1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/rcupdate.h>
8 #include <linux/random.h>
9 #include <linux/smp.h>
10 #include <linux/topology.h>
11 #include <linux/ktime.h>
12 #include <linux/sched.h>
13 #include <linux/uidgid.h>
14 #include <linux/filter.h>
15 #include <linux/ctype.h>
16 #include <linux/jiffies.h>
17 #include <linux/pid_namespace.h>
18 #include <linux/poison.h>
19 #include <linux/proc_ns.h>
20 #include <linux/security.h>
21 #include <linux/btf_ids.h>
22
23 #include "../../lib/kstrtox.h"
24
25 /* If kernel subsystem is allowing eBPF programs to call this function,
26 * inside its own verifier_ops->get_func_proto() callback it should return
27 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
28 *
29 * Different map implementations will rely on rcu in map methods
30 * lookup/update/delete, therefore eBPF programs must run under rcu lock
31 * if program is allowed to access maps, so check rcu_read_lock_held in
32 * all three functions.
33 */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)34 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
35 {
36 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
37 return (unsigned long) map->ops->map_lookup_elem(map, key);
38 }
39
40 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
41 .func = bpf_map_lookup_elem,
42 .gpl_only = false,
43 .pkt_access = true,
44 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
45 .arg1_type = ARG_CONST_MAP_PTR,
46 .arg2_type = ARG_PTR_TO_MAP_KEY,
47 };
48
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)49 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
50 void *, value, u64, flags)
51 {
52 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
53 return map->ops->map_update_elem(map, key, value, flags);
54 }
55
56 const struct bpf_func_proto bpf_map_update_elem_proto = {
57 .func = bpf_map_update_elem,
58 .gpl_only = false,
59 .pkt_access = true,
60 .ret_type = RET_INTEGER,
61 .arg1_type = ARG_CONST_MAP_PTR,
62 .arg2_type = ARG_PTR_TO_MAP_KEY,
63 .arg3_type = ARG_PTR_TO_MAP_VALUE,
64 .arg4_type = ARG_ANYTHING,
65 };
66
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)67 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
68 {
69 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
70 return map->ops->map_delete_elem(map, key);
71 }
72
73 const struct bpf_func_proto bpf_map_delete_elem_proto = {
74 .func = bpf_map_delete_elem,
75 .gpl_only = false,
76 .pkt_access = true,
77 .ret_type = RET_INTEGER,
78 .arg1_type = ARG_CONST_MAP_PTR,
79 .arg2_type = ARG_PTR_TO_MAP_KEY,
80 };
81
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)82 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
83 {
84 return map->ops->map_push_elem(map, value, flags);
85 }
86
87 const struct bpf_func_proto bpf_map_push_elem_proto = {
88 .func = bpf_map_push_elem,
89 .gpl_only = false,
90 .pkt_access = true,
91 .ret_type = RET_INTEGER,
92 .arg1_type = ARG_CONST_MAP_PTR,
93 .arg2_type = ARG_PTR_TO_MAP_VALUE,
94 .arg3_type = ARG_ANYTHING,
95 };
96
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)97 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
98 {
99 return map->ops->map_pop_elem(map, value);
100 }
101
102 const struct bpf_func_proto bpf_map_pop_elem_proto = {
103 .func = bpf_map_pop_elem,
104 .gpl_only = false,
105 .ret_type = RET_INTEGER,
106 .arg1_type = ARG_CONST_MAP_PTR,
107 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
108 };
109
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)110 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
111 {
112 return map->ops->map_peek_elem(map, value);
113 }
114
115 const struct bpf_func_proto bpf_map_peek_elem_proto = {
116 .func = bpf_map_peek_elem,
117 .gpl_only = false,
118 .ret_type = RET_INTEGER,
119 .arg1_type = ARG_CONST_MAP_PTR,
120 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
121 };
122
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)123 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
124 {
125 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
126 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
127 }
128
129 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
130 .func = bpf_map_lookup_percpu_elem,
131 .gpl_only = false,
132 .pkt_access = true,
133 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
134 .arg1_type = ARG_CONST_MAP_PTR,
135 .arg2_type = ARG_PTR_TO_MAP_KEY,
136 .arg3_type = ARG_ANYTHING,
137 };
138
139 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
140 .func = bpf_user_rnd_u32,
141 .gpl_only = false,
142 .ret_type = RET_INTEGER,
143 };
144
BPF_CALL_0(bpf_get_smp_processor_id)145 BPF_CALL_0(bpf_get_smp_processor_id)
146 {
147 return smp_processor_id();
148 }
149
150 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
151 .func = bpf_get_smp_processor_id,
152 .gpl_only = false,
153 .ret_type = RET_INTEGER,
154 };
155
BPF_CALL_0(bpf_get_numa_node_id)156 BPF_CALL_0(bpf_get_numa_node_id)
157 {
158 return numa_node_id();
159 }
160
161 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
162 .func = bpf_get_numa_node_id,
163 .gpl_only = false,
164 .ret_type = RET_INTEGER,
165 };
166
BPF_CALL_0(bpf_ktime_get_ns)167 BPF_CALL_0(bpf_ktime_get_ns)
168 {
169 /* NMI safe access to clock monotonic */
170 return ktime_get_mono_fast_ns();
171 }
172
173 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
174 .func = bpf_ktime_get_ns,
175 .gpl_only = false,
176 .ret_type = RET_INTEGER,
177 };
178
BPF_CALL_0(bpf_ktime_get_boot_ns)179 BPF_CALL_0(bpf_ktime_get_boot_ns)
180 {
181 /* NMI safe access to clock boottime */
182 return ktime_get_boot_fast_ns();
183 }
184
185 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
186 .func = bpf_ktime_get_boot_ns,
187 .gpl_only = false,
188 .ret_type = RET_INTEGER,
189 };
190
BPF_CALL_0(bpf_ktime_get_coarse_ns)191 BPF_CALL_0(bpf_ktime_get_coarse_ns)
192 {
193 return ktime_get_coarse_ns();
194 }
195
196 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
197 .func = bpf_ktime_get_coarse_ns,
198 .gpl_only = false,
199 .ret_type = RET_INTEGER,
200 };
201
BPF_CALL_0(bpf_ktime_get_tai_ns)202 BPF_CALL_0(bpf_ktime_get_tai_ns)
203 {
204 /* NMI safe access to clock tai */
205 return ktime_get_tai_fast_ns();
206 }
207
208 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
209 .func = bpf_ktime_get_tai_ns,
210 .gpl_only = false,
211 .ret_type = RET_INTEGER,
212 };
213
BPF_CALL_0(bpf_get_current_pid_tgid)214 BPF_CALL_0(bpf_get_current_pid_tgid)
215 {
216 struct task_struct *task = current;
217
218 if (unlikely(!task))
219 return -EINVAL;
220
221 return (u64) task->tgid << 32 | task->pid;
222 }
223
224 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
225 .func = bpf_get_current_pid_tgid,
226 .gpl_only = false,
227 .ret_type = RET_INTEGER,
228 };
229
BPF_CALL_0(bpf_get_current_uid_gid)230 BPF_CALL_0(bpf_get_current_uid_gid)
231 {
232 struct task_struct *task = current;
233 kuid_t uid;
234 kgid_t gid;
235
236 if (unlikely(!task))
237 return -EINVAL;
238
239 current_uid_gid(&uid, &gid);
240 return (u64) from_kgid(&init_user_ns, gid) << 32 |
