
6774 if (!attach_name) {
6775 /* if BPF program is annotated with just SEC("fentry")
6776 * (or similar) without declaratively specifying
6777 * target, then it is expected that target will be
6778 * specified with bpf_program__set_attach_target() at
6779 * runtime before BPF object load step. If not, then
6780 * there is nothing to load into the kernel as BPF
6781 * verifier won't be able to validate BPF program
6782 * correctness anyways.
6783 */
6784 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6785 prog->name);
6786 return -EINVAL;
6787 }
6788 attach_name++; /* skip over / */
6789
6790 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6791 if (err)
6792 return err;
6793
6794 /* cache resolved BTF FD and BTF type ID in the prog */
6795 prog->attach_btf_obj_fd = btf_obj_fd;
6796 prog->attach_btf_id = btf_type_id;
6797
6798 /* but by now libbpf common logic is not utilizing
6799 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6800 * this callback is called after opts were populated by
6801 * libbpf, so this callback has to update opts explicitly here
6802 */
6803 opts->attach_btf_obj_fd = btf_obj_fd;
6804 opts->attach_btf_id = btf_type_id;
6805 }
6806 return 0;
6807 }
6808
6809 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6810
bpf_object_load_prog_instance(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)6811 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog,
6812 struct bpf_insn *insns, int insns_cnt,
6813 const char *license, __u32 kern_version,
6814 int *prog_fd)
6815 {
6816 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6817 const char *prog_name = NULL;
6818 char *cp, errmsg[STRERR_BUFSIZE];
6819 size_t log_buf_size = 0;
6820 char *log_buf = NULL, *tmp;
6821 int btf_fd, ret, err;
6822 bool own_log_buf = true;
6823 __u32 log_level = prog->log_level;
6824
6825 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6826 /*
6827 * The program type must be set. Most likely we couldn't find a proper
6828 * section definition at load time, and thus we didn't infer the type.
6829 */
6830 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6831 prog->name, prog->sec_name);
6832 return -EINVAL;
6833 }
6834
6835 if (!insns || !insns_cnt)
6836 return -EINVAL;
6837
6838 load_attr.expected_attach_type = prog->expected_attach_type;
6839 if (kernel_supports(obj, FEAT_PROG_NAME))
6840 prog_name = prog->name;
6841 load_attr.attach_prog_fd = prog->attach_prog_fd;
6842 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6843 load_attr.attach_btf_id = prog->attach_btf_id;
6844 load_attr.kern_version = kern_version;
6845 load_attr.prog_ifindex = prog->prog_ifindex;
6846
6847 /* specify func_info/line_info only if kernel supports them */
6848 btf_fd = bpf_object__btf_fd(obj);
6849 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6850 load_attr.prog_btf_fd = btf_fd;
6851 load_attr.func_info = prog->func_info;
6852 load_attr.func_info_rec_size = prog->func_info_rec_size;
6853 load_attr.func_info_cnt = prog->func_info_cnt;
6854 load_attr.line_info = prog->line_info;
6855 load_attr.line_info_rec_size = prog->line_info_rec_size;
6856 load_attr.line_info_cnt = prog->line_info_cnt;
6857 }
6858 load_attr.log_level = log_level;
6859 load_attr.prog_flags = prog->prog_flags;
6860 load_attr.fd_array = obj->fd_array;
6861
6862 /* adjust load_attr if sec_def provides custom preload callback */
6863 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6864 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6865 if (err < 0) {
6866 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6867 prog->name, err);
6868 return err;
6869 }
6870 insns = prog->insns;
6871 insns_cnt = prog->insns_cnt;
6872 }
6873
6874 if (obj->gen_loader) {
6875 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6876 license, insns, insns_cnt, &load_attr,
6877 prog - obj->programs);
6878 *prog_fd = -1;
6879 return 0;
6880 }
6881
6882 retry_load:
6883 /* if log_level is zero, we don't request logs initially even if
6884 * custom log_buf is specified; if the program load fails, then we'll
6885 * bump log_level to 1 and use either custom log_buf or we'll allocate
6886 * our own and retry the load to get details on what failed
6887 */
6888 if (log_level) {
6889 if (prog->log_buf) {
6890 log_buf = prog->log_buf;
6891 log_buf_size = prog->log_size;
6892 own_log_buf = false;
6893 } else if (obj->log_buf) {
6894 log_buf = obj->log_buf;
6895 log_buf_size = obj->log_size;
6896 own_log_buf = false;
6897 } else {
6898 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6899 tmp = realloc(log_buf, log_buf_size);
6900 if (!tmp) {
6901 ret = -ENOMEM;
6902 goto out;
6903 }
6904 log_buf = tmp;
6905 log_buf[0] = '\0';
6906 own_log_buf = true;
6907 }
6908 }
6909
6910 load_attr.log_buf = log_buf;
6911 load_attr.log_size = log_buf_size;
6912 load_attr.log_level = log_level;
6913
6914 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6915 if (ret >= 0) {
6916 if (log_level && own_log_buf) {
6917 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6918 prog->name, log_buf);
6919 }
6920
6921 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6922 struct bpf_map *map;
6923 int i;
6924
6925 for (i = 0; i < obj->nr_maps; i++) {
6926 map = &prog->obj->maps[i];
6927 if (map->libbpf_type != LIBBPF_MAP_RODATA)
6928 continue;
6929
6930 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6931 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6932 pr_warn("prog '%s': failed to bind map '%s': %s\n",
6933 prog->name, map->real_name, cp);
6934 /* Don't fail hard if can't bind rodata. */
6935 }
6936 }
6937 }
6938
6939 *prog_fd = ret;
6940 ret = 0;
6941 goto out;
6942 }
6943
6944 if (log_level == 0) {
6945 log_level = 1;
6946 goto retry_load;
6947 }
6948 /* On ENOSPC, increase log buffer size and retry, unless custom
6949 * log_buf is specified.
6950 * Be careful to not overflow u32, though. Kernel's log buf size limit
6951 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6952 * multiply by 2 unless we are sure we'll fit within 32 bits.
6953 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6954 */
6955 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6956 goto retry_load;
6957
6958 ret = -errno;
6959
6960 /* post-process verifier log to improve error descriptions */
6961 fixup_verifier_log(prog, log_buf, log_buf_size);
6962
6963 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6964 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6965 pr_perm_msg(ret);
6966
6967 if (own_log_buf && log_buf && log_buf[0] != '\0') {
6968 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6969 prog->name, log_buf);
6970 }
6971
6972 out:
6973 if (own_log_buf)
6974 free(log_buf);
6975 return ret;
6976 }
6977
find_prev_line(char * buf,char * cur)6978 static char *find_prev_line(char *buf, char *cur)
6979 {
6980 char *p;
6981
6982 if (cur == buf) /* end of a log buf */
6983 return NULL;
6984
6985 p = cur - 1;
6986 while (p - 1 >= buf && *(p - 1) != '\n')
6987 p--;
6988
6989 return p;
6990 }
6991
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)6992 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6993 char *orig, size_t orig_sz, const char *patch)
6994 {
6995 /* size of the remaining log content to the right from the to-be-replaced part */
6996 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6997 size_t patch_sz = strlen(patch);
6998
6999 if (patch_sz != orig_sz) {
7000 /* If patch line(s) are longer than original piece of verifier log,
7001 * shift log contents by (patch_sz - orig_sz) bytes to the right
7002 * starting from after to-be-replaced part of the log.
7003 *
7004 * If patch line(s) are shorter than original piece of verifier log,
7005 * shift log contents by (orig_sz - patch_sz) bytes to the left
7006 * starting from after to-be-replaced part of the log
7007 *
7008 * We need to be careful about not overflowing available
7009 * buf_sz capacity. If that's the case, we'll truncate the end
7010 * of the original log, as necessary.
7011 */
7012 if (patch_sz > orig_sz) {
7013 if (orig + patch_sz >= buf + buf_sz) {
7014 /* patch is big enough to cover remaining space completely */
7015 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7016 rem_sz = 0;
7017 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7018 /* patch causes part of remaining log to be truncated */
7019 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7020 }
7021 }
7022 /* shift remaining log to the right by calculated amount */
7023 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7024 }
7025
7026 memcpy(orig, patch, patch_sz);
7027 }
7028
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7029 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7030 char *buf, size_t buf_sz, size_t log_sz,
7031 char *line1, char *line2, char *line3)
7032 {
7033 /* Expected log for failed and not properly guarded CO-RE relocation:
7034 * line1 -> 123: (85) call unknown#195896080
7035 * line2 -> invalid func unknown#195896080
7036 * line3 -> <anything else or end of buffer>
7037 *
7038 * "123" is the index of the instruction that was poisoned. We extract
7039 * instruction index to find corresponding CO-RE relocation and
7040 * replace this part of the log with more relevant information about
7041 * failed CO-RE relocation.
7042 */
7043 const struct bpf_core_relo *relo;
7044 struct bpf_core_spec spec;
7045 char patch[512], spec_buf[256];
7046 int insn_idx, err, spec_len;
7047
7048 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7049 return;
7050
7051 relo = find_relo_core(prog, insn_idx);
7052 if (!relo)
7053 return;
7054
7055 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7056 if (err)
7057 return;
7058
7059 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7060 snprintf(patch, sizeof(patch),
7061 "%d: <invalid CO-RE relocation>\n"
7062 "failed to resolve CO-RE relocation %s%s\n",
7063 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7064
7065 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7066 }
7067
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7068 static void fixup_log_missing_map_load(struct bpf_program *prog,
7069 char *buf, size_t buf_sz, size_t log_sz,
7070 char *line1, char *line2, char *line3)
7071 {
7072 /* Expected log for failed and not properly guarded CO-RE relocation:
7073 * line1 -> 123: (85) call unknown#2001000345
7074 * line2 -> invalid func unknown#2001000345
7075 * line3 -> <anything else or end of buffer>
7076 *
7077 * "123" is the index of the instruction that was poisoned.
7078 * "345" in "2001000345" are map index in obj->maps to fetch map name.
7079 */
7080 struct bpf_object *obj = prog->obj;
7081 const struct bpf_map *map;
7082 int insn_idx, map_idx;
7083 char patch[128];
7084
7085 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7086 return;
7087
7088 map_idx -= MAP_LDIMM64_POISON_BASE;
7089 if (map_idx < 0 || map_idx >= obj->nr_maps)
7090 return;
7091 map = &obj->maps[map_idx];
7092
7093 snprintf(patch, sizeof(patch),
7094 "%d: <invalid BPF map reference>\n"
7095 "BPF map '%s' is referenced but wasn't created\n",
7096 insn_idx, map->name);
7097
7098 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7099 }
7100
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7101 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7102 {
7103 /* look for familiar error patterns in last N lines of the log */
7104 const size_t max_last_line_cnt = 10;
7105 char *prev_line, *cur_line, *next_line;
7106 size_t log_sz;
7107 int i;
7108
7109 if (!buf)
7110 return;
7111
7112 log_sz = strlen(buf) + 1;
7113 next_line = buf + log_sz - 1;
7114
7115 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7116 cur_line = find_prev_line(buf, next_line);
7117 if (!cur_line)
7118 return;
7119
7120 /* failed CO-RE relocation case */
7121 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7122 prev_line = find_prev_line(buf, cur_line);
7123 if (!prev_line)
7124 continue;
7125
7126 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7127 prev_line, cur_line, next_line);
7128 return;
7129 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) {
7130 prev_line = find_prev_line(buf, cur_line);
7131 if (!prev_line)
7132 continue;
7133
7134 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7135 prev_line, cur_line, next_line);
7136 return;
7137 }
7138 }
7139 }
7140
bpf_program_record_relos(struct bpf_program * prog)7141 static int bpf_program_record_relos(struct bpf_program *prog)
7142 {
7143 struct bpf_object *obj = prog->obj;
7144 int i;
7145
7146 for (i = 0; i < prog->nr_reloc; i++) {
7147 struct reloc_desc *relo = &prog->reloc_desc[i];
7148 struct extern_desc *ext = &obj->externs[relo->sym_off];
7149
7150 switch (relo->type) {
7151 case RELO_EXTERN_VAR:
7152 if (ext->type != EXT_KSYM)
7153 continue;
7154 bpf_gen__record_extern(obj->gen_loader, ext->name,
7155 ext->is_weak, !ext->ksym.type_id,
7156 BTF_KIND_VAR, relo->insn_idx);
7157 break;
7158 case RELO_EXTERN_FUNC:
7159 bpf_gen__record_extern(obj->gen_loader, ext->name,
7160 ext->is_weak, false, BTF_KIND_FUNC,
7161 relo->insn_idx);
7162 break;
7163 case RELO_CORE: {
7164 struct bpf_core_relo cr = {
7165 .insn_off = relo->insn_idx * 8,
7166 .type_id = relo->core_relo->type_id,
7167 .access_str_off = relo->core_relo->access_str_off,
7168 .kind = relo->core_relo->kind,
7169 };
7170
7171 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7172 break;
7173 }
7174 default:
7175 continue;
7176 }
7177 }
7178 return 0;
7179 }
7180
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,const char * license,__u32 kern_ver)7181 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7182 const char *license, __u32 kern_ver)
7183 {
7184 int err = 0, fd, i;
7185
7186 if (obj->loaded) {
7187 pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
7188 return libbpf_err(-EINVAL);
7189 }
7190
7191 if (prog->instances.nr < 0 || !prog->instances.fds) {
7192 if (prog->preprocessor) {
7193 pr_warn("Internal error: can't load program '%s'\n",
7194 prog->name);
7195 return libbpf_err(-LIBBPF_ERRNO__INTERNAL);
7196 }
7197
7198 prog->instances.fds = malloc(sizeof(int));
7199 if (!prog->instances.fds) {
7200 pr_warn("Not enough memory for BPF fds\n");
7201 return libbpf_err(-ENOMEM);
7202 }
7203 prog->instances.nr = 1;
7204 prog->instances.fds[0] = -1;
7205 }
7206
7207 if (!prog->preprocessor) {
7208 if (prog->instances.nr != 1) {
7209 pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
7210 prog->name, prog->instances.nr);
7211 }
7212 if (obj->gen_loader)
7213 bpf_program_record_relos(prog);
7214 err = bpf_object_load_prog_instance(obj, prog,
7215 prog->insns, prog->insns_cnt,
7216 license, kern_ver, &fd);
7217 if (!err)
7218 prog->instances.fds[0] = fd;
7219 goto out;
7220 }
7221
7222 for (i = 0; i < prog->instances.nr; i++) {
7223 struct bpf_prog_prep_result result;
7224 bpf_program_prep_t preprocessor = prog->preprocessor;
7225
7226 memset(&result, 0, sizeof(result));
7227 err = preprocessor(prog, i, prog->insns,
7228 prog->insns_cnt, &result);
7229 if (err) {
7230 pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
7231 i, prog->name);
7232 goto out;
7233 }
7234
7235 if (!result.new_insn_ptr || !result.new_insn_cnt) {
7236 pr_debug("Skip loading the %dth instance of program '%s'\n",
7237 i, prog->name);
7238 prog->instances.fds[i] = -1;
7239 if (result.pfd)
7240 *result.pfd = -1;
7241 continue;
7242 }
7243
7244 err = bpf_object_load_prog_instance(obj, prog,
7245 result.new_insn_ptr, result.new_insn_cnt,
7246 license, kern_ver, &fd);
7247 if (err) {
7248 pr_warn("Loading the %dth instance of program '%s' failed\n",
7249 i, prog->name);
7250 goto out;
7251 }
7252
7253 if (result.pfd)
7254 *result.pfd = fd;
7255 prog->instances.fds[i] = fd;
7256 }
7257 out:
7258 if (err)
7259 pr_warn("failed to load program '%s'\n", prog->name);
7260 return libbpf_err(err);
7261 }
7262
bpf_program__load(struct bpf_program * prog,const char * license,__u32 kern_ver)7263 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver)
7264 {
7265 return bpf_object_load_prog(prog->obj, prog, license, kern_ver);
7266 }
7267
7268 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7269 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7270 {
7271 struct bpf_program *prog;
7272 size_t i;
7273 int err;
7274
7275 for (i = 0; i < obj->nr_programs; i++) {
7276 prog = &obj->programs[i];
7277 err = bpf_object__sanitize_prog(obj, prog);
7278 if (err)
7279 return err;
7280 }
7281
7282 for (i = 0; i < obj->nr_programs; i++) {
7283 prog = &obj->programs[i];
7284 if (prog_is_subprog(obj, prog))
7285 continue;
7286 if (!prog->autoload) {
7287 pr_debug("prog '%s': skipped loading\n", prog->name);
7288 continue;
7289 }
7290 prog->log_level |= log_level;
7291 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version);
7292 if (err)
7293 return err;
7294 }
7295
7296 bpf_object__free_relocs(obj);
7297 return 0;
7298 }
7299
7300 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7301
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7302 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7303 {
7304 struct bpf_program *prog;
7305 int err;
7306
7307 bpf_object__for_each_program(prog, obj) {
7308 prog->sec_def = find_sec_def(prog->sec_name);
7309 if (!prog->sec_def) {
7310 /* couldn't guess, but user might manually specify */
7311 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7312 prog->name, prog->sec_name);
7313 continue;
7314 }
7315
7316 prog->type = prog->sec_def->prog_type;
7317 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7318
7319 #pragma GCC diagnostic push
7320 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
7321 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
7322 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
7323 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
7324 #pragma GCC diagnostic pop
7325
7326 /* sec_def can have custom callback which should be called
7327 * after bpf_program is initialized to adjust its properties
7328 */
7329 if (prog->sec_def->prog_setup_fn) {
7330 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7331 if (err < 0) {
7332 pr_warn("prog '%s': failed to initialize: %d\n",
7333 prog->name, err);
7334 return err;
7335 }
7336 }
7337 }
7338
7339 return 0;
7340 }
7341
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7342 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7343 const struct bpf_object_open_opts *opts)
7344 {
7345 const char *obj_name, *kconfig, *btf_tmp_path;
7346 struct bpf_object *obj;
7347 char tmp_name[64];
7348 int err;
7349 char *log_buf;
7350 size_t log_size;
7351 __u32 log_level;
7352
7353 if (elf_version(EV_CURRENT) == EV_NONE) {
7354 pr_warn("failed to init libelf for %s\n",
7355 path ? : "(mem buf)");
7356 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7357 }
7358
7359 if (!OPTS_VALID(opts, bpf_object_open_opts))
7360 return ERR_PTR(-EINVAL);
7361
7362 obj_name = OPTS_GET(opts, object_name, NULL);
7363 if (obj_buf) {
7364 if (!obj_name) {
7365 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7366 (unsigned long)obj_buf,
7367 (unsigned long)obj_buf_sz);
7368 obj_name = tmp_name;
7369 }
7370 path = obj_name;
7371 pr_debug("loading object '%s' from buffer\n", obj_name);
7372 }
7373
7374 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7375 log_size = OPTS_GET(opts, kernel_log_size, 0);
7376 log_level = OPTS_GET(opts, kernel_log_level, 0);
7377 if (log_size > UINT_MAX)
7378 return ERR_PTR(-EINVAL);
7379 if (log_size && !log_buf)
7380 return ERR_PTR(-EINVAL);
7381
7382 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7383 if (IS_ERR(obj))
7384 return obj;
7385
7386 obj->log_buf = log_buf;
7387 obj->log_size = log_size;
7388 obj->log_level = log_level;
7389
7390 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7391 if (btf_tmp_path) {
7392 if (strlen(btf_tmp_path) >= PATH_MAX) {
7393 err = -ENAMETOOLONG;
7394 goto out;
7395 }
7396 obj->btf_custom_path = strdup(btf_tmp_path);
7397 if (!obj->btf_custom_path) {
7398 err = -ENOMEM;
7399 goto out;
7400 }
7401 }
7402
7403 kconfig = OPTS_GET(opts, kconfig, NULL);
7404 if (kconfig) {
7405 obj->kconfig = strdup(kconfig);
7406 if (!obj->kconfig) {
7407 err = -ENOMEM;
7408 goto out;
7409 }
7410 }
7411
7412 err = bpf_object__elf_init(obj);
7413 err = err ? : bpf_object__check_endianness(obj);
7414 err = err ? : bpf_object__elf_collect(obj);
7415 err = err ? : bpf_object__collect_externs(obj);
7416 err = err ? : bpf_object__finalize_btf(obj);
7417 err = err ? : bpf_object__init_maps(obj, opts);
7418 err = err ? : bpf_object_init_progs(obj, opts);
7419 err = err ? : bpf_object__collect_relos(obj);
7420 if (err)
7421 goto out;
7422
7423 bpf_object__elf_finish(obj);
7424
7425 return obj;
7426 out:
7427 bpf_object__close(obj);
7428 return ERR_PTR(err);
7429 }
7430
7431 static struct bpf_object *
__bpf_object__open_xattr(struct bpf_object_open_attr * attr,int flags)7432 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7433 {
7434 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7435 .relaxed_maps = flags & MAPS_RELAX_COMPAT,
7436 );
7437
7438 /* param validation */
7439 if (!attr->file)
7440 return NULL;
7441
7442 pr_debug("loading %s\n", attr->file);
7443 return bpf_object_open(attr->file, NULL, 0, &opts);
7444 }
7445
bpf_object__open_xattr(struct bpf_object_open_attr * attr)7446 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7447 {
7448 return libbpf_ptr(__bpf_object__open_xattr(attr, 0));
7449 }
7450
bpf_object__open(const char * path)7451 struct bpf_object *bpf_object__open(const char *path)
7452 {
7453 struct bpf_object_open_attr attr = {
7454 .file = path,
7455 .prog_type = BPF_PROG_TYPE_UNSPEC,
7456 };
7457
7458 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0));
7459 }
7460
7461 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)7462 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7463 {
7464 if (!path)
7465 return libbpf_err_ptr(-EINVAL);
7466
7467 pr_debug("loading %s\n", path);
7468
7469 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7470 }
7471
7472 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7473 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7474 const struct bpf_object_open_opts *opts)
7475 {
7476 if (!obj_buf || obj_buf_sz == 0)
7477 return libbpf_err_ptr(-EINVAL);
7478
7479 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7480 }
7481
7482 struct bpf_object *
bpf_object__open_buffer(const void * obj_buf,size_t obj_buf_sz,const char * name)7483 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7484 const char *name)
7485 {
