1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <linux/version.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC 0xcafe4a11
60 #endif
61
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65 * compilation if user enables corresponding warning. Disable it explicitly.
66 */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68
69 #define __printf(a, b) __attribute__((format(printf, a, b)))
70
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73
74 static const char * const attach_type_name[] = {
75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
80 [BPF_CGROUP_DEVICE] = "cgroup_device",
81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
102 [BPF_LIRC_MODE2] = "lirc_mode2",
103 [BPF_FLOW_DISSECTOR] = "flow_dissector",
104 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
105 [BPF_TRACE_FENTRY] = "trace_fentry",
106 [BPF_TRACE_FEXIT] = "trace_fexit",
107 [BPF_MODIFY_RETURN] = "modify_return",
108 [BPF_LSM_MAC] = "lsm_mac",
109 [BPF_LSM_CGROUP] = "lsm_cgroup",
110 [BPF_SK_LOOKUP] = "sk_lookup",
111 [BPF_TRACE_ITER] = "trace_iter",
112 [BPF_XDP_DEVMAP] = "xdp_devmap",
113 [BPF_XDP_CPUMAP] = "xdp_cpumap",
114 [BPF_XDP] = "xdp",
115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
117 [BPF_PERF_EVENT] = "perf_event",
118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
119 };
120
121 static const char * const link_type_name[] = {
122 [BPF_LINK_TYPE_UNSPEC] = "unspec",
123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
124 [BPF_LINK_TYPE_TRACING] = "tracing",
125 [BPF_LINK_TYPE_CGROUP] = "cgroup",
126 [BPF_LINK_TYPE_ITER] = "iter",
127 [BPF_LINK_TYPE_NETNS] = "netns",
128 [BPF_LINK_TYPE_XDP] = "xdp",
129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
132 };
133
134 static const char * const map_type_name[] = {
135 [BPF_MAP_TYPE_UNSPEC] = "unspec",
136 [BPF_MAP_TYPE_HASH] = "hash",
137 [BPF_MAP_TYPE_ARRAY] = "array",
138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
149 [BPF_MAP_TYPE_DEVMAP] = "devmap",
150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
152 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
153 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
158 [BPF_MAP_TYPE_QUEUE] = "queue",
159 [BPF_MAP_TYPE_STACK] = "stack",
160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
166 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
167 };
168
169 static const char * const prog_type_name[] = {
170 [BPF_PROG_TYPE_UNSPEC] = "unspec",
171 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
172 [BPF_PROG_TYPE_KPROBE] = "kprobe",
173 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
174 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
175 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
176 [BPF_PROG_TYPE_XDP] = "xdp",
177 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
178 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
179 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
180 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
181 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
182 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
183 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
184 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
185 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
186 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
187 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
188 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
189 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
190 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
191 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
192 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
193 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
194 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
195 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
196 [BPF_PROG_TYPE_TRACING] = "tracing",
197 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
198 [BPF_PROG_TYPE_EXT] = "ext",
199 [BPF_PROG_TYPE_LSM] = "lsm",
200 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
201 [BPF_PROG_TYPE_SYSCALL] = "syscall",
202 };
203
__base_pr(enum libbpf_print_level level,const char * format,va_list args)204 static int __base_pr(enum libbpf_print_level level, const char *format,
205 va_list args)
206 {
207 if (level == LIBBPF_DEBUG)
208 return 0;
209
210 return vfprintf(stderr, format, args);
211 }
212
213 static libbpf_print_fn_t __libbpf_pr = __base_pr;
214
libbpf_set_print(libbpf_print_fn_t fn)215 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
216 {
217 libbpf_print_fn_t old_print_fn = __libbpf_pr;
218
219 __libbpf_pr = fn;
220 return old_print_fn;
221 }
222
223 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)224 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
225 {
226 va_list args;
227 int old_errno;
228
229 if (!__libbpf_pr)
230 return;
231
232 old_errno = errno;
233
234 va_start(args, format);
235 __libbpf_pr(level, format, args);
236 va_end(args);
237
238 errno = old_errno;
239 }
240
pr_perm_msg(int err)241 static void pr_perm_msg(int err)
242 {
243 struct rlimit limit;
244 char buf[100];
245
246 if (err != -EPERM || geteuid() != 0)
247 return;
248
249 err = getrlimit(RLIMIT_MEMLOCK, &limit);
250 if (err)
251 return;
252
253 if (limit.rlim_cur == RLIM_INFINITY)
254 return;
255
256 if (limit.rlim_cur < 1024)
257 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
258 else if (limit.rlim_cur < 1024*1024)
259 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
260 else
261 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
262
263 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
264 buf);
265 }
266
267 #define STRERR_BUFSIZE 128
268
269 /* Copied from tools/perf/util/util.h */
270 #ifndef zfree
271 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
272 #endif
273
274 #ifndef zclose
275 # define zclose(fd) ({ \
276 int ___err = 0; \
277 if ((fd) >= 0) \
278 ___err = close((fd)); \
279 fd = -1; \
280 ___err; })
281 #endif
282
ptr_to_u64(const void * ptr)283 static inline __u64 ptr_to_u64(const void *ptr)
284 {
285 return (__u64) (unsigned long) ptr;
286 }
287
libbpf_set_strict_mode(enum libbpf_strict_mode mode)288 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
289 {
290 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
291 return 0;
292 }
293
libbpf_major_version(void)294 __u32 libbpf_major_version(void)
295 {
296 return LIBBPF_MAJOR_VERSION;
297 }
298
libbpf_minor_version(void)299 __u32 libbpf_minor_version(void)
300 {
301 return LIBBPF_MINOR_VERSION;
302 }
303
libbpf_version_string(void)304 const char *libbpf_version_string(void)
305 {
306 #define __S(X) #X
307 #define _S(X) __S(X)
308 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
309 #undef _S
310 #undef __S
311 }
312
313 enum reloc_type {
314 RELO_LD64,
315 RELO_CALL,
316 RELO_DATA,
317 RELO_EXTERN_VAR,
318 RELO_EXTERN_FUNC,
319 RELO_SUBPROG_ADDR,
320 RELO_CORE,
321 };
322
323 struct reloc_desc {
324 enum reloc_type type;
325 int insn_idx;
326 union {
327 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
328 struct {
329 int map_idx;
330 int sym_off;
331 };
332 };
333 };
334
335 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
336 enum sec_def_flags {
337 SEC_NONE = 0,
338 /* expected_attach_type is optional, if kernel doesn't support that */
339 SEC_EXP_ATTACH_OPT = 1,
340 /* legacy, only used by libbpf_get_type_names() and
341 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
342 * This used to be associated with cgroup (and few other) BPF programs
343 * that were attachable through BPF_PROG_ATTACH command. Pretty
344 * meaningless nowadays, though.
345 */
346 SEC_ATTACHABLE = 2,
347 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
348 /* attachment target is specified through BTF ID in either kernel or
349 * other BPF program's BTF object */
350 SEC_ATTACH_BTF = 4,
351 /* BPF program type allows sleeping/blocking in kernel */
352 SEC_SLEEPABLE = 8,
353 /* BPF program support non-linear XDP buffer */
354 SEC_XDP_FRAGS = 16,
355 };
356
357 struct bpf_sec_def {
358 char *sec;
359 enum bpf_prog_type prog_type;
360 enum bpf_attach_type expected_attach_type;
361 long cookie;
362 int handler_id;
363
364 libbpf_prog_setup_fn_t prog_setup_fn;
365 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
366 libbpf_prog_attach_fn_t prog_attach_fn;
367 };
368
369 /*
370 * bpf_prog should be a better name but it has been used in
371 * linux/filter.h.
372 */
373 struct bpf_program {
374 char *name;
375 char *sec_name;
376 size_t sec_idx;
377 const struct bpf_sec_def *sec_def;
378 /* this program's instruction offset (in number of instructions)
379 * within its containing ELF section
380 */
381 size_t sec_insn_off;
382 /* number of original instructions in ELF section belonging to this
383 * program, not taking into account subprogram instructions possible
384 * appended later during relocation
385 */
386 size_t sec_insn_cnt;
387 /* Offset (in number of instructions) of the start of instruction
388 * belonging to this BPF program within its containing main BPF
389 * program. For the entry-point (main) BPF program, this is always
390 * zero. For a sub-program, this gets reset before each of main BPF
391 * programs are processed and relocated and is used to determined
392 * whether sub-program was already appended to the main program, and
393 * if yes, at which instruction offset.
394 */
395 size_t sub_insn_off;
396
397 /* instructions that belong to BPF program; insns[0] is located at
398 * sec_insn_off instruction within its ELF section in ELF file, so
399 * when mapping ELF file instruction index to the local instruction,
400 * one needs to subtract sec_insn_off; and vice versa.
401 */
402 struct bpf_insn *insns;
403 /* actual number of instruction in this BPF program's image; for
404 * entry-point BPF programs this includes the size of main program
405 * itself plus all the used sub-programs, appended at the end
406 */
407 size_t insns_cnt;
408
409 struct reloc_desc *reloc_desc;
410 int nr_reloc;
411
412 /* BPF verifier log settings */
413 char *log_buf;
414 size_t log_size;
415 __u32 log_level;
416
417 struct bpf_object *obj;
418
419 int fd;
420 bool autoload;
421 bool autoattach;
422 bool mark_btf_static;
423 enum bpf_prog_type type;
424 enum bpf_attach_type expected_attach_type;
425
426 int prog_ifindex;
427 __u32 attach_btf_obj_fd;
428 __u32 attach_btf_id;
429 __u32 attach_prog_fd;
430
431 void *func_info;
432 __u32 func_info_rec_size;
433 __u32 func_info_cnt;
434
435 void *line_info;
436 __u32 line_info_rec_size;
437 __u32 line_info_cnt;
438 __u32 prog_flags;
439 };
440
441 struct bpf_struct_ops {
442 const char *tname;
443 const struct btf_type *type;
444 struct bpf_program **progs;
445 __u32 *kern_func_off;
446 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
447 void *data;
448 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
449 * btf_vmlinux's format.
450 * struct bpf_struct_ops_tcp_congestion_ops {
451 * [... some other kernel fields ...]
452 * struct tcp_congestion_ops data;
453 * }
454 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
455 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
456 * from "data".
457 */
458 void *kern_vdata;
459 __u32 type_id;
460 };
461
462 #define DATA_SEC ".data"
463 #define BSS_SEC ".bss"
464 #define RODATA_SEC ".rodata"
465 #define KCONFIG_SEC ".kconfig"
466 #define KSYMS_SEC ".ksyms"
467 #define STRUCT_OPS_SEC ".struct_ops"
468
469 enum libbpf_map_type {
470 LIBBPF_MAP_UNSPEC,
471 LIBBPF_MAP_DATA,
472 LIBBPF_MAP_BSS,
473 LIBBPF_MAP_RODATA,
474 LIBBPF_MAP_KCONFIG,
475 };
476
477 struct bpf_map_def {
478 unsigned int type;
479 unsigned int key_size;
480 unsigned int value_size;
481 unsigned int max_entries;
482 unsigned int map_flags;
483 };
484
485 struct bpf_map {
486 struct bpf_object *obj;
487 char *name;
488 /* real_name is defined for special internal maps (.rodata*,
489 * .data*, .bss, .kconfig) and preserves their original ELF section
490 * name. This is important to be be able to find corresponding BTF
491 * DATASEC information.
492 */
493 char *real_name;
494 int fd;
495 int sec_idx;
496 size_t sec_offset;
497 int map_ifindex;
498 int inner_map_fd;
499 struct bpf_map_def def;
500 __u32 numa_node;
501 __u32 btf_var_idx;
502 __u32 btf_key_type_id;
503 __u32 btf_value_type_id;
504 __u32 btf_vmlinux_value_type_id;
505 enum libbpf_map_type libbpf_type;
506 void *mmaped;
507 struct bpf_struct_ops *st_ops;
508 struct bpf_map *inner_map;
509 void **init_slots;
510 int init_slots_sz;
511 char *pin_path;
512 bool pinned;
513 bool reused;
514 bool autocreate;
515 __u64 map_extra;
516 };
517
518 enum extern_type {
519 EXT_UNKNOWN,
520 EXT_KCFG,
521 EXT_KSYM,
522 };
523
524 enum kcfg_type {
525 KCFG_UNKNOWN,
526 KCFG_CHAR,
527 KCFG_BOOL,
528 KCFG_INT,
529 KCFG_TRISTATE,
530 KCFG_CHAR_ARR,
531 };
532
533 struct extern_desc {
534 enum extern_type type;
535 int sym_idx;
536 int btf_id;
537 int sec_btf_id;
538 const char *name;
539 bool is_set;
540 bool is_weak;
541 union {
542 struct {
543 enum kcfg_type type;
544 int sz;
545 int align;
546 int data_off;
547 bool is_signed;
548 } kcfg;
549 struct {
550 unsigned long long addr;
551
552 /* target btf_id of the corresponding kernel var. */
553 int kernel_btf_obj_fd;
554 int kernel_btf_id;
555
556 /* local btf_id of the ksym extern's type. */
557 __u32 type_id;
558 /* BTF fd index to be patched in for insn->off, this is
559 * 0 for vmlinux BTF, index in obj->fd_array for module
560 * BTF
561 */
562 __s16 btf_fd_idx;
563 } ksym;
564 };
565 };
566
567 struct module_btf {
568 struct btf *btf;
569 char *name;
570 __u32 id;
571 int fd;
572 int fd_array_idx;
573 };
574
575 enum sec_type {
576 SEC_UNUSED = 0,
577 SEC_RELO,
578 SEC_BSS,
579 SEC_DATA,
580 SEC_RODATA,
581 };
582
583 struct elf_sec_desc {
584 enum sec_type sec_type;
585 Elf64_Shdr *shdr;
586 Elf_Data *data;
587 };
588
589 struct elf_state {
590 int fd;
591 const void *obj_buf;
592 size_t obj_buf_sz;
593 Elf *elf;
594 Elf64_Ehdr *ehdr;
595 Elf_Data *symbols;
596 Elf_Data *st_ops_data;
597 size_t shstrndx; /* section index for section name strings */
598 size_t strtabidx;
599 struct elf_sec_desc *secs;
600 size_t sec_cnt;
601 int btf_maps_shndx;
602 __u32 btf_maps_sec_btf_id;
603 int text_shndx;
604 int symbols_shndx;
605 int st_ops_shndx;
606 };
607
608 struct usdt_manager;
609
610 struct bpf_object {
611 char name[BPF_OBJ_NAME_LEN];
612 char license[64];
613 __u32 kern_version;
614
615 struct bpf_program *programs;
616 size_t nr_programs;
617 struct bpf_map *maps;
618 size_t nr_maps;
619 size_t maps_cap;
620
621 char *kconfig;
622 struct extern_desc *externs;
623 int nr_extern;
624 int kconfig_map_idx;
625
626 bool loaded;
627 bool has_subcalls;
628 bool has_rodata;
629
630 struct bpf_gen *gen_loader;
631
632 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
633 struct elf_state efile;
634
635 struct btf *btf;
636 struct btf_ext *btf_ext;
637
638 /* Parse and load BTF vmlinux if any of the programs in the object need
639 * it at load time.
640 */
641 struct btf *btf_vmlinux;
642 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
643 * override for vmlinux BTF.
644 */
645 char *btf_custom_path;
646 /* vmlinux BTF override for CO-RE relocations */
647 struct btf *btf_vmlinux_override;
648 /* Lazily initialized kernel module BTFs */
649 struct module_btf *btf_modules;
650 bool btf_modules_loaded;
651 size_t btf_module_cnt;
652 size_t btf_module_cap;
653
654 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
655 char *log_buf;
656 size_t log_size;
657 __u32 log_level;
658
659 int *fd_array;
660 size_t fd_array_cap;
661 size_t fd_array_cnt;
662
663 struct usdt_manager *usdt_man;
664
665 char path[];
666 };
667
668 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
669 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
670 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
671 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
672 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
673 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
674 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
675 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
676 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
677
bpf_program__unload(struct bpf_program * prog)678 void bpf_program__unload(struct bpf_program *prog)
679 {
680 if (!prog)
681 return;
682
683 zclose(prog->fd);
684
685 zfree(&prog->func_info);
686 zfree(&prog->line_info);
687 }
688
bpf_program__exit(struct bpf_program * prog)689 static void bpf_program__exit(struct bpf_program *prog)
690 {
691 if (!prog)
692 return;
693
694 bpf_program__unload(prog);
695 zfree(&prog->name);
696 zfree(&prog->sec_name);
697 zfree(&prog->insns);
698 zfree(&prog->reloc_desc);
699
700 prog->nr_reloc = 0;
701 prog->insns_cnt = 0;
702 prog->sec_idx = -1;
703 }
704
insn_is_subprog_call(const struct bpf_insn * insn)705 static bool insn_is_subprog_call(const struct bpf_insn *insn)
706 {
707 return BPF_CLASS(insn->code) == BPF_JMP &&
708 BPF_OP(insn->code) == BPF_CALL &&
709 BPF_SRC(insn->code) == BPF_K &&
710 insn->src_reg == BPF_PSEUDO_CALL &&
711 insn->dst_reg == 0 &&
712 insn->off == 0;
713 }
714
is_call_insn(const struct bpf_insn * insn)715 static bool is_call_insn(const struct bpf_insn *insn)
716 {
717 return insn->code == (BPF_JMP | BPF_CALL);
718 }
719
insn_is_pseudo_func(struct bpf_insn * insn)720 static bool insn_is_pseudo_func(struct bpf_insn *insn)
721 {
722 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
723 }
724
725 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)726 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
727 const char *name, size_t sec_idx, const char *sec_name,
728 size_t sec_off, void *insn_data, size_t insn_data_sz)
729 {
730 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
731 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
732 sec_name, name, sec_off, insn_data_sz);
733 return -EINVAL;
734 }
735
736 memset(prog, 0, sizeof(*prog));
737 prog->obj = obj;
738
739 prog->sec_idx = sec_idx;
740 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
741 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
742 /* insns_cnt can later be increased by appending used subprograms */
743 prog->insns_cnt = prog->sec_insn_cnt;
744
745 prog->type = BPF_PROG_TYPE_UNSPEC;
746 prog->fd = -1;
747
748 /* libbpf's convention for SEC("?abc...") is that it's just like
749 * SEC("abc...") but the corresponding bpf_program starts out with
750 * autoload set to false.
751 */
752 if (sec_name[0] == '?') {
753 prog->autoload = false;
754 /* from now on forget there was ? in section name */
755 sec_name++;
756 } else {
757 prog->autoload = true;
758 }
759
760 prog->autoattach = true;
761
762 /* inherit object's log_level */
763 prog->log_level = obj->log_level;
764
765 prog->sec_name = strdup(sec_name);
766 if (!prog->sec_name)
767 goto errout;
768
769 prog->name = strdup(name);
770 if (!prog->name)
771 goto errout;
772
773 prog->insns = malloc(insn_data_sz);
774 if (!prog->insns)
775 goto errout;
776 memcpy(prog->insns, insn_data, insn_data_sz);
777
778 return 0;
779 errout:
780 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
781 bpf_program__exit(prog);
782 return -ENOMEM;
783 }
784
785 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)786 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
787 const char *sec_name, int sec_idx)
788 {
789 Elf_Data *symbols = obj->efile.symbols;
790 struct bpf_program *prog, *progs;
791 void *data = sec_data->d_buf;
792 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
793 int nr_progs, err, i;
794 const char *name;
795 Elf64_Sym *sym;
796
797 progs = obj->programs;
798 nr_progs = obj->nr_programs;
799 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
800 sec_off = 0;
801
802 for (i = 0; i < nr_syms; i++) {
803 sym = elf_sym_by_idx(obj, i);
804
805 if (sym->st_shndx != sec_idx)
806 continue;
807 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
808 continue;
809
810 prog_sz = sym->st_size;
811 sec_off = sym->st_value;
812
813 name = elf_sym_str(obj, sym->st_name);
814 if (!name) {
815 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
816 sec_name, sec_off);
817 return -LIBBPF_ERRNO__FORMAT;
818 }
819
820 if (sec_off + prog_sz > sec_sz) {
821 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
822 sec_name, sec_off);
823 return -LIBBPF_ERRNO__FORMAT;
824 }
825
826 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
827 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
828 return -ENOTSUP;
829 }
830
831 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
832 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
833
834 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
835 if (!progs) {
836 /*
837 * In this case the original obj->programs
838 * is still valid, so don't need special treat for
839 * bpf_close_object().
840 */
841 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
842 sec_name, name);
843 return -ENOMEM;
844 }
845 obj->programs = progs;
846
847 prog = &progs[nr_progs];
848
849 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
850 sec_off, data + sec_off, prog_sz);
851 if (err)
852 return err;
853
854 /* if function is a global/weak symbol, but has restricted
855 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
856 * as static to enable more permissive BPF verification mode
857 * with more outside context available to BPF verifier
858 */
859 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
860 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
861 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
862 prog->mark_btf_static = true;
863
864 nr_progs++;
865 obj->nr_programs = nr_progs;
866 }
867
868 return 0;
869 }
870
get_kernel_version(void)871 __u32 get_kernel_version(void)
872 {
873 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
874 * but Ubuntu provides /proc/version_signature file, as described at
875 * https://ubuntu.com/kernel, with an example contents below, which we
876 * can use to get a proper LINUX_VERSION_CODE.
877 *
878 * Ubuntu 5.4.0-12.15-generic 5.4.8
879 *
880 * In the above, 5.4.8 is what kernel is actually expecting, while
881 * uname() call will return 5.4.0 in info.release.
882 */
883 const char *ubuntu_kver_file = "/proc/version_signature";
884 __u32 major, minor, patch;
885 struct utsname info;
886
887 if (faccessat(AT_FDCWD, ubuntu_kver_file, R_OK, AT_EACCESS) == 0) {
888 FILE *f;
889
890 f = fopen(ubuntu_kver_file, "r");
891 if (f) {
892 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
893 fclose(f);
894 return KERNEL_VERSION(major, minor, patch);
895 }
896 fclose(f);
897 }
898 /* something went wrong, fall back to uname() approach */
899 }
900
901 uname(&info);
902 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
903 return 0;
904 return KERNEL_VERSION(major, minor, patch);
905 }
906
907 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)908 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
909 {
910 struct btf_member *m;
911 int i;
912
913 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
914 if (btf_member_bit_offset(t, i) == bit_offset)
915 return m;
916 }
917
918 return NULL;
919 }
920
921 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)922 find_member_by_name(const struct btf *btf, const struct btf_type *t,
923 const char *name)
924 {
925 struct btf_member *m;
926 int i;
927
928 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
929 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
930 return m;
931 }
932
933 return NULL;
934 }
935
936 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
937 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
938 const char *name, __u32 kind);
939
940 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)941 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
942 const struct btf_type **type, __u32 *type_id,
943 const struct btf_type **vtype, __u32 *vtype_id,
944 const struct btf_member **data_member)
945 {
946 const struct btf_type *kern_type, *kern_vtype;
947 const struct btf_member *kern_data_member;
948 __s32 kern_vtype_id, kern_type_id;
949 __u32 i;
950
951 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
952 if (kern_type_id < 0) {
953 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
954 tname);
955 return kern_type_id;
956 }
957 kern_type = btf__type_by_id(btf, kern_type_id);
958
959 /* Find the corresponding "map_value" type that will be used
960 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
961 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
962 * btf_vmlinux.
963 */
964 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
965 tname, BTF_KIND_STRUCT);
966 if (kern_vtype_id < 0) {
967 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
968 STRUCT_OPS_VALUE_PREFIX, tname);
969 return kern_vtype_id;
970 }
971 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
972
973 /* Find "struct tcp_congestion_ops" from
974 * struct bpf_struct_ops_tcp_congestion_ops {
975 * [ ... ]
976 * struct tcp_congestion_ops data;
977 * }
978 */
979 kern_data_member = btf_members(kern_vtype);
980 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
981 if (kern_data_member->type == kern_type_id)
982 break;
983 }
984 if (i == btf_vlen(kern_vtype)) {
985 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
986 tname, STRUCT_OPS_VALUE_PREFIX, tname);
987 return -EINVAL;
988 }
989
990 *type = kern_type;
991 *type_id = kern_type_id;
992 *vtype = kern_vtype;
993 *vtype_id = kern_vtype_id;
994 *data_member = kern_data_member;
995
996 return 0;
997 }
998
bpf_map__is_struct_ops(const struct bpf_map * map)999 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1000 {
1001 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1002 }
1003
1004 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)1005 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1006 const struct btf *btf,
1007 const struct btf *kern_btf)
1008 {
1009 const struct btf_member *member, *kern_member, *kern_data_member;
1010 const struct btf_type *type, *kern_type, *kern_vtype;
1011 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1012 struct bpf_struct_ops *st_ops;
1013 void *data, *kern_data;
1014 const char *tname;
1015 int err;
1016
1017 st_ops = map->st_ops;
1018 type = st_ops->type;
1019 tname = st_ops->tname;
1020 err = find_struct_ops_kern_types(kern_btf, tname,
1021 &kern_type, &kern_type_id,
1022 &kern_vtype, &kern_vtype_id,
1023 &kern_data_member);
1024 if (err)
1025 return err;
1026
1027 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1028 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1029
1030 map->def.value_size = kern_vtype->size;
1031 map->btf_vmlinux_value_type_id = kern_vtype_id;
1032
1033 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1034 if (!st_ops->kern_vdata)
1035 return -ENOMEM;
1036
1037 data = st_ops->data;
1038 kern_data_off = kern_data_member->offset / 8;
1039 kern_data = st_ops->kern_vdata + kern_data_off;
1040
1041 member = btf_members(type);
1042 for (i = 0; i < btf_vlen(type); i++, member++) {
1043 const struct btf_type *mtype, *kern_mtype;
1044 __u32 mtype_id, kern_mtype_id;
1045 void *mdata, *kern_mdata;
1046 __s64 msize, kern_msize;
1047 __u32 moff, kern_moff;
1048 __u32 kern_member_idx;
1049 const char *mname;
1050
1051 mname = btf__name_by_offset(btf, member->name_off);
1052 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1053 if (!kern_member) {
1054 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1055 map->name, mname);
1056 return -ENOTSUP;
1057 }
1058
1059 kern_member_idx = kern_member - btf_members(kern_type);
1060 if (btf_member_bitfield_size(type, i) ||
1061 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1062 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1063 map->name, mname);
1064 return -ENOTSUP;
1065 }
1066
1067 moff = member->offset / 8;
1068 kern_moff = kern_member->offset / 8;
1069
1070 mdata = data + moff;
1071 kern_mdata = kern_data + kern_moff;
1072
1073 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1074 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1075 &kern_mtype_id);
1076 if (BTF_INFO_KIND(mtype->info) !=
1077 BTF_INFO_KIND(kern_mtype->info)) {
1078 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1079 map->name, mname, BTF_INFO_KIND(mtype->info),
1080 BTF_INFO_KIND(kern_mtype->info));
1081 return -ENOTSUP;
1082 }
1083
1084 if (btf_is_ptr(mtype)) {
1085 struct bpf_program *prog;
1086
1087 prog = st_ops->progs[i];
1088 if (!prog)
1089 continue;
1090
1091 kern_mtype = skip_mods_and_typedefs(kern_btf,
1092 kern_mtype->type,
1093 &kern_mtype_id);
1094
1095 /* mtype->type must be a func_proto which was
1096 * guaranteed in bpf_object__collect_st_ops_relos(),
1097 * so only check kern_mtype for func_proto here.
1098 */
1099 if (!btf_is_func_proto(kern_mtype)) {
1100 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1101 map->name, mname);
1102 return -ENOTSUP;
1103 }
1104
1105 prog->attach_btf_id = kern_type_id;
1106 prog->expected_attach_type = kern_member_idx;
1107
1108 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1109
1110 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1111 map->name, mname, prog->name, moff,
1112 kern_moff);
1113
1114 continue;
1115 }
1116
1117 msize = btf__resolve_size(btf, mtype_id);
1118 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1119 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1120 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1121 map->name, mname, (ssize_t)msize,
1122 (ssize_t)kern_msize);
1123 return -ENOTSUP;
1124 }
1125
1126 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1127 map->name, mname, (unsigned int)msize,
1128 moff, kern_moff);
1129 memcpy(kern_mdata, mdata, msize);
1130 }
1131
1132 return 0;
1133 }
1134
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1135 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1136 {
1137 struct bpf_map *map;
1138 size_t i;
1139 int err;
1140
1141 for (i = 0; i < obj->nr_maps; i++) {
1142 map = &obj->maps[i];
1143
1144 if (!bpf_map__is_struct_ops(map))
1145 continue;
1146
1147 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1148 obj->btf_vmlinux);
1149 if (err)
1150 return err;
1151 }
1152
1153 return 0;
1154 }
1155
bpf_object__init_struct_ops_maps(struct bpf_object * obj)1156 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1157 {
1158 const struct btf_type *type, *datasec;
1159 const struct btf_var_secinfo *vsi;
1160 struct bpf_struct_ops *st_ops;
1161 const char *tname, *var_name;
1162 __s32 type_id, datasec_id;
1163 const struct btf *btf;
1164 struct bpf_map *map;
1165 __u32 i;
1166
1167 if (obj->efile.st_ops_shndx == -1)
1168 return 0;
1169
1170 btf = obj->btf;
1171 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1172 BTF_KIND_DATASEC);
1173 if (datasec_id < 0) {
1174 pr_warn("struct_ops init: DATASEC %s not found\n",
1175 STRUCT_OPS_SEC);
1176 return -EINVAL;
1177 }
1178
1179 datasec = btf__type_by_id(btf, datasec_id);
1180 vsi = btf_var_secinfos(datasec);
1181 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1182 type = btf__type_by_id(obj->btf, vsi->type);
1183 var_name = btf__name_by_offset(obj->btf, type->name_off);
1184
1185 type_id = btf__resolve_type(obj->btf, vsi->type);
1186 if (type_id < 0) {
1187 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1188 vsi->type, STRUCT_OPS_SEC);
1189 return -EINVAL;
1190 }
1191
1192 type = btf__type_by_id(obj->btf, type_id);
1193 tname = btf__name_by_offset(obj->btf, type->name_off);
1194 if (!tname[0]) {
1195 pr_warn("struct_ops init: anonymous type is not supported\n");
1196 return -ENOTSUP;
1197 }
1198 if (!btf_is_struct(type)) {
1199 pr_warn("struct_ops init: %s is not a struct\n", tname);
1200 return -EINVAL;
1201 }
1202
1203 map = bpf_object__add_map(obj);
1204 if (IS_ERR(map))
1205 return PTR_ERR(map);
1206
1207 map->sec_idx = obj->efile.st_ops_shndx;
1208 map->sec_offset = vsi->offset;
1209 map->name = strdup(var_name);
1210 if (!map->name)
1211 return -ENOMEM;
1212
1213 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1214 map->def.key_size = sizeof(int);
1215 map->def.value_size = type->size;
1216 map->def.max_entries = 1;
1217
1218 map->st_ops = calloc(1, sizeof(*map->st_ops));
1219 if (!map->st_ops)
1220 return -ENOMEM;
1221 st_ops = map->st_ops;
1222 st_ops->data = malloc(type->size);
1223 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1224 st_ops->kern_func_off = malloc(btf_vlen(type) *
1225 sizeof(*st_ops->kern_func_off));
1226 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1227 return -ENOMEM;
1228
1229 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1230 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1231 var_name, STRUCT_OPS_SEC);
1232 return -EINVAL;
1233 }
1234
1235 memcpy(st_ops->data,
1236 obj->efile.st_ops_data->d_buf + vsi->offset,
1237 type->size);
1238 st_ops->tname = tname;
1239 st_ops->type = type;
1240 st_ops->type_id = type_id;
1241
1242 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1243 tname, type_id, var_name, vsi->offset);
1244 }
1245
1246 return 0;
1247 }
1248
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1249 static struct bpf_object *bpf_object__new(const char *path,
1250 const void *obj_buf,
1251 size_t obj_buf_sz,
1252 const char *obj_name)
1253 {
1254 struct bpf_object *obj;
1255 char *end;
1256
1257 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1258 if (!obj) {
1259 pr_warn("alloc memory failed for %s\n", path);
1260 return ERR_PTR(-ENOMEM);
1261 }
1262
1263 strcpy(obj->path, path);
1264 if (obj_name) {
1265 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1266 } else {
1267 /* Using basename() GNU version which doesn't modify arg. */
1268 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1269 end = strchr(obj->name, '.');
1270 if (end)
1271 *end = 0;
1272 }
1273
1274 obj->efile.fd = -1;
1275 /*
1276 * Caller of this function should also call
1277 * bpf_object__elf_finish() after data collection to return
1278 * obj_buf to user. If not, we should duplicate the buffer to
1279 * avoid user freeing them before elf finish.
1280 */
1281 obj->efile.obj_buf = obj_buf;
1282 obj->efile.obj_buf_sz = obj_buf_sz;
1283 obj->efile.btf_maps_shndx = -1;
1284 obj->efile.st_ops_shndx = -1;
1285 obj->kconfig_map_idx = -1;
1286
1287 obj->kern_version = get_kernel_version();
1288 obj->loaded = false;
1289
1290 return obj;
1291 }
1292
bpf_object__elf_finish(struct bpf_object * obj)1293 static void bpf_object__elf_finish(struct bpf_object *obj)
1294 {
1295 if (!obj->efile.elf)
1296 return;
1297
1298 elf_end(obj->efile.elf);
1299 obj->efile.elf = NULL;
1300 obj->efile.symbols = NULL;
1301 obj->efile.st_ops_data = NULL;
1302
1303 zfree(&obj->efile.secs);
1304 obj->efile.sec_cnt = 0;
1305 zclose(obj->efile.fd);
1306 obj->efile.obj_buf = NULL;
1307 obj->efile.obj_buf_sz = 0;
1308 }
1309
bpf_object__elf_init(struct bpf_object * obj)1310 static int bpf_object__elf_init(struct bpf_object *obj)
1311 {
1312 Elf64_Ehdr *ehdr;
1313 int err = 0;
1314 Elf *elf;
1315
1316 if (obj->efile.elf) {
1317 pr_warn("elf: init internal error\n");
1318 return -LIBBPF_ERRNO__LIBELF;
1319 }
1320
1321 if (obj->efile.obj_buf_sz > 0) {
1322 /* obj_buf should have been validated by bpf_object__open_mem(). */
1323 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1324 } else {
1325 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1326 if (obj->efile.fd < 0) {
1327 char errmsg[STRERR_BUFSIZE], *cp;
1328
1329 err = -errno;
1330 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1331 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1332 return err;
1333 }
1334
1335 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1336 }
1337
1338 if (!elf) {
1339 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1340 err = -LIBBPF_ERRNO__LIBELF;
1341 goto errout;
1342 }
1343
1344 obj->efile.elf = elf;
1345
1346 if (elf_kind(elf) != ELF_K_ELF) {
1347 err = -LIBBPF_ERRNO__FORMAT;
1348 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1349 goto errout;
1350 }
1351
1352 if (gelf_getclass(elf) != ELFCLASS64) {
1353 err = -LIBBPF_ERRNO__FORMAT;
1354 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1355 goto errout;
1356 }
1357
1358 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1359 if (!obj->efile.ehdr) {
1360 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1361 err = -LIBBPF_ERRNO__FORMAT;
1362 goto errout;
1363 }
1364
1365 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1366 pr_warn("elf: failed to get section names section index for %s: %s\n",
1367 obj->path, elf_errmsg(-1));
1368 err = -LIBBPF_ERRNO__FORMAT;
1369 goto errout;
1370 }
1371
1372 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1373 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1374 pr_warn("elf: failed to get section names strings from %s: %s\n",
1375 obj->path, elf_errmsg(-1));
1376 err = -LIBBPF_ERRNO__FORMAT;
1377 goto errout;
1378 }
1379
1380 /* Old LLVM set e_machine to EM_NONE */
1381 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1382 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1383 err = -LIBBPF_ERRNO__FORMAT;
1384 goto errout;
1385 }
1386
1387 return 0;
1388 errout:
1389 bpf_object__elf_finish(obj);
1390 return err;
1391 }
1392
bpf_object__check_endianness(struct bpf_object * obj)1393 static int bpf_object__check_endianness(struct bpf_object *obj)
1394 {
1395 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1396 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1397 return 0;
1398 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1399 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1400 return 0;
1401 #else
1402 # error "Unrecognized __BYTE_ORDER__"
1403 #endif
1404 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1405 return -LIBBPF_ERRNO__ENDIAN;
1406 }
1407
1408 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1409 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1410 {
1411 if (!data) {
1412 pr_warn("invalid license section in %s\n", obj->path);
1413 return -LIBBPF_ERRNO__FORMAT;
1414 }
1415 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1416 * go over allowed ELF data section buffer
1417 */
1418 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1419 pr_debug("license of %s is %s\n", obj->path, obj->license);
1420 return 0;
1421 }
1422
1423 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1424 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1425 {
1426 __u32 kver;
1427
1428 if (!data || size != sizeof(kver)) {
1429 pr_warn("invalid kver section in %s\n", obj->path);
1430 return -LIBBPF_ERRNO__FORMAT;
1431 }
1432 memcpy(&kver, data, sizeof(kver));
1433 obj->kern_version = kver;
1434 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1435 return 0;
1436 }
1437
bpf_map_type__is_map_in_map(enum bpf_map_type type)1438 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1439 {
1440 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1441 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1442 return true;
1443 return false;
1444 }
1445
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1446 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1447 {
1448 Elf_Data *data;
1449 Elf_Scn *scn;
1450
1451 if (!name)
1452 return -EINVAL;
1453
1454 scn = elf_sec_by_name(obj, name);
1455 data = elf_sec_data(obj, scn);
1456 if (data) {
1457 *size = data->d_size;
1458 return 0; /* found it */
1459 }
1460
1461 return -ENOENT;
1462 }
1463
find_elf_var_offset(const struct bpf_object * obj,const char * name,__u32 * off)1464 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1465 {
1466 Elf_Data *symbols = obj->efile.symbols;
1467 const char *sname;
1468 size_t si;
1469
1470 if (!name || !off)
1471 return -EINVAL;
1472
1473 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1474 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1475
1476 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1477 continue;
1478
1479 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1480 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1481 continue;
1482
1483 sname = elf_sym_str(obj, sym->st_name);
1484 if (!sname) {
1485 pr_warn("failed to get sym name string for var %s\n", name);
1486 return -EIO;
1487 }
1488 if (strcmp(name, sname) == 0) {
1489 *off = sym->st_value;
1490 return 0;
1491 }
1492 }
1493
1494 return -ENOENT;
1495 }
1496
bpf_object__add_map(struct bpf_object * obj)1497 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1498 {
1499 struct bpf_map *map;
1500 int err;
1501
1502 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1503 sizeof(*obj->maps), obj->nr_maps + 1);
1504 if (err)
1505 return ERR_PTR(err);
1506
1507 map = &obj->maps[obj->nr_maps++];
1508 map->obj = obj;
1509 map->fd = -1;
1510 map->inner_map_fd = -1;
1511 map->autocreate = true;
1512
1513 return map;
1514 }
1515
bpf_map_mmap_sz(const struct bpf_map * map)1516 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1517 {
1518 long page_sz = sysconf(_SC_PAGE_SIZE);
1519 size_t map_sz;
1520
1521 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1522 map_sz = roundup(map_sz, page_sz);
1523 return map_sz;
1524 }
1525
internal_map_name(struct bpf_object * obj,const char * real_name)1526 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1527 {
1528 char map_name[BPF_OBJ_NAME_LEN], *p;
1529 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1530
1531 /* This is one of the more confusing parts of libbpf for various
1532 * reasons, some of which are historical. The original idea for naming
1533 * internal names was to include as much of BPF object name prefix as
1534 * possible, so that it can be distinguished from similar internal
1535 * maps of a different BPF object.
1536 * As an example, let's say we have bpf_object named 'my_object_name'
1537 * and internal map corresponding to '.rodata' ELF section. The final
1538 * map name advertised to user and to the kernel will be
1539 * 'my_objec.rodata', taking first 8 characters of object name and
1540 * entire 7 characters of '.rodata'.
1541 * Somewhat confusingly, if internal map ELF section name is shorter
1542 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1543 * for the suffix, even though we only have 4 actual characters, and
1544 * resulting map will be called 'my_objec.bss', not even using all 15
1545 * characters allowed by the kernel. Oh well, at least the truncated
1546 * object name is somewhat consistent in this case. But if the map
1547 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1548 * (8 chars) and thus will be left with only first 7 characters of the
1549 * object name ('my_obje'). Happy guessing, user, that the final map
1550 * name will be "my_obje.kconfig".
1551 * Now, with libbpf starting to support arbitrarily named .rodata.*
1552 * and .data.* data sections, it's possible that ELF section name is
1553 * longer than allowed 15 chars, so we now need to be careful to take
1554 * only up to 15 first characters of ELF name, taking no BPF object
1555 * name characters at all. So '.rodata.abracadabra' will result in
1556 * '.rodata.abracad' kernel and user-visible name.
1557 * We need to keep this convoluted logic intact for .data, .bss and
1558 * .rodata maps, but for new custom .data.custom and .rodata.custom
1559 * maps we use their ELF names as is, not prepending bpf_object name
1560 * in front. We still need to truncate them to 15 characters for the
1561 * kernel. Full name can be recovered for such maps by using DATASEC
1562 * BTF type associated with such map's value type, though.
1563 */
1564 if (sfx_len >= BPF_OBJ_NAME_LEN)
1565 sfx_len = BPF_OBJ_NAME_LEN - 1;
1566
1567 /* if there are two or more dots in map name, it's a custom dot map */
1568 if (strchr(real_name + 1, '.') != NULL)
1569 pfx_len = 0;
1570 else
1571 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1572
1573 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1574 sfx_len, real_name);
1575
1576 /* sanitise map name to characters allowed by kernel */
1577 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1578 if (!isalnum(*p) && *p != '_' && *p != '.')
1579 *p = '_';
1580
1581 return strdup(map_name);
1582 }
1583
1584 static int
1585 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map);
1586
1587 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1588 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1589 const char *real_name, int sec_idx, void *data, size_t data_sz)
1590 {
1591 struct bpf_map_def *def;
1592 struct bpf_map *map;
1593 int err;
1594
1595 map = bpf_object__add_map(obj);
1596 if (IS_ERR(map))
1597 return PTR_ERR(map);
1598
1599 map->libbpf_type = type;
1600 map->sec_idx = sec_idx;
1601 map->sec_offset = 0;
1602 map->real_name = strdup(real_name);
1603 map->name = internal_map_name(obj, real_name);
1604 if (!map->real_name || !map->name) {
1605 zfree(&map->real_name);
1606 zfree(&map->name);
1607 return -ENOMEM;
1608 }
1609
1610 def = &map->def;
1611 def->type = BPF_MAP_TYPE_ARRAY;
1612 def->key_size = sizeof(int);
1613 def->value_size = data_sz;
1614 def->max_entries = 1;
1615 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1616 ? BPF_F_RDONLY_PROG : 0;
1617 def->map_flags |= BPF_F_MMAPABLE;
1618
1619 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1620 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1621
1622 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1623 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1624 if (map->mmaped == MAP_FAILED) {
1625 err = -errno;
1626 map->mmaped = NULL;
1627 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1628 map->name, err);
1629 zfree(&map->real_name);
1630 zfree(&map->name);
1631 return err;
1632 }
1633
1634 /* failures are fine because of maps like .rodata.str1.1 */
1635 (void) bpf_map_find_btf_info(obj, map);
1636
1637 if (data)
1638 memcpy(map->mmaped, data, data_sz);
1639
1640 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1641 return 0;
1642 }
1643
bpf_object__init_global_data_maps(struct bpf_object * obj)1644 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1645 {
1646 struct elf_sec_desc *sec_desc;
1647 const char *sec_name;
1648 int err = 0, sec_idx;
1649
1650 /*
1651 * Populate obj->maps with libbpf internal maps.