241 from_kuid(&init_user_ns, uid);
242 }
243
244 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
245 .func = bpf_get_current_uid_gid,
246 .gpl_only = false,
247 .ret_type = RET_INTEGER,
248 };
249
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)250 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
251 {
252 struct task_struct *task = current;
253
254 if (unlikely(!task))
255 goto err_clear;
256
257 /* Verifier guarantees that size > 0 */
258 strscpy(buf, task->comm, size);
259 return 0;
260 err_clear:
261 memset(buf, 0, size);
262 return -EINVAL;
263 }
264
265 const struct bpf_func_proto bpf_get_current_comm_proto = {
266 .func = bpf_get_current_comm,
267 .gpl_only = false,
268 .ret_type = RET_INTEGER,
269 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
270 .arg2_type = ARG_CONST_SIZE,
271 };
272
273 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
274
__bpf_spin_lock(struct bpf_spin_lock * lock)275 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
276 {
277 arch_spinlock_t *l = (void *)lock;
278 union {
279 __u32 val;
280 arch_spinlock_t lock;
281 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
282
283 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
284 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
285 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
286 arch_spin_lock(l);
287 }
288
__bpf_spin_unlock(struct bpf_spin_lock * lock)289 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
290 {
291 arch_spinlock_t *l = (void *)lock;
292
293 arch_spin_unlock(l);
294 }
295
296 #else
297
__bpf_spin_lock(struct bpf_spin_lock * lock)298 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
299 {
300 atomic_t *l = (void *)lock;
301
302 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
303 do {
304 atomic_cond_read_relaxed(l, !VAL);
305 } while (atomic_xchg(l, 1));
306 }
307
__bpf_spin_unlock(struct bpf_spin_lock * lock)308 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
309 {
310 atomic_t *l = (void *)lock;
311
312 atomic_set_release(l, 0);
313 }
314
315 #endif
316
317 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
318
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)319 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
320 {
321 unsigned long flags;
322
323 local_irq_save(flags);
324 __bpf_spin_lock(lock);
325 __this_cpu_write(irqsave_flags, flags);
326 }
327
BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)328 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
329 {
330 __bpf_spin_lock_irqsave(lock);
331 return 0;
332 }
333
334 const struct bpf_func_proto bpf_spin_lock_proto = {
335 .func = bpf_spin_lock,
336 .gpl_only = false,
337 .ret_type = RET_VOID,
338 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
339 };
340
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)341 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
342 {
343 unsigned long flags;
344
345 flags = __this_cpu_read(irqsave_flags);
346 __bpf_spin_unlock(lock);
347 local_irq_restore(flags);
348 }
349
BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)350 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
351 {
352 __bpf_spin_unlock_irqrestore(lock);
353 return 0;
354 }
355
356 const struct bpf_func_proto bpf_spin_unlock_proto = {
357 .func = bpf_spin_unlock,
358 .gpl_only = false,
359 .ret_type = RET_VOID,
360 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
361 };
362
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)363 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
364 bool lock_src)
365 {
366 struct bpf_spin_lock *lock;
367
368 if (lock_src)
369 lock = src + map->spin_lock_off;
370 else
371 lock = dst + map->spin_lock_off;
372 preempt_disable();
373 __bpf_spin_lock_irqsave(lock);
374 copy_map_value(map, dst, src);
375 __bpf_spin_unlock_irqrestore(lock);
376 preempt_enable();
377 }
378
BPF_CALL_0(bpf_jiffies64)379 BPF_CALL_0(bpf_jiffies64)
380 {
381 return get_jiffies_64();
382 }
383
384 const struct bpf_func_proto bpf_jiffies64_proto = {
385 .func = bpf_jiffies64,
386 .gpl_only = false,
387 .ret_type = RET_INTEGER,
388 };
389
390 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)391 BPF_CALL_0(bpf_get_current_cgroup_id)
392 {
393 struct cgroup *cgrp;
394 u64 cgrp_id;
395
396 rcu_read_lock();
397 cgrp = task_dfl_cgroup(current);
398 cgrp_id = cgroup_id(cgrp);
399 rcu_read_unlock();
400
401 return cgrp_id;
402 }
403
404 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
405 .func = bpf_get_current_cgroup_id,
406 .gpl_only = false,
407 .ret_type = RET_INTEGER,
408 };
409
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)410 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
411 {
412 struct cgroup *cgrp;
413 struct cgroup *ancestor;
414 u64 cgrp_id;
415
416 rcu_read_lock();
417 cgrp = task_dfl_cgroup(current);
418 ancestor = cgroup_ancestor(cgrp, ancestor_level);
419 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
420 rcu_read_unlock();
421
422 return cgrp_id;
423 }
424
425 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
426 .func = bpf_get_current_ancestor_cgroup_id,
427 .gpl_only = false,
428 .ret_type = RET_INTEGER,
429 .arg1_type = ARG_ANYTHING,
430 };
431 #endif /* CONFIG_CGROUPS */
432
433 #define BPF_STRTOX_BASE_MASK 0x1F
434
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)435 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
436 unsigned long long *res, bool *is_negative)
437 {
438 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
439 const char *cur_buf = buf;
440 size_t cur_len = buf_len;
441 unsigned int consumed;
442 size_t val_len;
443 char str[64];
444
445 if (!buf || !buf_len || !res || !is_negative)
446 return -EINVAL;
447
448 if (base != 0 && base != 8 && base != 10 && base != 16)
449 return -EINVAL;
450
451 if (flags & ~BPF_STRTOX_BASE_MASK)
452 return -EINVAL;
453
454 while (cur_buf < buf + buf_len && isspace(*cur_buf))
455 ++cur_buf;
456
457 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
458 if (*is_negative)
459 ++cur_buf;
460
461 consumed = cur_buf - buf;
462 cur_len -= consumed;
463 if (!cur_len)
464 return -EINVAL;
465
466 cur_len = min(cur_len, sizeof(str) - 1);
467 memcpy(str, cur_buf, cur_len);
468 str[cur_len] = '\0';
469 cur_buf = str;
470
471 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
472 val_len = _parse_integer(cur_buf, base, res);
473
474 if (val_len & KSTRTOX_OVERFLOW)
475 return -ERANGE;
476
477 if (val_len == 0)
478 return -EINVAL;
479
480 cur_buf += val_len;
481 consumed += cur_buf - str;
482
483 return consumed;
484 }
485
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)486 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
487 long long *res)
488 {
489 unsigned long long _res;
490 bool is_negative;
491 int err;
492
493 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
494 if (err < 0)
495 return err;
496 if (is_negative) {
497 if ((long long)-_res > 0)
498 return -ERANGE;
499 *res = -_res;
500 } else {
501 if ((long long)_res < 0)
502 return -ERANGE;
503 *res = _res;
504 }
505 return err;
506 }
507
