1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 
38 #include <asm/barrier.h>
39 #include <asm/unaligned.h>
40 
41 /* Registers */
42 #define BPF_R0	regs[BPF_REG_0]
43 #define BPF_R1	regs[BPF_REG_1]
44 #define BPF_R2	regs[BPF_REG_2]
45 #define BPF_R3	regs[BPF_REG_3]
46 #define BPF_R4	regs[BPF_REG_4]
47 #define BPF_R5	regs[BPF_REG_5]
48 #define BPF_R6	regs[BPF_REG_6]
49 #define BPF_R7	regs[BPF_REG_7]
50 #define BPF_R8	regs[BPF_REG_8]
51 #define BPF_R9	regs[BPF_REG_9]
52 #define BPF_R10	regs[BPF_REG_10]
53 
54 /* Named registers */
55 #define DST	regs[insn->dst_reg]
56 #define SRC	regs[insn->src_reg]
57 #define FP	regs[BPF_REG_FP]
58 #define AX	regs[BPF_REG_AX]
59 #define ARG1	regs[BPF_REG_ARG1]
60 #define CTX	regs[BPF_REG_CTX]
61 #define IMM	insn->imm
62 
63 /* No hurry in this branch
64  *
65  * Exported for the bpf jit load helper.
66  */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)67 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
68 {
69 	u8 *ptr = NULL;
70 
71 	if (k >= SKF_NET_OFF) {
72 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
73 	} else if (k >= SKF_LL_OFF) {
74 		if (unlikely(!skb_mac_header_was_set(skb)))
75 			return NULL;
76 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
77 	}
78 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
79 		return ptr;
80 
81 	return NULL;
82 }
83 
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)84 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
85 {
86 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
87 	struct bpf_prog_aux *aux;
88 	struct bpf_prog *fp;
89 
90 	size = round_up(size, PAGE_SIZE);
91 	fp = __vmalloc(size, gfp_flags);
92 	if (fp == NULL)
93 		return NULL;
94 
95 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
96 	if (aux == NULL) {
97 		vfree(fp);
98 		return NULL;
99 	}
100 	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
101 	if (!fp->active) {
102 		vfree(fp);
103 		kfree(aux);
104 		return NULL;
105 	}
106 
107 	fp->pages = size / PAGE_SIZE;
108 	fp->aux = aux;
109 	fp->aux->prog = fp;
110 	fp->jit_requested = ebpf_jit_enabled();
111 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
112 
113 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
114 	mutex_init(&fp->aux->used_maps_mutex);
115 	mutex_init(&fp->aux->dst_mutex);
116 
117 	return fp;
118 }
119 
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)120 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
121 {
122 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
123 	struct bpf_prog *prog;
124 	int cpu;
125 
126 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
127 	if (!prog)
128 		return NULL;
129 
130 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
131 	if (!prog->stats) {
132 		free_percpu(prog->active);
133 		kfree(prog->aux);
134 		vfree(prog);
135 		return NULL;
136 	}
137 
138 	for_each_possible_cpu(cpu) {
139 		struct bpf_prog_stats *pstats;
140 
141 		pstats = per_cpu_ptr(prog->stats, cpu);
142 		u64_stats_init(&pstats->syncp);
143 	}
144 	return prog;
145 }
146 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
147 
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)148 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
149 {
150 	if (!prog->aux->nr_linfo || !prog->jit_requested)
151 		return 0;
152 
153 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
154 					  sizeof(*prog->aux->jited_linfo),
155 					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
156 	if (!prog->aux->jited_linfo)
157 		return -ENOMEM;
158 
159 	return 0;
160 }
161 
bpf_prog_jit_attempt_done(struct bpf_prog * prog)162 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
163 {
164 	if (prog->aux->jited_linfo &&
165 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
166 		kvfree(prog->aux->jited_linfo);
167 		prog->aux->jited_linfo = NULL;
168 	}
169 
170 	kfree(prog->aux->kfunc_tab);
171 	prog->aux->kfunc_tab = NULL;
172 }
173 
174 /* The jit engine is responsible to provide an array
175  * for insn_off to the jited_off mapping (insn_to_jit_off).
176  *
177  * The idx to this array is the insn_off.  Hence, the insn_off
178  * here is relative to the prog itself instead of the main prog.
179  * This array has one entry for each xlated bpf insn.
180  *
181  * jited_off is the byte off to the last byte of the jited insn.
182  *
183  * Hence, with
184  * insn_start:
185  *      The first bpf insn off of the prog.  The insn off
186  *      here is relative to the main prog.
187  *      e.g. if prog is a subprog, insn_start > 0
188  * linfo_idx:
189  *      The prog's idx to prog->aux->linfo and jited_linfo
190  *
191  * jited_linfo[linfo_idx] = prog->bpf_func
192  *
193  * For i > linfo_idx,
194  *
195  * jited_linfo[i] = prog->bpf_func +
196  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
197  */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)198 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
199 			       const u32 *insn_to_jit_off)
200 {
201 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
202 	const struct bpf_line_info *linfo;
203 	void **jited_linfo;
204 
205 	if (!prog->aux->jited_linfo)
206 		/* Userspace did not provide linfo */
207 		return;
208 
209 	linfo_idx = prog->aux->linfo_idx;
210 	linfo = &prog->aux->linfo[linfo_idx];
211 	insn_start = linfo[0].insn_off;
212 	insn_end = insn_start + prog->len;
213 
214 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
215 	jited_linfo[0] = prog->bpf_func;
216 
217 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
218 
219 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
220 		/* The verifier ensures that linfo[i].insn_off is
221 		 * strictly increasing
222 		 */
223 		jited_linfo[i] = prog->bpf_func +
224 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
225 }
226 
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)227 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
228 				  gfp_t gfp_extra_flags)
229 {
230 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
231 	struct bpf_prog *fp;
232 	u32 pages;
233 
234 	size = round_up(size, PAGE_SIZE);
235 	pages = size / PAGE_SIZE;
236 	if (pages <= fp_old->pages)
237 		return fp_old;
238 
239 	fp = __vmalloc(size, gfp_flags);
240 	if (fp) {
241 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
242 		fp->pages = pages;
243 		fp->aux->prog = fp;
244 
245 		/* We keep fp->aux from fp_old around in the new
246 		 * reallocated structure.
247 		 */
248 		fp_old->aux = NULL;
249 		fp_old->stats = NULL;
250 		fp_old->active = NULL;
251 		__bpf_prog_free(fp_old);
252 	}
253 
254 	return fp;
255 }
256 
__bpf_prog_free(struct bpf_prog * fp)257 void __bpf_prog_free(struct bpf_prog *fp)
258 {
259 	if (fp->aux) {
260 		mutex_destroy(&fp->aux->used_maps_mutex);
261 		mutex_destroy(&fp->aux->dst_mutex);
262 		kfree(fp->aux->poke_tab);
263 		kfree(fp->aux);
264 	}
265 	free_percpu(fp->stats);
266 	free_percpu(fp->active);
267 	vfree(fp);
268 }
269 
bpf_prog_calc_tag(struct bpf_prog * fp)270 int bpf_prog_calc_tag(struct bpf_prog *fp)
271 {
272 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
273 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
274 	u32 digest[SHA1_DIGEST_WORDS];
275 	u32 ws[SHA1_WORKSPACE_WORDS];
276 	u32 i, bsize, psize, blocks;
277 	struct bpf_insn *dst;
278 	bool was_ld_map;
279 	u8 *raw, *todo;
280 	__be32 *result;
281 	__be64 *bits;
282 
283 	raw = vmalloc(raw_size);
284 	if (!raw)
285 		return -ENOMEM;
286 
287 	sha1_init(digest);
288 	memset(ws, 0, sizeof(ws));
289 
290 	/* We need to take out the map fd for the digest calculation
291 	 * since they are unstable from user space side.
292 	 */
293 	dst = (void *)raw;
294 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
295 		dst[i] = fp->insnsi[i];
296 		if (!was_ld_map &&
297 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
298 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
299 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
300 			was_ld_map = true;
301 			dst[i].imm = 0;
302 		} else if (was_ld_map &&
303 			   dst[i].code == 0 &&
304 			   dst[i].dst_reg == 0 &&
305 			   dst[i].src_reg == 0 &&
306 			   dst[i].off == 0) {
307 			was_ld_map = false;
308 			dst[i].imm = 0;
309 		} else {
310 			was_ld_map = false;
311 		}
312 	}
313 
314 	psize = bpf_prog_insn_size(fp);
315 	memset(&raw[psize], 0, raw_size - psize);
316 	raw[psize++] = 0x80;
317 
318 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
319 	blocks = bsize / SHA1_BLOCK_SIZE;
320 	todo   = raw;
321 	if (bsize - psize >= sizeof(__be64)) {
322 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
323 	} else {
324 		bits = (__be64 *)(todo + bsize + bits_offset);
325 		blocks++;
326 	}
327 	*bits = cpu_to_be64((psize - 1) << 3);
328 
329 	while (blocks--) {
330 		sha1_transform(digest, todo, ws);
331 		todo += SHA1_BLOCK_SIZE;
332 	}
333 
334 	result = (__force __be32 *)digest;
335 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
336 		result[i] = cpu_to_be32(digest[i]);
337 	memcpy(fp->tag, result, sizeof(fp->tag));
338 
339 	vfree(raw);
340 	return 0;
341 }
342 
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)343 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
344 				s32 end_new, s32 curr, const bool probe_pass)
345 {
346 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
347 	s32 delta = end_new - end_old;
348 	s64 imm = insn->imm;
349 
350 	if (curr < pos && curr + imm + 1 >= end_old)
351 		imm += delta;
352 	else if (curr >= end_new && curr + imm + 1 < end_new)
353 		imm -= delta;
354 	if (imm < imm_min || imm > imm_max)
355 		return -ERANGE;
356 	if (!probe_pass)
357 		insn->imm = imm;
358 	return 0;
359 }
360 
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)361 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
362 				s32 end_new, s32 curr, const bool probe_pass)
363 {
364 	const s32 off_min = S16_MIN, off_max = S16_MAX;
365 	s32 delta = end_new - end_old;
366 	s32 off = insn->off;
367 
368 	if (curr < pos && curr + off + 1 >= end_old)
369 		off += delta;
370 	else if (curr >= end_new && curr + off + 1 < end_new)
371 		off -= delta;
372 	if (off < off_min || off > off_max)
373 		return -ERANGE;
374 	if (!probe_pass)
375 		insn->off = off;
376 	return 0;
377 }
378 
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)379 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
380 			    s32 end_new, const bool probe_pass)
381 {
382 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
383 	struct bpf_insn *insn = prog->insnsi;
384 	int ret = 0;
385 
386 	for (i = 0; i < insn_cnt; i++, insn++) {
387 		u8 code;
388 
389 		/* In the probing pass we still operate on the original,
390 		 * unpatched image in order to check overflows before we
391 		 * do any other adjustments. Therefore skip the patchlet.