1652 */
1653 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1654 sec_desc = &obj->efile.secs[sec_idx];
1655
1656 /* Skip recognized sections with size 0. */
1657 if (!sec_desc->data || sec_desc->data->d_size == 0)
1658 continue;
1659
1660 switch (sec_desc->sec_type) {
1661 case SEC_DATA:
1662 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1663 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1664 sec_name, sec_idx,
1665 sec_desc->data->d_buf,
1666 sec_desc->data->d_size);
1667 break;
1668 case SEC_RODATA:
1669 obj->has_rodata = true;
1670 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1671 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1672 sec_name, sec_idx,
1673 sec_desc->data->d_buf,
1674 sec_desc->data->d_size);
1675 break;
1676 case SEC_BSS:
1677 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1678 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1679 sec_name, sec_idx,
1680 NULL,
1681 sec_desc->data->d_size);
1682 break;
1683 default:
1684 /* skip */
1685 break;
1686 }
1687 if (err)
1688 return err;
1689 }
1690 return 0;
1691 }
1692
1693
find_extern_by_name(const struct bpf_object * obj,const void * name)1694 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1695 const void *name)
1696 {
1697 int i;
1698
1699 for (i = 0; i < obj->nr_extern; i++) {
1700 if (strcmp(obj->externs[i].name, name) == 0)
1701 return &obj->externs[i];
1702 }
1703 return NULL;
1704 }
1705
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)1706 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1707 char value)
1708 {
1709 switch (ext->kcfg.type) {
1710 case KCFG_BOOL:
1711 if (value == 'm') {
1712 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1713 ext->name, value);
1714 return -EINVAL;
1715 }
1716 *(bool *)ext_val = value == 'y' ? true : false;
1717 break;
1718 case KCFG_TRISTATE:
1719 if (value == 'y')
1720 *(enum libbpf_tristate *)ext_val = TRI_YES;
1721 else if (value == 'm')
1722 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1723 else /* value == 'n' */
1724 *(enum libbpf_tristate *)ext_val = TRI_NO;
1725 break;
1726 case KCFG_CHAR:
1727 *(char *)ext_val = value;
1728 break;
1729 case KCFG_UNKNOWN:
1730 case KCFG_INT:
1731 case KCFG_CHAR_ARR:
1732 default:
1733 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1734 ext->name, value);
1735 return -EINVAL;
1736 }
1737 ext->is_set = true;
1738 return 0;
1739 }
1740
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)1741 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1742 const char *value)
1743 {
1744 size_t len;
1745
1746 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1747 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1748 ext->name, value);
1749 return -EINVAL;
1750 }
1751
1752 len = strlen(value);
1753 if (value[len - 1] != '"') {
1754 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1755 ext->name, value);
1756 return -EINVAL;
1757 }
1758
1759 /* strip quotes */
1760 len -= 2;
1761 if (len >= ext->kcfg.sz) {
1762 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1763 ext->name, value, len, ext->kcfg.sz - 1);
1764 len = ext->kcfg.sz - 1;
1765 }
1766 memcpy(ext_val, value + 1, len);
1767 ext_val[len] = '\0';
1768 ext->is_set = true;
1769 return 0;
1770 }
1771
parse_u64(const char * value,__u64 * res)1772 static int parse_u64(const char *value, __u64 *res)
1773 {
1774 char *value_end;
1775 int err;
1776
1777 errno = 0;
1778 *res = strtoull(value, &value_end, 0);
1779 if (errno) {
1780 err = -errno;
1781 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1782 return err;
1783 }
1784 if (*value_end) {
1785 pr_warn("failed to parse '%s' as integer completely\n", value);
1786 return -EINVAL;
1787 }
1788 return 0;
1789 }
1790
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)1791 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1792 {
1793 int bit_sz = ext->kcfg.sz * 8;
1794
1795 if (ext->kcfg.sz == 8)
1796 return true;
1797
1798 /* Validate that value stored in u64 fits in integer of `ext->sz`
1799 * bytes size without any loss of information. If the target integer
1800 * is signed, we rely on the following limits of integer type of
1801 * Y bits and subsequent transformation:
1802 *
1803 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1804 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1805 * 0 <= X + 2^(Y-1) < 2^Y
1806 *
1807 * For unsigned target integer, check that all the (64 - Y) bits are
1808 * zero.
1809 */
1810 if (ext->kcfg.is_signed)
1811 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1812 else
1813 return (v >> bit_sz) == 0;
1814 }
1815
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)1816 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1817 __u64 value)
1818 {
1819 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1820 ext->kcfg.type != KCFG_BOOL) {
1821 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1822 ext->name, (unsigned long long)value);
1823 return -EINVAL;
1824 }
1825 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1826 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1827 ext->name, (unsigned long long)value);
1828 return -EINVAL;
1829
1830 }
1831 if (!is_kcfg_value_in_range(ext, value)) {
1832 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1833 ext->name, (unsigned long long)value, ext->kcfg.sz);
1834 return -ERANGE;
1835 }
1836 switch (ext->kcfg.sz) {
1837 case 1: *(__u8 *)ext_val = value; break;
1838 case 2: *(__u16 *)ext_val = value; break;
1839 case 4: *(__u32 *)ext_val = value; break;
1840 case 8: *(__u64 *)ext_val = value; break;
1841 default:
1842 return -EINVAL;
1843 }
1844 ext->is_set = true;
1845 return 0;
1846 }
1847
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)1848 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1849 char *buf, void *data)
1850 {
1851 struct extern_desc *ext;
1852 char *sep, *value;
1853 int len, err = 0;
1854 void *ext_val;
1855 __u64 num;
1856
1857 if (!str_has_pfx(buf, "CONFIG_"))
1858 return 0;
1859
1860 sep = strchr(buf, '=');
1861 if (!sep) {
1862 pr_warn("failed to parse '%s': no separator\n", buf);
1863 return -EINVAL;
1864 }
1865
1866 /* Trim ending '\n' */
1867 len = strlen(buf);
1868 if (buf[len - 1] == '\n')
1869 buf[len - 1] = '\0';
1870 /* Split on '=' and ensure that a value is present. */
1871 *sep = '\0';
1872 if (!sep[1]) {
1873 *sep = '=';
1874 pr_warn("failed to parse '%s': no value\n", buf);
1875 return -EINVAL;
1876 }
1877
1878 ext = find_extern_by_name(obj, buf);
1879 if (!ext || ext->is_set)
1880 return 0;
1881
1882 ext_val = data + ext->kcfg.data_off;
1883 value = sep + 1;
1884
1885 switch (*value) {
1886 case 'y': case 'n': case 'm':
1887 err = set_kcfg_value_tri(ext, ext_val, *value);
1888 break;
1889 case '"':
1890 err = set_kcfg_value_str(ext, ext_val, value);
1891 break;
1892 default:
1893 /* assume integer */
1894 err = parse_u64(value, &num);
1895 if (err) {
1896 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1897 return err;
1898 }
1899 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1900 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1901 return -EINVAL;
1902 }
1903 err = set_kcfg_value_num(ext, ext_val, num);
1904 break;
1905 }
1906 if (err)
1907 return err;
1908 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1909 return 0;
1910 }
1911
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)1912 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1913 {
1914 char buf[PATH_MAX];
1915 struct utsname uts;
1916 int len, err = 0;
1917 gzFile file;
1918
1919 uname(&uts);
1920 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1921 if (len < 0)
1922 return -EINVAL;
1923 else if (len >= PATH_MAX)
1924 return -ENAMETOOLONG;
1925
1926 /* gzopen also accepts uncompressed files. */
1927 file = gzopen(buf, "r");
1928 if (!file)
1929 file = gzopen("/proc/config.gz", "r");
1930
1931 if (!file) {
1932 pr_warn("failed to open system Kconfig\n");
1933 return -ENOENT;
1934 }
1935
1936 while (gzgets(file, buf, sizeof(buf))) {
1937 err = bpf_object__process_kconfig_line(obj, buf, data);
1938 if (err) {
1939 pr_warn("error parsing system Kconfig line '%s': %d\n",
1940 buf, err);
1941 goto out;
1942 }
1943 }
1944
1945 out:
1946 gzclose(file);
1947 return err;
1948 }
1949
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)1950 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1951 const char *config, void *data)
1952 {
1953 char buf[PATH_MAX];
1954 int err = 0;
1955 FILE *file;
1956
1957 file = fmemopen((void *)config, strlen(config), "r");
1958 if (!file) {
1959 err = -errno;
1960 pr_warn("failed to open in-memory Kconfig: %d\n", err);
1961 return err;
1962 }
1963
1964 while (fgets(buf, sizeof(buf), file)) {
1965 err = bpf_object__process_kconfig_line(obj, buf, data);
1966 if (err) {
1967 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1968 buf, err);
1969 break;
1970 }
1971 }
1972
1973 fclose(file);
1974 return err;
1975 }
1976
bpf_object__init_kconfig_map(struct bpf_object * obj)1977 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1978 {
1979 struct extern_desc *last_ext = NULL, *ext;
1980 size_t map_sz;
1981 int i, err;
1982
1983 for (i = 0; i < obj->nr_extern; i++) {
1984 ext = &obj->externs[i];
1985 if (ext->type == EXT_KCFG)
1986 last_ext = ext;
1987 }
1988
1989 if (!last_ext)
1990 return 0;
1991
1992 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1993 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1994 ".kconfig", obj->efile.symbols_shndx,
1995 NULL, map_sz);
1996 if (err)
1997 return err;
1998
1999 obj->kconfig_map_idx = obj->nr_maps - 1;
2000
2001 return 0;
2002 }
2003
2004 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2005 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2006 {
2007 const struct btf_type *t = btf__type_by_id(btf, id);
2008
2009 if (res_id)
2010 *res_id = id;
2011
2012 while (btf_is_mod(t) || btf_is_typedef(t)) {
2013 if (res_id)
2014 *res_id = t->type;
2015 t = btf__type_by_id(btf, t->type);
2016 }
2017
2018 return t;
2019 }
2020
2021 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2022 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2023 {
2024 const struct btf_type *t;
2025
2026 t = skip_mods_and_typedefs(btf, id, NULL);
2027 if (!btf_is_ptr(t))
2028 return NULL;
2029
2030 t = skip_mods_and_typedefs(btf, t->type, res_id);
2031
2032 return btf_is_func_proto(t) ? t : NULL;
2033 }
2034
__btf_kind_str(__u16 kind)2035 static const char *__btf_kind_str(__u16 kind)
2036 {
2037 switch (kind) {
2038 case BTF_KIND_UNKN: return "void";
2039 case BTF_KIND_INT: return "int";
2040 case BTF_KIND_PTR: return "ptr";
2041 case BTF_KIND_ARRAY: return "array";
2042 case BTF_KIND_STRUCT: return "struct";
2043 case BTF_KIND_UNION: return "union";
2044 case BTF_KIND_ENUM: return "enum";
2045 case BTF_KIND_FWD: return "fwd";
2046 case BTF_KIND_TYPEDEF: return "typedef";
2047 case BTF_KIND_VOLATILE: return "volatile";
2048 case BTF_KIND_CONST: return "const";
2049 case BTF_KIND_RESTRICT: return "restrict";
2050 case BTF_KIND_FUNC: return "func";
2051 case BTF_KIND_FUNC_PROTO: return "func_proto";
2052 case BTF_KIND_VAR: return "var";
2053 case BTF_KIND_DATASEC: return "datasec";
2054 case BTF_KIND_FLOAT: return "float";
2055 case BTF_KIND_DECL_TAG: return "decl_tag";
2056 case BTF_KIND_TYPE_TAG: return "type_tag";
2057 case BTF_KIND_ENUM64: return "enum64";
2058 default: return "unknown";
2059 }
2060 }
2061
btf_kind_str(const struct btf_type * t)2062 const char *btf_kind_str(const struct btf_type *t)
2063 {
2064 return __btf_kind_str(btf_kind(t));
2065 }
2066
2067 /*
2068 * Fetch integer attribute of BTF map definition. Such attributes are
2069 * represented using a pointer to an array, in which dimensionality of array
2070 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2071 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2072 * type definition, while using only sizeof(void *) space in ELF data section.
2073 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2074 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2075 const struct btf_member *m, __u32 *res)
2076 {
2077 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2078 const char *name = btf__name_by_offset(btf, m->name_off);
2079 const struct btf_array *arr_info;
2080 const struct btf_type *arr_t;
2081
2082 if (!btf_is_ptr(t)) {
2083 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2084 map_name, name, btf_kind_str(t));
2085 return false;
2086 }
2087
2088 arr_t = btf__type_by_id(btf, t->type);
2089 if (!arr_t) {
2090 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2091 map_name, name, t->type);
2092 return false;
2093 }
2094 if (!btf_is_array(arr_t)) {
2095 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2096 map_name, name, btf_kind_str(arr_t));
2097 return false;
2098 }
2099 arr_info = btf_array(arr_t);
2100 *res = arr_info->nelems;
2101 return true;
2102 }
2103
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2104 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2105 {
2106 int len;
2107
2108 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2109 if (len < 0)
2110 return -EINVAL;
2111 if (len >= buf_sz)
2112 return -ENAMETOOLONG;
2113
2114 return 0;
2115 }
2116
build_map_pin_path(struct bpf_map * map,const char * path)2117 static int build_map_pin_path(struct bpf_map *map, const char *path)
2118 {
2119 char buf[PATH_MAX];
2120 int err;
2121
2122 if (!path)
2123 path = "/sys/fs/bpf";
2124
2125 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2126 if (err)
2127 return err;
2128
2129 return bpf_map__set_pin_path(map, buf);
2130 }
2131
2132 /* should match definition in bpf_helpers.h */
2133 enum libbpf_pin_type {
2134 LIBBPF_PIN_NONE,
2135 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2136 LIBBPF_PIN_BY_NAME,
2137 };
2138
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2139 int parse_btf_map_def(const char *map_name, struct btf *btf,
2140 const struct btf_type *def_t, bool strict,
2141 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2142 {
2143 const struct btf_type *t;
2144 const struct btf_member *m;
2145 bool is_inner = inner_def == NULL;
2146 int vlen, i;
2147
2148 vlen = btf_vlen(def_t);
2149 m = btf_members(def_t);
2150 for (i = 0; i < vlen; i++, m++) {
2151 const char *name = btf__name_by_offset(btf, m->name_off);
2152
2153 if (!name) {
2154 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2155 return -EINVAL;
2156 }
2157 if (strcmp(name, "type") == 0) {
2158 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2159 return -EINVAL;
2160 map_def->parts |= MAP_DEF_MAP_TYPE;
2161 } else if (strcmp(name, "max_entries") == 0) {
2162 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2163 return -EINVAL;
2164 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2165 } else if (strcmp(name, "map_flags") == 0) {
2166 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2167 return -EINVAL;
2168 map_def->parts |= MAP_DEF_MAP_FLAGS;
2169 } else if (strcmp(name, "numa_node") == 0) {
2170 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2171 return -EINVAL;
2172 map_def->parts |= MAP_DEF_NUMA_NODE;
2173 } else if (strcmp(name, "key_size") == 0) {
2174 __u32 sz;
2175
2176 if (!get_map_field_int(map_name, btf, m, &sz))
2177 return -EINVAL;
2178 if (map_def->key_size && map_def->key_size != sz) {
2179 pr_warn("map '%s': conflicting key size %u != %u.\n",
2180 map_name, map_def->key_size, sz);
2181 return -EINVAL;
2182 }
2183 map_def->key_size = sz;
2184 map_def->parts |= MAP_DEF_KEY_SIZE;
2185 } else if (strcmp(name, "key") == 0) {
2186 __s64 sz;
2187
2188 t = btf__type_by_id(btf, m->type);
2189 if (!t) {
2190 pr_warn("map '%s': key type [%d] not found.\n",
2191 map_name, m->type);
2192 return -EINVAL;
2193 }
2194 if (!btf_is_ptr(t)) {
2195 pr_warn("map '%s': key spec is not PTR: %s.\n",
2196 map_name, btf_kind_str(t));
2197 return -EINVAL;
2198 }
2199 sz = btf__resolve_size(btf, t->type);
2200 if (sz < 0) {
2201 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2202 map_name, t->type, (ssize_t)sz);
2203 return sz;
2204 }
2205 if (map_def->key_size && map_def->key_size != sz) {
2206 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2207 map_name, map_def->key_size, (ssize_t)sz);
2208 return -EINVAL;
2209 }
2210 map_def->key_size = sz;
2211 map_def->key_type_id = t->type;
2212 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2213 } else if (strcmp(name, "value_size") == 0) {
2214 __u32 sz;
2215
2216 if (!get_map_field_int(map_name, btf, m, &sz))
2217 return -EINVAL;
2218 if (map_def->value_size && map_def->value_size != sz) {
2219 pr_warn("map '%s': conflicting value size %u != %u.\n",
2220 map_name, map_def->value_size, sz);
2221 return -EINVAL;
2222 }
2223 map_def->value_size = sz;
2224 map_def->parts |= MAP_DEF_VALUE_SIZE;
2225 } else if (strcmp(name, "value") == 0) {
2226 __s64 sz;
2227
2228 t = btf__type_by_id(btf, m->type);
2229 if (!t) {
2230 pr_warn("map '%s': value type [%d] not found.\n",
2231 map_name, m->type);
2232 return -EINVAL;
2233 }
2234 if (!btf_is_ptr(t)) {
2235 pr_warn("map '%s': value spec is not PTR: %s.\n",
2236 map_name, btf_kind_str(t));
2237 return -EINVAL;
2238 }
2239 sz = btf__resolve_size(btf, t->type);
2240 if (sz < 0) {
2241 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2242 map_name, t->type, (ssize_t)sz);
2243 return sz;
2244 }
2245 if (map_def->value_size && map_def->value_size != sz) {
2246 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2247 map_name, map_def->value_size, (ssize_t)sz);
2248 return -EINVAL;
2249 }
2250 map_def->value_size = sz;
2251 map_def->value_type_id = t->type;
2252 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2253 }
2254 else if (strcmp(name, "values") == 0) {
2255 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2256 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2257 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2258 char inner_map_name[128];
2259 int err;
2260
2261 if (is_inner) {
2262 pr_warn("map '%s': multi-level inner maps not supported.\n",
2263 map_name);
2264 return -ENOTSUP;
2265 }
2266 if (i != vlen - 1) {
2267 pr_warn("map '%s': '%s' member should be last.\n",
2268 map_name, name);
2269 return -EINVAL;
2270 }
2271 if (!is_map_in_map && !is_prog_array) {
2272 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2273 map_name);
2274 return -ENOTSUP;
2275 }
2276 if (map_def->value_size && map_def->value_size != 4) {
2277 pr_warn("map '%s': conflicting value size %u != 4.\n",
2278 map_name, map_def->value_size);
2279 return -EINVAL;
2280 }
2281 map_def->value_size = 4;
2282 t = btf__type_by_id(btf, m->type);
2283 if (!t) {
2284 pr_warn("map '%s': %s type [%d] not found.\n",
2285 map_name, desc, m->type);
2286 return -EINVAL;
2287 }
2288 if (!btf_is_array(t) || btf_array(t)->nelems) {
2289 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2290 map_name, desc);
2291 return -EINVAL;
2292 }
2293 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2294 if (!btf_is_ptr(t)) {
2295 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2296 map_name, desc, btf_kind_str(t));
2297 return -EINVAL;
2298 }
2299 t = skip_mods_and_typedefs(btf, t->type, NULL);
2300 if (is_prog_array) {
2301 if (!btf_is_func_proto(t)) {
2302 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2303 map_name, btf_kind_str(t));
2304 return -EINVAL;
2305 }
2306 continue;
2307 }
2308 if (!btf_is_struct(t)) {
2309 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2310 map_name, btf_kind_str(t));
2311 return -EINVAL;
2312 }
2313
2314 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2315 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2316 if (err)
2317 return err;
2318
2319 map_def->parts |= MAP_DEF_INNER_MAP;
2320 } else if (strcmp(name, "pinning") == 0) {
2321 __u32 val;
2322
2323 if (is_inner) {
2324 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2325 return -EINVAL;
2326 }
2327 if (!get_map_field_int(map_name, btf, m, &val))
2328 return -EINVAL;
2329 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2330 pr_warn("map '%s': invalid pinning value %u.\n",
2331 map_name, val);
2332 return -EINVAL;
2333 }
2334 map_def->pinning = val;
2335 map_def->parts |= MAP_DEF_PINNING;
2336 } else if (strcmp(name, "map_extra") == 0) {
2337 __u32 map_extra;
2338
2339 if (!get_map_field_int(map_name, btf, m, &map_extra))
2340 return -EINVAL;
2341 map_def->map_extra = map_extra;
2342 map_def->parts |= MAP_DEF_MAP_EXTRA;
2343 } else {
2344 if (strict) {
2345 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2346 return -ENOTSUP;
2347 }
2348 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2349 }
2350 }
2351
2352 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2353 pr_warn("map '%s': map type isn't specified.\n", map_name);
2354 return -EINVAL;
2355 }
2356
2357 return 0;
2358 }
2359
adjust_ringbuf_sz(size_t sz)2360 static size_t adjust_ringbuf_sz(size_t sz)
2361 {
2362 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2363 __u32 mul;
2364
2365 /* if user forgot to set any size, make sure they see error */
2366 if (sz == 0)
2367 return 0;
2368 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2369 * a power-of-2 multiple of kernel's page size. If user diligently
2370 * satisified these conditions, pass the size through.
2371 */
2372 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2373 return sz;
2374
2375 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2376 * user-set size to satisfy both user size request and kernel
2377 * requirements and substitute correct max_entries for map creation.
2378 */
2379 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2380 if (mul * page_sz > sz)
2381 return mul * page_sz;
2382 }
2383
2384 /* if it's impossible to satisfy the conditions (i.e., user size is
2385 * very close to UINT_MAX but is not a power-of-2 multiple of
2386 * page_size) then just return original size and let kernel reject it
2387 */
2388 return sz;
2389 }
2390
map_is_ringbuf(const struct bpf_map * map)2391 static bool map_is_ringbuf(const struct bpf_map *map)
2392 {
2393 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2394 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2395 }
2396
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2397 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2398 {
2399 map->def.type = def->map_type;
2400 map->def.key_size = def->key_size;
2401 map->def.value_size = def->value_size;
2402 map->def.max_entries = def->max_entries;
2403 map->def.map_flags = def->map_flags;
2404 map->map_extra = def->map_extra;
2405
2406 map->numa_node = def->numa_node;
2407 map->btf_key_type_id = def->key_type_id;
2408 map->btf_value_type_id = def->value_type_id;
2409
2410 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2411 if (map_is_ringbuf(map))
2412 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2413
2414 if (def->parts & MAP_DEF_MAP_TYPE)
2415 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2416
2417 if (def->parts & MAP_DEF_KEY_TYPE)
2418 pr_debug("map '%s': found key [%u], sz = %u.\n",
2419 map->name, def->key_type_id, def->key_size);
2420 else if (def->parts & MAP_DEF_KEY_SIZE)
2421 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2422
2423 if (def->parts & MAP_DEF_VALUE_TYPE)
2424 pr_debug("map '%s': found value [%u], sz = %u.\n",
2425 map->name, def->value_type_id, def->value_size);
2426 else if (def->parts & MAP_DEF_VALUE_SIZE)
2427 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2428
2429 if (def->parts & MAP_DEF_MAX_ENTRIES)
2430 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2431 if (def->parts & MAP_DEF_MAP_FLAGS)
2432 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2433 if (def->parts & MAP_DEF_MAP_EXTRA)
2434 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2435 (unsigned long long)def->map_extra);
2436 if (def->parts & MAP_DEF_PINNING)
2437 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2438 if (def->parts & MAP_DEF_NUMA_NODE)
2439 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2440
2441 if (def->parts & MAP_DEF_INNER_MAP)
2442 pr_debug("map '%s': found inner map definition.\n", map->name);
2443 }
2444
btf_var_linkage_str(__u32 linkage)2445 static const char *btf_var_linkage_str(__u32 linkage)
2446 {
2447 switch (linkage) {
2448 case BTF_VAR_STATIC: return "static";
2449 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2450 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2451 default: return "unknown";
2452 }
2453 }
2454
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2455 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2456 const struct btf_type *sec,
2457 int var_idx, int sec_idx,
2458 const Elf_Data *data, bool strict,
2459 const char *pin_root_path)
2460 {
2461 struct btf_map_def map_def = {}, inner_def = {};
2462 const struct btf_type *var, *def;
2463 const struct btf_var_secinfo *vi;
2464 const struct btf_var *var_extra;
2465 const char *map_name;
2466 struct bpf_map *map;
2467 int err;
2468
2469 vi = btf_var_secinfos(sec) + var_idx;
2470 var = btf__type_by_id(obj->btf, vi->type);
2471 var_extra = btf_var(var);
2472 map_name = btf__name_by_offset(obj->btf, var->name_off);
2473
2474 if (map_name == NULL || map_name[0] == '\0') {
2475 pr_warn("map #%d: empty name.\n", var_idx);
2476 return -EINVAL;
2477 }
2478 if ((__u64)vi->offset + vi->size > data->d_size) {
2479 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2480 return -EINVAL;
2481 }
2482 if (!btf_is_var(var)) {
2483 pr_warn("map '%s': unexpected var kind %s.\n",
2484 map_name, btf_kind_str(var));
2485 return -EINVAL;
2486 }
2487 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2488 pr_warn("map '%s': unsupported map linkage %s.\n",
2489 map_name, btf_var_linkage_str(var_extra->linkage));
2490 return -EOPNOTSUPP;
2491 }
2492
2493 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2494 if (!btf_is_struct(def)) {
2495 pr_warn("map '%s': unexpected def kind %s.\n",
2496 map_name, btf_kind_str(var));
2497 return -EINVAL;
2498 }
2499 if (def->size > vi->size) {
2500 pr_warn("map '%s': invalid def size.\n", map_name);
2501 return -EINVAL;
2502 }
2503
2504 map = bpf_object__add_map(obj);
2505 if (IS_ERR(map))
2506 return PTR_ERR(map);
2507 map->name = strdup(map_name);
2508 if (!map->name) {
2509 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2510 return -ENOMEM;
2511 }
2512 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2513 map->def.type = BPF_MAP_TYPE_UNSPEC;
2514 map->sec_idx = sec_idx;
2515 map->sec_offset = vi->offset;
2516 map->btf_var_idx = var_idx;
2517 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2518 map_name, map->sec_idx, map->sec_offset);
2519
2520 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2521 if (err)
2522 return err;
2523
2524 fill_map_from_def(map, &map_def);
2525
2526 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2527 err = build_map_pin_path(map, pin_root_path);
2528 if (err) {
2529 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2530 return err;
2531 }
2532 }
2533
2534 if (map_def.parts & MAP_DEF_INNER_MAP) {
2535 map->inner_map = calloc(1, sizeof(*map->inner_map));
2536 if (!map->inner_map)
2537 return -ENOMEM;
2538 map->inner_map->fd = -1;
2539 map->inner_map->sec_idx = sec_idx;
2540 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2541 if (!map->inner_map->name)
2542 return -ENOMEM;
2543 sprintf(map->inner_map->name, "%s.inner", map_name);
2544
2545 fill_map_from_def(map->inner_map, &inner_def);
2546 }
2547
2548 err = bpf_map_find_btf_info(obj, map);
2549 if (err)
2550 return err;
2551
2552 return 0;
2553 }
2554
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2555 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2556 const char *pin_root_path)
2557 {
2558 const struct btf_type *sec = NULL;
2559 int nr_types, i, vlen, err;
2560 const struct btf_type *t;
2561 const char *name;
2562 Elf_Data *data;
2563 Elf_Scn *scn;
2564
2565 if (obj->efile.btf_maps_shndx < 0)
2566 return 0;
2567
2568 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2569 data = elf_sec_data(obj, scn);
2570 if (!scn || !data) {
2571 pr_warn("elf: failed to get %s map definitions for %s\n",
2572 MAPS_ELF_SEC, obj->path);
2573 return -EINVAL;
2574 }
2575
2576 nr_types = btf__type_cnt(obj->btf);
2577 for (i = 1; i < nr_types; i++) {
2578 t = btf__type_by_id(obj->btf, i);
2579 if (!btf_is_datasec(t))
2580 continue;
2581 name = btf__name_by_offset(obj->btf, t->name_off);
2582 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2583 sec = t;
2584 obj->efile.btf_maps_sec_btf_id = i;
2585 break;
2586 }
2587 }
2588
2589 if (!sec) {
2590 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2591 return -ENOENT;
2592 }
2593
2594 vlen = btf_vlen(sec);
2595 for (i = 0; i < vlen; i++) {
2596 err = bpf_object__init_user_btf_map(obj, sec, i,
2597 obj->efile.btf_maps_shndx,
2598 data, strict,
2599 pin_root_path);
2600 if (err)
2601 return err;
2602 }
2603
2604 return 0;
2605 }
2606
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)2607 static int bpf_object__init_maps(struct bpf_object *obj,
2608 const struct bpf_object_open_opts *opts)
2609 {
2610 const char *pin_root_path;
2611 bool strict;
2612 int err = 0;
2613
2614 strict = !OPTS_GET(opts, relaxed_maps, false);
2615 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2616
2617 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2618 err = err ?: bpf_object__init_global_data_maps(obj);
2619 err = err ?: bpf_object__init_kconfig_map(obj);
2620 err = err ?: bpf_object__init_struct_ops_maps(obj);
2621
2622 return err;
2623 }
2624
section_have_execinstr(struct bpf_object * obj,int idx)2625 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2626 {
2627 Elf64_Shdr *sh;
2628
2629 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2630 if (!sh)
2631 return false;
2632
2633 return sh->sh_flags & SHF_EXECINSTR;
2634 }
2635
btf_needs_sanitization(struct bpf_object * obj)2636 static bool btf_needs_sanitization(struct bpf_object *obj)
2637 {
2638 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2639 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2640 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2641 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2642 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2643 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2644 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2645
2646 return !has_func || !has_datasec || !has_func_global || !has_float ||
2647 !has_decl_tag || !has_type_tag || !has_enum64;
2648 }
2649
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)2650 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2651 {
2652 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2653 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2654 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2655 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2656 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2657 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2658 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2659 int enum64_placeholder_id = 0;
2660 struct btf_type *t;
2661 int i, j, vlen;
2662
2663 for (i = 1; i < btf__type_cnt(btf); i++) {
2664 t = (struct btf_type *)btf__type_by_id(btf, i);
2665
2666 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2667 /* replace VAR/DECL_TAG with INT */
2668 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2669 /*
2670 * using size = 1 is the safest choice, 4 will be too
2671 * big and cause kernel BTF validation failure if
2672 * original variable took less than 4 bytes
2673 */
2674 t->size = 1;
2675 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2676 } else if (!has_datasec && btf_is_datasec(t)) {
2677 /* replace DATASEC with STRUCT */
2678 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2679 struct btf_member *m = btf_members(t);
2680 struct btf_type *vt;
2681 char *name;
2682
2683 name = (char *)btf__name_by_offset(btf, t->name_off);
2684 while (*name) {
2685 if (*name == '.')
2686 *name = '_';
2687 name++;
2688 }
2689
2690 vlen = btf_vlen(t);
2691 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2692 for (j = 0; j < vlen; j++, v++, m++) {
2693 /* order of field assignments is important */
2694 m->offset = v->offset * 8;
2695 m->type = v->type;
2696 /* preserve variable name as member name */
2697 vt = (void *)btf__type_by_id(btf, v->type);
2698 m->name_off = vt->name_off;
2699 }
2700 } else if (!has_func && btf_is_func_proto(t)) {
2701 /* replace FUNC_PROTO with ENUM */
2702 vlen = btf_vlen(t);
2703 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2704 t->size = sizeof(__u32); /* kernel enforced */
2705 } else if (!has_func && btf_is_func(t)) {
2706 /* replace FUNC with TYPEDEF */
2707 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2708 } else if (!has_func_global && btf_is_func(t)) {
2709 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2710 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2711 } else if (!has_float && btf_is_float(t)) {
2712 /* replace FLOAT with an equally-sized empty STRUCT;
2713 * since C compilers do not accept e.g. "float" as a
2714 * valid struct name, make it anonymous
2715 */
2716 t->name_off = 0;
2717 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2718 } else if (!has_type_tag && btf_is_type_tag(t)) {
2719 /* replace TYPE_TAG with a CONST */
2720 t->name_off = 0;
2721 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2722 } else if (!has_enum64 && btf_is_enum(t)) {
2723 /* clear the kflag */
2724 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2725 } else if (!has_enum64 && btf_is_enum64(t)) {
2726 /* replace ENUM64 with a union */
2727 struct btf_member *m;
2728
2729 if (enum64_placeholder_id == 0) {
2730 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2731 if (enum64_placeholder_id < 0)
2732 return enum64_placeholder_id;
2733
2734 t = (struct btf_type *)btf__type_by_id(btf, i);
2735 }
2736
2737 m = btf_members(t);
2738 vlen = btf_vlen(t);
2739 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2740 for (j = 0; j < vlen; j++, m++) {
2741 m->type = enum64_placeholder_id;
2742 m->offset = 0;
2743 }
2744 }
2745 }
2746
2747 return 0;
2748 }
2749
libbpf_needs_btf(const struct bpf_object * obj)2750 static bool libbpf_needs_btf(const struct bpf_object *obj)
2751 {
2752 return obj->efile.btf_maps_shndx >= 0 ||
2753 obj->efile.st_ops_shndx >= 0 ||
2754 obj->nr_extern > 0;
2755 }
2756
kernel_needs_btf(const struct bpf_object * obj)2757 static bool kernel_needs_btf(const struct bpf_object *obj)
2758 {
2759 return obj->efile.st_ops_shndx >= 0;
2760 }
2761
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)2762 static int bpf_object__init_btf(struct bpf_object *obj,
2763 Elf_Data *btf_data,
2764 Elf_Data *btf_ext_data)
2765 {
2766 int err = -ENOENT;
2767
2768 if (btf_data) {
2769 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2770 err = libbpf_get_error(obj->btf);
2771 if (err) {
2772 obj->btf = NULL;
2773 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2774 goto out;
2775 }
2776 /* enforce 8-byte pointers for BPF-targeted BTFs */
2777 btf__set_pointer_size(obj->btf, 8);
2778 }
2779 if (btf_ext_data) {
2780 struct btf_ext_info *ext_segs[3];
2781 int seg_num, sec_num;
2782
2783 if (!obj->btf) {
2784 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2785 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2786 goto out;
2787 }
2788 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2789 err = libbpf_get_error(obj->btf_ext);
2790 if (err) {
2791 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2792 BTF_EXT_ELF_SEC, err);
2793 obj->btf_ext = NULL;
2794 goto out;
2795 }
2796
2797 /* setup .BTF.ext to ELF section mapping */
2798 ext_segs[0] = &obj->btf_ext->func_info;
2799 ext_segs[1] = &obj->btf_ext->line_info;
2800 ext_segs[2] = &obj->btf_ext->core_relo_info;
2801 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2802 struct btf_ext_info *seg = ext_segs[seg_num];
2803 const struct btf_ext_info_sec *sec;
2804 const char *sec_name;
2805 Elf_Scn *scn;
2806
2807 if (seg->sec_cnt == 0)
2808 continue;
2809
2810 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2811 if (!seg->sec_idxs) {
2812 err = -ENOMEM;
2813 goto out;
2814 }
2815
2816 sec_num = 0;
2817 for_each_btf_ext_sec(seg, sec) {
2818 /* preventively increment index to avoid doing
2819 * this before every continue below
2820 */
2821 sec_num++;
2822
2823 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2824 if (str_is_empty(sec_name))
2825 continue;
2826 scn = elf_sec_by_name(obj, sec_name);
2827 if (!scn)
2828 continue;
2829
2830 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2831 }
2832 }
2833 }
2834 out:
2835 if (err && libbpf_needs_btf(obj)) {
2836 pr_warn("BTF is required, but is missing or corrupted.\n");
2837 return err;
2838 }
2839 return 0;
2840 }
2841
compare_vsi_off(const void * _a,const void * _b)2842 static int compare_vsi_off(const void *_a, const void *_b)
2843 {
2844 const struct btf_var_secinfo *a = _a;
2845 const struct btf_var_secinfo *b = _b;
2846
2847 return a->offset - b->offset;
2848 }
2849
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)2850 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2851 struct btf_type *t)
2852 {
2853 __u32 size = 0, off = 0, i, vars = btf_vlen(t);
2854 const char *name = btf__name_by_offset(btf, t->name_off);
2855 const struct btf_type *t_var;
2856 struct btf_var_secinfo *vsi;
2857 const struct btf_var *var;
2858 int ret;
2859
2860 if (!name) {
2861 pr_debug("No name found in string section for DATASEC kind.\n");
2862 return -ENOENT;
2863 }
2864
2865 /* .extern datasec size and var offsets were set correctly during
2866 * extern collection step, so just skip straight to sorting variables
2867 */
2868 if (t->size)
2869 goto sort_vars;
2870
2871 ret = find_elf_sec_sz(obj, name, &size);
2872 if (ret || !size) {
2873 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2874 return -ENOENT;
2875 }
2876
2877 t->size = size;
2878
2879 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2880 t_var = btf__type_by_id(btf, vsi->type);
2881 if (!t_var || !btf_is_var(t_var)) {
2882 pr_debug("Non-VAR type seen in section %s\n", name);
2883 return -EINVAL;
2884 }
2885
2886 var = btf_var(t_var);
2887 if (var->linkage == BTF_VAR_STATIC)
2888 continue;
2889
2890 name = btf__name_by_offset(btf, t_var->name_off);
2891 if (!name) {
2892 pr_debug("No name found in string section for VAR kind\n");
2893 return -ENOENT;
2894 }
2895
2896 ret = find_elf_var_offset(obj, name, &off);
2897 if (ret) {
2898 pr_debug("No offset found in symbol table for VAR %s\n",
2899 name);
2900 return -ENOENT;
2901 }
2902
2903 vsi->offset = off;
2904 }
2905
2906 sort_vars:
2907 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2908 return 0;
2909 }
2910
btf_finalize_data(struct bpf_object * obj,struct btf * btf)2911 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2912 {
2913 int err = 0;
2914 __u32 i, n = btf__type_cnt(btf);
2915
2916 for (i = 1; i < n; i++) {
2917 struct btf_type *t = btf_type_by_id(btf, i);
2918
2919 /* Loader needs to fix up some of the things compiler
2920 * couldn't get its hands on while emitting BTF. This
2921 * is section size and global variable offset. We use
2922 * the info from the ELF itself for this purpose.
2923 */
2924 if (btf_is_datasec(t)) {
2925 err = btf_fixup_datasec(obj, btf, t);
2926 if (err)
2927 break;
2928 }
2929 }
2930
2931 return libbpf_err(err);
2932 }
2933
bpf_object__finalize_btf(struct bpf_object * obj)2934 static int bpf_object__finalize_btf(struct bpf_object *obj)
2935 {
2936 int err;
2937
2938 if (!obj->btf)
2939 return 0;
2940
2941 err = btf_finalize_data(obj, obj->btf);
2942 if (err) {
2943 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2944 return err;
2945 }
2946
2947 return 0;
2948 }
2949
prog_needs_vmlinux_btf(struct bpf_program * prog)2950 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2951 {
2952 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2953 prog->type == BPF_PROG_TYPE_LSM)
2954 return true;
2955
2956 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2957 * also need vmlinux BTF
2958 */
2959 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2960 return true;
2961
2962 return false;
2963 }
2964
obj_needs_vmlinux_btf(const struct bpf_object * obj)2965 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2966 {
2967 struct bpf_program *prog;
2968 int i;
2969
2970 /* CO-RE relocations need kernel BTF, only when btf_custom_path
2971 * is not specified
2972 */
2973 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2974 return true;
2975
2976 /* Support for typed ksyms needs kernel BTF */
2977 for (i = 0; i < obj->nr_extern; i++) {
2978 const struct extern_desc *ext;
2979
2980 ext = &obj->externs[i];
2981 if (ext->type == EXT_KSYM && ext->ksym.type_id)
2982 return true;
2983 }
2984
2985 bpf_object__for_each_program(prog, obj) {
2986 if (!prog->autoload)
2987 continue;
2988 if (prog_needs_vmlinux_btf(prog))
2989 return true;
2990 }
2991
2992 return false;
2993 }
2994
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)2995 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2996 {
2997 int err;
2998
2999 /* btf_vmlinux could be loaded earlier */
3000 if (obj->btf_vmlinux || obj->gen_loader)
3001 return 0;
3002
3003 if (!force && !obj_needs_vmlinux_btf(obj))
3004 return 0;
3005
3006 obj->btf_vmlinux = btf__load_vmlinux_btf();
3007 err = libbpf_get_error(obj->btf_vmlinux);
3008 if (err) {
3009 pr_warn("Error loading vmlinux BTF: %d\n", err);
3010 obj->btf_vmlinux = NULL;
3011 return err;
3012 }
3013 return 0;
3014 }
3015
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3016 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3017 {
3018 struct btf *kern_btf = obj->btf;
3019 bool btf_mandatory, sanitize;
3020 int i, err = 0;
3021
3022 if (!obj->btf)
3023 return 0;
3024
3025 if (!kernel_supports(obj, FEAT_BTF)) {
3026 if (kernel_needs_btf(obj)) {
3027 err = -EOPNOTSUPP;
3028 goto report;
3029 }
3030 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3031 return 0;
3032 }
3033
3034 /* Even though some subprogs are global/weak, user might prefer more
3035 * permissive BPF verification process that BPF verifier performs for
3036 * static functions, taking into account more context from the caller
3037 * functions. In such case, they need to mark such subprogs with
3038 * __attribute__((visibility("hidden"))) and libbpf will adjust
3039 * corresponding FUNC BTF type to be marked as static and trigger more
3040 * involved BPF verification process.
3041 */
3042 for (i = 0; i < obj->nr_programs; i++) {
3043 struct bpf_program *prog = &obj->programs[i];
3044 struct btf_type *t;
3045 const char *name;
3046 int j, n;
3047
3048 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3049 continue;
3050
3051 n = btf__type_cnt(obj->btf);
3052 for (j = 1; j < n; j++) {
3053 t = btf_type_by_id(obj->btf, j);
3054 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3055 continue;
3056
3057 name = btf__str_by_offset(obj->btf, t->name_off);
3058 if (strcmp(name, prog->name) != 0)
3059 continue;
3060
3061 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3062 break;
3063 }
3064 }
3065
3066 sanitize = btf_needs_sanitization(obj);
3067 if (sanitize) {
3068 const void *raw_data;
3069 __u32 sz;
3070
3071 /* clone BTF to sanitize a copy and leave the original intact */
3072 raw_data = btf__raw_data(obj->btf, &sz);
3073 kern_btf = btf__new(raw_data, sz);
3074 err = libbpf_get_error(kern_btf);
3075 if (err)
3076 return err;
3077
3078 /* enforce 8-byte pointers for BPF-targeted BTFs */
3079 btf__set_pointer_size(obj->btf, 8);
3080 err = bpf_object__sanitize_btf(obj, kern_btf);
3081 if (err)
3082 return err;
3083 }
3084
3085 if (obj->gen_loader) {
3086 __u32 raw_size = 0;
3087 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3088
3089 if (!raw_data)
3090 return -ENOMEM;
3091 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3092 /* Pretend to have valid FD to pass various fd >= 0 checks.
3093 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3094 */
3095 btf__set_fd(kern_btf, 0);
3096 } else {
3097 /* currently BPF_BTF_LOAD only supports log_level 1 */
3098 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3099 obj->log_level ? 1 : 0);
3100 }
3101 if (sanitize) {
3102 if (!err) {
3103 /* move fd to libbpf's BTF */
3104 btf__set_fd(obj->btf, btf__fd(kern_btf));
3105 btf__set_fd(kern_btf, -1);
3106 }
3107 btf__free(kern_btf);
3108 }
3109 report:
3110 if (err) {
3111 btf_mandatory = kernel_needs_btf(obj);
3112 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3113 btf_mandatory ? "BTF is mandatory, can't proceed."