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,long *,res)508 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
509 long *, res)
510 {
511 long long _res;
512 int err;
513
514 err = __bpf_strtoll(buf, buf_len, flags, &_res);
515 if (err < 0)
516 return err;
517 if (_res != (long)_res)
518 return -ERANGE;
519 *res = _res;
520 return err;
521 }
522
523 const struct bpf_func_proto bpf_strtol_proto = {
524 .func = bpf_strtol,
525 .gpl_only = false,
526 .ret_type = RET_INTEGER,
527 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
528 .arg2_type = ARG_CONST_SIZE,
529 .arg3_type = ARG_ANYTHING,
530 .arg4_type = ARG_PTR_TO_LONG,
531 };
532
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,unsigned long *,res)533 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
534 unsigned long *, res)
535 {
536 unsigned long long _res;
537 bool is_negative;
538 int err;
539
540 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
541 if (err < 0)
542 return err;
543 if (is_negative)
544 return -EINVAL;
545 if (_res != (unsigned long)_res)
546 return -ERANGE;
547 *res = _res;
548 return err;
549 }
550
551 const struct bpf_func_proto bpf_strtoul_proto = {
552 .func = bpf_strtoul,
553 .gpl_only = false,
554 .ret_type = RET_INTEGER,
555 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
556 .arg2_type = ARG_CONST_SIZE,
557 .arg3_type = ARG_ANYTHING,
558 .arg4_type = ARG_PTR_TO_LONG,
559 };
560
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)561 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
562 {
563 return strncmp(s1, s2, s1_sz);
564 }
565
566 static const struct bpf_func_proto bpf_strncmp_proto = {
567 .func = bpf_strncmp,
568 .gpl_only = false,
569 .ret_type = RET_INTEGER,
570 .arg1_type = ARG_PTR_TO_MEM,
571 .arg2_type = ARG_CONST_SIZE,
572 .arg3_type = ARG_PTR_TO_CONST_STR,
573 };
574
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)575 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
576 struct bpf_pidns_info *, nsdata, u32, size)
577 {
578 struct task_struct *task = current;
579 struct pid_namespace *pidns;
580 int err = -EINVAL;
581
582 if (unlikely(size != sizeof(struct bpf_pidns_info)))
583 goto clear;
584
585 if (unlikely((u64)(dev_t)dev != dev))
586 goto clear;
587
588 if (unlikely(!task))
589 goto clear;
590
591 pidns = task_active_pid_ns(task);
592 if (unlikely(!pidns)) {
593 err = -ENOENT;
594 goto clear;
595 }
596
597 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
598 goto clear;
599
600 nsdata->pid = task_pid_nr_ns(task, pidns);
601 nsdata->tgid = task_tgid_nr_ns(task, pidns);
602 return 0;
603 clear:
604 memset((void *)nsdata, 0, (size_t) size);
605 return err;
606 }
607
608 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
609 .func = bpf_get_ns_current_pid_tgid,
610 .gpl_only = false,
611 .ret_type = RET_INTEGER,
612 .arg1_type = ARG_ANYTHING,
613 .arg2_type = ARG_ANYTHING,
614 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
615 .arg4_type = ARG_CONST_SIZE,
616 };
617
618 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
619 .func = bpf_get_raw_cpu_id,
620 .gpl_only = false,
621 .ret_type = RET_INTEGER,
622 };
623
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)624 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
625 u64, flags, void *, data, u64, size)
626 {
627 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
628 return -EINVAL;
629
630 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
631 }
632
633 const struct bpf_func_proto bpf_event_output_data_proto = {
634 .func = bpf_event_output_data,
635 .gpl_only = true,
636 .ret_type = RET_INTEGER,
637 .arg1_type = ARG_PTR_TO_CTX,
638 .arg2_type = ARG_CONST_MAP_PTR,
639 .arg3_type = ARG_ANYTHING,
640 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
641 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
642 };
643
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)644 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
645 const void __user *, user_ptr)
646 {
647 int ret = copy_from_user(dst, user_ptr, size);
648
649 if (unlikely(ret)) {
650 memset(dst, 0, size);
651 ret = -EFAULT;
652 }
653
654 return ret;
655 }
656
657 const struct bpf_func_proto bpf_copy_from_user_proto = {
658 .func = bpf_copy_from_user,
659 .gpl_only = false,
660 .ret_type = RET_INTEGER,
661 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
662 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
663 .arg3_type = ARG_ANYTHING,
664 };
665
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)666 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
667 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
668 {
669 int ret;
670
671 /* flags is not used yet */
672 if (unlikely(flags))
673 return -EINVAL;
674
675 if (unlikely(!size))
676 return 0;
677
678 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
679 if (ret == size)
680 return 0;
681
682 memset(dst, 0, size);
683 /* Return -EFAULT for partial read */
684 return ret < 0 ? ret : -EFAULT;
685 }
686
687 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
688 .func = bpf_copy_from_user_task,
689 .gpl_only = true,
690 .ret_type = RET_INTEGER,
691 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
692 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
693 .arg3_type = ARG_ANYTHING,
694 .arg4_type = ARG_PTR_TO_BTF_ID,
695 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
696 .arg5_type = ARG_ANYTHING
697 };
698
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)699 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
700 {
701 if (cpu >= nr_cpu_ids)
702 return (unsigned long)NULL;
703
704 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
705 }
706
707 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
708 .func = bpf_per_cpu_ptr,
709 .gpl_only = false,
710 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
711 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
712 .arg2_type = ARG_ANYTHING,
713 };
714
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)715 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
716 {
717 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
718 }
719
720 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
721 .func = bpf_this_cpu_ptr,
722 .gpl_only = false,
723 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
724 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
725 };
726
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)727 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
728 size_t bufsz)
729 {
730 void __user *user_ptr = (__force void __user *)unsafe_ptr;
731
732 buf[0] = 0;
733
734 switch (fmt_ptype) {
735 case 's':
736 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
737 if ((unsigned long)unsafe_ptr < TASK_SIZE)
738 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
739 fallthrough;
740 #endif
741 case 'k':
742 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
743 case 'u':
744 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
745 }
746
747 return -EINVAL;
748 }
749
750 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
751 * arguments representation.