392 		 */
393 		if (probe_pass && i == pos) {
394 			i = end_new;
395 			insn = prog->insnsi + end_old;
396 		}
397 		if (bpf_pseudo_func(insn)) {
398 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
399 						   end_new, i, probe_pass);
400 			if (ret)
401 				return ret;
402 			continue;
403 		}
404 		code = insn->code;
405 		if ((BPF_CLASS(code) != BPF_JMP &&
406 		     BPF_CLASS(code) != BPF_JMP32) ||
407 		    BPF_OP(code) == BPF_EXIT)
408 			continue;
409 		/* Adjust offset of jmps if we cross patch boundaries. */
410 		if (BPF_OP(code) == BPF_CALL) {
411 			if (insn->src_reg != BPF_PSEUDO_CALL)
412 				continue;
413 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
414 						   end_new, i, probe_pass);
415 		} else {
416 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
417 						   end_new, i, probe_pass);
418 		}
419 		if (ret)
420 			break;
421 	}
422 
423 	return ret;
424 }
425 
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)426 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
427 {
428 	struct bpf_line_info *linfo;
429 	u32 i, nr_linfo;
430 
431 	nr_linfo = prog->aux->nr_linfo;
432 	if (!nr_linfo || !delta)
433 		return;
434 
435 	linfo = prog->aux->linfo;
436 
437 	for (i = 0; i < nr_linfo; i++)
438 		if (off < linfo[i].insn_off)
439 			break;
440 
441 	/* Push all off < linfo[i].insn_off by delta */
442 	for (; i < nr_linfo; i++)
443 		linfo[i].insn_off += delta;
444 }
445 
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)446 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
447 				       const struct bpf_insn *patch, u32 len)
448 {
449 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
450 	const u32 cnt_max = S16_MAX;
451 	struct bpf_prog *prog_adj;
452 	int err;
453 
454 	/* Since our patchlet doesn't expand the image, we're done. */
455 	if (insn_delta == 0) {
456 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
457 		return prog;
458 	}
459 
460 	insn_adj_cnt = prog->len + insn_delta;
461 
462 	/* Reject anything that would potentially let the insn->off
463 	 * target overflow when we have excessive program expansions.
464 	 * We need to probe here before we do any reallocation where
465 	 * we afterwards may not fail anymore.
466 	 */
467 	if (insn_adj_cnt > cnt_max &&
468 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
469 		return ERR_PTR(err);
470 
471 	/* Several new instructions need to be inserted. Make room
472 	 * for them. Likely, there's no need for a new allocation as
473 	 * last page could have large enough tailroom.
474 	 */
475 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
476 				    GFP_USER);
477 	if (!prog_adj)
478 		return ERR_PTR(-ENOMEM);
479 
480 	prog_adj->len = insn_adj_cnt;
481 
482 	/* Patching happens in 3 steps:
483 	 *
484 	 * 1) Move over tail of insnsi from next instruction onwards,
485 	 *    so we can patch the single target insn with one or more
486 	 *    new ones (patching is always from 1 to n insns, n > 0).
487 	 * 2) Inject new instructions at the target location.
488 	 * 3) Adjust branch offsets if necessary.
489 	 */
490 	insn_rest = insn_adj_cnt - off - len;
491 
492 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
493 		sizeof(*patch) * insn_rest);
494 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
495 
496 	/* We are guaranteed to not fail at this point, otherwise
497 	 * the ship has sailed to reverse to the original state. An
498 	 * overflow cannot happen at this point.
499 	 */
500 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
501 
502 	bpf_adj_linfo(prog_adj, off, insn_delta);
503 
504 	return prog_adj;
505 }
506 
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)507 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
508 {
509 	/* Branch offsets can't overflow when program is shrinking, no need
510 	 * to call bpf_adj_branches(..., true) here
511 	 */
512 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
513 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
514 	prog->len -= cnt;
515 
516 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
517 }
518 
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)519 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
520 {
521 	int i;
522 
523 	for (i = 0; i < fp->aux->func_cnt; i++)
524 		bpf_prog_kallsyms_del(fp->aux->func[i]);
525 }
526 
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)527 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
528 {
529 	bpf_prog_kallsyms_del_subprogs(fp);
530 	bpf_prog_kallsyms_del(fp);
531 }
532 
533 #ifdef CONFIG_BPF_JIT
534 /* All BPF JIT sysctl knobs here. */
535 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
536 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
537 int bpf_jit_harden   __read_mostly;
538 long bpf_jit_limit   __read_mostly;
539 long bpf_jit_limit_max __read_mostly;
540 
541 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)542 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
543 {
544 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
545 
546 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
547 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
548 }
549 
550 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)551 bpf_prog_ksym_set_name(struct bpf_prog *prog)
552 {
553 	char *sym = prog->aux->ksym.name;
554 	const char *end = sym + KSYM_NAME_LEN;
555 	const struct btf_type *type;
556 	const char *func_name;
557 
558 	BUILD_BUG_ON(sizeof("bpf_prog_") +
559 		     sizeof(prog->tag) * 2 +
560 		     /* name has been null terminated.
561 		      * We should need +1 for the '_' preceding
562 		      * the name.  However, the null character
563 		      * is double counted between the name and the
564 		      * sizeof("bpf_prog_") above, so we omit
565 		      * the +1 here.
566 		      */
567 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
568 
569 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
570 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
571 
572 	/* prog->aux->name will be ignored if full btf name is available */
573 	if (prog->aux->func_info_cnt) {
574 		type = btf_type_by_id(prog->aux->btf,
575 				      prog->aux->func_info[prog->aux->func_idx].type_id);
576 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
577 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
578 		return;
579 	}
580 
581 	if (prog->aux->name[0])
582 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
583 	else
584 		*sym = 0;
585 }
586 
bpf_get_ksym_start(struct latch_tree_node * n)587 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
588 {
589 	return container_of(n, struct bpf_ksym, tnode)->start;
590 }
591 
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)592 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
593 					  struct latch_tree_node *b)
594 {
595 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
596 }
597 
bpf_tree_comp(void * key,struct latch_tree_node * n)598 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
599 {
600 	unsigned long val = (unsigned long)key;
601 	const struct bpf_ksym *ksym;
602 
603 	ksym = container_of(n, struct bpf_ksym, tnode);
604 
605 	if (val < ksym->start)
606 		return -1;
607 	if (val >= ksym->end)
608 		return  1;
609 
610 	return 0;
611 }
612 
613 static const struct latch_tree_ops bpf_tree_ops = {
614 	.less	= bpf_tree_less,
615 	.comp	= bpf_tree_comp,
616 };
617 
618 static DEFINE_SPINLOCK(bpf_lock);
619 static LIST_HEAD(bpf_kallsyms);
620 static struct latch_tree_root bpf_tree __cacheline_aligned;
621 
bpf_ksym_add(struct bpf_ksym * ksym)622 void bpf_ksym_add(struct bpf_ksym *ksym)
623 {
624 	spin_lock_bh(&bpf_lock);
625 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
626 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
627 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
628 	spin_unlock_bh(&bpf_lock);
629 }
630 
__bpf_ksym_del(struct bpf_ksym * ksym)631 static void __bpf_ksym_del(struct bpf_ksym *ksym)
632 {
633 	if (list_empty(&ksym->lnode))
634 		return;
635 
636 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
637 	list_del_rcu(&ksym->lnode);
638 }
639 
bpf_ksym_del(struct bpf_ksym * ksym)640 void bpf_ksym_del(struct bpf_ksym *ksym)
641 {
642 	spin_lock_bh(&bpf_lock);
643 	__bpf_ksym_del(ksym);
644 	spin_unlock_bh(&bpf_lock);
645 }
646 
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)647 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
648 {
649 	return fp->jited && !bpf_prog_was_classic(fp);
650 }
651 
bpf_prog_kallsyms_add(struct bpf_prog * fp)652 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
653 {
654 	if (!bpf_prog_kallsyms_candidate(fp) ||
655 	    !bpf_capable())
656 		return;
657 
658 	bpf_prog_ksym_set_addr(fp);
659 	bpf_prog_ksym_set_name(fp);
660 	fp->aux->ksym.prog = true;
661 
662 	bpf_ksym_add(&fp->aux->ksym);
663 }
664 
bpf_prog_kallsyms_del(struct bpf_prog * fp)665 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
666 {
667 	if (!bpf_prog_kallsyms_candidate(fp))
668 		return;
669 
670 	bpf_ksym_del(&fp->aux->ksym);
671 }
672 
bpf_ksym_find(unsigned long addr)673 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
674 {
675 	struct latch_tree_node *n;
676 
677 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
678 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
679 }
680 
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)681 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
682 				 unsigned long *off, char *sym)
683 {
684 	struct bpf_ksym *ksym;
685 	char *ret = NULL;
686 
687 	rcu_read_lock();
688 	ksym = bpf_ksym_find(addr);
689 	if (ksym) {
690 		unsigned long symbol_start = ksym->start;
691 		unsigned long symbol_end = ksym->end;
692 
693 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
694 
695 		ret = sym;
696 		if (size)
697 			*size = symbol_end - symbol_start;
698 		if (off)
699 			*off  = addr - symbol_start;
700 	}
701 	rcu_read_unlock();
702 
703 	return ret;
704 }
705 
is_bpf_text_address(unsigned long addr)706 bool is_bpf_text_address(unsigned long addr)
707 {
708 	bool ret;
709 
710 	rcu_read_lock();
711 	ret = bpf_ksym_find(addr) != NULL;
712 	rcu_read_unlock();
713 
714 	return ret;
715 }
716 
bpf_prog_ksym_find(unsigned long addr)717 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
718 {
719 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
720 
721 	return ksym && ksym->prog ?
722 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
723 	       NULL;
724 }
725 
search_bpf_extables(unsigned long addr)726 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
727 {
728 	const struct exception_table_entry *e = NULL;
729 	struct bpf_prog *prog;
730 
731 	rcu_read_lock();
732 	prog = bpf_prog_ksym_find(addr);
733 	if (!prog)
734 		goto out;
735 	if (!prog->aux->num_exentries)
736 		goto out;
737 
738 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
739 out:
740 	rcu_read_unlock();
741 	return e;
742 }
743 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)744 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
745 		    char *sym)
746 {
747 	struct bpf_ksym *ksym;
748 	unsigned int it = 0;
749 	int ret = -ERANGE;
750 
751 	if (!bpf_jit_kallsyms_enabled())
752 		return ret;
753 
754 	rcu_read_lock();
755 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
756 		if (it++ != symnum)
757 			continue;
758 
759 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
760 
761 		*value = ksym->start;
762 		*type  = BPF_SYM_ELF_TYPE;
763 
764 		ret = 0;
765 		break;
766 	}
767 	rcu_read_unlock();
768 
769 	return ret;
770 }
771 
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)772 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
773 				struct bpf_jit_poke_descriptor *poke)
774 {
775 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
776 	static const u32 poke_tab_max = 1024;
777 	u32 slot = prog->aux->size_poke_tab;
778 	u32 size = slot + 1;
779 
780 	if (size > poke_tab_max)
781 		return -ENOSPC;
782 	if (poke->tailcall_target || poke->tailcall_target_stable ||
783 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
784 		return -EINVAL;
785 
786 	switch (poke->reason) {
787 	case BPF_POKE_REASON_TAIL_CALL:
788 		if (!poke->tail_call.map)
789 			return -EINVAL;
790 		break;
791 	default:
792 		return -EINVAL;
793 	}
794 
795 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
796 	if (!tab)
797 		return -ENOMEM;
798 
799 	memcpy(&tab[slot], poke, sizeof(*poke));
800 	prog->aux->size_poke_tab = size;
801 	prog->aux->poke_tab = tab;
802 
803 	return slot;
804 }
805 
806 /*
807  * BPF program pack allocator.
