1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27
28 #include "disasm.h"
29
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
32 [_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #define BPF_LINK_TYPE(_id, _name)
35 #include <linux/bpf_types.h>
36 #undef BPF_PROG_TYPE
37 #undef BPF_MAP_TYPE
38 #undef BPF_LINK_TYPE
39 };
40
41 /* bpf_check() is a static code analyzer that walks eBPF program
42 * instruction by instruction and updates register/stack state.
43 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44 *
45 * The first pass is depth-first-search to check that the program is a DAG.
46 * It rejects the following programs:
47 * - larger than BPF_MAXINSNS insns
48 * - if loop is present (detected via back-edge)
49 * - unreachable insns exist (shouldn't be a forest. program = one function)
50 * - out of bounds or malformed jumps
51 * The second pass is all possible path descent from the 1st insn.
52 * Since it's analyzing all paths through the program, the length of the
53 * analysis is limited to 64k insn, which may be hit even if total number of
54 * insn is less then 4K, but there are too many branches that change stack/regs.
55 * Number of 'branches to be analyzed' is limited to 1k
56 *
57 * On entry to each instruction, each register has a type, and the instruction
58 * changes the types of the registers depending on instruction semantics.
59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60 * copied to R1.
61 *
62 * All registers are 64-bit.
63 * R0 - return register
64 * R1-R5 argument passing registers
65 * R6-R9 callee saved registers
66 * R10 - frame pointer read-only
67 *
68 * At the start of BPF program the register R1 contains a pointer to bpf_context
69 * and has type PTR_TO_CTX.
70 *
71 * Verifier tracks arithmetic operations on pointers in case:
72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74 * 1st insn copies R10 (which has FRAME_PTR) type into R1
75 * and 2nd arithmetic instruction is pattern matched to recognize
76 * that it wants to construct a pointer to some element within stack.
77 * So after 2nd insn, the register R1 has type PTR_TO_STACK
78 * (and -20 constant is saved for further stack bounds checking).
79 * Meaning that this reg is a pointer to stack plus known immediate constant.
80 *
81 * Most of the time the registers have SCALAR_VALUE type, which
82 * means the register has some value, but it's not a valid pointer.
83 * (like pointer plus pointer becomes SCALAR_VALUE type)
84 *
85 * When verifier sees load or store instructions the type of base register
86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87 * four pointer types recognized by check_mem_access() function.
88 *
89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90 * and the range of [ptr, ptr + map's value_size) is accessible.
91 *
92 * registers used to pass values to function calls are checked against
93 * function argument constraints.
94 *
95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96 * It means that the register type passed to this function must be
97 * PTR_TO_STACK and it will be used inside the function as
98 * 'pointer to map element key'
99 *
100 * For example the argument constraints for bpf_map_lookup_elem():
101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102 * .arg1_type = ARG_CONST_MAP_PTR,
103 * .arg2_type = ARG_PTR_TO_MAP_KEY,
104 *
105 * ret_type says that this function returns 'pointer to map elem value or null'
106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107 * 2nd argument should be a pointer to stack, which will be used inside
108 * the helper function as a pointer to map element key.
109 *
110 * On the kernel side the helper function looks like:
111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112 * {
113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114 * void *key = (void *) (unsigned long) r2;
115 * void *value;
116 *
117 * here kernel can access 'key' and 'map' pointers safely, knowing that
118 * [key, key + map->key_size) bytes are valid and were initialized on
119 * the stack of eBPF program.
120 * }
121 *
122 * Corresponding eBPF program may look like:
123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127 * here verifier looks at prototype of map_lookup_elem() and sees:
128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130 *
131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133 * and were initialized prior to this call.
134 * If it's ok, then verifier allows this BPF_CALL insn and looks at
135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
137 * returns either pointer to map value or NULL.
138 *
139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140 * insn, the register holding that pointer in the true branch changes state to
141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142 * branch. See check_cond_jmp_op().
143 *
144 * After the call R0 is set to return type of the function and registers R1-R5
145 * are set to NOT_INIT to indicate that they are no longer readable.
146 *
147 * The following reference types represent a potential reference to a kernel
148 * resource which, after first being allocated, must be checked and freed by
149 * the BPF program:
150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151 *
152 * When the verifier sees a helper call return a reference type, it allocates a
153 * pointer id for the reference and stores it in the current function state.
154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156 * passes through a NULL-check conditional. For the branch wherein the state is
157 * changed to CONST_IMM, the verifier releases the reference.
158 *
159 * For each helper function that allocates a reference, such as
160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161 * bpf_sk_release(). When a reference type passes into the release function,
162 * the verifier also releases the reference. If any unchecked or unreleased
163 * reference remains at the end of the program, the verifier rejects it.
164 */
165
166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
167 struct bpf_verifier_stack_elem {
168 /* verifer state is 'st'
169 * before processing instruction 'insn_idx'
170 * and after processing instruction 'prev_insn_idx'
171 */
172 struct bpf_verifier_state st;
173 int insn_idx;
174 int prev_insn_idx;
175 struct bpf_verifier_stack_elem *next;
176 /* length of verifier log at the time this state was pushed on stack */
177 u32 log_pos;
178 };
179
180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
181 #define BPF_COMPLEXITY_LIMIT_STATES 64
182
183 #define BPF_MAP_KEY_POISON (1ULL << 63)
184 #define BPF_MAP_KEY_SEEN (1ULL << 62)
185
186 #define BPF_MAP_PTR_UNPRIV 1UL
187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
188 POISON_POINTER_DELTA))
189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190
191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195 {
196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
197 }
198
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200 {
201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
202 }
203
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 const struct bpf_map *map, bool unpriv)
206 {
207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 unpriv |= bpf_map_ptr_unpriv(aux);
209 aux->map_ptr_state = (unsigned long)map |
210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211 }
212
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214 {
215 return aux->map_key_state & BPF_MAP_KEY_POISON;
216 }
217
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219 {
220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221 }
222
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224 {
225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226 }
227
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229 {
230 bool poisoned = bpf_map_key_poisoned(aux);
231
232 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
234 }
235
bpf_pseudo_call(const struct bpf_insn * insn)236 static bool bpf_pseudo_call(const struct bpf_insn *insn)
237 {
238 return insn->code == (BPF_JMP | BPF_CALL) &&
239 insn->src_reg == BPF_PSEUDO_CALL;
240 }
241
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243 {
244 return insn->code == (BPF_JMP | BPF_CALL) &&
245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246 }
247
248 struct bpf_call_arg_meta {
249 struct bpf_map *map_ptr;
250 bool raw_mode;
251 bool pkt_access;
252 u8 release_regno;
253 int regno;
254 int access_size;
255 int mem_size;
256 u64 msize_max_value;
257 int ref_obj_id;
258 int map_uid;
259 int func_id;
260 struct btf *btf;
261 u32 btf_id;
262 struct btf *ret_btf;
263 u32 ret_btf_id;
264 u32 subprogno;
265 struct bpf_map_value_off_desc *kptr_off_desc;
266 u8 uninit_dynptr_regno;
267 };
268
269 struct btf *btf_vmlinux;
270
271 static DEFINE_MUTEX(bpf_verifier_lock);
272
273 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
275 {
276 const struct bpf_line_info *linfo;
277 const struct bpf_prog *prog;
278 u32 i, nr_linfo;
279
280 prog = env->prog;
281 nr_linfo = prog->aux->nr_linfo;
282
283 if (!nr_linfo || insn_off >= prog->len)
284 return NULL;
285
286 linfo = prog->aux->linfo;
287 for (i = 1; i < nr_linfo; i++)
288 if (insn_off < linfo[i].insn_off)
289 break;
290
291 return &linfo[i - 1];
292 }
293
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
295 va_list args)
296 {
297 unsigned int n;
298
299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
300
301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
302 "verifier log line truncated - local buffer too short\n");
303
304 if (log->level == BPF_LOG_KERNEL) {
305 bool newline = n > 0 && log->kbuf[n - 1] == '\n';
306
307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
308 return;
309 }
310
311 n = min(log->len_total - log->len_used - 1, n);
312 log->kbuf[n] = '\0';
313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
314 log->len_used += n;
315 else
316 log->ubuf = NULL;
317 }
318
bpf_vlog_reset(struct bpf_verifier_log * log,u32 new_pos)319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
320 {
321 char zero = 0;
322
323 if (!bpf_verifier_log_needed(log))
324 return;
325
326 log->len_used = new_pos;
327 if (put_user(zero, log->ubuf + new_pos))
328 log->ubuf = NULL;
329 }
330
331 /* log_level controls verbosity level of eBPF verifier.