752 */
753 #define MAX_BPRINTF_BUF_LEN 512
754
755 /* Support executing three nested bprintf helper calls on a given CPU */
756 #define MAX_BPRINTF_NEST_LEVEL 3
757 struct bpf_bprintf_buffers {
758 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
759 };
760 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
761 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
762
try_get_fmt_tmp_buf(char ** tmp_buf)763 static int try_get_fmt_tmp_buf(char **tmp_buf)
764 {
765 struct bpf_bprintf_buffers *bufs;
766 int nest_level;
767
768 preempt_disable();
769 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
770 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
771 this_cpu_dec(bpf_bprintf_nest_level);
772 preempt_enable();
773 return -EBUSY;
774 }
775 bufs = this_cpu_ptr(&bpf_bprintf_bufs);
776 *tmp_buf = bufs->tmp_bufs[nest_level - 1];
777
778 return 0;
779 }
780
bpf_bprintf_cleanup(void)781 void bpf_bprintf_cleanup(void)
782 {
783 if (this_cpu_read(bpf_bprintf_nest_level)) {
784 this_cpu_dec(bpf_bprintf_nest_level);
785 preempt_enable();
786 }
787 }
788
789 /*
790 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
791 *
792 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
793 *
794 * This can be used in two ways:
795 * - Format string verification only: when bin_args is NULL
796 * - Arguments preparation: in addition to the above verification, it writes in
797 * bin_args a binary representation of arguments usable by bstr_printf where
798 * pointers from BPF have been sanitized.
799 *
800 * In argument preparation mode, if 0 is returned, safe temporary buffers are
801 * allocated and bpf_bprintf_cleanup should be called to free them after use.
802 */
bpf_bprintf_prepare(char * fmt,u32 fmt_size,const u64 * raw_args,u32 ** bin_args,u32 num_args)803 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
804 u32 **bin_args, u32 num_args)
805 {
806 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
807 size_t sizeof_cur_arg, sizeof_cur_ip;
808 int err, i, num_spec = 0;
809 u64 cur_arg;
810 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
811
812 fmt_end = strnchr(fmt, fmt_size, 0);
813 if (!fmt_end)
814 return -EINVAL;
815 fmt_size = fmt_end - fmt;
816
817 if (bin_args) {
818 if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
819 return -EBUSY;
820
821 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
822 *bin_args = (u32 *)tmp_buf;
823 }
824
825 for (i = 0; i < fmt_size; i++) {
826 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
827 err = -EINVAL;
828 goto out;
829 }
830
831 if (fmt[i] != '%')
832 continue;
833
834 if (fmt[i + 1] == '%') {
835 i++;
836 continue;
837 }
838
839 if (num_spec >= num_args) {
840 err = -EINVAL;
841 goto out;
842 }
843
844 /* The string is zero-terminated so if fmt[i] != 0, we can
845 * always access fmt[i + 1], in the worst case it will be a 0
846 */
847 i++;
848
849 /* skip optional "[0 +-][num]" width formatting field */
850 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
851 fmt[i] == ' ')
852 i++;
853 if (fmt[i] >= '1' && fmt[i] <= '9') {
854 i++;
855 while (fmt[i] >= '0' && fmt[i] <= '9')
856 i++;
857 }
858
859 if (fmt[i] == 'p') {
860 sizeof_cur_arg = sizeof(long);
861
862 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
863 fmt[i + 2] == 's') {
864 fmt_ptype = fmt[i + 1];
865 i += 2;
866 goto fmt_str;
867 }
868
869 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
870 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
871 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
872 fmt[i + 1] == 'S') {
873 /* just kernel pointers */
874 if (tmp_buf)
875 cur_arg = raw_args[num_spec];
876 i++;
877 goto nocopy_fmt;
878 }
879
880 if (fmt[i + 1] == 'B') {
881 if (tmp_buf) {
882 err = snprintf(tmp_buf,
883 (tmp_buf_end - tmp_buf),
884 "%pB",
885 (void *)(long)raw_args[num_spec]);
886 tmp_buf += (err + 1);
887 }
888
889 i++;
890 num_spec++;
891 continue;
892 }
893
894 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
895 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
896 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
897 err = -EINVAL;
898 goto out;
899 }
900
901 i += 2;
902 if (!tmp_buf)
903 goto nocopy_fmt;
904
905 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
906 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
907 err = -ENOSPC;
908 goto out;
909 }
910
911 unsafe_ptr = (char *)(long)raw_args[num_spec];
912 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
913 sizeof_cur_ip);
914 if (err < 0)
915 memset(cur_ip, 0, sizeof_cur_ip);
916
917 /* hack: bstr_printf expects IP addresses to be
918 * pre-formatted as strings, ironically, the easiest way
919 * to do that is to call snprintf.