7486 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7487 .object_name = name,
7488 /* wrong default, but backwards-compatible */
7489 .relaxed_maps = true,
7490 );
7491
7492 /* returning NULL is wrong, but backwards-compatible */
7493 if (!obj_buf || obj_buf_sz == 0)
7494 return errno = EINVAL, NULL;
7495
7496 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts));
7497 }
7498
bpf_object_unload(struct bpf_object * obj)7499 static int bpf_object_unload(struct bpf_object *obj)
7500 {
7501 size_t i;
7502
7503 if (!obj)
7504 return libbpf_err(-EINVAL);
7505
7506 for (i = 0; i < obj->nr_maps; i++) {
7507 zclose(obj->maps[i].fd);
7508 if (obj->maps[i].st_ops)
7509 zfree(&obj->maps[i].st_ops->kern_vdata);
7510 }
7511
7512 for (i = 0; i < obj->nr_programs; i++)
7513 bpf_program__unload(&obj->programs[i]);
7514
7515 return 0;
7516 }
7517
7518 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload")));
7519
bpf_object__sanitize_maps(struct bpf_object * obj)7520 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7521 {
7522 struct bpf_map *m;
7523
7524 bpf_object__for_each_map(m, obj) {
7525 if (!bpf_map__is_internal(m))
7526 continue;
7527 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7528 m->def.map_flags ^= BPF_F_MMAPABLE;
7529 }
7530
7531 return 0;
7532 }
7533
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)7534 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7535 {
7536 char sym_type, sym_name[500];
7537 unsigned long long sym_addr;
7538 int ret, err = 0;
7539 FILE *f;
7540
7541 f = fopen("/proc/kallsyms", "r");
7542 if (!f) {
7543 err = -errno;
7544 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7545 return err;
7546 }
7547
7548 while (true) {
7549 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7550 &sym_addr, &sym_type, sym_name);
7551 if (ret == EOF && feof(f))
7552 break;
7553 if (ret != 3) {
7554 pr_warn("failed to read kallsyms entry: %d\n", ret);
7555 err = -EINVAL;
7556 break;
7557 }
7558
7559 err = cb(sym_addr, sym_type, sym_name, ctx);
7560 if (err)
7561 break;
7562 }
7563
7564 fclose(f);
7565 return err;
7566 }
7567
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)7568 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7569 const char *sym_name, void *ctx)
7570 {
7571 struct bpf_object *obj = ctx;
7572 const struct btf_type *t;
7573 struct extern_desc *ext;
7574
7575 ext = find_extern_by_name(obj, sym_name);
7576 if (!ext || ext->type != EXT_KSYM)
7577 return 0;
7578
7579 t = btf__type_by_id(obj->btf, ext->btf_id);
7580 if (!btf_is_var(t))
7581 return 0;
7582
7583 if (ext->is_set && ext->ksym.addr != sym_addr) {
7584 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7585 sym_name, ext->ksym.addr, sym_addr);
7586 return -EINVAL;
7587 }
7588 if (!ext->is_set) {
7589 ext->is_set = true;
7590 ext->ksym.addr = sym_addr;
7591 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7592 }
7593 return 0;
7594 }
7595
bpf_object__read_kallsyms_file(struct bpf_object * obj)7596 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7597 {
7598 return libbpf_kallsyms_parse(kallsyms_cb, obj);
7599 }
7600
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)7601 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7602 __u16 kind, struct btf **res_btf,
7603 struct module_btf **res_mod_btf)
7604 {
7605 struct module_btf *mod_btf;
7606 struct btf *btf;
7607 int i, id, err;
7608
7609 btf = obj->btf_vmlinux;
7610 mod_btf = NULL;
7611 id = btf__find_by_name_kind(btf, ksym_name, kind);
7612
7613 if (id == -ENOENT) {
7614 err = load_module_btfs(obj);
7615 if (err)
7616 return err;
7617
7618 for (i = 0; i < obj->btf_module_cnt; i++) {
7619 /* we assume module_btf's BTF FD is always >0 */
7620 mod_btf = &obj->btf_modules[i];
7621 btf = mod_btf->btf;
7622 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7623 if (id != -ENOENT)
7624 break;
7625 }
7626 }
7627 if (id <= 0)
7628 return -ESRCH;
7629
7630 *res_btf = btf;
7631 *res_mod_btf = mod_btf;
7632 return id;
7633 }
7634
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)7635 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7636 struct extern_desc *ext)
7637 {
7638 const struct btf_type *targ_var, *targ_type;
7639 __u32 targ_type_id, local_type_id;
7640 struct module_btf *mod_btf = NULL;
7641 const char *targ_var_name;
7642 struct btf *btf = NULL;
7643 int id, err;
7644
7645 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7646 if (id < 0) {
7647 if (id == -ESRCH && ext->is_weak)
7648 return 0;
7649 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7650 ext->name);
7651 return id;
7652 }
7653
7654 /* find local type_id */
7655 local_type_id = ext->ksym.type_id;
7656
7657 /* find target type_id */
7658 targ_var = btf__type_by_id(btf, id);
7659 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7660 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7661
7662 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7663 btf, targ_type_id);
7664 if (err <= 0) {
7665 const struct btf_type *local_type;
7666 const char *targ_name, *local_name;
7667
7668 local_type = btf__type_by_id(obj->btf, local_type_id);
7669 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7670 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7671
7672 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7673 ext->name, local_type_id,
7674 btf_kind_str(local_type), local_name, targ_type_id,
7675 btf_kind_str(targ_type), targ_name);
7676 return -EINVAL;
7677 }
7678
7679 ext->is_set = true;
7680 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7681 ext->ksym.kernel_btf_id = id;
7682 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7683 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7684
7685 return 0;
7686 }
7687
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)7688 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7689 struct extern_desc *ext)
7690 {
7691 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7692 struct module_btf *mod_btf = NULL;
7693 const struct btf_type *kern_func;
7694 struct btf *kern_btf = NULL;
7695 int ret;
7696
7697 local_func_proto_id = ext->ksym.type_id;
7698
7699 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7700 if (kfunc_id < 0) {
7701 if (kfunc_id == -ESRCH && ext->is_weak)
7702 return 0;
7703 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7704 ext->name);
7705 return kfunc_id;
7706 }
7707
7708 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7709 kfunc_proto_id = kern_func->type;
7710
7711 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7712 kern_btf, kfunc_proto_id);
7713 if (ret <= 0) {
7714 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7715 ext->name, local_func_proto_id, kfunc_proto_id);
7716 return -EINVAL;
7717 }
7718
7719 /* set index for module BTF fd in fd_array, if unset */
7720 if (mod_btf && !mod_btf->fd_array_idx) {
7721 /* insn->off is s16 */
7722 if (obj->fd_array_cnt == INT16_MAX) {
7723 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7724 ext->name, mod_btf->fd_array_idx);
7725 return -E2BIG;
7726 }
7727 /* Cannot use index 0 for module BTF fd */
7728 if (!obj->fd_array_cnt)
7729 obj->fd_array_cnt = 1;
7730
7731 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7732 obj->fd_array_cnt + 1);
7733 if (ret)
7734 return ret;
7735 mod_btf->fd_array_idx = obj->fd_array_cnt;
7736 /* we assume module BTF FD is always >0 */
7737 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7738 }
7739
7740 ext->is_set = true;
7741 ext->ksym.kernel_btf_id = kfunc_id;
7742 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7743 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7744 ext->name, kfunc_id);
7745
7746 return 0;
7747 }
7748
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)7749 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7750 {
7751 const struct btf_type *t;
7752 struct extern_desc *ext;
7753 int i, err;
7754
7755 for (i = 0; i < obj->nr_extern; i++) {
7756 ext = &obj->externs[i];
7757 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7758 continue;
7759
7760 if (obj->gen_loader) {
7761 ext->is_set = true;
7762 ext->ksym.kernel_btf_obj_fd = 0;
7763 ext->ksym.kernel_btf_id = 0;
7764 continue;
7765 }
7766 t = btf__type_by_id(obj->btf, ext->btf_id);
7767 if (btf_is_var(t))
7768 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7769 else
7770 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7771 if (err)
7772 return err;
7773 }
7774 return 0;
7775 }
7776
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)7777 static int bpf_object__resolve_externs(struct bpf_object *obj,
7778 const char *extra_kconfig)
7779 {
7780 bool need_config = false, need_kallsyms = false;
7781 bool need_vmlinux_btf = false;
7782 struct extern_desc *ext;
7783 void *kcfg_data = NULL;
7784 int err, i;
7785
7786 if (obj->nr_extern == 0)
7787 return 0;
7788
7789 if (obj->kconfig_map_idx >= 0)
7790 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7791
7792 for (i = 0; i < obj->nr_extern; i++) {
7793 ext = &obj->externs[i];
7794
7795 if (ext->type == EXT_KCFG &&
7796 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7797 void *ext_val = kcfg_data + ext->kcfg.data_off;
7798 __u32 kver = get_kernel_version();
7799
7800 if (!kver) {
7801 pr_warn("failed to get kernel version\n");
7802 return -EINVAL;
7803 }
7804 err = set_kcfg_value_num(ext, ext_val, kver);
7805 if (err)
7806 return err;
7807 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7808 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) {
7809 need_config = true;
7810 } else if (ext->type == EXT_KSYM) {
7811 if (ext->ksym.type_id)
7812 need_vmlinux_btf = true;
7813 else
7814 need_kallsyms = true;
7815 } else {
7816 pr_warn("unrecognized extern '%s'\n", ext->name);
7817 return -EINVAL;
7818 }
7819 }
7820 if (need_config && extra_kconfig) {
7821 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7822 if (err)
7823 return -EINVAL;
7824 need_config = false;
7825 for (i = 0; i < obj->nr_extern; i++) {
7826 ext = &obj->externs[i];
7827 if (ext->type == EXT_KCFG && !ext->is_set) {
7828 need_config = true;
7829 break;
7830 }
7831 }
7832 }
7833 if (need_config) {
7834 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7835 if (err)
7836 return -EINVAL;
7837 }
7838 if (need_kallsyms) {
7839 err = bpf_object__read_kallsyms_file(obj);
7840 if (err)
7841 return -EINVAL;
7842 }
7843 if (need_vmlinux_btf) {
7844 err = bpf_object__resolve_ksyms_btf_id(obj);
7845 if (err)
7846 return -EINVAL;
7847 }
7848 for (i = 0; i < obj->nr_extern; i++) {
7849 ext = &obj->externs[i];
7850
7851 if (!ext->is_set && !ext->is_weak) {
7852 pr_warn("extern %s (strong) not resolved\n", ext->name);
7853 return -ESRCH;
7854 } else if (!ext->is_set) {
7855 pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7856 ext->name);
7857 }
7858 }
7859
7860 return 0;
7861 }
7862
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)7863 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7864 {
7865 int err, i;
7866
7867 if (!obj)
7868 return libbpf_err(-EINVAL);
7869
7870 if (obj->loaded) {
7871 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7872 return libbpf_err(-EINVAL);
7873 }
7874
7875 if (obj->gen_loader)
7876 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7877
7878 err = bpf_object__probe_loading(obj);
7879 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7880 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7881 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7882 err = err ? : bpf_object__sanitize_maps(obj);
7883 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7884 err = err ? : bpf_object__create_maps(obj);
7885 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7886 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7887 err = err ? : bpf_object_init_prog_arrays(obj);
7888
7889 if (obj->gen_loader) {
7890 /* reset FDs */
7891 if (obj->btf)
7892 btf__set_fd(obj->btf, -1);
7893 for (i = 0; i < obj->nr_maps; i++)
7894 obj->maps[i].fd = -1;
7895 if (!err)
7896 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7897 }
7898
7899 /* clean up fd_array */
7900 zfree(&obj->fd_array);
7901
7902 /* clean up module BTFs */
7903 for (i = 0; i < obj->btf_module_cnt; i++) {
7904 close(obj->btf_modules[i].fd);
7905 btf__free(obj->btf_modules[i].btf);
7906 free(obj->btf_modules[i].name);
7907 }
7908 free(obj->btf_modules);
7909
7910 /* clean up vmlinux BTF */
7911 btf__free(obj->btf_vmlinux);
7912 obj->btf_vmlinux = NULL;
7913
7914 obj->loaded = true; /* doesn't matter if successfully or not */
7915
7916 if (err)
7917 goto out;
7918
7919 return 0;
7920 out:
7921 /* unpin any maps that were auto-pinned during load */
7922 for (i = 0; i < obj->nr_maps; i++)
7923 if (obj->maps[i].pinned && !obj->maps[i].reused)
7924 bpf_map__unpin(&obj->maps[i], NULL);
7925
7926 bpf_object_unload(obj);
7927 pr_warn("failed to load object '%s'\n", obj->path);
7928 return libbpf_err(err);
7929 }
7930
bpf_object__load_xattr(struct bpf_object_load_attr * attr)7931 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7932 {
7933 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path);
7934 }
7935
bpf_object__load(struct bpf_object * obj)7936 int bpf_object__load(struct bpf_object *obj)
7937 {
7938 return bpf_object_load(obj, 0, NULL);
7939 }
7940
make_parent_dir(const char * path)7941 static int make_parent_dir(const char *path)
7942 {
7943 char *cp, errmsg[STRERR_BUFSIZE];
7944 char *dname, *dir;
7945 int err = 0;
7946
7947 dname = strdup(path);
7948 if (dname == NULL)
7949 return -ENOMEM;
7950
7951 dir = dirname(dname);
7952 if (mkdir(dir, 0700) && errno != EEXIST)
7953 err = -errno;
7954
7955 free(dname);
7956 if (err) {
7957 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7958 pr_warn("failed to mkdir %s: %s\n", path, cp);
7959 }
7960 return err;
7961 }
7962
check_path(const char * path)7963 static int check_path(const char *path)
7964 {
7965 char *cp, errmsg[STRERR_BUFSIZE];
7966 struct statfs st_fs;
7967 char *dname, *dir;
7968 int err = 0;
7969
7970 if (path == NULL)
7971 return -EINVAL;
7972
7973 dname = strdup(path);
7974 if (dname == NULL)
7975 return -ENOMEM;
7976
7977 dir = dirname(dname);
7978 if (statfs(dir, &st_fs)) {
7979 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7980 pr_warn("failed to statfs %s: %s\n", dir, cp);
7981 err = -errno;
7982 }
7983 free(dname);
7984
7985 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7986 pr_warn("specified path %s is not on BPF FS\n", path);
7987 err = -EINVAL;
7988 }
7989
7990 return err;
7991 }
7992
bpf_program_pin_instance(struct bpf_program * prog,const char * path,int instance)7993 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance)
7994 {
7995 char *cp, errmsg[STRERR_BUFSIZE];
7996 int err;
7997
7998 err = make_parent_dir(path);
7999 if (err)
8000 return libbpf_err(err);
8001
8002 err = check_path(path);
8003 if (err)
8004 return libbpf_err(err);
8005
8006 if (prog == NULL) {
8007 pr_warn("invalid program pointer\n");
8008 return libbpf_err(-EINVAL);
8009 }
8010
8011 if (instance < 0 || instance >= prog->instances.nr) {
8012 pr_warn("invalid prog instance %d of prog %s (max %d)\n",
8013 instance, prog->name, prog->instances.nr);
8014 return libbpf_err(-EINVAL);
8015 }
8016
8017 if (bpf_obj_pin(prog->instances.fds[instance], path)) {
8018 err = -errno;
8019 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8020 pr_warn("failed to pin program: %s\n", cp);
8021 return libbpf_err(err);
8022 }
8023 pr_debug("pinned program '%s'\n", path);
8024
8025 return 0;
8026 }
8027
bpf_program_unpin_instance(struct bpf_program * prog,const char * path,int instance)8028 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance)
8029 {
8030 int err;
8031
8032 err = check_path(path);
8033 if (err)
8034 return libbpf_err(err);
8035
8036 if (prog == NULL) {
8037 pr_warn("invalid program pointer\n");
8038 return libbpf_err(-EINVAL);
8039 }
8040
8041 if (instance < 0 || instance >= prog->instances.nr) {
8042 pr_warn("invalid prog instance %d of prog %s (max %d)\n",
8043 instance, prog->name, prog->instances.nr);
8044 return libbpf_err(-EINVAL);
8045 }
8046
8047 err = unlink(path);
8048 if (err != 0)
8049 return libbpf_err(-errno);
8050
8051 pr_debug("unpinned program '%s'\n", path);
8052
8053 return 0;
8054 }
8055
8056 __attribute__((alias("bpf_program_pin_instance")))
8057 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance);
8058
8059 __attribute__((alias("bpf_program_unpin_instance")))
8060 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance);
8061
bpf_program__pin(struct bpf_program * prog,const char * path)8062 int bpf_program__pin(struct bpf_program *prog, const char *path)
8063 {
8064 int i, err;
8065
8066 err = make_parent_dir(path);
8067 if (err)
8068 return libbpf_err(err);
8069
8070 err = check_path(path);
8071 if (err)
8072 return libbpf_err(err);
8073
8074 if (prog == NULL) {
8075 pr_warn("invalid program pointer\n");
8076 return libbpf_err(-EINVAL);
8077 }
8078
8079 if (prog->instances.nr <= 0) {
8080 pr_warn("no instances of prog %s to pin\n", prog->name);
8081 return libbpf_err(-EINVAL);
8082 }
8083
8084 if (prog->instances.nr == 1) {
8085 /* don't create subdirs when pinning single instance */
8086 return bpf_program_pin_instance(prog, path, 0);
8087 }
8088
8089 for (i = 0; i < prog->instances.nr; i++) {
8090 char buf[PATH_MAX];
8091 int len;
8092
8093 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8094 if (len < 0) {
8095 err = -EINVAL;
8096 goto err_unpin;
8097 } else if (len >= PATH_MAX) {
8098 err = -ENAMETOOLONG;
8099 goto err_unpin;
8100 }
8101
8102 err = bpf_program_pin_instance(prog, buf, i);
8103 if (err)
8104 goto err_unpin;
8105 }
8106
8107 return 0;
8108
8109 err_unpin:
8110 for (i = i - 1; i >= 0; i--) {
8111 char buf[PATH_MAX];
8112 int len;
8113
8114 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8115 if (len < 0)
8116 continue;
8117 else if (len >= PATH_MAX)
8118 continue;
8119
8120 bpf_program_unpin_instance(prog, buf, i);
8121 }
8122
8123 rmdir(path);
8124
8125 return libbpf_err(err);
8126 }
8127
bpf_program__unpin(struct bpf_program * prog,const char * path)8128 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8129 {
8130 int i, err;
8131
8132 err = check_path(path);
8133 if (err)
8134 return libbpf_err(err);
8135
8136 if (prog == NULL) {
8137 pr_warn("invalid program pointer\n");
8138 return libbpf_err(-EINVAL);
8139 }
8140
8141 if (prog->instances.nr <= 0) {
8142 pr_warn("no instances of prog %s to pin\n", prog->name);
8143 return libbpf_err(-EINVAL);
8144 }
8145
8146 if (prog->instances.nr == 1) {
8147 /* don't create subdirs when pinning single instance */
8148 return bpf_program_unpin_instance(prog, path, 0);
8149 }
8150
8151 for (i = 0; i < prog->instances.nr; i++) {
8152 char buf[PATH_MAX];
8153 int len;
8154
8155 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8156 if (len < 0)
8157 return libbpf_err(-EINVAL);
8158 else if (len >= PATH_MAX)
8159 return libbpf_err(-ENAMETOOLONG);
8160
8161 err = bpf_program_unpin_instance(prog, buf, i);
8162 if (err)
8163 return err;
8164 }
8165
8166 err = rmdir(path);
8167 if (err)
8168 return libbpf_err(-errno);
8169
8170 return 0;
8171 }
8172
bpf_map__pin(struct bpf_map * map,const char * path)8173 int bpf_map__pin(struct bpf_map *map, const char *path)
8174 {
8175 char *cp, errmsg[STRERR_BUFSIZE];
8176 int err;
8177
8178 if (map == NULL) {
8179 pr_warn("invalid map pointer\n");
8180 return libbpf_err(-EINVAL);
8181 }
8182
8183 if (map->pin_path) {
8184 if (path && strcmp(path, map->pin_path)) {
8185 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8186 bpf_map__name(map), map->pin_path, path);
8187 return libbpf_err(-EINVAL);
8188 } else if (map->pinned) {
8189 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8190 bpf_map__name(map), map->pin_path);
8191 return 0;
8192 }
8193 } else {
8194 if (!path) {
8195 pr_warn("missing a path to pin map '%s' at\n",
8196 bpf_map__name(map));
8197 return libbpf_err(-EINVAL);
8198 } else if (map->pinned) {
8199 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8200 return libbpf_err(-EEXIST);
8201 }
8202
8203 map->pin_path = strdup(path);
8204 if (!map->pin_path) {
8205 err = -errno;
8206 goto out_err;
8207 }
8208 }
8209
8210 err = make_parent_dir(map->pin_path);
8211 if (err)
8212 return libbpf_err(err);
8213
8214 err = check_path(map->pin_path);
8215 if (err)
8216 return libbpf_err(err);
8217
8218 if (bpf_obj_pin(map->fd, map->pin_path)) {
8219 err = -errno;
8220 goto out_err;
8221 }
8222
8223 map->pinned = true;
8224 pr_debug("pinned map '%s'\n", map->pin_path);
8225
8226 return 0;
8227
8228 out_err:
8229 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8230 pr_warn("failed to pin map: %s\n", cp);
8231 return libbpf_err(err);
8232 }
8233
bpf_map__unpin(struct bpf_map * map,const char * path)8234 int bpf_map__unpin(struct bpf_map *map, const char *path)
8235 {
8236 int err;
8237
8238 if (map == NULL) {
8239 pr_warn("invalid map pointer\n");
8240 return libbpf_err(-EINVAL);
8241 }
8242
8243 if (map->pin_path) {
8244 if (path && strcmp(path, map->pin_path)) {
8245 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8246 bpf_map__name(map), map->pin_path, path);
8247 return libbpf_err(-EINVAL);
8248 }
8249 path = map->pin_path;
8250 } else if (!path) {
8251 pr_warn("no path to unpin map '%s' from\n",
8252 bpf_map__name(map));
8253 return libbpf_err(-EINVAL);
8254 }
8255
8256 err = check_path(path);
8257 if (err)
8258 return libbpf_err(err);
8259
8260 err = unlink(path);
8261 if (err != 0)
8262 return libbpf_err(-errno);
8263
8264 map->pinned = false;
8265 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8266
8267 return 0;
8268 }
8269
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8270 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8271 {
8272 char *new = NULL;
8273
8274 if (path) {
8275 new = strdup(path);
8276 if (!new)
8277 return libbpf_err(-errno);
8278 }
8279
8280 free(map->pin_path);
8281 map->pin_path = new;
8282 return 0;
8283 }
8284
8285 __alias(bpf_map__pin_path)
8286 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8287
bpf_map__pin_path(const struct bpf_map * map)8288 const char *bpf_map__pin_path(const struct bpf_map *map)
8289 {
8290 return map->pin_path;
8291 }
8292
bpf_map__is_pinned(const struct bpf_map * map)8293 bool bpf_map__is_pinned(const struct bpf_map *map)
8294 {
8295 return map->pinned;
8296 }
8297
sanitize_pin_path(char * s)8298 static void sanitize_pin_path(char *s)
8299 {
8300 /* bpffs disallows periods in path names */
8301 while (*s) {
8302 if (*s == '.')