332 * bpf_verifier_log_write() is used to dump the verification trace to the log,
333 * so the user can figure out what's wrong with the program
334 */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
336 const char *fmt, ...)
337 {
338 va_list args;
339
340 if (!bpf_verifier_log_needed(&env->log))
341 return;
342
343 va_start(args, fmt);
344 bpf_verifier_vlog(&env->log, fmt, args);
345 va_end(args);
346 }
347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
348
verbose(void * private_data,const char * fmt,...)349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
350 {
351 struct bpf_verifier_env *env = private_data;
352 va_list args;
353
354 if (!bpf_verifier_log_needed(&env->log))
355 return;
356
357 va_start(args, fmt);
358 bpf_verifier_vlog(&env->log, fmt, args);
359 va_end(args);
360 }
361
bpf_log(struct bpf_verifier_log * log,const char * fmt,...)362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
363 const char *fmt, ...)
364 {
365 va_list args;
366
367 if (!bpf_verifier_log_needed(log))
368 return;
369
370 va_start(args, fmt);
371 bpf_verifier_vlog(log, fmt, args);
372 va_end(args);
373 }
374 EXPORT_SYMBOL_GPL(bpf_log);
375
ltrim(const char * s)376 static const char *ltrim(const char *s)
377 {
378 while (isspace(*s))
379 s++;
380
381 return s;
382 }
383
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
385 u32 insn_off,
386 const char *prefix_fmt, ...)
387 {
388 const struct bpf_line_info *linfo;
389
390 if (!bpf_verifier_log_needed(&env->log))
391 return;
392
393 linfo = find_linfo(env, insn_off);
394 if (!linfo || linfo == env->prev_linfo)
395 return;
396
397 if (prefix_fmt) {
398 va_list args;
399
400 va_start(args, prefix_fmt);
401 bpf_verifier_vlog(&env->log, prefix_fmt, args);
402 va_end(args);
403 }
404
405 verbose(env, "%s\n",
406 ltrim(btf_name_by_offset(env->prog->aux->btf,
407 linfo->line_off)));
408
409 env->prev_linfo = linfo;
410 }
411
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct tnum * range,const char * ctx,const char * reg_name)412 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
413 struct bpf_reg_state *reg,
414 struct tnum *range, const char *ctx,
415 const char *reg_name)
416 {
417 char tn_buf[48];
418
419 verbose(env, "At %s the register %s ", ctx, reg_name);
420 if (!tnum_is_unknown(reg->var_off)) {
421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
422 verbose(env, "has value %s", tn_buf);
423 } else {
424 verbose(env, "has unknown scalar value");
425 }
426 tnum_strn(tn_buf, sizeof(tn_buf), *range);
427 verbose(env, " should have been in %s\n", tn_buf);
428 }
429
type_is_pkt_pointer(enum bpf_reg_type type)430 static bool type_is_pkt_pointer(enum bpf_reg_type type)
431 {
432 type = base_type(type);
433 return type == PTR_TO_PACKET ||
434 type == PTR_TO_PACKET_META;
435 }
436
type_is_sk_pointer(enum bpf_reg_type type)437 static bool type_is_sk_pointer(enum bpf_reg_type type)
438 {
439 return type == PTR_TO_SOCKET ||
440 type == PTR_TO_SOCK_COMMON ||
441 type == PTR_TO_TCP_SOCK ||
442 type == PTR_TO_XDP_SOCK;
443 }
444
reg_type_not_null(enum bpf_reg_type type)445 static bool reg_type_not_null(enum bpf_reg_type type)
446 {
447 return type == PTR_TO_SOCKET ||
448 type == PTR_TO_TCP_SOCK ||
449 type == PTR_TO_MAP_VALUE ||
450 type == PTR_TO_MAP_KEY ||
451 type == PTR_TO_SOCK_COMMON;
452 }
453
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)454 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
455 {
456 return reg->type == PTR_TO_MAP_VALUE &&
457 map_value_has_spin_lock(reg->map_ptr);
458 }
459
reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)460 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
461 {
462 type = base_type(type);
463 return type == PTR_TO_SOCKET || type == PTR_TO_TCP_SOCK ||
464 type == PTR_TO_MEM || type == PTR_TO_BTF_ID;
465 }
466
type_is_rdonly_mem(u32 type)467 static bool type_is_rdonly_mem(u32 type)
468 {
469 return type & MEM_RDONLY;
470 }
471
type_may_be_null(u32 type)472 static bool type_may_be_null(u32 type)
473 {
474 return type & PTR_MAYBE_NULL;
475 }
476
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)477 static bool is_acquire_function(enum bpf_func_id func_id,
478 const struct bpf_map *map)
479 {
480 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
481
482 if (func_id == BPF_FUNC_sk_lookup_tcp ||
483 func_id == BPF_FUNC_sk_lookup_udp ||
484 func_id == BPF_FUNC_skc_lookup_tcp ||
485 func_id == BPF_FUNC_ringbuf_reserve ||
486 func_id == BPF_FUNC_kptr_xchg)
487 return true;
488
489 if (func_id == BPF_FUNC_map_lookup_elem &&
490 (map_type == BPF_MAP_TYPE_SOCKMAP ||
491 map_type == BPF_MAP_TYPE_SOCKHASH))
492 return true;
493
494 return false;
495 }
496
is_ptr_cast_function(enum bpf_func_id func_id)497 static bool is_ptr_cast_function(enum bpf_func_id func_id)
498 {
499 return func_id == BPF_FUNC_tcp_sock ||
500 func_id == BPF_FUNC_sk_fullsock ||
501 func_id == BPF_FUNC_skc_to_tcp_sock ||
502 func_id == BPF_FUNC_skc_to_tcp6_sock ||
503 func_id == BPF_FUNC_skc_to_udp6_sock ||
504 func_id == BPF_FUNC_skc_to_mptcp_sock ||
505 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
506 func_id == BPF_FUNC_skc_to_tcp_request_sock;
507 }
508
is_dynptr_ref_function(enum bpf_func_id func_id)509 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
510 {
511 return func_id == BPF_FUNC_dynptr_data;
512 }
513
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)514 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
515 const struct bpf_map *map)
516 {
517 int ref_obj_uses = 0;
518
519 if (is_ptr_cast_function(func_id))
520 ref_obj_uses++;
521 if (is_acquire_function(func_id, map))
522 ref_obj_uses++;
523 if (is_dynptr_ref_function(func_id))
524 ref_obj_uses++;
525
526 return ref_obj_uses > 1;
527 }
528
is_cmpxchg_insn(const struct bpf_insn * insn)529 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
530 {
531 return BPF_CLASS(insn->code) == BPF_STX &&
532 BPF_MODE(insn->code) == BPF_ATOMIC &&
533 insn->imm == BPF_CMPXCHG;
534 }
535
536 /* string representation of 'enum bpf_reg_type'
537 *
538 * Note that reg_type_str() can not appear more than once in a single verbose()
539 * statement.