920 */
921 ip_spec[2] = fmt[i - 1];
922 ip_spec[3] = fmt[i];
923 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
924 ip_spec, &cur_ip);
925
926 tmp_buf += err + 1;
927 num_spec++;
928
929 continue;
930 } else if (fmt[i] == 's') {
931 fmt_ptype = fmt[i];
932 fmt_str:
933 if (fmt[i + 1] != 0 &&
934 !isspace(fmt[i + 1]) &&
935 !ispunct(fmt[i + 1])) {
936 err = -EINVAL;
937 goto out;
938 }
939
940 if (!tmp_buf)
941 goto nocopy_fmt;
942
943 if (tmp_buf_end == tmp_buf) {
944 err = -ENOSPC;
945 goto out;
946 }
947
948 unsafe_ptr = (char *)(long)raw_args[num_spec];
949 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
950 fmt_ptype,
951 tmp_buf_end - tmp_buf);
952 if (err < 0) {
953 tmp_buf[0] = '\0';
954 err = 1;
955 }
956
957 tmp_buf += err;
958 num_spec++;
959
960 continue;
961 } else if (fmt[i] == 'c') {
962 if (!tmp_buf)
963 goto nocopy_fmt;
964
965 if (tmp_buf_end == tmp_buf) {
966 err = -ENOSPC;
967 goto out;
968 }
969
970 *tmp_buf = raw_args[num_spec];
971 tmp_buf++;
972 num_spec++;
973
974 continue;
975 }
976
977 sizeof_cur_arg = sizeof(int);
978
979 if (fmt[i] == 'l') {
980 sizeof_cur_arg = sizeof(long);
981 i++;
982 }
983 if (fmt[i] == 'l') {
984 sizeof_cur_arg = sizeof(long long);
985 i++;
986 }
987
988 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
989 fmt[i] != 'x' && fmt[i] != 'X') {
990 err = -EINVAL;
991 goto out;
992 }
993
994 if (tmp_buf)
995 cur_arg = raw_args[num_spec];
996 nocopy_fmt:
997 if (tmp_buf) {
998 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
999 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1000 err = -ENOSPC;
1001 goto out;
1002 }
1003
1004 if (sizeof_cur_arg == 8) {
1005 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1006 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1007 } else {
1008 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1009 }
1010 tmp_buf += sizeof_cur_arg;
1011 }
1012 num_spec++;
1013 }
1014
1015 err = 0;
1016 out:
1017 if (err)
1018 bpf_bprintf_cleanup();
1019 return err;
1020 }
1021
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,data,u32,data_len)1022 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1023 const void *, data, u32, data_len)
1024 {
1025 int err, num_args;
1026 u32 *bin_args;
1027
1028 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1029 (data_len && !data))
1030 return -EINVAL;
1031 num_args = data_len / 8;
1032
1033 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1034 * can safely give an unbounded size.
1035 */
1036 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
1037 if (err < 0)
1038 return err;
1039
1040 err = bstr_printf(str, str_size, fmt, bin_args);
1041
1042 bpf_bprintf_cleanup();
1043
1044 return err + 1;
1045 }
1046
1047 const struct bpf_func_proto bpf_snprintf_proto = {
1048 .func = bpf_snprintf,
1049 .gpl_only = true,
1050 .ret_type = RET_INTEGER,
1051 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1052 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1053 .arg3_type = ARG_PTR_TO_CONST_STR,
1054 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1055 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1056 };
1057
1058 /* BPF map elements can contain 'struct bpf_timer'.
1059 * Such map owns all of its BPF timers.
1060 * 'struct bpf_timer' is allocated as part of map element allocation
1061 * and it's zero initialized.
1062 * That space is used to keep 'struct bpf_timer_kern'.
1063 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1064 * remembers 'struct bpf_map *' pointer it's part of.
1065 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1066 * bpf_timer_start() arms the timer.
1067 * If user space reference to a map goes to zero at this point
1068 * ops->map_release_uref callback is responsible for cancelling the timers,
1069 * freeing their memory, and decrementing prog's refcnts.
1070 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1071 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1072 * freeing the timers when inner map is replaced or deleted by user space.
1073 */
1074 struct bpf_hrtimer {
1075 struct hrtimer timer;
1076 struct bpf_map *map;
1077 struct bpf_prog *prog;
1078 void __rcu *callback_fn;
1079 void *value;
1080 };
1081
1082 /* the actual struct hidden inside uapi struct bpf_timer */
1083 struct bpf_timer_kern {
1084 struct bpf_hrtimer *timer;
1085 /* bpf_spin_lock is used here instead of spinlock_t to make
1086 * sure that it always fits into space reserved by struct bpf_timer
1087 * regardless of LOCKDEP and spinlock debug flags.
1088 */
1089 struct bpf_spin_lock lock;
1090 } __attribute__((aligned(8)));
1091
1092 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1093
bpf_timer_cb(struct hrtimer * hrtimer)1094 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1095 {
1096 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1097 struct bpf_map *map = t->map;
1098 void *value = t->value;
1099 bpf_callback_t callback_fn;
1100 void *key;
1101 u32 idx;
1102
1103 BTF_TYPE_EMIT(struct bpf_timer);
1104 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1105 if (!callback_fn)
1106 goto out;
1107
1108 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1109 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1110 * Remember the timer this callback is servicing to prevent
1111 * deadlock if callback_fn() calls bpf_timer_cancel() or
1112 * bpf_map_delete_elem() on the same timer.
1113 */
1114 this_cpu_write(hrtimer_running, t);
1115 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1116 struct bpf_array *array = container_of(map, struct bpf_array, map);
1117
1118 /* compute the key */
1119 idx = ((char *)value - array->value) / array->elem_size;
1120 key = &idx;
1121 } else { /* hash or lru */
1122 key = value - round_up(map->key_size, 8);
1123 }
1124
1125 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1126 /* The verifier checked that return value is zero. */
1127
1128 this_cpu_write(hrtimer_running, NULL);
1129 out:
1130 return HRTIMER_NORESTART;
1131 }
1132
BPF_CALL_3(bpf_timer_init,struct bpf_timer_kern *,timer,struct bpf_map *,map,u64,flags)1133 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1134 u64, flags)
1135 {
1136 clockid_t clockid = flags & (MAX_CLOCKS - 1);
1137 struct bpf_hrtimer *t;
1138 int ret = 0;
1139
1140 BUILD_BUG_ON(MAX_CLOCKS != 16);
1141 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1142 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1143
1144 if (in_nmi())
1145 return -EOPNOTSUPP;
1146
1147 if (flags >= MAX_CLOCKS ||
1148 /* similar to timerfd except _ALARM variants are not supported */
1149 (clockid != CLOCK_MONOTONIC &&
1150 clockid != CLOCK_REALTIME &&
1151 clockid != CLOCK_BOOTTIME))
1152 return -EINVAL;
1153 __bpf_spin_lock_irqsave(&timer->lock);
1154 t = timer->timer;
1155 if (t) {
1156 ret = -EBUSY;
1157 goto out;
1158 }
1159 if (!atomic64_read(&map->usercnt)) {
1160 /* maps with timers must be either held by user space
1161 * or pinned in bpffs.