8303 *s = '_';
8304 s++;
8305 }
8306 }
8307
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8308 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8309 {
8310 struct bpf_map *map;
8311 int err;
8312
8313 if (!obj)
8314 return libbpf_err(-ENOENT);
8315
8316 if (!obj->loaded) {
8317 pr_warn("object not yet loaded; load it first\n");
8318 return libbpf_err(-ENOENT);
8319 }
8320
8321 bpf_object__for_each_map(map, obj) {
8322 char *pin_path = NULL;
8323 char buf[PATH_MAX];
8324
8325 if (!map->autocreate)
8326 continue;
8327
8328 if (path) {
8329 int len;
8330
8331 len = snprintf(buf, PATH_MAX, "%s/%s", path,
8332 bpf_map__name(map));
8333 if (len < 0) {
8334 err = -EINVAL;
8335 goto err_unpin_maps;
8336 } else if (len >= PATH_MAX) {
8337 err = -ENAMETOOLONG;
8338 goto err_unpin_maps;
8339 }
8340 sanitize_pin_path(buf);
8341 pin_path = buf;
8342 } else if (!map->pin_path) {
8343 continue;
8344 }
8345
8346 err = bpf_map__pin(map, pin_path);
8347 if (err)
8348 goto err_unpin_maps;
8349 }
8350
8351 return 0;
8352
8353 err_unpin_maps:
8354 while ((map = bpf_object__prev_map(obj, map))) {
8355 if (!map->pin_path)
8356 continue;
8357
8358 bpf_map__unpin(map, NULL);
8359 }
8360
8361 return libbpf_err(err);
8362 }
8363
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8364 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8365 {
8366 struct bpf_map *map;
8367 int err;
8368
8369 if (!obj)
8370 return libbpf_err(-ENOENT);
8371
8372 bpf_object__for_each_map(map, obj) {
8373 char *pin_path = NULL;
8374 char buf[PATH_MAX];
8375
8376 if (path) {
8377 int len;
8378
8379 len = snprintf(buf, PATH_MAX, "%s/%s", path,
8380 bpf_map__name(map));
8381 if (len < 0)
8382 return libbpf_err(-EINVAL);
8383 else if (len >= PATH_MAX)
8384 return libbpf_err(-ENAMETOOLONG);
8385 sanitize_pin_path(buf);
8386 pin_path = buf;
8387 } else if (!map->pin_path) {
8388 continue;
8389 }
8390
8391 err = bpf_map__unpin(map, pin_path);
8392 if (err)
8393 return libbpf_err(err);
8394 }
8395
8396 return 0;
8397 }
8398
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8399 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8400 {
8401 struct bpf_program *prog;
8402 int err;
8403
8404 if (!obj)
8405 return libbpf_err(-ENOENT);
8406
8407 if (!obj->loaded) {
8408 pr_warn("object not yet loaded; load it first\n");
8409 return libbpf_err(-ENOENT);
8410 }
8411
8412 bpf_object__for_each_program(prog, obj) {
8413 char buf[PATH_MAX];
8414 int len;
8415
8416 len = snprintf(buf, PATH_MAX, "%s/%s", path,
8417 prog->pin_name);
8418 if (len < 0) {
8419 err = -EINVAL;
8420 goto err_unpin_programs;
8421 } else if (len >= PATH_MAX) {
8422 err = -ENAMETOOLONG;
8423 goto err_unpin_programs;
8424 }
8425
8426 err = bpf_program__pin(prog, buf);
8427 if (err)
8428 goto err_unpin_programs;
8429 }
8430
8431 return 0;
8432
8433 err_unpin_programs:
8434 while ((prog = bpf_object__prev_program(obj, prog))) {
8435 char buf[PATH_MAX];
8436 int len;
8437
8438 len = snprintf(buf, PATH_MAX, "%s/%s", path,
8439 prog->pin_name);
8440 if (len < 0)
8441 continue;
8442 else if (len >= PATH_MAX)
8443 continue;
8444
8445 bpf_program__unpin(prog, buf);
8446 }
8447
8448 return libbpf_err(err);
8449 }
8450
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8451 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8452 {
8453 struct bpf_program *prog;
8454 int err;
8455
8456 if (!obj)
8457 return libbpf_err(-ENOENT);
8458
8459 bpf_object__for_each_program(prog, obj) {
8460 char buf[PATH_MAX];
8461 int len;
8462
8463 len = snprintf(buf, PATH_MAX, "%s/%s", path,
8464 prog->pin_name);
8465 if (len < 0)
8466 return libbpf_err(-EINVAL);
8467 else if (len >= PATH_MAX)
8468 return libbpf_err(-ENAMETOOLONG);
8469
8470 err = bpf_program__unpin(prog, buf);
8471 if (err)
8472 return libbpf_err(err);
8473 }
8474
8475 return 0;
8476 }
8477
bpf_object__pin(struct bpf_object * obj,const char * path)8478 int bpf_object__pin(struct bpf_object *obj, const char *path)
8479 {
8480 int err;
8481
8482 err = bpf_object__pin_maps(obj, path);
8483 if (err)
8484 return libbpf_err(err);
8485
8486 err = bpf_object__pin_programs(obj, path);
8487 if (err) {
8488 bpf_object__unpin_maps(obj, path);
8489 return libbpf_err(err);
8490 }
8491
8492 return 0;
8493 }
8494
bpf_map__destroy(struct bpf_map * map)8495 static void bpf_map__destroy(struct bpf_map *map)
8496 {
8497 if (map->clear_priv)
8498 map->clear_priv(map, map->priv);
8499 map->priv = NULL;
8500 map->clear_priv = NULL;
8501
8502 if (map->inner_map) {
8503 bpf_map__destroy(map->inner_map);
8504 zfree(&map->inner_map);
8505 }
8506
8507 zfree(&map->init_slots);
8508 map->init_slots_sz = 0;
8509
8510 if (map->mmaped) {
8511 munmap(map->mmaped, bpf_map_mmap_sz(map));
8512 map->mmaped = NULL;
8513 }
8514
8515 if (map->st_ops) {
8516 zfree(&map->st_ops->data);
8517 zfree(&map->st_ops->progs);
8518 zfree(&map->st_ops->kern_func_off);
8519 zfree(&map->st_ops);
8520 }
8521
8522 zfree(&map->name);
8523 zfree(&map->real_name);
8524 zfree(&map->pin_path);
8525
8526 if (map->fd >= 0)
8527 zclose(map->fd);
8528 }
8529
bpf_object__close(struct bpf_object * obj)8530 void bpf_object__close(struct bpf_object *obj)
8531 {
8532 size_t i;
8533
8534 if (IS_ERR_OR_NULL(obj))
8535 return;
8536
8537 if (obj->clear_priv)
8538 obj->clear_priv(obj, obj->priv);
8539
8540 usdt_manager_free(obj->usdt_man);
8541 obj->usdt_man = NULL;
8542
8543 bpf_gen__free(obj->gen_loader);
8544 bpf_object__elf_finish(obj);
8545 bpf_object_unload(obj);
8546 btf__free(obj->btf);
8547 btf_ext__free(obj->btf_ext);
8548
8549 for (i = 0; i < obj->nr_maps; i++)
8550 bpf_map__destroy(&obj->maps[i]);
8551
8552 zfree(&obj->btf_custom_path);
8553 zfree(&obj->kconfig);
8554 zfree(&obj->externs);
8555 obj->nr_extern = 0;
8556
8557 zfree(&obj->maps);
8558 obj->nr_maps = 0;
8559
8560 if (obj->programs && obj->nr_programs) {
8561 for (i = 0; i < obj->nr_programs; i++)
8562 bpf_program__exit(&obj->programs[i]);
8563 }
8564 zfree(&obj->programs);
8565
8566 list_del(&obj->list);
8567 free(obj);
8568 }
8569
8570 struct bpf_object *
bpf_object__next(struct bpf_object * prev)8571 bpf_object__next(struct bpf_object *prev)
8572 {
8573 struct bpf_object *next;
8574 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST);
8575
8576 if (strict)
8577 return NULL;
8578
8579 if (!prev)
8580 next = list_first_entry(&bpf_objects_list,
8581 struct bpf_object,
8582 list);
8583 else
8584 next = list_next_entry(prev, list);
8585
8586 /* Empty list is noticed here so don't need checking on entry. */
8587 if (&next->list == &bpf_objects_list)
8588 return NULL;
8589
8590 return next;
8591 }
8592
bpf_object__name(const struct bpf_object * obj)8593 const char *bpf_object__name(const struct bpf_object *obj)
8594 {
8595 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8596 }
8597
bpf_object__kversion(const struct bpf_object * obj)8598 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8599 {
8600 return obj ? obj->kern_version : 0;
8601 }
8602
bpf_object__btf(const struct bpf_object * obj)8603 struct btf *bpf_object__btf(const struct bpf_object *obj)
8604 {
8605 return obj ? obj->btf : NULL;
8606 }
8607
bpf_object__btf_fd(const struct bpf_object * obj)8608 int bpf_object__btf_fd(const struct bpf_object *obj)
8609 {
8610 return obj->btf ? btf__fd(obj->btf) : -1;
8611 }
8612
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)8613 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8614 {
8615 if (obj->loaded)
8616 return libbpf_err(-EINVAL);
8617
8618 obj->kern_version = kern_version;
8619
8620 return 0;
8621 }
8622
bpf_object__set_priv(struct bpf_object * obj,void * priv,bpf_object_clear_priv_t clear_priv)8623 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8624 bpf_object_clear_priv_t clear_priv)
8625 {
8626 if (obj->priv && obj->clear_priv)
8627 obj->clear_priv(obj, obj->priv);
8628
8629 obj->priv = priv;
8630 obj->clear_priv = clear_priv;
8631 return 0;
8632 }
8633
bpf_object__priv(const struct bpf_object * obj)8634 void *bpf_object__priv(const struct bpf_object *obj)
8635 {
8636 return obj ? obj->priv : libbpf_err_ptr(-EINVAL);
8637 }
8638
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)8639 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8640 {
8641 struct bpf_gen *gen;
8642
8643 if (!opts)
8644 return -EFAULT;
8645 if (!OPTS_VALID(opts, gen_loader_opts))
8646 return -EINVAL;
8647 gen = calloc(sizeof(*gen), 1);
8648 if (!gen)
8649 return -ENOMEM;
8650 gen->opts = opts;
8651 obj->gen_loader = gen;
8652 return 0;
8653 }
8654
8655 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)8656 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8657 bool forward)
8658 {
8659 size_t nr_programs = obj->nr_programs;
8660 ssize_t idx;
8661
8662 if (!nr_programs)
8663 return NULL;
8664
8665 if (!p)
8666 /* Iter from the beginning */
8667 return forward ? &obj->programs[0] :
8668 &obj->programs[nr_programs - 1];
8669
8670 if (p->obj != obj) {
8671 pr_warn("error: program handler doesn't match object\n");
8672 return errno = EINVAL, NULL;
8673 }
8674
8675 idx = (p - obj->programs) + (forward ? 1 : -1);
8676 if (idx >= obj->nr_programs || idx < 0)
8677 return NULL;
8678 return &obj->programs[idx];
8679 }
8680
8681 struct bpf_program *
bpf_program__next(struct bpf_program * prev,const struct bpf_object * obj)8682 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8683 {
8684 return bpf_object__next_program(obj, prev);
8685 }
8686
8687 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)8688 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8689 {
8690 struct bpf_program *prog = prev;
8691
8692 do {
8693 prog = __bpf_program__iter(prog, obj, true);
8694 } while (prog && prog_is_subprog(obj, prog));
8695
8696 return prog;
8697 }
8698
8699 struct bpf_program *
bpf_program__prev(struct bpf_program * next,const struct bpf_object * obj)8700 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8701 {
8702 return bpf_object__prev_program(obj, next);
8703 }
8704
8705 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)8706 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8707 {
8708 struct bpf_program *prog = next;
8709
8710 do {
8711 prog = __bpf_program__iter(prog, obj, false);
8712 } while (prog && prog_is_subprog(obj, prog));
8713
8714 return prog;
8715 }
8716
bpf_program__set_priv(struct bpf_program * prog,void * priv,bpf_program_clear_priv_t clear_priv)8717 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8718 bpf_program_clear_priv_t clear_priv)
8719 {
8720 if (prog->priv && prog->clear_priv)
8721 prog->clear_priv(prog, prog->priv);
8722
8723 prog->priv = priv;
8724 prog->clear_priv = clear_priv;
8725 return 0;
8726 }
8727
bpf_program__priv(const struct bpf_program * prog)8728 void *bpf_program__priv(const struct bpf_program *prog)
8729 {
8730 return prog ? prog->priv : libbpf_err_ptr(-EINVAL);
8731 }
8732
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)8733 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8734 {
8735 prog->prog_ifindex = ifindex;
8736 }
8737
bpf_program__name(const struct bpf_program * prog)8738 const char *bpf_program__name(const struct bpf_program *prog)
8739 {
8740 return prog->name;
8741 }
8742
bpf_program__section_name(const struct bpf_program * prog)8743 const char *bpf_program__section_name(const struct bpf_program *prog)
8744 {
8745 return prog->sec_name;
8746 }
8747
bpf_program__title(const struct bpf_program * prog,bool needs_copy)8748 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8749 {
8750 const char *title;
8751
8752 title = prog->sec_name;
8753 if (needs_copy) {
8754 title = strdup(title);
8755 if (!title) {
8756 pr_warn("failed to strdup program title\n");
8757 return libbpf_err_ptr(-ENOMEM);
8758 }
8759 }
8760
8761 return title;
8762 }
8763
bpf_program__autoload(const struct bpf_program * prog)8764 bool bpf_program__autoload(const struct bpf_program *prog)
8765 {
8766 return prog->autoload;
8767 }
8768
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)8769 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8770 {
8771 if (prog->obj->loaded)
8772 return libbpf_err(-EINVAL);
8773
8774 prog->autoload = autoload;
8775 return 0;
8776 }
8777
8778 static int bpf_program_nth_fd(const struct bpf_program *prog, int n);
8779
bpf_program__fd(const struct bpf_program * prog)8780 int bpf_program__fd(const struct bpf_program *prog)
8781 {
8782 return bpf_program_nth_fd(prog, 0);
8783 }
8784
bpf_program__size(const struct bpf_program * prog)8785 size_t bpf_program__size(const struct bpf_program *prog)
8786 {
8787 return prog->insns_cnt * BPF_INSN_SZ;
8788 }
8789
bpf_program__insns(const struct bpf_program * prog)8790 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8791 {
8792 return prog->insns;
8793 }
8794
bpf_program__insn_cnt(const struct bpf_program * prog)8795 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8796 {
8797 return prog->insns_cnt;
8798 }
8799
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)8800 int bpf_program__set_insns(struct bpf_program *prog,
8801 struct bpf_insn *new_insns, size_t new_insn_cnt)
8802 {
8803 struct bpf_insn *insns;
8804
8805 if (prog->obj->loaded)
8806 return -EBUSY;
8807
8808 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8809 if (!insns) {
8810 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8811 return -ENOMEM;
8812 }
8813 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8814
8815 prog->insns = insns;
8816 prog->insns_cnt = new_insn_cnt;
8817 return 0;
8818 }
8819
bpf_program__set_prep(struct bpf_program * prog,int nr_instances,bpf_program_prep_t prep)8820 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8821 bpf_program_prep_t prep)
8822 {
8823 int *instances_fds;
8824
8825 if (nr_instances <= 0 || !prep)
8826 return libbpf_err(-EINVAL);
8827
8828 if (prog->instances.nr > 0 || prog->instances.fds) {
8829 pr_warn("Can't set pre-processor after loading\n");
8830 return libbpf_err(-EINVAL);
8831 }
8832
8833 instances_fds = malloc(sizeof(int) * nr_instances);
8834 if (!instances_fds) {
8835 pr_warn("alloc memory failed for fds\n");
8836 return libbpf_err(-ENOMEM);
8837 }
8838
8839 /* fill all fd with -1 */
8840 memset(instances_fds, -1, sizeof(int) * nr_instances);
8841
8842 prog->instances.nr = nr_instances;
8843 prog->instances.fds = instances_fds;
8844 prog->preprocessor = prep;
8845 return 0;
8846 }
8847
8848 __attribute__((alias("bpf_program_nth_fd")))
8849 int bpf_program__nth_fd(const struct bpf_program *prog, int n);
8850
bpf_program_nth_fd(const struct bpf_program * prog,int n)8851 static int bpf_program_nth_fd(const struct bpf_program *prog, int n)
8852 {
8853 int fd;
8854
8855 if (!prog)
8856 return libbpf_err(-EINVAL);
8857
8858 if (n >= prog->instances.nr || n < 0) {
8859 pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8860 n, prog->name, prog->instances.nr);
8861 return libbpf_err(-EINVAL);
8862 }
8863
8864 fd = prog->instances.fds[n];
8865 if (fd < 0) {
8866 pr_warn("%dth instance of program '%s' is invalid\n",
8867 n, prog->name);
8868 return libbpf_err(-ENOENT);
8869 }
8870
8871 return fd;
8872 }
8873
8874 __alias(bpf_program__type)
8875 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8876
bpf_program__type(const struct bpf_program * prog)8877 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8878 {
8879 return prog->type;
8880 }
8881
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)8882 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8883 {
8884 if (prog->obj->loaded)
8885 return libbpf_err(-EBUSY);
8886
8887 prog->type = type;
8888 return 0;
8889 }
8890
bpf_program__is_type(const struct bpf_program * prog,enum bpf_prog_type type)8891 static bool bpf_program__is_type(const struct bpf_program *prog,
8892 enum bpf_prog_type type)
8893 {
8894 return prog ? (prog->type == type) : false;
8895 }
8896
8897 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \
8898 int bpf_program__set_##NAME(struct bpf_program *prog) \
8899 { \
8900 if (!prog) \
8901 return libbpf_err(-EINVAL); \
8902 return bpf_program__set_type(prog, TYPE); \
8903 } \
8904 \
8905 bool bpf_program__is_##NAME(const struct bpf_program *prog) \
8906 { \
8907 return bpf_program__is_type(prog, TYPE); \
8908 } \
8909
8910 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8911 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8912 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8913 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8914 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8915 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8916 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8917 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8918 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8919 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8920 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8921 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8922 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8923
8924 __alias(bpf_program__expected_attach_type)
8925 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8926
bpf_program__expected_attach_type(const struct bpf_program * prog)8927 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8928 {
8929 return prog->expected_attach_type;
8930 }
8931
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)8932 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8933 enum bpf_attach_type type)
8934 {
8935 if (prog->obj->loaded)
8936 return libbpf_err(-EBUSY);
8937
8938 prog->expected_attach_type = type;
8939 return 0;
8940 }
8941
bpf_program__flags(const struct bpf_program * prog)8942 __u32 bpf_program__flags(const struct bpf_program *prog)
8943 {
8944 return prog->prog_flags;
8945 }
8946
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)8947 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8948 {
8949 if (prog->obj->loaded)
8950 return libbpf_err(-EBUSY);
8951
8952 prog->prog_flags = flags;
8953 return 0;
8954 }
8955
bpf_program__log_level(const struct bpf_program * prog)8956 __u32 bpf_program__log_level(const struct bpf_program *prog)
8957 {
8958 return prog->log_level;
8959 }
8960
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)8961 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8962 {
8963 if (prog->obj->loaded)
8964 return libbpf_err(-EBUSY);
8965
8966 prog->log_level = log_level;
8967 return 0;
8968 }
8969
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)8970 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8971 {
8972 *log_size = prog->log_size;
8973 return prog->log_buf;
8974 }
8975
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)8976 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8977 {
8978 if (log_size && !log_buf)
8979 return -EINVAL;
8980 if (prog->log_size > UINT_MAX)
8981 return -EINVAL;
8982 if (prog->obj->loaded)
8983 return -EBUSY;
8984
8985 prog->log_buf = log_buf;
8986 prog->log_size = log_size;
8987 return 0;
8988 }
8989
8990 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8991 .sec = (char *)sec_pfx, \
8992 .prog_type = BPF_PROG_TYPE_##ptype, \
8993 .expected_attach_type = atype, \
8994 .cookie = (long)(flags), \
8995 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
8996 __VA_ARGS__ \
8997 }
8998
8999 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9000 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9001 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9002 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9003 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9004 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9005 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9006 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9007 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9008
9009 static const struct bpf_sec_def section_defs[] = {
9010 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX),
9011 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9012 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9013 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9014 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9015 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9016 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9017 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9018 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9019 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt),
9020 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE),
9021 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED),
9022 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX),
9023 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9024 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9025 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9026 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9027 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9028 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9029 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9030 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9031 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9032 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9033 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9034 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9035 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9036 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
9037 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9038 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9039 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9040 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9041 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
9042 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9043 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9044 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED),
9045 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9046 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9047 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED),
9048 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
9049 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9050 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX),
9051 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX),
9052 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX),
9053 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX),
9054 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX),
9055 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9056 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9057 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX),
9058 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9059 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9060 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9061 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9062 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9063 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9064 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9065 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9066 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9067 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX),
9068 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9069 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9070 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9071 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9072 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9073 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9074 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9075 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9076 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9077 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9078 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9079 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9080 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9081 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9082 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9083 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9084 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9085 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9086 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
9087 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9088 };
9089
9090 static size_t custom_sec_def_cnt;
9091 static struct bpf_sec_def *custom_sec_defs;
9092 static struct bpf_sec_def custom_fallback_def;
9093 static bool has_custom_fallback_def;
9094
9095 static int last_custom_sec_def_handler_id;
9096
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)9097 int libbpf_register_prog_handler(const char *sec,
9098 enum bpf_prog_type prog_type,
9099 enum bpf_attach_type exp_attach_type,
9100 const struct libbpf_prog_handler_opts *opts)
9101 {
9102 struct bpf_sec_def *sec_def;
9103
9104 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9105 return libbpf_err(-EINVAL);
9106
9107 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9108 return libbpf_err(-E2BIG);
9109
9110 if (sec) {
9111 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9112 sizeof(*sec_def));
9113 if (!sec_def)
9114 return libbpf_err(-ENOMEM);
9115
9116 custom_sec_defs = sec_def;
9117 sec_def = &custom_sec_defs[custom_sec_def_cnt];
9118 } else {
9119 if (has_custom_fallback_def)
9120 return libbpf_err(-EBUSY);
9121
9122 sec_def = &custom_fallback_def;
9123 }
9124
9125 sec_def->sec = sec ? strdup(sec) : NULL;
9126 if (sec && !sec_def->sec)
9127 return libbpf_err(-ENOMEM);
9128
9129 sec_def->prog_type = prog_type;
9130 sec_def->expected_attach_type = exp_attach_type;
9131 sec_def->cookie = OPTS_GET(opts, cookie, 0);
9132
9133 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9134 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9135 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9136
9137 sec_def->handler_id = ++last_custom_sec_def_handler_id;
9138
9139 if (sec)
9140 custom_sec_def_cnt++;
9141 else
9142 has_custom_fallback_def = true;
9143
9144 return sec_def->handler_id;
9145 }
9146
libbpf_unregister_prog_handler(int handler_id)9147 int libbpf_unregister_prog_handler(int handler_id)
9148 {
9149 struct bpf_sec_def *sec_defs;
9150 int i;
9151
9152 if (handler_id <= 0)
9153 return libbpf_err(-EINVAL);
9154
9155 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9156 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9157 has_custom_fallback_def = false;
9158 return 0;
9159 }
9160
9161 for (i = 0; i < custom_sec_def_cnt; i++) {
9162 if (custom_sec_defs[i].handler_id == handler_id)
9163 break;
9164 }
9165
9166 if (i == custom_sec_def_cnt)
9167 return libbpf_err(-ENOENT);
9168
9169 free(custom_sec_defs[i].sec);
9170 for (i = i + 1; i < custom_sec_def_cnt; i++)
9171 custom_sec_defs[i - 1] = custom_sec_defs[i];
9172 custom_sec_def_cnt--;
9173
9174 /* try to shrink the array, but it's ok if we couldn't */
9175 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9176 if (sec_defs)
9177 custom_sec_defs = sec_defs;
9178
9179 return 0;
9180 }
9181
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name,bool allow_sloppy)9182 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name,
9183 bool allow_sloppy)
9184 {
9185 size_t len = strlen(sec_def->sec);
9186
9187 /* "type/" always has to have proper SEC("type/extras") form */
9188 if (sec_def->sec[len - 1] == '/') {
9189 if (str_has_pfx(sec_name, sec_def->sec))
9190 return true;
9191 return false;
9192 }
9193
9194 /* "type+" means it can be either exact SEC("type") or
9195 * well-formed SEC("type/extras") with proper '/' separator
9196 */
9197 if (sec_def->sec[len - 1] == '+') {
9198 len--;
9199 /* not even a prefix */
9200 if (strncmp(sec_name, sec_def->sec, len) != 0)
9201 return false;
9202 /* exact match or has '/' separator */
9203 if (sec_name[len] == '\0' || sec_name[len] == '/')
9204 return true;
9205 return false;
9206 }
9207
9208 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix
9209 * matches, unless strict section name mode
9210 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the
9211 * match has to be exact.