808  *
809  * Most BPF programs are pretty small. Allocating a hole page for each
810  * program is sometime a waste. Many small bpf program also adds pressure
811  * to instruction TLB. To solve this issue, we introduce a BPF program pack
812  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
813  * to host BPF programs.
814  */
815 #define BPF_PROG_CHUNK_SHIFT	6
816 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
817 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
818 
819 struct bpf_prog_pack {
820 	struct list_head list;
821 	void *ptr;
822 	unsigned long bitmap[];
823 };
824 
825 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
826 
827 static size_t bpf_prog_pack_size = -1;
828 static size_t bpf_prog_pack_mask = -1;
829 
bpf_prog_chunk_count(void)830 static int bpf_prog_chunk_count(void)
831 {
832 	WARN_ON_ONCE(bpf_prog_pack_size == -1);
833 	return bpf_prog_pack_size / BPF_PROG_CHUNK_SIZE;
834 }
835 
836 static DEFINE_MUTEX(pack_mutex);
837 static LIST_HEAD(pack_list);
838 
839 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
840  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
841  */
842 #ifdef PMD_SIZE
843 #define BPF_HPAGE_SIZE PMD_SIZE
844 #define BPF_HPAGE_MASK PMD_MASK
845 #else
846 #define BPF_HPAGE_SIZE PAGE_SIZE
847 #define BPF_HPAGE_MASK PAGE_MASK
848 #endif
849 
select_bpf_prog_pack_size(void)850 static size_t select_bpf_prog_pack_size(void)
851 {
852 	size_t size;
853 	void *ptr;
854 
855 	size = BPF_HPAGE_SIZE * num_online_nodes();
856 	ptr = module_alloc(size);
857 
858 	/* Test whether we can get huge pages. If not just use PAGE_SIZE
859 	 * packs.
860 	 */
861 	if (!ptr || !is_vm_area_hugepages(ptr)) {
862 		size = PAGE_SIZE;
863 		bpf_prog_pack_mask = PAGE_MASK;
864 	} else {
865 		bpf_prog_pack_mask = BPF_HPAGE_MASK;
866 	}
867 
868 	vfree(ptr);
869 	return size;
870 }
871 
alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)872 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
873 {
874 	struct bpf_prog_pack *pack;
875 
876 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(bpf_prog_chunk_count())),
877 		       GFP_KERNEL);
878 	if (!pack)
879 		return NULL;
880 	pack->ptr = module_alloc(bpf_prog_pack_size);
881 	if (!pack->ptr) {
882 		kfree(pack);
883 		return NULL;
884 	}
885 	bpf_fill_ill_insns(pack->ptr, bpf_prog_pack_size);
886 	bitmap_zero(pack->bitmap, bpf_prog_pack_size / BPF_PROG_CHUNK_SIZE);
887 	list_add_tail(&pack->list, &pack_list);
888 
889 	set_vm_flush_reset_perms(pack->ptr);
890 	set_memory_ro((unsigned long)pack->ptr, bpf_prog_pack_size / PAGE_SIZE);
891 	set_memory_x((unsigned long)pack->ptr, bpf_prog_pack_size / PAGE_SIZE);
892 	return pack;
893 }
894 
bpf_prog_pack_alloc(u32 size,bpf_jit_fill_hole_t bpf_fill_ill_insns)895 static void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
896 {
897 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
898 	struct bpf_prog_pack *pack;
899 	unsigned long pos;
900 	void *ptr = NULL;
901 
902 	mutex_lock(&pack_mutex);
903 	if (bpf_prog_pack_size == -1)
904 		bpf_prog_pack_size = select_bpf_prog_pack_size();
905 
906 	if (size > bpf_prog_pack_size) {
907 		size = round_up(size, PAGE_SIZE);
908 		ptr = module_alloc(size);
909 		if (ptr) {
910 			bpf_fill_ill_insns(ptr, size);
911 			set_vm_flush_reset_perms(ptr);
912 			set_memory_ro((unsigned long)ptr, size / PAGE_SIZE);
913 			set_memory_x((unsigned long)ptr, size / PAGE_SIZE);
914 		}
915 		goto out;
916 	}
917 	list_for_each_entry(pack, &pack_list, list) {
918 		pos = bitmap_find_next_zero_area(pack->bitmap, bpf_prog_chunk_count(), 0,
919 						 nbits, 0);
920 		if (pos < bpf_prog_chunk_count())
921 			goto found_free_area;
922 	}
923 
924 	pack = alloc_new_pack(bpf_fill_ill_insns);
925 	if (!pack)
926 		goto out;
927 
928 	pos = 0;
929 
930 found_free_area:
931 	bitmap_set(pack->bitmap, pos, nbits);
932 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
933 
934 out:
935 	mutex_unlock(&pack_mutex);
936 	return ptr;
937 }
938 
bpf_prog_pack_free(struct bpf_binary_header * hdr)939 static void bpf_prog_pack_free(struct bpf_binary_header *hdr)
940 {
941 	struct bpf_prog_pack *pack = NULL, *tmp;
942 	unsigned int nbits;
943 	unsigned long pos;
944 	void *pack_ptr;
945 
946 	mutex_lock(&pack_mutex);
947 	if (hdr->size > bpf_prog_pack_size) {
948 		module_memfree(hdr);
949 		goto out;
950 	}
951 
952 	pack_ptr = (void *)((unsigned long)hdr & bpf_prog_pack_mask);
953 
954 	list_for_each_entry(tmp, &pack_list, list) {
955 		if (tmp->ptr == pack_ptr) {
956 			pack = tmp;
957 			break;
958 		}
959 	}
960 
961 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
962 		goto out;
963 
964 	nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
965 	pos = ((unsigned long)hdr - (unsigned long)pack_ptr) >> BPF_PROG_CHUNK_SHIFT;
966 
967 	WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
968 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
969 
970 	bitmap_clear(pack->bitmap, pos, nbits);
971 	if (bitmap_find_next_zero_area(pack->bitmap, bpf_prog_chunk_count(), 0,
972 				       bpf_prog_chunk_count(), 0) == 0) {
973 		list_del(&pack->list);
974 		module_memfree(pack->ptr);
975 		kfree(pack);
976 	}
977 out:
978 	mutex_unlock(&pack_mutex);
979 }
980 
981 static atomic_long_t bpf_jit_current;
982 
983 /* Can be overridden by an arch's JIT compiler if it has a custom,
984  * dedicated BPF backend memory area, or if neither of the two
985  * below apply.
986  */
bpf_jit_alloc_exec_limit(void)987 u64 __weak bpf_jit_alloc_exec_limit(void)
988 {
989 #if defined(MODULES_VADDR)
990 	return MODULES_END - MODULES_VADDR;
991 #else
992 	return VMALLOC_END - VMALLOC_START;
993 #endif
994 }
995 
bpf_jit_charge_init(void)996 static int __init bpf_jit_charge_init(void)
997 {
998 	/* Only used as heuristic here to derive limit. */
999 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1000 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
1001 					    PAGE_SIZE), LONG_MAX);
1002 	return 0;
1003 }
1004 pure_initcall(bpf_jit_charge_init);
1005 
bpf_jit_charge_modmem(u32 size)1006 int bpf_jit_charge_modmem(u32 size)
1007 {
1008 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1009 		if (!bpf_capable()) {
1010 			atomic_long_sub(size, &bpf_jit_current);
1011 			return -EPERM;
1012 		}
1013 	}
1014 
1015 	return 0;
1016 }
1017 
bpf_jit_uncharge_modmem(u32 size)1018 void bpf_jit_uncharge_modmem(u32 size)
1019 {
1020 	atomic_long_sub(size, &bpf_jit_current);
1021 }
1022 
bpf_jit_alloc_exec(unsigned long size)1023 void *__weak bpf_jit_alloc_exec(unsigned long size)
1024 {
1025 	return module_alloc(size);
1026 }
1027 
bpf_jit_free_exec(void * addr)1028 void __weak bpf_jit_free_exec(void *addr)
1029 {
1030 	module_memfree(addr);
1031 }
1032 
1033 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)1034 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1035 		     unsigned int alignment,
1036 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1037 {
1038 	struct bpf_binary_header *hdr;
1039 	u32 size, hole, start;
1040 
1041 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1042 		     alignment > BPF_IMAGE_ALIGNMENT);
1043 
1044 	/* Most of BPF filters are really small, but if some of them
1045 	 * fill a page, allow at least 128 extra bytes to insert a
1046 	 * random section of illegal instructions.
1047 	 */
1048 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1049 
1050 	if (bpf_jit_charge_modmem(size))
1051 		return NULL;
1052 	hdr = bpf_jit_alloc_exec(size);
1053 	if (!hdr) {
1054 		bpf_jit_uncharge_modmem(size);
1055 		return NULL;
1056 	}
1057 
1058 	/* Fill space with illegal/arch-dep instructions. */
1059 	bpf_fill_ill_insns(hdr, size);
1060 
1061 	hdr->size = size;
1062 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1063 		     PAGE_SIZE - sizeof(*hdr));
1064 	start = (get_random_int() % hole) & ~(alignment - 1);
1065 
1066 	/* Leave a random number of instructions before BPF code. */
1067 	*image_ptr = &hdr->image[start];
1068 
1069 	return hdr;
1070 }
1071 
bpf_jit_binary_free(struct bpf_binary_header * hdr)1072 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1073 {
1074 	u32 size = hdr->size;
1075 
1076 	bpf_jit_free_exec(hdr);
1077 	bpf_jit_uncharge_modmem(size);
1078 }
1079 
1080 /* Allocate jit binary from bpf_prog_pack allocator.
1081  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1082  * to the memory. To solve this problem, a RW buffer is also allocated at
1083  * as the same time. The JIT engine should calculate offsets based on the
1084  * RO memory address, but write JITed program to the RW buffer. Once the
1085  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1086  * the JITed program to the RO memory.
1087  */
1088 struct bpf_binary_header *
bpf_jit_binary_pack_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,struct bpf_binary_header ** rw_header,u8 ** rw_image,bpf_jit_fill_hole_t bpf_fill_ill_insns)1089 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1090 			  unsigned int alignment,
1091 			  struct bpf_binary_header **rw_header,
1092 			  u8 **rw_image,
1093 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1094 {
1095 	struct bpf_binary_header *ro_header;
1096 	u32 size, hole, start;
1097 
1098 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1099 		     alignment > BPF_IMAGE_ALIGNMENT);
1100 
1101 	/* add 16 bytes for a random section of illegal instructions */
1102 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1103 
1104 	if (bpf_jit_charge_modmem(size))
1105 		return NULL;
1106 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1107 	if (!ro_header) {
1108 		bpf_jit_uncharge_modmem(size);
1109 		return NULL;
1110 	}
1111 
1112 	*rw_header = kvmalloc(size, GFP_KERNEL);
1113 	if (!*rw_header) {
1114 		bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1115 		bpf_prog_pack_free(ro_header);
1116 		bpf_jit_uncharge_modmem(size);
1117 		return NULL;
1118 	}
1119 
1120 	/* Fill space with illegal/arch-dep instructions. */
1121 	bpf_fill_ill_insns(*rw_header, size);
1122 	(*rw_header)->size = size;
1123 
1124 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1125 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1126 	start = (get_random_int() % hole) & ~(alignment - 1);
1127 
1128 	*image_ptr = &ro_header->image[start];
1129 	*rw_image = &(*rw_header)->image[start];
1130 
1131 	return ro_header;
1132 }
1133 
1134 /* Copy JITed text from rw_header to its final location, the ro_header. */
bpf_jit_binary_pack_finalize(struct bpf_prog * prog,struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1135 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1136 				 struct bpf_binary_header *ro_header,
1137 				 struct bpf_binary_header *rw_header)
1138 {
1139 	void *ptr;
1140 
1141 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1142 
1143 	kvfree(rw_header);
1144 
1145 	if (IS_ERR(ptr)) {
1146 		bpf_prog_pack_free(ro_header);
1147 		return PTR_ERR(ptr);
1148 	}
1149 	return 0;
1150 }
1151 
1152 /* bpf_jit_binary_pack_free is called in two different scenarios:
1153  *   1) when the program is freed after;
1154  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1155  * For case 2), we need to free both the RO memory and the RW buffer.