1162 */
1163 ret = -EPERM;
1164 goto out;
1165 }
1166 /* allocate hrtimer via map_kmalloc to use memcg accounting */
1167 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1168 if (!t) {
1169 ret = -ENOMEM;
1170 goto out;
1171 }
1172 t->value = (void *)timer - map->timer_off;
1173 t->map = map;
1174 t->prog = NULL;
1175 rcu_assign_pointer(t->callback_fn, NULL);
1176 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1177 t->timer.function = bpf_timer_cb;
1178 timer->timer = t;
1179 out:
1180 __bpf_spin_unlock_irqrestore(&timer->lock);
1181 return ret;
1182 }
1183
1184 static const struct bpf_func_proto bpf_timer_init_proto = {
1185 .func = bpf_timer_init,
1186 .gpl_only = true,
1187 .ret_type = RET_INTEGER,
1188 .arg1_type = ARG_PTR_TO_TIMER,
1189 .arg2_type = ARG_CONST_MAP_PTR,
1190 .arg3_type = ARG_ANYTHING,
1191 };
1192
BPF_CALL_3(bpf_timer_set_callback,struct bpf_timer_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1193 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1194 struct bpf_prog_aux *, aux)
1195 {
1196 struct bpf_prog *prev, *prog = aux->prog;
1197 struct bpf_hrtimer *t;
1198 int ret = 0;
1199
1200 if (in_nmi())
1201 return -EOPNOTSUPP;
1202 __bpf_spin_lock_irqsave(&timer->lock);
1203 t = timer->timer;
1204 if (!t) {
1205 ret = -EINVAL;
1206 goto out;
1207 }
1208 if (!atomic64_read(&t->map->usercnt)) {
1209 /* maps with timers must be either held by user space
1210 * or pinned in bpffs. Otherwise timer might still be
1211 * running even when bpf prog is detached and user space
1212 * is gone, since map_release_uref won't ever be called.
1213 */
1214 ret = -EPERM;
1215 goto out;
1216 }
1217 prev = t->prog;
1218 if (prev != prog) {
1219 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1220 * can pick different callback_fn-s within the same prog.
1221 */
1222 prog = bpf_prog_inc_not_zero(prog);
1223 if (IS_ERR(prog)) {
1224 ret = PTR_ERR(prog);
1225 goto out;
1226 }
1227 if (prev)
1228 /* Drop prev prog refcnt when swapping with new prog */
1229 bpf_prog_put(prev);
1230 t->prog = prog;
1231 }
1232 rcu_assign_pointer(t->callback_fn, callback_fn);
1233 out:
1234 __bpf_spin_unlock_irqrestore(&timer->lock);
1235 return ret;
1236 }
1237
1238 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1239 .func = bpf_timer_set_callback,
1240 .gpl_only = true,
1241 .ret_type = RET_INTEGER,
1242 .arg1_type = ARG_PTR_TO_TIMER,
1243 .arg2_type = ARG_PTR_TO_FUNC,
1244 };
1245
BPF_CALL_3(bpf_timer_start,struct bpf_timer_kern *,timer,u64,nsecs,u64,flags)1246 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1247 {
1248 struct bpf_hrtimer *t;
1249 int ret = 0;
1250
1251 if (in_nmi())
1252 return -EOPNOTSUPP;
1253 if (flags)
1254 return -EINVAL;
1255 __bpf_spin_lock_irqsave(&timer->lock);
1256 t = timer->timer;
1257 if (!t || !t->prog) {
1258 ret = -EINVAL;
1259 goto out;
1260 }
1261 hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1262 out:
1263 __bpf_spin_unlock_irqrestore(&timer->lock);
1264 return ret;
1265 }
1266
1267 static const struct bpf_func_proto bpf_timer_start_proto = {
1268 .func = bpf_timer_start,
1269 .gpl_only = true,
1270 .ret_type = RET_INTEGER,
1271 .arg1_type = ARG_PTR_TO_TIMER,
1272 .arg2_type = ARG_ANYTHING,
1273 .arg3_type = ARG_ANYTHING,
1274 };
1275
drop_prog_refcnt(struct bpf_hrtimer * t)1276 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1277 {
1278 struct bpf_prog *prog = t->prog;
1279
1280 if (prog) {
1281 bpf_prog_put(prog);
1282 t->prog = NULL;
1283 rcu_assign_pointer(t->callback_fn, NULL);
1284 }
1285 }
1286
BPF_CALL_1(bpf_timer_cancel,struct bpf_timer_kern *,timer)1287 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1288 {
1289 struct bpf_hrtimer *t;
1290 int ret = 0;
1291
1292 if (in_nmi())
1293 return -EOPNOTSUPP;
1294 __bpf_spin_lock_irqsave(&timer->lock);
1295 t = timer->timer;
1296 if (!t) {
1297 ret = -EINVAL;
1298 goto out;
1299 }
1300 if (this_cpu_read(hrtimer_running) == t) {
1301 /* If bpf callback_fn is trying to bpf_timer_cancel()
1302 * its own timer the hrtimer_cancel() will deadlock
1303 * since it waits for callback_fn to finish
1304 */
1305 ret = -EDEADLK;
1306 goto out;
1307 }
1308 drop_prog_refcnt(t);
1309 out:
1310 __bpf_spin_unlock_irqrestore(&timer->lock);
1311 /* Cancel the timer and wait for associated callback to finish
1312 * if it was running.
1313 */
1314 ret = ret ?: hrtimer_cancel(&t->timer);
1315 return ret;
1316 }
1317
1318 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1319 .func = bpf_timer_cancel,
1320 .gpl_only = true,
1321 .ret_type = RET_INTEGER,
1322 .arg1_type = ARG_PTR_TO_TIMER,
1323 };
1324
1325 /* This function is called by map_delete/update_elem for individual element and
1326 * by ops->map_release_uref when the user space reference to a map reaches zero.
1327 */
bpf_timer_cancel_and_free(void * val)1328 void bpf_timer_cancel_and_free(void *val)
1329 {
1330 struct bpf_timer_kern *timer = val;
1331 struct bpf_hrtimer *t;
1332
1333 /* Performance optimization: read timer->timer without lock first. */
1334 if (!READ_ONCE(timer->timer))
1335 return;
1336
1337 __bpf_spin_lock_irqsave(&timer->lock);
1338 /* re-read it under lock */
1339 t = timer->timer;
1340 if (!t)
1341 goto out;
1342 drop_prog_refcnt(t);
1343 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1344 * this timer, since it won't be initialized.
1345 */
1346 timer->timer = NULL;
1347 out:
1348 __bpf_spin_unlock_irqrestore(&timer->lock);
1349 if (!t)
1350 return;
1351 /* Cancel the timer and wait for callback to complete if it was running.
1352 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1353 * right after for both preallocated and non-preallocated maps.