3114 : "BTF is optional, ignoring.");
3115 if (!btf_mandatory)
3116 err = 0;
3117 }
3118 return err;
3119 }
3120
elf_sym_str(const struct bpf_object * obj,size_t off)3121 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3122 {
3123 const char *name;
3124
3125 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3126 if (!name) {
3127 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3128 off, obj->path, elf_errmsg(-1));
3129 return NULL;
3130 }
3131
3132 return name;
3133 }
3134
elf_sec_str(const struct bpf_object * obj,size_t off)3135 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3136 {
3137 const char *name;
3138
3139 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3140 if (!name) {
3141 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3142 off, obj->path, elf_errmsg(-1));
3143 return NULL;
3144 }
3145
3146 return name;
3147 }
3148
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3149 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3150 {
3151 Elf_Scn *scn;
3152
3153 scn = elf_getscn(obj->efile.elf, idx);
3154 if (!scn) {
3155 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3156 idx, obj->path, elf_errmsg(-1));
3157 return NULL;
3158 }
3159 return scn;
3160 }
3161
elf_sec_by_name(const struct bpf_object * obj,const char * name)3162 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3163 {
3164 Elf_Scn *scn = NULL;
3165 Elf *elf = obj->efile.elf;
3166 const char *sec_name;
3167
3168 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3169 sec_name = elf_sec_name(obj, scn);
3170 if (!sec_name)
3171 return NULL;
3172
3173 if (strcmp(sec_name, name) != 0)
3174 continue;
3175
3176 return scn;
3177 }
3178 return NULL;
3179 }
3180
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3181 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3182 {
3183 Elf64_Shdr *shdr;
3184
3185 if (!scn)
3186 return NULL;
3187
3188 shdr = elf64_getshdr(scn);
3189 if (!shdr) {
3190 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3191 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3192 return NULL;
3193 }
3194
3195 return shdr;
3196 }
3197
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3198 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3199 {
3200 const char *name;
3201 Elf64_Shdr *sh;
3202
3203 if (!scn)
3204 return NULL;
3205
3206 sh = elf_sec_hdr(obj, scn);
3207 if (!sh)
3208 return NULL;
3209
3210 name = elf_sec_str(obj, sh->sh_name);
3211 if (!name) {
3212 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3213 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3214 return NULL;
3215 }
3216
3217 return name;
3218 }
3219
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3220 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3221 {
3222 Elf_Data *data;
3223
3224 if (!scn)
3225 return NULL;
3226
3227 data = elf_getdata(scn, 0);
3228 if (!data) {
3229 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3230 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3231 obj->path, elf_errmsg(-1));
3232 return NULL;
3233 }
3234
3235 return data;
3236 }
3237
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3238 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3239 {
3240 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3241 return NULL;
3242
3243 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3244 }
3245
elf_rel_by_idx(Elf_Data * data,size_t idx)3246 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3247 {
3248 if (idx >= data->d_size / sizeof(Elf64_Rel))
3249 return NULL;
3250
3251 return (Elf64_Rel *)data->d_buf + idx;
3252 }
3253
is_sec_name_dwarf(const char * name)3254 static bool is_sec_name_dwarf(const char *name)
3255 {
3256 /* approximation, but the actual list is too long */
3257 return str_has_pfx(name, ".debug_");
3258 }
3259
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3260 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3261 {
3262 /* no special handling of .strtab */
3263 if (hdr->sh_type == SHT_STRTAB)
3264 return true;
3265
3266 /* ignore .llvm_addrsig section as well */
3267 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3268 return true;
3269
3270 /* no subprograms will lead to an empty .text section, ignore it */
3271 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3272 strcmp(name, ".text") == 0)
3273 return true;
3274
3275 /* DWARF sections */
3276 if (is_sec_name_dwarf(name))
3277 return true;
3278
3279 if (str_has_pfx(name, ".rel")) {
3280 name += sizeof(".rel") - 1;
3281 /* DWARF section relocations */
3282 if (is_sec_name_dwarf(name))
3283 return true;
3284
3285 /* .BTF and .BTF.ext don't need relocations */
3286 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3287 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3288 return true;
3289 }
3290
3291 return false;
3292 }
3293
cmp_progs(const void * _a,const void * _b)3294 static int cmp_progs(const void *_a, const void *_b)
3295 {
3296 const struct bpf_program *a = _a;
3297 const struct bpf_program *b = _b;
3298
3299 if (a->sec_idx != b->sec_idx)
3300 return a->sec_idx < b->sec_idx ? -1 : 1;
3301
3302 /* sec_insn_off can't be the same within the section */
3303 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3304 }
3305
bpf_object__elf_collect(struct bpf_object * obj)3306 static int bpf_object__elf_collect(struct bpf_object *obj)
3307 {
3308 struct elf_sec_desc *sec_desc;
3309 Elf *elf = obj->efile.elf;
3310 Elf_Data *btf_ext_data = NULL;
3311 Elf_Data *btf_data = NULL;
3312 int idx = 0, err = 0;
3313 const char *name;
3314 Elf_Data *data;
3315 Elf_Scn *scn;
3316 Elf64_Shdr *sh;
3317
3318 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3319 * section. Since section count retrieved by elf_getshdrnum() does
3320 * include sec #0, it is already the necessary size of an array to keep
3321 * all the sections.
3322 */
3323 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3324 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3325 obj->path, elf_errmsg(-1));
3326 return -LIBBPF_ERRNO__FORMAT;
3327 }
3328 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3329 if (!obj->efile.secs)
3330 return -ENOMEM;
3331
3332 /* a bunch of ELF parsing functionality depends on processing symbols,
3333 * so do the first pass and find the symbol table
3334 */
3335 scn = NULL;
3336 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3337 sh = elf_sec_hdr(obj, scn);
3338 if (!sh)
3339 return -LIBBPF_ERRNO__FORMAT;
3340
3341 if (sh->sh_type == SHT_SYMTAB) {
3342 if (obj->efile.symbols) {
3343 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3344 return -LIBBPF_ERRNO__FORMAT;
3345 }
3346
3347 data = elf_sec_data(obj, scn);
3348 if (!data)
3349 return -LIBBPF_ERRNO__FORMAT;
3350
3351 idx = elf_ndxscn(scn);
3352
3353 obj->efile.symbols = data;
3354 obj->efile.symbols_shndx = idx;
3355 obj->efile.strtabidx = sh->sh_link;
3356 }
3357 }
3358
3359 if (!obj->efile.symbols) {
3360 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3361 obj->path);
3362 return -ENOENT;
3363 }
3364
3365 scn = NULL;
3366 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3367 idx = elf_ndxscn(scn);
3368 sec_desc = &obj->efile.secs[idx];
3369
3370 sh = elf_sec_hdr(obj, scn);
3371 if (!sh)
3372 return -LIBBPF_ERRNO__FORMAT;
3373
3374 name = elf_sec_str(obj, sh->sh_name);
3375 if (!name)
3376 return -LIBBPF_ERRNO__FORMAT;
3377
3378 if (ignore_elf_section(sh, name))
3379 continue;
3380
3381 data = elf_sec_data(obj, scn);
3382 if (!data)
3383 return -LIBBPF_ERRNO__FORMAT;
3384
3385 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3386 idx, name, (unsigned long)data->d_size,
3387 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3388 (int)sh->sh_type);
3389
3390 if (strcmp(name, "license") == 0) {
3391 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3392 if (err)
3393 return err;
3394 } else if (strcmp(name, "version") == 0) {
3395 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3396 if (err)
3397 return err;
3398 } else if (strcmp(name, "maps") == 0) {
3399 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3400 return -ENOTSUP;
3401 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3402 obj->efile.btf_maps_shndx = idx;
3403 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3404 if (sh->sh_type != SHT_PROGBITS)
3405 return -LIBBPF_ERRNO__FORMAT;
3406 btf_data = data;
3407 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3408 if (sh->sh_type != SHT_PROGBITS)
3409 return -LIBBPF_ERRNO__FORMAT;
3410 btf_ext_data = data;
3411 } else if (sh->sh_type == SHT_SYMTAB) {
3412 /* already processed during the first pass above */
3413 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3414 if (sh->sh_flags & SHF_EXECINSTR) {
3415 if (strcmp(name, ".text") == 0)
3416 obj->efile.text_shndx = idx;
3417 err = bpf_object__add_programs(obj, data, name, idx);
3418 if (err)
3419 return err;
3420 } else if (strcmp(name, DATA_SEC) == 0 ||
3421 str_has_pfx(name, DATA_SEC ".")) {
3422 sec_desc->sec_type = SEC_DATA;
3423 sec_desc->shdr = sh;
3424 sec_desc->data = data;
3425 } else if (strcmp(name, RODATA_SEC) == 0 ||
3426 str_has_pfx(name, RODATA_SEC ".")) {
3427 sec_desc->sec_type = SEC_RODATA;
3428 sec_desc->shdr = sh;
3429 sec_desc->data = data;
3430 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3431 obj->efile.st_ops_data = data;
3432 obj->efile.st_ops_shndx = idx;
3433 } else {
3434 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3435 idx, name);
3436 }
3437 } else if (sh->sh_type == SHT_REL) {
3438 int targ_sec_idx = sh->sh_info; /* points to other section */
3439
3440 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3441 targ_sec_idx >= obj->efile.sec_cnt)
3442 return -LIBBPF_ERRNO__FORMAT;
3443
3444 /* Only do relo for section with exec instructions */
3445 if (!section_have_execinstr(obj, targ_sec_idx) &&
3446 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3447 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3448 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3449 idx, name, targ_sec_idx,
3450 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3451 continue;
3452 }
3453
3454 sec_desc->sec_type = SEC_RELO;
3455 sec_desc->shdr = sh;
3456 sec_desc->data = data;
3457 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3458 sec_desc->sec_type = SEC_BSS;
3459 sec_desc->shdr = sh;
3460 sec_desc->data = data;
3461 } else {
3462 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3463 (size_t)sh->sh_size);
3464 }
3465 }
3466
3467 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3468 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3469 return -LIBBPF_ERRNO__FORMAT;
3470 }
3471
3472 /* sort BPF programs by section name and in-section instruction offset
3473 * for faster search */
3474 if (obj->nr_programs)
3475 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3476
3477 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3478 }
3479
sym_is_extern(const Elf64_Sym * sym)3480 static bool sym_is_extern(const Elf64_Sym *sym)
3481 {
3482 int bind = ELF64_ST_BIND(sym->st_info);
3483 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3484 return sym->st_shndx == SHN_UNDEF &&
3485 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3486 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3487 }
3488
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)3489 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3490 {
3491 int bind = ELF64_ST_BIND(sym->st_info);
3492 int type = ELF64_ST_TYPE(sym->st_info);
3493
3494 /* in .text section */
3495 if (sym->st_shndx != text_shndx)
3496 return false;
3497
3498 /* local function */
3499 if (bind == STB_LOCAL && type == STT_SECTION)
3500 return true;
3501
3502 /* global function */
3503 return bind == STB_GLOBAL && type == STT_FUNC;
3504 }
3505
find_extern_btf_id(const struct btf * btf,const char * ext_name)3506 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3507 {
3508 const struct btf_type *t;
3509 const char *tname;
3510 int i, n;
3511
3512 if (!btf)
3513 return -ESRCH;
3514
3515 n = btf__type_cnt(btf);
3516 for (i = 1; i < n; i++) {
3517 t = btf__type_by_id(btf, i);
3518
3519 if (!btf_is_var(t) && !btf_is_func(t))
3520 continue;
3521
3522 tname = btf__name_by_offset(btf, t->name_off);
3523 if (strcmp(tname, ext_name))
3524 continue;
3525
3526 if (btf_is_var(t) &&
3527 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3528 return -EINVAL;
3529
3530 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3531 return -EINVAL;
3532
3533 return i;
3534 }
3535
3536 return -ENOENT;
3537 }
3538
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)3539 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3540 const struct btf_var_secinfo *vs;
3541 const struct btf_type *t;
3542 int i, j, n;
3543
3544 if (!btf)
3545 return -ESRCH;
3546
3547 n = btf__type_cnt(btf);
3548 for (i = 1; i < n; i++) {
3549 t = btf__type_by_id(btf, i);
3550
3551 if (!btf_is_datasec(t))
3552 continue;
3553
3554 vs = btf_var_secinfos(t);
3555 for (j = 0; j < btf_vlen(t); j++, vs++) {
3556 if (vs->type == ext_btf_id)
3557 return i;
3558 }
3559 }
3560
3561 return -ENOENT;
3562 }
3563
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)3564 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3565 bool *is_signed)
3566 {
3567 const struct btf_type *t;
3568 const char *name;
3569
3570 t = skip_mods_and_typedefs(btf, id, NULL);
3571 name = btf__name_by_offset(btf, t->name_off);
3572
3573 if (is_signed)
3574 *is_signed = false;
3575 switch (btf_kind(t)) {
3576 case BTF_KIND_INT: {
3577 int enc = btf_int_encoding(t);
3578
3579 if (enc & BTF_INT_BOOL)
3580 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3581 if (is_signed)
3582 *is_signed = enc & BTF_INT_SIGNED;
3583 if (t->size == 1)
3584 return KCFG_CHAR;
3585 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3586 return KCFG_UNKNOWN;
3587 return KCFG_INT;
3588 }
3589 case BTF_KIND_ENUM:
3590 if (t->size != 4)
3591 return KCFG_UNKNOWN;
3592 if (strcmp(name, "libbpf_tristate"))
3593 return KCFG_UNKNOWN;
3594 return KCFG_TRISTATE;
3595 case BTF_KIND_ENUM64:
3596 if (strcmp(name, "libbpf_tristate"))
3597 return KCFG_UNKNOWN;
3598 return KCFG_TRISTATE;
3599 case BTF_KIND_ARRAY:
3600 if (btf_array(t)->nelems == 0)
3601 return KCFG_UNKNOWN;
3602 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3603 return KCFG_UNKNOWN;
3604 return KCFG_CHAR_ARR;
3605 default:
3606 return KCFG_UNKNOWN;
3607 }
3608 }
3609
cmp_externs(const void * _a,const void * _b)3610 static int cmp_externs(const void *_a, const void *_b)
3611 {
3612 const struct extern_desc *a = _a;
3613 const struct extern_desc *b = _b;
3614
3615 if (a->type != b->type)
3616 return a->type < b->type ? -1 : 1;
3617
3618 if (a->type == EXT_KCFG) {
3619 /* descending order by alignment requirements */
3620 if (a->kcfg.align != b->kcfg.align)
3621 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3622 /* ascending order by size, within same alignment class */
3623 if (a->kcfg.sz != b->kcfg.sz)
3624 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3625 }
3626
3627 /* resolve ties by name */
3628 return strcmp(a->name, b->name);
3629 }
3630
find_int_btf_id(const struct btf * btf)3631 static int find_int_btf_id(const struct btf *btf)
3632 {
3633 const struct btf_type *t;
3634 int i, n;
3635
3636 n = btf__type_cnt(btf);
3637 for (i = 1; i < n; i++) {
3638 t = btf__type_by_id(btf, i);
3639
3640 if (btf_is_int(t) && btf_int_bits(t) == 32)
3641 return i;
3642 }
3643
3644 return 0;
3645 }
3646
add_dummy_ksym_var(struct btf * btf)3647 static int add_dummy_ksym_var(struct btf *btf)
3648 {
3649 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3650 const struct btf_var_secinfo *vs;
3651 const struct btf_type *sec;
3652
3653 if (!btf)
3654 return 0;
3655
3656 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3657 BTF_KIND_DATASEC);
3658 if (sec_btf_id < 0)
3659 return 0;
3660
3661 sec = btf__type_by_id(btf, sec_btf_id);
3662 vs = btf_var_secinfos(sec);
3663 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3664 const struct btf_type *vt;
3665
3666 vt = btf__type_by_id(btf, vs->type);
3667 if (btf_is_func(vt))
3668 break;
3669 }
3670
3671 /* No func in ksyms sec. No need to add dummy var. */
3672 if (i == btf_vlen(sec))
3673 return 0;
3674
3675 int_btf_id = find_int_btf_id(btf);
3676 dummy_var_btf_id = btf__add_var(btf,
3677 "dummy_ksym",
3678 BTF_VAR_GLOBAL_ALLOCATED,
3679 int_btf_id);
3680 if (dummy_var_btf_id < 0)
3681 pr_warn("cannot create a dummy_ksym var\n");
3682
3683 return dummy_var_btf_id;
3684 }
3685
bpf_object__collect_externs(struct bpf_object * obj)3686 static int bpf_object__collect_externs(struct bpf_object *obj)
3687 {
3688 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3689 const struct btf_type *t;
3690 struct extern_desc *ext;
3691 int i, n, off, dummy_var_btf_id;
3692 const char *ext_name, *sec_name;
3693 Elf_Scn *scn;
3694 Elf64_Shdr *sh;
3695
3696 if (!obj->efile.symbols)
3697 return 0;
3698
3699 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3700 sh = elf_sec_hdr(obj, scn);
3701 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3702 return -LIBBPF_ERRNO__FORMAT;
3703
3704 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3705 if (dummy_var_btf_id < 0)
3706 return dummy_var_btf_id;
3707
3708 n = sh->sh_size / sh->sh_entsize;
3709 pr_debug("looking for externs among %d symbols...\n", n);
3710
3711 for (i = 0; i < n; i++) {
3712 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3713
3714 if (!sym)
3715 return -LIBBPF_ERRNO__FORMAT;
3716 if (!sym_is_extern(sym))
3717 continue;
3718 ext_name = elf_sym_str(obj, sym->st_name);
3719 if (!ext_name || !ext_name[0])
3720 continue;
3721
3722 ext = obj->externs;
3723 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3724 if (!ext)
3725 return -ENOMEM;
3726 obj->externs = ext;
3727 ext = &ext[obj->nr_extern];
3728 memset(ext, 0, sizeof(*ext));
3729 obj->nr_extern++;
3730
3731 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3732 if (ext->btf_id <= 0) {
3733 pr_warn("failed to find BTF for extern '%s': %d\n",
3734 ext_name, ext->btf_id);
3735 return ext->btf_id;
3736 }
3737 t = btf__type_by_id(obj->btf, ext->btf_id);
3738 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3739 ext->sym_idx = i;
3740 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3741
3742 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3743 if (ext->sec_btf_id <= 0) {
3744 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3745 ext_name, ext->btf_id, ext->sec_btf_id);
3746 return ext->sec_btf_id;
3747 }
3748 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3749 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3750
3751 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3752 if (btf_is_func(t)) {
3753 pr_warn("extern function %s is unsupported under %s section\n",
3754 ext->name, KCONFIG_SEC);
3755 return -ENOTSUP;
3756 }
3757 kcfg_sec = sec;
3758 ext->type = EXT_KCFG;
3759 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3760 if (ext->kcfg.sz <= 0) {
3761 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3762 ext_name, ext->kcfg.sz);
3763 return ext->kcfg.sz;
3764 }
3765 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3766 if (ext->kcfg.align <= 0) {
3767 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3768 ext_name, ext->kcfg.align);
3769 return -EINVAL;
3770 }
3771 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3772 &ext->kcfg.is_signed);
3773 if (ext->kcfg.type == KCFG_UNKNOWN) {
3774 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3775 return -ENOTSUP;
3776 }
3777 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3778 ksym_sec = sec;
3779 ext->type = EXT_KSYM;
3780 skip_mods_and_typedefs(obj->btf, t->type,
3781 &ext->ksym.type_id);
3782 } else {
3783 pr_warn("unrecognized extern section '%s'\n", sec_name);
3784 return -ENOTSUP;
3785 }
3786 }
3787 pr_debug("collected %d externs total\n", obj->nr_extern);
3788
3789 if (!obj->nr_extern)
3790 return 0;
3791
3792 /* sort externs by type, for kcfg ones also by (align, size, name) */
3793 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3794
3795 /* for .ksyms section, we need to turn all externs into allocated
3796 * variables in BTF to pass kernel verification; we do this by
3797 * pretending that each extern is a 8-byte variable
3798 */
3799 if (ksym_sec) {
3800 /* find existing 4-byte integer type in BTF to use for fake
3801 * extern variables in DATASEC
3802 */
3803 int int_btf_id = find_int_btf_id(obj->btf);
3804 /* For extern function, a dummy_var added earlier
3805 * will be used to replace the vs->type and
3806 * its name string will be used to refill
3807 * the missing param's name.
3808 */
3809 const struct btf_type *dummy_var;
3810
3811 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3812 for (i = 0; i < obj->nr_extern; i++) {
3813 ext = &obj->externs[i];
3814 if (ext->type != EXT_KSYM)
3815 continue;
3816 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3817 i, ext->sym_idx, ext->name);
3818 }
3819
3820 sec = ksym_sec;
3821 n = btf_vlen(sec);
3822 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3823 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3824 struct btf_type *vt;
3825
3826 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3827 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3828 ext = find_extern_by_name(obj, ext_name);
3829 if (!ext) {
3830 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3831 btf_kind_str(vt), ext_name);
3832 return -ESRCH;
3833 }
3834 if (btf_is_func(vt)) {
3835 const struct btf_type *func_proto;
3836 struct btf_param *param;
3837 int j;
3838
3839 func_proto = btf__type_by_id(obj->btf,
3840 vt->type);
3841 param = btf_params(func_proto);
3842 /* Reuse the dummy_var string if the
3843 * func proto does not have param name.
3844 */
3845 for (j = 0; j < btf_vlen(func_proto); j++)
3846 if (param[j].type && !param[j].name_off)
3847 param[j].name_off =
3848 dummy_var->name_off;
3849 vs->type = dummy_var_btf_id;
3850 vt->info &= ~0xffff;
3851 vt->info |= BTF_FUNC_GLOBAL;
3852 } else {
3853 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3854 vt->type = int_btf_id;
3855 }
3856 vs->offset = off;
3857 vs->size = sizeof(int);
3858 }
3859 sec->size = off;
3860 }
3861
3862 if (kcfg_sec) {
3863 sec = kcfg_sec;
3864 /* for kcfg externs calculate their offsets within a .kconfig map */
3865 off = 0;
3866 for (i = 0; i < obj->nr_extern; i++) {
3867 ext = &obj->externs[i];
3868 if (ext->type != EXT_KCFG)
3869 continue;
3870
3871 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3872 off = ext->kcfg.data_off + ext->kcfg.sz;
3873 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3874 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3875 }
3876 sec->size = off;
3877 n = btf_vlen(sec);
3878 for (i = 0; i < n; i++) {
3879 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3880
3881 t = btf__type_by_id(obj->btf, vs->type);
3882 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3883 ext = find_extern_by_name(obj, ext_name);
3884 if (!ext) {
3885 pr_warn("failed to find extern definition for BTF var '%s'\n",
3886 ext_name);
3887 return -ESRCH;
3888 }
3889 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3890 vs->offset = ext->kcfg.data_off;
3891 }
3892 }
3893 return 0;
3894 }
3895
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)3896 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3897 {
3898 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3899 }
3900
3901 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)3902 bpf_object__find_program_by_name(const struct bpf_object *obj,
3903 const char *name)
3904 {
3905 struct bpf_program *prog;
3906
3907 bpf_object__for_each_program(prog, obj) {
3908 if (prog_is_subprog(obj, prog))
3909 continue;
3910 if (!strcmp(prog->name, name))
3911 return prog;
3912 }
3913 return errno = ENOENT, NULL;
3914 }
3915
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)3916 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3917 int shndx)
3918 {
3919 switch (obj->efile.secs[shndx].sec_type) {
3920 case SEC_BSS:
3921 case SEC_DATA:
3922 case SEC_RODATA:
3923 return true;
3924 default:
3925 return false;
3926 }
3927 }
3928
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)3929 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3930 int shndx)
3931 {
3932 return shndx == obj->efile.btf_maps_shndx;
3933 }
3934
3935 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)3936 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3937 {
3938 if (shndx == obj->efile.symbols_shndx)
3939 return LIBBPF_MAP_KCONFIG;
3940
3941 switch (obj->efile.secs[shndx].sec_type) {
3942 case SEC_BSS:
3943 return LIBBPF_MAP_BSS;
3944 case SEC_DATA:
3945 return LIBBPF_MAP_DATA;
3946 case SEC_RODATA:
3947 return LIBBPF_MAP_RODATA;
3948 default:
3949 return LIBBPF_MAP_UNSPEC;
3950 }
3951 }
3952
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)3953 static int bpf_program__record_reloc(struct bpf_program *prog,
3954 struct reloc_desc *reloc_desc,
3955 __u32 insn_idx, const char *sym_name,
3956 const Elf64_Sym *sym, const Elf64_Rel *rel)
3957 {
3958 struct bpf_insn *insn = &prog->insns[insn_idx];
3959 size_t map_idx, nr_maps = prog->obj->nr_maps;
3960 struct bpf_object *obj = prog->obj;
3961 __u32 shdr_idx = sym->st_shndx;
3962 enum libbpf_map_type type;
3963 const char *sym_sec_name;
3964 struct bpf_map *map;
3965
3966 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3967 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3968 prog->name, sym_name, insn_idx, insn->code);
3969 return -LIBBPF_ERRNO__RELOC;
3970 }
3971
3972 if (sym_is_extern(sym)) {
3973 int sym_idx = ELF64_R_SYM(rel->r_info);
3974 int i, n = obj->nr_extern;
3975 struct extern_desc *ext;
3976
3977 for (i = 0; i < n; i++) {
3978 ext = &obj->externs[i];
3979 if (ext->sym_idx == sym_idx)
3980 break;
3981 }
3982 if (i >= n) {
3983 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3984 prog->name, sym_name, sym_idx);
3985 return -LIBBPF_ERRNO__RELOC;
3986 }
3987 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3988 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3989 if (insn->code == (BPF_JMP | BPF_CALL))
3990 reloc_desc->type = RELO_EXTERN_FUNC;
3991 else
3992 reloc_desc->type = RELO_EXTERN_VAR;
3993 reloc_desc->insn_idx = insn_idx;
3994 reloc_desc->sym_off = i; /* sym_off stores extern index */
3995 return 0;
3996 }
3997
3998 /* sub-program call relocation */
3999 if (is_call_insn(insn)) {
4000 if (insn->src_reg != BPF_PSEUDO_CALL) {
4001 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4002 return -LIBBPF_ERRNO__RELOC;
4003 }
4004 /* text_shndx can be 0, if no default "main" program exists */
4005 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4006 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4007 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4008 prog->name, sym_name, sym_sec_name);
4009 return -LIBBPF_ERRNO__RELOC;
4010 }
4011 if (sym->st_value % BPF_INSN_SZ) {
4012 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4013 prog->name, sym_name, (size_t)sym->st_value);
4014 return -LIBBPF_ERRNO__RELOC;
4015 }
4016 reloc_desc->type = RELO_CALL;
4017 reloc_desc->insn_idx = insn_idx;
4018 reloc_desc->sym_off = sym->st_value;
4019 return 0;
4020 }
4021
4022 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4023 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4024 prog->name, sym_name, shdr_idx);
4025 return -LIBBPF_ERRNO__RELOC;
4026 }
4027
4028 /* loading subprog addresses */
4029 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4030 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4031 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4032 */
4033 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4034 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4035 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4036 return -LIBBPF_ERRNO__RELOC;
4037 }
4038
4039 reloc_desc->type = RELO_SUBPROG_ADDR;
4040 reloc_desc->insn_idx = insn_idx;
4041 reloc_desc->sym_off = sym->st_value;
4042 return 0;
4043 }
4044
4045 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4046 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4047
4048 /* generic map reference relocation */
4049 if (type == LIBBPF_MAP_UNSPEC) {
4050 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4051 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4052 prog->name, sym_name, sym_sec_name);
4053 return -LIBBPF_ERRNO__RELOC;
4054 }
4055 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4056 map = &obj->maps[map_idx];
4057 if (map->libbpf_type != type ||
4058 map->sec_idx != sym->st_shndx ||
4059 map->sec_offset != sym->st_value)
4060 continue;
4061 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4062 prog->name, map_idx, map->name, map->sec_idx,
4063 map->sec_offset, insn_idx);
4064 break;
4065 }
4066 if (map_idx >= nr_maps) {
4067 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4068 prog->name, sym_sec_name, (size_t)sym->st_value);
4069 return -LIBBPF_ERRNO__RELOC;
4070 }
4071 reloc_desc->type = RELO_LD64;
4072 reloc_desc->insn_idx = insn_idx;
4073 reloc_desc->map_idx = map_idx;
4074 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4075 return 0;
4076 }
4077
4078 /* global data map relocation */
4079 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4080 pr_warn("prog '%s': bad data relo against section '%s'\n",
4081 prog->name, sym_sec_name);
4082 return -LIBBPF_ERRNO__RELOC;
4083 }
4084 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4085 map = &obj->maps[map_idx];
4086 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4087 continue;
4088 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4089 prog->name, map_idx, map->name, map->sec_idx,
4090 map->sec_offset, insn_idx);
4091 break;
4092 }
4093 if (map_idx >= nr_maps) {
4094 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4095 prog->name, sym_sec_name);
4096 return -LIBBPF_ERRNO__RELOC;
4097 }
4098
4099 reloc_desc->type = RELO_DATA;
4100 reloc_desc->insn_idx = insn_idx;
4101 reloc_desc->map_idx = map_idx;
4102 reloc_desc->sym_off = sym->st_value;
4103 return 0;
4104 }
4105
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4106 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4107 {
4108 return insn_idx >= prog->sec_insn_off &&
4109 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4110 }
4111
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4112 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4113 size_t sec_idx, size_t insn_idx)
4114 {
4115 int l = 0, r = obj->nr_programs - 1, m;
4116 struct bpf_program *prog;
4117
4118 if (!obj->nr_programs)
4119 return NULL;
4120
4121 while (l < r) {
4122 m = l + (r - l + 1) / 2;
4123 prog = &obj->programs[m];
4124
4125 if (prog->sec_idx < sec_idx ||
4126 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4127 l = m;
4128 else
4129 r = m - 1;
4130 }
4131 /* matching program could be at index l, but it still might be the
4132 * wrong one, so we need to double check conditions for the last time
4133 */
4134 prog = &obj->programs[l];
4135 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4136 return prog;
4137 return NULL;
4138 }
4139
4140 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4141 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4142 {
4143 const char *relo_sec_name, *sec_name;
4144 size_t sec_idx = shdr->sh_info, sym_idx;
4145 struct bpf_program *prog;
4146 struct reloc_desc *relos;
4147 int err, i, nrels;
4148 const char *sym_name;
4149 __u32 insn_idx;
4150 Elf_Scn *scn;
4151 Elf_Data *scn_data;
4152 Elf64_Sym *sym;
4153 Elf64_Rel *rel;
4154
4155 if (sec_idx >= obj->efile.sec_cnt)
4156 return -EINVAL;
4157
4158 scn = elf_sec_by_idx(obj, sec_idx);
4159 scn_data = elf_sec_data(obj, scn);
4160
4161 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4162 sec_name = elf_sec_name(obj, scn);
4163 if (!relo_sec_name || !sec_name)
4164 return -EINVAL;
4165
4166 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4167 relo_sec_name, sec_idx, sec_name);
4168 nrels = shdr->sh_size / shdr->sh_entsize;
4169
4170 for (i = 0; i < nrels; i++) {
4171 rel = elf_rel_by_idx(data, i);
4172 if (!rel) {
4173 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4174 return -LIBBPF_ERRNO__FORMAT;
4175 }
4176
4177 sym_idx = ELF64_R_SYM(rel->r_info);
4178 sym = elf_sym_by_idx(obj, sym_idx);
4179 if (!sym) {
4180 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4181 relo_sec_name, sym_idx, i);
4182 return -LIBBPF_ERRNO__FORMAT;
4183 }
4184
4185 if (sym->st_shndx >= obj->efile.sec_cnt) {
4186 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4187 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4188 return -LIBBPF_ERRNO__FORMAT;
4189 }
4190
4191 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4192 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4193 relo_sec_name, (size_t)rel->r_offset, i);
4194 return -LIBBPF_ERRNO__FORMAT;
4195 }
4196
4197 insn_idx = rel->r_offset / BPF_INSN_SZ;
4198 /* relocations against static functions are recorded as
4199 * relocations against the section that contains a function;
4200 * in such case, symbol will be STT_SECTION and sym.st_name
4201 * will point to empty string (0), so fetch section name
4202 * instead
4203 */
4204 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4205 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4206 else
4207 sym_name = elf_sym_str(obj, sym->st_name);
4208 sym_name = sym_name ?: "<?";
4209
4210 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4211 relo_sec_name, i, insn_idx, sym_name);
4212
4213 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4214 if (!prog) {
4215 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4216 relo_sec_name, i, sec_name, insn_idx);
4217 continue;
4218 }
4219
4220 relos = libbpf_reallocarray(prog->reloc_desc,
4221 prog->nr_reloc + 1, sizeof(*relos));
4222 if (!relos)
4223 return -ENOMEM;
4224 prog->reloc_desc = relos;
4225
4226 /* adjust insn_idx to local BPF program frame of reference */
4227 insn_idx -= prog->sec_insn_off;
4228 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4229 insn_idx, sym_name, sym, rel);
4230 if (err)
4231 return err;
4232
4233 prog->nr_reloc++;
4234 }
4235 return 0;
4236 }
4237
bpf_map_find_btf_info(struct bpf_object * obj,struct bpf_map * map)4238 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4239 {
4240 int id;
4241
4242 if (!obj->btf)
4243 return -ENOENT;
4244
4245 /* if it's BTF-defined map, we don't need to search for type IDs.
4246 * For struct_ops map, it does not need btf_key_type_id and
4247 * btf_value_type_id.
4248 */
4249 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4250 return 0;
4251
4252 /*
4253 * LLVM annotates global data differently in BTF, that is,
4254 * only as '.data', '.bss' or '.rodata'.
4255 */
4256 if (!bpf_map__is_internal(map))
4257 return -ENOENT;
4258
4259 id = btf__find_by_name(obj->btf, map->real_name);
4260 if (id < 0)
4261 return id;
4262
4263 map->btf_key_type_id = 0;
4264 map->btf_value_type_id = id;
4265 return 0;
4266 }
4267
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4268 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4269 {
4270 char file[PATH_MAX], buff[4096];
4271 FILE *fp;
4272 __u32 val;
4273 int err;
4274
4275 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4276 memset(info, 0, sizeof(*info));
4277
4278 fp = fopen(file, "r");
4279 if (!fp) {
4280 err = -errno;
4281 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4282 err);
4283 return err;
4284 }
4285
4286 while (fgets(buff, sizeof(buff), fp)) {
4287 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4288 info->type = val;
4289 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4290 info->key_size = val;
4291 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4292 info->value_size = val;
4293 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4294 info->max_entries = val;
4295 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4296 info->map_flags = val;
4297 }
4298
4299 fclose(fp);
4300
4301 return 0;
4302 }
4303
bpf_map__autocreate(const struct bpf_map * map)4304 bool bpf_map__autocreate(const struct bpf_map *map)
4305 {
4306 return map->autocreate;
4307 }
4308
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4309 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4310 {
4311 if (map->obj->loaded)
4312 return libbpf_err(-EBUSY);
4313
4314 map->autocreate = autocreate;
4315 return 0;
4316 }
4317
bpf_map__reuse_fd(struct bpf_map * map,int fd)4318 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4319 {
4320 struct bpf_map_info info;
4321 __u32 len = sizeof(info), name_len;
4322 int new_fd, err;
4323 char *new_name;
4324
4325 memset(&info, 0, len);
4326 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4327 if (err && errno == EINVAL)
4328 err = bpf_get_map_info_from_fdinfo(fd, &info);
4329 if (err)
4330 return libbpf_err(err);
4331
4332 name_len = strlen(info.name);
4333 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4334 new_name = strdup(map->name);
4335 else
4336 new_name = strdup(info.name);
4337
4338 if (!new_name)
4339 return libbpf_err(-errno);
4340
4341 new_fd = open("/", O_RDONLY | O_CLOEXEC);
4342 if (new_fd < 0) {
4343 err = -errno;
4344 goto err_free_new_name;
4345 }
4346
4347 new_fd = dup3(fd, new_fd, O_CLOEXEC);
4348 if (new_fd < 0) {
4349 err = -errno;
4350 goto err_close_new_fd;
4351 }
4352
4353 err = zclose(map->fd);
4354 if (err) {
4355 err = -errno;
4356 goto err_close_new_fd;
4357 }
4358 free(map->name);
4359
4360 map->fd = new_fd;
4361 map->name = new_name;
4362 map->def.type = info.type;
4363 map->def.key_size = info.key_size;
4364 map->def.value_size = info.value_size;
4365 map->def.max_entries = info.max_entries;
4366 map->def.map_flags = info.map_flags;
4367 map->btf_key_type_id = info.btf_key_type_id;
4368 map->btf_value_type_id = info.btf_value_type_id;
4369 map->reused = true;
4370 map->map_extra = info.map_extra;
4371
4372 return 0;
4373
4374 err_close_new_fd:
4375 close(new_fd);
4376 err_free_new_name:
4377 free(new_name);
4378 return libbpf_err(err);
4379 }
4380
bpf_map__max_entries(const struct bpf_map * map)4381 __u32 bpf_map__max_entries(const struct bpf_map *map)
4382 {
4383 return map->def.max_entries;
4384 }
4385
bpf_map__inner_map(struct bpf_map * map)4386 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4387 {
4388 if (!bpf_map_type__is_map_in_map(map->def.type))
4389 return errno = EINVAL, NULL;
4390
4391 return map->inner_map;
4392 }
4393
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4394 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4395 {
4396 if (map->obj->loaded)
4397 return libbpf_err(-EBUSY);
4398
4399 map->def.max_entries = max_entries;
4400
4401 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4402 if (map_is_ringbuf(map))
4403 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4404
4405 return 0;
4406 }
4407
4408 static int
bpf_object__probe_loading(struct bpf_object * obj)4409 bpf_object__probe_loading(struct bpf_object *obj)
4410 {
4411 char *cp, errmsg[STRERR_BUFSIZE];
4412 struct bpf_insn insns[] = {
4413 BPF_MOV64_IMM(BPF_REG_0, 0),
4414 BPF_EXIT_INSN(),
4415 };
4416 int ret, insn_cnt = ARRAY_SIZE(insns);
4417
4418 if (obj->gen_loader)
4419 return 0;
4420
4421 ret = bump_rlimit_memlock();
4422 if (ret)
4423 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4424
4425 /* make sure basic loading works */
4426 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4427 if (ret < 0)
4428 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4429 if (ret < 0) {
4430 ret = errno;
4431 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4432 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4433 "program. Make sure your kernel supports BPF "
4434 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4435 "set to big enough value.\n", __func__, cp, ret);
4436 return -ret;
4437 }
4438 close(ret);
4439
4440 return 0;
4441 }
4442
probe_fd(int fd)4443 static int probe_fd(int fd)
4444 {
4445 if (fd >= 0)
4446 close(fd);
4447 return fd >= 0;
4448 }
4449
probe_kern_prog_name(void)4450 static int probe_kern_prog_name(void)
4451 {
4452 const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4453 struct bpf_insn insns[] = {
4454 BPF_MOV64_IMM(BPF_REG_0, 0),
4455 BPF_EXIT_INSN(),
4456 };
4457 union bpf_attr attr;
4458 int ret;
4459
4460 memset(&attr, 0, attr_sz);
4461 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4462 attr.license = ptr_to_u64("GPL");
4463 attr.insns = ptr_to_u64(insns);
4464 attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4465 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4466
4467 /* make sure loading with name works */
4468 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4469 return probe_fd(ret);
4470 }
4471
probe_kern_global_data(void)4472 static int probe_kern_global_data(void)
4473 {
4474 char *cp, errmsg[STRERR_BUFSIZE];
4475 struct bpf_insn insns[] = {
4476 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4477 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4478 BPF_MOV64_IMM(BPF_REG_0, 0),
4479 BPF_EXIT_INSN(),
4480 };
4481 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4482
4483 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4484 if (map < 0) {
4485 ret = -errno;
4486 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4487 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4488 __func__, cp, -ret);
4489 return ret;
4490 }
4491
4492 insns[0].imm = map;
4493
4494 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4495 close(map);
4496 return probe_fd(ret);
4497 }
4498
probe_kern_btf(void)4499 static int probe_kern_btf(void)
4500 {
4501 static const char strs[] = "\0int";
4502 __u32 types[] = {
4503 /* int */
4504 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4505 };
4506
4507 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4508 strs, sizeof(strs)));
4509 }
4510
probe_kern_btf_func(void)4511 static int probe_kern_btf_func(void)
4512 {
4513 static const char strs[] = "\0int\0x\0a";
4514 /* void x(int a) {} */
4515 __u32 types[] = {
4516 /* int */
4517 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4518 /* FUNC_PROTO */ /* [2] */
4519 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4520 BTF_PARAM_ENC(7, 1),
4521 /* FUNC x */ /* [3] */
4522 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4523 };
4524
4525 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4526 strs, sizeof(strs)));
4527 }
4528
probe_kern_btf_func_global(void)4529 static int probe_kern_btf_func_global(void)
4530 {
4531 static const char strs[] = "\0int\0x\0a";
4532 /* static void x(int a) {} */
4533 __u32 types[] = {
4534 /* int */
4535 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4536 /* FUNC_PROTO */ /* [2] */
4537 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4538 BTF_PARAM_ENC(7, 1),
4539 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4540 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4541 };
4542
4543 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4544 strs, sizeof(strs)));
4545 }
4546
probe_kern_btf_datasec(void)4547 static int probe_kern_btf_datasec(void)
4548 {
4549 static const char strs[] = "\0x\0.data";
4550 /* static int a; */
4551 __u32 types[] = {
4552 /* int */
4553 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4554 /* VAR x */ /* [2] */
4555 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4556 BTF_VAR_STATIC,
4557 /* DATASEC val */ /* [3] */
4558 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4559 BTF_VAR_SECINFO_ENC(2, 0, 4),
4560 };
4561
4562 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4563 strs, sizeof(strs)));
4564 }
4565
probe_kern_btf_float(void)4566 static int probe_kern_btf_float(void)
4567 {
4568 static const char strs[] = "\0float";
4569 __u32 types[] = {
4570 /* float */
4571 BTF_TYPE_FLOAT_ENC(1, 4),
4572 };
4573
4574 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4575 strs, sizeof(strs)));
4576 }
4577
probe_kern_btf_decl_tag(void)4578 static int probe_kern_btf_decl_tag(void)
4579 {
4580 static const char strs[] = "\0tag";
4581 __u32 types[] = {
4582 /* int */
4583 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4584 /* VAR x */ /* [2] */
4585 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4586 BTF_VAR_STATIC,
4587 /* attr */
4588 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4589 };
4590
4591 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4592 strs, sizeof(strs)));
4593 }
4594
probe_kern_btf_type_tag(void)4595 static int probe_kern_btf_type_tag(void)
4596 {
4597 static const char strs[] = "\0tag";
4598 __u32 types[] = {
4599 /* int */
4600 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4601 /* attr */
4602 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4603 /* ptr */
4604 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4605 };
4606
4607 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4608 strs, sizeof(strs)));
4609 }
4610
probe_kern_array_mmap(void)4611 static int probe_kern_array_mmap(void)
4612 {
4613 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4614 int fd;
4615
4616 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4617 return probe_fd(fd);
4618 }
4619
probe_kern_exp_attach_type(void)4620 static int probe_kern_exp_attach_type(void)
4621 {
4622 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4623 struct bpf_insn insns[] = {
4624 BPF_MOV64_IMM(BPF_REG_0, 0),
4625 BPF_EXIT_INSN(),
4626 };
4627 int fd, insn_cnt = ARRAY_SIZE(insns);
4628
4629 /* use any valid combination of program type and (optional)
4630 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4631 * to see if kernel supports expected_attach_type field for
4632 * BPF_PROG_LOAD command
4633 */
4634 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4635 return probe_fd(fd);
4636 }
4637
probe_kern_probe_read_kernel(void)4638 static int probe_kern_probe_read_kernel(void)
4639 {
4640 struct bpf_insn insns[] = {
4641 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4642 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4643 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4644 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4645 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4646 BPF_EXIT_INSN(),
4647 };
4648 int fd, insn_cnt = ARRAY_SIZE(insns);
4649
4650 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4651 return probe_fd(fd);
4652 }
4653
probe_prog_bind_map(void)4654 static int probe_prog_bind_map(void)
4655 {
4656 char *cp, errmsg[STRERR_BUFSIZE];
4657 struct bpf_insn insns[] = {
4658 BPF_MOV64_IMM(BPF_REG_0, 0),
4659 BPF_EXIT_INSN(),
4660 };
4661 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4662
4663 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4664 if (map < 0) {
4665 ret = -errno;
4666 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4667 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4668 __func__, cp, -ret);
4669 return ret;
4670 }
4671
4672 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4673 if (prog < 0) {
4674 close(map);
4675 return 0;
4676 }
4677
4678 ret = bpf_prog_bind_map(prog, map, NULL);
4679
4680 close(map);
4681 close(prog);
4682
4683 return ret >= 0;
4684 }
4685
probe_module_btf(void)4686 static int probe_module_btf(void)
4687 {
4688 static const char strs[] = "\0int";
4689 __u32 types[] = {
4690 /* int */
4691 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4692 };
4693 struct bpf_btf_info info;
4694 __u32 len = sizeof(info);
4695 char name[16];
4696 int fd, err;
4697
4698 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4699 if (fd < 0)
4700 return 0; /* BTF not supported at all */
4701
4702 memset(&info, 0, sizeof(info));
4703 info.name = ptr_to_u64(name);
4704 info.name_len = sizeof(name);
4705
4706 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4707 * kernel's module BTF support coincides with support for
4708 * name/name_len fields in struct bpf_btf_info.