1156  *
1157  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1158  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1159  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1160  * bpf_arch_text_copy (when jit fails).
1161  */
bpf_jit_binary_pack_free(struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1162 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1163 			      struct bpf_binary_header *rw_header)
1164 {
1165 	u32 size = ro_header->size;
1166 
1167 	bpf_prog_pack_free(ro_header);
1168 	kvfree(rw_header);
1169 	bpf_jit_uncharge_modmem(size);
1170 }
1171 
1172 struct bpf_binary_header *
bpf_jit_binary_pack_hdr(const struct bpf_prog * fp)1173 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1174 {
1175 	unsigned long real_start = (unsigned long)fp->bpf_func;
1176 	unsigned long addr;
1177 
1178 	addr = real_start & BPF_PROG_CHUNK_MASK;
1179 	return (void *)addr;
1180 }
1181 
1182 static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog * fp)1183 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1184 {
1185 	unsigned long real_start = (unsigned long)fp->bpf_func;
1186 	unsigned long addr;
1187 
1188 	addr = real_start & PAGE_MASK;
1189 	return (void *)addr;
1190 }
1191 
1192 /* This symbol is only overridden by archs that have different
1193  * requirements than the usual eBPF JITs, f.e. when they only
1194  * implement cBPF JIT, do not set images read-only, etc.
1195  */
bpf_jit_free(struct bpf_prog * fp)1196 void __weak bpf_jit_free(struct bpf_prog *fp)
1197 {
1198 	if (fp->jited) {
1199 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1200 
1201 		bpf_jit_binary_free(hdr);
1202 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1203 	}
1204 
1205 	bpf_prog_unlock_free(fp);
1206 }
1207 
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)1208 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1209 			  const struct bpf_insn *insn, bool extra_pass,
1210 			  u64 *func_addr, bool *func_addr_fixed)
1211 {
1212 	s16 off = insn->off;
1213 	s32 imm = insn->imm;
1214 	u8 *addr;
1215 
1216 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1217 	if (!*func_addr_fixed) {
1218 		/* Place-holder address till the last pass has collected
1219 		 * all addresses for JITed subprograms in which case we
1220 		 * can pick them up from prog->aux.
1221 		 */
1222 		if (!extra_pass)
1223 			addr = NULL;
1224 		else if (prog->aux->func &&
1225 			 off >= 0 && off < prog->aux->func_cnt)
1226 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1227 		else
1228 			return -EINVAL;
1229 	} else {
1230 		/* Address of a BPF helper call. Since part of the core
1231 		 * kernel, it's always at a fixed location. __bpf_call_base
1232 		 * and the helper with imm relative to it are both in core
1233 		 * kernel.
1234 		 */
1235 		addr = (u8 *)__bpf_call_base + imm;
1236 	}
1237 
1238 	*func_addr = (unsigned long)addr;
1239 	return 0;
1240 }
1241 
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)1242 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1243 			      const struct bpf_insn *aux,
1244 			      struct bpf_insn *to_buff,
1245 			      bool emit_zext)
1246 {
1247 	struct bpf_insn *to = to_buff;
1248 	u32 imm_rnd = get_random_int();
1249 	s16 off;
1250 
1251 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1252 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1253 
1254 	/* Constraints on AX register:
1255 	 *
1256 	 * AX register is inaccessible from user space. It is mapped in
1257 	 * all JITs, and used here for constant blinding rewrites. It is
1258 	 * typically "stateless" meaning its contents are only valid within
1259 	 * the executed instruction, but not across several instructions.
1260 	 * There are a few exceptions however which are further detailed
1261 	 * below.
1262 	 *
1263 	 * Constant blinding is only used by JITs, not in the interpreter.
1264 	 * The interpreter uses AX in some occasions as a local temporary
1265 	 * register e.g. in DIV or MOD instructions.
1266 	 *
1267 	 * In restricted circumstances, the verifier can also use the AX
1268 	 * register for rewrites as long as they do not interfere with
1269 	 * the above cases!
1270 	 */
1271 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1272 		goto out;
1273 
1274 	if (from->imm == 0 &&
1275 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1276 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1277 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1278 		goto out;
1279 	}
1280 
1281 	switch (from->code) {
1282 	case BPF_ALU | BPF_ADD | BPF_K:
1283 	case BPF_ALU | BPF_SUB | BPF_K:
1284 	case BPF_ALU | BPF_AND | BPF_K:
1285 	case BPF_ALU | BPF_OR  | BPF_K:
1286 	case BPF_ALU | BPF_XOR | BPF_K:
1287 	case BPF_ALU | BPF_MUL | BPF_K:
1288 	case BPF_ALU | BPF_MOV | BPF_K:
1289 	case BPF_ALU | BPF_DIV | BPF_K:
1290 	case BPF_ALU | BPF_MOD | BPF_K:
1291 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1292 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1293 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1294 		break;
1295 
1296 	case BPF_ALU64 | BPF_ADD | BPF_K:
1297 	case BPF_ALU64 | BPF_SUB | BPF_K:
1298 	case BPF_ALU64 | BPF_AND | BPF_K:
1299 	case BPF_ALU64 | BPF_OR  | BPF_K:
1300 	case BPF_ALU64 | BPF_XOR | BPF_K:
1301 	case BPF_ALU64 | BPF_MUL | BPF_K:
1302 	case BPF_ALU64 | BPF_MOV | BPF_K:
1303 	case BPF_ALU64 | BPF_DIV | BPF_K:
1304 	case BPF_ALU64 | BPF_MOD | BPF_K:
1305 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1306 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1307 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1308 		break;
1309 
1310 	case BPF_JMP | BPF_JEQ  | BPF_K:
1311 	case BPF_JMP | BPF_JNE  | BPF_K:
1312 	case BPF_JMP | BPF_JGT  | BPF_K:
1313 	case BPF_JMP | BPF_JLT  | BPF_K:
1314 	case BPF_JMP | BPF_JGE  | BPF_K:
1315 	case BPF_JMP | BPF_JLE  | BPF_K:
1316 	case BPF_JMP | BPF_JSGT | BPF_K:
1317 	case BPF_JMP | BPF_JSLT | BPF_K:
1318 	case BPF_JMP | BPF_JSGE | BPF_K:
1319 	case BPF_JMP | BPF_JSLE | BPF_K:
1320 	case BPF_JMP | BPF_JSET | BPF_K:
1321 		/* Accommodate for extra offset in case of a backjump. */
1322 		off = from->off;
1323 		if (off < 0)
1324 			off -= 2;
1325 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1326 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1327 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1328 		break;
1329 
1330 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1331 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1332 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1333 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1334 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1335 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1336 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1337 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1338 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1339 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1340 	case BPF_JMP32 | BPF_JSET | BPF_K:
1341 		/* Accommodate for extra offset in case of a backjump. */
1342 		off = from->off;
1343 		if (off < 0)
1344 			off -= 2;
1345 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1346 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1347 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1348 				      off);
1349 		break;
1350 
1351 	case BPF_LD | BPF_IMM | BPF_DW:
1352 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1353 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1354 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1355 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1356 		break;
1357 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1358 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1359 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1360 		if (emit_zext)
1361 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1362 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1363 		break;
1364 
1365 	case BPF_ST | BPF_MEM | BPF_DW:
1366 	case BPF_ST | BPF_MEM | BPF_W:
1367 	case BPF_ST | BPF_MEM | BPF_H:
1368 	case BPF_ST | BPF_MEM | BPF_B:
1369 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1370 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1371 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1372 		break;
1373 	}
1374 out:
1375 	return to - to_buff;
1376 }
1377 
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1378 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1379 					      gfp_t gfp_extra_flags)
1380 {
1381 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1382 	struct bpf_prog *fp;
1383 
1384 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1385 	if (fp != NULL) {
1386 		/* aux->prog still points to the fp_other one, so
1387 		 * when promoting the clone to the real program,
1388 		 * this still needs to be adapted.
1389 		 */
1390 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1391 	}
1392 
1393 	return fp;
1394 }
1395 
bpf_prog_clone_free(struct bpf_prog * fp)1396 static void bpf_prog_clone_free(struct bpf_prog *fp)
1397 {
1398 	/* aux was stolen by the other clone, so we cannot free
1399 	 * it from this path! It will be freed eventually by the
1400 	 * other program on release.
1401 	 *
1402 	 * At this point, we don't need a deferred release since
1403 	 * clone is guaranteed to not be locked.
1404 	 */
1405 	fp->aux = NULL;
1406 	fp->stats = NULL;
1407 	fp->active = NULL;
1408 	__bpf_prog_free(fp);
1409 }
1410 
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1411 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1412 {
1413 	/* We have to repoint aux->prog to self, as we don't
1414 	 * know whether fp here is the clone or the original.
1415 	 */
1416 	fp->aux->prog = fp;
1417 	bpf_prog_clone_free(fp_other);
1418 }
1419 
bpf_jit_blind_constants(struct bpf_prog * prog)1420 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1421 {
1422 	struct bpf_insn insn_buff[16], aux[2];
1423 	struct bpf_prog *clone, *tmp;
1424 	int insn_delta, insn_cnt;
1425 	struct bpf_insn *insn;
1426 	int i, rewritten;
1427 
1428 	if (!prog->blinding_requested || prog->blinded)
1429 		return prog;
1430 
1431 	clone = bpf_prog_clone_create(prog, GFP_USER);
1432 	if (!clone)
1433 		return ERR_PTR(-ENOMEM);
1434 
1435 	insn_cnt = clone->len;
1436 	insn = clone->insnsi;
1437 
1438 	for (i = 0; i < insn_cnt; i++, insn++) {
1439 		if (bpf_pseudo_func(insn)) {
1440 			/* ld_imm64 with an address of bpf subprog is not
1441 			 * a user controlled constant. Don't randomize it,
1442 			 * since it will conflict with jit_subprogs() logic.
1443 			 */
1444 			insn++;
1445 			i++;
1446 			continue;
1447 		}
1448 
1449 		/* We temporarily need to hold the original ld64 insn
1450 		 * so that we can still access the first part in the
1451 		 * second blinding run.
1452 		 */
1453 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1454 		    insn[1].code == 0)
1455 			memcpy(aux, insn, sizeof(aux));
1456 
1457 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1458 						clone->aux->verifier_zext);
1459 		if (!rewritten)
1460 			continue;
1461 
1462 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1463 		if (IS_ERR(tmp)) {
1464 			/* Patching may have repointed aux->prog during
1465 			 * realloc from the original one, so we need to
1466 			 * fix it up here on error.
