1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <linux/mm.h>
4 #include <linux/llist.h>
5 #include <linux/bpf.h>
6 #include <linux/irq_work.h>
7 #include <linux/bpf_mem_alloc.h>
8 #include <linux/memcontrol.h>
9 #include <asm/local.h>
10
11 /* Any context (including NMI) BPF specific memory allocator.
12 *
13 * Tracing BPF programs can attach to kprobe and fentry. Hence they
14 * run in unknown context where calling plain kmalloc() might not be safe.
15 *
16 * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
17 * Refill this cache asynchronously from irq_work.
18 *
19 * CPU_0 buckets
20 * 16 32 64 96 128 196 256 512 1024 2048 4096
21 * ...
22 * CPU_N buckets
23 * 16 32 64 96 128 196 256 512 1024 2048 4096
24 *
25 * The buckets are prefilled at the start.
26 * BPF programs always run with migration disabled.
27 * It's safe to allocate from cache of the current cpu with irqs disabled.
28 * Free-ing is always done into bucket of the current cpu as well.
29 * irq_work trims extra free elements from buckets with kfree
30 * and refills them with kmalloc, so global kmalloc logic takes care
31 * of freeing objects allocated by one cpu and freed on another.
32 *
33 * Every allocated objected is padded with extra 8 bytes that contains
34 * struct llist_node.
35 */
36 #define LLIST_NODE_SZ sizeof(struct llist_node)
37
38 /* similar to kmalloc, but sizeof == 8 bucket is gone */
39 static u8 size_index[24] __ro_after_init = {
40 3, /* 8 */
41 3, /* 16 */
42 4, /* 24 */
43 4, /* 32 */
44 5, /* 40 */
45 5, /* 48 */
46 5, /* 56 */
47 5, /* 64 */
48 1, /* 72 */
49 1, /* 80 */
50 1, /* 88 */
51 1, /* 96 */
52 6, /* 104 */
53 6, /* 112 */
54 6, /* 120 */
55 6, /* 128 */
56 2, /* 136 */
57 2, /* 144 */
58 2, /* 152 */
59 2, /* 160 */
60 2, /* 168 */
61 2, /* 176 */
62 2, /* 184 */
63 2 /* 192 */
64 };
65
bpf_mem_cache_idx(size_t size)66 static int bpf_mem_cache_idx(size_t size)
67 {
68 if (!size || size > 4096)
69 return -1;
70
71 if (size <= 192)
72 return size_index[(size - 1) / 8] - 1;
73
74 return fls(size - 1) - 1;
75 }
76
77 #define NUM_CACHES 11
78
79 struct bpf_mem_cache {
80 /* per-cpu list of free objects of size 'unit_size'.
81 * All accesses are done with interrupts disabled and 'active' counter
82 * protection with __llist_add() and __llist_del_first().
83 */
84 struct llist_head free_llist;
85 local_t active;
86
87 /* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
88 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
89 * fail. When 'active' is busy the unit_free() will add an object to
90 * free_llist_extra.
91 */
92 struct llist_head free_llist_extra;
93
94 struct irq_work refill_work;
95 struct obj_cgroup *objcg;
96 int unit_size;
97 /* count of objects in free_llist */
98 int free_cnt;
99 int low_watermark, high_watermark, batch;
100 int percpu_size;
101
102 struct rcu_head rcu;
103 struct llist_head free_by_rcu;
104 struct llist_head waiting_for_gp;
105 atomic_t call_rcu_in_progress;
106 };
107
108 struct bpf_mem_caches {
109 struct bpf_mem_cache cache[NUM_CACHES];
110 };
111
__llist_del_first(struct llist_head * head)112 static struct llist_node notrace *__llist_del_first(struct llist_head *head)
113 {
114 struct llist_node *entry, *next;
115
116 entry = head->first;
117 if (!entry)
118 return NULL;
119 next = entry->next;
120 head->first = next;
121 return entry;
122 }
123
__alloc(struct bpf_mem_cache * c,int node)124 static void *__alloc(struct bpf_mem_cache *c, int node)
125 {
126 /* Allocate, but don't deplete atomic reserves that typical
127 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
128 * will allocate from the current numa node which is what we
129 * want here.