4709 */
4710 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4711 close(fd);
4712 return !err;
4713 }
4714
probe_perf_link(void)4715 static int probe_perf_link(void)
4716 {
4717 struct bpf_insn insns[] = {
4718 BPF_MOV64_IMM(BPF_REG_0, 0),
4719 BPF_EXIT_INSN(),
4720 };
4721 int prog_fd, link_fd, err;
4722
4723 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4724 insns, ARRAY_SIZE(insns), NULL);
4725 if (prog_fd < 0)
4726 return -errno;
4727
4728 /* use invalid perf_event FD to get EBADF, if link is supported;
4729 * otherwise EINVAL should be returned
4730 */
4731 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4732 err = -errno; /* close() can clobber errno */
4733
4734 if (link_fd >= 0)
4735 close(link_fd);
4736 close(prog_fd);
4737
4738 return link_fd < 0 && err == -EBADF;
4739 }
4740
probe_kern_bpf_cookie(void)4741 static int probe_kern_bpf_cookie(void)
4742 {
4743 struct bpf_insn insns[] = {
4744 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4745 BPF_EXIT_INSN(),
4746 };
4747 int ret, insn_cnt = ARRAY_SIZE(insns);
4748
4749 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4750 return probe_fd(ret);
4751 }
4752
probe_kern_btf_enum64(void)4753 static int probe_kern_btf_enum64(void)
4754 {
4755 static const char strs[] = "\0enum64";
4756 __u32 types[] = {
4757 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4758 };
4759
4760 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4761 strs, sizeof(strs)));
4762 }
4763
4764 static int probe_kern_syscall_wrapper(void);
4765
4766 enum kern_feature_result {
4767 FEAT_UNKNOWN = 0,
4768 FEAT_SUPPORTED = 1,
4769 FEAT_MISSING = 2,
4770 };
4771
4772 typedef int (*feature_probe_fn)(void);
4773
4774 static struct kern_feature_desc {
4775 const char *desc;
4776 feature_probe_fn probe;
4777 enum kern_feature_result res;
4778 } feature_probes[__FEAT_CNT] = {
4779 [FEAT_PROG_NAME] = {
4780 "BPF program name", probe_kern_prog_name,
4781 },
4782 [FEAT_GLOBAL_DATA] = {
4783 "global variables", probe_kern_global_data,
4784 },
4785 [FEAT_BTF] = {
4786 "minimal BTF", probe_kern_btf,
4787 },
4788 [FEAT_BTF_FUNC] = {
4789 "BTF functions", probe_kern_btf_func,
4790 },
4791 [FEAT_BTF_GLOBAL_FUNC] = {
4792 "BTF global function", probe_kern_btf_func_global,
4793 },
4794 [FEAT_BTF_DATASEC] = {
4795 "BTF data section and variable", probe_kern_btf_datasec,
4796 },
4797 [FEAT_ARRAY_MMAP] = {
4798 "ARRAY map mmap()", probe_kern_array_mmap,
4799 },
4800 [FEAT_EXP_ATTACH_TYPE] = {
4801 "BPF_PROG_LOAD expected_attach_type attribute",
4802 probe_kern_exp_attach_type,
4803 },
4804 [FEAT_PROBE_READ_KERN] = {
4805 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4806 },
4807 [FEAT_PROG_BIND_MAP] = {
4808 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4809 },
4810 [FEAT_MODULE_BTF] = {
4811 "module BTF support", probe_module_btf,
4812 },
4813 [FEAT_BTF_FLOAT] = {
4814 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4815 },
4816 [FEAT_PERF_LINK] = {
4817 "BPF perf link support", probe_perf_link,
4818 },
4819 [FEAT_BTF_DECL_TAG] = {
4820 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4821 },
4822 [FEAT_BTF_TYPE_TAG] = {
4823 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4824 },
4825 [FEAT_MEMCG_ACCOUNT] = {
4826 "memcg-based memory accounting", probe_memcg_account,
4827 },
4828 [FEAT_BPF_COOKIE] = {
4829 "BPF cookie support", probe_kern_bpf_cookie,
4830 },
4831 [FEAT_BTF_ENUM64] = {
4832 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4833 },
4834 [FEAT_SYSCALL_WRAPPER] = {
4835 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4836 },
4837 };
4838
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)4839 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4840 {
4841 struct kern_feature_desc *feat = &feature_probes[feat_id];
4842 int ret;
4843
4844 if (obj && obj->gen_loader)
4845 /* To generate loader program assume the latest kernel
4846 * to avoid doing extra prog_load, map_create syscalls.
4847 */
4848 return true;
4849
4850 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4851 ret = feat->probe();
4852 if (ret > 0) {
4853 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4854 } else if (ret == 0) {
4855 WRITE_ONCE(feat->res, FEAT_MISSING);
4856 } else {
4857 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4858 WRITE_ONCE(feat->res, FEAT_MISSING);
4859 }
4860 }
4861
4862 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4863 }
4864
map_is_reuse_compat(const struct bpf_map * map,int map_fd)4865 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4866 {
4867 struct bpf_map_info map_info;
4868 char msg[STRERR_BUFSIZE];
4869 __u32 map_info_len = sizeof(map_info);
4870 int err;
4871
4872 memset(&map_info, 0, map_info_len);
4873 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4874 if (err && errno == EINVAL)
4875 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4876 if (err) {
4877 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4878 libbpf_strerror_r(errno, msg, sizeof(msg)));
4879 return false;
4880 }
4881
4882 return (map_info.type == map->def.type &&
4883 map_info.key_size == map->def.key_size &&
4884 map_info.value_size == map->def.value_size &&
4885 map_info.max_entries == map->def.max_entries &&
4886 map_info.map_flags == map->def.map_flags &&
4887 map_info.map_extra == map->map_extra);
4888 }
4889
4890 static int
bpf_object__reuse_map(struct bpf_map * map)4891 bpf_object__reuse_map(struct bpf_map *map)
4892 {
4893 char *cp, errmsg[STRERR_BUFSIZE];
4894 int err, pin_fd;
4895
4896 pin_fd = bpf_obj_get(map->pin_path);
4897 if (pin_fd < 0) {
4898 err = -errno;
4899 if (err == -ENOENT) {
4900 pr_debug("found no pinned map to reuse at '%s'\n",
4901 map->pin_path);
4902 return 0;
4903 }
4904
4905 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4906 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4907 map->pin_path, cp);
4908 return err;
4909 }
4910
4911 if (!map_is_reuse_compat(map, pin_fd)) {
4912 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4913 map->pin_path);
4914 close(pin_fd);
4915 return -EINVAL;
4916 }
4917
4918 err = bpf_map__reuse_fd(map, pin_fd);
4919 close(pin_fd);
4920 if (err) {
4921 return err;
4922 }
4923 map->pinned = true;
4924 pr_debug("reused pinned map at '%s'\n", map->pin_path);
4925
4926 return 0;
4927 }
4928
4929 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)4930 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4931 {
4932 enum libbpf_map_type map_type = map->libbpf_type;
4933 char *cp, errmsg[STRERR_BUFSIZE];
4934 int err, zero = 0;
4935
4936 if (obj->gen_loader) {
4937 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4938 map->mmaped, map->def.value_size);
4939 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4940 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4941 return 0;
4942 }
4943 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4944 if (err) {
4945 err = -errno;
4946 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4947 pr_warn("Error setting initial map(%s) contents: %s\n",
4948 map->name, cp);
4949 return err;
4950 }
4951
4952 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
4953 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4954 err = bpf_map_freeze(map->fd);
4955 if (err) {
4956 err = -errno;
4957 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4958 pr_warn("Error freezing map(%s) as read-only: %s\n",
4959 map->name, cp);
4960 return err;
4961 }
4962 }
4963 return 0;
4964 }
4965
4966 static void bpf_map__destroy(struct bpf_map *map);
4967
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)4968 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4969 {
4970 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4971 struct bpf_map_def *def = &map->def;
4972 const char *map_name = NULL;
4973 int err = 0;
4974
4975 if (kernel_supports(obj, FEAT_PROG_NAME))
4976 map_name = map->name;
4977 create_attr.map_ifindex = map->map_ifindex;
4978 create_attr.map_flags = def->map_flags;
4979 create_attr.numa_node = map->numa_node;
4980 create_attr.map_extra = map->map_extra;
4981
4982 if (bpf_map__is_struct_ops(map))
4983 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
4984
4985 if (obj->btf && btf__fd(obj->btf) >= 0) {
4986 create_attr.btf_fd = btf__fd(obj->btf);
4987 create_attr.btf_key_type_id = map->btf_key_type_id;
4988 create_attr.btf_value_type_id = map->btf_value_type_id;
4989 }
4990
4991 if (bpf_map_type__is_map_in_map(def->type)) {
4992 if (map->inner_map) {
4993 err = bpf_object__create_map(obj, map->inner_map, true);
4994 if (err) {
4995 pr_warn("map '%s': failed to create inner map: %d\n",
4996 map->name, err);
4997 return err;
4998 }
4999 map->inner_map_fd = bpf_map__fd(map->inner_map);
5000 }
5001 if (map->inner_map_fd >= 0)
5002 create_attr.inner_map_fd = map->inner_map_fd;
5003 }
5004
5005 switch (def->type) {
5006 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5007 case BPF_MAP_TYPE_CGROUP_ARRAY:
5008 case BPF_MAP_TYPE_STACK_TRACE:
5009 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5010 case BPF_MAP_TYPE_HASH_OF_MAPS:
5011 case BPF_MAP_TYPE_DEVMAP:
5012 case BPF_MAP_TYPE_DEVMAP_HASH:
5013 case BPF_MAP_TYPE_CPUMAP:
5014 case BPF_MAP_TYPE_XSKMAP:
5015 case BPF_MAP_TYPE_SOCKMAP:
5016 case BPF_MAP_TYPE_SOCKHASH:
5017 case BPF_MAP_TYPE_QUEUE:
5018 case BPF_MAP_TYPE_STACK:
5019 create_attr.btf_fd = 0;
5020 create_attr.btf_key_type_id = 0;
5021 create_attr.btf_value_type_id = 0;
5022 map->btf_key_type_id = 0;
5023 map->btf_value_type_id = 0;
5024 default:
5025 break;
5026 }
5027
5028 if (obj->gen_loader) {
5029 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5030 def->key_size, def->value_size, def->max_entries,
5031 &create_attr, is_inner ? -1 : map - obj->maps);
5032 /* Pretend to have valid FD to pass various fd >= 0 checks.
5033 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5034 */
5035 map->fd = 0;
5036 } else {
5037 map->fd = bpf_map_create(def->type, map_name,
5038 def->key_size, def->value_size,
5039 def->max_entries, &create_attr);
5040 }
5041 if (map->fd < 0 && (create_attr.btf_key_type_id ||
5042 create_attr.btf_value_type_id)) {
5043 char *cp, errmsg[STRERR_BUFSIZE];
5044
5045 err = -errno;
5046 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5047 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5048 map->name, cp, err);
5049 create_attr.btf_fd = 0;
5050 create_attr.btf_key_type_id = 0;
5051 create_attr.btf_value_type_id = 0;
5052 map->btf_key_type_id = 0;
5053 map->btf_value_type_id = 0;
5054 map->fd = bpf_map_create(def->type, map_name,
5055 def->key_size, def->value_size,
5056 def->max_entries, &create_attr);
5057 }
5058
5059 err = map->fd < 0 ? -errno : 0;
5060
5061 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5062 if (obj->gen_loader)
5063 map->inner_map->fd = -1;
5064 bpf_map__destroy(map->inner_map);
5065 zfree(&map->inner_map);
5066 }
5067
5068 return err;
5069 }
5070
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5071 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5072 {
5073 const struct bpf_map *targ_map;
5074 unsigned int i;
5075 int fd, err = 0;
5076
5077 for (i = 0; i < map->init_slots_sz; i++) {
5078 if (!map->init_slots[i])
5079 continue;
5080
5081 targ_map = map->init_slots[i];
5082 fd = bpf_map__fd(targ_map);
5083
5084 if (obj->gen_loader) {
5085 bpf_gen__populate_outer_map(obj->gen_loader,
5086 map - obj->maps, i,
5087 targ_map - obj->maps);
5088 } else {
5089 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5090 }
5091 if (err) {
5092 err = -errno;
5093 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5094 map->name, i, targ_map->name, fd, err);
5095 return err;
5096 }
5097 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5098 map->name, i, targ_map->name, fd);
5099 }
5100
5101 zfree(&map->init_slots);
5102 map->init_slots_sz = 0;
5103
5104 return 0;
5105 }
5106
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5107 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5108 {
5109 const struct bpf_program *targ_prog;
5110 unsigned int i;
5111 int fd, err;
5112
5113 if (obj->gen_loader)
5114 return -ENOTSUP;
5115
5116 for (i = 0; i < map->init_slots_sz; i++) {
5117 if (!map->init_slots[i])
5118 continue;
5119
5120 targ_prog = map->init_slots[i];
5121 fd = bpf_program__fd(targ_prog);
5122
5123 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5124 if (err) {
5125 err = -errno;
5126 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5127 map->name, i, targ_prog->name, fd, err);
5128 return err;
5129 }
5130 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5131 map->name, i, targ_prog->name, fd);
5132 }
5133
5134 zfree(&map->init_slots);
5135 map->init_slots_sz = 0;
5136
5137 return 0;
5138 }
5139
bpf_object_init_prog_arrays(struct bpf_object * obj)5140 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5141 {
5142 struct bpf_map *map;
5143 int i, err;
5144
5145 for (i = 0; i < obj->nr_maps; i++) {
5146 map = &obj->maps[i];
5147
5148 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5149 continue;
5150
5151 err = init_prog_array_slots(obj, map);
5152 if (err < 0) {
5153 zclose(map->fd);
5154 return err;
5155 }
5156 }
5157 return 0;
5158 }
5159
map_set_def_max_entries(struct bpf_map * map)5160 static int map_set_def_max_entries(struct bpf_map *map)
5161 {
5162 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5163 int nr_cpus;
5164
5165 nr_cpus = libbpf_num_possible_cpus();
5166 if (nr_cpus < 0) {
5167 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5168 map->name, nr_cpus);
5169 return nr_cpus;
5170 }
5171 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5172 map->def.max_entries = nr_cpus;
5173 }
5174
5175 return 0;
5176 }
5177
5178 static int
bpf_object__create_maps(struct bpf_object * obj)5179 bpf_object__create_maps(struct bpf_object *obj)
5180 {
5181 struct bpf_map *map;
5182 char *cp, errmsg[STRERR_BUFSIZE];
5183 unsigned int i, j;
5184 int err;
5185 bool retried;
5186
5187 for (i = 0; i < obj->nr_maps; i++) {
5188 map = &obj->maps[i];
5189
5190 /* To support old kernels, we skip creating global data maps
5191 * (.rodata, .data, .kconfig, etc); later on, during program
5192 * loading, if we detect that at least one of the to-be-loaded
5193 * programs is referencing any global data map, we'll error
5194 * out with program name and relocation index logged.
5195 * This approach allows to accommodate Clang emitting
5196 * unnecessary .rodata.str1.1 sections for string literals,
5197 * but also it allows to have CO-RE applications that use
5198 * global variables in some of BPF programs, but not others.
5199 * If those global variable-using programs are not loaded at
5200 * runtime due to bpf_program__set_autoload(prog, false),
5201 * bpf_object loading will succeed just fine even on old
5202 * kernels.
5203 */
5204 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5205 map->autocreate = false;
5206
5207 if (!map->autocreate) {
5208 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5209 continue;
5210 }
5211
5212 err = map_set_def_max_entries(map);
5213 if (err)
5214 goto err_out;
5215
5216 retried = false;
5217 retry:
5218 if (map->pin_path) {
5219 err = bpf_object__reuse_map(map);
5220 if (err) {
5221 pr_warn("map '%s': error reusing pinned map\n",
5222 map->name);
5223 goto err_out;
5224 }
5225 if (retried && map->fd < 0) {
5226 pr_warn("map '%s': cannot find pinned map\n",
5227 map->name);
5228 err = -ENOENT;
5229 goto err_out;
5230 }
5231 }
5232
5233 if (map->fd >= 0) {
5234 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5235 map->name, map->fd);
5236 } else {
5237 err = bpf_object__create_map(obj, map, false);
5238 if (err)
5239 goto err_out;
5240
5241 pr_debug("map '%s': created successfully, fd=%d\n",
5242 map->name, map->fd);
5243
5244 if (bpf_map__is_internal(map)) {
5245 err = bpf_object__populate_internal_map(obj, map);
5246 if (err < 0) {
5247 zclose(map->fd);
5248 goto err_out;
5249 }
5250 }
5251
5252 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5253 err = init_map_in_map_slots(obj, map);
5254 if (err < 0) {
5255 zclose(map->fd);
5256 goto err_out;
5257 }
5258 }
5259 }
5260
5261 if (map->pin_path && !map->pinned) {
5262 err = bpf_map__pin(map, NULL);
5263 if (err) {
5264 zclose(map->fd);
5265 if (!retried && err == -EEXIST) {
5266 retried = true;
5267 goto retry;
5268 }
5269 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5270 map->name, map->pin_path, err);
5271 goto err_out;
5272 }
5273 }
5274 }
5275
5276 return 0;
5277
5278 err_out:
5279 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5280 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5281 pr_perm_msg(err);
5282 for (j = 0; j < i; j++)
5283 zclose(obj->maps[j].fd);
5284 return err;
5285 }
5286
bpf_core_is_flavor_sep(const char * s)5287 static bool bpf_core_is_flavor_sep(const char *s)
5288 {
5289 /* check X___Y name pattern, where X and Y are not underscores */
5290 return s[0] != '_' && /* X */
5291 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5292 s[4] != '_'; /* Y */
5293 }
5294
5295 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5296 * before last triple underscore. Struct name part after last triple
5297 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5298 */
bpf_core_essential_name_len(const char * name)5299 size_t bpf_core_essential_name_len(const char *name)
5300 {
5301 size_t n = strlen(name);
5302 int i;
5303
5304 for (i = n - 5; i >= 0; i--) {
5305 if (bpf_core_is_flavor_sep(name + i))
5306 return i + 1;
5307 }
5308 return n;
5309 }
5310
bpf_core_free_cands(struct bpf_core_cand_list * cands)5311 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5312 {
5313 if (!cands)
5314 return;
5315
5316 free(cands->cands);
5317 free(cands);
5318 }
5319
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5320 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5321 size_t local_essent_len,
5322 const struct btf *targ_btf,
5323 const char *targ_btf_name,
5324 int targ_start_id,
5325 struct bpf_core_cand_list *cands)
5326 {
5327 struct bpf_core_cand *new_cands, *cand;
5328 const struct btf_type *t, *local_t;
5329 const char *targ_name, *local_name;
5330 size_t targ_essent_len;
5331 int n, i;
5332
5333 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5334 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5335
5336 n = btf__type_cnt(targ_btf);
5337 for (i = targ_start_id; i < n; i++) {
5338 t = btf__type_by_id(targ_btf, i);
5339 if (!btf_kind_core_compat(t, local_t))
5340 continue;
5341
5342 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5343 if (str_is_empty(targ_name))
5344 continue;
5345
5346 targ_essent_len = bpf_core_essential_name_len(targ_name);
5347 if (targ_essent_len != local_essent_len)
5348 continue;
5349
5350 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5351 continue;
5352
5353 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5354 local_cand->id, btf_kind_str(local_t),
5355 local_name, i, btf_kind_str(t), targ_name,
5356 targ_btf_name);
5357 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5358 sizeof(*cands->cands));
5359 if (!new_cands)
5360 return -ENOMEM;
5361
5362 cand = &new_cands[cands->len];
5363 cand->btf = targ_btf;
5364 cand->id = i;
5365
5366 cands->cands = new_cands;
5367 cands->len++;
5368 }
5369 return 0;
5370 }
5371
load_module_btfs(struct bpf_object * obj)5372 static int load_module_btfs(struct bpf_object *obj)
5373 {
5374 struct bpf_btf_info info;
5375 struct module_btf *mod_btf;
5376 struct btf *btf;
5377 char name[64];
5378 __u32 id = 0, len;
5379 int err, fd;
5380
5381 if (obj->btf_modules_loaded)
5382 return 0;
5383
5384 if (obj->gen_loader)
5385 return 0;
5386
5387 /* don't do this again, even if we find no module BTFs */
5388 obj->btf_modules_loaded = true;
5389
5390 /* kernel too old to support module BTFs */
5391 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5392 return 0;
5393
5394 while (true) {
5395 err = bpf_btf_get_next_id(id, &id);
5396 if (err && errno == ENOENT)
5397 return 0;
5398 if (err) {
5399 err = -errno;
5400 pr_warn("failed to iterate BTF objects: %d\n", err);
5401 return err;
5402 }
5403
5404 fd = bpf_btf_get_fd_by_id(id);
5405 if (fd < 0) {
5406 if (errno == ENOENT)
5407 continue; /* expected race: BTF was unloaded */
5408 err = -errno;
5409 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5410 return err;
5411 }
5412
5413 len = sizeof(info);
5414 memset(&info, 0, sizeof(info));
5415 info.name = ptr_to_u64(name);
5416 info.name_len = sizeof(name);
5417
5418 err = bpf_obj_get_info_by_fd(fd, &info, &len);
5419 if (err) {
5420 err = -errno;
5421 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5422 goto err_out;
5423 }
5424
5425 /* ignore non-module BTFs */
5426 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5427 close(fd);
5428 continue;
5429 }
5430
5431 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5432 err = libbpf_get_error(btf);
5433 if (err) {
5434 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5435 name, id, err);
5436 goto err_out;
5437 }
5438
5439 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5440 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5441 if (err)
5442 goto err_out;
5443
5444 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5445
5446 mod_btf->btf = btf;
5447 mod_btf->id = id;
5448 mod_btf->fd = fd;
5449 mod_btf->name = strdup(name);
5450 if (!mod_btf->name) {
5451 err = -ENOMEM;
5452 goto err_out;
5453 }
5454 continue;
5455
5456 err_out:
5457 close(fd);
5458 return err;
5459 }
5460
5461 return 0;
5462 }
5463
5464 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5465 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5466 {
5467 struct bpf_core_cand local_cand = {};
5468 struct bpf_core_cand_list *cands;
5469 const struct btf *main_btf;
5470 const struct btf_type *local_t;
5471 const char *local_name;
5472 size_t local_essent_len;
5473 int err, i;
5474
5475 local_cand.btf = local_btf;
5476 local_cand.id = local_type_id;
5477 local_t = btf__type_by_id(local_btf, local_type_id);
5478 if (!local_t)
5479 return ERR_PTR(-EINVAL);
5480
5481 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5482 if (str_is_empty(local_name))
5483 return ERR_PTR(-EINVAL);
5484 local_essent_len = bpf_core_essential_name_len(local_name);
5485
5486 cands = calloc(1, sizeof(*cands));
5487 if (!cands)
5488 return ERR_PTR(-ENOMEM);
5489
5490 /* Attempt to find target candidates in vmlinux BTF first */
5491 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5492 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5493 if (err)
5494 goto err_out;
5495
5496 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5497 if (cands->len)
5498 return cands;
5499
5500 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5501 if (obj->btf_vmlinux_override)
5502 return cands;
5503
5504 /* now look through module BTFs, trying to still find candidates */
5505 err = load_module_btfs(obj);
5506 if (err)
5507 goto err_out;
5508
5509 for (i = 0; i < obj->btf_module_cnt; i++) {
5510 err = bpf_core_add_cands(&local_cand, local_essent_len,
5511 obj->btf_modules[i].btf,
5512 obj->btf_modules[i].name,
5513 btf__type_cnt(obj->btf_vmlinux),
5514 cands);
5515 if (err)
5516 goto err_out;
5517 }
5518
5519 return cands;
5520 err_out:
5521 bpf_core_free_cands(cands);
5522 return ERR_PTR(err);
5523 }
5524
5525 /* Check local and target types for compatibility. This check is used for
5526 * type-based CO-RE relocations and follow slightly different rules than
5527 * field-based relocations. This function assumes that root types were already
5528 * checked for name match. Beyond that initial root-level name check, names
5529 * are completely ignored. Compatibility rules are as follows:
5530 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5531 * kind should match for local and target types (i.e., STRUCT is not
5532 * compatible with UNION);
5533 * - for ENUMs, the size is ignored;
5534 * - for INT, size and signedness are ignored;
5535 * - for ARRAY, dimensionality is ignored, element types are checked for
5536 * compatibility recursively;
5537 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5538 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5539 * - FUNC_PROTOs are compatible if they have compatible signature: same
5540 * number of input args and compatible return and argument types.
5541 * These rules are not set in stone and probably will be adjusted as we get
5542 * more experience with using BPF CO-RE relocations.
5543 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5544 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5545 const struct btf *targ_btf, __u32 targ_id)
5546 {
5547 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5548 }
5549
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5550 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5551 const struct btf *targ_btf, __u32 targ_id)
5552 {
5553 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5554 }
5555
bpf_core_hash_fn(const void * key,void * ctx)5556 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5557 {
5558 return (size_t)key;
5559 }
5560
bpf_core_equal_fn(const void * k1,const void * k2,void * ctx)5561 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5562 {
5563 return k1 == k2;
5564 }
5565
u32_as_hash_key(__u32 x)5566 static void *u32_as_hash_key(__u32 x)
5567 {
5568 return (void *)(uintptr_t)x;
5569 }
5570
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5571 static int record_relo_core(struct bpf_program *prog,
5572 const struct bpf_core_relo *core_relo, int insn_idx)
5573 {
5574 struct reloc_desc *relos, *relo;
5575
5576 relos = libbpf_reallocarray(prog->reloc_desc,
5577 prog->nr_reloc + 1, sizeof(*relos));
5578 if (!relos)
5579 return -ENOMEM;
5580 relo = &relos[prog->nr_reloc];
5581 relo->type = RELO_CORE;
5582 relo->insn_idx = insn_idx;
5583 relo->core_relo = core_relo;
5584 prog->reloc_desc = relos;
5585 prog->nr_reloc++;
5586 return 0;
5587 }
5588
find_relo_core(struct bpf_program * prog,int insn_idx)5589 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5590 {
5591 struct reloc_desc *relo;
5592 int i;
5593
5594 for (i = 0; i < prog->nr_reloc; i++) {
5595 relo = &prog->reloc_desc[i];
5596 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5597 continue;
5598
5599 return relo->core_relo;
5600 }
5601
5602 return NULL;
5603 }
5604
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5605 static int bpf_core_resolve_relo(struct bpf_program *prog,
5606 const struct bpf_core_relo *relo,
5607 int relo_idx,
5608 const struct btf *local_btf,
5609 struct hashmap *cand_cache,
5610 struct bpf_core_relo_res *targ_res)
5611 {
5612 struct bpf_core_spec specs_scratch[3] = {};
5613 const void *type_key = u32_as_hash_key(relo->type_id);
5614 struct bpf_core_cand_list *cands = NULL;
5615 const char *prog_name = prog->name;
5616 const struct btf_type *local_type;
5617 const char *local_name;
5618 __u32 local_id = relo->type_id;
5619 int err;
5620
5621 local_type = btf__type_by_id(local_btf, local_id);
5622 if (!local_type)
5623 return -EINVAL;
5624
5625 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5626 if (!local_name)
5627 return -EINVAL;
5628
5629 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5630 !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5631 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5632 if (IS_ERR(cands)) {
5633 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5634 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5635 local_name, PTR_ERR(cands));
5636 return PTR_ERR(cands);
5637 }
5638 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5639 if (err) {
5640 bpf_core_free_cands(cands);
5641 return err;
5642 }
5643 }
5644
5645 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5646 targ_res);
5647 }
5648
5649 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5650 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5651 {
5652 const struct btf_ext_info_sec *sec;
5653 struct bpf_core_relo_res targ_res;
5654 const struct bpf_core_relo *rec;
5655 const struct btf_ext_info *seg;
5656 struct hashmap_entry *entry;
5657 struct hashmap *cand_cache = NULL;
5658 struct bpf_program *prog;
5659 struct bpf_insn *insn;
5660 const char *sec_name;
5661 int i, err = 0, insn_idx, sec_idx, sec_num;
5662
5663 if (obj->btf_ext->core_relo_info.len == 0)
5664 return 0;
5665
5666 if (targ_btf_path) {
5667 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5668 err = libbpf_get_error(obj->btf_vmlinux_override);
5669 if (err) {
5670 pr_warn("failed to parse target BTF: %d\n", err);
5671 return err;
5672 }
5673 }
5674
5675 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5676 if (IS_ERR(cand_cache)) {
5677 err = PTR_ERR(cand_cache);
5678 goto out;
5679 }
5680
5681 seg = &obj->btf_ext->core_relo_info;
5682 sec_num = 0;
5683 for_each_btf_ext_sec(seg, sec) {
5684 sec_idx = seg->sec_idxs[sec_num];
5685 sec_num++;
5686
5687 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5688 if (str_is_empty(sec_name)) {
5689 err = -EINVAL;
5690 goto out;
5691 }
5692
5693 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5694
5695 for_each_btf_ext_rec(seg, sec, i, rec) {
5696 if (rec->insn_off % BPF_INSN_SZ)
5697 return -EINVAL;
5698 insn_idx = rec->insn_off / BPF_INSN_SZ;
5699 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5700 if (!prog) {
5701 /* When __weak subprog is "overridden" by another instance
5702 * of the subprog from a different object file, linker still
5703 * appends all the .BTF.ext info that used to belong to that
5704 * eliminated subprogram.
5705 * This is similar to what x86-64 linker does for relocations.
5706 * So just ignore such relocations just like we ignore
5707 * subprog instructions when discovering subprograms.
5708 */
5709 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5710 sec_name, i, insn_idx);
5711 continue;
5712 }
5713 /* no need to apply CO-RE relocation if the program is
5714 * not going to be loaded
5715 */
5716 if (!prog->autoload)
5717 continue;
5718
5719 /* adjust insn_idx from section frame of reference to the local
5720 * program's frame of reference; (sub-)program code is not yet
5721 * relocated, so it's enough to just subtract in-section offset
5722 */
5723 insn_idx = insn_idx - prog->sec_insn_off;
5724 if (insn_idx >= prog->insns_cnt)
5725 return -EINVAL;
5726 insn = &prog->insns[insn_idx];
5727
5728 err = record_relo_core(prog, rec, insn_idx);
5729 if (err) {
5730 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5731 prog->name, i, err);
5732 goto out;
5733 }
5734
5735 if (prog->obj->gen_loader)
5736 continue;
5737
5738 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5739 if (err) {
5740 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5741 prog->name, i, err);
5742 goto out;
5743 }
5744
5745 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5746 if (err) {
5747 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5748 prog->name, i, insn_idx, err);
5749 goto out;
5750 }
5751 }
5752 }
5753
5754 out:
5755 /* obj->btf_vmlinux and module BTFs are freed after object load */
5756 btf__free(obj->btf_vmlinux_override);
5757 obj->btf_vmlinux_override = NULL;
5758
5759 if (!IS_ERR_OR_NULL(cand_cache)) {
5760 hashmap__for_each_entry(cand_cache, entry, i) {
5761 bpf_core_free_cands(entry->value);
5762 }
5763 hashmap__free(cand_cache);
5764 }
5765 return err;
5766 }
5767
5768 /* base map load ldimm64 special constant, used also for log fixup logic */
5769 #define MAP_LDIMM64_POISON_BASE 2001000000
5770 #define MAP_LDIMM64_POISON_PFX "200100"
5771
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)5772 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5773 int insn_idx, struct bpf_insn *insn,
5774 int map_idx, const struct bpf_map *map)
5775 {
5776 int i;
5777
5778 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5779 prog->name, relo_idx, insn_idx, map_idx, map->name);
5780
5781 /* we turn single ldimm64 into two identical invalid calls */
5782 for (i = 0; i < 2; i++) {
5783 insn->code = BPF_JMP | BPF_CALL;
5784 insn->dst_reg = 0;
5785 insn->src_reg = 0;
5786 insn->off = 0;
5787 /* if this instruction is reachable (not a dead code),
5788 * verifier will complain with something like:
5789 * invalid func unknown#2001000123
5790 * where lower 123 is map index into obj->maps[] array
5791 */
5792 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx;
5793
5794 insn++;
5795 }
5796 }
5797
5798 /* Relocate data references within program code:
5799 * - map references;
5800 * - global variable references;
5801 * - extern references.
5802 */
5803 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)5804 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5805 {
5806 int i;
5807
5808 for (i = 0; i < prog->nr_reloc; i++) {
5809 struct reloc_desc *relo = &prog->reloc_desc[i];
5810 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5811 const struct bpf_map *map;
5812 struct extern_desc *ext;
5813
5814 switch (relo->type) {
5815 case RELO_LD64:
5816 map = &obj->maps[relo->map_idx];
5817 if (obj->gen_loader) {
5818 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5819 insn[0].imm = relo->map_idx;
5820 } else if (map->autocreate) {
5821 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5822 insn[0].imm = map->fd;
5823 } else {
5824 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5825 relo->map_idx, map);
5826 }
5827 break;
5828 case RELO_DATA:
5829 map = &obj->maps[relo->map_idx];
5830 insn[1].imm = insn[0].imm + relo->sym_off;
5831 if (obj->gen_loader) {
5832 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5833 insn[0].imm = relo->map_idx;
5834 } else if (map->autocreate) {
5835 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5836 insn[0].imm = map->fd;
5837 } else {
5838 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5839 relo->map_idx, map);
5840 }
5841 break;
5842 case RELO_EXTERN_VAR:
5843 ext = &obj->externs[relo->sym_off];
5844 if (ext->type == EXT_KCFG) {
5845 if (obj->gen_loader) {
5846 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5847 insn[0].imm = obj->kconfig_map_idx;
5848 } else {
5849 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5850 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5851 }
5852 insn[1].imm = ext->kcfg.data_off;
5853 } else /* EXT_KSYM */ {
5854 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5855 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5856 insn[0].imm = ext->ksym.kernel_btf_id;
5857 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5858 } else { /* typeless ksyms or unresolved typed ksyms */
5859 insn[0].imm = (__u32)ext->ksym.addr;
5860 insn[1].imm = ext->ksym.addr >> 32;
5861 }
5862 }
5863 break;
5864 case RELO_EXTERN_FUNC:
5865 ext = &obj->externs[relo->sym_off];
5866 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5867 if (ext->is_set) {
5868 insn[0].imm = ext->ksym.kernel_btf_id;
5869 insn[0].off = ext->ksym.btf_fd_idx;
5870 } else { /* unresolved weak kfunc */
5871 insn[0].imm = 0;
5872 insn[0].off = 0;
5873 }
5874 break;
5875 case RELO_SUBPROG_ADDR:
5876 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5877 pr_warn("prog '%s': relo #%d: bad insn\n",
5878 prog->name, i);
5879 return -EINVAL;
5880 }
5881 /* handled already */
5882 break;
5883 case RELO_CALL:
5884 /* handled already */
5885 break;
5886 case RELO_CORE:
5887 /* will be handled by bpf_program_record_relos() */
5888 break;
5889 default:
5890 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5891 prog->name, i, relo->type);
5892 return -EINVAL;
5893 }
5894 }
5895
5896 return 0;
5897 }
5898
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)5899 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5900 const struct bpf_program *prog,
5901 const struct btf_ext_info *ext_info,
5902 void **prog_info, __u32 *prog_rec_cnt,
5903 __u32 *prog_rec_sz)
5904 {
5905 void *copy_start = NULL, *copy_end = NULL;
5906 void *rec, *rec_end, *new_prog_info;
5907 const struct btf_ext_info_sec *sec;
5908 size_t old_sz, new_sz;
5909 int i, sec_num, sec_idx, off_adj;
5910
5911 sec_num = 0;
5912 for_each_btf_ext_sec(ext_info, sec) {
5913 sec_idx = ext_info->sec_idxs[sec_num];
5914 sec_num++;
5915 if (prog->sec_idx != sec_idx)
5916 continue;
5917
5918 for_each_btf_ext_rec(ext_info, sec, i, rec) {
5919 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5920
5921 if (insn_off < prog->sec_insn_off)
5922 continue;
5923 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5924 break;
5925
5926 if (!copy_start)
5927 copy_start = rec;
5928 copy_end = rec + ext_info->rec_size;
5929 }
5930
5931 if (!copy_start)
5932 return -ENOENT;
5933
5934 /* append func/line info of a given (sub-)program to the main
5935 * program func/line info
5936 */
5937 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5938 new_sz = old_sz + (copy_end - copy_start);
5939 new_prog_info = realloc(*prog_info, new_sz);
5940 if (!new_prog_info)
5941 return -ENOMEM;
5942 *prog_info = new_prog_info;
5943 *prog_rec_cnt = new_sz / ext_info->rec_size;
5944 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5945
5946 /* Kernel instruction offsets are in units of 8-byte
5947 * instructions, while .BTF.ext instruction offsets generated
5948 * by Clang are in units of bytes. So convert Clang offsets
5949 * into kernel offsets and adjust offset according to program
5950 * relocated position.
5951 */
5952 off_adj = prog->sub_insn_off - prog->sec_insn_off;
5953 rec = new_prog_info + old_sz;
5954 rec_end = new_prog_info + new_sz;
5955 for (; rec < rec_end; rec += ext_info->rec_size) {
5956 __u32 *insn_off = rec;
5957
5958 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5959 }
5960 *prog_rec_sz = ext_info->rec_size;
5961 return 0;
5962 }
5963
5964 return -ENOENT;
5965 }
5966
5967 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)5968 reloc_prog_func_and_line_info(const struct bpf_object *obj,
5969 struct bpf_program *main_prog,
5970 const struct bpf_program *prog)
5971 {
5972 int err;
5973
5974 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5975 * supprot func/line info
5976 */
5977 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
5978 return 0;
5979
5980 /* only attempt func info relocation if main program's func_info
5981 * relocation was successful
5982 */
5983 if (main_prog != prog && !main_prog->func_info)
5984 goto line_info;
5985
5986 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
5987 &main_prog->func_info,
5988 &main_prog->func_info_cnt,
5989 &main_prog->func_info_rec_size);
5990 if (err) {
5991 if (err != -ENOENT) {
5992 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
5993 prog->name, err);
5994 return err;
5995 }
5996 if (main_prog->func_info) {
5997 /*
5998 * Some info has already been found but has problem
5999 * in the last btf_ext reloc. Must have to error out.
6000 */
6001 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6002 return err;
6003 }
6004 /* Have problem loading the very first info. Ignore the rest. */
6005 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6006 prog->name);
6007 }
6008
6009 line_info:
6010 /* don't relocate line info if main program's relocation failed */
6011 if (main_prog != prog && !main_prog->line_info)
6012 return 0;
6013
6014 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6015 &main_prog->line_info,
6016 &main_prog->line_info_cnt,
6017 &main_prog->line_info_rec_size);
6018 if (err) {
6019 if (err != -ENOENT) {
6020 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6021 prog->name, err);
6022 return err;
6023 }
6024 if (main_prog->line_info) {
6025 /*
6026 * Some info has already been found but has problem
6027 * in the last btf_ext reloc. Must have to error out.
6028 */
6029 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6030 return err;
6031 }
6032 /* Have problem loading the very first info. Ignore the rest. */
6033 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6034 prog->name);
6035 }
6036 return 0;
6037 }
6038
cmp_relo_by_insn_idx(const void * key,const void * elem)6039 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6040 {
6041 size_t insn_idx = *(const size_t *)key;
6042 const struct reloc_desc *relo = elem;
6043
6044 if (insn_idx == relo->insn_idx)
6045 return 0;
6046 return insn_idx < relo->insn_idx ? -1 : 1;
6047 }
6048
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6049 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6050 {
6051 if (!prog->nr_reloc)
6052 return NULL;
6053 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6054 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6055 }
6056
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6057 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6058 {
6059 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6060 struct reloc_desc *relos;
6061 int i;
6062
6063 if (main_prog == subprog)
6064 return 0;
6065 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6066 if (!relos)
6067 return -ENOMEM;
6068 if (subprog->nr_reloc)
6069 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6070 sizeof(*relos) * subprog->nr_reloc);
6071
6072 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6073 relos[i].insn_idx += subprog->sub_insn_off;
6074 /* After insn_idx adjustment the 'relos' array is still sorted
6075 * by insn_idx and doesn't break bsearch.
6076 */
6077 main_prog->reloc_desc = relos;
6078 main_prog->nr_reloc = new_cnt;
6079 return 0;
6080 }
6081
6082 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6083 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6084 struct bpf_program *prog)
6085 {
6086 size_t sub_insn_idx, insn_idx, new_cnt;
6087 struct bpf_program *subprog;
6088 struct bpf_insn *insns, *insn;
6089 struct reloc_desc *relo;
6090 int err;
6091
6092 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6093 if (err)
6094 return err;
6095
6096 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6097 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6098 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6099 continue;
6100
6101 relo = find_prog_insn_relo(prog, insn_idx);
6102 if (relo && relo->type == RELO_EXTERN_FUNC)
6103 /* kfunc relocations will be handled later
6104 * in bpf_object__relocate_data()
6105 */
6106 continue;
6107 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6108 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6109 prog->name, insn_idx, relo->type);
6110 return -LIBBPF_ERRNO__RELOC;
6111 }
6112 if (relo) {
6113 /* sub-program instruction index is a combination of
6114 * an offset of a symbol pointed to by relocation and
6115 * call instruction's imm field; for global functions,
6116 * call always has imm = -1, but for static functions
6117 * relocation is against STT_SECTION and insn->imm
6118 * points to a start of a static function
6119 *
6120 * for subprog addr relocation, the relo->sym_off + insn->imm is
6121 * the byte offset in the corresponding section.
6122 */
6123 if (relo->type == RELO_CALL)
6124 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6125 else
6126 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6127 } else if (insn_is_pseudo_func(insn)) {
6128 /*
6129 * RELO_SUBPROG_ADDR relo is always emitted even if both
6130 * functions are in the same section, so it shouldn't reach here.
6131 */
6132 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6133 prog->name, insn_idx);
6134 return -LIBBPF_ERRNO__RELOC;
6135 } else {
6136 /* if subprogram call is to a static function within
6137 * the same ELF section, there won't be any relocation
6138 * emitted, but it also means there is no additional
6139 * offset necessary, insns->imm is relative to
6140 * instruction's original position within the section
6141 */
6142 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6143 }
6144
6145 /* we enforce that sub-programs should be in .text section */
6146 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6147 if (!subprog) {
6148 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6149 prog->name);
6150 return -LIBBPF_ERRNO__RELOC;
6151 }
6152
6153 /* if it's the first call instruction calling into this
6154 * subprogram (meaning this subprog hasn't been processed
6155 * yet) within the context of current main program:
6156 * - append it at the end of main program's instructions blog;
6157 * - process is recursively, while current program is put on hold;
6158 * - if that subprogram calls some other not yet processes
6159 * subprogram, same thing will happen recursively until
6160 * there are no more unprocesses subprograms left to append
6161 * and relocate.
6162 */
6163 if (subprog->sub_insn_off == 0) {
6164 subprog->sub_insn_off = main_prog->insns_cnt;
6165
6166 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6167 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6168 if (!insns) {
6169 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6170 return -ENOMEM;
6171 }
6172 main_prog->insns = insns;
6173 main_prog->insns_cnt = new_cnt;
6174
6175 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6176 subprog->insns_cnt * sizeof(*insns));
6177
6178 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6179 main_prog->name, subprog->insns_cnt, subprog->name);
6180
6181 /* The subprog insns are now appended. Append its relos too. */
6182 err = append_subprog_relos(main_prog, subprog);
6183 if (err)
6184 return err;
6185 err = bpf_object__reloc_code(obj, main_prog, subprog);
6186 if (err)
6187 return err;
6188 }
6189
6190 /* main_prog->insns memory could have been re-allocated, so
6191 * calculate pointer again
6192 */
6193 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6194 /* calculate correct instruction position within current main
6195 * prog; each main prog can have a different set of
6196 * subprograms appended (potentially in different order as
6197 * well), so position of any subprog can be different for
6198 * different main programs */
6199 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6200
6201 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6202 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6203 }
6204
6205 return 0;
6206 }
6207
6208 /*
6209 * Relocate sub-program calls.