1467 			 */
1468 			bpf_jit_prog_release_other(prog, clone);
1469 			return tmp;
1470 		}
1471 
1472 		clone = tmp;
1473 		insn_delta = rewritten - 1;
1474 
1475 		/* Walk new program and skip insns we just inserted. */
1476 		insn = clone->insnsi + i + insn_delta;
1477 		insn_cnt += insn_delta;
1478 		i        += insn_delta;
1479 	}
1480 
1481 	clone->blinded = 1;
1482 	return clone;
1483 }
1484 #endif /* CONFIG_BPF_JIT */
1485 
1486 /* Base function for offset calculation. Needs to go into .text section,
1487  * therefore keeping it non-static as well; will also be used by JITs
1488  * anyway later on, so do not let the compiler omit it. This also needs
1489  * to go into kallsyms for correlation from e.g. bpftool, so naming
1490  * must not change.
1491  */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1492 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1493 {
1494 	return 0;
1495 }
1496 EXPORT_SYMBOL_GPL(__bpf_call_base);
1497 
1498 /* All UAPI available opcodes. */
1499 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1500 	/* 32 bit ALU operations. */		\
1501 	/*   Register based. */			\
1502 	INSN_3(ALU, ADD,  X),			\
1503 	INSN_3(ALU, SUB,  X),			\
1504 	INSN_3(ALU, AND,  X),			\
1505 	INSN_3(ALU, OR,   X),			\
1506 	INSN_3(ALU, LSH,  X),			\
1507 	INSN_3(ALU, RSH,  X),			\
1508 	INSN_3(ALU, XOR,  X),			\
1509 	INSN_3(ALU, MUL,  X),			\
1510 	INSN_3(ALU, MOV,  X),			\
1511 	INSN_3(ALU, ARSH, X),			\
1512 	INSN_3(ALU, DIV,  X),			\
1513 	INSN_3(ALU, MOD,  X),			\
1514 	INSN_2(ALU, NEG),			\
1515 	INSN_3(ALU, END, TO_BE),		\
1516 	INSN_3(ALU, END, TO_LE),		\
1517 	/*   Immediate based. */		\
1518 	INSN_3(ALU, ADD,  K),			\
1519 	INSN_3(ALU, SUB,  K),			\
1520 	INSN_3(ALU, AND,  K),			\
1521 	INSN_3(ALU, OR,   K),			\
1522 	INSN_3(ALU, LSH,  K),			\
1523 	INSN_3(ALU, RSH,  K),			\
1524 	INSN_3(ALU, XOR,  K),			\
1525 	INSN_3(ALU, MUL,  K),			\
1526 	INSN_3(ALU, MOV,  K),			\
1527 	INSN_3(ALU, ARSH, K),			\
1528 	INSN_3(ALU, DIV,  K),			\
1529 	INSN_3(ALU, MOD,  K),			\
1530 	/* 64 bit ALU operations. */		\
1531 	/*   Register based. */			\
1532 	INSN_3(ALU64, ADD,  X),			\
1533 	INSN_3(ALU64, SUB,  X),			\
1534 	INSN_3(ALU64, AND,  X),			\
1535 	INSN_3(ALU64, OR,   X),			\
1536 	INSN_3(ALU64, LSH,  X),			\
1537 	INSN_3(ALU64, RSH,  X),			\
1538 	INSN_3(ALU64, XOR,  X),			\
1539 	INSN_3(ALU64, MUL,  X),			\
1540 	INSN_3(ALU64, MOV,  X),			\
1541 	INSN_3(ALU64, ARSH, X),			\
1542 	INSN_3(ALU64, DIV,  X),			\
1543 	INSN_3(ALU64, MOD,  X),			\
1544 	INSN_2(ALU64, NEG),			\
1545 	/*   Immediate based. */		\
1546 	INSN_3(ALU64, ADD,  K),			\
1547 	INSN_3(ALU64, SUB,  K),			\
1548 	INSN_3(ALU64, AND,  K),			\
1549 	INSN_3(ALU64, OR,   K),			\
1550 	INSN_3(ALU64, LSH,  K),			\
1551 	INSN_3(ALU64, RSH,  K),			\
1552 	INSN_3(ALU64, XOR,  K),			\
1553 	INSN_3(ALU64, MUL,  K),			\
1554 	INSN_3(ALU64, MOV,  K),			\
1555 	INSN_3(ALU64, ARSH, K),			\
1556 	INSN_3(ALU64, DIV,  K),			\
1557 	INSN_3(ALU64, MOD,  K),			\
1558 	/* Call instruction. */			\
1559 	INSN_2(JMP, CALL),			\
1560 	/* Exit instruction. */			\
1561 	INSN_2(JMP, EXIT),			\
1562 	/* 32-bit Jump instructions. */		\
1563 	/*   Register based. */			\
1564 	INSN_3(JMP32, JEQ,  X),			\
1565 	INSN_3(JMP32, JNE,  X),			\
1566 	INSN_3(JMP32, JGT,  X),			\
1567 	INSN_3(JMP32, JLT,  X),			\
1568 	INSN_3(JMP32, JGE,  X),			\
1569 	INSN_3(JMP32, JLE,  X),			\
1570 	INSN_3(JMP32, JSGT, X),			\
1571 	INSN_3(JMP32, JSLT, X),			\
1572 	INSN_3(JMP32, JSGE, X),			\
1573 	INSN_3(JMP32, JSLE, X),			\
1574 	INSN_3(JMP32, JSET, X),			\
1575 	/*   Immediate based. */		\
1576 	INSN_3(JMP32, JEQ,  K),			\
1577 	INSN_3(JMP32, JNE,  K),			\
1578 	INSN_3(JMP32, JGT,  K),			\
1579 	INSN_3(JMP32, JLT,  K),			\
1580 	INSN_3(JMP32, JGE,  K),			\
1581 	INSN_3(JMP32, JLE,  K),			\
1582 	INSN_3(JMP32, JSGT, K),			\
1583 	INSN_3(JMP32, JSLT, K),			\
1584 	INSN_3(JMP32, JSGE, K),			\
1585 	INSN_3(JMP32, JSLE, K),			\
1586 	INSN_3(JMP32, JSET, K),			\
1587 	/* Jump instructions. */		\
1588 	/*   Register based. */			\
1589 	INSN_3(JMP, JEQ,  X),			\
1590 	INSN_3(JMP, JNE,  X),			\
1591 	INSN_3(JMP, JGT,  X),			\
1592 	INSN_3(JMP, JLT,  X),			\
1593 	INSN_3(JMP, JGE,  X),			\
1594 	INSN_3(JMP, JLE,  X),			\
1595 	INSN_3(JMP, JSGT, X),			\
1596 	INSN_3(JMP, JSLT, X),			\
1597 	INSN_3(JMP, JSGE, X),			\
1598 	INSN_3(JMP, JSLE, X),			\
1599 	INSN_3(JMP, JSET, X),			\
1600 	/*   Immediate based. */		\
1601 	INSN_3(JMP, JEQ,  K),			\
1602 	INSN_3(JMP, JNE,  K),			\
1603 	INSN_3(JMP, JGT,  K),			\
1604 	INSN_3(JMP, JLT,  K),			\
1605 	INSN_3(JMP, JGE,  K),			\
1606 	INSN_3(JMP, JLE,  K),			\
1607 	INSN_3(JMP, JSGT, K),			\
1608 	INSN_3(JMP, JSLT, K),			\
1609 	INSN_3(JMP, JSGE, K),			\
1610 	INSN_3(JMP, JSLE, K),			\
1611 	INSN_3(JMP, JSET, K),			\
1612 	INSN_2(JMP, JA),			\
1613 	/* Store instructions. */		\
1614 	/*   Register based. */			\
1615 	INSN_3(STX, MEM,  B),			\
1616 	INSN_3(STX, MEM,  H),			\
1617 	INSN_3(STX, MEM,  W),			\
1618 	INSN_3(STX, MEM,  DW),			\
1619 	INSN_3(STX, ATOMIC, W),			\
1620 	INSN_3(STX, ATOMIC, DW),		\
1621 	/*   Immediate based. */		\
1622 	INSN_3(ST, MEM, B),			\
1623 	INSN_3(ST, MEM, H),			\
1624 	INSN_3(ST, MEM, W),			\
1625 	INSN_3(ST, MEM, DW),			\
1626 	/* Load instructions. */		\
1627 	/*   Register based. */			\
1628 	INSN_3(LDX, MEM, B),			\
1629 	INSN_3(LDX, MEM, H),			\
1630 	INSN_3(LDX, MEM, W),			\
1631 	INSN_3(LDX, MEM, DW),			\
1632 	/*   Immediate based. */		\
1633 	INSN_3(LD, IMM, DW)
1634 
bpf_opcode_in_insntable(u8 code)1635 bool bpf_opcode_in_insntable(u8 code)
1636 {
1637 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1638 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1639 	static const bool public_insntable[256] = {
1640 		[0 ... 255] = false,
1641 		/* Now overwrite non-defaults ... */
1642 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1643 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1644 		[BPF_LD | BPF_ABS | BPF_B] = true,
1645 		[BPF_LD | BPF_ABS | BPF_H] = true,
1646 		[BPF_LD | BPF_ABS | BPF_W] = true,
1647 		[BPF_LD | BPF_IND | BPF_B] = true,
1648 		[BPF_LD | BPF_IND | BPF_H] = true,
1649 		[BPF_LD | BPF_IND | BPF_W] = true,
1650 	};
1651 #undef BPF_INSN_3_TBL
1652 #undef BPF_INSN_2_TBL
1653 	return public_insntable[code];
1654 }
1655 
1656 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
bpf_probe_read_kernel(void * dst,u32 size,const void * unsafe_ptr)1657 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1658 {
1659 	memset(dst, 0, size);
1660 	return -EFAULT;
1661 }
1662 
1663 /**
1664  *	___bpf_prog_run - run eBPF program on a given context
1665  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1666  *	@insn: is the array of eBPF instructions
1667  *
1668  * Decode and execute eBPF instructions.