130 */
131 gfp_t flags = GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT;
132
133 if (c->percpu_size) {
134 void **obj = kmalloc_node(c->percpu_size, flags, node);
135 void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
136
137 if (!obj || !pptr) {
138 free_percpu(pptr);
139 kfree(obj);
140 return NULL;
141 }
142 obj[1] = pptr;
143 return obj;
144 }
145
146 return kmalloc_node(c->unit_size, flags, node);
147 }
148
get_memcg(const struct bpf_mem_cache * c)149 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
150 {
151 #ifdef CONFIG_MEMCG_KMEM
152 if (c->objcg)
153 return get_mem_cgroup_from_objcg(c->objcg);
154 #endif
155
156 #ifdef CONFIG_MEMCG
157 return root_mem_cgroup;
158 #else
159 return NULL;
160 #endif
161 }
162
163 /* Mostly runs from irq_work except __init phase. */
alloc_bulk(struct bpf_mem_cache * c,int cnt,int node)164 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node)
165 {
166 struct mem_cgroup *memcg = NULL, *old_memcg;
167 unsigned long flags;
168 void *obj;
169 int i;
170
171 memcg = get_memcg(c);
172 old_memcg = set_active_memcg(memcg);
173 for (i = 0; i < cnt; i++) {
174 obj = __alloc(c, node);
175 if (!obj)
176 break;
177 if (IS_ENABLED(CONFIG_PREEMPT_RT))
178 /* In RT irq_work runs in per-cpu kthread, so disable
179 * interrupts to avoid preemption and interrupts and
180 * reduce the chance of bpf prog executing on this cpu
181 * when active counter is busy.
182 */
183 local_irq_save(flags);
184 /* alloc_bulk runs from irq_work which will not preempt a bpf
185 * program that does unit_alloc/unit_free since IRQs are
186 * disabled there. There is no race to increment 'active'
187 * counter. It protects free_llist from corruption in case NMI
188 * bpf prog preempted this loop.
189 */
190 WARN_ON_ONCE(local_inc_return(&c->active) != 1);
191 __llist_add(obj, &c->free_llist);
192 c->free_cnt++;
193 local_dec(&c->active);
194 if (IS_ENABLED(CONFIG_PREEMPT_RT))
195 local_irq_restore(flags);
196 }
197 set_active_memcg(old_memcg);
198 mem_cgroup_put(memcg);
199 }
200
free_one(struct bpf_mem_cache * c,void * obj)201 static void free_one(struct bpf_mem_cache *c, void *obj)
202 {
203 if (c->percpu_size) {
204 free_percpu(((void **)obj)[1]);
205 kfree(obj);
206 return;
207 }
208
209 kfree(obj);
210 }
211
__free_rcu(struct rcu_head * head)212 static void __free_rcu(struct rcu_head *head)
213 {
214 struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
215 struct llist_node *llnode = llist_del_all(&c->waiting_for_gp);
216 struct llist_node *pos, *t;
217
218 llist_for_each_safe(pos, t, llnode)
219 free_one(c, pos);
220 atomic_set(&c->call_rcu_in_progress, 0);
221 }
222
__free_rcu_tasks_trace(struct rcu_head * head)223 static void __free_rcu_tasks_trace(struct rcu_head *head)
224 {
225 struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
226
227 call_rcu(&c->rcu, __free_rcu);
228 }
229
enque_to_free(struct bpf_mem_cache * c,void * obj)230 static void enque_to_free(struct bpf_mem_cache *c, void *obj)
231 {
232 struct llist_node *llnode = obj;
233
234 /* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
235 * Nothing races to add to free_by_rcu list.
236 */
237 __llist_add(llnode, &c->free_by_rcu);
238 }
239
do_call_rcu(struct bpf_mem_cache * c)240 static void do_call_rcu(struct bpf_mem_cache *c)
241 {
242 struct llist_node *llnode, *t;
243
244 if (atomic_xchg(&c->call_rcu_in_progress, 1))
245 return;
246
247 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
248 llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu))
249 /* There is no concurrent __llist_add(waiting_for_gp) access.
250 * It doesn't race with llist_del_all either.
251 * But there could be two concurrent llist_del_all(waiting_for_gp):
252 * from __free_rcu() and from drain_mem_cache().
253 */
254 __llist_add(llnode, &c->waiting_for_gp);
255 /* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
256 * Then use call_rcu() to wait for normal progs to finish
257 * and finally do free_one() on each element.