9212 */
9213 if (allow_sloppy && str_has_pfx(sec_name, sec_def->sec))
9214 return true;
9215
9216 /* Definitions not marked SEC_SLOPPY_PFX (e.g.,
9217 * SEC("syscall")) are exact matches in both modes.
9218 */
9219 return strcmp(sec_name, sec_def->sec) == 0;
9220 }
9221
find_sec_def(const char * sec_name)9222 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9223 {
9224 const struct bpf_sec_def *sec_def;
9225 int i, n;
9226 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME, allow_sloppy;
9227
9228 n = custom_sec_def_cnt;
9229 for (i = 0; i < n; i++) {
9230 sec_def = &custom_sec_defs[i];
9231 if (sec_def_matches(sec_def, sec_name, false))
9232 return sec_def;
9233 }
9234
9235 n = ARRAY_SIZE(section_defs);
9236 for (i = 0; i < n; i++) {
9237 sec_def = §ion_defs[i];
9238 allow_sloppy = (sec_def->cookie & SEC_SLOPPY_PFX) && !strict;
9239 if (sec_def_matches(sec_def, sec_name, allow_sloppy))
9240 return sec_def;
9241 }
9242
9243 if (has_custom_fallback_def)
9244 return &custom_fallback_def;
9245
9246 return NULL;
9247 }
9248
9249 #define MAX_TYPE_NAME_SIZE 32
9250
libbpf_get_type_names(bool attach_type)9251 static char *libbpf_get_type_names(bool attach_type)
9252 {
9253 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9254 char *buf;
9255
9256 buf = malloc(len);
9257 if (!buf)
9258 return NULL;
9259
9260 buf[0] = '\0';
9261 /* Forge string buf with all available names */
9262 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9263 const struct bpf_sec_def *sec_def = §ion_defs[i];
9264
9265 if (attach_type) {
9266 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9267 continue;
9268
9269 if (!(sec_def->cookie & SEC_ATTACHABLE))
9270 continue;
9271 }
9272
9273 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9274 free(buf);
9275 return NULL;
9276 }
9277 strcat(buf, " ");
9278 strcat(buf, section_defs[i].sec);
9279 }
9280
9281 return buf;
9282 }
9283
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9284 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9285 enum bpf_attach_type *expected_attach_type)
9286 {
9287 const struct bpf_sec_def *sec_def;
9288 char *type_names;
9289
9290 if (!name)
9291 return libbpf_err(-EINVAL);
9292
9293 sec_def = find_sec_def(name);
9294 if (sec_def) {
9295 *prog_type = sec_def->prog_type;
9296 *expected_attach_type = sec_def->expected_attach_type;
9297 return 0;
9298 }
9299
9300 pr_debug("failed to guess program type from ELF section '%s'\n", name);
9301 type_names = libbpf_get_type_names(false);
9302 if (type_names != NULL) {
9303 pr_debug("supported section(type) names are:%s\n", type_names);
9304 free(type_names);
9305 }
9306
9307 return libbpf_err(-ESRCH);
9308 }
9309
find_struct_ops_map_by_offset(struct bpf_object * obj,size_t offset)9310 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9311 size_t offset)
9312 {
9313 struct bpf_map *map;
9314 size_t i;
9315
9316 for (i = 0; i < obj->nr_maps; i++) {
9317 map = &obj->maps[i];
9318 if (!bpf_map__is_struct_ops(map))
9319 continue;
9320 if (map->sec_offset <= offset &&
9321 offset - map->sec_offset < map->def.value_size)
9322 return map;
9323 }
9324
9325 return NULL;
9326 }
9327
9328 /* Collect the reloc from ELF and populate the st_ops->progs[] */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9329 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9330 Elf64_Shdr *shdr, Elf_Data *data)
9331 {
9332 const struct btf_member *member;
9333 struct bpf_struct_ops *st_ops;
9334 struct bpf_program *prog;
9335 unsigned int shdr_idx;
9336 const struct btf *btf;
9337 struct bpf_map *map;
9338 unsigned int moff, insn_idx;
9339 const char *name;
9340 __u32 member_idx;
9341 Elf64_Sym *sym;
9342 Elf64_Rel *rel;
9343 int i, nrels;
9344
9345 btf = obj->btf;
9346 nrels = shdr->sh_size / shdr->sh_entsize;
9347 for (i = 0; i < nrels; i++) {
9348 rel = elf_rel_by_idx(data, i);
9349 if (!rel) {
9350 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9351 return -LIBBPF_ERRNO__FORMAT;
9352 }
9353
9354 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9355 if (!sym) {
9356 pr_warn("struct_ops reloc: symbol %zx not found\n",
9357 (size_t)ELF64_R_SYM(rel->r_info));
9358 return -LIBBPF_ERRNO__FORMAT;
9359 }
9360
9361 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9362 map = find_struct_ops_map_by_offset(obj, rel->r_offset);
9363 if (!map) {
9364 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9365 (size_t)rel->r_offset);
9366 return -EINVAL;
9367 }
9368
9369 moff = rel->r_offset - map->sec_offset;
9370 shdr_idx = sym->st_shndx;
9371 st_ops = map->st_ops;
9372 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9373 map->name,
9374 (long long)(rel->r_info >> 32),
9375 (long long)sym->st_value,
9376 shdr_idx, (size_t)rel->r_offset,
9377 map->sec_offset, sym->st_name, name);
9378
9379 if (shdr_idx >= SHN_LORESERVE) {
9380 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9381 map->name, (size_t)rel->r_offset, shdr_idx);
9382 return -LIBBPF_ERRNO__RELOC;
9383 }
9384 if (sym->st_value % BPF_INSN_SZ) {
9385 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9386 map->name, (unsigned long long)sym->st_value);
9387 return -LIBBPF_ERRNO__FORMAT;
9388 }
9389 insn_idx = sym->st_value / BPF_INSN_SZ;
9390
9391 member = find_member_by_offset(st_ops->type, moff * 8);
9392 if (!member) {
9393 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9394 map->name, moff);
9395 return -EINVAL;
9396 }
9397 member_idx = member - btf_members(st_ops->type);
9398 name = btf__name_by_offset(btf, member->name_off);
9399
9400 if (!resolve_func_ptr(btf, member->type, NULL)) {
9401 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9402 map->name, name);
9403 return -EINVAL;
9404 }
9405
9406 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9407 if (!prog) {
9408 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9409 map->name, shdr_idx, name);
9410 return -EINVAL;
9411 }
9412
9413 /* prevent the use of BPF prog with invalid type */
9414 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9415 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9416 map->name, prog->name);
9417 return -EINVAL;
9418 }
9419
9420 /* if we haven't yet processed this BPF program, record proper
9421 * attach_btf_id and member_idx
9422 */
9423 if (!prog->attach_btf_id) {
9424 prog->attach_btf_id = st_ops->type_id;
9425 prog->expected_attach_type = member_idx;
9426 }
9427
9428 /* struct_ops BPF prog can be re-used between multiple
9429 * .struct_ops as long as it's the same struct_ops struct
9430 * definition and the same function pointer field
9431 */
9432 if (prog->attach_btf_id != st_ops->type_id ||
9433 prog->expected_attach_type != member_idx) {
9434 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9435 map->name, prog->name, prog->sec_name, prog->type,
9436 prog->attach_btf_id, prog->expected_attach_type, name);
9437 return -EINVAL;
9438 }
9439
9440 st_ops->progs[member_idx] = prog;
9441 }
9442
9443 return 0;
9444 }
9445
9446 #define BTF_TRACE_PREFIX "btf_trace_"
9447 #define BTF_LSM_PREFIX "bpf_lsm_"
9448 #define BTF_ITER_PREFIX "bpf_iter_"
9449 #define BTF_MAX_NAME_SIZE 128
9450
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9451 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9452 const char **prefix, int *kind)
9453 {
9454 switch (attach_type) {
9455 case BPF_TRACE_RAW_TP:
9456 *prefix = BTF_TRACE_PREFIX;
9457 *kind = BTF_KIND_TYPEDEF;
9458 break;
9459 case BPF_LSM_MAC:
9460 *prefix = BTF_LSM_PREFIX;
9461 *kind = BTF_KIND_FUNC;
9462 break;
9463 case BPF_TRACE_ITER:
9464 *prefix = BTF_ITER_PREFIX;
9465 *kind = BTF_KIND_FUNC;
9466 break;
9467 default:
9468 *prefix = "";
9469 *kind = BTF_KIND_FUNC;
9470 }
9471 }
9472
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)9473 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9474 const char *name, __u32 kind)
9475 {
9476 char btf_type_name[BTF_MAX_NAME_SIZE];
9477 int ret;
9478
9479 ret = snprintf(btf_type_name, sizeof(btf_type_name),
9480 "%s%s", prefix, name);
9481 /* snprintf returns the number of characters written excluding the
9482 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9483 * indicates truncation.
9484 */
9485 if (ret < 0 || ret >= sizeof(btf_type_name))
9486 return -ENAMETOOLONG;
9487 return btf__find_by_name_kind(btf, btf_type_name, kind);
9488 }
9489
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)9490 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9491 enum bpf_attach_type attach_type)
9492 {
9493 const char *prefix;
9494 int kind;
9495
9496 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9497 return find_btf_by_prefix_kind(btf, prefix, name, kind);
9498 }
9499
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)9500 int libbpf_find_vmlinux_btf_id(const char *name,
9501 enum bpf_attach_type attach_type)
9502 {
9503 struct btf *btf;
9504 int err;
9505
9506 btf = btf__load_vmlinux_btf();
9507 err = libbpf_get_error(btf);
9508 if (err) {
9509 pr_warn("vmlinux BTF is not found\n");
9510 return libbpf_err(err);
9511 }
9512
9513 err = find_attach_btf_id(btf, name, attach_type);
9514 if (err <= 0)
9515 pr_warn("%s is not found in vmlinux BTF\n", name);
9516
9517 btf__free(btf);
9518 return libbpf_err(err);
9519 }
9520
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)9521 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9522 {
9523 struct bpf_prog_info info = {};
9524 __u32 info_len = sizeof(info);
9525 struct btf *btf;
9526 int err;
9527
9528 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
9529 if (err) {
9530 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
9531 attach_prog_fd, err);
9532 return err;
9533 }
9534
9535 err = -EINVAL;
9536 if (!info.btf_id) {
9537 pr_warn("The target program doesn't have BTF\n");
9538 goto out;
9539 }
9540 btf = btf__load_from_kernel_by_id(info.btf_id);
9541 err = libbpf_get_error(btf);
9542 if (err) {
9543 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9544 goto out;
9545 }
9546 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9547 btf__free(btf);
9548 if (err <= 0) {
9549 pr_warn("%s is not found in prog's BTF\n", name);
9550 goto out;
9551 }
9552 out:
9553 return err;
9554 }
9555
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9556 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9557 enum bpf_attach_type attach_type,
9558 int *btf_obj_fd, int *btf_type_id)
9559 {
9560 int ret, i;
9561
9562 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9563 if (ret > 0) {
9564 *btf_obj_fd = 0; /* vmlinux BTF */
9565 *btf_type_id = ret;
9566 return 0;
9567 }
9568 if (ret != -ENOENT)
9569 return ret;
9570
9571 ret = load_module_btfs(obj);
9572 if (ret)
9573 return ret;
9574
9575 for (i = 0; i < obj->btf_module_cnt; i++) {
9576 const struct module_btf *mod = &obj->btf_modules[i];
9577
9578 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9579 if (ret > 0) {
9580 *btf_obj_fd = mod->fd;
9581 *btf_type_id = ret;
9582 return 0;
9583 }
9584 if (ret == -ENOENT)
9585 continue;
9586
9587 return ret;
9588 }
9589
9590 return -ESRCH;
9591 }
9592
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)9593 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9594 int *btf_obj_fd, int *btf_type_id)
9595 {
9596 enum bpf_attach_type attach_type = prog->expected_attach_type;
9597 __u32 attach_prog_fd = prog->attach_prog_fd;
9598 int err = 0;
9599
9600 /* BPF program's BTF ID */
9601 if (attach_prog_fd) {
9602 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9603 if (err < 0) {
9604 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9605 attach_prog_fd, attach_name, err);
9606 return err;
9607 }
9608 *btf_obj_fd = 0;
9609 *btf_type_id = err;
9610 return 0;
9611 }
9612
9613 /* kernel/module BTF ID */
9614 if (prog->obj->gen_loader) {
9615 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9616 *btf_obj_fd = 0;
9617 *btf_type_id = 1;
9618 } else {
9619 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9620 }
9621 if (err) {
9622 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9623 return err;
9624 }
9625 return 0;
9626 }
9627
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)9628 int libbpf_attach_type_by_name(const char *name,
9629 enum bpf_attach_type *attach_type)
9630 {
9631 char *type_names;
9632 const struct bpf_sec_def *sec_def;
9633
9634 if (!name)
9635 return libbpf_err(-EINVAL);
9636
9637 sec_def = find_sec_def(name);
9638 if (!sec_def) {
9639 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9640 type_names = libbpf_get_type_names(true);
9641 if (type_names != NULL) {
9642 pr_debug("attachable section(type) names are:%s\n", type_names);
9643 free(type_names);
9644 }
9645
9646 return libbpf_err(-EINVAL);
9647 }
9648
9649 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9650 return libbpf_err(-EINVAL);
9651 if (!(sec_def->cookie & SEC_ATTACHABLE))
9652 return libbpf_err(-EINVAL);
9653
9654 *attach_type = sec_def->expected_attach_type;
9655 return 0;
9656 }
9657
bpf_map__fd(const struct bpf_map * map)9658 int bpf_map__fd(const struct bpf_map *map)
9659 {
9660 return map ? map->fd : libbpf_err(-EINVAL);
9661 }
9662
bpf_map__def(const struct bpf_map * map)9663 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
9664 {
9665 return map ? &map->def : libbpf_err_ptr(-EINVAL);
9666 }
9667
map_uses_real_name(const struct bpf_map * map)9668 static bool map_uses_real_name(const struct bpf_map *map)
9669 {
9670 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9671 * their user-visible name differs from kernel-visible name. Users see
9672 * such map's corresponding ELF section name as a map name.
9673 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9674 * maps to know which name has to be returned to the user.
9675 */
9676 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9677 return true;
9678 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9679 return true;
9680 return false;
9681 }
9682
bpf_map__name(const struct bpf_map * map)9683 const char *bpf_map__name(const struct bpf_map *map)
9684 {
9685 if (!map)
9686 return NULL;
9687
9688 if (map_uses_real_name(map))
9689 return map->real_name;
9690
9691 return map->name;
9692 }
9693
bpf_map__type(const struct bpf_map * map)9694 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9695 {
9696 return map->def.type;
9697 }
9698
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)9699 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9700 {
9701 if (map->fd >= 0)
9702 return libbpf_err(-EBUSY);
9703 map->def.type = type;
9704 return 0;
9705 }
9706
bpf_map__map_flags(const struct bpf_map * map)9707 __u32 bpf_map__map_flags(const struct bpf_map *map)
9708 {
9709 return map->def.map_flags;
9710 }
9711
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)9712 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9713 {
9714 if (map->fd >= 0)
9715 return libbpf_err(-EBUSY);
9716 map->def.map_flags = flags;
9717 return 0;
9718 }
9719
bpf_map__map_extra(const struct bpf_map * map)9720 __u64 bpf_map__map_extra(const struct bpf_map *map)
9721 {
9722 return map->map_extra;
9723 }
9724
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)9725 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9726 {
9727 if (map->fd >= 0)
9728 return libbpf_err(-EBUSY);
9729 map->map_extra = map_extra;
9730 return 0;
9731 }
9732
bpf_map__numa_node(const struct bpf_map * map)9733 __u32 bpf_map__numa_node(const struct bpf_map *map)
9734 {
9735 return map->numa_node;
9736 }
9737
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)9738 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9739 {
9740 if (map->fd >= 0)
9741 return libbpf_err(-EBUSY);
9742 map->numa_node = numa_node;
9743 return 0;
9744 }
9745
bpf_map__key_size(const struct bpf_map * map)9746 __u32 bpf_map__key_size(const struct bpf_map *map)
9747 {
9748 return map->def.key_size;
9749 }
9750
bpf_map__set_key_size(struct bpf_map * map,__u32 size)9751 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9752 {
9753 if (map->fd >= 0)
9754 return libbpf_err(-EBUSY);
9755 map->def.key_size = size;
9756 return 0;
9757 }
9758
bpf_map__value_size(const struct bpf_map * map)9759 __u32 bpf_map__value_size(const struct bpf_map *map)
9760 {
9761 return map->def.value_size;
9762 }
9763
bpf_map__set_value_size(struct bpf_map * map,__u32 size)9764 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9765 {
9766 if (map->fd >= 0)
9767 return libbpf_err(-EBUSY);
9768 map->def.value_size = size;
9769 return 0;
9770 }
9771
bpf_map__btf_key_type_id(const struct bpf_map * map)9772 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9773 {
9774 return map ? map->btf_key_type_id : 0;
9775 }
9776
bpf_map__btf_value_type_id(const struct bpf_map * map)9777 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9778 {
9779 return map ? map->btf_value_type_id : 0;
9780 }
9781
bpf_map__set_priv(struct bpf_map * map,void * priv,bpf_map_clear_priv_t clear_priv)9782 int bpf_map__set_priv(struct bpf_map *map, void *priv,
9783 bpf_map_clear_priv_t clear_priv)
9784 {
9785 if (!map)
9786 return libbpf_err(-EINVAL);
9787
9788 if (map->priv) {
9789 if (map->clear_priv)
9790 map->clear_priv(map, map->priv);
9791 }
9792
9793 map->priv = priv;
9794 map->clear_priv = clear_priv;
9795 return 0;
9796 }
9797
bpf_map__priv(const struct bpf_map * map)9798 void *bpf_map__priv(const struct bpf_map *map)
9799 {
9800 return map ? map->priv : libbpf_err_ptr(-EINVAL);
9801 }
9802
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)9803 int bpf_map__set_initial_value(struct bpf_map *map,
9804 const void *data, size_t size)
9805 {
9806 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9807 size != map->def.value_size || map->fd >= 0)
9808 return libbpf_err(-EINVAL);
9809
9810 memcpy(map->mmaped, data, size);
9811 return 0;
9812 }
9813
bpf_map__initial_value(struct bpf_map * map,size_t * psize)9814 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9815 {
9816 if (!map->mmaped)
9817 return NULL;
9818 *psize = map->def.value_size;
9819 return map->mmaped;
9820 }
9821
bpf_map__is_offload_neutral(const struct bpf_map * map)9822 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
9823 {
9824 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
9825 }
9826
bpf_map__is_internal(const struct bpf_map * map)9827 bool bpf_map__is_internal(const struct bpf_map *map)
9828 {
9829 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9830 }
9831
bpf_map__ifindex(const struct bpf_map * map)9832 __u32 bpf_map__ifindex(const struct bpf_map *map)
9833 {
9834 return map->map_ifindex;
9835 }
9836
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)9837 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9838 {
9839 if (map->fd >= 0)
9840 return libbpf_err(-EBUSY);
9841 map->map_ifindex = ifindex;
9842 return 0;
9843 }
9844
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)9845 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9846 {
9847 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9848 pr_warn("error: unsupported map type\n");
9849 return libbpf_err(-EINVAL);
9850 }
9851 if (map->inner_map_fd != -1) {
9852 pr_warn("error: inner_map_fd already specified\n");
9853 return libbpf_err(-EINVAL);
9854 }
9855 if (map->inner_map) {
9856 bpf_map__destroy(map->inner_map);
9857 zfree(&map->inner_map);
9858 }
9859 map->inner_map_fd = fd;
9860 return 0;
9861 }
9862
9863 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)9864 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9865 {
9866 ssize_t idx;
9867 struct bpf_map *s, *e;
9868
9869 if (!obj || !obj->maps)
9870 return errno = EINVAL, NULL;
9871
9872 s = obj->maps;
9873 e = obj->maps + obj->nr_maps;
9874
9875 if ((m < s) || (m >= e)) {
9876 pr_warn("error in %s: map handler doesn't belong to object\n",
9877 __func__);
9878 return errno = EINVAL, NULL;
9879 }
9880
9881 idx = (m - obj->maps) + i;
9882 if (idx >= obj->nr_maps || idx < 0)
9883 return NULL;
9884 return &obj->maps[idx];
9885 }
9886
9887 struct bpf_map *
bpf_map__next(const struct bpf_map * prev,const struct bpf_object * obj)9888 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9889 {
9890 return bpf_object__next_map(obj, prev);
9891 }
9892
9893 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)9894 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9895 {
9896 if (prev == NULL)
9897 return obj->maps;
9898
9899 return __bpf_map__iter(prev, obj, 1);
9900 }
9901
9902 struct bpf_map *
bpf_map__prev(const struct bpf_map * next,const struct bpf_object * obj)9903 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9904 {
9905 return bpf_object__prev_map(obj, next);
9906 }
9907
9908 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)9909 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9910 {
9911 if (next == NULL) {
9912 if (!obj->nr_maps)
9913 return NULL;
9914 return obj->maps + obj->nr_maps - 1;
9915 }
9916
9917 return __bpf_map__iter(next, obj, -1);
9918 }
9919
9920 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)9921 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9922 {
9923 struct bpf_map *pos;
9924
9925 bpf_object__for_each_map(pos, obj) {
9926 /* if it's a special internal map name (which always starts
9927 * with dot) then check if that special name matches the
9928 * real map name (ELF section name)
9929 */
9930 if (name[0] == '.') {
9931 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9932 return pos;
9933 continue;
9934 }
9935 /* otherwise map name has to be an exact match */
9936 if (map_uses_real_name(pos)) {
9937 if (strcmp(pos->real_name, name) == 0)
9938 return pos;
9939 continue;
9940 }
9941 if (strcmp(pos->name, name) == 0)
9942 return pos;
9943 }
9944 return errno = ENOENT, NULL;
9945 }
9946
9947 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)9948 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9949 {
9950 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9951 }
9952
9953 struct bpf_map *
bpf_object__find_map_by_offset(struct bpf_object * obj,size_t offset)9954 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9955 {
9956 return libbpf_err_ptr(-ENOTSUP);
9957 }
9958
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)9959 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9960 size_t value_sz, bool check_value_sz)
9961 {
9962 if (map->fd <= 0)
9963 return -ENOENT;
9964
9965 if (map->def.key_size != key_sz) {
9966 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9967 map->name, key_sz, map->def.key_size);
9968 return -EINVAL;
9969 }
9970
9971 if (!check_value_sz)
9972 return 0;
9973
9974 switch (map->def.type) {
9975 case BPF_MAP_TYPE_PERCPU_ARRAY:
9976 case BPF_MAP_TYPE_PERCPU_HASH:
9977 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9978 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9979 int num_cpu = libbpf_num_possible_cpus();
9980 size_t elem_sz = roundup(map->def.value_size, 8);
9981
9982 if (value_sz != num_cpu * elem_sz) {
9983 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9984 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9985 return -EINVAL;
9986 }
9987 break;
9988 }
9989 default:
9990 if (map->def.value_size != value_sz) {
9991 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9992 map->name, value_sz, map->def.value_size);
9993 return -EINVAL;
9994 }
9995 break;
9996 }
9997 return 0;
9998 }
9999
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10000 int bpf_map__lookup_elem(const struct bpf_map *map,
10001 const void *key, size_t key_sz,
10002 void *value, size_t value_sz, __u64 flags)
10003 {
10004 int err;
10005
10006 err = validate_map_op(map, key_sz, value_sz, true);
10007 if (err)
10008 return libbpf_err(err);
10009
10010 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10011 }
10012
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)10013 int bpf_map__update_elem(const struct bpf_map *map,
10014 const void *key, size_t key_sz,
10015 const void *value, size_t value_sz, __u64 flags)
10016 {
10017 int err;
10018
10019 err = validate_map_op(map, key_sz, value_sz, true);
10020 if (err)
10021 return libbpf_err(err);
10022
10023 return bpf_map_update_elem(map->fd, key, value, flags);
10024 }
10025
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)10026 int bpf_map__delete_elem(const struct bpf_map *map,
10027 const void *key, size_t key_sz, __u64 flags)
10028 {
10029 int err;
10030
10031 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10032 if (err)
10033 return libbpf_err(err);
10034
10035 return bpf_map_delete_elem_flags(map->fd, key, flags);
10036 }
10037
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10038 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10039 const void *key, size_t key_sz,
10040 void *value, size_t value_sz, __u64 flags)
10041 {
10042 int err;
10043
10044 err = validate_map_op(map, key_sz, value_sz, true);
10045 if (err)
10046 return libbpf_err(err);
10047
10048 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10049 }
10050
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)10051 int bpf_map__get_next_key(const struct bpf_map *map,
10052 const void *cur_key, void *next_key, size_t key_sz)
10053 {
10054 int err;
10055
10056 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10057 if (err)
10058 return libbpf_err(err);
10059
10060 return bpf_map_get_next_key(map->fd, cur_key, next_key);
10061 }
10062
libbpf_get_error(const void * ptr)10063 long libbpf_get_error(const void *ptr)
10064 {
10065 if (!IS_ERR_OR_NULL(ptr))
10066 return 0;
10067
10068 if (IS_ERR(ptr))
10069 errno = -PTR_ERR(ptr);
10070
10071 /* If ptr == NULL, then errno should be already set by the failing
10072 * API, because libbpf never returns NULL on success and it now always
10073 * sets errno on error. So no extra errno handling for ptr == NULL
10074 * case.