540 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)541 static const char *reg_type_str(struct bpf_verifier_env *env,
542 enum bpf_reg_type type)
543 {
544 char postfix[16] = {0}, prefix[32] = {0};
545 static const char * const str[] = {
546 [NOT_INIT] = "?",
547 [SCALAR_VALUE] = "scalar",
548 [PTR_TO_CTX] = "ctx",
549 [CONST_PTR_TO_MAP] = "map_ptr",
550 [PTR_TO_MAP_VALUE] = "map_value",
551 [PTR_TO_STACK] = "fp",
552 [PTR_TO_PACKET] = "pkt",
553 [PTR_TO_PACKET_META] = "pkt_meta",
554 [PTR_TO_PACKET_END] = "pkt_end",
555 [PTR_TO_FLOW_KEYS] = "flow_keys",
556 [PTR_TO_SOCKET] = "sock",
557 [PTR_TO_SOCK_COMMON] = "sock_common",
558 [PTR_TO_TCP_SOCK] = "tcp_sock",
559 [PTR_TO_TP_BUFFER] = "tp_buffer",
560 [PTR_TO_XDP_SOCK] = "xdp_sock",
561 [PTR_TO_BTF_ID] = "ptr_",
562 [PTR_TO_MEM] = "mem",
563 [PTR_TO_BUF] = "buf",
564 [PTR_TO_FUNC] = "func",
565 [PTR_TO_MAP_KEY] = "map_key",
566 [PTR_TO_DYNPTR] = "dynptr_ptr",
567 };
568
569 if (type & PTR_MAYBE_NULL) {
570 if (base_type(type) == PTR_TO_BTF_ID)
571 strncpy(postfix, "or_null_", 16);
572 else
573 strncpy(postfix, "_or_null", 16);
574 }
575
576 if (type & MEM_RDONLY)
577 strncpy(prefix, "rdonly_", 32);
578 if (type & MEM_ALLOC)
579 strncpy(prefix, "alloc_", 32);
580 if (type & MEM_USER)
581 strncpy(prefix, "user_", 32);
582 if (type & MEM_PERCPU)
583 strncpy(prefix, "percpu_", 32);
584 if (type & PTR_UNTRUSTED)
585 strncpy(prefix, "untrusted_", 32);
586
587 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
588 prefix, str[base_type(type)], postfix);
589 return env->type_str_buf;
590 }
591
592 static char slot_type_char[] = {
593 [STACK_INVALID] = '?',
594 [STACK_SPILL] = 'r',
595 [STACK_MISC] = 'm',
596 [STACK_ZERO] = '0',
597 [STACK_DYNPTR] = 'd',
598 };
599
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)600 static void print_liveness(struct bpf_verifier_env *env,
601 enum bpf_reg_liveness live)
602 {
603 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
604 verbose(env, "_");
605 if (live & REG_LIVE_READ)
606 verbose(env, "r");
607 if (live & REG_LIVE_WRITTEN)
608 verbose(env, "w");
609 if (live & REG_LIVE_DONE)
610 verbose(env, "D");
611 }
612
get_spi(s32 off)613 static int get_spi(s32 off)
614 {
615 return (-off - 1) / BPF_REG_SIZE;
616 }
617
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)618 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
619 {
620 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
621
622 /* We need to check that slots between [spi - nr_slots + 1, spi] are
623 * within [0, allocated_stack).
624 *
625 * Please note that the spi grows downwards. For example, a dynptr
626 * takes the size of two stack slots; the first slot will be at
627 * spi and the second slot will be at spi - 1.