258 */
259 call_rcu_tasks_trace(&c->rcu, __free_rcu_tasks_trace);
260 }
261
free_bulk(struct bpf_mem_cache * c)262 static void free_bulk(struct bpf_mem_cache *c)
263 {
264 struct llist_node *llnode, *t;
265 unsigned long flags;
266 int cnt;
267
268 do {
269 if (IS_ENABLED(CONFIG_PREEMPT_RT))
270 local_irq_save(flags);
271 WARN_ON_ONCE(local_inc_return(&c->active) != 1);
272 llnode = __llist_del_first(&c->free_llist);
273 if (llnode)
274 cnt = --c->free_cnt;
275 else
276 cnt = 0;
277 local_dec(&c->active);
278 if (IS_ENABLED(CONFIG_PREEMPT_RT))
279 local_irq_restore(flags);
280 if (llnode)
281 enque_to_free(c, llnode);
282 } while (cnt > (c->high_watermark + c->low_watermark) / 2);
283
284 /* and drain free_llist_extra */
285 llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
286 enque_to_free(c, llnode);
287 do_call_rcu(c);
288 }
289
bpf_mem_refill(struct irq_work * work)290 static void bpf_mem_refill(struct irq_work *work)
291 {
292 struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
293 int cnt;
294
295 /* Racy access to free_cnt. It doesn't need to be 100% accurate */
296 cnt = c->free_cnt;
297 if (cnt < c->low_watermark)
298 /* irq_work runs on this cpu and kmalloc will allocate
299 * from the current numa node which is what we want here.
300 */
301 alloc_bulk(c, c->batch, NUMA_NO_NODE);
302 else if (cnt > c->high_watermark)
303 free_bulk(c);
304 }
305
irq_work_raise(struct bpf_mem_cache * c)306 static void notrace irq_work_raise(struct bpf_mem_cache *c)
307 {
308 irq_work_queue(&c->refill_work);
309 }
310
311 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
312 * the freelist cache will be elem_size * 64 (or less) on each cpu.
313 *
314 * For bpf programs that don't have statically known allocation sizes and
315 * assuming (low_mark + high_mark) / 2 as an average number of elements per
316 * bucket and all buckets are used the total amount of memory in freelists
317 * on each cpu will be:
318 * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
319 * == ~ 116 Kbyte using below heuristic.
320 * Initialized, but unused bpf allocator (not bpf map specific one) will
321 * consume ~ 11 Kbyte per cpu.
322 * Typical case will be between 11K and 116K closer to 11K.
323 * bpf progs can and should share bpf_mem_cache when possible.
324 */
325
prefill_mem_cache(struct bpf_mem_cache * c,int cpu)326 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
327 {
328 init_irq_work(&c->refill_work, bpf_mem_refill);
329 if (c->unit_size <= 256) {
330 c->low_watermark = 32;
331 c->high_watermark = 96;
332 } else {
333 /* When page_size == 4k, order-0 cache will have low_mark == 2
334 * and high_mark == 6 with batch alloc of 3 individual pages at
335 * a time.
336 * 8k allocs and above low == 1, high == 3, batch == 1.
337 */
338 c->low_watermark = max(32 * 256 / c->unit_size, 1);
339 c->high_watermark = max(96 * 256 / c->unit_size, 3);
340 }
341 c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
342
343 /* To avoid consuming memory assume that 1st run of bpf
344 * prog won't be doing more than 4 map_update_elem from
345 * irq disabled region
346 */
347 alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu));
348 }
349
350 /* When size != 0 bpf_mem_cache for each cpu.
351 * This is typical bpf hash map use case when all elements have equal size.
352 *
353 * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
354 * kmalloc/kfree. Max allocation size is 4096 in this case.
355 * This is bpf_dynptr and bpf_kptr use case.
356 */
bpf_mem_alloc_init(struct bpf_mem_alloc * ma,int size,bool percpu)357 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
358 {
359 static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
360 struct bpf_mem_caches *cc, __percpu *pcc;
361 struct bpf_mem_cache *c, __percpu *pc;
362 struct obj_cgroup *objcg = NULL;
363 int cpu, i, unit_size, percpu_size = 0;
364
365 if (size) {
366 pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
367 if (!pc)
368 return -ENOMEM;
369
370 if (percpu)
371 /* room for llist_node and per-cpu pointer */
372 percpu_size = LLIST_NODE_SZ + sizeof(void *);
373 else
374 size += LLIST_NODE_SZ; /* room for llist_node */
375 unit_size = size;
376
377 #ifdef CONFIG_MEMCG_KMEM
378 objcg = get_obj_cgroup_from_current();
379 #endif
380 for_each_possible_cpu(cpu) {
381 c = per_cpu_ptr(pc, cpu);
382 c->unit_size = unit_size;
383 c->objcg = objcg;
384 c->percpu_size = percpu_size;
385 prefill_mem_cache(c, cpu);
386 }
387 ma->cache = pc;
388 return 0;
389 }
390
391 /* size == 0 && percpu is an invalid combination */
392 if (WARN_ON_ONCE(percpu))
393 return -EINVAL;
394
395 pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
396 if (!pcc)
397 return -ENOMEM;
398 #ifdef CONFIG_MEMCG_KMEM
399 objcg = get_obj_cgroup_from_current();
400 #endif
401 for_each_possible_cpu(cpu) {
402 cc = per_cpu_ptr(pcc, cpu);
403 for (i = 0; i < NUM_CACHES; i++) {
404 c = &cc->cache[i];
405 c->unit_size = sizes[i];
406 c->objcg = objcg;
407 prefill_mem_cache(c, cpu);
408 }
409 }
410 ma->caches = pcc;
411 return 0;
412 }
413
drain_mem_cache(struct bpf_mem_cache * c)414 static void drain_mem_cache(struct bpf_mem_cache *c)
415 {
416 struct llist_node *llnode, *t;
417
418 /* No progs are using this bpf_mem_cache, but htab_map_free() called
419 * bpf_mem_cache_free() for all remaining elements and they can be in
420 * free_by_rcu or in waiting_for_gp lists, so drain those lists now.