10075 */
10076 return -errno;
10077 }
10078
10079 __attribute__((alias("bpf_prog_load_xattr2")))
10080 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
10081 struct bpf_object **pobj, int *prog_fd);
10082
bpf_prog_load_xattr2(const struct bpf_prog_load_attr * attr,struct bpf_object ** pobj,int * prog_fd)10083 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr,
10084 struct bpf_object **pobj, int *prog_fd)
10085 {
10086 struct bpf_object_open_attr open_attr = {};
10087 struct bpf_program *prog, *first_prog = NULL;
10088 struct bpf_object *obj;
10089 struct bpf_map *map;
10090 int err;
10091
10092 if (!attr)
10093 return libbpf_err(-EINVAL);
10094 if (!attr->file)
10095 return libbpf_err(-EINVAL);
10096
10097 open_attr.file = attr->file;
10098 open_attr.prog_type = attr->prog_type;
10099
10100 obj = __bpf_object__open_xattr(&open_attr, 0);
10101 err = libbpf_get_error(obj);
10102 if (err)
10103 return libbpf_err(-ENOENT);
10104
10105 bpf_object__for_each_program(prog, obj) {
10106 enum bpf_attach_type attach_type = attr->expected_attach_type;
10107 /*
10108 * to preserve backwards compatibility, bpf_prog_load treats
10109 * attr->prog_type, if specified, as an override to whatever
10110 * bpf_object__open guessed
10111 */
10112 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
10113 prog->type = attr->prog_type;
10114 prog->expected_attach_type = attach_type;
10115 }
10116 if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) {
10117 /*
10118 * we haven't guessed from section name and user
10119 * didn't provide a fallback type, too bad...
10120 */
10121 bpf_object__close(obj);
10122 return libbpf_err(-EINVAL);
10123 }
10124
10125 prog->prog_ifindex = attr->ifindex;
10126 prog->log_level = attr->log_level;
10127 prog->prog_flags |= attr->prog_flags;
10128 if (!first_prog)
10129 first_prog = prog;
10130 }
10131
10132 bpf_object__for_each_map(map, obj) {
10133 if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
10134 map->map_ifindex = attr->ifindex;
10135 }
10136
10137 if (!first_prog) {
10138 pr_warn("object file doesn't contain bpf program\n");
10139 bpf_object__close(obj);
10140 return libbpf_err(-ENOENT);
10141 }
10142
10143 err = bpf_object__load(obj);
10144 if (err) {
10145 bpf_object__close(obj);
10146 return libbpf_err(err);
10147 }
10148
10149 *pobj = obj;
10150 *prog_fd = bpf_program__fd(first_prog);
10151 return 0;
10152 }
10153
10154 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1)
bpf_prog_load_deprecated(const char * file,enum bpf_prog_type type,struct bpf_object ** pobj,int * prog_fd)10155 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type,
10156 struct bpf_object **pobj, int *prog_fd)
10157 {
10158 struct bpf_prog_load_attr attr;
10159
10160 memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
10161 attr.file = file;
10162 attr.prog_type = type;
10163 attr.expected_attach_type = 0;
10164
10165 return bpf_prog_load_xattr2(&attr, pobj, prog_fd);
10166 }
10167
10168 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)10169 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10170 {
10171 int ret;
10172
10173 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10174 return libbpf_err_errno(ret);
10175 }
10176
10177 /* Release "ownership" of underlying BPF resource (typically, BPF program
10178 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10179 * link, when destructed through bpf_link__destroy() call won't attempt to
10180 * detach/unregisted that BPF resource. This is useful in situations where,
10181 * say, attached BPF program has to outlive userspace program that attached it
10182 * in the system. Depending on type of BPF program, though, there might be
10183 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10184 * exit of userspace program doesn't trigger automatic detachment and clean up
10185 * inside the kernel.
10186 */
bpf_link__disconnect(struct bpf_link * link)10187 void bpf_link__disconnect(struct bpf_link *link)
10188 {
10189 link->disconnected = true;
10190 }
10191
bpf_link__destroy(struct bpf_link * link)10192 int bpf_link__destroy(struct bpf_link *link)
10193 {
10194 int err = 0;
10195
10196 if (IS_ERR_OR_NULL(link))
10197 return 0;
10198
10199 if (!link->disconnected && link->detach)
10200 err = link->detach(link);
10201 if (link->pin_path)
10202 free(link->pin_path);
10203 if (link->dealloc)
10204 link->dealloc(link);
10205 else
10206 free(link);
10207
10208 return libbpf_err(err);
10209 }
10210
bpf_link__fd(const struct bpf_link * link)10211 int bpf_link__fd(const struct bpf_link *link)
10212 {
10213 return link->fd;
10214 }
10215
bpf_link__pin_path(const struct bpf_link * link)10216 const char *bpf_link__pin_path(const struct bpf_link *link)
10217 {
10218 return link->pin_path;
10219 }
10220
bpf_link__detach_fd(struct bpf_link * link)10221 static int bpf_link__detach_fd(struct bpf_link *link)
10222 {
10223 return libbpf_err_errno(close(link->fd));
10224 }
10225
bpf_link__open(const char * path)10226 struct bpf_link *bpf_link__open(const char *path)
10227 {
10228 struct bpf_link *link;
10229 int fd;
10230
10231 fd = bpf_obj_get(path);
10232 if (fd < 0) {
10233 fd = -errno;
10234 pr_warn("failed to open link at %s: %d\n", path, fd);
10235 return libbpf_err_ptr(fd);
10236 }
10237
10238 link = calloc(1, sizeof(*link));
10239 if (!link) {
10240 close(fd);
10241 return libbpf_err_ptr(-ENOMEM);
10242 }
10243 link->detach = &bpf_link__detach_fd;
10244 link->fd = fd;
10245
10246 link->pin_path = strdup(path);
10247 if (!link->pin_path) {
10248 bpf_link__destroy(link);
10249 return libbpf_err_ptr(-ENOMEM);
10250 }
10251
10252 return link;
10253 }
10254
bpf_link__detach(struct bpf_link * link)10255 int bpf_link__detach(struct bpf_link *link)
10256 {
10257 return bpf_link_detach(link->fd) ? -errno : 0;
10258 }
10259
bpf_link__pin(struct bpf_link * link,const char * path)10260 int bpf_link__pin(struct bpf_link *link, const char *path)
10261 {
10262 int err;
10263
10264 if (link->pin_path)
10265 return libbpf_err(-EBUSY);
10266 err = make_parent_dir(path);
10267 if (err)
10268 return libbpf_err(err);
10269 err = check_path(path);
10270 if (err)
10271 return libbpf_err(err);
10272
10273 link->pin_path = strdup(path);
10274 if (!link->pin_path)
10275 return libbpf_err(-ENOMEM);
10276
10277 if (bpf_obj_pin(link->fd, link->pin_path)) {
10278 err = -errno;
10279 zfree(&link->pin_path);
10280 return libbpf_err(err);
10281 }
10282
10283 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10284 return 0;
10285 }
10286
bpf_link__unpin(struct bpf_link * link)10287 int bpf_link__unpin(struct bpf_link *link)
10288 {
10289 int err;
10290
10291 if (!link->pin_path)
10292 return libbpf_err(-EINVAL);
10293
10294 err = unlink(link->pin_path);
10295 if (err != 0)
10296 return -errno;
10297
10298 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10299 zfree(&link->pin_path);
10300 return 0;
10301 }
10302
10303 struct bpf_link_perf {
10304 struct bpf_link link;
10305 int perf_event_fd;
10306 /* legacy kprobe support: keep track of probe identifier and type */
10307 char *legacy_probe_name;
10308 bool legacy_is_kprobe;
10309 bool legacy_is_retprobe;
10310 };
10311
10312 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10313 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10314
bpf_link_perf_detach(struct bpf_link * link)10315 static int bpf_link_perf_detach(struct bpf_link *link)
10316 {
10317 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10318 int err = 0;
10319
10320 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10321 err = -errno;
10322
10323 if (perf_link->perf_event_fd != link->fd)
10324 close(perf_link->perf_event_fd);
10325 close(link->fd);
10326
10327 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10328 if (perf_link->legacy_probe_name) {
10329 if (perf_link->legacy_is_kprobe) {
10330 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10331 perf_link->legacy_is_retprobe);
10332 } else {
10333 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10334 perf_link->legacy_is_retprobe);
10335 }
10336 }
10337
10338 return err;
10339 }
10340
bpf_link_perf_dealloc(struct bpf_link * link)10341 static void bpf_link_perf_dealloc(struct bpf_link *link)
10342 {
10343 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10344
10345 free(perf_link->legacy_probe_name);
10346 free(perf_link);
10347 }
10348
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10349 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10350 const struct bpf_perf_event_opts *opts)
10351 {
10352 char errmsg[STRERR_BUFSIZE];
10353 struct bpf_link_perf *link;
10354 int prog_fd, link_fd = -1, err;
10355
10356 if (!OPTS_VALID(opts, bpf_perf_event_opts))
10357 return libbpf_err_ptr(-EINVAL);
10358
10359 if (pfd < 0) {
10360 pr_warn("prog '%s': invalid perf event FD %d\n",
10361 prog->name, pfd);
10362 return libbpf_err_ptr(-EINVAL);
10363 }
10364 prog_fd = bpf_program__fd(prog);
10365 if (prog_fd < 0) {
10366 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10367 prog->name);
10368 return libbpf_err_ptr(-EINVAL);
10369 }
10370
10371 link = calloc(1, sizeof(*link));
10372 if (!link)
10373 return libbpf_err_ptr(-ENOMEM);
10374 link->link.detach = &bpf_link_perf_detach;
10375 link->link.dealloc = &bpf_link_perf_dealloc;
10376 link->perf_event_fd = pfd;
10377
10378 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
10379 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10380 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10381
10382 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10383 if (link_fd < 0) {
10384 err = -errno;
10385 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10386 prog->name, pfd,
10387 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10388 goto err_out;
10389 }
10390 link->link.fd = link_fd;
10391 } else {
10392 if (OPTS_GET(opts, bpf_cookie, 0)) {
10393 pr_warn("prog '%s': user context value is not supported\n", prog->name);
10394 err = -EOPNOTSUPP;
10395 goto err_out;
10396 }
10397
10398 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10399 err = -errno;
10400 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10401 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10402 if (err == -EPROTO)
10403 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10404 prog->name, pfd);
10405 goto err_out;
10406 }
10407 link->link.fd = pfd;
10408 }
10409 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10410 err = -errno;
10411 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10412 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10413 goto err_out;
10414 }
10415
10416 return &link->link;
10417 err_out:
10418 if (link_fd >= 0)
10419 close(link_fd);
10420 free(link);
10421 return libbpf_err_ptr(err);
10422 }
10423
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10424 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10425 {
10426 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10427 }
10428
10429 /*
10430 * this function is expected to parse integer in the range of [0, 2^31-1] from
10431 * given file using scanf format string fmt. If actual parsed value is
10432 * negative, the result might be indistinguishable from error
10433 */
parse_uint_from_file(const char * file,const char * fmt)10434 static int parse_uint_from_file(const char *file, const char *fmt)
10435 {
10436 char buf[STRERR_BUFSIZE];
10437 int err, ret;
10438 FILE *f;
10439
10440 f = fopen(file, "r");
10441 if (!f) {
10442 err = -errno;
10443 pr_debug("failed to open '%s': %s\n", file,
10444 libbpf_strerror_r(err, buf, sizeof(buf)));
10445 return err;
10446 }
10447 err = fscanf(f, fmt, &ret);
10448 if (err != 1) {
10449 err = err == EOF ? -EIO : -errno;
10450 pr_debug("failed to parse '%s': %s\n", file,
10451 libbpf_strerror_r(err, buf, sizeof(buf)));
10452 fclose(f);
10453 return err;
10454 }
10455 fclose(f);
10456 return ret;
10457 }
10458
determine_kprobe_perf_type(void)10459 static int determine_kprobe_perf_type(void)
10460 {
10461 const char *file = "/sys/bus/event_source/devices/kprobe/type";
10462
10463 return parse_uint_from_file(file, "%d\n");
10464 }
10465
determine_uprobe_perf_type(void)10466 static int determine_uprobe_perf_type(void)
10467 {
10468 const char *file = "/sys/bus/event_source/devices/uprobe/type";
10469
10470 return parse_uint_from_file(file, "%d\n");
10471 }
10472
determine_kprobe_retprobe_bit(void)10473 static int determine_kprobe_retprobe_bit(void)
10474 {
10475 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10476
10477 return parse_uint_from_file(file, "config:%d\n");
10478 }
10479
determine_uprobe_retprobe_bit(void)10480 static int determine_uprobe_retprobe_bit(void)
10481 {
10482 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10483
10484 return parse_uint_from_file(file, "config:%d\n");
10485 }
10486
10487 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10488 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10489
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)10490 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10491 uint64_t offset, int pid, size_t ref_ctr_off)
10492 {
10493 struct perf_event_attr attr = {};
10494 char errmsg[STRERR_BUFSIZE];
10495 int type, pfd, err;
10496
10497 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10498 return -EINVAL;
10499
10500 type = uprobe ? determine_uprobe_perf_type()
10501 : determine_kprobe_perf_type();
10502 if (type < 0) {
10503 pr_warn("failed to determine %s perf type: %s\n",
10504 uprobe ? "uprobe" : "kprobe",
10505 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10506 return type;
10507 }
10508 if (retprobe) {
10509 int bit = uprobe ? determine_uprobe_retprobe_bit()
10510 : determine_kprobe_retprobe_bit();
10511
10512 if (bit < 0) {
10513 pr_warn("failed to determine %s retprobe bit: %s\n",
10514 uprobe ? "uprobe" : "kprobe",
10515 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10516 return bit;
10517 }
10518 attr.config |= 1 << bit;
10519 }
10520 attr.size = sizeof(attr);
10521 attr.type = type;
10522 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10523 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10524 attr.config2 = offset; /* kprobe_addr or probe_offset */
10525
10526 /* pid filter is meaningful only for uprobes */
10527 pfd = syscall(__NR_perf_event_open, &attr,
10528 pid < 0 ? -1 : pid /* pid */,
10529 pid == -1 ? 0 : -1 /* cpu */,
10530 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10531 if (pfd < 0) {
10532 err = -errno;
10533 pr_warn("%s perf_event_open() failed: %s\n",
10534 uprobe ? "uprobe" : "kprobe",
10535 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10536 return err;
10537 }
10538 return pfd;
10539 }
10540
append_to_file(const char * file,const char * fmt,...)10541 static int append_to_file(const char *file, const char *fmt, ...)
10542 {
10543 int fd, n, err = 0;
10544 va_list ap;
10545
10546 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10547 if (fd < 0)
10548 return -errno;
10549
10550 va_start(ap, fmt);
10551 n = vdprintf(fd, fmt, ap);
10552 va_end(ap);
10553
10554 if (n < 0)
10555 err = -errno;
10556
10557 close(fd);
10558 return err;
10559 }
10560
gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)10561 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10562 const char *kfunc_name, size_t offset)
10563 {
10564 static int index = 0;
10565
10566 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10567 __sync_fetch_and_add(&index, 1));
10568 }
10569
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)10570 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10571 const char *kfunc_name, size_t offset)
10572 {
10573 const char *file = "/sys/kernel/debug/tracing/kprobe_events";
10574
10575 return append_to_file(file, "%c:%s/%s %s+0x%zx",
10576 retprobe ? 'r' : 'p',
10577 retprobe ? "kretprobes" : "kprobes",
10578 probe_name, kfunc_name, offset);
10579 }
10580
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)10581 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10582 {
10583 const char *file = "/sys/kernel/debug/tracing/kprobe_events";
10584
10585 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name);
10586 }
10587
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)10588 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10589 {
10590 char file[256];
10591
10592 snprintf(file, sizeof(file),
10593 "/sys/kernel/debug/tracing/events/%s/%s/id",
10594 retprobe ? "kretprobes" : "kprobes", probe_name);
10595
10596 return parse_uint_from_file(file, "%d\n");
10597 }
10598
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)10599 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10600 const char *kfunc_name, size_t offset, int pid)
10601 {
10602 struct perf_event_attr attr = {};
10603 char errmsg[STRERR_BUFSIZE];
10604 int type, pfd, err;
10605
10606 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10607 if (err < 0) {
10608 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10609 kfunc_name, offset,
10610 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10611 return err;
10612 }
10613 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10614 if (type < 0) {
10615 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10616 kfunc_name, offset,
10617 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10618 return type;
10619 }
10620 attr.size = sizeof(attr);
10621 attr.config = type;
10622 attr.type = PERF_TYPE_TRACEPOINT;
10623
10624 pfd = syscall(__NR_perf_event_open, &attr,
10625 pid < 0 ? -1 : pid, /* pid */
10626 pid == -1 ? 0 : -1, /* cpu */
10627 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10628 if (pfd < 0) {
10629 err = -errno;
10630 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10631 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10632 return err;
10633 }
10634 return pfd;
10635 }
10636
10637 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)10638 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10639 const char *func_name,
10640 const struct bpf_kprobe_opts *opts)
10641 {
10642 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10643 char errmsg[STRERR_BUFSIZE];
10644 char *legacy_probe = NULL;
10645 struct bpf_link *link;
10646 size_t offset;
10647 bool retprobe, legacy;
10648 int pfd, err;
10649
10650 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10651 return libbpf_err_ptr(-EINVAL);
10652
10653 retprobe = OPTS_GET(opts, retprobe, false);
10654 offset = OPTS_GET(opts, offset, 0);
10655 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10656
10657 legacy = determine_kprobe_perf_type() < 0;
10658 if (!legacy) {
10659 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10660 func_name, offset,
10661 -1 /* pid */, 0 /* ref_ctr_off */);
10662 } else {
10663 char probe_name[256];
10664
10665 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10666 func_name, offset);
10667
10668 legacy_probe = strdup(probe_name);
10669 if (!legacy_probe)
10670 return libbpf_err_ptr(-ENOMEM);
10671
10672 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10673 offset, -1 /* pid */);
10674 }
10675 if (pfd < 0) {
10676 err = -errno;
10677 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10678 prog->name, retprobe ? "kretprobe" : "kprobe",
10679 func_name, offset,
10680 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10681 goto err_out;
10682 }
10683 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10684 err = libbpf_get_error(link);
10685 if (err) {
10686 close(pfd);
10687 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10688 prog->name, retprobe ? "kretprobe" : "kprobe",
10689 func_name, offset,
10690 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10691 goto err_out;
10692 }
10693 if (legacy) {
10694 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10695
10696 perf_link->legacy_probe_name = legacy_probe;
10697 perf_link->legacy_is_kprobe = true;
10698 perf_link->legacy_is_retprobe = retprobe;
10699 }
10700
10701 return link;
10702 err_out:
10703 free(legacy_probe);
10704 return libbpf_err_ptr(err);
10705 }
10706
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)10707 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10708 bool retprobe,
10709 const char *func_name)
10710 {
10711 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10712 .retprobe = retprobe,
10713 );
10714
10715 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10716 }
10717
10718 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)10719 static bool glob_match(const char *str, const char *pat)
10720 {
10721 while (*str && *pat && *pat != '*') {
10722 if (*pat == '?') { /* Matches any single character */
10723 str++;
10724 pat++;
10725 continue;
10726 }
10727 if (*str != *pat)
10728 return false;
10729 str++;
10730 pat++;
10731 }
10732 /* Check wild card */
10733 if (*pat == '*') {
10734 while (*pat == '*')
10735 pat++;
10736 if (!*pat) /* Tail wild card matches all */
10737 return true;
10738 while (*str)
10739 if (glob_match(str++, pat))
10740 return true;
10741 }
10742 return !*str && !*pat;
10743 }
10744
10745 struct kprobe_multi_resolve {
10746 const char *pattern;
10747 unsigned long *addrs;
10748 size_t cap;
10749 size_t cnt;
10750 };
10751
10752 static int
resolve_kprobe_multi_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)10753 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10754 const char *sym_name, void *ctx)
10755 {
10756 struct kprobe_multi_resolve *res = ctx;
10757 int err;
10758
10759 if (!glob_match(sym_name, res->pattern))
10760 return 0;
10761
10762 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10763 res->cnt + 1);
10764 if (err)
10765 return err;
10766
10767 res->addrs[res->cnt++] = (unsigned long) sym_addr;
10768 return 0;
10769 }
10770
10771 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)10772 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10773 const char *pattern,
10774 const struct bpf_kprobe_multi_opts *opts)
10775 {
10776 LIBBPF_OPTS(bpf_link_create_opts, lopts);
10777 struct kprobe_multi_resolve res = {
10778 .pattern = pattern,
10779 };
10780 struct bpf_link *link = NULL;
10781 char errmsg[STRERR_BUFSIZE];
10782 const unsigned long *addrs;
10783 int err, link_fd, prog_fd;
10784 const __u64 *cookies;
10785 const char **syms;
10786 bool retprobe;
10787 size_t cnt;
10788
10789 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10790 return libbpf_err_ptr(-EINVAL);
10791
10792 syms = OPTS_GET(opts, syms, false);
10793 addrs = OPTS_GET(opts, addrs, false);
10794 cnt = OPTS_GET(opts, cnt, false);
10795 cookies = OPTS_GET(opts, cookies, false);
10796
10797 if (!pattern && !addrs && !syms)
10798 return libbpf_err_ptr(-EINVAL);
10799 if (pattern && (addrs || syms || cookies || cnt))
10800 return libbpf_err_ptr(-EINVAL);
10801 if (!pattern && !cnt)
10802 return libbpf_err_ptr(-EINVAL);
10803 if (addrs && syms)
10804 return libbpf_err_ptr(-EINVAL);
10805
10806 if (pattern) {
10807 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10808 if (err)
10809 goto error;
10810 if (!res.cnt) {
10811 err = -ENOENT;
10812 goto error;
10813 }
10814 addrs = res.addrs;
10815 cnt = res.cnt;
10816 }
10817
10818 retprobe = OPTS_GET(opts, retprobe, false);
10819
10820 lopts.kprobe_multi.syms = syms;
10821 lopts.kprobe_multi.addrs = addrs;
10822 lopts.kprobe_multi.cookies = cookies;
10823 lopts.kprobe_multi.cnt = cnt;
10824 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10825
10826 link = calloc(1, sizeof(*link));
10827 if (!link) {
10828 err = -ENOMEM;
10829 goto error;
10830 }
10831 link->detach = &bpf_link__detach_fd;
10832
10833 prog_fd = bpf_program__fd(prog);
10834 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10835 if (link_fd < 0) {
10836 err = -errno;
10837 pr_warn("prog '%s': failed to attach: %s\n",
10838 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10839 goto error;
10840 }
10841 link->fd = link_fd;
10842 free(res.addrs);
10843 return link;
10844
10845 error:
10846 free(link);
10847 free(res.addrs);
10848 return libbpf_err_ptr(err);
10849 }
10850
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10851 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10852 {
10853 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10854 unsigned long offset = 0;
10855 const char *func_name;
10856 char *func;
10857 int n;
10858
10859 *link = NULL;
10860
10861 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10862 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10863 return 0;
10864
10865 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10866 if (opts.retprobe)
10867 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10868 else
10869 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10870
10871 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10872 if (n < 1) {
10873 pr_warn("kprobe name is invalid: %s\n", func_name);
10874 return -EINVAL;
10875 }
10876 if (opts.retprobe && offset != 0) {
10877 free(func);
10878 pr_warn("kretprobes do not support offset specification\n");
10879 return -EINVAL;
10880 }
10881
10882 opts.offset = offset;
10883 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10884 free(func);
10885 return libbpf_get_error(*link);
10886 }
10887
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10888 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10889 {
10890 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10891 const char *spec;
10892 char *pattern;
10893 int n;
10894
10895 *link = NULL;
10896
10897 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10898 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10899 strcmp(prog->sec_name, "kretprobe.multi") == 0)
10900 return 0;
10901
10902 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10903 if (opts.retprobe)
10904 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10905 else
10906 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10907
10908 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10909 if (n < 1) {
10910 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10911 return -EINVAL;
10912 }
10913
10914 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10915 free(pattern);
10916 return libbpf_get_error(*link);
10917 }
10918
gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)10919 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10920 const char *binary_path, uint64_t offset)
10921 {
10922 int i;
10923
10924 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10925
10926 /* sanitize binary_path in the probe name */
10927 for (i = 0; buf[i]; i++) {
10928 if (!isalnum(buf[i]))
10929 buf[i] = '_';
10930 }
10931 }
10932
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)10933 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10934 const char *binary_path, size_t offset)
10935 {
10936 const char *file = "/sys/kernel/debug/tracing/uprobe_events";
10937
10938 return append_to_file(file, "%c:%s/%s %s:0x%zx",
10939 retprobe ? 'r' : 'p',
10940 retprobe ? "uretprobes" : "uprobes",
10941 probe_name, binary_path, offset);
10942 }
10943
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)10944 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10945 {
10946 const char *file = "/sys/kernel/debug/tracing/uprobe_events";
10947
10948 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name);
10949 }
10950
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)10951 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10952 {
10953 char file[512];
10954
10955 snprintf(file, sizeof(file),
10956 "/sys/kernel/debug/tracing/events/%s/%s/id",
10957 retprobe ? "uretprobes" : "uprobes", probe_name);
10958
10959 return parse_uint_from_file(file, "%d\n");
10960 }
10961
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)10962 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10963 const char *binary_path, size_t offset, int pid)
10964 {
10965 struct perf_event_attr attr;
10966 int type, pfd, err;
10967
10968 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10969 if (err < 0) {
10970 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10971 binary_path, (size_t)offset, err);
10972 return err;
10973 }
10974 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10975 if (type < 0) {
10976 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10977 binary_path, offset, err);
10978 return type;
10979 }
10980
10981 memset(&attr, 0, sizeof(attr));
10982 attr.size = sizeof(attr);
10983 attr.config = type;
10984 attr.type = PERF_TYPE_TRACEPOINT;
10985
10986 pfd = syscall(__NR_perf_event_open, &attr,
10987 pid < 0 ? -1 : pid, /* pid */
10988 pid == -1 ? 0 : -1, /* cpu */
10989 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10990 if (pfd < 0) {
10991 err = -errno;
10992 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10993 return err;
10994 }
10995 return pfd;
10996 }
10997
10998 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
elf_find_next_scn_by_type(Elf * elf,int sh_type,Elf_Scn * scn)10999 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
11000 {
11001 while ((scn = elf_nextscn(elf, scn)) != NULL) {
11002 GElf_Shdr sh;
11003
11004 if (!gelf_getshdr(scn, &sh))
11005 continue;
11006 if (sh.sh_type == sh_type)
11007 return scn;
11008 }
11009 return NULL;
11010 }
11011
11012 /* Find offset of function name in object specified by path. "name" matches
11013 * symbol name or name@@LIB for library functions.