628 */
629 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
630 }
631
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)632 static struct bpf_func_state *func(struct bpf_verifier_env *env,
633 const struct bpf_reg_state *reg)
634 {
635 struct bpf_verifier_state *cur = env->cur_state;
636
637 return cur->frame[reg->frameno];
638 }
639
kernel_type_name(const struct btf * btf,u32 id)640 static const char *kernel_type_name(const struct btf* btf, u32 id)
641 {
642 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
643 }
644
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)645 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
646 {
647 env->scratched_regs |= 1U << regno;
648 }
649
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)650 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
651 {
652 env->scratched_stack_slots |= 1ULL << spi;
653 }
654
reg_scratched(const struct bpf_verifier_env * env,u32 regno)655 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
656 {
657 return (env->scratched_regs >> regno) & 1;
658 }
659
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)660 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
661 {
662 return (env->scratched_stack_slots >> regno) & 1;
663 }
664
verifier_state_scratched(const struct bpf_verifier_env * env)665 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
666 {
667 return env->scratched_regs || env->scratched_stack_slots;
668 }
669
mark_verifier_state_clean(struct bpf_verifier_env * env)670 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
671 {
672 env->scratched_regs = 0U;
673 env->scratched_stack_slots = 0ULL;
674 }
675
676 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)677 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
678 {
679 env->scratched_regs = ~0U;
680 env->scratched_stack_slots = ~0ULL;
681 }
682
arg_to_dynptr_type(enum bpf_arg_type arg_type)683 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
684 {
685 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
686 case DYNPTR_TYPE_LOCAL:
687 return BPF_DYNPTR_TYPE_LOCAL;
688 case DYNPTR_TYPE_RINGBUF:
689 return BPF_DYNPTR_TYPE_RINGBUF;
690 default:
691 return BPF_DYNPTR_TYPE_INVALID;
692 }
693 }
694
dynptr_type_refcounted(enum bpf_dynptr_type type)695 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
696 {
697 return type == BPF_DYNPTR_TYPE_RINGBUF;
698 }
699
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx)700 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
701 enum bpf_arg_type arg_type, int insn_idx)
702 {
703 struct bpf_func_state *state = func(env, reg);
704 enum bpf_dynptr_type type;
705 int spi, i, id;
706
707 spi = get_spi(reg->off);
708
709 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
710 return -EINVAL;
711
712 for (i = 0; i < BPF_REG_SIZE; i++) {
713 state->stack[spi].slot_type[i] = STACK_DYNPTR;
714 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
715 }
716
717 type = arg_to_dynptr_type(arg_type);
718 if (type == BPF_DYNPTR_TYPE_INVALID)
719 return -EINVAL;
720
721 state->stack[spi].spilled_ptr.dynptr.first_slot = true;
722 state->stack[spi].spilled_ptr.dynptr.type = type;
723 state->stack[spi - 1].spilled_ptr.dynptr.type = type;
724
725 if (dynptr_type_refcounted(type)) {
726 /* The id is used to track proper releasing */
727 id = acquire_reference_state(env, insn_idx);
728 if (id < 0)
729 return id;
730
731 state->stack[spi].spilled_ptr.id = id;
732 state->stack[spi - 1].spilled_ptr.id = id;
733 }
734
735 return 0;
736 }
737
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)738 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
739 {
740 struct bpf_func_state *state = func(env, reg);
741 int spi, i;
742
743 spi = get_spi(reg->off);
744
745 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
746 return -EINVAL;
747
748 for (i = 0; i < BPF_REG_SIZE; i++) {
749 state->stack[spi].slot_type[i] = STACK_INVALID;
750 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
751 }
752
753 /* Invalidate any slices associated with this dynptr */
754 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
755 release_reference(env, state->stack[spi].spilled_ptr.id);
756 state->stack[spi].spilled_ptr.id = 0;
757 state->stack[spi - 1].spilled_ptr.id = 0;
758 }
759
760 state->stack[spi].spilled_ptr.dynptr.first_slot = false;
761 state->stack[spi].spilled_ptr.dynptr.type = 0;
762 state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
763
764 return 0;
765 }
766
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)767 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
768 {
769 struct bpf_func_state *state = func(env, reg);
770 int spi = get_spi(reg->off);
771 int i;
772
773 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
774 return true;
775
776 for (i = 0; i < BPF_REG_SIZE; i++) {
777 if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
778 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
779 return false;
780 }
781
782 return true;
783 }
784
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)785 bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env,
786 struct bpf_reg_state *reg)
787 {
788 struct bpf_func_state *state = func(env, reg);
789 int spi = get_spi(reg->off);
790 int i;
791
792 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
793 !state->stack[spi].spilled_ptr.dynptr.first_slot)
794 return false;
795
796 for (i = 0; i < BPF_REG_SIZE; i++) {
797 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
798 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
799 return false;
800 }
801
802 return true;
803 }
804
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)805 bool is_dynptr_type_expected(struct bpf_verifier_env *env,
806 struct bpf_reg_state *reg,
807 enum bpf_arg_type arg_type)
808 {
809 struct bpf_func_state *state = func(env, reg);
810 enum bpf_dynptr_type dynptr_type;
811 int spi = get_spi(reg->off);
812
813 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
814 if (arg_type == ARG_PTR_TO_DYNPTR)
815 return true;
816
817 dynptr_type = arg_to_dynptr_type(arg_type);
818
819 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
820 }
821
822 /* The reg state of a pointer or a bounded scalar was saved when
823 * it was spilled to the stack.
824 */
is_spilled_reg(const struct bpf_stack_state * stack)825 static bool is_spilled_reg(const struct bpf_stack_state *stack)
826 {
827 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
828 }
829
scrub_spilled_slot(u8 * stype)830 static void scrub_spilled_slot(u8 *stype)
831 {
832 if (*stype != STACK_INVALID)
833 *stype = STACK_MISC;
834 }
835
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state,bool print_all)836 static void print_verifier_state(struct bpf_verifier_env *env,
837 const struct bpf_func_state *state,
838 bool print_all)
839 {
840 const struct bpf_reg_state *reg;
841 enum bpf_reg_type t;
842 int i;
843
844 if (state->frameno)
845 verbose(env, " frame%d:", state->frameno);
846 for (i = 0; i < MAX_BPF_REG; i++) {
847 reg = &state->regs[i];
848 t = reg->type;
849 if (t == NOT_INIT)
850 continue;
851 if (!print_all && !reg_scratched(env, i))
852 continue;
853 verbose(env, " R%d", i);
854 print_liveness(env, reg->live);
855 verbose(env, "=");
856 if (t == SCALAR_VALUE && reg->precise)
857 verbose(env, "P");
858 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
859 tnum_is_const(reg->var_off)) {
860 /* reg->off should be 0 for SCALAR_VALUE */
861 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
862 verbose(env, "%lld", reg->var_off.value + reg->off);
863 } else {
864 const char *sep = "";
865
866 verbose(env, "%s", reg_type_str(env, t));
867 if (base_type(t) == PTR_TO_BTF_ID)
868 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
869 verbose(env, "(");
870 /*
871 * _a stands for append, was shortened to avoid multiline statements below.
872 * This macro is used to output a comma separated list of attributes.