421 *
422 * Except for waiting_for_gp list, there are no concurrent operations
423 * on these lists, so it is safe to use __llist_del_all().
424 */
425 llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu))
426 free_one(c, llnode);
427 llist_for_each_safe(llnode, t, llist_del_all(&c->waiting_for_gp))
428 free_one(c, llnode);
429 llist_for_each_safe(llnode, t, __llist_del_all(&c->free_llist))
430 free_one(c, llnode);
431 llist_for_each_safe(llnode, t, __llist_del_all(&c->free_llist_extra))
432 free_one(c, llnode);
433 }
434
free_mem_alloc_no_barrier(struct bpf_mem_alloc * ma)435 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
436 {
437 free_percpu(ma->cache);
438 free_percpu(ma->caches);
439 ma->cache = NULL;
440 ma->caches = NULL;
441 }
442
free_mem_alloc(struct bpf_mem_alloc * ma)443 static void free_mem_alloc(struct bpf_mem_alloc *ma)
444 {
445 /* waiting_for_gp lists was drained, but __free_rcu might
446 * still execute. Wait for it now before we freeing percpu caches.
447 */
448 rcu_barrier_tasks_trace();
449 rcu_barrier();
450 free_mem_alloc_no_barrier(ma);
451 }
452
free_mem_alloc_deferred(struct work_struct * work)453 static void free_mem_alloc_deferred(struct work_struct *work)
454 {
455 struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
456
457 free_mem_alloc(ma);
458 kfree(ma);
459 }
460
destroy_mem_alloc(struct bpf_mem_alloc * ma,int rcu_in_progress)461 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
462 {
463 struct bpf_mem_alloc *copy;
464
465 if (!rcu_in_progress) {
466 /* Fast path. No callbacks are pending, hence no need to do
467 * rcu_barrier-s.
468 */
469 free_mem_alloc_no_barrier(ma);
470 return;
471 }
472
473 copy = kmalloc(sizeof(*ma), GFP_KERNEL);
474 if (!copy) {
475 /* Slow path with inline barrier-s */
476 free_mem_alloc(ma);
477 return;
478 }
479
480 /* Defer barriers into worker to let the rest of map memory to be freed */
481 copy->cache = ma->cache;
482 ma->cache = NULL;
483 copy->caches = ma->caches;
484 ma->caches = NULL;
485 INIT_WORK(©->work, free_mem_alloc_deferred);
486 queue_work(system_unbound_wq, ©->work);
487 }
488
bpf_mem_alloc_destroy(struct bpf_mem_alloc * ma)489 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
490 {
491 struct bpf_mem_caches *cc;
492 struct bpf_mem_cache *c;
493 int cpu, i, rcu_in_progress;
494
495 if (ma->cache) {
496 rcu_in_progress = 0;
497 for_each_possible_cpu(cpu) {
498 c = per_cpu_ptr(ma->cache, cpu);
499 /*
500 * refill_work may be unfinished for PREEMPT_RT kernel
501 * in which irq work is invoked in a per-CPU RT thread.
502 * It is also possible for kernel with
503 * arch_irq_work_has_interrupt() being false and irq
504 * work is invoked in timer interrupt. So waiting for
505 * the completion of irq work to ease the handling of
506 * concurrency.