6210 *
6211 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6212 * main prog) is processed separately. For each subprog (non-entry functions,
6213 * that can be called from either entry progs or other subprogs) gets their
6214 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6215 * hasn't been yet appended and relocated within current main prog. Once its
6216 * relocated, sub_insn_off will point at the position within current main prog
6217 * where given subprog was appended. This will further be used to relocate all
6218 * the call instructions jumping into this subprog.
6219 *
6220 * We start with main program and process all call instructions. If the call
6221 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6222 * is zero), subprog instructions are appended at the end of main program's
6223 * instruction array. Then main program is "put on hold" while we recursively
6224 * process newly appended subprogram. If that subprogram calls into another
6225 * subprogram that hasn't been appended, new subprogram is appended again to
6226 * the *main* prog's instructions (subprog's instructions are always left
6227 * untouched, as they need to be in unmodified state for subsequent main progs
6228 * and subprog instructions are always sent only as part of a main prog) and
6229 * the process continues recursively. Once all the subprogs called from a main
6230 * prog or any of its subprogs are appended (and relocated), all their
6231 * positions within finalized instructions array are known, so it's easy to
6232 * rewrite call instructions with correct relative offsets, corresponding to
6233 * desired target subprog.
6234 *
6235 * Its important to realize that some subprogs might not be called from some
6236 * main prog and any of its called/used subprogs. Those will keep their
6237 * subprog->sub_insn_off as zero at all times and won't be appended to current
6238 * main prog and won't be relocated within the context of current main prog.
6239 * They might still be used from other main progs later.
6240 *
6241 * Visually this process can be shown as below. Suppose we have two main
6242 * programs mainA and mainB and BPF object contains three subprogs: subA,
6243 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6244 * subC both call subB:
6245 *
6246 * +--------+ +-------+
6247 * | v v |
6248 * +--+---+ +--+-+-+ +---+--+
6249 * | subA | | subB | | subC |
6250 * +--+---+ +------+ +---+--+
6251 * ^ ^
6252 * | |
6253 * +---+-------+ +------+----+
6254 * | mainA | | mainB |
6255 * +-----------+ +-----------+
6256 *
6257 * We'll start relocating mainA, will find subA, append it and start
6258 * processing sub A recursively:
6259 *
6260 * +-----------+------+
6261 * | mainA | subA |
6262 * +-----------+------+
6263 *
6264 * At this point we notice that subB is used from subA, so we append it and
6265 * relocate (there are no further subcalls from subB):
6266 *
6267 * +-----------+------+------+
6268 * | mainA | subA | subB |
6269 * +-----------+------+------+
6270 *
6271 * At this point, we relocate subA calls, then go one level up and finish with
6272 * relocatin mainA calls. mainA is done.
6273 *
6274 * For mainB process is similar but results in different order. We start with
6275 * mainB and skip subA and subB, as mainB never calls them (at least
6276 * directly), but we see subC is needed, so we append and start processing it:
6277 *
6278 * +-----------+------+
6279 * | mainB | subC |
6280 * +-----------+------+
6281 * Now we see subC needs subB, so we go back to it, append and relocate it:
6282 *
6283 * +-----------+------+------+
6284 * | mainB | subC | subB |
6285 * +-----------+------+------+
6286 *
6287 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6288 */
6289 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6290 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6291 {
6292 struct bpf_program *subprog;
6293 int i, err;
6294
6295 /* mark all subprogs as not relocated (yet) within the context of
6296 * current main program
6297 */
6298 for (i = 0; i < obj->nr_programs; i++) {
6299 subprog = &obj->programs[i];
6300 if (!prog_is_subprog(obj, subprog))
6301 continue;
6302
6303 subprog->sub_insn_off = 0;
6304 }
6305
6306 err = bpf_object__reloc_code(obj, prog, prog);
6307 if (err)
6308 return err;
6309
6310 return 0;
6311 }
6312
6313 static void
bpf_object__free_relocs(struct bpf_object * obj)6314 bpf_object__free_relocs(struct bpf_object *obj)
6315 {
6316 struct bpf_program *prog;
6317 int i;
6318
6319 /* free up relocation descriptors */
6320 for (i = 0; i < obj->nr_programs; i++) {
6321 prog = &obj->programs[i];
6322 zfree(&prog->reloc_desc);
6323 prog->nr_reloc = 0;
6324 }
6325 }
6326
cmp_relocs(const void * _a,const void * _b)6327 static int cmp_relocs(const void *_a, const void *_b)
6328 {
6329 const struct reloc_desc *a = _a;
6330 const struct reloc_desc *b = _b;
6331
6332 if (a->insn_idx != b->insn_idx)
6333 return a->insn_idx < b->insn_idx ? -1 : 1;
6334
6335 /* no two relocations should have the same insn_idx, but ... */
6336 if (a->type != b->type)
6337 return a->type < b->type ? -1 : 1;
6338
6339 return 0;
6340 }
6341
bpf_object__sort_relos(struct bpf_object * obj)6342 static void bpf_object__sort_relos(struct bpf_object *obj)
6343 {
6344 int i;
6345
6346 for (i = 0; i < obj->nr_programs; i++) {
6347 struct bpf_program *p = &obj->programs[i];
6348
6349 if (!p->nr_reloc)
6350 continue;
6351
6352 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6353 }
6354 }
6355
6356 static int
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)6357 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6358 {
6359 struct bpf_program *prog;
6360 size_t i, j;
6361 int err;
6362
6363 if (obj->btf_ext) {
6364 err = bpf_object__relocate_core(obj, targ_btf_path);
6365 if (err) {
6366 pr_warn("failed to perform CO-RE relocations: %d\n",
6367 err);
6368 return err;
6369 }
6370 bpf_object__sort_relos(obj);
6371 }
6372
6373 /* Before relocating calls pre-process relocations and mark
6374 * few ld_imm64 instructions that points to subprogs.
6375 * Otherwise bpf_object__reloc_code() later would have to consider
6376 * all ld_imm64 insns as relocation candidates. That would
6377 * reduce relocation speed, since amount of find_prog_insn_relo()
6378 * would increase and most of them will fail to find a relo.
6379 */
6380 for (i = 0; i < obj->nr_programs; i++) {
6381 prog = &obj->programs[i];
6382 for (j = 0; j < prog->nr_reloc; j++) {
6383 struct reloc_desc *relo = &prog->reloc_desc[j];
6384 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6385
6386 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6387 if (relo->type == RELO_SUBPROG_ADDR)
6388 insn[0].src_reg = BPF_PSEUDO_FUNC;
6389 }
6390 }
6391
6392 /* relocate subprogram calls and append used subprograms to main
6393 * programs; each copy of subprogram code needs to be relocated
6394 * differently for each main program, because its code location might
6395 * have changed.
6396 * Append subprog relos to main programs to allow data relos to be
6397 * processed after text is completely relocated.
6398 */
6399 for (i = 0; i < obj->nr_programs; i++) {
6400 prog = &obj->programs[i];
6401 /* sub-program's sub-calls are relocated within the context of
6402 * its main program only
6403 */
6404 if (prog_is_subprog(obj, prog))
6405 continue;
6406 if (!prog->autoload)
6407 continue;
6408
6409 err = bpf_object__relocate_calls(obj, prog);
6410 if (err) {
6411 pr_warn("prog '%s': failed to relocate calls: %d\n",
6412 prog->name, err);
6413 return err;
6414 }
6415 }
6416 /* Process data relos for main programs */
6417 for (i = 0; i < obj->nr_programs; i++) {
6418 prog = &obj->programs[i];
6419 if (prog_is_subprog(obj, prog))
6420 continue;
6421 if (!prog->autoload)
6422 continue;
6423 err = bpf_object__relocate_data(obj, prog);
6424 if (err) {
6425 pr_warn("prog '%s': failed to relocate data references: %d\n",
6426 prog->name, err);
6427 return err;
6428 }
6429 }
6430
6431 return 0;
6432 }
6433
6434 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6435 Elf64_Shdr *shdr, Elf_Data *data);
6436
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)6437 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6438 Elf64_Shdr *shdr, Elf_Data *data)
6439 {
6440 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6441 int i, j, nrels, new_sz;
6442 const struct btf_var_secinfo *vi = NULL;
6443 const struct btf_type *sec, *var, *def;
6444 struct bpf_map *map = NULL, *targ_map = NULL;
6445 struct bpf_program *targ_prog = NULL;
6446 bool is_prog_array, is_map_in_map;
6447 const struct btf_member *member;
6448 const char *name, *mname, *type;
6449 unsigned int moff;
6450 Elf64_Sym *sym;
6451 Elf64_Rel *rel;
6452 void *tmp;
6453
6454 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6455 return -EINVAL;
6456 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6457 if (!sec)
6458 return -EINVAL;
6459
6460 nrels = shdr->sh_size / shdr->sh_entsize;
6461 for (i = 0; i < nrels; i++) {
6462 rel = elf_rel_by_idx(data, i);
6463 if (!rel) {
6464 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6465 return -LIBBPF_ERRNO__FORMAT;
6466 }
6467
6468 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6469 if (!sym) {
6470 pr_warn(".maps relo #%d: symbol %zx not found\n",
6471 i, (size_t)ELF64_R_SYM(rel->r_info));
6472 return -LIBBPF_ERRNO__FORMAT;
6473 }
6474 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6475
6476 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6477 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6478 (size_t)rel->r_offset, sym->st_name, name);
6479
6480 for (j = 0; j < obj->nr_maps; j++) {
6481 map = &obj->maps[j];
6482 if (map->sec_idx != obj->efile.btf_maps_shndx)
6483 continue;
6484
6485 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6486 if (vi->offset <= rel->r_offset &&
6487 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6488 break;
6489 }
6490 if (j == obj->nr_maps) {
6491 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6492 i, name, (size_t)rel->r_offset);
6493 return -EINVAL;
6494 }
6495
6496 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6497 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6498 type = is_map_in_map ? "map" : "prog";
6499 if (is_map_in_map) {
6500 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6501 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6502 i, name);
6503 return -LIBBPF_ERRNO__RELOC;
6504 }
6505 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6506 map->def.key_size != sizeof(int)) {
6507 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6508 i, map->name, sizeof(int));
6509 return -EINVAL;
6510 }
6511 targ_map = bpf_object__find_map_by_name(obj, name);
6512 if (!targ_map) {
6513 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6514 i, name);
6515 return -ESRCH;
6516 }
6517 } else if (is_prog_array) {
6518 targ_prog = bpf_object__find_program_by_name(obj, name);
6519 if (!targ_prog) {
6520 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6521 i, name);
6522 return -ESRCH;
6523 }
6524 if (targ_prog->sec_idx != sym->st_shndx ||
6525 targ_prog->sec_insn_off * 8 != sym->st_value ||
6526 prog_is_subprog(obj, targ_prog)) {
6527 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6528 i, name);
6529 return -LIBBPF_ERRNO__RELOC;
6530 }
6531 } else {
6532 return -EINVAL;
6533 }
6534
6535 var = btf__type_by_id(obj->btf, vi->type);
6536 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6537 if (btf_vlen(def) == 0)
6538 return -EINVAL;
6539 member = btf_members(def) + btf_vlen(def) - 1;
6540 mname = btf__name_by_offset(obj->btf, member->name_off);
6541 if (strcmp(mname, "values"))
6542 return -EINVAL;
6543
6544 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6545 if (rel->r_offset - vi->offset < moff)
6546 return -EINVAL;
6547
6548 moff = rel->r_offset - vi->offset - moff;
6549 /* here we use BPF pointer size, which is always 64 bit, as we
6550 * are parsing ELF that was built for BPF target
6551 */
6552 if (moff % bpf_ptr_sz)
6553 return -EINVAL;
6554 moff /= bpf_ptr_sz;
6555 if (moff >= map->init_slots_sz) {
6556 new_sz = moff + 1;
6557 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6558 if (!tmp)
6559 return -ENOMEM;
6560 map->init_slots = tmp;
6561 memset(map->init_slots + map->init_slots_sz, 0,
6562 (new_sz - map->init_slots_sz) * host_ptr_sz);
6563 map->init_slots_sz = new_sz;
6564 }
6565 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6566
6567 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6568 i, map->name, moff, type, name);
6569 }
6570
6571 return 0;
6572 }
6573
bpf_object__collect_relos(struct bpf_object * obj)6574 static int bpf_object__collect_relos(struct bpf_object *obj)
6575 {
6576 int i, err;
6577
6578 for (i = 0; i < obj->efile.sec_cnt; i++) {
6579 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6580 Elf64_Shdr *shdr;
6581 Elf_Data *data;
6582 int idx;
6583
6584 if (sec_desc->sec_type != SEC_RELO)
6585 continue;
6586
6587 shdr = sec_desc->shdr;
6588 data = sec_desc->data;
6589 idx = shdr->sh_info;
6590
6591 if (shdr->sh_type != SHT_REL) {
6592 pr_warn("internal error at %d\n", __LINE__);
6593 return -LIBBPF_ERRNO__INTERNAL;
6594 }
6595
6596 if (idx == obj->efile.st_ops_shndx)
6597 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6598 else if (idx == obj->efile.btf_maps_shndx)
6599 err = bpf_object__collect_map_relos(obj, shdr, data);
6600 else
6601 err = bpf_object__collect_prog_relos(obj, shdr, data);
6602 if (err)
6603 return err;
6604 }
6605
6606 bpf_object__sort_relos(obj);
6607 return 0;
6608 }
6609
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)6610 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6611 {
6612 if (BPF_CLASS(insn->code) == BPF_JMP &&
6613 BPF_OP(insn->code) == BPF_CALL &&
6614 BPF_SRC(insn->code) == BPF_K &&
6615 insn->src_reg == 0 &&
6616 insn->dst_reg == 0) {
6617 *func_id = insn->imm;
6618 return true;
6619 }
6620 return false;
6621 }
6622
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)6623 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6624 {
6625 struct bpf_insn *insn = prog->insns;
6626 enum bpf_func_id func_id;
6627 int i;
6628
6629 if (obj->gen_loader)
6630 return 0;
6631
6632 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6633 if (!insn_is_helper_call(insn, &func_id))
6634 continue;
6635
6636 /* on kernels that don't yet support
6637 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6638 * to bpf_probe_read() which works well for old kernels
6639 */
6640 switch (func_id) {
6641 case BPF_FUNC_probe_read_kernel:
6642 case BPF_FUNC_probe_read_user:
6643 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6644 insn->imm = BPF_FUNC_probe_read;
6645 break;
6646 case BPF_FUNC_probe_read_kernel_str:
6647 case BPF_FUNC_probe_read_user_str:
6648 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6649 insn->imm = BPF_FUNC_probe_read_str;
6650 break;
6651 default:
6652 break;
6653 }
6654 }
6655 return 0;
6656 }
6657
6658 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6659 int *btf_obj_fd, int *btf_type_id);
6660
6661 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)6662 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6663 struct bpf_prog_load_opts *opts, long cookie)
6664 {
6665 enum sec_def_flags def = cookie;
6666
6667 /* old kernels might not support specifying expected_attach_type */
6668 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6669 opts->expected_attach_type = 0;
6670
6671 if (def & SEC_SLEEPABLE)
6672 opts->prog_flags |= BPF_F_SLEEPABLE;
6673
6674 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6675 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6676
6677 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6678 int btf_obj_fd = 0, btf_type_id = 0, err;
6679 const char *attach_name;
6680
6681 attach_name = strchr(prog->sec_name, '/');
6682 if (!attach_name) {
6683 /* if BPF program is annotated with just SEC("fentry")
6684 * (or similar) without declaratively specifying
6685 * target, then it is expected that target will be
6686 * specified with bpf_program__set_attach_target() at
6687 * runtime before BPF object load step. If not, then
6688 * there is nothing to load into the kernel as BPF
6689 * verifier won't be able to validate BPF program
6690 * correctness anyways.
6691 */
6692 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6693 prog->name);
6694 return -EINVAL;
6695 }
6696 attach_name++; /* skip over / */
6697
6698 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6699 if (err)
6700 return err;
6701
6702 /* cache resolved BTF FD and BTF type ID in the prog */
6703 prog->attach_btf_obj_fd = btf_obj_fd;
6704 prog->attach_btf_id = btf_type_id;
6705
6706 /* but by now libbpf common logic is not utilizing
6707 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6708 * this callback is called after opts were populated by
6709 * libbpf, so this callback has to update opts explicitly here
6710 */
6711 opts->attach_btf_obj_fd = btf_obj_fd;
6712 opts->attach_btf_id = btf_type_id;
6713 }
6714 return 0;
6715 }
6716
6717 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6718
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)6719 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6720 struct bpf_insn *insns, int insns_cnt,
6721 const char *license, __u32 kern_version, int *prog_fd)
6722 {
6723 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6724 const char *prog_name = NULL;
6725 char *cp, errmsg[STRERR_BUFSIZE];
6726 size_t log_buf_size = 0;
6727 char *log_buf = NULL, *tmp;
6728 int btf_fd, ret, err;
6729 bool own_log_buf = true;
6730 __u32 log_level = prog->log_level;
6731
6732 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6733 /*
6734 * The program type must be set. Most likely we couldn't find a proper
6735 * section definition at load time, and thus we didn't infer the type.
6736 */
6737 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6738 prog->name, prog->sec_name);
6739 return -EINVAL;
6740 }
6741
6742 if (!insns || !insns_cnt)
6743 return -EINVAL;
6744
6745 load_attr.expected_attach_type = prog->expected_attach_type;
6746 if (kernel_supports(obj, FEAT_PROG_NAME))
6747 prog_name = prog->name;
6748 load_attr.attach_prog_fd = prog->attach_prog_fd;
6749 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6750 load_attr.attach_btf_id = prog->attach_btf_id;
6751 load_attr.kern_version = kern_version;
6752 load_attr.prog_ifindex = prog->prog_ifindex;
6753
6754 /* specify func_info/line_info only if kernel supports them */
6755 btf_fd = bpf_object__btf_fd(obj);
6756 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6757 load_attr.prog_btf_fd = btf_fd;
6758 load_attr.func_info = prog->func_info;
6759 load_attr.func_info_rec_size = prog->func_info_rec_size;
6760 load_attr.func_info_cnt = prog->func_info_cnt;
6761 load_attr.line_info = prog->line_info;
6762 load_attr.line_info_rec_size = prog->line_info_rec_size;
6763 load_attr.line_info_cnt = prog->line_info_cnt;
6764 }
6765 load_attr.log_level = log_level;
6766 load_attr.prog_flags = prog->prog_flags;
6767 load_attr.fd_array = obj->fd_array;
6768
6769 /* adjust load_attr if sec_def provides custom preload callback */
6770 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6771 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6772 if (err < 0) {
6773 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6774 prog->name, err);
6775 return err;
6776 }
6777 insns = prog->insns;
6778 insns_cnt = prog->insns_cnt;
6779 }
6780
6781 if (obj->gen_loader) {
6782 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6783 license, insns, insns_cnt, &load_attr,
6784 prog - obj->programs);
6785 *prog_fd = -1;
6786 return 0;
6787 }
6788
6789 retry_load:
6790 /* if log_level is zero, we don't request logs initially even if
6791 * custom log_buf is specified; if the program load fails, then we'll
6792 * bump log_level to 1 and use either custom log_buf or we'll allocate
6793 * our own and retry the load to get details on what failed
6794 */
6795 if (log_level) {
6796 if (prog->log_buf) {
6797 log_buf = prog->log_buf;
6798 log_buf_size = prog->log_size;
6799 own_log_buf = false;
6800 } else if (obj->log_buf) {
6801 log_buf = obj->log_buf;
6802 log_buf_size = obj->log_size;
6803 own_log_buf = false;
6804 } else {
6805 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6806 tmp = realloc(log_buf, log_buf_size);
6807 if (!tmp) {
6808 ret = -ENOMEM;
6809 goto out;
6810 }
6811 log_buf = tmp;
6812 log_buf[0] = '\0';
6813 own_log_buf = true;
6814 }
6815 }
6816
6817 load_attr.log_buf = log_buf;
6818 load_attr.log_size = log_buf_size;
6819 load_attr.log_level = log_level;
6820
6821 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6822 if (ret >= 0) {
6823 if (log_level && own_log_buf) {
6824 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6825 prog->name, log_buf);
6826 }
6827
6828 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6829 struct bpf_map *map;
6830 int i;
6831
6832 for (i = 0; i < obj->nr_maps; i++) {
6833 map = &prog->obj->maps[i];
6834 if (map->libbpf_type != LIBBPF_MAP_RODATA)
6835 continue;
6836
6837 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6838 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6839 pr_warn("prog '%s': failed to bind map '%s': %s\n",
6840 prog->name, map->real_name, cp);
6841 /* Don't fail hard if can't bind rodata. */
6842 }
6843 }
6844 }
6845
6846 *prog_fd = ret;
6847 ret = 0;
6848 goto out;
6849 }
6850
6851 if (log_level == 0) {
6852 log_level = 1;
6853 goto retry_load;
6854 }
6855 /* On ENOSPC, increase log buffer size and retry, unless custom
6856 * log_buf is specified.
6857 * Be careful to not overflow u32, though. Kernel's log buf size limit
6858 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6859 * multiply by 2 unless we are sure we'll fit within 32 bits.
6860 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6861 */
6862 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6863 goto retry_load;
6864
6865 ret = -errno;
6866
6867 /* post-process verifier log to improve error descriptions */
6868 fixup_verifier_log(prog, log_buf, log_buf_size);
6869
6870 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6871 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6872 pr_perm_msg(ret);
6873
6874 if (own_log_buf && log_buf && log_buf[0] != '\0') {
6875 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6876 prog->name, log_buf);
6877 }
6878
6879 out:
6880 if (own_log_buf)
6881 free(log_buf);
6882 return ret;
6883 }
6884
find_prev_line(char * buf,char * cur)6885 static char *find_prev_line(char *buf, char *cur)
6886 {
6887 char *p;
6888
6889 if (cur == buf) /* end of a log buf */
6890 return NULL;
6891
6892 p = cur - 1;
6893 while (p - 1 >= buf && *(p - 1) != '\n')
6894 p--;
6895
6896 return p;
6897 }
6898
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)6899 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6900 char *orig, size_t orig_sz, const char *patch)
6901 {
6902 /* size of the remaining log content to the right from the to-be-replaced part */
6903 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6904 size_t patch_sz = strlen(patch);
6905
6906 if (patch_sz != orig_sz) {
6907 /* If patch line(s) are longer than original piece of verifier log,
6908 * shift log contents by (patch_sz - orig_sz) bytes to the right
6909 * starting from after to-be-replaced part of the log.
6910 *
6911 * If patch line(s) are shorter than original piece of verifier log,
6912 * shift log contents by (orig_sz - patch_sz) bytes to the left
6913 * starting from after to-be-replaced part of the log
6914 *
6915 * We need to be careful about not overflowing available
6916 * buf_sz capacity. If that's the case, we'll truncate the end
6917 * of the original log, as necessary.
6918 */
6919 if (patch_sz > orig_sz) {
6920 if (orig + patch_sz >= buf + buf_sz) {
6921 /* patch is big enough to cover remaining space completely */
6922 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
6923 rem_sz = 0;
6924 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
6925 /* patch causes part of remaining log to be truncated */
6926 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
6927 }
6928 }
6929 /* shift remaining log to the right by calculated amount */
6930 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
6931 }
6932
6933 memcpy(orig, patch, patch_sz);
6934 }
6935
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)6936 static void fixup_log_failed_core_relo(struct bpf_program *prog,
6937 char *buf, size_t buf_sz, size_t log_sz,
6938 char *line1, char *line2, char *line3)
6939 {
6940 /* Expected log for failed and not properly guarded CO-RE relocation:
6941 * line1 -> 123: (85) call unknown#195896080
6942 * line2 -> invalid func unknown#195896080
6943 * line3 -> <anything else or end of buffer>
6944 *
6945 * "123" is the index of the instruction that was poisoned. We extract
6946 * instruction index to find corresponding CO-RE relocation and
6947 * replace this part of the log with more relevant information about
6948 * failed CO-RE relocation.
6949 */
6950 const struct bpf_core_relo *relo;
6951 struct bpf_core_spec spec;
6952 char patch[512], spec_buf[256];
6953 int insn_idx, err, spec_len;
6954
6955 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
6956 return;
6957
6958 relo = find_relo_core(prog, insn_idx);
6959 if (!relo)
6960 return;
6961
6962 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
6963 if (err)
6964 return;
6965
6966 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
6967 snprintf(patch, sizeof(patch),
6968 "%d: <invalid CO-RE relocation>\n"
6969 "failed to resolve CO-RE relocation %s%s\n",
6970 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
6971
6972 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6973 }
6974
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)6975 static void fixup_log_missing_map_load(struct bpf_program *prog,
6976 char *buf, size_t buf_sz, size_t log_sz,
6977 char *line1, char *line2, char *line3)
6978 {
6979 /* Expected log for failed and not properly guarded CO-RE relocation:
6980 * line1 -> 123: (85) call unknown#2001000345
6981 * line2 -> invalid func unknown#2001000345
6982 * line3 -> <anything else or end of buffer>
6983 *
6984 * "123" is the index of the instruction that was poisoned.
6985 * "345" in "2001000345" are map index in obj->maps to fetch map name.
6986 */
6987 struct bpf_object *obj = prog->obj;
6988 const struct bpf_map *map;
6989 int insn_idx, map_idx;
6990 char patch[128];
6991
6992 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
6993 return;
6994
6995 map_idx -= MAP_LDIMM64_POISON_BASE;
6996 if (map_idx < 0 || map_idx >= obj->nr_maps)
6997 return;
6998 map = &obj->maps[map_idx];
6999
7000 snprintf(patch, sizeof(patch),
7001 "%d: <invalid BPF map reference>\n"
7002 "BPF map '%s' is referenced but wasn't created\n",
7003 insn_idx, map->name);
7004
7005 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7006 }
7007
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7008 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7009 {
7010 /* look for familiar error patterns in last N lines of the log */
7011 const size_t max_last_line_cnt = 10;
7012 char *prev_line, *cur_line, *next_line;
7013 size_t log_sz;
7014 int i;
7015
7016 if (!buf)
7017 return;
7018
7019 log_sz = strlen(buf) + 1;
7020 next_line = buf + log_sz - 1;
7021
7022 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7023 cur_line = find_prev_line(buf, next_line);
7024 if (!cur_line)
7025 return;
7026
7027 /* failed CO-RE relocation case */
7028 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7029 prev_line = find_prev_line(buf, cur_line);
7030 if (!prev_line)
7031 continue;
7032
7033 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7034 prev_line, cur_line, next_line);
7035 return;
7036 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) {
7037 prev_line = find_prev_line(buf, cur_line);
7038 if (!prev_line)
7039 continue;
7040
7041 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7042 prev_line, cur_line, next_line);
7043 return;
7044 }
7045 }
7046 }
7047
bpf_program_record_relos(struct bpf_program * prog)7048 static int bpf_program_record_relos(struct bpf_program *prog)
7049 {
7050 struct bpf_object *obj = prog->obj;
7051 int i;
7052
7053 for (i = 0; i < prog->nr_reloc; i++) {
7054 struct reloc_desc *relo = &prog->reloc_desc[i];
7055 struct extern_desc *ext = &obj->externs[relo->sym_off];
7056
7057 switch (relo->type) {
7058 case RELO_EXTERN_VAR:
7059 if (ext->type != EXT_KSYM)
7060 continue;
7061 bpf_gen__record_extern(obj->gen_loader, ext->name,
7062 ext->is_weak, !ext->ksym.type_id,
7063 BTF_KIND_VAR, relo->insn_idx);
7064 break;
7065 case RELO_EXTERN_FUNC:
7066 bpf_gen__record_extern(obj->gen_loader, ext->name,
7067 ext->is_weak, false, BTF_KIND_FUNC,
7068 relo->insn_idx);
7069 break;
7070 case RELO_CORE: {
7071 struct bpf_core_relo cr = {
7072 .insn_off = relo->insn_idx * 8,
7073 .type_id = relo->core_relo->type_id,
7074 .access_str_off = relo->core_relo->access_str_off,
7075 .kind = relo->core_relo->kind,
7076 };
7077
7078 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7079 break;
7080 }
7081 default:
7082 continue;
7083 }
7084 }
7085 return 0;
7086 }
7087
7088 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7089 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7090 {
7091 struct bpf_program *prog;
7092 size_t i;
7093 int err;
7094
7095 for (i = 0; i < obj->nr_programs; i++) {
7096 prog = &obj->programs[i];
7097 err = bpf_object__sanitize_prog(obj, prog);
7098 if (err)
7099 return err;
7100 }
7101
7102 for (i = 0; i < obj->nr_programs; i++) {
7103 prog = &obj->programs[i];
7104 if (prog_is_subprog(obj, prog))
7105 continue;
7106 if (!prog->autoload) {
7107 pr_debug("prog '%s': skipped loading\n", prog->name);
7108 continue;
7109 }
7110 prog->log_level |= log_level;
7111
7112 if (obj->gen_loader)
7113 bpf_program_record_relos(prog);
7114
7115 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7116 obj->license, obj->kern_version, &prog->fd);
7117 if (err) {
7118 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7119 return err;
7120 }
7121 }
7122
7123 bpf_object__free_relocs(obj);
7124 return 0;
7125 }
7126
7127 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7128
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7129 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7130 {
7131 struct bpf_program *prog;
7132 int err;
7133
7134 bpf_object__for_each_program(prog, obj) {
7135 prog->sec_def = find_sec_def(prog->sec_name);
7136 if (!prog->sec_def) {
7137 /* couldn't guess, but user might manually specify */
7138 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7139 prog->name, prog->sec_name);
7140 continue;
7141 }
7142
7143 prog->type = prog->sec_def->prog_type;
7144 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7145
7146 /* sec_def can have custom callback which should be called
7147 * after bpf_program is initialized to adjust its properties
7148 */
7149 if (prog->sec_def->prog_setup_fn) {
7150 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7151 if (err < 0) {
7152 pr_warn("prog '%s': failed to initialize: %d\n",
7153 prog->name, err);
7154 return err;
7155 }
7156 }
7157 }
7158
7159 return 0;
7160 }
7161
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7162 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7163 const struct bpf_object_open_opts *opts)
7164 {
7165 const char *obj_name, *kconfig, *btf_tmp_path;
7166 struct bpf_object *obj;
7167 char tmp_name[64];
7168 int err;
7169 char *log_buf;
7170 size_t log_size;
7171 __u32 log_level;
7172
7173 if (elf_version(EV_CURRENT) == EV_NONE) {
7174 pr_warn("failed to init libelf for %s\n",
7175 path ? : "(mem buf)");
7176 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7177 }
7178
7179 if (!OPTS_VALID(opts, bpf_object_open_opts))
7180 return ERR_PTR(-EINVAL);
7181
7182 obj_name = OPTS_GET(opts, object_name, NULL);
7183 if (obj_buf) {
7184 if (!obj_name) {
7185 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7186 (unsigned long)obj_buf,
7187 (unsigned long)obj_buf_sz);
7188 obj_name = tmp_name;
7189 }
7190 path = obj_name;
7191 pr_debug("loading object '%s' from buffer\n", obj_name);
7192 }
7193
7194 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7195 log_size = OPTS_GET(opts, kernel_log_size, 0);
7196 log_level = OPTS_GET(opts, kernel_log_level, 0);
7197 if (log_size > UINT_MAX)
7198 return ERR_PTR(-EINVAL);
7199 if (log_size && !log_buf)
7200 return ERR_PTR(-EINVAL);
7201
7202 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7203 if (IS_ERR(obj))
7204 return obj;
7205
7206 obj->log_buf = log_buf;
7207 obj->log_size = log_size;
7208 obj->log_level = log_level;
7209
7210 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7211 if (btf_tmp_path) {
7212 if (strlen(btf_tmp_path) >= PATH_MAX) {
7213 err = -ENAMETOOLONG;
7214 goto out;
7215 }
7216 obj->btf_custom_path = strdup(btf_tmp_path);
7217 if (!obj->btf_custom_path) {
7218 err = -ENOMEM;
7219 goto out;
7220 }
7221 }
7222
7223 kconfig = OPTS_GET(opts, kconfig, NULL);
7224 if (kconfig) {
7225 obj->kconfig = strdup(kconfig);
7226 if (!obj->kconfig) {
7227 err = -ENOMEM;
7228 goto out;
7229 }
7230 }
7231
7232 err = bpf_object__elf_init(obj);
7233 err = err ? : bpf_object__check_endianness(obj);
7234 err = err ? : bpf_object__elf_collect(obj);
7235 err = err ? : bpf_object__collect_externs(obj);
7236 err = err ? : bpf_object__finalize_btf(obj);
7237 err = err ? : bpf_object__init_maps(obj, opts);
7238 err = err ? : bpf_object_init_progs(obj, opts);
7239 err = err ? : bpf_object__collect_relos(obj);
7240 if (err)
7241 goto out;
7242
7243 bpf_object__elf_finish(obj);
7244
7245 return obj;
7246 out:
7247 bpf_object__close(obj);
7248 return ERR_PTR(err);
7249 }
7250
7251 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)7252 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7253 {
7254 if (!path)
7255 return libbpf_err_ptr(-EINVAL);
7256
7257 pr_debug("loading %s\n", path);
7258
7259 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7260 }
7261
bpf_object__open(const char * path)7262 struct bpf_object *bpf_object__open(const char *path)
7263 {
7264 return bpf_object__open_file(path, NULL);
7265 }
7266
7267 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7268 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7269 const struct bpf_object_open_opts *opts)
7270 {
7271 if (!obj_buf || obj_buf_sz == 0)
7272 return libbpf_err_ptr(-EINVAL);
7273
7274 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7275 }
7276
bpf_object_unload(struct bpf_object * obj)7277 static int bpf_object_unload(struct bpf_object *obj)
7278 {
7279 size_t i;
7280
7281 if (!obj)
7282 return libbpf_err(-EINVAL);
7283
7284 for (i = 0; i < obj->nr_maps; i++) {
7285 zclose(obj->maps[i].fd);
7286 if (obj->maps[i].st_ops)
7287 zfree(&obj->maps[i].st_ops->kern_vdata);
7288 }
7289
7290 for (i = 0; i < obj->nr_programs; i++)
7291 bpf_program__unload(&obj->programs[i]);
7292
7293 return 0;
7294 }
7295
bpf_object__sanitize_maps(struct bpf_object * obj)7296 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7297 {
7298 struct bpf_map *m;
7299
7300 bpf_object__for_each_map(m, obj) {
7301 if (!bpf_map__is_internal(m))
7302 continue;
7303 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7304 m->def.map_flags ^= BPF_F_MMAPABLE;
7305 }
7306
7307 return 0;
7308 }
7309
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)7310 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7311 {
7312 char sym_type, sym_name[500];
7313 unsigned long long sym_addr;
7314 int ret, err = 0;
7315 FILE *f;
7316
7317 f = fopen("/proc/kallsyms", "r");
7318 if (!f) {
7319 err = -errno;
7320 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7321 return err;
7322 }
7323
7324 while (true) {
7325 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7326 &sym_addr, &sym_type, sym_name);
7327 if (ret == EOF && feof(f))
7328 break;
7329 if (ret != 3) {
7330 pr_warn("failed to read kallsyms entry: %d\n", ret);
7331 err = -EINVAL;
7332 break;
7333 }
7334
7335 err = cb(sym_addr, sym_type, sym_name, ctx);
7336 if (err)
7337 break;
7338 }
7339
7340 fclose(f);
7341 return err;
7342 }
7343
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)7344 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7345 const char *sym_name, void *ctx)
7346 {
7347 struct bpf_object *obj = ctx;
7348 const struct btf_type *t;
7349 struct extern_desc *ext;
7350
7351 ext = find_extern_by_name(obj, sym_name);
7352 if (!ext || ext->type != EXT_KSYM)
7353 return 0;
7354
7355 t = btf__type_by_id(obj->btf, ext->btf_id);
7356 if (!btf_is_var(t))
7357 return 0;
7358
7359 if (ext->is_set && ext->ksym.addr != sym_addr) {
7360 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7361 sym_name, ext->ksym.addr, sym_addr);
7362 return -EINVAL;
7363 }
7364 if (!ext->is_set) {
7365 ext->is_set = true;
7366 ext->ksym.addr = sym_addr;
7367 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7368 }
7369 return 0;
7370 }
7371
bpf_object__read_kallsyms_file(struct bpf_object * obj)7372 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7373 {
7374 return libbpf_kallsyms_parse(kallsyms_cb, obj);
7375 }
7376
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)7377 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7378 __u16 kind, struct btf **res_btf,
7379 struct module_btf **res_mod_btf)
7380 {
7381 struct module_btf *mod_btf;
7382 struct btf *btf;
7383 int i, id, err;
7384
7385 btf = obj->btf_vmlinux;
7386 mod_btf = NULL;
7387 id = btf__find_by_name_kind(btf, ksym_name, kind);
7388
7389 if (id == -ENOENT) {
7390 err = load_module_btfs(obj);
7391 if (err)
7392 return err;
7393
7394 for (i = 0; i < obj->btf_module_cnt; i++) {
7395 /* we assume module_btf's BTF FD is always >0 */
7396 mod_btf = &obj->btf_modules[i];
7397 btf = mod_btf->btf;
7398 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7399 if (id != -ENOENT)
7400 break;
7401 }
7402 }
7403 if (id <= 0)
7404 return -ESRCH;
7405
7406 *res_btf = btf;
7407 *res_mod_btf = mod_btf;
7408 return id;
7409 }
7410
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)7411 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7412 struct extern_desc *ext)
7413 {
7414 const struct btf_type *targ_var, *targ_type;
7415 __u32 targ_type_id, local_type_id;
7416 struct module_btf *mod_btf = NULL;
7417 const char *targ_var_name;
7418 struct btf *btf = NULL;
7419 int id, err;
7420
7421 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7422 if (id < 0) {
7423 if (id == -ESRCH && ext->is_weak)
7424 return 0;
7425 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7426 ext->name);
7427 return id;
7428 }
7429
7430 /* find local type_id */
7431 local_type_id = ext->ksym.type_id;
7432
7433 /* find target type_id */
7434 targ_var = btf__type_by_id(btf, id);
7435 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7436 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7437
7438 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7439 btf, targ_type_id);
7440 if (err <= 0) {
7441 const struct btf_type *local_type;
7442 const char *targ_name, *local_name;
7443
7444 local_type = btf__type_by_id(obj->btf, local_type_id);
7445 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7446 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7447
7448 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7449 ext->name, local_type_id,
7450 btf_kind_str(local_type), local_name, targ_type_id,
7451 btf_kind_str(targ_type), targ_name);
7452 return -EINVAL;
7453 }
7454
7455 ext->is_set = true;
7456 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7457 ext->ksym.kernel_btf_id = id;
7458 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7459 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7460
7461 return 0;
7462 }
7463
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)7464 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7465 struct extern_desc *ext)
7466 {
7467 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7468 struct module_btf *mod_btf = NULL;
7469 const struct btf_type *kern_func;
7470 struct btf *kern_btf = NULL;
7471 int ret;
7472
7473 local_func_proto_id = ext->ksym.type_id;
7474
7475 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7476 if (kfunc_id < 0) {
7477 if (kfunc_id == -ESRCH && ext->is_weak)
7478 return 0;
7479 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7480 ext->name);
7481 return kfunc_id;
7482 }
7483
7484 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7485 kfunc_proto_id = kern_func->type;
7486
7487 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7488 kern_btf, kfunc_proto_id);
7489 if (ret <= 0) {
7490 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7491 ext->name, local_func_proto_id, kfunc_proto_id);
7492 return -EINVAL;
7493 }
7494
7495 /* set index for module BTF fd in fd_array, if unset */
7496 if (mod_btf && !mod_btf->fd_array_idx) {
7497 /* insn->off is s16 */
7498 if (obj->fd_array_cnt == INT16_MAX) {
7499 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7500 ext->name, mod_btf->fd_array_idx);
7501 return -E2BIG;
7502 }
7503 /* Cannot use index 0 for module BTF fd */
7504 if (!obj->fd_array_cnt)
7505 obj->fd_array_cnt = 1;
7506
7507 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7508 obj->fd_array_cnt + 1);
7509 if (ret)
7510 return ret;
7511 mod_btf->fd_array_idx = obj->fd_array_cnt;
7512 /* we assume module BTF FD is always >0 */
7513 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7514 }
7515
7516 ext->is_set = true;
7517 ext->ksym.kernel_btf_id = kfunc_id;
7518 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7519 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7520 ext->name, kfunc_id);
7521
7522 return 0;
7523 }
7524
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)7525 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7526 {
7527 const struct btf_type *t;
7528 struct extern_desc *ext;
7529 int i, err;
7530
7531 for (i = 0; i < obj->nr_extern; i++) {
7532 ext = &obj->externs[i];
7533 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7534 continue;
7535
7536 if (obj->gen_loader) {
7537 ext->is_set = true;
7538 ext->ksym.kernel_btf_obj_fd = 0;
7539 ext->ksym.kernel_btf_id = 0;
7540 continue;
7541 }
7542 t = btf__type_by_id(obj->btf, ext->btf_id);
7543 if (btf_is_var(t))
7544 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7545 else
7546 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7547 if (err)
7548 return err;
7549 }
7550 return 0;
7551 }
7552
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)7553 static int bpf_object__resolve_externs(struct bpf_object *obj,
7554 const char *extra_kconfig)
7555 {
7556 bool need_config = false, need_kallsyms = false;
7557 bool need_vmlinux_btf = false;
7558 struct extern_desc *ext;
7559 void *kcfg_data = NULL;
7560 int err, i;
7561
7562 if (obj->nr_extern == 0)
7563 return 0;
7564
7565 if (obj->kconfig_map_idx >= 0)
7566 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7567
7568 for (i = 0; i < obj->nr_extern; i++) {
7569 ext = &obj->externs[i];
7570
7571 if (ext->type == EXT_KSYM) {
7572 if (ext->ksym.type_id)
7573 need_vmlinux_btf = true;
7574 else
7575 need_kallsyms = true;
7576 continue;
7577 } else if (ext->type == EXT_KCFG) {
7578 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7579 __u64 value = 0;
7580
7581 /* Kconfig externs need actual /proc/config.gz */
7582 if (str_has_pfx(ext->name, "CONFIG_")) {
7583 need_config = true;
7584 continue;
7585 }
7586
7587 /* Virtual kcfg externs are customly handled by libbpf */
7588 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7589 value = get_kernel_version();
7590 if (!value) {
7591 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7592 return -EINVAL;
7593 }
7594 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7595 value = kernel_supports(obj, FEAT_BPF_COOKIE);
7596 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7597 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7598 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7599 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7600 * __kconfig externs, where LINUX_ ones are virtual and filled out
7601 * customly by libbpf (their values don't come from Kconfig).
7602 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7603 * __weak, it defaults to zero value, just like for CONFIG_xxx
7604 * externs.