873 */
874 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
875
876 if (reg->id)
877 verbose_a("id=%d", reg->id);
878 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id)
879 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
880 if (t != SCALAR_VALUE)
881 verbose_a("off=%d", reg->off);
882 if (type_is_pkt_pointer(t))
883 verbose_a("r=%d", reg->range);
884 else if (base_type(t) == CONST_PTR_TO_MAP ||
885 base_type(t) == PTR_TO_MAP_KEY ||
886 base_type(t) == PTR_TO_MAP_VALUE)
887 verbose_a("ks=%d,vs=%d",
888 reg->map_ptr->key_size,
889 reg->map_ptr->value_size);
890 if (tnum_is_const(reg->var_off)) {
891 /* Typically an immediate SCALAR_VALUE, but
892 * could be a pointer whose offset is too big
893 * for reg->off
894 */
895 verbose_a("imm=%llx", reg->var_off.value);
896 } else {
897 if (reg->smin_value != reg->umin_value &&
898 reg->smin_value != S64_MIN)
899 verbose_a("smin=%lld", (long long)reg->smin_value);
900 if (reg->smax_value != reg->umax_value &&
901 reg->smax_value != S64_MAX)
902 verbose_a("smax=%lld", (long long)reg->smax_value);
903 if (reg->umin_value != 0)
904 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
905 if (reg->umax_value != U64_MAX)
906 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
907 if (!tnum_is_unknown(reg->var_off)) {
908 char tn_buf[48];
909
910 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
911 verbose_a("var_off=%s", tn_buf);
912 }
913 if (reg->s32_min_value != reg->smin_value &&
914 reg->s32_min_value != S32_MIN)
915 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
916 if (reg->s32_max_value != reg->smax_value &&
917 reg->s32_max_value != S32_MAX)
918 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
919 if (reg->u32_min_value != reg->umin_value &&
920 reg->u32_min_value != U32_MIN)
921 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
922 if (reg->u32_max_value != reg->umax_value &&
923 reg->u32_max_value != U32_MAX)
924 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
925 }
926 #undef verbose_a
927
928 verbose(env, ")");
929 }
930 }
931 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
932 char types_buf[BPF_REG_SIZE + 1];
933 bool valid = false;
934 int j;
935
936 for (j = 0; j < BPF_REG_SIZE; j++) {
937 if (state->stack[i].slot_type[j] != STACK_INVALID)
938 valid = true;
939 types_buf[j] = slot_type_char[
940 state->stack[i].slot_type[j]];
941 }
942 types_buf[BPF_REG_SIZE] = 0;
943 if (!valid)
944 continue;
945 if (!print_all && !stack_slot_scratched(env, i))
946 continue;
947 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
948 print_liveness(env, state->stack[i].spilled_ptr.live);
949 if (is_spilled_reg(&state->stack[i])) {
950 reg = &state->stack[i].spilled_ptr;
951 t = reg->type;
952 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
953 if (t == SCALAR_VALUE && reg->precise)
954 verbose(env, "P");
955 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
956 verbose(env, "%lld", reg->var_off.value + reg->off);
957 } else {
958 verbose(env, "=%s", types_buf);
959 }
960 }
961 if (state->acquired_refs && state->refs[0].id) {
962 verbose(env, " refs=%d", state->refs[0].id);
963 for (i = 1; i < state->acquired_refs; i++)
964 if (state->refs[i].id)
965 verbose(env, ",%d", state->refs[i].id);
966 }
967 if (state->in_callback_fn)
968 verbose(env, " cb");
969 if (state->in_async_callback_fn)
970 verbose(env, " async_cb");
971 verbose(env, "\n");
972 mark_verifier_state_clean(env);
973 }
974
vlog_alignment(u32 pos)975 static inline u32 vlog_alignment(u32 pos)
976 {
977 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
978 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
979 }
980
print_insn_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)981 static void print_insn_state(struct bpf_verifier_env *env,
982 const struct bpf_func_state *state)
983 {
984 if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
985 /* remove new line character */
986 bpf_vlog_reset(&env->log, env->prev_log_len - 1);
987 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
988 } else {
989 verbose(env, "%d:", env->insn_idx);
990 }
991 print_verifier_state(env, state, false);
992 }
993
994 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
995 * small to hold src. This is different from krealloc since we don't want to preserve
996 * the contents of dst.
997 *
998 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
999 * not be allocated.
1000 */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1001 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1002 {
1003 size_t alloc_bytes;
1004 void *orig = dst;
1005 size_t bytes;
1006
1007 if (ZERO_OR_NULL_PTR(src))
1008 goto out;
1009
1010 if (unlikely(check_mul_overflow(n, size, &bytes)))
1011 return NULL;
1012
1013 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1014 dst = krealloc(orig, alloc_bytes, flags);
1015 if (!dst) {
1016 kfree(orig);
1017 return NULL;
1018 }
1019
1020 memcpy(dst, src, bytes);
1021 out:
1022 return dst ? dst : ZERO_SIZE_PTR;
1023 }
1024
1025 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1026 * small to hold new_n items. new items are zeroed out if the array grows.
1027 *
1028 * Contrary to krealloc_array, does not free arr if new_n is zero.
1029 */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1030 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1031 {
1032 size_t alloc_size;
1033 void *new_arr;
1034
1035 if (!new_n || old_n == new_n)
1036 goto out;
1037
1038 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1039 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1040 if (!new_arr) {
1041 kfree(arr);
1042 return NULL;
1043 }
1044 arr = new_arr;
1045
1046 if (new_n > old_n)
1047 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1048
1049 out:
1050 return arr ? arr : ZERO_SIZE_PTR;
1051 }
1052
copy_reference_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1053 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1054 {
1055 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1056 sizeof(struct bpf_reference_state), GFP_KERNEL);
1057 if (!dst->refs)
1058 return -ENOMEM;
1059
1060 dst->acquired_refs = src->acquired_refs;
1061 return 0;
1062 }
1063
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1064 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1065 {
1066 size_t n = src->allocated_stack / BPF_REG_SIZE;
1067
1068 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1069 GFP_KERNEL);
1070 if (!dst->stack)
1071 return -ENOMEM;
1072
1073 dst->allocated_stack = src->allocated_stack;
1074 return 0;
1075 }
1076
resize_reference_state(struct bpf_func_state * state,size_t n)1077 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1078 {
1079 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1080 sizeof(struct bpf_reference_state));
1081 if (!state->refs)
1082 return -ENOMEM;
1083
1084 state->acquired_refs = n;
1085 return 0;
1086 }
1087
grow_stack_state(struct bpf_func_state * state,int size)1088 static int grow_stack_state(struct bpf_func_state *state, int size)
1089 {
1090 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1091
1092 if (old_n >= n)
1093 return 0;
1094
1095 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1096 if (!state->stack)
1097 return -ENOMEM;
1098
1099 state->allocated_stack = size;
1100 return 0;
1101 }
1102
1103 /* Acquire a pointer id from the env and update the state->refs to include
1104 * this new pointer reference.
1105 * On success, returns a valid pointer id to associate with the register
1106 * On failure, returns a negative errno.