11014 */
elf_find_func_offset(const char * binary_path,const char * name)11015 static long elf_find_func_offset(const char *binary_path, const char *name)
11016 {
11017 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
11018 bool is_shared_lib, is_name_qualified;
11019 char errmsg[STRERR_BUFSIZE];
11020 long ret = -ENOENT;
11021 size_t name_len;
11022 GElf_Ehdr ehdr;
11023 Elf *elf;
11024
11025 fd = open(binary_path, O_RDONLY | O_CLOEXEC);
11026 if (fd < 0) {
11027 ret = -errno;
11028 pr_warn("failed to open %s: %s\n", binary_path,
11029 libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
11030 return ret;
11031 }
11032 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
11033 if (!elf) {
11034 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
11035 close(fd);
11036 return -LIBBPF_ERRNO__FORMAT;
11037 }
11038 if (!gelf_getehdr(elf, &ehdr)) {
11039 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
11040 ret = -LIBBPF_ERRNO__FORMAT;
11041 goto out;
11042 }
11043 /* for shared lib case, we do not need to calculate relative offset */
11044 is_shared_lib = ehdr.e_type == ET_DYN;
11045
11046 name_len = strlen(name);
11047 /* Does name specify "@@LIB"? */
11048 is_name_qualified = strstr(name, "@@") != NULL;
11049
11050 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if
11051 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
11052 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
11053 * reported as a warning/error.
11054 */
11055 for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
11056 size_t nr_syms, strtabidx, idx;
11057 Elf_Data *symbols = NULL;
11058 Elf_Scn *scn = NULL;
11059 int last_bind = -1;
11060 const char *sname;
11061 GElf_Shdr sh;
11062
11063 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
11064 if (!scn) {
11065 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
11066 binary_path);
11067 continue;
11068 }
11069 if (!gelf_getshdr(scn, &sh))
11070 continue;
11071 strtabidx = sh.sh_link;
11072 symbols = elf_getdata(scn, 0);
11073 if (!symbols) {
11074 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
11075 binary_path, elf_errmsg(-1));
11076 ret = -LIBBPF_ERRNO__FORMAT;
11077 goto out;
11078 }
11079 nr_syms = symbols->d_size / sh.sh_entsize;
11080
11081 for (idx = 0; idx < nr_syms; idx++) {
11082 int curr_bind;
11083 GElf_Sym sym;
11084 Elf_Scn *sym_scn;
11085 GElf_Shdr sym_sh;
11086
11087 if (!gelf_getsym(symbols, idx, &sym))
11088 continue;
11089
11090 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
11091 continue;
11092
11093 sname = elf_strptr(elf, strtabidx, sym.st_name);
11094 if (!sname)
11095 continue;
11096
11097 curr_bind = GELF_ST_BIND(sym.st_info);
11098
11099 /* User can specify func, func@@LIB or func@@LIB_VERSION. */
11100 if (strncmp(sname, name, name_len) != 0)
11101 continue;
11102 /* ...but we don't want a search for "foo" to match 'foo2" also, so any
11103 * additional characters in sname should be of the form "@@LIB".
11104 */
11105 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
11106 continue;
11107
11108 if (ret >= 0) {
11109 /* handle multiple matches */
11110 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
11111 /* Only accept one non-weak bind. */
11112 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
11113 sname, name, binary_path);
11114 ret = -LIBBPF_ERRNO__FORMAT;
11115 goto out;
11116 } else if (curr_bind == STB_WEAK) {
11117 /* already have a non-weak bind, and
11118 * this is a weak bind, so ignore.
11119 */
11120 continue;
11121 }
11122 }
11123
11124 /* Transform symbol's virtual address (absolute for
11125 * binaries and relative for shared libs) into file
11126 * offset, which is what kernel is expecting for
11127 * uprobe/uretprobe attachment.
11128 * See Documentation/trace/uprobetracer.rst for more
11129 * details.
11130 * This is done by looking up symbol's containing
11131 * section's header and using it's virtual address
11132 * (sh_addr) and corresponding file offset (sh_offset)
11133 * to transform sym.st_value (virtual address) into
11134 * desired final file offset.
11135 */
11136 sym_scn = elf_getscn(elf, sym.st_shndx);
11137 if (!sym_scn)
11138 continue;
11139 if (!gelf_getshdr(sym_scn, &sym_sh))
11140 continue;
11141
11142 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
11143 last_bind = curr_bind;
11144 }
11145 if (ret > 0)
11146 break;
11147 }
11148
11149 if (ret > 0) {
11150 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
11151 ret);
11152 } else {
11153 if (ret == 0) {
11154 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
11155 is_shared_lib ? "should not be 0 in a shared library" :
11156 "try using shared library path instead");
11157 ret = -ENOENT;
11158 } else {
11159 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
11160 }
11161 }
11162 out:
11163 elf_end(elf);
11164 close(fd);
11165 return ret;
11166 }
11167
arch_specific_lib_paths(void)11168 static const char *arch_specific_lib_paths(void)
11169 {
11170 /*
11171 * Based on https://packages.debian.org/sid/libc6.
11172 *
11173 * Assume that the traced program is built for the same architecture
11174 * as libbpf, which should cover the vast majority of cases.
11175 */
11176 #if defined(__x86_64__)
11177 return "/lib/x86_64-linux-gnu";
11178 #elif defined(__i386__)
11179 return "/lib/i386-linux-gnu";
11180 #elif defined(__s390x__)
11181 return "/lib/s390x-linux-gnu";
11182 #elif defined(__s390__)
11183 return "/lib/s390-linux-gnu";
11184 #elif defined(__arm__) && defined(__SOFTFP__)
11185 return "/lib/arm-linux-gnueabi";
11186 #elif defined(__arm__) && !defined(__SOFTFP__)
11187 return "/lib/arm-linux-gnueabihf";
11188 #elif defined(__aarch64__)
11189 return "/lib/aarch64-linux-gnu";
11190 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11191 return "/lib/mips64el-linux-gnuabi64";
11192 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11193 return "/lib/mipsel-linux-gnu";
11194 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11195 return "/lib/powerpc64le-linux-gnu";
11196 #elif defined(__sparc__) && defined(__arch64__)
11197 return "/lib/sparc64-linux-gnu";
11198 #elif defined(__riscv) && __riscv_xlen == 64
11199 return "/lib/riscv64-linux-gnu";
11200 #else
11201 return NULL;
11202 #endif
11203 }
11204
11205 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)11206 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11207 {
11208 const char *search_paths[3] = {};
11209 int i;
11210
11211 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11212 search_paths[0] = getenv("LD_LIBRARY_PATH");
11213 search_paths[1] = "/usr/lib64:/usr/lib";
11214 search_paths[2] = arch_specific_lib_paths();
11215 } else {
11216 search_paths[0] = getenv("PATH");
11217 search_paths[1] = "/usr/bin:/usr/sbin";
11218 }
11219
11220 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11221 const char *s;
11222
11223 if (!search_paths[i])
11224 continue;
11225 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11226 char *next_path;
11227 int seg_len;
11228
11229 if (s[0] == ':')
11230 s++;
11231 next_path = strchr(s, ':');
11232 seg_len = next_path ? next_path - s : strlen(s);
11233 if (!seg_len)
11234 continue;
11235 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11236 /* ensure it is an executable file/link */
11237 if (access(result, R_OK | X_OK) < 0)
11238 continue;
11239 pr_debug("resolved '%s' to '%s'\n", file, result);
11240 return 0;
11241 }
11242 }
11243 return -ENOENT;
11244 }
11245
11246 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)11247 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11248 const char *binary_path, size_t func_offset,
11249 const struct bpf_uprobe_opts *opts)
11250 {
11251 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11252 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11253 char full_binary_path[PATH_MAX];
11254 struct bpf_link *link;
11255 size_t ref_ctr_off;
11256 int pfd, err;
11257 bool retprobe, legacy;
11258 const char *func_name;
11259
11260 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11261 return libbpf_err_ptr(-EINVAL);
11262
11263 retprobe = OPTS_GET(opts, retprobe, false);
11264 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11265 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11266
11267 if (binary_path && !strchr(binary_path, '/')) {
11268 err = resolve_full_path(binary_path, full_binary_path,
11269 sizeof(full_binary_path));
11270 if (err) {
11271 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11272 prog->name, binary_path, err);
11273 return libbpf_err_ptr(err);
11274 }
11275 binary_path = full_binary_path;
11276 }
11277 func_name = OPTS_GET(opts, func_name, NULL);
11278 if (func_name) {
11279 long sym_off;
11280
11281 if (!binary_path) {
11282 pr_warn("prog '%s': name-based attach requires binary_path\n",
11283 prog->name);
11284 return libbpf_err_ptr(-EINVAL);
11285 }
11286 sym_off = elf_find_func_offset(binary_path, func_name);
11287 if (sym_off < 0)
11288 return libbpf_err_ptr(sym_off);
11289 func_offset += sym_off;
11290 }
11291
11292 legacy = determine_uprobe_perf_type() < 0;
11293 if (!legacy) {
11294 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11295 func_offset, pid, ref_ctr_off);
11296 } else {
11297 char probe_name[PATH_MAX + 64];
11298
11299 if (ref_ctr_off)
11300 return libbpf_err_ptr(-EINVAL);
11301
11302 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11303 binary_path, func_offset);
11304
11305 legacy_probe = strdup(probe_name);
11306 if (!legacy_probe)
11307 return libbpf_err_ptr(-ENOMEM);
11308
11309 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11310 binary_path, func_offset, pid);
11311 }
11312 if (pfd < 0) {
11313 err = -errno;
11314 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11315 prog->name, retprobe ? "uretprobe" : "uprobe",
11316 binary_path, func_offset,
11317 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11318 goto err_out;
11319 }
11320
11321 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11322 err = libbpf_get_error(link);
11323 if (err) {
11324 close(pfd);
11325 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11326 prog->name, retprobe ? "uretprobe" : "uprobe",
11327 binary_path, func_offset,
11328 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11329 goto err_out;
11330 }
11331 if (legacy) {
11332 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11333
11334 perf_link->legacy_probe_name = legacy_probe;
11335 perf_link->legacy_is_kprobe = false;
11336 perf_link->legacy_is_retprobe = retprobe;
11337 }
11338 return link;
11339 err_out:
11340 free(legacy_probe);
11341 return libbpf_err_ptr(err);
11342
11343 }
11344
11345 /* Format of u[ret]probe section definition supporting auto-attach:
11346 * u[ret]probe/binary:function[+offset]
11347 *
11348 * binary can be an absolute/relative path or a filename; the latter is resolved to a
11349 * full binary path via bpf_program__attach_uprobe_opts.
11350 *
11351 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11352 * specified (and auto-attach is not possible) or the above format is specified for
11353 * auto-attach.
11354 */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11355 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11356 {
11357 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11358 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11359 int n, ret = -EINVAL;
11360 long offset = 0;
11361
11362 *link = NULL;
11363
11364 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
11365 &probe_type, &binary_path, &func_name, &offset);
11366 switch (n) {
11367 case 1:
11368 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11369 ret = 0;
11370 break;
11371 case 2:
11372 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11373 prog->name, prog->sec_name);
11374 break;
11375 case 3:
11376 case 4:
11377 opts.retprobe = strcmp(probe_type, "uretprobe") == 0;
11378 if (opts.retprobe && offset != 0) {
11379 pr_warn("prog '%s': uretprobes do not support offset specification\n",
11380 prog->name);
11381 break;
11382 }
11383 opts.func_name = func_name;
11384 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11385 ret = libbpf_get_error(*link);
11386 break;
11387 default:
11388 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11389 prog->sec_name);
11390 break;
11391 }
11392 free(probe_type);
11393 free(binary_path);
11394 free(func_name);
11395
11396 return ret;
11397 }
11398
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)11399 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11400 bool retprobe, pid_t pid,
11401 const char *binary_path,
11402 size_t func_offset)
11403 {
11404 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11405
11406 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11407 }
11408
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)11409 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11410 pid_t pid, const char *binary_path,
11411 const char *usdt_provider, const char *usdt_name,
11412 const struct bpf_usdt_opts *opts)
11413 {
11414 char resolved_path[512];
11415 struct bpf_object *obj = prog->obj;
11416 struct bpf_link *link;
11417 __u64 usdt_cookie;
11418 int err;
11419
11420 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11421 return libbpf_err_ptr(-EINVAL);
11422
11423 if (bpf_program__fd(prog) < 0) {
11424 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11425 prog->name);
11426 return libbpf_err_ptr(-EINVAL);
11427 }
11428
11429 if (!strchr(binary_path, '/')) {
11430 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11431 if (err) {
11432 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11433 prog->name, binary_path, err);
11434 return libbpf_err_ptr(err);
11435 }
11436 binary_path = resolved_path;
11437 }
11438
11439 /* USDT manager is instantiated lazily on first USDT attach. It will
11440 * be destroyed together with BPF object in bpf_object__close().