7605 */
7606 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7607 return -EINVAL;
7608 }
7609
7610 err = set_kcfg_value_num(ext, ext_ptr, value);
7611 if (err)
7612 return err;
7613 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7614 ext->name, (long long)value);
7615 } else {
7616 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7617 return -EINVAL;
7618 }
7619 }
7620 if (need_config && extra_kconfig) {
7621 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7622 if (err)
7623 return -EINVAL;
7624 need_config = false;
7625 for (i = 0; i < obj->nr_extern; i++) {
7626 ext = &obj->externs[i];
7627 if (ext->type == EXT_KCFG && !ext->is_set) {
7628 need_config = true;
7629 break;
7630 }
7631 }
7632 }
7633 if (need_config) {
7634 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7635 if (err)
7636 return -EINVAL;
7637 }
7638 if (need_kallsyms) {
7639 err = bpf_object__read_kallsyms_file(obj);
7640 if (err)
7641 return -EINVAL;
7642 }
7643 if (need_vmlinux_btf) {
7644 err = bpf_object__resolve_ksyms_btf_id(obj);
7645 if (err)
7646 return -EINVAL;
7647 }
7648 for (i = 0; i < obj->nr_extern; i++) {
7649 ext = &obj->externs[i];
7650
7651 if (!ext->is_set && !ext->is_weak) {
7652 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7653 return -ESRCH;
7654 } else if (!ext->is_set) {
7655 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7656 ext->name);
7657 }
7658 }
7659
7660 return 0;
7661 }
7662
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)7663 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7664 {
7665 int err, i;
7666
7667 if (!obj)
7668 return libbpf_err(-EINVAL);
7669
7670 if (obj->loaded) {
7671 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7672 return libbpf_err(-EINVAL);
7673 }
7674
7675 if (obj->gen_loader)
7676 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7677
7678 err = bpf_object__probe_loading(obj);
7679 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7680 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7681 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7682 err = err ? : bpf_object__sanitize_maps(obj);
7683 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7684 err = err ? : bpf_object__create_maps(obj);
7685 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7686 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7687 err = err ? : bpf_object_init_prog_arrays(obj);
7688
7689 if (obj->gen_loader) {
7690 /* reset FDs */
7691 if (obj->btf)
7692 btf__set_fd(obj->btf, -1);
7693 for (i = 0; i < obj->nr_maps; i++)
7694 obj->maps[i].fd = -1;
7695 if (!err)
7696 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7697 }
7698
7699 /* clean up fd_array */
7700 zfree(&obj->fd_array);
7701
7702 /* clean up module BTFs */
7703 for (i = 0; i < obj->btf_module_cnt; i++) {
7704 close(obj->btf_modules[i].fd);
7705 btf__free(obj->btf_modules[i].btf);
7706 free(obj->btf_modules[i].name);
7707 }
7708 free(obj->btf_modules);
7709
7710 /* clean up vmlinux BTF */
7711 btf__free(obj->btf_vmlinux);
7712 obj->btf_vmlinux = NULL;
7713
7714 obj->loaded = true; /* doesn't matter if successfully or not */
7715
7716 if (err)
7717 goto out;
7718
7719 return 0;
7720 out:
7721 /* unpin any maps that were auto-pinned during load */
7722 for (i = 0; i < obj->nr_maps; i++)
7723 if (obj->maps[i].pinned && !obj->maps[i].reused)
7724 bpf_map__unpin(&obj->maps[i], NULL);
7725
7726 bpf_object_unload(obj);
7727 pr_warn("failed to load object '%s'\n", obj->path);
7728 return libbpf_err(err);
7729 }
7730
bpf_object__load(struct bpf_object * obj)7731 int bpf_object__load(struct bpf_object *obj)
7732 {
7733 return bpf_object_load(obj, 0, NULL);
7734 }
7735
make_parent_dir(const char * path)7736 static int make_parent_dir(const char *path)
7737 {
7738 char *cp, errmsg[STRERR_BUFSIZE];
7739 char *dname, *dir;
7740 int err = 0;
7741
7742 dname = strdup(path);
7743 if (dname == NULL)
7744 return -ENOMEM;
7745
7746 dir = dirname(dname);
7747 if (mkdir(dir, 0700) && errno != EEXIST)
7748 err = -errno;
7749
7750 free(dname);
7751 if (err) {
7752 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7753 pr_warn("failed to mkdir %s: %s\n", path, cp);
7754 }
7755 return err;
7756 }
7757
check_path(const char * path)7758 static int check_path(const char *path)
7759 {
7760 char *cp, errmsg[STRERR_BUFSIZE];
7761 struct statfs st_fs;
7762 char *dname, *dir;
7763 int err = 0;
7764
7765 if (path == NULL)
7766 return -EINVAL;
7767
7768 dname = strdup(path);
7769 if (dname == NULL)
7770 return -ENOMEM;
7771
7772 dir = dirname(dname);
7773 if (statfs(dir, &st_fs)) {
7774 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7775 pr_warn("failed to statfs %s: %s\n", dir, cp);
7776 err = -errno;
7777 }
7778 free(dname);
7779
7780 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7781 pr_warn("specified path %s is not on BPF FS\n", path);
7782 err = -EINVAL;
7783 }
7784
7785 return err;
7786 }
7787
bpf_program__pin(struct bpf_program * prog,const char * path)7788 int bpf_program__pin(struct bpf_program *prog, const char *path)
7789 {
7790 char *cp, errmsg[STRERR_BUFSIZE];
7791 int err;
7792
7793 if (prog->fd < 0) {
7794 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7795 return libbpf_err(-EINVAL);
7796 }
7797
7798 err = make_parent_dir(path);
7799 if (err)
7800 return libbpf_err(err);
7801
7802 err = check_path(path);
7803 if (err)
7804 return libbpf_err(err);
7805
7806 if (bpf_obj_pin(prog->fd, path)) {
7807 err = -errno;
7808 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7809 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7810 return libbpf_err(err);
7811 }
7812
7813 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7814 return 0;
7815 }
7816
bpf_program__unpin(struct bpf_program * prog,const char * path)7817 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7818 {
7819 int err;
7820
7821 if (prog->fd < 0) {
7822 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
7823 return libbpf_err(-EINVAL);
7824 }
7825
7826 err = check_path(path);
7827 if (err)
7828 return libbpf_err(err);
7829
7830 err = unlink(path);
7831 if (err)
7832 return libbpf_err(-errno);
7833
7834 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
7835 return 0;
7836 }
7837
bpf_map__pin(struct bpf_map * map,const char * path)7838 int bpf_map__pin(struct bpf_map *map, const char *path)
7839 {
7840 char *cp, errmsg[STRERR_BUFSIZE];
7841 int err;
7842
7843 if (map == NULL) {
7844 pr_warn("invalid map pointer\n");
7845 return libbpf_err(-EINVAL);
7846 }
7847
7848 if (map->pin_path) {
7849 if (path && strcmp(path, map->pin_path)) {
7850 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7851 bpf_map__name(map), map->pin_path, path);
7852 return libbpf_err(-EINVAL);
7853 } else if (map->pinned) {
7854 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7855 bpf_map__name(map), map->pin_path);
7856 return 0;
7857 }
7858 } else {
7859 if (!path) {
7860 pr_warn("missing a path to pin map '%s' at\n",
7861 bpf_map__name(map));
7862 return libbpf_err(-EINVAL);
7863 } else if (map->pinned) {
7864 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7865 return libbpf_err(-EEXIST);
7866 }
7867
7868 map->pin_path = strdup(path);
7869 if (!map->pin_path) {
7870 err = -errno;
7871 goto out_err;
7872 }
7873 }
7874
7875 err = make_parent_dir(map->pin_path);
7876 if (err)
7877 return libbpf_err(err);
7878
7879 err = check_path(map->pin_path);
7880 if (err)
7881 return libbpf_err(err);
7882
7883 if (bpf_obj_pin(map->fd, map->pin_path)) {
7884 err = -errno;
7885 goto out_err;
7886 }
7887
7888 map->pinned = true;
7889 pr_debug("pinned map '%s'\n", map->pin_path);
7890
7891 return 0;
7892
7893 out_err:
7894 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7895 pr_warn("failed to pin map: %s\n", cp);
7896 return libbpf_err(err);
7897 }
7898
bpf_map__unpin(struct bpf_map * map,const char * path)7899 int bpf_map__unpin(struct bpf_map *map, const char *path)
7900 {
7901 int err;
7902
7903 if (map == NULL) {
7904 pr_warn("invalid map pointer\n");
7905 return libbpf_err(-EINVAL);
7906 }
7907
7908 if (map->pin_path) {
7909 if (path && strcmp(path, map->pin_path)) {
7910 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7911 bpf_map__name(map), map->pin_path, path);
7912 return libbpf_err(-EINVAL);
7913 }
7914 path = map->pin_path;
7915 } else if (!path) {
7916 pr_warn("no path to unpin map '%s' from\n",
7917 bpf_map__name(map));
7918 return libbpf_err(-EINVAL);
7919 }
7920
7921 err = check_path(path);
7922 if (err)
7923 return libbpf_err(err);
7924
7925 err = unlink(path);
7926 if (err != 0)
7927 return libbpf_err(-errno);
7928
7929 map->pinned = false;
7930 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7931
7932 return 0;
7933 }
7934
bpf_map__set_pin_path(struct bpf_map * map,const char * path)7935 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7936 {
7937 char *new = NULL;
7938
7939 if (path) {
7940 new = strdup(path);
7941 if (!new)
7942 return libbpf_err(-errno);
7943 }
7944
7945 free(map->pin_path);
7946 map->pin_path = new;
7947 return 0;
7948 }
7949
7950 __alias(bpf_map__pin_path)
7951 const char *bpf_map__get_pin_path(const struct bpf_map *map);
7952
bpf_map__pin_path(const struct bpf_map * map)7953 const char *bpf_map__pin_path(const struct bpf_map *map)
7954 {
7955 return map->pin_path;
7956 }
7957
bpf_map__is_pinned(const struct bpf_map * map)7958 bool bpf_map__is_pinned(const struct bpf_map *map)
7959 {
7960 return map->pinned;
7961 }
7962
sanitize_pin_path(char * s)7963 static void sanitize_pin_path(char *s)
7964 {
7965 /* bpffs disallows periods in path names */
7966 while (*s) {
7967 if (*s == '.')
7968 *s = '_';
7969 s++;
7970 }
7971 }
7972
bpf_object__pin_maps(struct bpf_object * obj,const char * path)7973 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7974 {
7975 struct bpf_map *map;
7976 int err;
7977
7978 if (!obj)
7979 return libbpf_err(-ENOENT);
7980
7981 if (!obj->loaded) {
7982 pr_warn("object not yet loaded; load it first\n");
7983 return libbpf_err(-ENOENT);
7984 }
7985
7986 bpf_object__for_each_map(map, obj) {
7987 char *pin_path = NULL;
7988 char buf[PATH_MAX];
7989
7990 if (!map->autocreate)
7991 continue;
7992
7993 if (path) {
7994 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
7995 if (err)
7996 goto err_unpin_maps;
7997 sanitize_pin_path(buf);
7998 pin_path = buf;
7999 } else if (!map->pin_path) {
8000 continue;
8001 }
8002
8003 err = bpf_map__pin(map, pin_path);
8004 if (err)
8005 goto err_unpin_maps;
8006 }
8007
8008 return 0;
8009
8010 err_unpin_maps:
8011 while ((map = bpf_object__prev_map(obj, map))) {
8012 if (!map->pin_path)
8013 continue;
8014
8015 bpf_map__unpin(map, NULL);
8016 }
8017
8018 return libbpf_err(err);
8019 }
8020
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8021 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8022 {
8023 struct bpf_map *map;
8024 int err;
8025
8026 if (!obj)
8027 return libbpf_err(-ENOENT);
8028
8029 bpf_object__for_each_map(map, obj) {
8030 char *pin_path = NULL;
8031 char buf[PATH_MAX];
8032
8033 if (path) {
8034 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8035 if (err)
8036 return libbpf_err(err);
8037 sanitize_pin_path(buf);
8038 pin_path = buf;
8039 } else if (!map->pin_path) {
8040 continue;
8041 }
8042
8043 err = bpf_map__unpin(map, pin_path);
8044 if (err)
8045 return libbpf_err(err);
8046 }
8047
8048 return 0;
8049 }
8050
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8051 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8052 {
8053 struct bpf_program *prog;
8054 char buf[PATH_MAX];
8055 int err;
8056
8057 if (!obj)
8058 return libbpf_err(-ENOENT);
8059
8060 if (!obj->loaded) {
8061 pr_warn("object not yet loaded; load it first\n");
8062 return libbpf_err(-ENOENT);
8063 }
8064
8065 bpf_object__for_each_program(prog, obj) {
8066 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8067 if (err)
8068 goto err_unpin_programs;
8069
8070 err = bpf_program__pin(prog, buf);
8071 if (err)
8072 goto err_unpin_programs;
8073 }
8074
8075 return 0;
8076
8077 err_unpin_programs:
8078 while ((prog = bpf_object__prev_program(obj, prog))) {
8079 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8080 continue;
8081
8082 bpf_program__unpin(prog, buf);
8083 }
8084
8085 return libbpf_err(err);
8086 }
8087
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8088 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8089 {
8090 struct bpf_program *prog;
8091 int err;
8092
8093 if (!obj)
8094 return libbpf_err(-ENOENT);
8095
8096 bpf_object__for_each_program(prog, obj) {
8097 char buf[PATH_MAX];
8098
8099 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8100 if (err)
8101 return libbpf_err(err);
8102
8103 err = bpf_program__unpin(prog, buf);
8104 if (err)
8105 return libbpf_err(err);
8106 }
8107
8108 return 0;
8109 }
8110
bpf_object__pin(struct bpf_object * obj,const char * path)8111 int bpf_object__pin(struct bpf_object *obj, const char *path)
8112 {
8113 int err;
8114
8115 err = bpf_object__pin_maps(obj, path);
8116 if (err)
8117 return libbpf_err(err);
8118
8119 err = bpf_object__pin_programs(obj, path);
8120 if (err) {
8121 bpf_object__unpin_maps(obj, path);
8122 return libbpf_err(err);
8123 }
8124
8125 return 0;
8126 }
8127
bpf_map__destroy(struct bpf_map * map)8128 static void bpf_map__destroy(struct bpf_map *map)
8129 {
8130 if (map->inner_map) {
8131 bpf_map__destroy(map->inner_map);
8132 zfree(&map->inner_map);
8133 }
8134
8135 zfree(&map->init_slots);
8136 map->init_slots_sz = 0;
8137
8138 if (map->mmaped) {
8139 munmap(map->mmaped, bpf_map_mmap_sz(map));
8140 map->mmaped = NULL;
8141 }
8142
8143 if (map->st_ops) {
8144 zfree(&map->st_ops->data);
8145 zfree(&map->st_ops->progs);
8146 zfree(&map->st_ops->kern_func_off);
8147 zfree(&map->st_ops);
8148 }
8149
8150 zfree(&map->name);
8151 zfree(&map->real_name);
8152 zfree(&map->pin_path);
8153
8154 if (map->fd >= 0)
8155 zclose(map->fd);
8156 }
8157
bpf_object__close(struct bpf_object * obj)8158 void bpf_object__close(struct bpf_object *obj)
8159 {
8160 size_t i;
8161
8162 if (IS_ERR_OR_NULL(obj))
8163 return;
8164
8165 usdt_manager_free(obj->usdt_man);
8166 obj->usdt_man = NULL;
8167
8168 bpf_gen__free(obj->gen_loader);
8169 bpf_object__elf_finish(obj);
8170 bpf_object_unload(obj);
8171 btf__free(obj->btf);
8172 btf_ext__free(obj->btf_ext);
8173
8174 for (i = 0; i < obj->nr_maps; i++)
8175 bpf_map__destroy(&obj->maps[i]);
8176
8177 zfree(&obj->btf_custom_path);
8178 zfree(&obj->kconfig);
8179 zfree(&obj->externs);
8180 obj->nr_extern = 0;
8181
8182 zfree(&obj->maps);
8183 obj->nr_maps = 0;
8184
8185 if (obj->programs && obj->nr_programs) {
8186 for (i = 0; i < obj->nr_programs; i++)
8187 bpf_program__exit(&obj->programs[i]);
8188 }
8189 zfree(&obj->programs);
8190
8191 free(obj);
8192 }
8193
bpf_object__name(const struct bpf_object * obj)8194 const char *bpf_object__name(const struct bpf_object *obj)
8195 {
8196 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8197 }
8198
bpf_object__kversion(const struct bpf_object * obj)8199 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8200 {
8201 return obj ? obj->kern_version : 0;
8202 }
8203
bpf_object__btf(const struct bpf_object * obj)8204 struct btf *bpf_object__btf(const struct bpf_object *obj)
8205 {
8206 return obj ? obj->btf : NULL;
8207 }
8208
bpf_object__btf_fd(const struct bpf_object * obj)8209 int bpf_object__btf_fd(const struct bpf_object *obj)
8210 {
8211 return obj->btf ? btf__fd(obj->btf) : -1;
8212 }
8213
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)8214 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8215 {
8216 if (obj->loaded)
8217 return libbpf_err(-EINVAL);
8218
8219 obj->kern_version = kern_version;
8220
8221 return 0;
8222 }
8223
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)8224 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8225 {
8226 struct bpf_gen *gen;
8227
8228 if (!opts)
8229 return -EFAULT;
8230 if (!OPTS_VALID(opts, gen_loader_opts))
8231 return -EINVAL;
8232 gen = calloc(sizeof(*gen), 1);
8233 if (!gen)
8234 return -ENOMEM;
8235 gen->opts = opts;
8236 obj->gen_loader = gen;
8237 return 0;
8238 }
8239
8240 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)8241 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8242 bool forward)
8243 {
8244 size_t nr_programs = obj->nr_programs;
8245 ssize_t idx;
8246
8247 if (!nr_programs)
8248 return NULL;
8249
8250 if (!p)
8251 /* Iter from the beginning */
8252 return forward ? &obj->programs[0] :
8253 &obj->programs[nr_programs - 1];
8254
8255 if (p->obj != obj) {
8256 pr_warn("error: program handler doesn't match object\n");
8257 return errno = EINVAL, NULL;
8258 }
8259
8260 idx = (p - obj->programs) + (forward ? 1 : -1);
8261 if (idx >= obj->nr_programs || idx < 0)
8262 return NULL;
8263 return &obj->programs[idx];
8264 }
8265
8266 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)8267 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8268 {
8269 struct bpf_program *prog = prev;
8270
8271 do {
8272 prog = __bpf_program__iter(prog, obj, true);
8273 } while (prog && prog_is_subprog(obj, prog));
8274
8275 return prog;
8276 }
8277
8278 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)8279 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8280 {
8281 struct bpf_program *prog = next;
8282
8283 do {
8284 prog = __bpf_program__iter(prog, obj, false);
8285 } while (prog && prog_is_subprog(obj, prog));
8286
8287 return prog;
8288 }
8289
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)8290 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8291 {
8292 prog->prog_ifindex = ifindex;
8293 }
8294
bpf_program__name(const struct bpf_program * prog)8295 const char *bpf_program__name(const struct bpf_program *prog)
8296 {
8297 return prog->name;
8298 }
8299
bpf_program__section_name(const struct bpf_program * prog)8300 const char *bpf_program__section_name(const struct bpf_program *prog)
8301 {
8302 return prog->sec_name;
8303 }
8304
bpf_program__autoload(const struct bpf_program * prog)8305 bool bpf_program__autoload(const struct bpf_program *prog)
8306 {
8307 return prog->autoload;
8308 }
8309
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)8310 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8311 {
8312 if (prog->obj->loaded)
8313 return libbpf_err(-EINVAL);
8314
8315 prog->autoload = autoload;
8316 return 0;
8317 }
8318
bpf_program__autoattach(const struct bpf_program * prog)8319 bool bpf_program__autoattach(const struct bpf_program *prog)
8320 {
8321 return prog->autoattach;
8322 }
8323
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)8324 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8325 {
8326 prog->autoattach = autoattach;
8327 }
8328
bpf_program__insns(const struct bpf_program * prog)8329 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8330 {
8331 return prog->insns;
8332 }
8333
bpf_program__insn_cnt(const struct bpf_program * prog)8334 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8335 {
8336 return prog->insns_cnt;
8337 }
8338
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)8339 int bpf_program__set_insns(struct bpf_program *prog,
8340 struct bpf_insn *new_insns, size_t new_insn_cnt)
8341 {
8342 struct bpf_insn *insns;
8343
8344 if (prog->obj->loaded)
8345 return -EBUSY;
8346
8347 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8348 if (!insns) {
8349 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8350 return -ENOMEM;
8351 }
8352 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8353
8354 prog->insns = insns;
8355 prog->insns_cnt = new_insn_cnt;
8356 return 0;
8357 }
8358
bpf_program__fd(const struct bpf_program * prog)8359 int bpf_program__fd(const struct bpf_program *prog)
8360 {
8361 if (!prog)
8362 return libbpf_err(-EINVAL);
8363
8364 if (prog->fd < 0)
8365 return libbpf_err(-ENOENT);
8366
8367 return prog->fd;
8368 }
8369
8370 __alias(bpf_program__type)
8371 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8372
bpf_program__type(const struct bpf_program * prog)8373 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8374 {
8375 return prog->type;
8376 }
8377
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)8378 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8379 {
8380 if (prog->obj->loaded)
8381 return libbpf_err(-EBUSY);
8382
8383 prog->type = type;
8384 return 0;
8385 }
8386
8387 __alias(bpf_program__expected_attach_type)
8388 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8389
bpf_program__expected_attach_type(const struct bpf_program * prog)8390 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8391 {
8392 return prog->expected_attach_type;
8393 }
8394
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)8395 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8396 enum bpf_attach_type type)
8397 {
8398 if (prog->obj->loaded)
8399 return libbpf_err(-EBUSY);
8400
8401 prog->expected_attach_type = type;
8402 return 0;
8403 }
8404
bpf_program__flags(const struct bpf_program * prog)8405 __u32 bpf_program__flags(const struct bpf_program *prog)
8406 {
8407 return prog->prog_flags;
8408 }
8409
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)8410 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8411 {
8412 if (prog->obj->loaded)
8413 return libbpf_err(-EBUSY);
8414
8415 prog->prog_flags = flags;
8416 return 0;
8417 }
8418
bpf_program__log_level(const struct bpf_program * prog)8419 __u32 bpf_program__log_level(const struct bpf_program *prog)
8420 {
8421 return prog->log_level;
8422 }
8423
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)8424 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8425 {
8426 if (prog->obj->loaded)
8427 return libbpf_err(-EBUSY);
8428
8429 prog->log_level = log_level;
8430 return 0;
8431 }
8432
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)8433 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8434 {
8435 *log_size = prog->log_size;
8436 return prog->log_buf;
8437 }
8438
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)8439 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8440 {
8441 if (log_size && !log_buf)
8442 return -EINVAL;
8443 if (prog->log_size > UINT_MAX)
8444 return -EINVAL;
8445 if (prog->obj->loaded)
8446 return -EBUSY;
8447
8448 prog->log_buf = log_buf;
8449 prog->log_size = log_size;
8450 return 0;
8451 }
8452
8453 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8454 .sec = (char *)sec_pfx, \
8455 .prog_type = BPF_PROG_TYPE_##ptype, \
8456 .expected_attach_type = atype, \
8457 .cookie = (long)(flags), \
8458 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
8459 __VA_ARGS__ \
8460 }
8461
8462 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8463 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8464 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8465 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8466 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8467 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8468 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8469 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8470 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8471 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8472
8473 static const struct bpf_sec_def section_defs[] = {
8474 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
8475 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8476 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8477 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8478 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8479 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8480 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8481 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8482 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8483 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8484 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8485 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8486 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8487 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt),
8488 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE),
8489 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE),
8490 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE),
8491 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8492 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8493 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8494 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8495 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8496 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8497 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8498 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8499 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8500 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8501 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8502 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8503 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8504 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
8505 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8506 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8507 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8508 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8509 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8510 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
8511 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8512 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8513 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8514 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8515 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
8516 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8517 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
8518 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
8519 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
8520 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
8521 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
8522 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8523 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8524 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8525 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
8526 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8527 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8528 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8529 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8530 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8531 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
8532 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8533 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8534 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8535 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8536 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8537 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8538 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8539 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8540 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8541 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8542 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8543 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8544 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8545 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8546 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8547 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8548 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8549 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8550 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8551 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8552 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8553 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
8554 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8555 };
8556
8557 static size_t custom_sec_def_cnt;
8558 static struct bpf_sec_def *custom_sec_defs;
8559 static struct bpf_sec_def custom_fallback_def;
8560 static bool has_custom_fallback_def;
8561
8562 static int last_custom_sec_def_handler_id;
8563
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)8564 int libbpf_register_prog_handler(const char *sec,
8565 enum bpf_prog_type prog_type,
8566 enum bpf_attach_type exp_attach_type,
8567 const struct libbpf_prog_handler_opts *opts)
8568 {
8569 struct bpf_sec_def *sec_def;
8570
8571 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8572 return libbpf_err(-EINVAL);
8573
8574 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8575 return libbpf_err(-E2BIG);
8576
8577 if (sec) {
8578 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8579 sizeof(*sec_def));
8580 if (!sec_def)
8581 return libbpf_err(-ENOMEM);
8582
8583 custom_sec_defs = sec_def;
8584 sec_def = &custom_sec_defs[custom_sec_def_cnt];
8585 } else {
8586 if (has_custom_fallback_def)
8587 return libbpf_err(-EBUSY);
8588
8589 sec_def = &custom_fallback_def;
8590 }
8591
8592 sec_def->sec = sec ? strdup(sec) : NULL;
8593 if (sec && !sec_def->sec)
8594 return libbpf_err(-ENOMEM);
8595
8596 sec_def->prog_type = prog_type;
8597 sec_def->expected_attach_type = exp_attach_type;
8598 sec_def->cookie = OPTS_GET(opts, cookie, 0);
8599
8600 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8601 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8602 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8603
8604 sec_def->handler_id = ++last_custom_sec_def_handler_id;
8605
8606 if (sec)
8607 custom_sec_def_cnt++;
8608 else
8609 has_custom_fallback_def = true;
8610
8611 return sec_def->handler_id;
8612 }
8613
libbpf_unregister_prog_handler(int handler_id)8614 int libbpf_unregister_prog_handler(int handler_id)
8615 {
8616 struct bpf_sec_def *sec_defs;
8617 int i;
8618
8619 if (handler_id <= 0)
8620 return libbpf_err(-EINVAL);
8621
8622 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8623 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8624 has_custom_fallback_def = false;
8625 return 0;
8626 }
8627
8628 for (i = 0; i < custom_sec_def_cnt; i++) {
8629 if (custom_sec_defs[i].handler_id == handler_id)
8630 break;
8631 }
8632
8633 if (i == custom_sec_def_cnt)
8634 return libbpf_err(-ENOENT);
8635
8636 free(custom_sec_defs[i].sec);
8637 for (i = i + 1; i < custom_sec_def_cnt; i++)
8638 custom_sec_defs[i - 1] = custom_sec_defs[i];
8639 custom_sec_def_cnt--;
8640
8641 /* try to shrink the array, but it's ok if we couldn't */
8642 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8643 if (sec_defs)
8644 custom_sec_defs = sec_defs;
8645
8646 return 0;
8647 }
8648
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)8649 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8650 {
8651 size_t len = strlen(sec_def->sec);
8652
8653 /* "type/" always has to have proper SEC("type/extras") form */
8654 if (sec_def->sec[len - 1] == '/') {
8655 if (str_has_pfx(sec_name, sec_def->sec))
8656 return true;
8657 return false;
8658 }
8659
8660 /* "type+" means it can be either exact SEC("type") or
8661 * well-formed SEC("type/extras") with proper '/' separator
8662 */
8663 if (sec_def->sec[len - 1] == '+') {
8664 len--;
8665 /* not even a prefix */
8666 if (strncmp(sec_name, sec_def->sec, len) != 0)
8667 return false;
8668 /* exact match or has '/' separator */
8669 if (sec_name[len] == '\0' || sec_name[len] == '/')
8670 return true;
8671 return false;
8672 }
8673
8674 return strcmp(sec_name, sec_def->sec) == 0;
8675 }
8676
find_sec_def(const char * sec_name)8677 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8678 {
8679 const struct bpf_sec_def *sec_def;
8680 int i, n;
8681
8682 n = custom_sec_def_cnt;
8683 for (i = 0; i < n; i++) {
8684 sec_def = &custom_sec_defs[i];
8685 if (sec_def_matches(sec_def, sec_name))
8686 return sec_def;
8687 }
8688
8689 n = ARRAY_SIZE(section_defs);
8690 for (i = 0; i < n; i++) {
8691 sec_def = §ion_defs[i];
8692 if (sec_def_matches(sec_def, sec_name))
8693 return sec_def;
8694 }
8695
8696 if (has_custom_fallback_def)
8697 return &custom_fallback_def;
8698
8699 return NULL;
8700 }
8701
8702 #define MAX_TYPE_NAME_SIZE 32
8703
libbpf_get_type_names(bool attach_type)8704 static char *libbpf_get_type_names(bool attach_type)
8705 {
8706 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8707 char *buf;
8708
8709 buf = malloc(len);
8710 if (!buf)
8711 return NULL;
8712
8713 buf[0] = '\0';
8714 /* Forge string buf with all available names */
8715 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8716 const struct bpf_sec_def *sec_def = §ion_defs[i];
8717
8718 if (attach_type) {
8719 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8720 continue;
8721
8722 if (!(sec_def->cookie & SEC_ATTACHABLE))
8723 continue;
8724 }
8725
8726 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8727 free(buf);
8728 return NULL;
8729 }
8730 strcat(buf, " ");
8731 strcat(buf, section_defs[i].sec);
8732 }
8733
8734 return buf;
8735 }
8736
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)8737 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8738 enum bpf_attach_type *expected_attach_type)
8739 {
8740 const struct bpf_sec_def *sec_def;
8741 char *type_names;
8742
8743 if (!name)
8744 return libbpf_err(-EINVAL);
8745
8746 sec_def = find_sec_def(name);
8747 if (sec_def) {
8748 *prog_type = sec_def->prog_type;
8749 *expected_attach_type = sec_def->expected_attach_type;
8750 return 0;
8751 }
8752
8753 pr_debug("failed to guess program type from ELF section '%s'\n", name);
8754 type_names = libbpf_get_type_names(false);
8755 if (type_names != NULL) {
8756 pr_debug("supported section(type) names are:%s\n", type_names);
8757 free(type_names);
8758 }
8759
8760 return libbpf_err(-ESRCH);
8761 }
8762
libbpf_bpf_attach_type_str(enum bpf_attach_type t)8763 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8764 {
8765 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8766 return NULL;
8767
8768 return attach_type_name[t];
8769 }
8770
libbpf_bpf_link_type_str(enum bpf_link_type t)8771 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8772 {
8773 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8774 return NULL;
8775
8776 return link_type_name[t];
8777 }
8778
libbpf_bpf_map_type_str(enum bpf_map_type t)8779 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8780 {
8781 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8782 return NULL;
8783
8784 return map_type_name[t];
8785 }
8786
libbpf_bpf_prog_type_str(enum bpf_prog_type t)8787 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8788 {
8789 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8790 return NULL;
8791
8792 return prog_type_name[t];
8793 }
8794
find_struct_ops_map_by_offset(struct bpf_object * obj,size_t offset)8795 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8796 size_t offset)
8797 {
8798 struct bpf_map *map;
8799 size_t i;
8800
8801 for (i = 0; i < obj->nr_maps; i++) {
8802 map = &obj->maps[i];
8803 if (!bpf_map__is_struct_ops(map))
8804 continue;
8805 if (map->sec_offset <= offset &&
8806 offset - map->sec_offset < map->def.value_size)
8807 return map;
8808 }
8809
8810 return NULL;
8811 }
8812
8813 /* Collect the reloc from ELF and populate the st_ops->progs[] */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)8814 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8815 Elf64_Shdr *shdr, Elf_Data *data)
8816 {
8817 const struct btf_member *member;
8818 struct bpf_struct_ops *st_ops;
8819 struct bpf_program *prog;
8820 unsigned int shdr_idx;
8821 const struct btf *btf;
8822 struct bpf_map *map;
8823 unsigned int moff, insn_idx;
8824 const char *name;
8825 __u32 member_idx;
8826 Elf64_Sym *sym;
8827 Elf64_Rel *rel;
8828 int i, nrels;
8829
8830 btf = obj->btf;
8831 nrels = shdr->sh_size / shdr->sh_entsize;
8832 for (i = 0; i < nrels; i++) {
8833 rel = elf_rel_by_idx(data, i);
8834 if (!rel) {
8835 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8836 return -LIBBPF_ERRNO__FORMAT;
8837 }
8838
8839 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8840 if (!sym) {
8841 pr_warn("struct_ops reloc: symbol %zx not found\n",
8842 (size_t)ELF64_R_SYM(rel->r_info));
8843 return -LIBBPF_ERRNO__FORMAT;
8844 }
8845
8846 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8847 map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8848 if (!map) {
8849 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8850 (size_t)rel->r_offset);
8851 return -EINVAL;
8852 }
8853
8854 moff = rel->r_offset - map->sec_offset;
8855 shdr_idx = sym->st_shndx;
8856 st_ops = map->st_ops;
8857 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8858 map->name,
8859 (long long)(rel->r_info >> 32),
8860 (long long)sym->st_value,
8861 shdr_idx, (size_t)rel->r_offset,
8862 map->sec_offset, sym->st_name, name);
8863
8864 if (shdr_idx >= SHN_LORESERVE) {
8865 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
8866 map->name, (size_t)rel->r_offset, shdr_idx);
8867 return -LIBBPF_ERRNO__RELOC;
8868 }
8869 if (sym->st_value % BPF_INSN_SZ) {
8870 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8871 map->name, (unsigned long long)sym->st_value);
8872 return -LIBBPF_ERRNO__FORMAT;
8873 }
8874 insn_idx = sym->st_value / BPF_INSN_SZ;
8875
8876 member = find_member_by_offset(st_ops->type, moff * 8);
8877 if (!member) {
8878 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8879 map->name, moff);
8880 return -EINVAL;
8881 }
8882 member_idx = member - btf_members(st_ops->type);
8883 name = btf__name_by_offset(btf, member->name_off);
8884
8885 if (!resolve_func_ptr(btf, member->type, NULL)) {
8886 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8887 map->name, name);
8888 return -EINVAL;
8889 }
8890
8891 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8892 if (!prog) {
8893 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8894 map->name, shdr_idx, name);
8895 return -EINVAL;
8896 }
8897
8898 /* prevent the use of BPF prog with invalid type */
8899 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8900 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
8901 map->name, prog->name);
8902 return -EINVAL;
8903 }
8904
8905 /* if we haven't yet processed this BPF program, record proper
8906 * attach_btf_id and member_idx
8907 */
8908 if (!prog->attach_btf_id) {
8909 prog->attach_btf_id = st_ops->type_id;
8910 prog->expected_attach_type = member_idx;
8911 }
8912
8913 /* struct_ops BPF prog can be re-used between multiple
8914 * .struct_ops as long as it's the same struct_ops struct
8915 * definition and the same function pointer field
8916 */
8917 if (prog->attach_btf_id != st_ops->type_id ||
8918 prog->expected_attach_type != member_idx) {
8919 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8920 map->name, prog->name, prog->sec_name, prog->type,
8921 prog->attach_btf_id, prog->expected_attach_type, name);
8922 return -EINVAL;
8923 }
8924
8925 st_ops->progs[member_idx] = prog;
8926 }
8927
8928 return 0;
8929 }
8930
8931 #define BTF_TRACE_PREFIX "btf_trace_"
8932 #define BTF_LSM_PREFIX "bpf_lsm_"
8933 #define BTF_ITER_PREFIX "bpf_iter_"
8934 #define BTF_MAX_NAME_SIZE 128
8935
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)8936 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
8937 const char **prefix, int *kind)
8938 {
8939 switch (attach_type) {
8940 case BPF_TRACE_RAW_TP:
8941 *prefix = BTF_TRACE_PREFIX;
8942 *kind = BTF_KIND_TYPEDEF;
8943 break;
8944 case BPF_LSM_MAC:
8945 case BPF_LSM_CGROUP:
8946 *prefix = BTF_LSM_PREFIX;
8947 *kind = BTF_KIND_FUNC;
8948 break;
8949 case BPF_TRACE_ITER:
8950 *prefix = BTF_ITER_PREFIX;
8951 *kind = BTF_KIND_FUNC;
8952 break;
8953 default:
8954 *prefix = "";
8955 *kind = BTF_KIND_FUNC;
8956 }
8957 }
8958
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)8959 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8960 const char *name, __u32 kind)
8961 {
8962 char btf_type_name[BTF_MAX_NAME_SIZE];
8963 int ret;
8964
8965 ret = snprintf(btf_type_name, sizeof(btf_type_name),
8966 "%s%s", prefix, name);
8967 /* snprintf returns the number of characters written excluding the
8968 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8969 * indicates truncation.
8970 */
8971 if (ret < 0 || ret >= sizeof(btf_type_name))
8972 return -ENAMETOOLONG;
8973 return btf__find_by_name_kind(btf, btf_type_name, kind);
8974 }
8975
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)8976 static inline int find_attach_btf_id(struct btf *btf, const char *name,
8977 enum bpf_attach_type attach_type)
8978 {
8979 const char *prefix;
8980 int kind;
8981
8982 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
8983 return find_btf_by_prefix_kind(btf, prefix, name, kind);
8984 }
8985
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)8986 int libbpf_find_vmlinux_btf_id(const char *name,
8987 enum bpf_attach_type attach_type)
8988 {
8989 struct btf *btf;
8990 int err;
8991
8992 btf = btf__load_vmlinux_btf();
8993 err = libbpf_get_error(btf);
8994 if (err) {
8995 pr_warn("vmlinux BTF is not found\n");
8996 return libbpf_err(err);
8997 }
8998
8999 err = find_attach_btf_id(btf, name, attach_type);
9000 if (err <= 0)
9001 pr_warn("%s is not found in vmlinux BTF\n", name);
9002
9003 btf__free(btf);
9004 return libbpf_err(err);
9005 }
9006
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)9007 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9008 {
9009 struct bpf_prog_info info;
9010 __u32 info_len = sizeof(info);
9011 struct btf *btf;
9012 int err;
9013
9014 memset(&info, 0, info_len);
9015 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
9016 if (err) {
9017 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
9018 attach_prog_fd, err);
9019 return err;
9020 }
9021
9022 err = -EINVAL;
9023 if (!info.btf_id) {
9024 pr_warn("The target program doesn't have BTF\n");
9025 goto out;
9026 }
9027 btf = btf__load_from_kernel_by_id(info.btf_id);
9028 err = libbpf_get_error(btf);
9029 if (err) {
9030 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9031 goto out;
9032 }
9033 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9034 btf__free(btf);
9035 if (err <= 0) {
9036 pr_warn("%s is not found in prog's BTF\n", name);
9037 goto out;
9038 }
9039 out:
9040 return err;
9041 }
9042
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9043 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9044 enum bpf_attach_type attach_type,
9045 int *btf_obj_fd, int *btf_type_id)
9046 {
9047 int ret, i;
9048
9049 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9050 if (ret > 0) {
9051 *btf_obj_fd = 0; /* vmlinux BTF */
9052 *btf_type_id = ret;
9053 return 0;
9054 }
9055 if (ret != -ENOENT)
9056 return ret;
9057
9058 ret = load_module_btfs(obj);
9059 if (ret)
9060 return ret;
9061
9062 for (i = 0; i < obj->btf_module_cnt; i++) {
9063 const struct module_btf *mod = &obj->btf_modules[i];
9064
9065 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9066 if (ret > 0) {
9067 *btf_obj_fd = mod->fd;
9068 *btf_type_id = ret;
9069 return 0;
9070 }
9071 if (ret == -ENOENT)
9072 continue;
9073
9074 return ret;
9075 }
9076
9077 return -ESRCH;
9078 }
9079
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)9080 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9081 int *btf_obj_fd, int *btf_type_id)
9082 {
9083 enum bpf_attach_type attach_type = prog->expected_attach_type;
9084 __u32 attach_prog_fd = prog->attach_prog_fd;
9085 int err = 0;
9086
9087 /* BPF program's BTF ID */
9088 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9089 if (!attach_prog_fd) {
9090 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9091 return -EINVAL;
9092 }
9093 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9094 if (err < 0) {
9095 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9096 prog->name, attach_prog_fd, attach_name, err);
9097 return err;
9098 }
9099 *btf_obj_fd = 0;
9100 *btf_type_id = err;
9101 return 0;
9102 }
9103
9104 /* kernel/module BTF ID */
9105 if (prog->obj->gen_loader) {
9106 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9107 *btf_obj_fd = 0;
9108 *btf_type_id = 1;
9109 } else {
9110 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9111 }
9112 if (err) {
9113 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9114 prog->name, attach_name, err);
9115 return err;
9116 }
9117 return 0;
9118 }
9119
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)9120 int libbpf_attach_type_by_name(const char *name,
9121 enum bpf_attach_type *attach_type)
9122 {
9123 char *type_names;
9124 const struct bpf_sec_def *sec_def;
9125
9126 if (!name)
9127 return libbpf_err(-EINVAL);
9128
9129 sec_def = find_sec_def(name);
9130 if (!sec_def) {
9131 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9132 type_names = libbpf_get_type_names(true);
9133 if (type_names != NULL) {
9134 pr_debug("attachable section(type) names are:%s\n", type_names);
9135 free(type_names);
9136 }
9137
9138 return libbpf_err(-EINVAL);
9139 }
9140
9141 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9142 return libbpf_err(-EINVAL);
9143 if (!(sec_def->cookie & SEC_ATTACHABLE))
9144 return libbpf_err(-EINVAL);
9145
9146 *attach_type = sec_def->expected_attach_type;
9147 return 0;
9148 }
9149
bpf_map__fd(const struct bpf_map * map)9150 int bpf_map__fd(const struct bpf_map *map)
9151 {
9152 return map ? map->fd : libbpf_err(-EINVAL);
9153 }
9154
map_uses_real_name(const struct bpf_map * map)9155 static bool map_uses_real_name(const struct bpf_map *map)
9156 {
9157 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9158 * their user-visible name differs from kernel-visible name. Users see
9159 * such map's corresponding ELF section name as a map name.
9160 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9161 * maps to know which name has to be returned to the user.