1107 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1108 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1109 {
1110 struct bpf_func_state *state = cur_func(env);
1111 int new_ofs = state->acquired_refs;
1112 int id, err;
1113
1114 err = resize_reference_state(state, state->acquired_refs + 1);
1115 if (err)
1116 return err;
1117 id = ++env->id_gen;
1118 state->refs[new_ofs].id = id;
1119 state->refs[new_ofs].insn_idx = insn_idx;
1120 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1121
1122 return id;
1123 }
1124
1125 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)1126 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1127 {
1128 int i, last_idx;
1129
1130 last_idx = state->acquired_refs - 1;
1131 for (i = 0; i < state->acquired_refs; i++) {
1132 if (state->refs[i].id == ptr_id) {
1133 /* Cannot release caller references in callbacks */
1134 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1135 return -EINVAL;
1136 if (last_idx && i != last_idx)
1137 memcpy(&state->refs[i], &state->refs[last_idx],
1138 sizeof(*state->refs));
1139 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1140 state->acquired_refs--;
1141 return 0;
1142 }
1143 }
1144 return -EINVAL;
1145 }
1146
free_func_state(struct bpf_func_state * state)1147 static void free_func_state(struct bpf_func_state *state)
1148 {
1149 if (!state)
1150 return;
1151 kfree(state->refs);
1152 kfree(state->stack);
1153 kfree(state);
1154 }
1155
clear_jmp_history(struct bpf_verifier_state * state)1156 static void clear_jmp_history(struct bpf_verifier_state *state)
1157 {
1158 kfree(state->jmp_history);
1159 state->jmp_history = NULL;
1160 state->jmp_history_cnt = 0;
1161 }
1162
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1163 static void free_verifier_state(struct bpf_verifier_state *state,
1164 bool free_self)
1165 {
1166 int i;
1167
1168 for (i = 0; i <= state->curframe; i++) {
1169 free_func_state(state->frame[i]);
1170 state->frame[i] = NULL;
1171 }
1172 clear_jmp_history(state);
1173 if (free_self)
1174 kfree(state);
1175 }
1176
1177 /* copy verifier state from src to dst growing dst stack space
1178 * when necessary to accommodate larger src stack
1179 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1180 static int copy_func_state(struct bpf_func_state *dst,
1181 const struct bpf_func_state *src)
1182 {
1183 int err;
1184
1185 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1186 err = copy_reference_state(dst, src);
1187 if (err)
1188 return err;
1189 return copy_stack_state(dst, src);
1190 }
1191
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1192 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1193 const struct bpf_verifier_state *src)
1194 {
1195 struct bpf_func_state *dst;
1196 int i, err;
1197
1198 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1199 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1200 GFP_USER);
1201 if (!dst_state->jmp_history)
1202 return -ENOMEM;
1203 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1204
1205 /* if dst has more stack frames then src frame, free them */
1206 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1207 free_func_state(dst_state->frame[i]);
1208 dst_state->frame[i] = NULL;
1209 }
1210 dst_state->speculative = src->speculative;
1211 dst_state->curframe = src->curframe;
1212 dst_state->active_spin_lock = src->active_spin_lock;
1213 dst_state->branches = src->branches;
1214 dst_state->parent = src->parent;
1215 dst_state->first_insn_idx = src->first_insn_idx;
1216 dst_state->last_insn_idx = src->last_insn_idx;
1217 for (i = 0; i <= src->curframe; i++) {
1218 dst = dst_state->frame[i];
1219 if (!dst) {
1220 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1221 if (!dst)
1222 return -ENOMEM;
1223 dst_state->frame[i] = dst;
1224 }
1225 err = copy_func_state(dst, src->frame[i]);
1226 if (err)
1227 return err;
1228 }
1229 return 0;
1230 }
1231
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1232 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1233 {
1234 while (st) {
1235 u32 br = --st->branches;
1236
1237 /* WARN_ON(br > 1) technically makes sense here,
1238 * but see comment in push_stack(), hence:
1239 */
1240 WARN_ONCE((int)br < 0,
1241 "BUG update_branch_counts:branches_to_explore=%d\n",
1242 br);
1243 if (br)
1244 break;
1245 st = st->parent;
1246 }
1247 }
1248
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)1249 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1250 int *insn_idx, bool pop_log)
1251 {
1252 struct bpf_verifier_state *cur = env->cur_state;
1253 struct bpf_verifier_stack_elem *elem, *head = env->head;
1254 int err;
1255
1256 if (env->head == NULL)
1257 return -ENOENT;
1258
1259 if (cur) {
1260 err = copy_verifier_state(cur, &head->st);
1261 if (err)
1262 return err;
1263 }
1264 if (pop_log)
1265 bpf_vlog_reset(&env->log, head->log_pos);
1266 if (insn_idx)
1267 *insn_idx = head->insn_idx;
1268 if (prev_insn_idx)
1269 *prev_insn_idx = head->prev_insn_idx;
1270 elem = head->next;
1271 free_verifier_state(&head->st, false);
1272 kfree(head);
1273 env->head = elem;
1274 env->stack_size--;
1275 return 0;
1276 }
1277
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)1278 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1279 int insn_idx, int prev_insn_idx,
1280 bool speculative)
1281 {
1282 struct bpf_verifier_state *cur = env->cur_state;
1283 struct bpf_verifier_stack_elem *elem;
1284 int err;
1285
1286 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1287 if (!elem)
1288 goto err;
1289
1290 elem->insn_idx = insn_idx;
1291 elem->prev_insn_idx = prev_insn_idx;
1292 elem->next = env->head;
1293 elem->log_pos = env->log.len_used;
1294 env->head = elem;
1295 env->stack_size++;
1296 err = copy_verifier_state(&elem->st, cur);
1297 if (err)
1298 goto err;
1299 elem->st.speculative |= speculative;
1300 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1301 verbose(env, "The sequence of %d jumps is too complex.\n",
1302 env->stack_size);
1303 goto err;
1304 }
1305 if (elem->st.parent) {
1306 ++elem->st.parent->branches;
1307 /* WARN_ON(branches > 2) technically makes sense here,
1308 * but
1309 * 1. speculative states will bump 'branches' for non-branch
1310 * instructions
1311 * 2. is_state_visited() heuristics may decide not to create
1312 * a new state for a sequence of branches and all such current
1313 * and cloned states will be pointing to a single parent state
1314 * which might have large 'branches' count.
1315 */
1316 }
1317 return &elem->st;
1318 err:
1319 free_verifier_state(env->cur_state, true);
1320 env->cur_state = NULL;
1321 /* pop all elements and return */
1322 while (!pop_stack(env, NULL, NULL, false));
1323 return NULL;
1324 }
1325
1326 #define CALLER_SAVED_REGS 6
1327 static const int caller_saved[CALLER_SAVED_REGS] = {
1328 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1329 };
1330
1331 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1332 struct bpf_reg_state *reg);
1333
1334 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1335 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1336 {
1337 reg->var_off = tnum_const(imm);
1338 reg->smin_value = (s64)imm;
1339 reg->smax_value = (s64)imm;
1340 reg->umin_value = imm;
1341 reg->umax_value = imm;
1342
1343 reg->s32_min_value = (s32)imm;
1344 reg->s32_max_value = (s32)imm;
1345 reg->u32_min_value = (u32)imm;
1346 reg->u32_max_value = (u32)imm;
1347 }
1348
1349 /* Mark the unknown part of a register (variable offset or scalar value) as
1350 * known to have the value @imm.
1351 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1352 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1353 {
1354 /* Clear id, off, and union(map_ptr, range) */
1355 memset(((u8 *)reg) + sizeof(reg->type), 0,
1356 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1357 ___mark_reg_known(reg, imm);
1358 }
1359
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1360 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1361 {
1362 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1363 reg->s32_min_value = (s32)imm;
1364 reg->s32_max_value = (s32)imm;
1365 reg->u32_min_value = (u32)imm;
1366 reg->u32_max_value = (u32)imm;
1367 }
1368
1369 /* Mark the 'variable offset' part of a register as zero. This should be
1370 * used only on registers holding a pointer type.
1371 */
__mark_reg_known_zero(struct bpf_reg_state * reg)1372 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1373 {
1374 __mark_reg_known(reg, 0);
1375 }
1376
__mark_reg_const_zero(struct bpf_reg_state * reg)1377 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1378 {
1379 __mark_reg_known(reg, 0);
1380 reg->type = SCALAR_VALUE;
1381 }
1382
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1383 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1384 struct bpf_reg_state *regs, u32 regno)
1385 {
1386 if (WARN_ON(regno >= MAX_BPF_REG)) {
1387 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1388 /* Something bad happened, let's kill all regs */
1389 for (regno = 0; regno < MAX_BPF_REG; regno++)
1390 __mark_reg_not_init(env, regs + regno);
1391 return;
1392 }
1393 __mark_reg_known_zero(regs + regno);
1394 }
1395
mark_ptr_not_null_reg(struct bpf_reg_state * reg)1396 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1397 {
1398 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1399 const struct bpf_map *map = reg->map_ptr;
1400
1401 if (map->inner_map_meta) {
1402 reg->type = CONST_PTR_TO_MAP;
1403 reg->map_ptr = map->inner_map_meta;
1404 /* transfer reg's id which is unique for every map_lookup_elem
1405 * as UID of the inner map.