1354 * The timer->timer = NULL was already done and no code path can
1355 * see address 't' anymore.
1356 *
1357 * Check that bpf_map_delete/update_elem() wasn't called from timer
1358 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1359 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1360 * return -1). Though callback_fn is still running on this cpu it's
1361 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1362 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1363 * since timer->timer = NULL was already done. The timer will be
1364 * effectively cancelled because bpf_timer_cb() will return
1365 * HRTIMER_NORESTART.
1366 */
1367 if (this_cpu_read(hrtimer_running) != t)
1368 hrtimer_cancel(&t->timer);
1369 kfree(t);
1370 }
1371
BPF_CALL_2(bpf_kptr_xchg,void *,map_value,void *,ptr)1372 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1373 {
1374 unsigned long *kptr = map_value;
1375
1376 return xchg(kptr, (unsigned long)ptr);
1377 }
1378
1379 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1380 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1381 * denote type that verifier will determine.
1382 */
1383 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1384 .func = bpf_kptr_xchg,
1385 .gpl_only = false,
1386 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
1387 .ret_btf_id = BPF_PTR_POISON,
1388 .arg1_type = ARG_PTR_TO_KPTR,
1389 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1390 .arg2_btf_id = BPF_PTR_POISON,
1391 };
1392
1393 /* Since the upper 8 bits of dynptr->size is reserved, the
1394 * maximum supported size is 2^24 - 1.
1395 */
1396 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1397 #define DYNPTR_TYPE_SHIFT 28
1398 #define DYNPTR_SIZE_MASK 0xFFFFFF
1399 #define DYNPTR_RDONLY_BIT BIT(31)
1400
bpf_dynptr_is_rdonly(struct bpf_dynptr_kern * ptr)1401 static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
1402 {
1403 return ptr->size & DYNPTR_RDONLY_BIT;
1404 }
1405
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1406 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1407 {
1408 ptr->size |= type << DYNPTR_TYPE_SHIFT;
1409 }
1410
bpf_dynptr_get_size(struct bpf_dynptr_kern * ptr)1411 u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr)
1412 {
1413 return ptr->size & DYNPTR_SIZE_MASK;
1414 }
1415
bpf_dynptr_check_size(u32 size)1416 int bpf_dynptr_check_size(u32 size)
1417 {
1418 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1419 }
1420
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1421 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1422 enum bpf_dynptr_type type, u32 offset, u32 size)
1423 {
1424 ptr->data = data;
1425 ptr->offset = offset;
1426 ptr->size = size;
1427 bpf_dynptr_set_type(ptr, type);
1428 }
1429
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1430 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1431 {
1432 memset(ptr, 0, sizeof(*ptr));
1433 }
1434
bpf_dynptr_check_off_len(struct bpf_dynptr_kern * ptr,u32 offset,u32 len)1435 static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1436 {
1437 u32 size = bpf_dynptr_get_size(ptr);
1438
1439 if (len > size || offset > size - len)
1440 return -E2BIG;
1441
1442 return 0;
1443 }
1444
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1445 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1446 {
1447 int err;
1448
1449 BTF_TYPE_EMIT(struct bpf_dynptr);
1450
1451 err = bpf_dynptr_check_size(size);
1452 if (err)
1453 goto error;
1454
1455 /* flags is currently unsupported */
1456 if (flags) {
1457 err = -EINVAL;
1458 goto error;
1459 }
1460
1461 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1462
1463 return 0;
1464
1465 error:
1466 bpf_dynptr_set_null(ptr);
1467 return err;
1468 }
1469
1470 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1471 .func = bpf_dynptr_from_mem,
1472 .gpl_only = false,
1473 .ret_type = RET_INTEGER,
1474 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1475 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1476 .arg3_type = ARG_ANYTHING,
1477 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1478 };
1479
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1480 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src,
1481 u32, offset, u64, flags)
1482 {
1483 int err;
1484
1485 if (!src->data || flags)
1486 return -EINVAL;
1487
1488 err = bpf_dynptr_check_off_len(src, offset, len);
1489 if (err)
1490 return err;
1491
1492 memcpy(dst, src->data + src->offset + offset, len);
1493
1494 return 0;
1495 }
1496
1497 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1498 .func = bpf_dynptr_read,
1499 .gpl_only = false,
1500 .ret_type = RET_INTEGER,
1501 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1502 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1503 .arg3_type = ARG_PTR_TO_DYNPTR,
1504 .arg4_type = ARG_ANYTHING,
1505 .arg5_type = ARG_ANYTHING,
1506 };
1507
BPF_CALL_5(bpf_dynptr_write,struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1508 BPF_CALL_5(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1509 u32, len, u64, flags)
1510 {
1511 int err;
1512
1513 if (!dst->data || flags || bpf_dynptr_is_rdonly(dst))
1514 return -EINVAL;
1515
1516 err = bpf_dynptr_check_off_len(dst, offset, len);
1517 if (err)
1518 return err;
1519
1520 memcpy(dst->data + dst->offset + offset, src, len);
1521
1522 return 0;
1523 }
1524
1525 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1526 .func = bpf_dynptr_write,
1527 .gpl_only = false,
1528 .ret_type = RET_INTEGER,
1529 .arg1_type = ARG_PTR_TO_DYNPTR,
1530 .arg2_type = ARG_ANYTHING,
1531 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1532 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1533 .arg5_type = ARG_ANYTHING,
1534 };
1535
BPF_CALL_3(bpf_dynptr_data,struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1536 BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1537 {
1538 int err;
1539
1540 if (!ptr->data)