1669  *
1670  * Return: whatever value is in %BPF_R0 at program exit
1671  */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn)1672 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1673 {
1674 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1675 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1676 	static const void * const jumptable[256] __annotate_jump_table = {
1677 		[0 ... 255] = &&default_label,
1678 		/* Now overwrite non-defaults ... */
1679 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1680 		/* Non-UAPI available opcodes. */
1681 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1682 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1683 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1684 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1685 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1686 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1687 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1688 	};
1689 #undef BPF_INSN_3_LBL
1690 #undef BPF_INSN_2_LBL
1691 	u32 tail_call_cnt = 0;
1692 
1693 #define CONT	 ({ insn++; goto select_insn; })
1694 #define CONT_JMP ({ insn++; goto select_insn; })
1695 
1696 select_insn:
1697 	goto *jumptable[insn->code];
1698 
1699 	/* Explicitly mask the register-based shift amounts with 63 or 31
1700 	 * to avoid undefined behavior. Normally this won't affect the
1701 	 * generated code, for example, in case of native 64 bit archs such
1702 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1703 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1704 	 * the BPF shift operations to machine instructions which produce
1705 	 * implementation-defined results in such a case; the resulting
1706 	 * contents of the register may be arbitrary, but program behaviour
1707 	 * as a whole remains defined. In other words, in case of JIT backends,
1708 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1709 	 */
1710 	/* ALU (shifts) */
1711 #define SHT(OPCODE, OP)					\
1712 	ALU64_##OPCODE##_X:				\
1713 		DST = DST OP (SRC & 63);		\
1714 		CONT;					\
1715 	ALU_##OPCODE##_X:				\
1716 		DST = (u32) DST OP ((u32) SRC & 31);	\
1717 		CONT;					\
1718 	ALU64_##OPCODE##_K:				\
1719 		DST = DST OP IMM;			\
1720 		CONT;					\
1721 	ALU_##OPCODE##_K:				\
1722 		DST = (u32) DST OP (u32) IMM;		\
1723 		CONT;
1724 	/* ALU (rest) */
1725 #define ALU(OPCODE, OP)					\
1726 	ALU64_##OPCODE##_X:				\
1727 		DST = DST OP SRC;			\
1728 		CONT;					\
1729 	ALU_##OPCODE##_X:				\
1730 		DST = (u32) DST OP (u32) SRC;		\
1731 		CONT;					\
1732 	ALU64_##OPCODE##_K:				\
1733 		DST = DST OP IMM;			\
1734 		CONT;					\
1735 	ALU_##OPCODE##_K:				\
1736 		DST = (u32) DST OP (u32) IMM;		\
1737 		CONT;
1738 	ALU(ADD,  +)
1739 	ALU(SUB,  -)
1740 	ALU(AND,  &)
1741 	ALU(OR,   |)
1742 	ALU(XOR,  ^)
1743 	ALU(MUL,  *)
1744 	SHT(LSH, <<)
1745 	SHT(RSH, >>)
1746 #undef SHT
1747 #undef ALU
1748 	ALU_NEG:
1749 		DST = (u32) -DST;
1750 		CONT;
1751 	ALU64_NEG:
1752 		DST = -DST;
1753 		CONT;
1754 	ALU_MOV_X:
1755 		DST = (u32) SRC;
1756 		CONT;
1757 	ALU_MOV_K:
1758 		DST = (u32) IMM;
1759 		CONT;
1760 	ALU64_MOV_X:
1761 		DST = SRC;
1762 		CONT;
1763 	ALU64_MOV_K:
1764 		DST = IMM;
1765 		CONT;
1766 	LD_IMM_DW:
1767 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1768 		insn++;
1769 		CONT;
1770 	ALU_ARSH_X:
1771 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1772 		CONT;
1773 	ALU_ARSH_K:
1774 		DST = (u64) (u32) (((s32) DST) >> IMM);
1775 		CONT;
1776 	ALU64_ARSH_X:
1777 		(*(s64 *) &DST) >>= (SRC & 63);
1778 		CONT;
1779 	ALU64_ARSH_K:
1780 		(*(s64 *) &DST) >>= IMM;
1781 		CONT;
1782 	ALU64_MOD_X:
1783 		div64_u64_rem(DST, SRC, &AX);
1784 		DST = AX;
1785 		CONT;
1786 	ALU_MOD_X:
1787 		AX = (u32) DST;
1788 		DST = do_div(AX, (u32) SRC);
1789 		CONT;
1790 	ALU64_MOD_K:
1791 		div64_u64_rem(DST, IMM, &AX);
1792 		DST = AX;
1793 		CONT;
1794 	ALU_MOD_K:
1795 		AX = (u32) DST;
1796 		DST = do_div(AX, (u32) IMM);
1797 		CONT;
1798 	ALU64_DIV_X:
1799 		DST = div64_u64(DST, SRC);
1800 		CONT;
1801 	ALU_DIV_X:
1802 		AX = (u32) DST;
1803 		do_div(AX, (u32) SRC);
1804 		DST = (u32) AX;
1805 		CONT;
1806 	ALU64_DIV_K:
1807 		DST = div64_u64(DST, IMM);
1808 		CONT;
1809 	ALU_DIV_K:
1810 		AX = (u32) DST;
1811 		do_div(AX, (u32) IMM);
1812 		DST = (u32) AX;
1813 		CONT;
1814 	ALU_END_TO_BE:
1815 		switch (IMM) {
1816 		case 16:
1817 			DST = (__force u16) cpu_to_be16(DST);
1818 			break;
1819 		case 32:
1820 			DST = (__force u32) cpu_to_be32(DST);
1821 			break;
1822 		case 64:
1823 			DST = (__force u64) cpu_to_be64(DST);
1824 			break;
1825 		}
1826 		CONT;
1827 	ALU_END_TO_LE:
1828 		switch (IMM) {
1829 		case 16:
1830 			DST = (__force u16) cpu_to_le16(DST);
1831 			break;
1832 		case 32:
1833 			DST = (__force u32) cpu_to_le32(DST);
1834 			break;
1835 		case 64:
1836 			DST = (__force u64) cpu_to_le64(DST);
1837 			break;
1838 		}
1839 		CONT;
1840 
1841 	/* CALL */
1842 	JMP_CALL:
1843 		/* Function call scratches BPF_R1-BPF_R5 registers,
1844 		 * preserves BPF_R6-BPF_R9, and stores return value
1845 		 * into BPF_R0.
1846 		 */
1847 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1848 						       BPF_R4, BPF_R5);
1849 		CONT;
1850 
1851 	JMP_CALL_ARGS:
1852 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1853 							    BPF_R3, BPF_R4,
1854 							    BPF_R5,
1855 							    insn + insn->off + 1);
1856 		CONT;
1857 
1858 	JMP_TAIL_CALL: {
1859 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1860 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1861 		struct bpf_prog *prog;
1862 		u32 index = BPF_R3;
1863 
1864 		if (unlikely(index >= array->map.max_entries))
1865 			goto out;
1866 
1867 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1868 			goto out;
1869 
1870 		tail_call_cnt++;
1871 
1872 		prog = READ_ONCE(array->ptrs[index]);
1873 		if (!prog)
1874 			goto out;
1875 
1876 		/* ARG1 at this point is guaranteed to point to CTX from
1877 		 * the verifier side due to the fact that the tail call is
1878 		 * handled like a helper, that is, bpf_tail_call_proto,
1879 		 * where arg1_type is ARG_PTR_TO_CTX.
1880 		 */
1881 		insn = prog->insnsi;
1882 		goto select_insn;
1883 out:
1884 		CONT;
1885 	}
1886 	JMP_JA:
1887 		insn += insn->off;
1888 		CONT;
1889 	JMP_EXIT:
1890 		return BPF_R0;
1891 	/* JMP */
1892 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1893 	JMP_##OPCODE##_X:					\
1894 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1895 			insn += insn->off;			\
1896 			CONT_JMP;				\
1897 		}						\
1898 		CONT;						\
1899 	JMP32_##OPCODE##_X:					\
1900 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1901 			insn += insn->off;			\
1902 			CONT_JMP;				\
1903 		}						\
1904 		CONT;						\
1905 	JMP_##OPCODE##_K:					\
1906 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1907 			insn += insn->off;			\
1908 			CONT_JMP;				\
1909 		}						\
1910 		CONT;						\
1911 	JMP32_##OPCODE##_K:					\
1912 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1913 			insn += insn->off;			\
1914 			CONT_JMP;				\
1915 		}						\
1916 		CONT;
1917 	COND_JMP(u, JEQ, ==)
1918 	COND_JMP(u, JNE, !=)
1919 	COND_JMP(u, JGT, >)
1920 	COND_JMP(u, JLT, <)
1921 	COND_JMP(u, JGE, >=)
1922 	COND_JMP(u, JLE, <=)
1923 	COND_JMP(u, JSET, &)
1924 	COND_JMP(s, JSGT, >)
1925 	COND_JMP(s, JSLT, <)
1926 	COND_JMP(s, JSGE, >=)
1927 	COND_JMP(s, JSLE, <=)
1928 #undef COND_JMP
1929 	/* ST, STX and LDX*/
1930 	ST_NOSPEC:
1931 		/* Speculation barrier for mitigating Speculative Store Bypass.
1932 		 * In case of arm64, we rely on the firmware mitigation as
1933 		 * controlled via the ssbd kernel parameter. Whenever the
1934 		 * mitigation is enabled, it works for all of the kernel code
1935 		 * with no need to provide any additional instructions here.
1936 		 * In case of x86, we use 'lfence' insn for mitigation. We
1937 		 * reuse preexisting logic from Spectre v1 mitigation that
1938 		 * happens to produce the required code on x86 for v4 as well.
1939 		 */
1940 #ifdef CONFIG_X86
1941 		barrier_nospec();
1942 #endif
1943 		CONT;
1944 #define LDST(SIZEOP, SIZE)						\
1945 	STX_MEM_##SIZEOP:						\
1946 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1947 		CONT;							\
1948 	ST_MEM_##SIZEOP:						\
1949 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1950 		CONT;							\
1951 	LDX_MEM_##SIZEOP:						\
1952 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1953 		CONT;							\
1954 	LDX_PROBE_MEM_##SIZEOP:						\
1955 		bpf_probe_read_kernel(&DST, sizeof(SIZE),		\
1956 				      (const void *)(long) (SRC + insn->off));	\
1957 		DST = *((SIZE *)&DST);					\
1958 		CONT;
1959 
1960 	LDST(B,   u8)
1961 	LDST(H,  u16)
1962 	LDST(W,  u32)
1963 	LDST(DW, u64)
1964 #undef LDST
1965 
1966 #define ATOMIC_ALU_OP(BOP, KOP)						\
1967 		case BOP:						\
1968 			if (BPF_SIZE(insn->code) == BPF_W)		\
1969 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1970 					     (DST + insn->off));	\
1971 			else						\
1972 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1973 					       (DST + insn->off));	\
1974 			break;						\
1975 		case BOP | BPF_FETCH:					\
1976 			if (BPF_SIZE(insn->code) == BPF_W)		\
1977 				SRC = (u32) atomic_fetch_##KOP(		\
1978 					(u32) SRC,			\
1979 					(atomic_t *)(unsigned long) (DST + insn->off)); \
1980 			else						\
1981 				SRC = (u64) atomic64_fetch_##KOP(	\
1982 					(u64) SRC,			\
1983 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1984 			break;
1985 
1986 	STX_ATOMIC_DW:
1987 	STX_ATOMIC_W:
1988 		switch (IMM) {
1989 		ATOMIC_ALU_OP(BPF_ADD, add)
1990 		ATOMIC_ALU_OP(BPF_AND, and)
1991 		ATOMIC_ALU_OP(BPF_OR, or)
1992 		ATOMIC_ALU_OP(BPF_XOR, xor)
1993 #undef ATOMIC_ALU_OP
1994 
1995 		case BPF_XCHG:
1996 			if (BPF_SIZE(insn->code) == BPF_W)
1997 				SRC = (u32) atomic_xchg(
1998 					(atomic_t *)(unsigned long) (DST + insn->off),
1999 					(u32) SRC);
2000 			else
2001 				SRC = (u64) atomic64_xchg(
2002 					(atomic64_t *)(unsigned long) (DST + insn->off),
2003 					(u64) SRC);
2004 			break;
2005 		case BPF_CMPXCHG:
2006 			if (BPF_SIZE(insn->code) == BPF_W)
2007 				BPF_R0 = (u32) atomic_cmpxchg(
2008 					(atomic_t *)(unsigned long) (DST + insn->off),
2009 					(u32) BPF_R0, (u32) SRC);
2010 			else
2011 				BPF_R0 = (u64) atomic64_cmpxchg(
2012 					(atomic64_t *)(unsigned long) (DST + insn->off),
2013 					(u64) BPF_R0, (u64) SRC);
2014 			break;
2015 
2016 		default:
2017 			goto default_label;
2018 		}
2019 		CONT;
2020 
2021 	default_label:
2022 		/* If we ever reach this, we have a bug somewhere. Die hard here
2023 		 * instead of just returning 0; we could be somewhere in a subprog,
2024 		 * so execution could continue otherwise which we do /not/ want.