11441 */
11442 if (IS_ERR(obj->usdt_man))
11443 return libbpf_ptr(obj->usdt_man);
11444 if (!obj->usdt_man) {
11445 obj->usdt_man = usdt_manager_new(obj);
11446 if (IS_ERR(obj->usdt_man))
11447 return libbpf_ptr(obj->usdt_man);
11448 }
11449
11450 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11451 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11452 usdt_provider, usdt_name, usdt_cookie);
11453 err = libbpf_get_error(link);
11454 if (err)
11455 return libbpf_err_ptr(err);
11456 return link;
11457 }
11458
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11459 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11460 {
11461 char *path = NULL, *provider = NULL, *name = NULL;
11462 const char *sec_name;
11463 int n, err;
11464
11465 sec_name = bpf_program__section_name(prog);
11466 if (strcmp(sec_name, "usdt") == 0) {
11467 /* no auto-attach for just SEC("usdt") */
11468 *link = NULL;
11469 return 0;
11470 }
11471
11472 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11473 if (n != 3) {
11474 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11475 sec_name);
11476 err = -EINVAL;
11477 } else {
11478 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11479 provider, name, NULL);
11480 err = libbpf_get_error(*link);
11481 }
11482 free(path);
11483 free(provider);
11484 free(name);
11485 return err;
11486 }
11487
determine_tracepoint_id(const char * tp_category,const char * tp_name)11488 static int determine_tracepoint_id(const char *tp_category,
11489 const char *tp_name)
11490 {
11491 char file[PATH_MAX];
11492 int ret;
11493
11494 ret = snprintf(file, sizeof(file),
11495 "/sys/kernel/debug/tracing/events/%s/%s/id",
11496 tp_category, tp_name);
11497 if (ret < 0)
11498 return -errno;
11499 if (ret >= sizeof(file)) {
11500 pr_debug("tracepoint %s/%s path is too long\n",
11501 tp_category, tp_name);
11502 return -E2BIG;
11503 }
11504 return parse_uint_from_file(file, "%d\n");
11505 }
11506
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)11507 static int perf_event_open_tracepoint(const char *tp_category,
11508 const char *tp_name)
11509 {
11510 struct perf_event_attr attr = {};
11511 char errmsg[STRERR_BUFSIZE];
11512 int tp_id, pfd, err;
11513
11514 tp_id = determine_tracepoint_id(tp_category, tp_name);
11515 if (tp_id < 0) {
11516 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11517 tp_category, tp_name,
11518 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11519 return tp_id;
11520 }
11521
11522 attr.type = PERF_TYPE_TRACEPOINT;
11523 attr.size = sizeof(attr);
11524 attr.config = tp_id;
11525
11526 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11527 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11528 if (pfd < 0) {
11529 err = -errno;
11530 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11531 tp_category, tp_name,
11532 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11533 return err;
11534 }
11535 return pfd;
11536 }
11537
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)11538 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11539 const char *tp_category,
11540 const char *tp_name,
11541 const struct bpf_tracepoint_opts *opts)
11542 {
11543 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11544 char errmsg[STRERR_BUFSIZE];
11545 struct bpf_link *link;
11546 int pfd, err;
11547
11548 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11549 return libbpf_err_ptr(-EINVAL);
11550
11551 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11552
11553 pfd = perf_event_open_tracepoint(tp_category, tp_name);
11554 if (pfd < 0) {
11555 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11556 prog->name, tp_category, tp_name,
11557 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11558 return libbpf_err_ptr(pfd);
11559 }
11560 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11561 err = libbpf_get_error(link);
11562 if (err) {
11563 close(pfd);
11564 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11565 prog->name, tp_category, tp_name,
11566 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11567 return libbpf_err_ptr(err);
11568 }
11569 return link;
11570 }
11571
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)11572 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11573 const char *tp_category,
11574 const char *tp_name)
11575 {
11576 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11577 }
11578
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11579 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11580 {
11581 char *sec_name, *tp_cat, *tp_name;
11582
11583 *link = NULL;
11584
11585 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
11586 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11587 return 0;
11588
11589 sec_name = strdup(prog->sec_name);
11590 if (!sec_name)
11591 return -ENOMEM;
11592
11593 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11594 if (str_has_pfx(prog->sec_name, "tp/"))
11595 tp_cat = sec_name + sizeof("tp/") - 1;
11596 else
11597 tp_cat = sec_name + sizeof("tracepoint/") - 1;
11598 tp_name = strchr(tp_cat, '/');
11599 if (!tp_name) {
11600 free(sec_name);
11601 return -EINVAL;
11602 }
11603 *tp_name = '\0';
11604 tp_name++;
11605
11606 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11607 free(sec_name);
11608 return libbpf_get_error(*link);
11609 }
11610
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)11611 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11612 const char *tp_name)
11613 {
11614 char errmsg[STRERR_BUFSIZE];
11615 struct bpf_link *link;
11616 int prog_fd, pfd;
11617
11618 prog_fd = bpf_program__fd(prog);
11619 if (prog_fd < 0) {
11620 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11621 return libbpf_err_ptr(-EINVAL);
11622 }
11623
11624 link = calloc(1, sizeof(*link));
11625 if (!link)
11626 return libbpf_err_ptr(-ENOMEM);
11627 link->detach = &bpf_link__detach_fd;
11628
11629 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11630 if (pfd < 0) {
11631 pfd = -errno;
11632 free(link);
11633 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11634 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11635 return libbpf_err_ptr(pfd);
11636 }
11637 link->fd = pfd;
11638 return link;
11639 }
11640
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11641 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11642 {
11643 static const char *const prefixes[] = {
11644 "raw_tp",
11645 "raw_tracepoint",
11646 "raw_tp.w",
11647 "raw_tracepoint.w",
11648 };
11649 size_t i;
11650 const char *tp_name = NULL;
11651
11652 *link = NULL;
11653
11654 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11655 size_t pfx_len;
11656
11657 if (!str_has_pfx(prog->sec_name, prefixes[i]))
11658 continue;
11659
11660 pfx_len = strlen(prefixes[i]);
11661 /* no auto-attach case of, e.g., SEC("raw_tp") */
11662 if (prog->sec_name[pfx_len] == '\0')
11663 return 0;
11664
11665 if (prog->sec_name[pfx_len] != '/')
11666 continue;
11667
11668 tp_name = prog->sec_name + pfx_len + 1;
11669 break;
11670 }
11671
11672 if (!tp_name) {
11673 pr_warn("prog '%s': invalid section name '%s'\n",
11674 prog->name, prog->sec_name);
11675 return -EINVAL;
11676 }
11677
11678 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11679 return libbpf_get_error(link);
11680 }
11681
11682 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11683 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11684 const struct bpf_trace_opts *opts)
11685 {
11686 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11687 char errmsg[STRERR_BUFSIZE];
11688 struct bpf_link *link;
11689 int prog_fd, pfd;
11690
11691 if (!OPTS_VALID(opts, bpf_trace_opts))
11692 return libbpf_err_ptr(-EINVAL);
11693
11694 prog_fd = bpf_program__fd(prog);
11695 if (prog_fd < 0) {
11696 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11697 return libbpf_err_ptr(-EINVAL);
11698 }
11699
11700 link = calloc(1, sizeof(*link));
11701 if (!link)
11702 return libbpf_err_ptr(-ENOMEM);
11703 link->detach = &bpf_link__detach_fd;
11704
11705 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11706 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11707 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11708 if (pfd < 0) {
11709 pfd = -errno;
11710 free(link);
11711 pr_warn("prog '%s': failed to attach: %s\n",
11712 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11713 return libbpf_err_ptr(pfd);
11714 }
11715 link->fd = pfd;
11716 return link;
11717 }
11718
bpf_program__attach_trace(const struct bpf_program * prog)11719 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11720 {
11721 return bpf_program__attach_btf_id(prog, NULL);
11722 }
11723
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11724 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11725 const struct bpf_trace_opts *opts)
11726 {
11727 return bpf_program__attach_btf_id(prog, opts);
11728 }
11729
bpf_program__attach_lsm(const struct bpf_program * prog)11730 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11731 {
11732 return bpf_program__attach_btf_id(prog, NULL);
11733 }
11734
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11735 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11736 {
11737 *link = bpf_program__attach_trace(prog);
11738 return libbpf_get_error(*link);
11739 }
11740
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11741 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11742 {
11743 *link = bpf_program__attach_lsm(prog);
11744 return libbpf_get_error(*link);
11745 }
11746
11747 static struct bpf_link *
bpf_program__attach_fd(const struct bpf_program * prog,int target_fd,int btf_id,const char * target_name)11748 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11749 const char *target_name)
11750 {
11751 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11752 .target_btf_id = btf_id);
11753 enum bpf_attach_type attach_type;
11754 char errmsg[STRERR_BUFSIZE];
11755 struct bpf_link *link;
11756 int prog_fd, link_fd;
11757
11758 prog_fd = bpf_program__fd(prog);
11759 if (prog_fd < 0) {
11760 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11761 return libbpf_err_ptr(-EINVAL);
11762 }
11763
11764 link = calloc(1, sizeof(*link));
11765 if (!link)
11766 return libbpf_err_ptr(-ENOMEM);
11767 link->detach = &bpf_link__detach_fd;
11768
11769 attach_type = bpf_program__expected_attach_type(prog);
11770 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11771 if (link_fd < 0) {
11772 link_fd = -errno;
11773 free(link);
11774 pr_warn("prog '%s': failed to attach to %s: %s\n",
11775 prog->name, target_name,
11776 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11777 return libbpf_err_ptr(link_fd);
11778 }
11779 link->fd = link_fd;
11780 return link;
11781 }
11782
11783 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)11784 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11785 {
11786 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11787 }
11788
11789 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)11790 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11791 {
11792 return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11793 }
11794
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)11795 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11796 {
11797 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11798 return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11799 }
11800
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)11801 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11802 int target_fd,
11803 const char *attach_func_name)
11804 {
11805 int btf_id;
11806
11807 if (!!target_fd != !!attach_func_name) {
11808 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11809 prog->name);
11810 return libbpf_err_ptr(-EINVAL);
11811 }
11812
11813 if (prog->type != BPF_PROG_TYPE_EXT) {
11814 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11815 prog->name);
11816 return libbpf_err_ptr(-EINVAL);
11817 }
11818
11819 if (target_fd) {
11820 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11821 if (btf_id < 0)
11822 return libbpf_err_ptr(btf_id);
11823
11824 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11825 } else {
11826 /* no target, so use raw_tracepoint_open for compatibility
11827 * with old kernels
11828 */
11829 return bpf_program__attach_trace(prog);
11830 }
11831 }
11832
11833 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)11834 bpf_program__attach_iter(const struct bpf_program *prog,
11835 const struct bpf_iter_attach_opts *opts)
11836 {
11837 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11838 char errmsg[STRERR_BUFSIZE];
11839 struct bpf_link *link;
11840 int prog_fd, link_fd;
11841 __u32 target_fd = 0;
11842
11843 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11844 return libbpf_err_ptr(-EINVAL);
11845
11846 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11847 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11848
11849 prog_fd = bpf_program__fd(prog);
11850 if (prog_fd < 0) {
11851 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11852 return libbpf_err_ptr(-EINVAL);
11853 }
11854
11855 link = calloc(1, sizeof(*link));
11856 if (!link)
11857 return libbpf_err_ptr(-ENOMEM);
11858 link->detach = &bpf_link__detach_fd;
11859
11860 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11861 &link_create_opts);
11862 if (link_fd < 0) {
11863 link_fd = -errno;
11864 free(link);
11865 pr_warn("prog '%s': failed to attach to iterator: %s\n",
11866 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11867 return libbpf_err_ptr(link_fd);
11868 }
11869 link->fd = link_fd;
11870 return link;
11871 }
11872
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11873 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11874 {
11875 *link = bpf_program__attach_iter(prog, NULL);
11876 return libbpf_get_error(*link);
11877 }
11878
bpf_program__attach(const struct bpf_program * prog)11879 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11880 {
11881 struct bpf_link *link = NULL;
11882 int err;
11883
11884 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11885 return libbpf_err_ptr(-EOPNOTSUPP);
11886
11887 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11888 if (err)
11889 return libbpf_err_ptr(err);
11890
11891 /* When calling bpf_program__attach() explicitly, auto-attach support
11892 * is expected to work, so NULL returned link is considered an error.
11893 * This is different for skeleton's attach, see comment in
11894 * bpf_object__attach_skeleton().
11895 */
11896 if (!link)
11897 return libbpf_err_ptr(-EOPNOTSUPP);
11898
11899 return link;
11900 }
11901
bpf_link__detach_struct_ops(struct bpf_link * link)11902 static int bpf_link__detach_struct_ops(struct bpf_link *link)
11903 {
11904 __u32 zero = 0;
11905
11906 if (bpf_map_delete_elem(link->fd, &zero))
11907 return -errno;
11908
11909 return 0;
11910 }
11911
bpf_map__attach_struct_ops(const struct bpf_map * map)11912 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11913 {
11914 struct bpf_struct_ops *st_ops;
11915 struct bpf_link *link;
11916 __u32 i, zero = 0;
11917 int err;
11918
11919 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11920 return libbpf_err_ptr(-EINVAL);
11921
11922 link = calloc(1, sizeof(*link));
11923 if (!link)
11924 return libbpf_err_ptr(-EINVAL);
11925
11926 st_ops = map->st_ops;
11927 for (i = 0; i < btf_vlen(st_ops->type); i++) {
11928 struct bpf_program *prog = st_ops->progs[i];
11929 void *kern_data;
11930 int prog_fd;
11931
11932 if (!prog)
11933 continue;
11934
11935 prog_fd = bpf_program__fd(prog);
11936 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11937 *(unsigned long *)kern_data = prog_fd;
11938 }
11939
11940 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11941 if (err) {
11942 err = -errno;
11943 free(link);
11944 return libbpf_err_ptr(err);
11945 }
11946
11947 link->detach = bpf_link__detach_struct_ops;
11948 link->fd = map->fd;
11949
11950 return link;
11951 }
11952
11953 static enum bpf_perf_event_ret
perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)11954 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11955 void **copy_mem, size_t *copy_size,
11956 bpf_perf_event_print_t fn, void *private_data)
11957 {
11958 struct perf_event_mmap_page *header = mmap_mem;
11959 __u64 data_head = ring_buffer_read_head(header);
11960 __u64 data_tail = header->data_tail;
11961 void *base = ((__u8 *)header) + page_size;
11962 int ret = LIBBPF_PERF_EVENT_CONT;
11963 struct perf_event_header *ehdr;
11964 size_t ehdr_size;
11965
11966 while (data_head != data_tail) {
11967 ehdr = base + (data_tail & (mmap_size - 1));
11968 ehdr_size = ehdr->size;
11969
11970 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11971 void *copy_start = ehdr;
11972 size_t len_first = base + mmap_size - copy_start;
11973 size_t len_secnd = ehdr_size - len_first;
11974
11975 if (*copy_size < ehdr_size) {
11976 free(*copy_mem);
11977 *copy_mem = malloc(ehdr_size);
11978 if (!*copy_mem) {
11979 *copy_size = 0;
11980 ret = LIBBPF_PERF_EVENT_ERROR;
11981 break;
11982 }
11983 *copy_size = ehdr_size;
11984 }
11985
11986 memcpy(*copy_mem, copy_start, len_first);
11987 memcpy(*copy_mem + len_first, base, len_secnd);
11988 ehdr = *copy_mem;
11989 }
11990
11991 ret = fn(ehdr, private_data);
11992 data_tail += ehdr_size;
11993 if (ret != LIBBPF_PERF_EVENT_CONT)
11994 break;
11995 }
11996
11997 ring_buffer_write_tail(header, data_tail);
11998 return libbpf_err(ret);
11999 }
12000
12001 __attribute__((alias("perf_event_read_simple")))
12002 enum bpf_perf_event_ret
12003 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12004 void **copy_mem, size_t *copy_size,
12005 bpf_perf_event_print_t fn, void *private_data);
12006
12007 struct perf_buffer;
12008
12009 struct perf_buffer_params {
12010 struct perf_event_attr *attr;
12011 /* if event_cb is specified, it takes precendence */
12012 perf_buffer_event_fn event_cb;
12013 /* sample_cb and lost_cb are higher-level common-case callbacks */
12014 perf_buffer_sample_fn sample_cb;
12015 perf_buffer_lost_fn lost_cb;
12016 void *ctx;
12017 int cpu_cnt;
12018 int *cpus;
12019 int *map_keys;
12020 };
12021
12022 struct perf_cpu_buf {
12023 struct perf_buffer *pb;
12024 void *base; /* mmap()'ed memory */
12025 void *buf; /* for reconstructing segmented data */
12026 size_t buf_size;
12027 int fd;
12028 int cpu;
12029 int map_key;
12030 };
12031
12032 struct perf_buffer {
12033 perf_buffer_event_fn event_cb;
12034 perf_buffer_sample_fn sample_cb;
12035 perf_buffer_lost_fn lost_cb;
12036 void *ctx; /* passed into callbacks */
12037
12038 size_t page_size;
12039 size_t mmap_size;
12040 struct perf_cpu_buf **cpu_bufs;
12041 struct epoll_event *events;
12042 int cpu_cnt; /* number of allocated CPU buffers */
12043 int epoll_fd; /* perf event FD */
12044 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12045 };
12046
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12047 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12048 struct perf_cpu_buf *cpu_buf)
12049 {
12050 if (!cpu_buf)
12051 return;
12052 if (cpu_buf->base &&
12053 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12054 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12055 if (cpu_buf->fd >= 0) {
12056 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12057 close(cpu_buf->fd);
12058 }
12059 free(cpu_buf->buf);
12060 free(cpu_buf);
12061 }
12062
perf_buffer__free(struct perf_buffer * pb)12063 void perf_buffer__free(struct perf_buffer *pb)
12064 {
12065 int i;
12066
12067 if (IS_ERR_OR_NULL(pb))
12068 return;
12069 if (pb->cpu_bufs) {
12070 for (i = 0; i < pb->cpu_cnt; i++) {
12071 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12072
12073 if (!cpu_buf)
12074 continue;
12075
12076 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12077 perf_buffer__free_cpu_buf(pb, cpu_buf);
12078 }
12079 free(pb->cpu_bufs);
12080 }
12081 if (pb->epoll_fd >= 0)
12082 close(pb->epoll_fd);
12083 free(pb->events);
12084 free(pb);
12085 }
12086
12087 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)12088 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12089 int cpu, int map_key)
12090 {
12091 struct perf_cpu_buf *cpu_buf;
12092 char msg[STRERR_BUFSIZE];
12093 int err;
12094
12095 cpu_buf = calloc(1, sizeof(*cpu_buf));
12096 if (!cpu_buf)
12097 return ERR_PTR(-ENOMEM);
12098
12099 cpu_buf->pb = pb;
12100 cpu_buf->cpu = cpu;
12101 cpu_buf->map_key = map_key;
12102
12103 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12104 -1, PERF_FLAG_FD_CLOEXEC);
12105 if (cpu_buf->fd < 0) {
12106 err = -errno;
12107 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12108 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12109 goto error;
12110 }
12111
12112 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12113 PROT_READ | PROT_WRITE, MAP_SHARED,
12114 cpu_buf->fd, 0);
12115 if (cpu_buf->base == MAP_FAILED) {
12116 cpu_buf->base = NULL;
12117 err = -errno;
12118 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12119 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12120 goto error;
12121 }
12122
12123 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12124 err = -errno;
12125 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12126 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12127 goto error;
12128 }
12129
12130 return cpu_buf;
12131
12132 error:
12133 perf_buffer__free_cpu_buf(pb, cpu_buf);
12134 return (struct perf_cpu_buf *)ERR_PTR(err);
12135 }
12136
12137 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12138 struct perf_buffer_params *p);
12139
12140 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0)
perf_buffer__new_v0_6_0(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)12141 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt,
12142 perf_buffer_sample_fn sample_cb,
12143 perf_buffer_lost_fn lost_cb,
12144 void *ctx,
12145 const struct perf_buffer_opts *opts)
12146 {
12147 struct perf_buffer_params p = {};
12148 struct perf_event_attr attr = {};
12149
12150 if (!OPTS_VALID(opts, perf_buffer_opts))
12151 return libbpf_err_ptr(-EINVAL);
12152
12153 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12154 attr.type = PERF_TYPE_SOFTWARE;
12155 attr.sample_type = PERF_SAMPLE_RAW;
12156 attr.sample_period = 1;
12157 attr.wakeup_events = 1;
12158
12159 p.attr = &attr;
12160 p.sample_cb = sample_cb;
12161 p.lost_cb = lost_cb;
12162 p.ctx = ctx;
12163
12164 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12165 }
12166
12167 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4)
perf_buffer__new_deprecated(int map_fd,size_t page_cnt,const struct perf_buffer_opts * opts)12168 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt,
12169 const struct perf_buffer_opts *opts)
12170 {
12171 return perf_buffer__new_v0_6_0(map_fd, page_cnt,
12172 opts ? opts->sample_cb : NULL,
12173 opts ? opts->lost_cb : NULL,
12174 opts ? opts->ctx : NULL,
12175 NULL);
12176 }
12177
12178 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0)
perf_buffer__new_raw_v0_6_0(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)12179 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt,
12180 struct perf_event_attr *attr,
12181 perf_buffer_event_fn event_cb, void *ctx,
12182 const struct perf_buffer_raw_opts *opts)
12183 {
12184 struct perf_buffer_params p = {};
12185
12186 if (!attr)
12187 return libbpf_err_ptr(-EINVAL);
12188
12189 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12190 return libbpf_err_ptr(-EINVAL);
12191
12192 p.attr = attr;
12193 p.event_cb = event_cb;
12194 p.ctx = ctx;
12195 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12196 p.cpus = OPTS_GET(opts, cpus, NULL);
12197 p.map_keys = OPTS_GET(opts, map_keys, NULL);
12198
12199 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12200 }
12201
12202 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4)
perf_buffer__new_raw_deprecated(int map_fd,size_t page_cnt,const struct perf_buffer_raw_opts * opts)12203 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt,
12204 const struct perf_buffer_raw_opts *opts)
12205 {
12206 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts,
12207 .cpu_cnt = opts->cpu_cnt,
12208 .cpus = opts->cpus,
12209 .map_keys = opts->map_keys,
12210 );
12211
12212 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr,
12213 opts->event_cb, opts->ctx, &inner_opts);
12214 }
12215
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)12216 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12217 struct perf_buffer_params *p)
12218 {
12219 const char *online_cpus_file = "/sys/devices/system/cpu/online";
12220 struct bpf_map_info map;
12221 char msg[STRERR_BUFSIZE];
12222 struct perf_buffer *pb;
12223 bool *online = NULL;
12224 __u32 map_info_len;
12225 int err, i, j, n;
12226
12227 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12228 pr_warn("page count should be power of two, but is %zu\n",
12229 page_cnt);
12230 return ERR_PTR(-EINVAL);
12231 }
12232
12233 /* best-effort sanity checks */
12234 memset(&map, 0, sizeof(map));
12235 map_info_len = sizeof(map);
12236 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
12237 if (err) {
12238 err = -errno;
12239 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12240 * -EBADFD, -EFAULT, or -E2BIG on real error
12241 */
12242 if (err != -EINVAL) {
12243 pr_warn("failed to get map info for map FD %d: %s\n",
12244 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12245 return ERR_PTR(err);
12246 }
12247 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12248 map_fd);
12249 } else {
12250 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12251 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12252 map.name);
12253 return ERR_PTR(-EINVAL);
12254 }
12255 }
12256
12257 pb = calloc(1, sizeof(*pb));
12258 if (!pb)
12259 return ERR_PTR(-ENOMEM);
12260
12261 pb->event_cb = p->event_cb;
12262 pb->sample_cb = p->sample_cb;
12263 pb->lost_cb = p->lost_cb;
12264 pb->ctx = p->ctx;
12265
12266 pb->page_size = getpagesize();
12267 pb->mmap_size = pb->page_size * page_cnt;
12268 pb->map_fd = map_fd;
12269
12270 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12271 if (pb->epoll_fd < 0) {
12272 err = -errno;
12273 pr_warn("failed to create epoll instance: %s\n",
12274 libbpf_strerror_r(err, msg, sizeof(msg)));
12275 goto error;
12276 }
12277
12278 if (p->cpu_cnt > 0) {
12279 pb->cpu_cnt = p->cpu_cnt;
12280 } else {
12281 pb->cpu_cnt = libbpf_num_possible_cpus();
12282 if (pb->cpu_cnt < 0) {
12283 err = pb->cpu_cnt;
12284 goto error;
12285 }
12286 if (map.max_entries && map.max_entries < pb->cpu_cnt)
12287 pb->cpu_cnt = map.max_entries;
12288 }
12289
12290 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12291 if (!pb->events) {
12292 err = -ENOMEM;
12293 pr_warn("failed to allocate events: out of memory\n");
12294 goto error;
12295 }
12296 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12297 if (!pb->cpu_bufs) {
12298 err = -ENOMEM;
12299 pr_warn("failed to allocate buffers: out of memory\n");
12300 goto error;
12301 }
12302
12303 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12304 if (err) {
12305 pr_warn("failed to get online CPU mask: %d\n", err);
12306 goto error;
12307 }
12308
12309 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12310 struct perf_cpu_buf *cpu_buf;
12311 int cpu, map_key;
12312
12313 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12314 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12315
12316 /* in case user didn't explicitly requested particular CPUs to
12317 * be attached to, skip offline/not present CPUs
12318 */
12319 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12320 continue;
12321
12322 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12323 if (IS_ERR(cpu_buf)) {
12324 err = PTR_ERR(cpu_buf);
12325 goto error;
12326 }
12327
12328 pb->cpu_bufs[j] = cpu_buf;
12329
12330 err = bpf_map_update_elem(pb->map_fd, &map_key,
12331 &cpu_buf->fd, 0);
12332 if (err) {
12333 err = -errno;
12334 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12335 cpu, map_key, cpu_buf->fd,
12336 libbpf_strerror_r(err, msg, sizeof(msg)));
12337 goto error;
12338 }
12339
12340 pb->events[j].events = EPOLLIN;
12341 pb->events[j].data.ptr = cpu_buf;
12342 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12343 &pb->events[j]) < 0) {
12344 err = -errno;
12345 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12346 cpu, cpu_buf->fd,
12347 libbpf_strerror_r(err, msg, sizeof(msg)));
12348 goto error;
12349 }
12350 j++;
12351 }
12352 pb->cpu_cnt = j;
12353 free(online);
12354
12355 return pb;
12356
12357 error:
12358 free(online);
12359 if (pb)
12360 perf_buffer__free(pb);
12361 return ERR_PTR(err);
12362 }
12363
12364 struct perf_sample_raw {
12365 struct perf_event_header header;
12366 uint32_t size;
12367 char data[];
12368 };
12369
12370 struct perf_sample_lost {
12371 struct perf_event_header header;
12372 uint64_t id;
12373 uint64_t lost;
12374 uint64_t sample_id;
12375 };
12376
12377 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)12378 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12379 {
12380 struct perf_cpu_buf *cpu_buf = ctx;
12381 struct perf_buffer *pb = cpu_buf->pb;
12382 void *data = e;
12383
12384 /* user wants full control over parsing perf event */
12385 if (pb->event_cb)
12386 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12387
12388 switch (e->type) {
12389 case PERF_RECORD_SAMPLE: {
12390 struct perf_sample_raw *s = data;
12391
12392 if (pb->sample_cb)
12393 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12394 break;
12395 }
12396 case PERF_RECORD_LOST: {
12397 struct perf_sample_lost *s = data;
12398
12399 if (pb->lost_cb)
12400 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12401 break;
12402 }
12403 default:
12404 pr_warn("unknown perf sample type %d\n", e->type);
12405 return LIBBPF_PERF_EVENT_ERROR;
12406 }
12407 return LIBBPF_PERF_EVENT_CONT;
12408 }
12409
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12410 static int perf_buffer__process_records(struct perf_buffer *pb,
12411 struct perf_cpu_buf *cpu_buf)
12412 {
12413 enum bpf_perf_event_ret ret;
12414
12415 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12416 pb->page_size, &cpu_buf->buf,
12417 &cpu_buf->buf_size,
12418 perf_buffer__process_record, cpu_buf);
12419 if (ret != LIBBPF_PERF_EVENT_CONT)
12420 return ret;
12421 return 0;
12422 }
12423
perf_buffer__epoll_fd(const struct perf_buffer * pb)12424 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12425 {
12426 return pb->epoll_fd;
12427 }
12428
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)12429 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12430 {
12431 int i, cnt, err;
12432
12433 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12434 if (cnt < 0)
12435 return -errno;
12436
12437 for (i = 0; i < cnt; i++) {
12438 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12439
12440 err = perf_buffer__process_records(pb, cpu_buf);
12441 if (err) {
12442 pr_warn("error while processing records: %d\n", err);
12443 return libbpf_err(err);
12444 }
12445 }
12446 return cnt;
12447 }
12448
12449 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12450 * manager.