9162 */
9163 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9164 return true;
9165 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9166 return true;
9167 return false;
9168 }
9169
bpf_map__name(const struct bpf_map * map)9170 const char *bpf_map__name(const struct bpf_map *map)
9171 {
9172 if (!map)
9173 return NULL;
9174
9175 if (map_uses_real_name(map))
9176 return map->real_name;
9177
9178 return map->name;
9179 }
9180
bpf_map__type(const struct bpf_map * map)9181 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9182 {
9183 return map->def.type;
9184 }
9185
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)9186 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9187 {
9188 if (map->fd >= 0)
9189 return libbpf_err(-EBUSY);
9190 map->def.type = type;
9191 return 0;
9192 }
9193
bpf_map__map_flags(const struct bpf_map * map)9194 __u32 bpf_map__map_flags(const struct bpf_map *map)
9195 {
9196 return map->def.map_flags;
9197 }
9198
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)9199 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9200 {
9201 if (map->fd >= 0)
9202 return libbpf_err(-EBUSY);
9203 map->def.map_flags = flags;
9204 return 0;
9205 }
9206
bpf_map__map_extra(const struct bpf_map * map)9207 __u64 bpf_map__map_extra(const struct bpf_map *map)
9208 {
9209 return map->map_extra;
9210 }
9211
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)9212 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9213 {
9214 if (map->fd >= 0)
9215 return libbpf_err(-EBUSY);
9216 map->map_extra = map_extra;
9217 return 0;
9218 }
9219
bpf_map__numa_node(const struct bpf_map * map)9220 __u32 bpf_map__numa_node(const struct bpf_map *map)
9221 {
9222 return map->numa_node;
9223 }
9224
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)9225 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9226 {
9227 if (map->fd >= 0)
9228 return libbpf_err(-EBUSY);
9229 map->numa_node = numa_node;
9230 return 0;
9231 }
9232
bpf_map__key_size(const struct bpf_map * map)9233 __u32 bpf_map__key_size(const struct bpf_map *map)
9234 {
9235 return map->def.key_size;
9236 }
9237
bpf_map__set_key_size(struct bpf_map * map,__u32 size)9238 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9239 {
9240 if (map->fd >= 0)
9241 return libbpf_err(-EBUSY);
9242 map->def.key_size = size;
9243 return 0;
9244 }
9245
bpf_map__value_size(const struct bpf_map * map)9246 __u32 bpf_map__value_size(const struct bpf_map *map)
9247 {
9248 return map->def.value_size;
9249 }
9250
bpf_map__set_value_size(struct bpf_map * map,__u32 size)9251 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9252 {
9253 if (map->fd >= 0)
9254 return libbpf_err(-EBUSY);
9255 map->def.value_size = size;
9256 return 0;
9257 }
9258
bpf_map__btf_key_type_id(const struct bpf_map * map)9259 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9260 {
9261 return map ? map->btf_key_type_id : 0;
9262 }
9263
bpf_map__btf_value_type_id(const struct bpf_map * map)9264 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9265 {
9266 return map ? map->btf_value_type_id : 0;
9267 }
9268
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)9269 int bpf_map__set_initial_value(struct bpf_map *map,
9270 const void *data, size_t size)
9271 {
9272 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9273 size != map->def.value_size || map->fd >= 0)
9274 return libbpf_err(-EINVAL);
9275
9276 memcpy(map->mmaped, data, size);
9277 return 0;
9278 }
9279
bpf_map__initial_value(struct bpf_map * map,size_t * psize)9280 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9281 {
9282 if (!map->mmaped)
9283 return NULL;
9284 *psize = map->def.value_size;
9285 return map->mmaped;
9286 }
9287
bpf_map__is_internal(const struct bpf_map * map)9288 bool bpf_map__is_internal(const struct bpf_map *map)
9289 {
9290 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9291 }
9292
bpf_map__ifindex(const struct bpf_map * map)9293 __u32 bpf_map__ifindex(const struct bpf_map *map)
9294 {
9295 return map->map_ifindex;
9296 }
9297
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)9298 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9299 {
9300 if (map->fd >= 0)
9301 return libbpf_err(-EBUSY);
9302 map->map_ifindex = ifindex;
9303 return 0;
9304 }
9305
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)9306 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9307 {
9308 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9309 pr_warn("error: unsupported map type\n");
9310 return libbpf_err(-EINVAL);
9311 }
9312 if (map->inner_map_fd != -1) {
9313 pr_warn("error: inner_map_fd already specified\n");
9314 return libbpf_err(-EINVAL);
9315 }
9316 if (map->inner_map) {
9317 bpf_map__destroy(map->inner_map);
9318 zfree(&map->inner_map);
9319 }
9320 map->inner_map_fd = fd;
9321 return 0;
9322 }
9323
9324 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)9325 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9326 {
9327 ssize_t idx;
9328 struct bpf_map *s, *e;
9329
9330 if (!obj || !obj->maps)
9331 return errno = EINVAL, NULL;
9332
9333 s = obj->maps;
9334 e = obj->maps + obj->nr_maps;
9335
9336 if ((m < s) || (m >= e)) {
9337 pr_warn("error in %s: map handler doesn't belong to object\n",
9338 __func__);
9339 return errno = EINVAL, NULL;
9340 }
9341
9342 idx = (m - obj->maps) + i;
9343 if (idx >= obj->nr_maps || idx < 0)
9344 return NULL;
9345 return &obj->maps[idx];
9346 }
9347
9348 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)9349 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9350 {
9351 if (prev == NULL)
9352 return obj->maps;
9353
9354 return __bpf_map__iter(prev, obj, 1);
9355 }
9356
9357 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)9358 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9359 {
9360 if (next == NULL) {
9361 if (!obj->nr_maps)
9362 return NULL;
9363 return obj->maps + obj->nr_maps - 1;
9364 }
9365
9366 return __bpf_map__iter(next, obj, -1);
9367 }
9368
9369 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)9370 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9371 {
9372 struct bpf_map *pos;
9373
9374 bpf_object__for_each_map(pos, obj) {
9375 /* if it's a special internal map name (which always starts
9376 * with dot) then check if that special name matches the
9377 * real map name (ELF section name)
9378 */
9379 if (name[0] == '.') {
9380 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9381 return pos;
9382 continue;
9383 }
9384 /* otherwise map name has to be an exact match */
9385 if (map_uses_real_name(pos)) {
9386 if (strcmp(pos->real_name, name) == 0)
9387 return pos;
9388 continue;
9389 }
9390 if (strcmp(pos->name, name) == 0)
9391 return pos;
9392 }
9393 return errno = ENOENT, NULL;
9394 }
9395
9396 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)9397 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9398 {
9399 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9400 }
9401
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)9402 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9403 size_t value_sz, bool check_value_sz)
9404 {
9405 if (map->fd <= 0)
9406 return -ENOENT;
9407
9408 if (map->def.key_size != key_sz) {
9409 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9410 map->name, key_sz, map->def.key_size);
9411 return -EINVAL;
9412 }
9413
9414 if (!check_value_sz)
9415 return 0;
9416
9417 switch (map->def.type) {
9418 case BPF_MAP_TYPE_PERCPU_ARRAY:
9419 case BPF_MAP_TYPE_PERCPU_HASH:
9420 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9421 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9422 int num_cpu = libbpf_num_possible_cpus();
9423 size_t elem_sz = roundup(map->def.value_size, 8);
9424
9425 if (value_sz != num_cpu * elem_sz) {
9426 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9427 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9428 return -EINVAL;
9429 }
9430 break;
9431 }
9432 default:
9433 if (map->def.value_size != value_sz) {
9434 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9435 map->name, value_sz, map->def.value_size);
9436 return -EINVAL;
9437 }
9438 break;
9439 }
9440 return 0;
9441 }
9442
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9443 int bpf_map__lookup_elem(const struct bpf_map *map,
9444 const void *key, size_t key_sz,
9445 void *value, size_t value_sz, __u64 flags)
9446 {
9447 int err;
9448
9449 err = validate_map_op(map, key_sz, value_sz, true);
9450 if (err)
9451 return libbpf_err(err);
9452
9453 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9454 }
9455
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)9456 int bpf_map__update_elem(const struct bpf_map *map,
9457 const void *key, size_t key_sz,
9458 const void *value, size_t value_sz, __u64 flags)
9459 {
9460 int err;
9461
9462 err = validate_map_op(map, key_sz, value_sz, true);
9463 if (err)
9464 return libbpf_err(err);
9465
9466 return bpf_map_update_elem(map->fd, key, value, flags);
9467 }
9468
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)9469 int bpf_map__delete_elem(const struct bpf_map *map,
9470 const void *key, size_t key_sz, __u64 flags)
9471 {
9472 int err;
9473
9474 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9475 if (err)
9476 return libbpf_err(err);
9477
9478 return bpf_map_delete_elem_flags(map->fd, key, flags);
9479 }
9480
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9481 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9482 const void *key, size_t key_sz,
9483 void *value, size_t value_sz, __u64 flags)
9484 {
9485 int err;
9486
9487 err = validate_map_op(map, key_sz, value_sz, true);
9488 if (err)
9489 return libbpf_err(err);
9490
9491 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9492 }
9493
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)9494 int bpf_map__get_next_key(const struct bpf_map *map,
9495 const void *cur_key, void *next_key, size_t key_sz)
9496 {
9497 int err;
9498
9499 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9500 if (err)
9501 return libbpf_err(err);
9502
9503 return bpf_map_get_next_key(map->fd, cur_key, next_key);
9504 }
9505
libbpf_get_error(const void * ptr)9506 long libbpf_get_error(const void *ptr)
9507 {
9508 if (!IS_ERR_OR_NULL(ptr))
9509 return 0;
9510
9511 if (IS_ERR(ptr))
9512 errno = -PTR_ERR(ptr);
9513
9514 /* If ptr == NULL, then errno should be already set by the failing
9515 * API, because libbpf never returns NULL on success and it now always
9516 * sets errno on error. So no extra errno handling for ptr == NULL
9517 * case.
9518 */
9519 return -errno;
9520 }
9521
9522 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)9523 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9524 {
9525 int ret;
9526
9527 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9528 return libbpf_err_errno(ret);
9529 }
9530
9531 /* Release "ownership" of underlying BPF resource (typically, BPF program
9532 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9533 * link, when destructed through bpf_link__destroy() call won't attempt to
9534 * detach/unregisted that BPF resource. This is useful in situations where,
9535 * say, attached BPF program has to outlive userspace program that attached it
9536 * in the system. Depending on type of BPF program, though, there might be
9537 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9538 * exit of userspace program doesn't trigger automatic detachment and clean up
9539 * inside the kernel.
9540 */
bpf_link__disconnect(struct bpf_link * link)9541 void bpf_link__disconnect(struct bpf_link *link)
9542 {
9543 link->disconnected = true;
9544 }
9545
bpf_link__destroy(struct bpf_link * link)9546 int bpf_link__destroy(struct bpf_link *link)
9547 {
9548 int err = 0;
9549
9550 if (IS_ERR_OR_NULL(link))
9551 return 0;
9552
9553 if (!link->disconnected && link->detach)
9554 err = link->detach(link);
9555 if (link->pin_path)
9556 free(link->pin_path);
9557 if (link->dealloc)
9558 link->dealloc(link);
9559 else
9560 free(link);
9561
9562 return libbpf_err(err);
9563 }
9564
bpf_link__fd(const struct bpf_link * link)9565 int bpf_link__fd(const struct bpf_link *link)
9566 {
9567 return link->fd;
9568 }
9569
bpf_link__pin_path(const struct bpf_link * link)9570 const char *bpf_link__pin_path(const struct bpf_link *link)
9571 {
9572 return link->pin_path;
9573 }
9574
bpf_link__detach_fd(struct bpf_link * link)9575 static int bpf_link__detach_fd(struct bpf_link *link)
9576 {
9577 return libbpf_err_errno(close(link->fd));
9578 }
9579
bpf_link__open(const char * path)9580 struct bpf_link *bpf_link__open(const char *path)
9581 {
9582 struct bpf_link *link;
9583 int fd;
9584
9585 fd = bpf_obj_get(path);
9586 if (fd < 0) {
9587 fd = -errno;
9588 pr_warn("failed to open link at %s: %d\n", path, fd);
9589 return libbpf_err_ptr(fd);
9590 }
9591
9592 link = calloc(1, sizeof(*link));
9593 if (!link) {
9594 close(fd);
9595 return libbpf_err_ptr(-ENOMEM);
9596 }
9597 link->detach = &bpf_link__detach_fd;
9598 link->fd = fd;
9599
9600 link->pin_path = strdup(path);
9601 if (!link->pin_path) {
9602 bpf_link__destroy(link);
9603 return libbpf_err_ptr(-ENOMEM);
9604 }
9605
9606 return link;
9607 }
9608
bpf_link__detach(struct bpf_link * link)9609 int bpf_link__detach(struct bpf_link *link)
9610 {
9611 return bpf_link_detach(link->fd) ? -errno : 0;
9612 }
9613
bpf_link__pin(struct bpf_link * link,const char * path)9614 int bpf_link__pin(struct bpf_link *link, const char *path)
9615 {
9616 int err;
9617
9618 if (link->pin_path)
9619 return libbpf_err(-EBUSY);
9620 err = make_parent_dir(path);
9621 if (err)
9622 return libbpf_err(err);
9623 err = check_path(path);
9624 if (err)
9625 return libbpf_err(err);
9626
9627 link->pin_path = strdup(path);
9628 if (!link->pin_path)
9629 return libbpf_err(-ENOMEM);
9630
9631 if (bpf_obj_pin(link->fd, link->pin_path)) {
9632 err = -errno;
9633 zfree(&link->pin_path);
9634 return libbpf_err(err);
9635 }
9636
9637 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9638 return 0;
9639 }
9640
bpf_link__unpin(struct bpf_link * link)9641 int bpf_link__unpin(struct bpf_link *link)
9642 {
9643 int err;
9644
9645 if (!link->pin_path)
9646 return libbpf_err(-EINVAL);
9647
9648 err = unlink(link->pin_path);
9649 if (err != 0)
9650 return -errno;
9651
9652 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9653 zfree(&link->pin_path);
9654 return 0;
9655 }
9656
9657 struct bpf_link_perf {
9658 struct bpf_link link;
9659 int perf_event_fd;
9660 /* legacy kprobe support: keep track of probe identifier and type */
9661 char *legacy_probe_name;
9662 bool legacy_is_kprobe;
9663 bool legacy_is_retprobe;
9664 };
9665
9666 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9667 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9668
bpf_link_perf_detach(struct bpf_link * link)9669 static int bpf_link_perf_detach(struct bpf_link *link)
9670 {
9671 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9672 int err = 0;
9673
9674 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9675 err = -errno;
9676
9677 if (perf_link->perf_event_fd != link->fd)
9678 close(perf_link->perf_event_fd);
9679 close(link->fd);
9680
9681 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9682 if (perf_link->legacy_probe_name) {
9683 if (perf_link->legacy_is_kprobe) {
9684 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9685 perf_link->legacy_is_retprobe);
9686 } else {
9687 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9688 perf_link->legacy_is_retprobe);
9689 }
9690 }
9691
9692 return err;
9693 }
9694
bpf_link_perf_dealloc(struct bpf_link * link)9695 static void bpf_link_perf_dealloc(struct bpf_link *link)
9696 {
9697 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9698
9699 free(perf_link->legacy_probe_name);
9700 free(perf_link);
9701 }
9702
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)9703 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9704 const struct bpf_perf_event_opts *opts)
9705 {
9706 char errmsg[STRERR_BUFSIZE];
9707 struct bpf_link_perf *link;
9708 int prog_fd, link_fd = -1, err;
9709
9710 if (!OPTS_VALID(opts, bpf_perf_event_opts))
9711 return libbpf_err_ptr(-EINVAL);
9712
9713 if (pfd < 0) {
9714 pr_warn("prog '%s': invalid perf event FD %d\n",
9715 prog->name, pfd);
9716 return libbpf_err_ptr(-EINVAL);
9717 }
9718 prog_fd = bpf_program__fd(prog);
9719 if (prog_fd < 0) {
9720 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9721 prog->name);
9722 return libbpf_err_ptr(-EINVAL);
9723 }
9724
9725 link = calloc(1, sizeof(*link));
9726 if (!link)
9727 return libbpf_err_ptr(-ENOMEM);
9728 link->link.detach = &bpf_link_perf_detach;
9729 link->link.dealloc = &bpf_link_perf_dealloc;
9730 link->perf_event_fd = pfd;
9731
9732 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9733 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9734 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9735
9736 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9737 if (link_fd < 0) {
9738 err = -errno;
9739 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9740 prog->name, pfd,
9741 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9742 goto err_out;
9743 }
9744 link->link.fd = link_fd;
9745 } else {
9746 if (OPTS_GET(opts, bpf_cookie, 0)) {
9747 pr_warn("prog '%s': user context value is not supported\n", prog->name);
9748 err = -EOPNOTSUPP;
9749 goto err_out;
9750 }
9751
9752 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9753 err = -errno;
9754 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9755 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9756 if (err == -EPROTO)
9757 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9758 prog->name, pfd);
9759 goto err_out;
9760 }
9761 link->link.fd = pfd;
9762 }
9763 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9764 err = -errno;
9765 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9766 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9767 goto err_out;
9768 }
9769
9770 return &link->link;
9771 err_out:
9772 if (link_fd >= 0)
9773 close(link_fd);
9774 free(link);
9775 return libbpf_err_ptr(err);
9776 }
9777
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)9778 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9779 {
9780 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9781 }
9782
9783 /*
9784 * this function is expected to parse integer in the range of [0, 2^31-1] from
9785 * given file using scanf format string fmt. If actual parsed value is
9786 * negative, the result might be indistinguishable from error
9787 */
parse_uint_from_file(const char * file,const char * fmt)9788 static int parse_uint_from_file(const char *file, const char *fmt)
9789 {
9790 char buf[STRERR_BUFSIZE];
9791 int err, ret;
9792 FILE *f;
9793
9794 f = fopen(file, "r");
9795 if (!f) {
9796 err = -errno;
9797 pr_debug("failed to open '%s': %s\n", file,
9798 libbpf_strerror_r(err, buf, sizeof(buf)));
9799 return err;
9800 }
9801 err = fscanf(f, fmt, &ret);
9802 if (err != 1) {
9803 err = err == EOF ? -EIO : -errno;
9804 pr_debug("failed to parse '%s': %s\n", file,
9805 libbpf_strerror_r(err, buf, sizeof(buf)));
9806 fclose(f);
9807 return err;
9808 }
9809 fclose(f);
9810 return ret;
9811 }
9812
determine_kprobe_perf_type(void)9813 static int determine_kprobe_perf_type(void)
9814 {
9815 const char *file = "/sys/bus/event_source/devices/kprobe/type";
9816
9817 return parse_uint_from_file(file, "%d\n");
9818 }
9819
determine_uprobe_perf_type(void)9820 static int determine_uprobe_perf_type(void)
9821 {
9822 const char *file = "/sys/bus/event_source/devices/uprobe/type";
9823
9824 return parse_uint_from_file(file, "%d\n");
9825 }
9826
determine_kprobe_retprobe_bit(void)9827 static int determine_kprobe_retprobe_bit(void)
9828 {
9829 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9830
9831 return parse_uint_from_file(file, "config:%d\n");
9832 }
9833
determine_uprobe_retprobe_bit(void)9834 static int determine_uprobe_retprobe_bit(void)
9835 {
9836 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9837
9838 return parse_uint_from_file(file, "config:%d\n");
9839 }
9840
9841 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
9842 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
9843
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)9844 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9845 uint64_t offset, int pid, size_t ref_ctr_off)
9846 {
9847 const size_t attr_sz = sizeof(struct perf_event_attr);
9848 struct perf_event_attr attr;
9849 char errmsg[STRERR_BUFSIZE];
9850 int type, pfd;
9851
9852 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
9853 return -EINVAL;
9854
9855 memset(&attr, 0, attr_sz);
9856
9857 type = uprobe ? determine_uprobe_perf_type()
9858 : determine_kprobe_perf_type();
9859 if (type < 0) {
9860 pr_warn("failed to determine %s perf type: %s\n",
9861 uprobe ? "uprobe" : "kprobe",
9862 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9863 return type;
9864 }
9865 if (retprobe) {
9866 int bit = uprobe ? determine_uprobe_retprobe_bit()
9867 : determine_kprobe_retprobe_bit();
9868
9869 if (bit < 0) {
9870 pr_warn("failed to determine %s retprobe bit: %s\n",
9871 uprobe ? "uprobe" : "kprobe",
9872 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9873 return bit;
9874 }
9875 attr.config |= 1 << bit;
9876 }
9877 attr.size = attr_sz;
9878 attr.type = type;
9879 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9880 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9881 attr.config2 = offset; /* kprobe_addr or probe_offset */
9882
9883 /* pid filter is meaningful only for uprobes */
9884 pfd = syscall(__NR_perf_event_open, &attr,
9885 pid < 0 ? -1 : pid /* pid */,
9886 pid == -1 ? 0 : -1 /* cpu */,
9887 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9888 return pfd >= 0 ? pfd : -errno;
9889 }
9890
append_to_file(const char * file,const char * fmt,...)9891 static int append_to_file(const char *file, const char *fmt, ...)
9892 {
9893 int fd, n, err = 0;
9894 va_list ap;
9895
9896 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
9897 if (fd < 0)
9898 return -errno;
9899
9900 va_start(ap, fmt);
9901 n = vdprintf(fd, fmt, ap);
9902 va_end(ap);
9903
9904 if (n < 0)
9905 err = -errno;
9906
9907 close(fd);
9908 return err;
9909 }
9910
9911 #define DEBUGFS "/sys/kernel/debug/tracing"
9912 #define TRACEFS "/sys/kernel/tracing"
9913
use_debugfs(void)9914 static bool use_debugfs(void)
9915 {
9916 static int has_debugfs = -1;
9917
9918 if (has_debugfs < 0)
9919 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
9920
9921 return has_debugfs == 1;
9922 }
9923
tracefs_path(void)9924 static const char *tracefs_path(void)
9925 {
9926 return use_debugfs() ? DEBUGFS : TRACEFS;
9927 }
9928
tracefs_kprobe_events(void)9929 static const char *tracefs_kprobe_events(void)
9930 {
9931 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
9932 }
9933
tracefs_uprobe_events(void)9934 static const char *tracefs_uprobe_events(void)
9935 {
9936 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
9937 }
9938
gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)9939 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
9940 const char *kfunc_name, size_t offset)
9941 {
9942 static int index = 0;
9943
9944 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
9945 __sync_fetch_and_add(&index, 1));
9946 }
9947
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)9948 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
9949 const char *kfunc_name, size_t offset)
9950 {
9951 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
9952 retprobe ? 'r' : 'p',
9953 retprobe ? "kretprobes" : "kprobes",
9954 probe_name, kfunc_name, offset);
9955 }
9956
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)9957 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
9958 {
9959 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
9960 retprobe ? "kretprobes" : "kprobes", probe_name);
9961 }
9962
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)9963 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
9964 {
9965 char file[256];
9966
9967 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
9968 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
9969
9970 return parse_uint_from_file(file, "%d\n");
9971 }
9972
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)9973 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
9974 const char *kfunc_name, size_t offset, int pid)
9975 {
9976 const size_t attr_sz = sizeof(struct perf_event_attr);
9977 struct perf_event_attr attr;
9978 char errmsg[STRERR_BUFSIZE];
9979 int type, pfd, err;
9980
9981 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
9982 if (err < 0) {
9983 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
9984 kfunc_name, offset,
9985 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9986 return err;
9987 }
9988 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
9989 if (type < 0) {
9990 err = type;
9991 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
9992 kfunc_name, offset,
9993 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9994 goto err_clean_legacy;
9995 }
9996
9997 memset(&attr, 0, attr_sz);
9998 attr.size = attr_sz;
9999 attr.config = type;
10000 attr.type = PERF_TYPE_TRACEPOINT;
10001
10002 pfd = syscall(__NR_perf_event_open, &attr,
10003 pid < 0 ? -1 : pid, /* pid */
10004 pid == -1 ? 0 : -1, /* cpu */
10005 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10006 if (pfd < 0) {
10007 err = -errno;
10008 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10009 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10010 goto err_clean_legacy;
10011 }
10012 return pfd;
10013
10014 err_clean_legacy:
10015 /* Clear the newly added legacy kprobe_event */
10016 remove_kprobe_event_legacy(probe_name, retprobe);
10017 return err;
10018 }
10019
arch_specific_syscall_pfx(void)10020 static const char *arch_specific_syscall_pfx(void)
10021 {
10022 #if defined(__x86_64__)
10023 return "x64";
10024 #elif defined(__i386__)
10025 return "ia32";
10026 #elif defined(__s390x__)
10027 return "s390x";
10028 #elif defined(__s390__)
10029 return "s390";
10030 #elif defined(__arm__)
10031 return "arm";
10032 #elif defined(__aarch64__)
10033 return "arm64";
10034 #elif defined(__mips__)
10035 return "mips";
10036 #elif defined(__riscv)
10037 return "riscv";
10038 #elif defined(__powerpc__)
10039 return "powerpc";
10040 #elif defined(__powerpc64__)
10041 return "powerpc64";
10042 #else
10043 return NULL;
10044 #endif
10045 }
10046
probe_kern_syscall_wrapper(void)10047 static int probe_kern_syscall_wrapper(void)
10048 {
10049 char syscall_name[64];
10050 const char *ksys_pfx;
10051
10052 ksys_pfx = arch_specific_syscall_pfx();
10053 if (!ksys_pfx)
10054 return 0;
10055
10056 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10057
10058 if (determine_kprobe_perf_type() >= 0) {
10059 int pfd;
10060
10061 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10062 if (pfd >= 0)
10063 close(pfd);
10064
10065 return pfd >= 0 ? 1 : 0;
10066 } else { /* legacy mode */
10067 char probe_name[128];
10068
10069 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10070 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10071 return 0;
10072
10073 (void)remove_kprobe_event_legacy(probe_name, false);
10074 return 1;
10075 }
10076 }
10077
10078 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)10079 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10080 const char *func_name,
10081 const struct bpf_kprobe_opts *opts)
10082 {
10083 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10084 char errmsg[STRERR_BUFSIZE];
10085 char *legacy_probe = NULL;
10086 struct bpf_link *link;
10087 size_t offset;
10088 bool retprobe, legacy;
10089 int pfd, err;
10090
10091 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10092 return libbpf_err_ptr(-EINVAL);
10093
10094 retprobe = OPTS_GET(opts, retprobe, false);
10095 offset = OPTS_GET(opts, offset, 0);
10096 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10097
10098 legacy = determine_kprobe_perf_type() < 0;
10099 if (!legacy) {
10100 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10101 func_name, offset,
10102 -1 /* pid */, 0 /* ref_ctr_off */);
10103 } else {
10104 char probe_name[256];
10105
10106 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10107 func_name, offset);
10108
10109 legacy_probe = strdup(probe_name);
10110 if (!legacy_probe)
10111 return libbpf_err_ptr(-ENOMEM);
10112
10113 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10114 offset, -1 /* pid */);
10115 }
10116 if (pfd < 0) {
10117 err = -errno;
10118 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10119 prog->name, retprobe ? "kretprobe" : "kprobe",
10120 func_name, offset,
10121 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10122 goto err_out;
10123 }
10124 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10125 err = libbpf_get_error(link);
10126 if (err) {
10127 close(pfd);
10128 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10129 prog->name, retprobe ? "kretprobe" : "kprobe",
10130 func_name, offset,
10131 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10132 goto err_clean_legacy;
10133 }
10134 if (legacy) {
10135 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10136
10137 perf_link->legacy_probe_name = legacy_probe;
10138 perf_link->legacy_is_kprobe = true;
10139 perf_link->legacy_is_retprobe = retprobe;
10140 }
10141
10142 return link;
10143
10144 err_clean_legacy:
10145 if (legacy)
10146 remove_kprobe_event_legacy(legacy_probe, retprobe);
10147 err_out:
10148 free(legacy_probe);
10149 return libbpf_err_ptr(err);
10150 }
10151
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)10152 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10153 bool retprobe,
10154 const char *func_name)
10155 {
10156 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10157 .retprobe = retprobe,
10158 );
10159
10160 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10161 }
10162
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)10163 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10164 const char *syscall_name,
10165 const struct bpf_ksyscall_opts *opts)
10166 {
10167 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10168 char func_name[128];
10169
10170 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10171 return libbpf_err_ptr(-EINVAL);
10172
10173 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10174 /* arch_specific_syscall_pfx() should never return NULL here
10175 * because it is guarded by kernel_supports(). However, since
10176 * compiler does not know that we have an explicit conditional
10177 * as well.
10178 */
10179 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10180 arch_specific_syscall_pfx() ? : "", syscall_name);
10181 } else {
10182 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10183 }
10184
10185 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10186 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10187
10188 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10189 }
10190
10191 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)10192 static bool glob_match(const char *str, const char *pat)
10193 {
10194 while (*str && *pat && *pat != '*') {
10195 if (*pat == '?') { /* Matches any single character */
10196 str++;
10197 pat++;
10198 continue;
10199 }
10200 if (*str != *pat)
10201 return false;
10202 str++;
10203 pat++;
10204 }
10205 /* Check wild card */
10206 if (*pat == '*') {
10207 while (*pat == '*')
10208 pat++;
10209 if (!*pat) /* Tail wild card matches all */
10210 return true;
10211 while (*str)
10212 if (glob_match(str++, pat))
10213 return true;
10214 }
10215 return !*str && !*pat;
10216 }
10217
10218 struct kprobe_multi_resolve {
10219 const char *pattern;
10220 unsigned long *addrs;
10221 size_t cap;
10222 size_t cnt;
10223 };
10224
10225 static int
resolve_kprobe_multi_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)10226 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10227 const char *sym_name, void *ctx)
10228 {
10229 struct kprobe_multi_resolve *res = ctx;
10230 int err;
10231
10232 if (!glob_match(sym_name, res->pattern))
10233 return 0;
10234
10235 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10236 res->cnt + 1);
10237 if (err)
10238 return err;
10239
10240 res->addrs[res->cnt++] = (unsigned long) sym_addr;
10241 return 0;
10242 }
10243
10244 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)10245 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10246 const char *pattern,
10247 const struct bpf_kprobe_multi_opts *opts)
10248 {
10249 LIBBPF_OPTS(bpf_link_create_opts, lopts);
10250 struct kprobe_multi_resolve res = {
10251 .pattern = pattern,
10252 };
10253 struct bpf_link *link = NULL;
10254 char errmsg[STRERR_BUFSIZE];
10255 const unsigned long *addrs;
10256 int err, link_fd, prog_fd;
10257 const __u64 *cookies;
10258 const char **syms;
10259 bool retprobe;
10260 size_t cnt;
10261
10262 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10263 return libbpf_err_ptr(-EINVAL);
10264
10265 syms = OPTS_GET(opts, syms, false);
10266 addrs = OPTS_GET(opts, addrs, false);
10267 cnt = OPTS_GET(opts, cnt, false);
10268 cookies = OPTS_GET(opts, cookies, false);
10269
10270 if (!pattern && !addrs && !syms)
10271 return libbpf_err_ptr(-EINVAL);
10272 if (pattern && (addrs || syms || cookies || cnt))
10273 return libbpf_err_ptr(-EINVAL);
10274 if (!pattern && !cnt)
10275 return libbpf_err_ptr(-EINVAL);
10276 if (addrs && syms)
10277 return libbpf_err_ptr(-EINVAL);
10278
10279 if (pattern) {
10280 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10281 if (err)
10282 goto error;
10283 if (!res.cnt) {
10284 err = -ENOENT;
10285 goto error;
10286 }
10287 addrs = res.addrs;
10288 cnt = res.cnt;
10289 }
10290
10291 retprobe = OPTS_GET(opts, retprobe, false);
10292
10293 lopts.kprobe_multi.syms = syms;
10294 lopts.kprobe_multi.addrs = addrs;
10295 lopts.kprobe_multi.cookies = cookies;
10296 lopts.kprobe_multi.cnt = cnt;
10297 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10298
10299 link = calloc(1, sizeof(*link));
10300 if (!link) {
10301 err = -ENOMEM;
10302 goto error;
10303 }
10304 link->detach = &bpf_link__detach_fd;
10305
10306 prog_fd = bpf_program__fd(prog);
10307 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10308 if (link_fd < 0) {
10309 err = -errno;
10310 pr_warn("prog '%s': failed to attach: %s\n",
10311 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10312 goto error;
10313 }
10314 link->fd = link_fd;
10315 free(res.addrs);
10316 return link;
10317
10318 error:
10319 free(link);
10320 free(res.addrs);
10321 return libbpf_err_ptr(err);
10322 }
10323
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10324 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10325 {
10326 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10327 unsigned long offset = 0;
10328 const char *func_name;
10329 char *func;
10330 int n;
10331
10332 *link = NULL;
10333
10334 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10335 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10336 return 0;
10337
10338 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10339 if (opts.retprobe)
10340 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10341 else
10342 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10343
10344 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10345 if (n < 1) {
10346 pr_warn("kprobe name is invalid: %s\n", func_name);
10347 return -EINVAL;
10348 }
10349 if (opts.retprobe && offset != 0) {
10350 free(func);
10351 pr_warn("kretprobes do not support offset specification\n");
10352 return -EINVAL;
10353 }
10354
10355 opts.offset = offset;
10356 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10357 free(func);
10358 return libbpf_get_error(*link);
10359 }
10360
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10361 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10362 {
10363 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10364 const char *syscall_name;
10365
10366 *link = NULL;
10367
10368 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10369 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10370 return 0;
10371
10372 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10373 if (opts.retprobe)
10374 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10375 else
10376 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10377
10378 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10379 return *link ? 0 : -errno;
10380 }
10381
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10382 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10383 {
10384 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10385 const char *spec;
10386 char *pattern;
10387 int n;
10388
10389 *link = NULL;
10390
10391 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10392 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10393 strcmp(prog->sec_name, "kretprobe.multi") == 0)
10394 return 0;
10395
10396 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10397 if (opts.retprobe)
10398 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10399 else
10400 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10401
10402 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10403 if (n < 1) {
10404 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10405 return -EINVAL;
10406 }
10407
10408 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10409 free(pattern);
10410 return libbpf_get_error(*link);
10411 }
10412
gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)10413 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10414 const char *binary_path, uint64_t offset)
10415 {
10416 int i;
10417
10418 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10419
10420 /* sanitize binary_path in the probe name */
10421 for (i = 0; buf[i]; i++) {
10422 if (!isalnum(buf[i]))
10423 buf[i] = '_';
10424 }
10425 }
10426
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)10427 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10428 const char *binary_path, size_t offset)
10429 {
10430 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
10431 retprobe ? 'r' : 'p',
10432 retprobe ? "uretprobes" : "uprobes",
10433 probe_name, binary_path, offset);
10434 }
10435
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)10436 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10437 {
10438 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
10439 retprobe ? "uretprobes" : "uprobes", probe_name);
10440 }
10441
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)10442 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10443 {
10444 char file[512];
10445
10446 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10447 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
10448
10449 return parse_uint_from_file(file, "%d\n");
10450 }
10451
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)10452 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10453 const char *binary_path, size_t offset, int pid)
10454 {
10455 const size_t attr_sz = sizeof(struct perf_event_attr);
10456 struct perf_event_attr attr;
10457 int type, pfd, err;
10458
10459 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10460 if (err < 0) {
10461 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10462 binary_path, (size_t)offset, err);
10463 return err;
10464 }
10465 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10466 if (type < 0) {
10467 err = type;
10468 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10469 binary_path, offset, err);
10470 goto err_clean_legacy;
10471 }
10472
10473 memset(&attr, 0, attr_sz);
10474 attr.size = attr_sz;
10475 attr.config = type;
10476 attr.type = PERF_TYPE_TRACEPOINT;
10477
10478 pfd = syscall(__NR_perf_event_open, &attr,
10479 pid < 0 ? -1 : pid, /* pid */
10480 pid == -1 ? 0 : -1, /* cpu */
10481 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10482 if (pfd < 0) {
10483 err = -errno;
10484 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10485 goto err_clean_legacy;
10486 }
10487 return pfd;
10488
10489 err_clean_legacy:
10490 /* Clear the newly added legacy uprobe_event */
10491 remove_uprobe_event_legacy(probe_name, retprobe);
10492 return err;
10493 }
10494
10495 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
elf_find_next_scn_by_type(Elf * elf,int sh_type,Elf_Scn * scn)10496 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10497 {
10498 while ((scn = elf_nextscn(elf, scn)) != NULL) {
10499 GElf_Shdr sh;
10500
10501 if (!gelf_getshdr(scn, &sh))
10502 continue;
10503 if (sh.sh_type == sh_type)
10504 return scn;
10505 }
10506 return NULL;
10507 }
10508
10509 /* Find offset of function name in object specified by path. "name" matches
10510 * symbol name or name@@LIB for library functions.
10511 */
elf_find_func_offset(const char * binary_path,const char * name)10512 static long elf_find_func_offset(const char *binary_path, const char *name)
10513 {
10514 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10515 bool is_shared_lib, is_name_qualified;
10516 char errmsg[STRERR_BUFSIZE];
10517 long ret = -ENOENT;
10518 size_t name_len;
10519 GElf_Ehdr ehdr;
10520 Elf *elf;
10521
10522 fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10523 if (fd < 0) {
10524 ret = -errno;
10525 pr_warn("failed to open %s: %s\n", binary_path,
10526 libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10527 return ret;
10528 }
10529 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10530 if (!elf) {
10531 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10532 close(fd);
10533 return -LIBBPF_ERRNO__FORMAT;
10534 }
10535 if (!gelf_getehdr(elf, &ehdr)) {
10536 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10537 ret = -LIBBPF_ERRNO__FORMAT;
10538 goto out;
10539 }
10540 /* for shared lib case, we do not need to calculate relative offset */
10541 is_shared_lib = ehdr.e_type == ET_DYN;
10542
10543 name_len = strlen(name);
10544 /* Does name specify "@@LIB"? */
10545 is_name_qualified = strstr(name, "@@") != NULL;
10546
10547 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if
10548 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10549 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10550 * reported as a warning/error.
10551 */
10552 for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10553 size_t nr_syms, strtabidx, idx;
10554 Elf_Data *symbols = NULL;
10555 Elf_Scn *scn = NULL;
10556 int last_bind = -1;
10557 const char *sname;
10558 GElf_Shdr sh;
10559
10560 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10561 if (!scn) {
10562 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10563 binary_path);
10564 continue;
10565 }
10566 if (!gelf_getshdr(scn, &sh))
10567 continue;
10568 strtabidx = sh.sh_link;
10569 symbols = elf_getdata(scn, 0);
10570 if (!symbols) {
10571 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10572 binary_path, elf_errmsg(-1));
10573 ret = -LIBBPF_ERRNO__FORMAT;
10574 goto out;
10575 }
10576 nr_syms = symbols->d_size / sh.sh_entsize;
10577
10578 for (idx = 0; idx < nr_syms; idx++) {
10579 int curr_bind;
10580 GElf_Sym sym;
10581 Elf_Scn *sym_scn;
10582 GElf_Shdr sym_sh;
10583
10584 if (!gelf_getsym(symbols, idx, &sym))
10585 continue;
10586
10587 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10588 continue;
10589
10590 sname = elf_strptr(elf, strtabidx, sym.st_name);
10591 if (!sname)
10592 continue;
10593
10594 curr_bind = GELF_ST_BIND(sym.st_info);
10595
10596 /* User can specify func, func@@LIB or func@@LIB_VERSION. */
10597 if (strncmp(sname, name, name_len) != 0)
10598 continue;
10599 /* ...but we don't want a search for "foo" to match 'foo2" also, so any
10600 * additional characters in sname should be of the form "@@LIB".
10601 */
10602 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10603 continue;
10604
10605 if (ret >= 0) {
10606 /* handle multiple matches */
10607 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10608 /* Only accept one non-weak bind. */
10609 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10610 sname, name, binary_path);
10611 ret = -LIBBPF_ERRNO__FORMAT;
10612 goto out;
10613 } else if (curr_bind == STB_WEAK) {
10614 /* already have a non-weak bind, and
10615 * this is a weak bind, so ignore.
10616 */
10617 continue;
10618 }
10619 }
10620
10621 /* Transform symbol's virtual address (absolute for
10622 * binaries and relative for shared libs) into file
10623 * offset, which is what kernel is expecting for
10624 * uprobe/uretprobe attachment.
10625 * See Documentation/trace/uprobetracer.rst for more
10626 * details.
10627 * This is done by looking up symbol's containing
10628 * section's header and using it's virtual address
10629 * (sh_addr) and corresponding file offset (sh_offset)
10630 * to transform sym.st_value (virtual address) into
10631 * desired final file offset.
10632 */
10633 sym_scn = elf_getscn(elf, sym.st_shndx);
10634 if (!sym_scn)
10635 continue;
10636 if (!gelf_getshdr(sym_scn, &sym_sh))
10637 continue;
10638
10639 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10640 last_bind = curr_bind;
10641 }
10642 if (ret > 0)
10643 break;
10644 }
10645
10646 if (ret > 0) {
10647 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10648 ret);
10649 } else {
10650 if (ret == 0) {
10651 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10652 is_shared_lib ? "should not be 0 in a shared library" :
10653 "try using shared library path instead");
10654 ret = -ENOENT;
10655 } else {
10656 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10657 }
10658 }
10659 out:
10660 elf_end(elf);
10661 close(fd);
10662 return ret;
10663 }
10664
arch_specific_lib_paths(void)10665 static const char *arch_specific_lib_paths(void)
10666 {
10667 /*
10668 * Based on https://packages.debian.org/sid/libc6.
10669 *
10670 * Assume that the traced program is built for the same architecture
10671 * as libbpf, which should cover the vast majority of cases.
10672 */
10673 #if defined(__x86_64__)
10674 return "/lib/x86_64-linux-gnu";
10675 #elif defined(__i386__)
10676 return "/lib/i386-linux-gnu";
10677 #elif defined(__s390x__)
10678 return "/lib/s390x-linux-gnu";
10679 #elif defined(__s390__)
10680 return "/lib/s390-linux-gnu";
10681 #elif defined(__arm__) && defined(__SOFTFP__)
10682 return "/lib/arm-linux-gnueabi";
10683 #elif defined(__arm__) && !defined(__SOFTFP__)
10684 return "/lib/arm-linux-gnueabihf";
10685 #elif defined(__aarch64__)
10686 return "/lib/aarch64-linux-gnu";
10687 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
10688 return "/lib/mips64el-linux-gnuabi64";
10689 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
10690 return "/lib/mipsel-linux-gnu";
10691 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
10692 return "/lib/powerpc64le-linux-gnu";
10693 #elif defined(__sparc__) && defined(__arch64__)
10694 return "/lib/sparc64-linux-gnu";
10695 #elif defined(__riscv) && __riscv_xlen == 64
10696 return "/lib/riscv64-linux-gnu";
10697 #else
10698 return NULL;
10699 #endif
10700 }
10701
10702 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)10703 static int resolve_full_path(const char *file, char *result, size_t result_sz)
10704 {
10705 const char *search_paths[3] = {};
10706 int i, perm;
10707
10708 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
10709 search_paths[0] = getenv("LD_LIBRARY_PATH");
10710 search_paths[1] = "/usr/lib64:/usr/lib";
10711 search_paths[2] = arch_specific_lib_paths();
10712 perm = R_OK;
10713 } else {
10714 search_paths[0] = getenv("PATH");
10715 search_paths[1] = "/usr/bin:/usr/sbin";
10716 perm = R_OK | X_OK;
10717 }
10718
10719 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
10720 const char *s;
10721
10722 if (!search_paths[i])
10723 continue;
10724 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
10725 char *next_path;
10726 int seg_len;
10727
10728 if (s[0] == ':')
10729 s++;
10730 next_path = strchr(s, ':');
10731 seg_len = next_path ? next_path - s : strlen(s);
10732 if (!seg_len)
10733 continue;
10734 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
10735 /* ensure it has required permissions */
10736 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
10737 continue;
10738 pr_debug("resolved '%s' to '%s'\n", file, result);
10739 return 0;
10740 }
10741 }
10742 return -ENOENT;
10743 }
10744
10745 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)10746 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10747 const char *binary_path, size_t func_offset,
10748 const struct bpf_uprobe_opts *opts)
10749 {
10750 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10751 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10752 char full_binary_path[PATH_MAX];
10753 struct bpf_link *link;
10754 size_t ref_ctr_off;
10755 int pfd, err;
10756 bool retprobe, legacy;
10757 const char *func_name;
10758
10759 if (!OPTS_VALID(opts, bpf_uprobe_opts))
10760 return libbpf_err_ptr(-EINVAL);
10761
10762 retprobe = OPTS_GET(opts, retprobe, false);
10763 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10764 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10765
10766 if (!binary_path)
10767 return libbpf_err_ptr(-EINVAL);
10768
10769 if (!strchr(binary_path, '/')) {
10770 err = resolve_full_path(binary_path, full_binary_path,
10771 sizeof(full_binary_path));
10772 if (err) {
10773 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10774 prog->name, binary_path, err);
10775 return libbpf_err_ptr(err);
10776 }
10777 binary_path = full_binary_path;
10778 }
10779 func_name = OPTS_GET(opts, func_name, NULL);
10780 if (func_name) {
10781 long sym_off;
10782
10783 sym_off = elf_find_func_offset(binary_path, func_name);
10784 if (sym_off < 0)
10785 return libbpf_err_ptr(sym_off);
10786 func_offset += sym_off;
10787 }
10788
10789 legacy = determine_uprobe_perf_type() < 0;
10790 if (!legacy) {
10791 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10792 func_offset, pid, ref_ctr_off);
10793 } else {
10794 char probe_name[PATH_MAX + 64];
10795
10796 if (ref_ctr_off)
10797 return libbpf_err_ptr(-EINVAL);
10798
10799 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10800 binary_path, func_offset);
10801
10802 legacy_probe = strdup(probe_name);
10803 if (!legacy_probe)
10804 return libbpf_err_ptr(-ENOMEM);
10805
10806 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10807 binary_path, func_offset, pid);
10808 }
10809 if (pfd < 0) {
10810 err = -errno;
10811 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10812 prog->name, retprobe ? "uretprobe" : "uprobe",
10813 binary_path, func_offset,
10814 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10815 goto err_out;
10816 }
10817
10818 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10819 err = libbpf_get_error(link);
10820 if (err) {
10821 close(pfd);
10822 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10823 prog->name, retprobe ? "uretprobe" : "uprobe",
10824 binary_path, func_offset,
10825 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10826 goto err_clean_legacy;
10827 }
10828 if (legacy) {
10829 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10830
10831 perf_link->legacy_probe_name = legacy_probe;
10832 perf_link->legacy_is_kprobe = false;
10833 perf_link->legacy_is_retprobe = retprobe;
10834 }
10835 return link;
10836
10837 err_clean_legacy:
10838 if (legacy)
10839 remove_uprobe_event_legacy(legacy_probe, retprobe);
10840 err_out:
10841 free(legacy_probe);
10842 return libbpf_err_ptr(err);
10843 }
10844
10845 /* Format of u[ret]probe section definition supporting auto-attach:
10846 * u[ret]probe/binary:function[+offset]
10847 *
10848 * binary can be an absolute/relative path or a filename; the latter is resolved to a
10849 * full binary path via bpf_program__attach_uprobe_opts.
10850 *
10851 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
10852 * specified (and auto-attach is not possible) or the above format is specified for
10853 * auto-attach.