1541 return 0;
1542
1543 err = bpf_dynptr_check_off_len(ptr, offset, len);
1544 if (err)
1545 return 0;
1546
1547 if (bpf_dynptr_is_rdonly(ptr))
1548 return 0;
1549
1550 return (unsigned long)(ptr->data + ptr->offset + offset);
1551 }
1552
1553 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1554 .func = bpf_dynptr_data,
1555 .gpl_only = false,
1556 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1557 .arg1_type = ARG_PTR_TO_DYNPTR,
1558 .arg2_type = ARG_ANYTHING,
1559 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1560 };
1561
1562 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1563 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1564 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1565 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1566 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1567 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1568 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1569
1570 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)1571 bpf_base_func_proto(enum bpf_func_id func_id)
1572 {
1573 switch (func_id) {
1574 case BPF_FUNC_map_lookup_elem:
1575 return &bpf_map_lookup_elem_proto;
1576 case BPF_FUNC_map_update_elem:
1577 return &bpf_map_update_elem_proto;
1578 case BPF_FUNC_map_delete_elem:
1579 return &bpf_map_delete_elem_proto;
1580 case BPF_FUNC_map_push_elem:
1581 return &bpf_map_push_elem_proto;
1582 case BPF_FUNC_map_pop_elem:
1583 return &bpf_map_pop_elem_proto;
1584 case BPF_FUNC_map_peek_elem:
1585 return &bpf_map_peek_elem_proto;
1586 case BPF_FUNC_map_lookup_percpu_elem:
1587 return &bpf_map_lookup_percpu_elem_proto;
1588 case BPF_FUNC_get_prandom_u32:
1589 return &bpf_get_prandom_u32_proto;
1590 case BPF_FUNC_get_smp_processor_id:
1591 return &bpf_get_raw_smp_processor_id_proto;
1592 case BPF_FUNC_get_numa_node_id:
1593 return &bpf_get_numa_node_id_proto;
1594 case BPF_FUNC_tail_call:
1595 return &bpf_tail_call_proto;
1596 case BPF_FUNC_ktime_get_ns:
1597 return &bpf_ktime_get_ns_proto;
1598 case BPF_FUNC_ktime_get_boot_ns:
1599 return &bpf_ktime_get_boot_ns_proto;
1600 case BPF_FUNC_ktime_get_tai_ns:
1601 return &bpf_ktime_get_tai_ns_proto;
1602 case BPF_FUNC_ringbuf_output:
1603 return &bpf_ringbuf_output_proto;
1604 case BPF_FUNC_ringbuf_reserve:
1605 return &bpf_ringbuf_reserve_proto;
1606 case BPF_FUNC_ringbuf_submit:
1607 return &bpf_ringbuf_submit_proto;
1608 case BPF_FUNC_ringbuf_discard:
1609 return &bpf_ringbuf_discard_proto;
1610 case BPF_FUNC_ringbuf_query:
1611 return &bpf_ringbuf_query_proto;
1612 case BPF_FUNC_strncmp:
1613 return &bpf_strncmp_proto;
1614 case BPF_FUNC_strtol:
1615 return &bpf_strtol_proto;
1616 case BPF_FUNC_strtoul:
1617 return &bpf_strtoul_proto;
1618 default:
1619 break;
1620 }
1621
1622 if (!bpf_capable())
1623 return NULL;
1624
1625 switch (func_id) {
1626 case BPF_FUNC_spin_lock:
1627 return &bpf_spin_lock_proto;
1628 case BPF_FUNC_spin_unlock:
1629 return &bpf_spin_unlock_proto;
1630 case BPF_FUNC_jiffies64:
1631 return &bpf_jiffies64_proto;
1632 case BPF_FUNC_per_cpu_ptr:
1633 return &bpf_per_cpu_ptr_proto;
1634 case BPF_FUNC_this_cpu_ptr:
1635 return &bpf_this_cpu_ptr_proto;
1636 case BPF_FUNC_timer_init:
1637 return &bpf_timer_init_proto;
1638 case BPF_FUNC_timer_set_callback:
1639 return &bpf_timer_set_callback_proto;
1640 case BPF_FUNC_timer_start:
1641 return &bpf_timer_start_proto;
1642 case BPF_FUNC_timer_cancel:
1643 return &bpf_timer_cancel_proto;
1644 case BPF_FUNC_kptr_xchg:
1645 return &bpf_kptr_xchg_proto;
1646 case BPF_FUNC_for_each_map_elem:
1647 return &bpf_for_each_map_elem_proto;
1648 case BPF_FUNC_loop:
1649 return &bpf_loop_proto;
1650 case BPF_FUNC_user_ringbuf_drain:
1651 return &bpf_user_ringbuf_drain_proto;
1652 case BPF_FUNC_ringbuf_reserve_dynptr:
1653 return &bpf_ringbuf_reserve_dynptr_proto;
1654 case BPF_FUNC_ringbuf_submit_dynptr:
1655 return &bpf_ringbuf_submit_dynptr_proto;
1656 case BPF_FUNC_ringbuf_discard_dynptr:
1657 return &bpf_ringbuf_discard_dynptr_proto;
1658 case BPF_FUNC_dynptr_from_mem:
1659 return &bpf_dynptr_from_mem_proto;
1660 case BPF_FUNC_dynptr_read:
1661 return &bpf_dynptr_read_proto;
1662 case BPF_FUNC_dynptr_write:
1663 return &bpf_dynptr_write_proto;
1664 case BPF_FUNC_dynptr_data:
1665 return &bpf_dynptr_data_proto;
1666 default:
1667 break;
1668 }
1669
1670 if (!perfmon_capable())
1671 return NULL;
1672
1673 switch (func_id) {
1674 case BPF_FUNC_trace_printk:
1675 return bpf_get_trace_printk_proto();
1676 case BPF_FUNC_get_current_task:
1677 return &bpf_get_current_task_proto;
1678 case BPF_FUNC_get_current_task_btf:
1679 return &bpf_get_current_task_btf_proto;
1680 case BPF_FUNC_probe_read_user:
1681 return &bpf_probe_read_user_proto;
1682 case BPF_FUNC_probe_read_kernel:
1683 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1684 NULL : &bpf_probe_read_kernel_proto;
1685 case BPF_FUNC_probe_read_user_str:
1686 return &bpf_probe_read_user_str_proto;
1687 case BPF_FUNC_probe_read_kernel_str:
1688 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1689 NULL : &bpf_probe_read_kernel_str_proto;
1690 case BPF_FUNC_snprintf_btf:
1691 return &bpf_snprintf_btf_proto;
1692 case BPF_FUNC_snprintf:
1693 return &bpf_snprintf_proto;
1694 case BPF_FUNC_task_pt_regs:
1695 return &bpf_task_pt_regs_proto;
1696 case BPF_FUNC_trace_vprintk:
1697 return bpf_get_trace_vprintk_proto();
1698 default:
1699 return NULL;
1700 }
1701 }
1702
1703 BTF_SET8_START(tracing_btf_ids)
1704 #ifdef CONFIG_KEXEC_CORE
1705 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
1706 #endif
1707 BTF_SET8_END(tracing_btf_ids)
1708
1709 static const struct btf_kfunc_id_set tracing_kfunc_set = {
1710 .owner = THIS_MODULE,
1711 .set = &tracing_btf_ids,
1712 };
1713
kfunc_init(void)1714 static int __init kfunc_init(void)
1715 {
1716 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &tracing_kfunc_set);
1717 }
1718
1719 late_initcall(kfunc_init);
1720