1406 */
1407 if (map_value_has_timer(map->inner_map_meta))
1408 reg->map_uid = reg->id;
1409 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1410 reg->type = PTR_TO_XDP_SOCK;
1411 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1412 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1413 reg->type = PTR_TO_SOCKET;
1414 } else {
1415 reg->type = PTR_TO_MAP_VALUE;
1416 }
1417 return;
1418 }
1419
1420 reg->type &= ~PTR_MAYBE_NULL;
1421 }
1422
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1423 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1424 {
1425 return type_is_pkt_pointer(reg->type);
1426 }
1427
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1428 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1429 {
1430 return reg_is_pkt_pointer(reg) ||
1431 reg->type == PTR_TO_PACKET_END;
1432 }
1433
1434 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1435 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1436 enum bpf_reg_type which)
1437 {
1438 /* The register can already have a range from prior markings.
1439 * This is fine as long as it hasn't been advanced from its
1440 * origin.
1441 */
1442 return reg->type == which &&
1443 reg->id == 0 &&
1444 reg->off == 0 &&
1445 tnum_equals_const(reg->var_off, 0);
1446 }
1447
1448 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1449 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1450 {
1451 reg->smin_value = S64_MIN;
1452 reg->smax_value = S64_MAX;
1453 reg->umin_value = 0;
1454 reg->umax_value = U64_MAX;
1455
1456 reg->s32_min_value = S32_MIN;
1457 reg->s32_max_value = S32_MAX;
1458 reg->u32_min_value = 0;
1459 reg->u32_max_value = U32_MAX;
1460 }
1461
__mark_reg64_unbounded(struct bpf_reg_state * reg)1462 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1463 {
1464 reg->smin_value = S64_MIN;
1465 reg->smax_value = S64_MAX;
1466 reg->umin_value = 0;
1467 reg->umax_value = U64_MAX;
1468 }
1469
__mark_reg32_unbounded(struct bpf_reg_state * reg)1470 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1471 {
1472 reg->s32_min_value = S32_MIN;
1473 reg->s32_max_value = S32_MAX;
1474 reg->u32_min_value = 0;
1475 reg->u32_max_value = U32_MAX;
1476 }
1477
__update_reg32_bounds(struct bpf_reg_state * reg)1478 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1479 {
1480 struct tnum var32_off = tnum_subreg(reg->var_off);
1481
1482 /* min signed is max(sign bit) | min(other bits) */
1483 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1484 var32_off.value | (var32_off.mask & S32_MIN));
1485 /* max signed is min(sign bit) | max(other bits) */
1486 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1487 var32_off.value | (var32_off.mask & S32_MAX));
1488 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1489 reg->u32_max_value = min(reg->u32_max_value,
1490 (u32)(var32_off.value | var32_off.mask));
1491 }
1492
__update_reg64_bounds(struct bpf_reg_state * reg)1493 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1494 {
1495 /* min signed is max(sign bit) | min(other bits) */
1496 reg->smin_value = max_t(s64, reg->smin_value,
1497 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1498 /* max signed is min(sign bit) | max(other bits) */
1499 reg->smax_value = min_t(s64, reg->smax_value,
1500 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1501 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1502 reg->umax_value = min(reg->umax_value,
1503 reg->var_off.value | reg->var_off.mask);
1504 }
1505
__update_reg_bounds(struct bpf_reg_state * reg)1506 static void __update_reg_bounds(struct bpf_reg_state *reg)
1507 {
1508 __update_reg32_bounds(reg);
1509 __update_reg64_bounds(reg);
1510 }
1511
1512 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)1513 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1514 {
1515 /* Learn sign from signed bounds.
1516 * If we cannot cross the sign boundary, then signed and unsigned bounds
1517 * are the same, so combine. This works even in the negative case, e.g.
1518 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1519 */
1520 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1521 reg->s32_min_value = reg->u32_min_value =
1522 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1523 reg->s32_max_value = reg->u32_max_value =
1524 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1525 return;
1526 }
1527 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1528 * boundary, so we must be careful.
1529 */
1530 if ((s32)reg->u32_max_value >= 0) {
1531 /* Positive. We can't learn anything from the smin, but smax
1532 * is positive, hence safe.
1533 */
1534 reg->s32_min_value = reg->u32_min_value;
1535 reg->s32_max_value = reg->u32_max_value =
1536 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1537 } else if ((s32)reg->u32_min_value < 0) {
1538 /* Negative. We can't learn anything from the smax, but smin
1539 * is negative, hence safe.
1540 */
1541 reg->s32_min_value = reg->u32_min_value =
1542 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1543 reg->s32_max_value = reg->u32_max_value;
1544 }
1545 }
1546
__reg64_deduce_bounds(struct bpf_reg_state * reg)1547 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1548 {
1549 /* Learn sign from signed bounds.
1550 * If we cannot cross the sign boundary, then signed and unsigned bounds
1551 * are the same, so combine. This works even in the negative case, e.g.
1552 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1553 */
1554 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1555 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1556 reg->umin_value);
1557 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1558 reg->umax_value);
1559 return;
1560 }
1561 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1562 * boundary, so we must be careful.
1563 */
1564 if ((s64)reg->umax_value >= 0) {
1565 /* Positive. We can't learn anything from the smin, but smax
1566 * is positive, hence safe.
1567 */
1568 reg->smin_value = reg->umin_value;
1569 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1570 reg->umax_value);
1571 } else if ((s64)reg->umin_value < 0) {
1572 /* Negative. We can't learn anything from the smax, but smin
1573 * is negative, hence safe.
1574 */
1575 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1576 reg->umin_value);
1577 reg->smax_value = reg->umax_value;
1578 }
1579 }
1580
__reg_deduce_bounds(struct bpf_reg_state * reg)1581 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1582 {
1583 __reg32_deduce_bounds(reg);
1584 __reg64_deduce_bounds(reg);
1585 }
1586
1587 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)1588 static void __reg_bound_offset(struct bpf_reg_state *reg)
1589 {
1590 struct tnum var64_off = tnum_intersect(reg->var_off,
1591 tnum_range(reg->umin_value,
1592 reg->umax_value));
1593 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1594 tnum_range(reg->u32_min_value,
1595 reg->u32_max_value));
1596
1597 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1598 }
1599
reg_bounds_sync(struct bpf_reg_state * reg)1600 static void reg_bounds_sync(struct bpf_reg_state *reg)
1601 {
1602 /* We might have learned new bounds from the var_off. */
1603 __update_reg_bounds(reg);
1604 /* We might have learned something about the sign bit. */
1605 __reg_deduce_bounds(reg);
1606 /* We might have learned some bits from the bounds. */
1607 __reg_bound_offset(reg);
1608 /* Intersecting with the old var_off might have improved our bounds
1609 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1610 * then new var_off is (0; 0x7f...fc) which improves our umax.