10854 */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10855 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10856 {
10857 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
10858 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10859 int n, ret = -EINVAL;
10860 long offset = 0;
10861
10862 *link = NULL;
10863
10864 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
10865 &probe_type, &binary_path, &func_name, &offset);
10866 switch (n) {
10867 case 1:
10868 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
10869 ret = 0;
10870 break;
10871 case 2:
10872 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
10873 prog->name, prog->sec_name);
10874 break;
10875 case 3:
10876 case 4:
10877 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
10878 strcmp(probe_type, "uretprobe.s") == 0;
10879 if (opts.retprobe && offset != 0) {
10880 pr_warn("prog '%s': uretprobes do not support offset specification\n",
10881 prog->name);
10882 break;
10883 }
10884 opts.func_name = func_name;
10885 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
10886 ret = libbpf_get_error(*link);
10887 break;
10888 default:
10889 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
10890 prog->sec_name);
10891 break;
10892 }
10893 free(probe_type);
10894 free(binary_path);
10895 free(func_name);
10896
10897 return ret;
10898 }
10899
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)10900 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10901 bool retprobe, pid_t pid,
10902 const char *binary_path,
10903 size_t func_offset)
10904 {
10905 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10906
10907 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10908 }
10909
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)10910 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
10911 pid_t pid, const char *binary_path,
10912 const char *usdt_provider, const char *usdt_name,
10913 const struct bpf_usdt_opts *opts)
10914 {
10915 char resolved_path[512];
10916 struct bpf_object *obj = prog->obj;
10917 struct bpf_link *link;
10918 __u64 usdt_cookie;
10919 int err;
10920
10921 if (!OPTS_VALID(opts, bpf_uprobe_opts))
10922 return libbpf_err_ptr(-EINVAL);
10923
10924 if (bpf_program__fd(prog) < 0) {
10925 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10926 prog->name);
10927 return libbpf_err_ptr(-EINVAL);
10928 }
10929
10930 if (!binary_path)
10931 return libbpf_err_ptr(-EINVAL);
10932
10933 if (!strchr(binary_path, '/')) {
10934 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
10935 if (err) {
10936 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10937 prog->name, binary_path, err);
10938 return libbpf_err_ptr(err);
10939 }
10940 binary_path = resolved_path;
10941 }
10942
10943 /* USDT manager is instantiated lazily on first USDT attach. It will
10944 * be destroyed together with BPF object in bpf_object__close().
10945 */
10946 if (IS_ERR(obj->usdt_man))
10947 return libbpf_ptr(obj->usdt_man);
10948 if (!obj->usdt_man) {
10949 obj->usdt_man = usdt_manager_new(obj);
10950 if (IS_ERR(obj->usdt_man))
10951 return libbpf_ptr(obj->usdt_man);
10952 }
10953
10954 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
10955 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
10956 usdt_provider, usdt_name, usdt_cookie);
10957 err = libbpf_get_error(link);
10958 if (err)
10959 return libbpf_err_ptr(err);
10960 return link;
10961 }
10962
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10963 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10964 {
10965 char *path = NULL, *provider = NULL, *name = NULL;
10966 const char *sec_name;
10967 int n, err;
10968
10969 sec_name = bpf_program__section_name(prog);
10970 if (strcmp(sec_name, "usdt") == 0) {
10971 /* no auto-attach for just SEC("usdt") */
10972 *link = NULL;
10973 return 0;
10974 }
10975
10976 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
10977 if (n != 3) {
10978 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
10979 sec_name);
10980 err = -EINVAL;
10981 } else {
10982 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
10983 provider, name, NULL);
10984 err = libbpf_get_error(*link);
10985 }
10986 free(path);
10987 free(provider);
10988 free(name);
10989 return err;
10990 }
10991
determine_tracepoint_id(const char * tp_category,const char * tp_name)10992 static int determine_tracepoint_id(const char *tp_category,
10993 const char *tp_name)
10994 {
10995 char file[PATH_MAX];
10996 int ret;
10997
10998 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10999 tracefs_path(), tp_category, tp_name);
11000 if (ret < 0)
11001 return -errno;
11002 if (ret >= sizeof(file)) {
11003 pr_debug("tracepoint %s/%s path is too long\n",
11004 tp_category, tp_name);
11005 return -E2BIG;
11006 }
11007 return parse_uint_from_file(file, "%d\n");
11008 }
11009
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)11010 static int perf_event_open_tracepoint(const char *tp_category,
11011 const char *tp_name)
11012 {
11013 const size_t attr_sz = sizeof(struct perf_event_attr);
11014 struct perf_event_attr attr;
11015 char errmsg[STRERR_BUFSIZE];
11016 int tp_id, pfd, err;
11017
11018 tp_id = determine_tracepoint_id(tp_category, tp_name);
11019 if (tp_id < 0) {
11020 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11021 tp_category, tp_name,
11022 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11023 return tp_id;
11024 }
11025
11026 memset(&attr, 0, attr_sz);
11027 attr.type = PERF_TYPE_TRACEPOINT;
11028 attr.size = attr_sz;
11029 attr.config = tp_id;
11030
11031 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11032 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11033 if (pfd < 0) {
11034 err = -errno;
11035 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11036 tp_category, tp_name,
11037 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11038 return err;
11039 }
11040 return pfd;
11041 }
11042
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)11043 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11044 const char *tp_category,
11045 const char *tp_name,
11046 const struct bpf_tracepoint_opts *opts)
11047 {
11048 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11049 char errmsg[STRERR_BUFSIZE];
11050 struct bpf_link *link;
11051 int pfd, err;
11052
11053 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11054 return libbpf_err_ptr(-EINVAL);
11055
11056 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11057
11058 pfd = perf_event_open_tracepoint(tp_category, tp_name);
11059 if (pfd < 0) {
11060 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11061 prog->name, tp_category, tp_name,
11062 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11063 return libbpf_err_ptr(pfd);
11064 }
11065 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11066 err = libbpf_get_error(link);
11067 if (err) {
11068 close(pfd);
11069 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11070 prog->name, tp_category, tp_name,
11071 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11072 return libbpf_err_ptr(err);
11073 }
11074 return link;
11075 }
11076
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)11077 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11078 const char *tp_category,
11079 const char *tp_name)
11080 {
11081 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11082 }
11083
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11084 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11085 {
11086 char *sec_name, *tp_cat, *tp_name;
11087
11088 *link = NULL;
11089
11090 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
11091 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11092 return 0;
11093
11094 sec_name = strdup(prog->sec_name);
11095 if (!sec_name)
11096 return -ENOMEM;
11097
11098 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11099 if (str_has_pfx(prog->sec_name, "tp/"))
11100 tp_cat = sec_name + sizeof("tp/") - 1;
11101 else
11102 tp_cat = sec_name + sizeof("tracepoint/") - 1;
11103 tp_name = strchr(tp_cat, '/');
11104 if (!tp_name) {
11105 free(sec_name);
11106 return -EINVAL;
11107 }
11108 *tp_name = '\0';
11109 tp_name++;
11110
11111 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11112 free(sec_name);
11113 return libbpf_get_error(*link);
11114 }
11115
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)11116 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11117 const char *tp_name)
11118 {
11119 char errmsg[STRERR_BUFSIZE];
11120 struct bpf_link *link;
11121 int prog_fd, pfd;
11122
11123 prog_fd = bpf_program__fd(prog);
11124 if (prog_fd < 0) {
11125 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11126 return libbpf_err_ptr(-EINVAL);
11127 }
11128
11129 link = calloc(1, sizeof(*link));
11130 if (!link)
11131 return libbpf_err_ptr(-ENOMEM);
11132 link->detach = &bpf_link__detach_fd;
11133
11134 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11135 if (pfd < 0) {
11136 pfd = -errno;
11137 free(link);
11138 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11139 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11140 return libbpf_err_ptr(pfd);
11141 }
11142 link->fd = pfd;
11143 return link;
11144 }
11145
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11146 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11147 {
11148 static const char *const prefixes[] = {
11149 "raw_tp",
11150 "raw_tracepoint",
11151 "raw_tp.w",
11152 "raw_tracepoint.w",
11153 };
11154 size_t i;
11155 const char *tp_name = NULL;
11156
11157 *link = NULL;
11158
11159 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11160 size_t pfx_len;
11161
11162 if (!str_has_pfx(prog->sec_name, prefixes[i]))
11163 continue;
11164
11165 pfx_len = strlen(prefixes[i]);
11166 /* no auto-attach case of, e.g., SEC("raw_tp") */
11167 if (prog->sec_name[pfx_len] == '\0')
11168 return 0;
11169
11170 if (prog->sec_name[pfx_len] != '/')
11171 continue;
11172
11173 tp_name = prog->sec_name + pfx_len + 1;
11174 break;
11175 }
11176
11177 if (!tp_name) {
11178 pr_warn("prog '%s': invalid section name '%s'\n",
11179 prog->name, prog->sec_name);
11180 return -EINVAL;
11181 }
11182
11183 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11184 return libbpf_get_error(*link);
11185 }
11186
11187 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11188 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11189 const struct bpf_trace_opts *opts)
11190 {
11191 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11192 char errmsg[STRERR_BUFSIZE];
11193 struct bpf_link *link;
11194 int prog_fd, pfd;
11195
11196 if (!OPTS_VALID(opts, bpf_trace_opts))
11197 return libbpf_err_ptr(-EINVAL);
11198
11199 prog_fd = bpf_program__fd(prog);
11200 if (prog_fd < 0) {
11201 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11202 return libbpf_err_ptr(-EINVAL);
11203 }
11204
11205 link = calloc(1, sizeof(*link));
11206 if (!link)
11207 return libbpf_err_ptr(-ENOMEM);
11208 link->detach = &bpf_link__detach_fd;
11209
11210 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11211 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11212 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11213 if (pfd < 0) {
11214 pfd = -errno;
11215 free(link);
11216 pr_warn("prog '%s': failed to attach: %s\n",
11217 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11218 return libbpf_err_ptr(pfd);
11219 }
11220 link->fd = pfd;
11221 return link;
11222 }
11223
bpf_program__attach_trace(const struct bpf_program * prog)11224 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11225 {
11226 return bpf_program__attach_btf_id(prog, NULL);
11227 }
11228
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11229 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11230 const struct bpf_trace_opts *opts)
11231 {
11232 return bpf_program__attach_btf_id(prog, opts);
11233 }
11234
bpf_program__attach_lsm(const struct bpf_program * prog)11235 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11236 {
11237 return bpf_program__attach_btf_id(prog, NULL);
11238 }
11239
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11240 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11241 {
11242 *link = bpf_program__attach_trace(prog);
11243 return libbpf_get_error(*link);
11244 }
11245
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11246 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11247 {
11248 *link = bpf_program__attach_lsm(prog);
11249 return libbpf_get_error(*link);
11250 }
11251
11252 static struct bpf_link *
bpf_program__attach_fd(const struct bpf_program * prog,int target_fd,int btf_id,const char * target_name)11253 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11254 const char *target_name)
11255 {
11256 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11257 .target_btf_id = btf_id);
11258 enum bpf_attach_type attach_type;
11259 char errmsg[STRERR_BUFSIZE];
11260 struct bpf_link *link;
11261 int prog_fd, link_fd;
11262
11263 prog_fd = bpf_program__fd(prog);
11264 if (prog_fd < 0) {
11265 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11266 return libbpf_err_ptr(-EINVAL);
11267 }
11268
11269 link = calloc(1, sizeof(*link));
11270 if (!link)
11271 return libbpf_err_ptr(-ENOMEM);
11272 link->detach = &bpf_link__detach_fd;
11273
11274 attach_type = bpf_program__expected_attach_type(prog);
11275 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11276 if (link_fd < 0) {
11277 link_fd = -errno;
11278 free(link);
11279 pr_warn("prog '%s': failed to attach to %s: %s\n",
11280 prog->name, target_name,
11281 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11282 return libbpf_err_ptr(link_fd);
11283 }
11284 link->fd = link_fd;
11285 return link;
11286 }
11287
11288 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)11289 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11290 {
11291 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11292 }
11293
11294 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)11295 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11296 {
11297 return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11298 }
11299
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)11300 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11301 {
11302 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11303 return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11304 }
11305
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)11306 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11307 int target_fd,
11308 const char *attach_func_name)
11309 {
11310 int btf_id;
11311
11312 if (!!target_fd != !!attach_func_name) {
11313 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11314 prog->name);
11315 return libbpf_err_ptr(-EINVAL);
11316 }
11317
11318 if (prog->type != BPF_PROG_TYPE_EXT) {
11319 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11320 prog->name);
11321 return libbpf_err_ptr(-EINVAL);
11322 }
11323
11324 if (target_fd) {
11325 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11326 if (btf_id < 0)
11327 return libbpf_err_ptr(btf_id);
11328
11329 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11330 } else {
11331 /* no target, so use raw_tracepoint_open for compatibility
11332 * with old kernels
11333 */
11334 return bpf_program__attach_trace(prog);
11335 }
11336 }
11337
11338 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)11339 bpf_program__attach_iter(const struct bpf_program *prog,
11340 const struct bpf_iter_attach_opts *opts)
11341 {
11342 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11343 char errmsg[STRERR_BUFSIZE];
11344 struct bpf_link *link;
11345 int prog_fd, link_fd;
11346 __u32 target_fd = 0;
11347
11348 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11349 return libbpf_err_ptr(-EINVAL);
11350
11351 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11352 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11353
11354 prog_fd = bpf_program__fd(prog);
11355 if (prog_fd < 0) {
11356 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11357 return libbpf_err_ptr(-EINVAL);
11358 }
11359
11360 link = calloc(1, sizeof(*link));
11361 if (!link)
11362 return libbpf_err_ptr(-ENOMEM);
11363 link->detach = &bpf_link__detach_fd;
11364
11365 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11366 &link_create_opts);
11367 if (link_fd < 0) {
11368 link_fd = -errno;
11369 free(link);
11370 pr_warn("prog '%s': failed to attach to iterator: %s\n",
11371 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11372 return libbpf_err_ptr(link_fd);
11373 }
11374 link->fd = link_fd;
11375 return link;
11376 }
11377
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11378 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11379 {
11380 *link = bpf_program__attach_iter(prog, NULL);
11381 return libbpf_get_error(*link);
11382 }
11383
bpf_program__attach(const struct bpf_program * prog)11384 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11385 {
11386 struct bpf_link *link = NULL;
11387 int err;
11388
11389 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11390 return libbpf_err_ptr(-EOPNOTSUPP);
11391
11392 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11393 if (err)
11394 return libbpf_err_ptr(err);
11395
11396 /* When calling bpf_program__attach() explicitly, auto-attach support
11397 * is expected to work, so NULL returned link is considered an error.
11398 * This is different for skeleton's attach, see comment in
11399 * bpf_object__attach_skeleton().
11400 */
11401 if (!link)
11402 return libbpf_err_ptr(-EOPNOTSUPP);
11403
11404 return link;
11405 }
11406
bpf_link__detach_struct_ops(struct bpf_link * link)11407 static int bpf_link__detach_struct_ops(struct bpf_link *link)
11408 {
11409 __u32 zero = 0;
11410
11411 if (bpf_map_delete_elem(link->fd, &zero))
11412 return -errno;
11413
11414 return 0;
11415 }
11416
bpf_map__attach_struct_ops(const struct bpf_map * map)11417 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11418 {
11419 struct bpf_struct_ops *st_ops;
11420 struct bpf_link *link;
11421 __u32 i, zero = 0;
11422 int err;
11423
11424 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11425 return libbpf_err_ptr(-EINVAL);
11426
11427 link = calloc(1, sizeof(*link));
11428 if (!link)
11429 return libbpf_err_ptr(-EINVAL);
11430
11431 st_ops = map->st_ops;
11432 for (i = 0; i < btf_vlen(st_ops->type); i++) {
11433 struct bpf_program *prog = st_ops->progs[i];
11434 void *kern_data;
11435 int prog_fd;
11436
11437 if (!prog)
11438 continue;
11439
11440 prog_fd = bpf_program__fd(prog);
11441 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11442 *(unsigned long *)kern_data = prog_fd;
11443 }
11444
11445 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11446 if (err) {
11447 err = -errno;
11448 free(link);
11449 return libbpf_err_ptr(err);
11450 }
11451
11452 link->detach = bpf_link__detach_struct_ops;
11453 link->fd = map->fd;
11454
11455 return link;
11456 }
11457
11458 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11459 void *private_data);
11460
11461 static enum bpf_perf_event_ret
perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)11462 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11463 void **copy_mem, size_t *copy_size,
11464 bpf_perf_event_print_t fn, void *private_data)
11465 {
11466 struct perf_event_mmap_page *header = mmap_mem;
11467 __u64 data_head = ring_buffer_read_head(header);
11468 __u64 data_tail = header->data_tail;
11469 void *base = ((__u8 *)header) + page_size;
11470 int ret = LIBBPF_PERF_EVENT_CONT;
11471 struct perf_event_header *ehdr;
11472 size_t ehdr_size;
11473
11474 while (data_head != data_tail) {
11475 ehdr = base + (data_tail & (mmap_size - 1));
11476 ehdr_size = ehdr->size;
11477
11478 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11479 void *copy_start = ehdr;
11480 size_t len_first = base + mmap_size - copy_start;
11481 size_t len_secnd = ehdr_size - len_first;
11482
11483 if (*copy_size < ehdr_size) {
11484 free(*copy_mem);
11485 *copy_mem = malloc(ehdr_size);
11486 if (!*copy_mem) {
11487 *copy_size = 0;
11488 ret = LIBBPF_PERF_EVENT_ERROR;
11489 break;
11490 }
11491 *copy_size = ehdr_size;
11492 }
11493
11494 memcpy(*copy_mem, copy_start, len_first);
11495 memcpy(*copy_mem + len_first, base, len_secnd);
11496 ehdr = *copy_mem;
11497 }
11498
11499 ret = fn(ehdr, private_data);
11500 data_tail += ehdr_size;
11501 if (ret != LIBBPF_PERF_EVENT_CONT)
11502 break;
11503 }
11504
11505 ring_buffer_write_tail(header, data_tail);
11506 return libbpf_err(ret);
11507 }
11508
11509 struct perf_buffer;
11510
11511 struct perf_buffer_params {
11512 struct perf_event_attr *attr;
11513 /* if event_cb is specified, it takes precendence */
11514 perf_buffer_event_fn event_cb;
11515 /* sample_cb and lost_cb are higher-level common-case callbacks */
11516 perf_buffer_sample_fn sample_cb;
11517 perf_buffer_lost_fn lost_cb;
11518 void *ctx;
11519 int cpu_cnt;
11520 int *cpus;
11521 int *map_keys;
11522 };
11523
11524 struct perf_cpu_buf {
11525 struct perf_buffer *pb;
11526 void *base; /* mmap()'ed memory */
11527 void *buf; /* for reconstructing segmented data */
11528 size_t buf_size;
11529 int fd;
11530 int cpu;
11531 int map_key;
11532 };
11533
11534 struct perf_buffer {
11535 perf_buffer_event_fn event_cb;
11536 perf_buffer_sample_fn sample_cb;
11537 perf_buffer_lost_fn lost_cb;
11538 void *ctx; /* passed into callbacks */
11539
11540 size_t page_size;
11541 size_t mmap_size;
11542 struct perf_cpu_buf **cpu_bufs;
11543 struct epoll_event *events;
11544 int cpu_cnt; /* number of allocated CPU buffers */
11545 int epoll_fd; /* perf event FD */
11546 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11547 };
11548
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)11549 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11550 struct perf_cpu_buf *cpu_buf)
11551 {
11552 if (!cpu_buf)
11553 return;
11554 if (cpu_buf->base &&
11555 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11556 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11557 if (cpu_buf->fd >= 0) {
11558 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11559 close(cpu_buf->fd);
11560 }
11561 free(cpu_buf->buf);
11562 free(cpu_buf);
11563 }
11564
perf_buffer__free(struct perf_buffer * pb)11565 void perf_buffer__free(struct perf_buffer *pb)
11566 {
11567 int i;
11568
11569 if (IS_ERR_OR_NULL(pb))
11570 return;
11571 if (pb->cpu_bufs) {
11572 for (i = 0; i < pb->cpu_cnt; i++) {
11573 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11574
11575 if (!cpu_buf)
11576 continue;
11577
11578 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11579 perf_buffer__free_cpu_buf(pb, cpu_buf);
11580 }
11581 free(pb->cpu_bufs);
11582 }
11583 if (pb->epoll_fd >= 0)
11584 close(pb->epoll_fd);
11585 free(pb->events);
11586 free(pb);
11587 }
11588
11589 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)11590 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11591 int cpu, int map_key)
11592 {
11593 struct perf_cpu_buf *cpu_buf;
11594 char msg[STRERR_BUFSIZE];
11595 int err;
11596
11597 cpu_buf = calloc(1, sizeof(*cpu_buf));
11598 if (!cpu_buf)
11599 return ERR_PTR(-ENOMEM);
11600
11601 cpu_buf->pb = pb;
11602 cpu_buf->cpu = cpu;
11603 cpu_buf->map_key = map_key;
11604
11605 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11606 -1, PERF_FLAG_FD_CLOEXEC);
11607 if (cpu_buf->fd < 0) {
11608 err = -errno;
11609 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11610 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11611 goto error;
11612 }
11613
11614 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11615 PROT_READ | PROT_WRITE, MAP_SHARED,
11616 cpu_buf->fd, 0);
11617 if (cpu_buf->base == MAP_FAILED) {
11618 cpu_buf->base = NULL;
11619 err = -errno;
11620 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11621 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11622 goto error;
11623 }
11624
11625 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11626 err = -errno;
11627 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11628 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11629 goto error;
11630 }
11631
11632 return cpu_buf;
11633
11634 error:
11635 perf_buffer__free_cpu_buf(pb, cpu_buf);
11636 return (struct perf_cpu_buf *)ERR_PTR(err);
11637 }
11638
11639 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11640 struct perf_buffer_params *p);
11641
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)11642 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
11643 perf_buffer_sample_fn sample_cb,
11644 perf_buffer_lost_fn lost_cb,
11645 void *ctx,
11646 const struct perf_buffer_opts *opts)
11647 {
11648 const size_t attr_sz = sizeof(struct perf_event_attr);
11649 struct perf_buffer_params p = {};
11650 struct perf_event_attr attr;
11651
11652 if (!OPTS_VALID(opts, perf_buffer_opts))
11653 return libbpf_err_ptr(-EINVAL);
11654
11655 memset(&attr, 0, attr_sz);
11656 attr.size = attr_sz;
11657 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
11658 attr.type = PERF_TYPE_SOFTWARE;
11659 attr.sample_type = PERF_SAMPLE_RAW;
11660 attr.sample_period = 1;
11661 attr.wakeup_events = 1;
11662
11663 p.attr = &attr;
11664 p.sample_cb = sample_cb;
11665 p.lost_cb = lost_cb;
11666 p.ctx = ctx;
11667
11668 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11669 }
11670
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)11671 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
11672 struct perf_event_attr *attr,
11673 perf_buffer_event_fn event_cb, void *ctx,
11674 const struct perf_buffer_raw_opts *opts)
11675 {
11676 struct perf_buffer_params p = {};
11677
11678 if (!attr)
11679 return libbpf_err_ptr(-EINVAL);
11680
11681 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
11682 return libbpf_err_ptr(-EINVAL);
11683
11684 p.attr = attr;
11685 p.event_cb = event_cb;
11686 p.ctx = ctx;
11687 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
11688 p.cpus = OPTS_GET(opts, cpus, NULL);
11689 p.map_keys = OPTS_GET(opts, map_keys, NULL);
11690
11691 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11692 }
11693
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)11694 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11695 struct perf_buffer_params *p)
11696 {
11697 const char *online_cpus_file = "/sys/devices/system/cpu/online";
11698 struct bpf_map_info map;
11699 char msg[STRERR_BUFSIZE];
11700 struct perf_buffer *pb;
11701 bool *online = NULL;
11702 __u32 map_info_len;
11703 int err, i, j, n;
11704
11705 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
11706 pr_warn("page count should be power of two, but is %zu\n",
11707 page_cnt);
11708 return ERR_PTR(-EINVAL);
11709 }
11710
11711 /* best-effort sanity checks */
11712 memset(&map, 0, sizeof(map));
11713 map_info_len = sizeof(map);
11714 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11715 if (err) {
11716 err = -errno;
11717 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11718 * -EBADFD, -EFAULT, or -E2BIG on real error
11719 */
11720 if (err != -EINVAL) {
11721 pr_warn("failed to get map info for map FD %d: %s\n",
11722 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11723 return ERR_PTR(err);
11724 }
11725 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11726 map_fd);
11727 } else {
11728 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11729 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11730 map.name);
11731 return ERR_PTR(-EINVAL);
11732 }
11733 }
11734
11735 pb = calloc(1, sizeof(*pb));
11736 if (!pb)
11737 return ERR_PTR(-ENOMEM);
11738
11739 pb->event_cb = p->event_cb;
11740 pb->sample_cb = p->sample_cb;
11741 pb->lost_cb = p->lost_cb;
11742 pb->ctx = p->ctx;
11743
11744 pb->page_size = getpagesize();
11745 pb->mmap_size = pb->page_size * page_cnt;
11746 pb->map_fd = map_fd;
11747
11748 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11749 if (pb->epoll_fd < 0) {
11750 err = -errno;
11751 pr_warn("failed to create epoll instance: %s\n",
11752 libbpf_strerror_r(err, msg, sizeof(msg)));
11753 goto error;
11754 }
11755
11756 if (p->cpu_cnt > 0) {
11757 pb->cpu_cnt = p->cpu_cnt;
11758 } else {
11759 pb->cpu_cnt = libbpf_num_possible_cpus();
11760 if (pb->cpu_cnt < 0) {
11761 err = pb->cpu_cnt;
11762 goto error;
11763 }
11764 if (map.max_entries && map.max_entries < pb->cpu_cnt)
11765 pb->cpu_cnt = map.max_entries;
11766 }
11767
11768 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11769 if (!pb->events) {
11770 err = -ENOMEM;
11771 pr_warn("failed to allocate events: out of memory\n");
11772 goto error;
11773 }
11774 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11775 if (!pb->cpu_bufs) {
11776 err = -ENOMEM;
11777 pr_warn("failed to allocate buffers: out of memory\n");
11778 goto error;
11779 }
11780
11781 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11782 if (err) {
11783 pr_warn("failed to get online CPU mask: %d\n", err);
11784 goto error;
11785 }
11786
11787 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11788 struct perf_cpu_buf *cpu_buf;
11789 int cpu, map_key;
11790
11791 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11792 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11793
11794 /* in case user didn't explicitly requested particular CPUs to
11795 * be attached to, skip offline/not present CPUs
11796 */
11797 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11798 continue;
11799
11800 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11801 if (IS_ERR(cpu_buf)) {
11802 err = PTR_ERR(cpu_buf);
11803 goto error;
11804 }
11805
11806 pb->cpu_bufs[j] = cpu_buf;
11807
11808 err = bpf_map_update_elem(pb->map_fd, &map_key,
11809 &cpu_buf->fd, 0);
11810 if (err) {
11811 err = -errno;
11812 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11813 cpu, map_key, cpu_buf->fd,
11814 libbpf_strerror_r(err, msg, sizeof(msg)));
11815 goto error;
11816 }
11817
11818 pb->events[j].events = EPOLLIN;
11819 pb->events[j].data.ptr = cpu_buf;
11820 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11821 &pb->events[j]) < 0) {
11822 err = -errno;
11823 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11824 cpu, cpu_buf->fd,
11825 libbpf_strerror_r(err, msg, sizeof(msg)));
11826 goto error;
11827 }
11828 j++;
11829 }
11830 pb->cpu_cnt = j;
11831 free(online);
11832
11833 return pb;
11834
11835 error:
11836 free(online);
11837 if (pb)
11838 perf_buffer__free(pb);
11839 return ERR_PTR(err);
11840 }
11841
11842 struct perf_sample_raw {
11843 struct perf_event_header header;
11844 uint32_t size;
11845 char data[];
11846 };
11847
11848 struct perf_sample_lost {
11849 struct perf_event_header header;
11850 uint64_t id;
11851 uint64_t lost;
11852 uint64_t sample_id;
11853 };
11854
11855 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)11856 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11857 {
11858 struct perf_cpu_buf *cpu_buf = ctx;
11859 struct perf_buffer *pb = cpu_buf->pb;
11860 void *data = e;
11861
11862 /* user wants full control over parsing perf event */
11863 if (pb->event_cb)
11864 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11865
11866 switch (e->type) {
11867 case PERF_RECORD_SAMPLE: {
11868 struct perf_sample_raw *s = data;
11869
11870 if (pb->sample_cb)
11871 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11872 break;
11873 }
11874 case PERF_RECORD_LOST: {
11875 struct perf_sample_lost *s = data;
11876
11877 if (pb->lost_cb)
11878 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11879 break;
11880 }
11881 default:
11882 pr_warn("unknown perf sample type %d\n", e->type);
11883 return LIBBPF_PERF_EVENT_ERROR;
11884 }
11885 return LIBBPF_PERF_EVENT_CONT;
11886 }
11887
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)11888 static int perf_buffer__process_records(struct perf_buffer *pb,
11889 struct perf_cpu_buf *cpu_buf)
11890 {
11891 enum bpf_perf_event_ret ret;
11892
11893 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11894 pb->page_size, &cpu_buf->buf,
11895 &cpu_buf->buf_size,
11896 perf_buffer__process_record, cpu_buf);
11897 if (ret != LIBBPF_PERF_EVENT_CONT)
11898 return ret;
11899 return 0;
11900 }
11901
perf_buffer__epoll_fd(const struct perf_buffer * pb)11902 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11903 {
11904 return pb->epoll_fd;
11905 }
11906
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)11907 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11908 {
11909 int i, cnt, err;
11910
11911 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11912 if (cnt < 0)
11913 return -errno;
11914
11915 for (i = 0; i < cnt; i++) {
11916 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11917
11918 err = perf_buffer__process_records(pb, cpu_buf);
11919 if (err) {
11920 pr_warn("error while processing records: %d\n", err);
11921 return libbpf_err(err);
11922 }
11923 }
11924 return cnt;
11925 }
11926
11927 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11928 * manager.
11929 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)11930 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11931 {
11932 return pb->cpu_cnt;
11933 }
11934
11935 /*
11936 * Return perf_event FD of a ring buffer in *buf_idx* slot of
11937 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11938 * select()/poll()/epoll() Linux syscalls.
11939 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)11940 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11941 {
11942 struct perf_cpu_buf *cpu_buf;
11943
11944 if (buf_idx >= pb->cpu_cnt)
11945 return libbpf_err(-EINVAL);
11946
11947 cpu_buf = pb->cpu_bufs[buf_idx];
11948 if (!cpu_buf)
11949 return libbpf_err(-ENOENT);
11950
11951 return cpu_buf->fd;
11952 }
11953
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)11954 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
11955 {
11956 struct perf_cpu_buf *cpu_buf;
11957
11958 if (buf_idx >= pb->cpu_cnt)
11959 return libbpf_err(-EINVAL);
11960
11961 cpu_buf = pb->cpu_bufs[buf_idx];
11962 if (!cpu_buf)
11963 return libbpf_err(-ENOENT);
11964
11965 *buf = cpu_buf->base;
11966 *buf_size = pb->mmap_size;
11967 return 0;
11968 }
11969
11970 /*
11971 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
11972 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
11973 * consume, do nothing and return success.
11974 * Returns:
11975 * - 0 on success;
11976 * - <0 on failure.
11977 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)11978 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
11979 {
11980 struct perf_cpu_buf *cpu_buf;
11981
11982 if (buf_idx >= pb->cpu_cnt)
11983 return libbpf_err(-EINVAL);
11984
11985 cpu_buf = pb->cpu_bufs[buf_idx];
11986 if (!cpu_buf)
11987 return libbpf_err(-ENOENT);
11988
11989 return perf_buffer__process_records(pb, cpu_buf);
11990 }
11991
perf_buffer__consume(struct perf_buffer * pb)11992 int perf_buffer__consume(struct perf_buffer *pb)
11993 {
11994 int i, err;
11995
11996 for (i = 0; i < pb->cpu_cnt; i++) {
11997 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11998
11999 if (!cpu_buf)
12000 continue;
12001
12002 err = perf_buffer__process_records(pb, cpu_buf);
12003 if (err) {
12004 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12005 return libbpf_err(err);
12006 }
12007 }
12008 return 0;
12009 }
12010
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)12011 int bpf_program__set_attach_target(struct bpf_program *prog,
12012 int attach_prog_fd,
12013 const char *attach_func_name)
12014 {
12015 int btf_obj_fd = 0, btf_id = 0, err;
12016
12017 if (!prog || attach_prog_fd < 0)
12018 return libbpf_err(-EINVAL);
12019
12020 if (prog->obj->loaded)
12021 return libbpf_err(-EINVAL);
12022
12023 if (attach_prog_fd && !attach_func_name) {
12024 /* remember attach_prog_fd and let bpf_program__load() find
12025 * BTF ID during the program load
12026 */
12027 prog->attach_prog_fd = attach_prog_fd;
12028 return 0;
12029 }
12030
12031 if (attach_prog_fd) {
12032 btf_id = libbpf_find_prog_btf_id(attach_func_name,
12033 attach_prog_fd);
12034 if (btf_id < 0)
12035 return libbpf_err(btf_id);
12036 } else {
12037 if (!attach_func_name)
12038 return libbpf_err(-EINVAL);
12039
12040 /* load btf_vmlinux, if not yet */
12041 err = bpf_object__load_vmlinux_btf(prog->obj, true);
12042 if (err)
12043 return libbpf_err(err);
12044 err = find_kernel_btf_id(prog->obj, attach_func_name,
12045 prog->expected_attach_type,
12046 &btf_obj_fd, &btf_id);
12047 if (err)
12048 return libbpf_err(err);
12049 }
12050
12051 prog->attach_btf_id = btf_id;
12052 prog->attach_btf_obj_fd = btf_obj_fd;
12053 prog->attach_prog_fd = attach_prog_fd;
12054 return 0;
12055 }
12056
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)12057 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12058 {
12059 int err = 0, n, len, start, end = -1;
12060 bool *tmp;
12061
12062 *mask = NULL;
12063 *mask_sz = 0;
12064
12065 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12066 while (*s) {
12067 if (*s == ',' || *s == '\n') {
12068 s++;
12069 continue;
12070 }
12071 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12072 if (n <= 0 || n > 2) {
12073 pr_warn("Failed to get CPU range %s: %d\n", s, n);
12074 err = -EINVAL;
12075 goto cleanup;
12076 } else if (n == 1) {
12077 end = start;
12078 }
12079 if (start < 0 || start > end) {
12080 pr_warn("Invalid CPU range [%d,%d] in %s\n",
12081 start, end, s);
12082 err = -EINVAL;
12083 goto cleanup;
12084 }
12085 tmp = realloc(*mask, end + 1);
12086 if (!tmp) {
12087 err = -ENOMEM;
12088 goto cleanup;
12089 }
12090 *mask = tmp;
12091 memset(tmp + *mask_sz, 0, start - *mask_sz);
12092 memset(tmp + start, 1, end - start + 1);
12093 *mask_sz = end + 1;
12094 s += len;
12095 }
12096 if (!*mask_sz) {
12097 pr_warn("Empty CPU range\n");
12098 return -EINVAL;
12099 }
12100 return 0;
12101 cleanup:
12102 free(*mask);
12103 *mask = NULL;
12104 return err;
12105 }
12106
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)12107 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12108 {
12109 int fd, err = 0, len;
12110 char buf[128];
12111
12112 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12113 if (fd < 0) {
12114 err = -errno;
12115 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12116 return err;
12117 }
12118 len = read(fd, buf, sizeof(buf));
12119 close(fd);
12120 if (len <= 0) {
12121 err = len ? -errno : -EINVAL;
12122 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12123 return err;
12124 }
12125 if (len >= sizeof(buf)) {
12126 pr_warn("CPU mask is too big in file %s\n", fcpu);
12127 return -E2BIG;
12128 }
12129 buf[len] = '\0';
12130
12131 return parse_cpu_mask_str(buf, mask, mask_sz);
12132 }
12133
libbpf_num_possible_cpus(void)12134 int libbpf_num_possible_cpus(void)
12135 {
12136 static const char *fcpu = "/sys/devices/system/cpu/possible";
12137 static int cpus;
12138 int err, n, i, tmp_cpus;
12139 bool *mask;
12140
12141 tmp_cpus = READ_ONCE(cpus);
12142 if (tmp_cpus > 0)
12143 return tmp_cpus;
12144
12145 err = parse_cpu_mask_file(fcpu, &mask, &n);
12146 if (err)
12147 return libbpf_err(err);
12148
12149 tmp_cpus = 0;
12150 for (i = 0; i < n; i++) {
12151 if (mask[i])
12152 tmp_cpus++;
12153 }
12154 free(mask);
12155
12156 WRITE_ONCE(cpus, tmp_cpus);
12157 return tmp_cpus;
12158 }
12159
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt)12160 static int populate_skeleton_maps(const struct bpf_object *obj,
12161 struct bpf_map_skeleton *maps,
12162 size_t map_cnt)
12163 {
12164 int i;
12165
12166 for (i = 0; i < map_cnt; i++) {
12167 struct bpf_map **map = maps[i].map;
12168 const char *name = maps[i].name;
12169 void **mmaped = maps[i].mmaped;
12170
12171 *map = bpf_object__find_map_by_name(obj, name);
12172 if (!*map) {
12173 pr_warn("failed to find skeleton map '%s'\n", name);
12174 return -ESRCH;
12175 }
12176
12177 /* externs shouldn't be pre-setup from user code */
12178 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12179 *mmaped = (*map)->mmaped;
12180 }
12181 return 0;
12182 }
12183
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt)12184 static int populate_skeleton_progs(const struct bpf_object *obj,
12185 struct bpf_prog_skeleton *progs,
12186 size_t prog_cnt)
12187 {
12188 int i;
12189
12190 for (i = 0; i < prog_cnt; i++) {
12191 struct bpf_program **prog = progs[i].prog;
12192 const char *name = progs[i].name;
12193
12194 *prog = bpf_object__find_program_by_name(obj, name);
12195 if (!*prog) {
12196 pr_warn("failed to find skeleton program '%s'\n", name);
12197 return -ESRCH;
12198 }
12199 }
12200 return 0;
12201 }
12202
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)12203 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12204 const struct bpf_object_open_opts *opts)
12205 {
12206 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12207 .object_name = s->name,
12208 );
12209 struct bpf_object *obj;
12210 int err;
12211
12212 /* Attempt to preserve opts->object_name, unless overriden by user
12213 * explicitly. Overwriting object name for skeletons is discouraged,
12214 * as it breaks global data maps, because they contain object name
12215 * prefix as their own map name prefix. When skeleton is generated,
12216 * bpftool is making an assumption that this name will stay the same.
12217 */
12218 if (opts) {
12219 memcpy(&skel_opts, opts, sizeof(*opts));
12220 if (!opts->object_name)
12221 skel_opts.object_name = s->name;
12222 }
12223
12224 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12225 err = libbpf_get_error(obj);
12226 if (err) {
12227 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12228 s->name, err);
12229 return libbpf_err(err);
12230 }
12231
12232 *s->obj = obj;
12233 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12234 if (err) {
12235 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12236 return libbpf_err(err);
12237 }
12238
12239 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12240 if (err) {
12241 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12242 return libbpf_err(err);
12243 }
12244
12245 return 0;
12246 }
12247
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)12248 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12249 {
12250 int err, len, var_idx, i;
12251 const char *var_name;
12252 const struct bpf_map *map;
12253 struct btf *btf;
12254 __u32 map_type_id;
12255 const struct btf_type *map_type, *var_type;
12256 const struct bpf_var_skeleton *var_skel;
12257 struct btf_var_secinfo *var;
12258
12259 if (!s->obj)
12260 return libbpf_err(-EINVAL);
12261
12262 btf = bpf_object__btf(s->obj);
12263 if (!btf) {
12264 pr_warn("subskeletons require BTF at runtime (object %s)\n",
12265 bpf_object__name(s->obj));
12266 return libbpf_err(-errno);
12267 }
12268
12269 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12270 if (err) {
12271 pr_warn("failed to populate subskeleton maps: %d\n", err);
12272 return libbpf_err(err);
12273 }
12274
12275 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12276 if (err) {
12277 pr_warn("failed to populate subskeleton maps: %d\n", err);
12278 return libbpf_err(err);
12279 }
12280
12281 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12282 var_skel = &s->vars[var_idx];
12283 map = *var_skel->map;
12284 map_type_id = bpf_map__btf_value_type_id(map);
12285 map_type = btf__type_by_id(btf, map_type_id);
12286
12287 if (!btf_is_datasec(map_type)) {
12288 pr_warn("type for map '%1$s' is not a datasec: %2$s",
12289 bpf_map__name(map),
12290 __btf_kind_str(btf_kind(map_type)));
12291 return libbpf_err(-EINVAL);
12292 }
12293
12294 len = btf_vlen(map_type);
12295 var = btf_var_secinfos(map_type);
12296 for (i = 0; i < len; i++, var++) {
12297 var_type = btf__type_by_id(btf, var->type);
12298 var_name = btf__name_by_offset(btf, var_type->name_off);
12299 if (strcmp(var_name, var_skel->name) == 0) {
12300 *var_skel->addr = map->mmaped + var->offset;
12301 break;
12302 }
12303 }
12304 }
12305 return 0;
12306 }
12307
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)12308 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12309 {
12310 if (!s)
12311 return;
12312 free(s->maps);
12313 free(s->progs);
12314 free(s->vars);
12315 free(s);
12316 }
12317
bpf_object__load_skeleton(struct bpf_object_skeleton * s)12318 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12319 {
12320 int i, err;
12321
12322 err = bpf_object__load(*s->obj);
12323 if (err) {
12324 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12325 return libbpf_err(err);
12326 }
12327
12328 for (i = 0; i < s->map_cnt; i++) {
12329 struct bpf_map *map = *s->maps[i].map;
12330 size_t mmap_sz = bpf_map_mmap_sz(map);
12331 int prot, map_fd = bpf_map__fd(map);
12332 void **mmaped = s->maps[i].mmaped;
12333
12334 if (!mmaped)
12335 continue;
12336
12337 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12338 *mmaped = NULL;
12339 continue;
12340 }
12341
12342 if (map->def.map_flags & BPF_F_RDONLY_PROG)
12343 prot = PROT_READ;
12344 else
12345 prot = PROT_READ | PROT_WRITE;
12346
12347 /* Remap anonymous mmap()-ed "map initialization image" as
12348 * a BPF map-backed mmap()-ed memory, but preserving the same
12349 * memory address. This will cause kernel to change process'
12350 * page table to point to a different piece of kernel memory,
12351 * but from userspace point of view memory address (and its
12352 * contents, being identical at this point) will stay the
12353 * same. This mapping will be released by bpf_object__close()
12354 * as per normal clean up procedure, so we don't need to worry
12355 * about it from skeleton's clean up perspective.
12356 */
12357 *mmaped = mmap(map->mmaped, mmap_sz, prot,
12358 MAP_SHARED | MAP_FIXED, map_fd, 0);
12359 if (*mmaped == MAP_FAILED) {
12360 err = -errno;
12361 *mmaped = NULL;
12362 pr_warn("failed to re-mmap() map '%s': %d\n",
12363 bpf_map__name(map), err);
12364 return libbpf_err(err);
12365 }
12366 }
12367
12368 return 0;
12369 }
12370
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)12371 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12372 {
12373 int i, err;
12374
12375 for (i = 0; i < s->prog_cnt; i++) {
12376 struct bpf_program *prog = *s->progs[i].prog;
12377 struct bpf_link **link = s->progs[i].link;
12378
12379 if (!prog->autoload || !prog->autoattach)
12380 continue;
12381
12382 /* auto-attaching not supported for this program */
12383 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12384 continue;
12385
12386 /* if user already set the link manually, don't attempt auto-attach */
12387 if (*link)
12388 continue;
12389
12390 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12391 if (err) {
12392 pr_warn("prog '%s': failed to auto-attach: %d\n",
12393 bpf_program__name(prog), err);
12394 return libbpf_err(err);
12395 }
12396
12397 /* It's possible that for some SEC() definitions auto-attach
12398 * is supported in some cases (e.g., if definition completely
12399 * specifies target information), but is not in other cases.
12400 * SEC("uprobe") is one such case. If user specified target
12401 * binary and function name, such BPF program can be
12402 * auto-attached. But if not, it shouldn't trigger skeleton's
12403 * attach to fail. It should just be skipped.
12404 * attach_fn signals such case with returning 0 (no error) and
12405 * setting link to NULL.
12406 */
12407 }
12408
12409 return 0;
12410 }
12411
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)12412 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12413 {
12414 int i;
12415
12416 for (i = 0; i < s->prog_cnt; i++) {
12417 struct bpf_link **link = s->progs[i].link;
12418
12419 bpf_link__destroy(*link);
12420 *link = NULL;
12421 }
12422 }
12423
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)12424 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12425 {
12426 if (!s)
12427 return;
12428
12429 if (s->progs)
12430 bpf_object__detach_skeleton(s);
12431 if (s->obj)
12432 bpf_object__close(*s->obj);
12433 free(s->maps);
12434 free(s->progs);
12435 free(s);
12436 }
12437