2025 		 *
2026 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2027 		 */
2028 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2029 			insn->code, insn->imm);
2030 		BUG_ON(1);
2031 		return 0;
2032 }
2033 
2034 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2035 #define DEFINE_BPF_PROG_RUN(stack_size) \
2036 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2037 { \
2038 	u64 stack[stack_size / sizeof(u64)]; \
2039 	u64 regs[MAX_BPF_EXT_REG]; \
2040 \
2041 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2042 	ARG1 = (u64) (unsigned long) ctx; \
2043 	return ___bpf_prog_run(regs, insn); \
2044 }
2045 
2046 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2047 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2048 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2049 				      const struct bpf_insn *insn) \
2050 { \
2051 	u64 stack[stack_size / sizeof(u64)]; \
2052 	u64 regs[MAX_BPF_EXT_REG]; \
2053 \
2054 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2055 	BPF_R1 = r1; \
2056 	BPF_R2 = r2; \
2057 	BPF_R3 = r3; \
2058 	BPF_R4 = r4; \
2059 	BPF_R5 = r5; \
2060 	return ___bpf_prog_run(regs, insn); \
2061 }
2062 
2063 #define EVAL1(FN, X) FN(X)
2064 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2065 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2066 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2067 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2068 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2069 
2070 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2071 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2072 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2073 
2074 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2075 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2076 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2077 
2078 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2079 
2080 static unsigned int (*interpreters[])(const void *ctx,
2081 				      const struct bpf_insn *insn) = {
2082 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2083 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2084 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2085 };
2086 #undef PROG_NAME_LIST
2087 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2088 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2089 				  const struct bpf_insn *insn) = {
2090 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2091 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2092 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2093 };
2094 #undef PROG_NAME_LIST
2095 
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)2096 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2097 {
2098 	stack_depth = max_t(u32, stack_depth, 1);
2099 	insn->off = (s16) insn->imm;
2100 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2101 		__bpf_call_base_args;
2102 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2103 }
2104 
2105 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)2106 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2107 					 const struct bpf_insn *insn)
2108 {
2109 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2110 	 * is not working properly, so warn about it!
2111 	 */
2112 	WARN_ON_ONCE(1);
2113 	return 0;
2114 }
2115 #endif
2116 
bpf_prog_map_compatible(struct bpf_map * map,const struct bpf_prog * fp)2117 bool bpf_prog_map_compatible(struct bpf_map *map,
2118 			     const struct bpf_prog *fp)
2119 {
2120 	bool ret;
2121 
2122 	if (fp->kprobe_override)
2123 		return false;
2124 
2125 	spin_lock(&map->owner.lock);
2126 	if (!map->owner.type) {
2127 		/* There's no owner yet where we could check for
2128 		 * compatibility.
2129 		 */
2130 		map->owner.type  = fp->type;
2131 		map->owner.jited = fp->jited;
2132 		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2133 		ret = true;
2134 	} else {
2135 		ret = map->owner.type  == fp->type &&
2136 		      map->owner.jited == fp->jited &&
2137 		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2138 	}
2139 	spin_unlock(&map->owner.lock);
2140 
2141 	return ret;
2142 }
2143 
bpf_check_tail_call(const struct bpf_prog * fp)2144 static int bpf_check_tail_call(const struct bpf_prog *fp)
2145 {
2146 	struct bpf_prog_aux *aux = fp->aux;
2147 	int i, ret = 0;
2148 
2149 	mutex_lock(&aux->used_maps_mutex);
2150 	for (i = 0; i < aux->used_map_cnt; i++) {
2151 		struct bpf_map *map = aux->used_maps[i];
2152 
2153 		if (!map_type_contains_progs(map))
2154 			continue;
2155 
2156 		if (!bpf_prog_map_compatible(map, fp)) {
2157 			ret = -EINVAL;
2158 			goto out;
2159 		}
2160 	}
2161 
2162 out:
2163 	mutex_unlock(&aux->used_maps_mutex);
2164 	return ret;
2165 }
2166 
bpf_prog_select_func(struct bpf_prog * fp)2167 static void bpf_prog_select_func(struct bpf_prog *fp)
2168 {
2169 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2170 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2171 
2172 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2173 #else
2174 	fp->bpf_func = __bpf_prog_ret0_warn;
2175 #endif
2176 }
2177 
2178 /**
2179  *	bpf_prog_select_runtime - select exec runtime for BPF program
2180  *	@fp: bpf_prog populated with BPF program
2181  *	@err: pointer to error variable
2182  *
2183  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2184  * The BPF program will be executed via bpf_prog_run() function.
2185  *
2186  * Return: the &fp argument along with &err set to 0 for success or
2187  * a negative errno code on failure
2188  */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)2189 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2190 {
2191 	/* In case of BPF to BPF calls, verifier did all the prep
2192 	 * work with regards to JITing, etc.
2193 	 */
2194 	bool jit_needed = false;
2195 
2196 	if (fp->bpf_func)
2197 		goto finalize;
2198 
2199 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2200 	    bpf_prog_has_kfunc_call(fp))
2201 		jit_needed = true;
2202 
2203 	bpf_prog_select_func(fp);
2204 
2205 	/* eBPF JITs can rewrite the program in case constant
2206 	 * blinding is active. However, in case of error during
2207 	 * blinding, bpf_int_jit_compile() must always return a
2208 	 * valid program, which in this case would simply not
2209 	 * be JITed, but falls back to the interpreter.
2210 	 */
2211 	if (!bpf_prog_is_dev_bound(fp->aux)) {
2212 		*err = bpf_prog_alloc_jited_linfo(fp);
2213 		if (*err)
2214 			return fp;
2215 
2216 		fp = bpf_int_jit_compile(fp);
2217 		bpf_prog_jit_attempt_done(fp);
2218 		if (!fp->jited && jit_needed) {
2219 			*err = -ENOTSUPP;
2220 			return fp;
2221 		}
2222 	} else {
2223 		*err = bpf_prog_offload_compile(fp);
2224 		if (*err)
2225 			return fp;
2226 	}
2227 
2228 finalize:
2229 	bpf_prog_lock_ro(fp);
2230 
2231 	/* The tail call compatibility check can only be done at
2232 	 * this late stage as we need to determine, if we deal
2233 	 * with JITed or non JITed program concatenations and not
2234 	 * all eBPF JITs might immediately support all features.
2235 	 */
2236 	*err = bpf_check_tail_call(fp);
2237 
2238 	return fp;
2239 }
2240 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2241 
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)2242 static unsigned int __bpf_prog_ret1(const void *ctx,
2243 				    const struct bpf_insn *insn)
2244 {
2245 	return 1;
2246 }
2247 
2248 static struct bpf_prog_dummy {
2249 	struct bpf_prog prog;
2250 } dummy_bpf_prog = {
2251 	.prog = {
2252 		.bpf_func = __bpf_prog_ret1,
2253 	},
2254 };
2255 
2256 struct bpf_empty_prog_array bpf_empty_prog_array = {
2257 	.null_prog = NULL,
2258 };
2259 EXPORT_SYMBOL(bpf_empty_prog_array);
2260 
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)2261 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2262 {
2263 	if (prog_cnt)
2264 		return kzalloc(sizeof(struct bpf_prog_array) +
2265 			       sizeof(struct bpf_prog_array_item) *
2266 			       (prog_cnt + 1),
2267 			       flags);
2268 
2269 	return &bpf_empty_prog_array.hdr;
2270 }
2271 
bpf_prog_array_free(struct bpf_prog_array * progs)2272 void bpf_prog_array_free(struct bpf_prog_array *progs)
2273 {
2274 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2275 		return;
2276 	kfree_rcu(progs, rcu);
2277 }
2278 
bpf_prog_array_length(struct bpf_prog_array * array)2279 int bpf_prog_array_length(struct bpf_prog_array *array)
2280 {
2281 	struct bpf_prog_array_item *item;
2282 	u32 cnt = 0;
2283 
2284 	for (item = array->items; item->prog; item++)
2285 		if (item->prog != &dummy_bpf_prog.prog)
2286 			cnt++;
2287 	return cnt;
2288 }
2289 
bpf_prog_array_is_empty(struct bpf_prog_array * array)2290 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2291 {
2292 	struct bpf_prog_array_item *item;
2293 
2294 	for (item = array->items; item->prog; item++)
2295 		if (item->prog != &dummy_bpf_prog.prog)
2296 			return false;
2297 	return true;
2298 }
2299 
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)2300 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2301 				     u32 *prog_ids,
2302 				     u32 request_cnt)
2303 {
2304 	struct bpf_prog_array_item *item;
2305 	int i = 0;
2306 
2307 	for (item = array->items; item->prog; item++) {
2308 		if (item->prog == &dummy_bpf_prog.prog)
2309 			continue;
2310 		prog_ids[i] = item->prog->aux->id;
2311 		if (++i == request_cnt) {
2312 			item++;
2313 			break;
2314 		}
2315 	}
2316 
2317 	return !!(item->prog);
2318 }
2319 
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)2320 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2321 				__u32 __user *prog_ids, u32 cnt)
2322 {
2323 	unsigned long err = 0;
2324 	bool nospc;
2325 	u32 *ids;
2326 
2327 	/* users of this function are doing:
2328 	 * cnt = bpf_prog_array_length();
2329 	 * if (cnt > 0)
2330 	 *     bpf_prog_array_copy_to_user(..., cnt);
2331 	 * so below kcalloc doesn't need extra cnt > 0 check.
2332 	 */
2333 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2334 	if (!ids)
2335 		return -ENOMEM;
2336 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2337 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2338 	kfree(ids);
2339 	if (err)
2340 		return -EFAULT;
2341 	if (nospc)
2342 		return -ENOSPC;
2343 	return 0;
2344 }
2345 
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2346 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2347 				struct bpf_prog *old_prog)
2348 {
2349 	struct bpf_prog_array_item *item;
2350 
2351 	for (item = array->items; item->prog; item++)
2352 		if (item->prog == old_prog) {
2353 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2354 			break;
2355 		}
2356 }
2357 
2358 /**
2359  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2360  *                                   index into the program array with
2361  *                                   a dummy no-op program.
2362  * @array: a bpf_prog_array
2363  * @index: the index of the program to replace
2364  *
2365  * Skips over dummy programs, by not counting them, when calculating
2366  * the position of the program to replace.
2367  *
2368  * Return:
2369  * * 0		- Success
2370  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2371  * * -ENOENT	- Index out of range
2372  */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2373 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2374 {
2375 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2376 }
2377 
2378 /**
2379  * bpf_prog_array_update_at() - Updates the program at the given index
2380  *                              into the program array.
2381  * @array: a bpf_prog_array
2382  * @index: the index of the program to update
2383  * @prog: the program to insert into the array
2384  *
2385  * Skips over dummy programs, by not counting them, when calculating
2386  * the position of the program to update.