507 */
508 irq_work_sync(&c->refill_work);
509 drain_mem_cache(c);
510 rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
511 }
512 /* objcg is the same across cpus */
513 if (c->objcg)
514 obj_cgroup_put(c->objcg);
515 destroy_mem_alloc(ma, rcu_in_progress);
516 }
517 if (ma->caches) {
518 rcu_in_progress = 0;
519 for_each_possible_cpu(cpu) {
520 cc = per_cpu_ptr(ma->caches, cpu);
521 for (i = 0; i < NUM_CACHES; i++) {
522 c = &cc->cache[i];
523 irq_work_sync(&c->refill_work);
524 drain_mem_cache(c);
525 rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
526 }
527 }
528 if (c->objcg)
529 obj_cgroup_put(c->objcg);
530 destroy_mem_alloc(ma, rcu_in_progress);
531 }
532 }
533
534 /* notrace is necessary here and in other functions to make sure
535 * bpf programs cannot attach to them and cause llist corruptions.
536 */
unit_alloc(struct bpf_mem_cache * c)537 static void notrace *unit_alloc(struct bpf_mem_cache *c)
538 {
539 struct llist_node *llnode = NULL;
540 unsigned long flags;
541 int cnt = 0;
542
543 /* Disable irqs to prevent the following race for majority of prog types:
544 * prog_A
545 * bpf_mem_alloc
546 * preemption or irq -> prog_B
547 * bpf_mem_alloc
548 *
549 * but prog_B could be a perf_event NMI prog.
550 * Use per-cpu 'active' counter to order free_list access between
551 * unit_alloc/unit_free/bpf_mem_refill.
552 */
553 local_irq_save(flags);
554 if (local_inc_return(&c->active) == 1) {
555 llnode = __llist_del_first(&c->free_llist);
556 if (llnode)
557 cnt = --c->free_cnt;
558 }
559 local_dec(&c->active);
560 local_irq_restore(flags);
561
562 WARN_ON(cnt < 0);
563
564 if (cnt < c->low_watermark)
565 irq_work_raise(c);
566 return llnode;
567 }
568
569 /* Though 'ptr' object could have been allocated on a different cpu
570 * add it to the free_llist of the current cpu.
571 * Let kfree() logic deal with it when it's later called from irq_work.
572 */
unit_free(struct bpf_mem_cache * c,void * ptr)573 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
574 {
575 struct llist_node *llnode = ptr - LLIST_NODE_SZ;
576 unsigned long flags;
577 int cnt = 0;
578
579 BUILD_BUG_ON(LLIST_NODE_SZ > 8);
580
581 local_irq_save(flags);
582 if (local_inc_return(&c->active) == 1) {
583 __llist_add(llnode, &c->free_llist);
584 cnt = ++c->free_cnt;
585 } else {
586 /* unit_free() cannot fail. Therefore add an object to atomic
587 * llist. free_bulk() will drain it. Though free_llist_extra is
588 * a per-cpu list we have to use atomic llist_add here, since
589 * it also can be interrupted by bpf nmi prog that does another
590 * unit_free() into the same free_llist_extra.
591 */
592 llist_add(llnode, &c->free_llist_extra);
593 }
594 local_dec(&c->active);
595 local_irq_restore(flags);
596
597 if (cnt > c->high_watermark)
598 /* free few objects from current cpu into global kmalloc pool */
599 irq_work_raise(c);
600 }
601
602 /* Called from BPF program or from sys_bpf syscall.
603 * In both cases migration is disabled.
604 */
bpf_mem_alloc(struct bpf_mem_alloc * ma,size_t size)605 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
606 {
607 int idx;
608 void *ret;
609
610 if (!size)
611 return ZERO_SIZE_PTR;
612
613 idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ);
614 if (idx < 0)
615 return NULL;
616
617 ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
618 return !ret ? NULL : ret + LLIST_NODE_SZ;
619 }
620
bpf_mem_free(struct bpf_mem_alloc * ma,void * ptr)621 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
622 {
623 int idx;
624
625 if (!ptr)
626 return;
627
628 idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ));
629 if (idx < 0)
630 return;
631
632 unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
633 }
634
bpf_mem_cache_alloc(struct bpf_mem_alloc * ma)635 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
636 {
637 void *ret;
638
639 ret = unit_alloc(this_cpu_ptr(ma->cache));
640 return !ret ? NULL : ret + LLIST_NODE_SZ;
641 }
642
bpf_mem_cache_free(struct bpf_mem_alloc * ma,void * ptr)643 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
644 {
645 if (!ptr)
646 return;
647
648 unit_free(this_cpu_ptr(ma->cache), ptr);
649 }
650