12451 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)12452 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12453 {
12454 return pb->cpu_cnt;
12455 }
12456
12457 /*
12458 * Return perf_event FD of a ring buffer in *buf_idx* slot of
12459 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12460 * select()/poll()/epoll() Linux syscalls.
12461 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)12462 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12463 {
12464 struct perf_cpu_buf *cpu_buf;
12465
12466 if (buf_idx >= pb->cpu_cnt)
12467 return libbpf_err(-EINVAL);
12468
12469 cpu_buf = pb->cpu_bufs[buf_idx];
12470 if (!cpu_buf)
12471 return libbpf_err(-ENOENT);
12472
12473 return cpu_buf->fd;
12474 }
12475
12476 /*
12477 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12478 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12479 * consume, do nothing and return success.
12480 * Returns:
12481 * - 0 on success;
12482 * - <0 on failure.
12483 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)12484 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12485 {
12486 struct perf_cpu_buf *cpu_buf;
12487
12488 if (buf_idx >= pb->cpu_cnt)
12489 return libbpf_err(-EINVAL);
12490
12491 cpu_buf = pb->cpu_bufs[buf_idx];
12492 if (!cpu_buf)
12493 return libbpf_err(-ENOENT);
12494
12495 return perf_buffer__process_records(pb, cpu_buf);
12496 }
12497
perf_buffer__consume(struct perf_buffer * pb)12498 int perf_buffer__consume(struct perf_buffer *pb)
12499 {
12500 int i, err;
12501
12502 for (i = 0; i < pb->cpu_cnt; i++) {
12503 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12504
12505 if (!cpu_buf)
12506 continue;
12507
12508 err = perf_buffer__process_records(pb, cpu_buf);
12509 if (err) {
12510 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12511 return libbpf_err(err);
12512 }
12513 }
12514 return 0;
12515 }
12516
12517 struct bpf_prog_info_array_desc {
12518 int array_offset; /* e.g. offset of jited_prog_insns */
12519 int count_offset; /* e.g. offset of jited_prog_len */
12520 int size_offset; /* > 0: offset of rec size,
12521 * < 0: fix size of -size_offset
12522 */
12523 };
12524
12525 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
12526 [BPF_PROG_INFO_JITED_INSNS] = {
12527 offsetof(struct bpf_prog_info, jited_prog_insns),
12528 offsetof(struct bpf_prog_info, jited_prog_len),
12529 -1,
12530 },
12531 [BPF_PROG_INFO_XLATED_INSNS] = {
12532 offsetof(struct bpf_prog_info, xlated_prog_insns),
12533 offsetof(struct bpf_prog_info, xlated_prog_len),
12534 -1,
12535 },
12536 [BPF_PROG_INFO_MAP_IDS] = {
12537 offsetof(struct bpf_prog_info, map_ids),
12538 offsetof(struct bpf_prog_info, nr_map_ids),
12539 -(int)sizeof(__u32),
12540 },
12541 [BPF_PROG_INFO_JITED_KSYMS] = {
12542 offsetof(struct bpf_prog_info, jited_ksyms),
12543 offsetof(struct bpf_prog_info, nr_jited_ksyms),
12544 -(int)sizeof(__u64),
12545 },
12546 [BPF_PROG_INFO_JITED_FUNC_LENS] = {
12547 offsetof(struct bpf_prog_info, jited_func_lens),
12548 offsetof(struct bpf_prog_info, nr_jited_func_lens),
12549 -(int)sizeof(__u32),
12550 },
12551 [BPF_PROG_INFO_FUNC_INFO] = {
12552 offsetof(struct bpf_prog_info, func_info),
12553 offsetof(struct bpf_prog_info, nr_func_info),
12554 offsetof(struct bpf_prog_info, func_info_rec_size),
12555 },
12556 [BPF_PROG_INFO_LINE_INFO] = {
12557 offsetof(struct bpf_prog_info, line_info),
12558 offsetof(struct bpf_prog_info, nr_line_info),
12559 offsetof(struct bpf_prog_info, line_info_rec_size),
12560 },
12561 [BPF_PROG_INFO_JITED_LINE_INFO] = {
12562 offsetof(struct bpf_prog_info, jited_line_info),
12563 offsetof(struct bpf_prog_info, nr_jited_line_info),
12564 offsetof(struct bpf_prog_info, jited_line_info_rec_size),
12565 },
12566 [BPF_PROG_INFO_PROG_TAGS] = {
12567 offsetof(struct bpf_prog_info, prog_tags),
12568 offsetof(struct bpf_prog_info, nr_prog_tags),
12569 -(int)sizeof(__u8) * BPF_TAG_SIZE,
12570 },
12571
12572 };
12573
bpf_prog_info_read_offset_u32(struct bpf_prog_info * info,int offset)12574 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
12575 int offset)
12576 {
12577 __u32 *array = (__u32 *)info;
12578
12579 if (offset >= 0)
12580 return array[offset / sizeof(__u32)];
12581 return -(int)offset;
12582 }
12583
bpf_prog_info_read_offset_u64(struct bpf_prog_info * info,int offset)12584 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
12585 int offset)
12586 {
12587 __u64 *array = (__u64 *)info;
12588
12589 if (offset >= 0)
12590 return array[offset / sizeof(__u64)];
12591 return -(int)offset;
12592 }
12593
bpf_prog_info_set_offset_u32(struct bpf_prog_info * info,int offset,__u32 val)12594 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
12595 __u32 val)
12596 {
12597 __u32 *array = (__u32 *)info;
12598
12599 if (offset >= 0)
12600 array[offset / sizeof(__u32)] = val;
12601 }
12602
bpf_prog_info_set_offset_u64(struct bpf_prog_info * info,int offset,__u64 val)12603 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
12604 __u64 val)
12605 {
12606 __u64 *array = (__u64 *)info;
12607
12608 if (offset >= 0)
12609 array[offset / sizeof(__u64)] = val;
12610 }
12611
12612 struct bpf_prog_info_linear *
bpf_program__get_prog_info_linear(int fd,__u64 arrays)12613 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
12614 {
12615 struct bpf_prog_info_linear *info_linear;
12616 struct bpf_prog_info info = {};
12617 __u32 info_len = sizeof(info);
12618 __u32 data_len = 0;
12619 int i, err;
12620 void *ptr;
12621
12622 if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
12623 return libbpf_err_ptr(-EINVAL);
12624
12625 /* step 1: get array dimensions */
12626 err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
12627 if (err) {
12628 pr_debug("can't get prog info: %s", strerror(errno));
12629 return libbpf_err_ptr(-EFAULT);
12630 }
12631
12632 /* step 2: calculate total size of all arrays */
12633 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
12634 bool include_array = (arrays & (1UL << i)) > 0;
12635 struct bpf_prog_info_array_desc *desc;
12636 __u32 count, size;
12637
12638 desc = bpf_prog_info_array_desc + i;
12639
12640 /* kernel is too old to support this field */
12641 if (info_len < desc->array_offset + sizeof(__u32) ||
12642 info_len < desc->count_offset + sizeof(__u32) ||
12643 (desc->size_offset > 0 && info_len < desc->size_offset))
12644 include_array = false;
12645
12646 if (!include_array) {
12647 arrays &= ~(1UL << i); /* clear the bit */
12648 continue;
12649 }
12650
12651 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
12652 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
12653
12654 data_len += count * size;
12655 }
12656
12657 /* step 3: allocate continuous memory */
12658 data_len = roundup(data_len, sizeof(__u64));
12659 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
12660 if (!info_linear)
12661 return libbpf_err_ptr(-ENOMEM);
12662
12663 /* step 4: fill data to info_linear->info */
12664 info_linear->arrays = arrays;
12665 memset(&info_linear->info, 0, sizeof(info));
12666 ptr = info_linear->data;
12667
12668 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
12669 struct bpf_prog_info_array_desc *desc;
12670 __u32 count, size;
12671
12672 if ((arrays & (1UL << i)) == 0)
12673 continue;
12674
12675 desc = bpf_prog_info_array_desc + i;
12676 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
12677 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
12678 bpf_prog_info_set_offset_u32(&info_linear->info,
12679 desc->count_offset, count);
12680 bpf_prog_info_set_offset_u32(&info_linear->info,
12681 desc->size_offset, size);
12682 bpf_prog_info_set_offset_u64(&info_linear->info,
12683 desc->array_offset,
12684 ptr_to_u64(ptr));
12685 ptr += count * size;
12686 }
12687
12688 /* step 5: call syscall again to get required arrays */
12689 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
12690 if (err) {
12691 pr_debug("can't get prog info: %s", strerror(errno));
12692 free(info_linear);
12693 return libbpf_err_ptr(-EFAULT);
12694 }
12695
12696 /* step 6: verify the data */
12697 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
12698 struct bpf_prog_info_array_desc *desc;
12699 __u32 v1, v2;
12700
12701 if ((arrays & (1UL << i)) == 0)
12702 continue;
12703
12704 desc = bpf_prog_info_array_desc + i;
12705 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
12706 v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
12707 desc->count_offset);
12708 if (v1 != v2)
12709 pr_warn("%s: mismatch in element count\n", __func__);
12710
12711 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
12712 v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
12713 desc->size_offset);
12714 if (v1 != v2)
12715 pr_warn("%s: mismatch in rec size\n", __func__);
12716 }
12717
12718 /* step 7: update info_len and data_len */
12719 info_linear->info_len = sizeof(struct bpf_prog_info);
12720 info_linear->data_len = data_len;
12721
12722 return info_linear;
12723 }
12724
bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear * info_linear)12725 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
12726 {
12727 int i;
12728
12729 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
12730 struct bpf_prog_info_array_desc *desc;
12731 __u64 addr, offs;
12732
12733 if ((info_linear->arrays & (1UL << i)) == 0)
12734 continue;
12735
12736 desc = bpf_prog_info_array_desc + i;
12737 addr = bpf_prog_info_read_offset_u64(&info_linear->info,
12738 desc->array_offset);
12739 offs = addr - ptr_to_u64(info_linear->data);
12740 bpf_prog_info_set_offset_u64(&info_linear->info,
12741 desc->array_offset, offs);
12742 }
12743 }
12744
bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear * info_linear)12745 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
12746 {
12747 int i;
12748
12749 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
12750 struct bpf_prog_info_array_desc *desc;
12751 __u64 addr, offs;
12752
12753 if ((info_linear->arrays & (1UL << i)) == 0)
12754 continue;
12755
12756 desc = bpf_prog_info_array_desc + i;
12757 offs = bpf_prog_info_read_offset_u64(&info_linear->info,
12758 desc->array_offset);
12759 addr = offs + ptr_to_u64(info_linear->data);
12760 bpf_prog_info_set_offset_u64(&info_linear->info,
12761 desc->array_offset, addr);
12762 }
12763 }
12764
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)12765 int bpf_program__set_attach_target(struct bpf_program *prog,
12766 int attach_prog_fd,
12767 const char *attach_func_name)
12768 {
12769 int btf_obj_fd = 0, btf_id = 0, err;
12770
12771 if (!prog || attach_prog_fd < 0)
12772 return libbpf_err(-EINVAL);
12773
12774 if (prog->obj->loaded)
12775 return libbpf_err(-EINVAL);
12776
12777 if (attach_prog_fd && !attach_func_name) {
12778 /* remember attach_prog_fd and let bpf_program__load() find
12779 * BTF ID during the program load
12780 */
12781 prog->attach_prog_fd = attach_prog_fd;
12782 return 0;
12783 }
12784
12785 if (attach_prog_fd) {
12786 btf_id = libbpf_find_prog_btf_id(attach_func_name,
12787 attach_prog_fd);
12788 if (btf_id < 0)
12789 return libbpf_err(btf_id);
12790 } else {
12791 if (!attach_func_name)
12792 return libbpf_err(-EINVAL);
12793
12794 /* load btf_vmlinux, if not yet */
12795 err = bpf_object__load_vmlinux_btf(prog->obj, true);
12796 if (err)
12797 return libbpf_err(err);
12798 err = find_kernel_btf_id(prog->obj, attach_func_name,
12799 prog->expected_attach_type,
12800 &btf_obj_fd, &btf_id);
12801 if (err)
12802 return libbpf_err(err);
12803 }
12804
12805 prog->attach_btf_id = btf_id;
12806 prog->attach_btf_obj_fd = btf_obj_fd;
12807 prog->attach_prog_fd = attach_prog_fd;
12808 return 0;
12809 }
12810
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)12811 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12812 {
12813 int err = 0, n, len, start, end = -1;
12814 bool *tmp;
12815
12816 *mask = NULL;
12817 *mask_sz = 0;
12818
12819 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12820 while (*s) {
12821 if (*s == ',' || *s == '\n') {
12822 s++;
12823 continue;
12824 }
12825 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12826 if (n <= 0 || n > 2) {
12827 pr_warn("Failed to get CPU range %s: %d\n", s, n);
12828 err = -EINVAL;
12829 goto cleanup;
12830 } else if (n == 1) {
12831 end = start;
12832 }
12833 if (start < 0 || start > end) {
12834 pr_warn("Invalid CPU range [%d,%d] in %s\n",
12835 start, end, s);
12836 err = -EINVAL;
12837 goto cleanup;
12838 }
12839 tmp = realloc(*mask, end + 1);
12840 if (!tmp) {
12841 err = -ENOMEM;
12842 goto cleanup;
12843 }
12844 *mask = tmp;
12845 memset(tmp + *mask_sz, 0, start - *mask_sz);
12846 memset(tmp + start, 1, end - start + 1);
12847 *mask_sz = end + 1;
12848 s += len;
12849 }
12850 if (!*mask_sz) {
12851 pr_warn("Empty CPU range\n");
12852 return -EINVAL;
12853 }
12854 return 0;
12855 cleanup:
12856 free(*mask);
12857 *mask = NULL;
12858 return err;
12859 }
12860
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)12861 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12862 {
12863 int fd, err = 0, len;
12864 char buf[128];
12865
12866 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12867 if (fd < 0) {
12868 err = -errno;
12869 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12870 return err;
12871 }
12872 len = read(fd, buf, sizeof(buf));
12873 close(fd);
12874 if (len <= 0) {
12875 err = len ? -errno : -EINVAL;
12876 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12877 return err;
12878 }
12879 if (len >= sizeof(buf)) {
12880 pr_warn("CPU mask is too big in file %s\n", fcpu);
12881 return -E2BIG;
12882 }
12883 buf[len] = '\0';
12884
12885 return parse_cpu_mask_str(buf, mask, mask_sz);
12886 }
12887
libbpf_num_possible_cpus(void)12888 int libbpf_num_possible_cpus(void)
12889 {
12890 static const char *fcpu = "/sys/devices/system/cpu/possible";
12891 static int cpus;
12892 int err, n, i, tmp_cpus;
12893 bool *mask;
12894
12895 tmp_cpus = READ_ONCE(cpus);
12896 if (tmp_cpus > 0)
12897 return tmp_cpus;
12898
12899 err = parse_cpu_mask_file(fcpu, &mask, &n);
12900 if (err)
12901 return libbpf_err(err);
12902
12903 tmp_cpus = 0;
12904 for (i = 0; i < n; i++) {
12905 if (mask[i])
12906 tmp_cpus++;
12907 }
12908 free(mask);
12909
12910 WRITE_ONCE(cpus, tmp_cpus);
12911 return tmp_cpus;
12912 }
12913
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt)12914 static int populate_skeleton_maps(const struct bpf_object *obj,
12915 struct bpf_map_skeleton *maps,
12916 size_t map_cnt)
12917 {
12918 int i;
12919
12920 for (i = 0; i < map_cnt; i++) {
12921 struct bpf_map **map = maps[i].map;
12922 const char *name = maps[i].name;
12923 void **mmaped = maps[i].mmaped;
12924
12925 *map = bpf_object__find_map_by_name(obj, name);
12926 if (!*map) {
12927 pr_warn("failed to find skeleton map '%s'\n", name);
12928 return -ESRCH;
12929 }
12930
12931 /* externs shouldn't be pre-setup from user code */
12932 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12933 *mmaped = (*map)->mmaped;
12934 }
12935 return 0;
12936 }
12937
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt)12938 static int populate_skeleton_progs(const struct bpf_object *obj,
12939 struct bpf_prog_skeleton *progs,
12940 size_t prog_cnt)
12941 {
12942 int i;
12943
12944 for (i = 0; i < prog_cnt; i++) {
12945 struct bpf_program **prog = progs[i].prog;
12946 const char *name = progs[i].name;
12947
12948 *prog = bpf_object__find_program_by_name(obj, name);
12949 if (!*prog) {
12950 pr_warn("failed to find skeleton program '%s'\n", name);
12951 return -ESRCH;
12952 }
12953 }
12954 return 0;
12955 }
12956
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)12957 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12958 const struct bpf_object_open_opts *opts)
12959 {
12960 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12961 .object_name = s->name,
12962 );
12963 struct bpf_object *obj;
12964 int err;
12965
12966 /* Attempt to preserve opts->object_name, unless overriden by user
12967 * explicitly. Overwriting object name for skeletons is discouraged,
12968 * as it breaks global data maps, because they contain object name
12969 * prefix as their own map name prefix. When skeleton is generated,
12970 * bpftool is making an assumption that this name will stay the same.
12971 */
12972 if (opts) {
12973 memcpy(&skel_opts, opts, sizeof(*opts));
12974 if (!opts->object_name)
12975 skel_opts.object_name = s->name;
12976 }
12977
12978 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12979 err = libbpf_get_error(obj);
12980 if (err) {
12981 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12982 s->name, err);
12983 return libbpf_err(err);
12984 }
12985
12986 *s->obj = obj;
12987 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12988 if (err) {
12989 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12990 return libbpf_err(err);
12991 }
12992
12993 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12994 if (err) {
12995 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12996 return libbpf_err(err);
12997 }
12998
12999 return 0;
13000 }
13001
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13002 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13003 {
13004 int err, len, var_idx, i;
13005 const char *var_name;
13006 const struct bpf_map *map;
13007 struct btf *btf;
13008 __u32 map_type_id;
13009 const struct btf_type *map_type, *var_type;
13010 const struct bpf_var_skeleton *var_skel;
13011 struct btf_var_secinfo *var;
13012
13013 if (!s->obj)
13014 return libbpf_err(-EINVAL);
13015
13016 btf = bpf_object__btf(s->obj);
13017 if (!btf) {
13018 pr_warn("subskeletons require BTF at runtime (object %s)\n",
13019 bpf_object__name(s->obj));
13020 return libbpf_err(-errno);
13021 }
13022
13023 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13024 if (err) {
13025 pr_warn("failed to populate subskeleton maps: %d\n", err);
13026 return libbpf_err(err);
13027 }
13028
13029 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13030 if (err) {
13031 pr_warn("failed to populate subskeleton maps: %d\n", err);
13032 return libbpf_err(err);
13033 }
13034
13035 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13036 var_skel = &s->vars[var_idx];
13037 map = *var_skel->map;
13038 map_type_id = bpf_map__btf_value_type_id(map);
13039 map_type = btf__type_by_id(btf, map_type_id);
13040
13041 if (!btf_is_datasec(map_type)) {
13042 pr_warn("type for map '%1$s' is not a datasec: %2$s",
13043 bpf_map__name(map),
13044 __btf_kind_str(btf_kind(map_type)));
13045 return libbpf_err(-EINVAL);
13046 }
13047
13048 len = btf_vlen(map_type);
13049 var = btf_var_secinfos(map_type);
13050 for (i = 0; i < len; i++, var++) {
13051 var_type = btf__type_by_id(btf, var->type);
13052 var_name = btf__name_by_offset(btf, var_type->name_off);
13053 if (strcmp(var_name, var_skel->name) == 0) {
13054 *var_skel->addr = map->mmaped + var->offset;
13055 break;
13056 }
13057 }
13058 }
13059 return 0;
13060 }
13061
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)13062 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13063 {
13064 if (!s)
13065 return;
13066 free(s->maps);
13067 free(s->progs);
13068 free(s->vars);
13069 free(s);
13070 }
13071
bpf_object__load_skeleton(struct bpf_object_skeleton * s)13072 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13073 {
13074 int i, err;
13075
13076 err = bpf_object__load(*s->obj);
13077 if (err) {
13078 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13079 return libbpf_err(err);
13080 }
13081
13082 for (i = 0; i < s->map_cnt; i++) {
13083 struct bpf_map *map = *s->maps[i].map;
13084 size_t mmap_sz = bpf_map_mmap_sz(map);
13085 int prot, map_fd = bpf_map__fd(map);
13086 void **mmaped = s->maps[i].mmaped;
13087
13088 if (!mmaped)
13089 continue;
13090
13091 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13092 *mmaped = NULL;
13093 continue;
13094 }
13095
13096 if (map->def.map_flags & BPF_F_RDONLY_PROG)
13097 prot = PROT_READ;
13098 else
13099 prot = PROT_READ | PROT_WRITE;
13100
13101 /* Remap anonymous mmap()-ed "map initialization image" as
13102 * a BPF map-backed mmap()-ed memory, but preserving the same
13103 * memory address. This will cause kernel to change process'
13104 * page table to point to a different piece of kernel memory,
13105 * but from userspace point of view memory address (and its
13106 * contents, being identical at this point) will stay the
13107 * same. This mapping will be released by bpf_object__close()
13108 * as per normal clean up procedure, so we don't need to worry
13109 * about it from skeleton's clean up perspective.
13110 */
13111 *mmaped = mmap(map->mmaped, mmap_sz, prot,
13112 MAP_SHARED | MAP_FIXED, map_fd, 0);
13113 if (*mmaped == MAP_FAILED) {
13114 err = -errno;
13115 *mmaped = NULL;
13116 pr_warn("failed to re-mmap() map '%s': %d\n",
13117 bpf_map__name(map), err);
13118 return libbpf_err(err);
13119 }
13120 }
13121
13122 return 0;
13123 }
13124
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)13125 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13126 {
13127 int i, err;
13128
13129 for (i = 0; i < s->prog_cnt; i++) {
13130 struct bpf_program *prog = *s->progs[i].prog;
13131 struct bpf_link **link = s->progs[i].link;
13132
13133 if (!prog->autoload)
13134 continue;
13135
13136 /* auto-attaching not supported for this program */
13137 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13138 continue;
13139
13140 /* if user already set the link manually, don't attempt auto-attach */
13141 if (*link)
13142 continue;
13143
13144 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13145 if (err) {
13146 pr_warn("prog '%s': failed to auto-attach: %d\n",
13147 bpf_program__name(prog), err);
13148 return libbpf_err(err);
13149 }
13150
13151 /* It's possible that for some SEC() definitions auto-attach
13152 * is supported in some cases (e.g., if definition completely
13153 * specifies target information), but is not in other cases.
13154 * SEC("uprobe") is one such case. If user specified target
13155 * binary and function name, such BPF program can be
13156 * auto-attached. But if not, it shouldn't trigger skeleton's
13157 * attach to fail. It should just be skipped.
13158 * attach_fn signals such case with returning 0 (no error) and
13159 * setting link to NULL.
13160 */
13161 }
13162
13163 return 0;
13164 }
13165
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)13166 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13167 {
13168 int i;
13169
13170 for (i = 0; i < s->prog_cnt; i++) {
13171 struct bpf_link **link = s->progs[i].link;
13172
13173 bpf_link__destroy(*link);
13174 *link = NULL;
13175 }
13176 }
13177
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)13178 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13179 {
13180 if (!s)
13181 return;
13182
13183 if (s->progs)
13184 bpf_object__detach_skeleton(s);
13185 if (s->obj)
13186 bpf_object__close(*s->obj);
13187 free(s->maps);
13188 free(s->progs);
13189 free(s);
13190 }
13191