2387  *
2388  * Return:
2389  * * 0		- Success
2390  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2391  * * -ENOENT	- Index out of range
2392  */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2393 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2394 			     struct bpf_prog *prog)
2395 {
2396 	struct bpf_prog_array_item *item;
2397 
2398 	if (unlikely(index < 0))
2399 		return -EINVAL;
2400 
2401 	for (item = array->items; item->prog; item++) {
2402 		if (item->prog == &dummy_bpf_prog.prog)
2403 			continue;
2404 		if (!index) {
2405 			WRITE_ONCE(item->prog, prog);
2406 			return 0;
2407 		}
2408 		index--;
2409 	}
2410 	return -ENOENT;
2411 }
2412 
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,u64 bpf_cookie,struct bpf_prog_array ** new_array)2413 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2414 			struct bpf_prog *exclude_prog,
2415 			struct bpf_prog *include_prog,
2416 			u64 bpf_cookie,
2417 			struct bpf_prog_array **new_array)
2418 {
2419 	int new_prog_cnt, carry_prog_cnt = 0;
2420 	struct bpf_prog_array_item *existing, *new;
2421 	struct bpf_prog_array *array;
2422 	bool found_exclude = false;
2423 
2424 	/* Figure out how many existing progs we need to carry over to
2425 	 * the new array.
2426 	 */
2427 	if (old_array) {
2428 		existing = old_array->items;
2429 		for (; existing->prog; existing++) {
2430 			if (existing->prog == exclude_prog) {
2431 				found_exclude = true;
2432 				continue;
2433 			}
2434 			if (existing->prog != &dummy_bpf_prog.prog)
2435 				carry_prog_cnt++;
2436 			if (existing->prog == include_prog)
2437 				return -EEXIST;
2438 		}
2439 	}
2440 
2441 	if (exclude_prog && !found_exclude)
2442 		return -ENOENT;
2443 
2444 	/* How many progs (not NULL) will be in the new array? */
2445 	new_prog_cnt = carry_prog_cnt;
2446 	if (include_prog)
2447 		new_prog_cnt += 1;
2448 
2449 	/* Do we have any prog (not NULL) in the new array? */
2450 	if (!new_prog_cnt) {
2451 		*new_array = NULL;
2452 		return 0;
2453 	}
2454 
2455 	/* +1 as the end of prog_array is marked with NULL */
2456 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2457 	if (!array)
2458 		return -ENOMEM;
2459 	new = array->items;
2460 
2461 	/* Fill in the new prog array */
2462 	if (carry_prog_cnt) {
2463 		existing = old_array->items;
2464 		for (; existing->prog; existing++) {
2465 			if (existing->prog == exclude_prog ||
2466 			    existing->prog == &dummy_bpf_prog.prog)
2467 				continue;
2468 
2469 			new->prog = existing->prog;
2470 			new->bpf_cookie = existing->bpf_cookie;
2471 			new++;
2472 		}
2473 	}
2474 	if (include_prog) {
2475 		new->prog = include_prog;
2476 		new->bpf_cookie = bpf_cookie;
2477 		new++;
2478 	}
2479 	new->prog = NULL;
2480 	*new_array = array;
2481 	return 0;
2482 }
2483 
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2484 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2485 			     u32 *prog_ids, u32 request_cnt,
2486 			     u32 *prog_cnt)
2487 {
2488 	u32 cnt = 0;
2489 
2490 	if (array)
2491 		cnt = bpf_prog_array_length(array);
2492 
2493 	*prog_cnt = cnt;
2494 
2495 	/* return early if user requested only program count or nothing to copy */
2496 	if (!request_cnt || !cnt)
2497 		return 0;
2498 
2499 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2500 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2501 								     : 0;
2502 }
2503 
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2504 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2505 			  struct bpf_map **used_maps, u32 len)
2506 {
2507 	struct bpf_map *map;
2508 	u32 i;
2509 
2510 	for (i = 0; i < len; i++) {
2511 		map = used_maps[i];
2512 		if (map->ops->map_poke_untrack)
2513 			map->ops->map_poke_untrack(map, aux);
2514 		bpf_map_put(map);
2515 	}
2516 }
2517 
bpf_free_used_maps(struct bpf_prog_aux * aux)2518 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2519 {
2520 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2521 	kfree(aux->used_maps);
2522 }
2523 
__bpf_free_used_btfs(struct bpf_prog_aux * aux,struct btf_mod_pair * used_btfs,u32 len)2524 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2525 			  struct btf_mod_pair *used_btfs, u32 len)
2526 {
2527 #ifdef CONFIG_BPF_SYSCALL
2528 	struct btf_mod_pair *btf_mod;
2529 	u32 i;
2530 
2531 	for (i = 0; i < len; i++) {
2532 		btf_mod = &used_btfs[i];
2533 		if (btf_mod->module)
2534 			module_put(btf_mod->module);
2535 		btf_put(btf_mod->btf);
2536 	}
2537 #endif
2538 }
2539 
bpf_free_used_btfs(struct bpf_prog_aux * aux)2540 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2541 {
2542 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2543 	kfree(aux->used_btfs);
2544 }
2545 
bpf_prog_free_deferred(struct work_struct * work)2546 static void bpf_prog_free_deferred(struct work_struct *work)
2547 {
2548 	struct bpf_prog_aux *aux;
2549 	int i;
2550 
2551 	aux = container_of(work, struct bpf_prog_aux, work);
2552 #ifdef CONFIG_BPF_SYSCALL
2553 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2554 #endif
2555 	bpf_free_used_maps(aux);
2556 	bpf_free_used_btfs(aux);
2557 	if (bpf_prog_is_dev_bound(aux))
2558 		bpf_prog_offload_destroy(aux->prog);
2559 #ifdef CONFIG_PERF_EVENTS
2560 	if (aux->prog->has_callchain_buf)
2561 		put_callchain_buffers();
2562 #endif
2563 	if (aux->dst_trampoline)
2564 		bpf_trampoline_put(aux->dst_trampoline);
2565 	for (i = 0; i < aux->func_cnt; i++) {
2566 		/* We can just unlink the subprog poke descriptor table as
2567 		 * it was originally linked to the main program and is also
2568 		 * released along with it.
2569 		 */
2570 		aux->func[i]->aux->poke_tab = NULL;
2571 		bpf_jit_free(aux->func[i]);
2572 	}
2573 	if (aux->func_cnt) {
2574 		kfree(aux->func);
2575 		bpf_prog_unlock_free(aux->prog);
2576 	} else {
2577 		bpf_jit_free(aux->prog);
2578 	}
2579 }
2580 
bpf_prog_free(struct bpf_prog * fp)2581 void bpf_prog_free(struct bpf_prog *fp)
2582 {
2583 	struct bpf_prog_aux *aux = fp->aux;
2584 
2585 	if (aux->dst_prog)
2586 		bpf_prog_put(aux->dst_prog);
2587 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2588 	schedule_work(&aux->work);
2589 }
2590 EXPORT_SYMBOL_GPL(bpf_prog_free);
2591 
2592 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2593 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2594 
bpf_user_rnd_init_once(void)2595 void bpf_user_rnd_init_once(void)
2596 {
2597 	prandom_init_once(&bpf_user_rnd_state);
2598 }
2599 
BPF_CALL_0(bpf_user_rnd_u32)2600 BPF_CALL_0(bpf_user_rnd_u32)
2601 {
2602 	/* Should someone ever have the rather unwise idea to use some
2603 	 * of the registers passed into this function, then note that
2604 	 * this function is called from native eBPF and classic-to-eBPF
2605 	 * transformations. Register assignments from both sides are
2606 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2607 	 */
2608 	struct rnd_state *state;
2609 	u32 res;
2610 
2611 	state = &get_cpu_var(bpf_user_rnd_state);
2612 	res = prandom_u32_state(state);
2613 	put_cpu_var(bpf_user_rnd_state);
2614 
2615 	return res;
2616 }
2617 
BPF_CALL_0(bpf_get_raw_cpu_id)2618 BPF_CALL_0(bpf_get_raw_cpu_id)
2619 {
2620 	return raw_smp_processor_id();
2621 }
2622 
2623 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2624 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2625 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2626 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2627 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2628 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2629 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2630 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2631 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2632 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2633 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2634 
2635 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2636 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2637 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2638 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2639 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2640 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2641 
2642 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2643 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2644 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2645 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2646 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2647 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2648 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2649 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2650 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2651 
bpf_get_trace_printk_proto(void)2652 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2653 {
2654 	return NULL;
2655 }
2656 
bpf_get_trace_vprintk_proto(void)2657 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2658 {
2659 	return NULL;
2660 }
2661 
2662 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2663 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2664 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2665 {
2666 	return -ENOTSUPP;
2667 }
2668 EXPORT_SYMBOL_GPL(bpf_event_output);
2669 
2670 /* Always built-in helper functions. */
2671 const struct bpf_func_proto bpf_tail_call_proto = {
2672 	.func		= NULL,
2673 	.gpl_only	= false,
2674 	.ret_type	= RET_VOID,
2675 	.arg1_type	= ARG_PTR_TO_CTX,
2676 	.arg2_type	= ARG_CONST_MAP_PTR,
2677 	.arg3_type	= ARG_ANYTHING,
2678 };
2679 
2680 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2681  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2682  * eBPF and implicitly also cBPF can get JITed!
2683  */
bpf_int_jit_compile(struct bpf_prog * prog)2684 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2685 {
2686 	return prog;
2687 }
2688 
2689 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2690  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2691  */
bpf_jit_compile(struct bpf_prog * prog)2692 void __weak bpf_jit_compile(struct bpf_prog *prog)
2693 {
2694 }
2695 
bpf_helper_changes_pkt_data(void * func)2696 bool __weak bpf_helper_changes_pkt_data(void *func)
2697 {
2698 	return false;
2699 }
2700 
2701 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2702  * analysis code and wants explicit zero extension inserted by verifier.
2703  * Otherwise, return FALSE.
2704  *
2705  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2706  * you don't override this. JITs that don't want these extra insns can detect
2707  * them using insn_is_zext.
2708  */
bpf_jit_needs_zext(void)2709 bool __weak bpf_jit_needs_zext(void)
2710 {
2711 	return false;
2712 }
2713 
2714 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)2715 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2716 {
2717 	return false;
2718 }
2719 
bpf_jit_supports_kfunc_call(void)2720 bool __weak bpf_jit_supports_kfunc_call(void)
2721 {
2722 	return false;
2723 }
2724 
2725 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2726  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2727  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2728 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2729 			 int len)
2730 {
2731 	return -EFAULT;
2732 }
2733 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2734 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2735 			      void *addr1, void *addr2)
2736 {
2737 	return -ENOTSUPP;
2738 }
2739 
bpf_arch_text_copy(void * dst,void * src,size_t len)2740 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2741 {
2742 	return ERR_PTR(-ENOTSUPP);
2743 }
2744 
bpf_arch_text_invalidate(void * dst,size_t len)2745 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2746 {
2747 	return -ENOTSUPP;
2748 }
2749 
2750 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2751 EXPORT_SYMBOL(bpf_stats_enabled_key);
2752 
2753 /* All definitions of tracepoints related to BPF. */
2754 #define CREATE_TRACE_POINTS
2755 #include <linux/bpf_trace.h>
2756 
2757 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2758 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2759