1611 */
1612 __update_reg_bounds(reg);
1613 }
1614
__reg32_bound_s64(s32 a)1615 static bool __reg32_bound_s64(s32 a)
1616 {
1617 return a >= 0 && a <= S32_MAX;
1618 }
1619
__reg_assign_32_into_64(struct bpf_reg_state * reg)1620 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1621 {
1622 reg->umin_value = reg->u32_min_value;
1623 reg->umax_value = reg->u32_max_value;
1624
1625 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1626 * be positive otherwise set to worse case bounds and refine later
1627 * from tnum.
1628 */
1629 if (__reg32_bound_s64(reg->s32_min_value) &&
1630 __reg32_bound_s64(reg->s32_max_value)) {
1631 reg->smin_value = reg->s32_min_value;
1632 reg->smax_value = reg->s32_max_value;
1633 } else {
1634 reg->smin_value = 0;
1635 reg->smax_value = U32_MAX;
1636 }
1637 }
1638
__reg_combine_32_into_64(struct bpf_reg_state * reg)1639 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1640 {
1641 /* special case when 64-bit register has upper 32-bit register
1642 * zeroed. Typically happens after zext or <<32, >>32 sequence
1643 * allowing us to use 32-bit bounds directly,
1644 */
1645 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1646 __reg_assign_32_into_64(reg);
1647 } else {
1648 /* Otherwise the best we can do is push lower 32bit known and
1649 * unknown bits into register (var_off set from jmp logic)
1650 * then learn as much as possible from the 64-bit tnum
1651 * known and unknown bits. The previous smin/smax bounds are
1652 * invalid here because of jmp32 compare so mark them unknown
1653 * so they do not impact tnum bounds calculation.
1654 */
1655 __mark_reg64_unbounded(reg);
1656 }
1657 reg_bounds_sync(reg);
1658 }
1659
__reg64_bound_s32(s64 a)1660 static bool __reg64_bound_s32(s64 a)
1661 {
1662 return a >= S32_MIN && a <= S32_MAX;
1663 }
1664
__reg64_bound_u32(u64 a)1665 static bool __reg64_bound_u32(u64 a)
1666 {
1667 return a >= U32_MIN && a <= U32_MAX;
1668 }
1669
__reg_combine_64_into_32(struct bpf_reg_state * reg)1670 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1671 {
1672 __mark_reg32_unbounded(reg);
1673 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1674 reg->s32_min_value = (s32)reg->smin_value;
1675 reg->s32_max_value = (s32)reg->smax_value;
1676 }
1677 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1678 reg->u32_min_value = (u32)reg->umin_value;
1679 reg->u32_max_value = (u32)reg->umax_value;
1680 }
1681 reg_bounds_sync(reg);
1682 }
1683
1684 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1685 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1686 struct bpf_reg_state *reg)
1687 {
1688 /*
1689 * Clear type, id, off, and union(map_ptr, range) and
1690 * padding between 'type' and union
1691 */
1692 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1693 reg->type = SCALAR_VALUE;
1694 reg->var_off = tnum_unknown;
1695 reg->frameno = 0;
1696 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1697 __mark_reg_unbounded(reg);
1698 }
1699
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1700 static void mark_reg_unknown(struct bpf_verifier_env *env,
1701 struct bpf_reg_state *regs, u32 regno)
1702 {
1703 if (WARN_ON(regno >= MAX_BPF_REG)) {
1704 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1705 /* Something bad happened, let's kill all regs except FP */
1706 for (regno = 0; regno < BPF_REG_FP; regno++)
1707 __mark_reg_not_init(env, regs + regno);
1708 return;
1709 }
1710 __mark_reg_unknown(env, regs + regno);
1711 }
1712
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1713 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1714 struct bpf_reg_state *reg)
1715 {
1716 __mark_reg_unknown(env, reg);
1717 reg->type = NOT_INIT;
1718 }
1719
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1720 static void mark_reg_not_init(struct bpf_verifier_env *env,
1721 struct bpf_reg_state *regs, u32 regno)
1722 {
1723 if (WARN_ON(regno >= MAX_BPF_REG)) {
1724 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1725 /* Something bad happened, let's kill all regs except FP */
1726 for (regno = 0; regno < BPF_REG_FP; regno++)
1727 __mark_reg_not_init(env, regs + regno);
1728 return;
1729 }
1730 __mark_reg_not_init(env, regs + regno);
1731 }
1732
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)1733 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1734 struct bpf_reg_state *regs, u32 regno,
1735 enum bpf_reg_type reg_type,
1736 struct btf *btf, u32 btf_id,
1737 enum bpf_type_flag flag)
1738 {
1739 if (reg_type == SCALAR_VALUE) {
1740 mark_reg_unknown(env, regs, regno);
1741 return;
1742 }
1743 mark_reg_known_zero(env, regs, regno);
1744 regs[regno].type = PTR_TO_BTF_ID | flag;
1745 regs[regno].btf = btf;
1746 regs[regno].btf_id = btf_id;
1747 }
1748
1749 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)1750 static void init_reg_state(struct bpf_verifier_env *env,
1751 struct bpf_func_state *state)
1752 {
1753 struct bpf_reg_state *regs = state->regs;
1754 int i;
1755
1756 for (i = 0; i < MAX_BPF_REG; i++) {
1757 mark_reg_not_init(env, regs, i);
1758 regs[i].live = REG_LIVE_NONE;
1759 regs[i].parent = NULL;
1760 regs[i].subreg_def = DEF_NOT_SUBREG;
1761 }
1762
1763 /* frame pointer */
1764 regs[BPF_REG_FP].type = PTR_TO_STACK;
1765 mark_reg_known_zero(env, regs, BPF_REG_FP);
1766 regs[BPF_REG_FP].frameno = state->frameno;
1767 }
1768
1769 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)1770 static void init_func_state(struct bpf_verifier_env *env,
1771 struct bpf_func_state *state,
1772 int callsite, int frameno, int subprogno)
1773 {
1774 state->callsite = callsite;
1775 state->frameno = frameno;
1776 state->subprogno = subprogno;
1777 state->callback_ret_range = tnum_range(0, 0);
1778 init_reg_state(env, state);
1779 mark_verifier_state_scratched(env);
1780 }
1781
1782 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog)1783 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1784 int insn_idx, int prev_insn_idx,
1785 int subprog)
1786 {
1787 struct bpf_verifier_stack_elem *elem;
1788 struct bpf_func_state *frame;
1789
1790 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1791 if (!elem)
1792 goto err;
1793
1794 elem->insn_idx = insn_idx;
1795 elem->prev_insn_idx = prev_insn_idx;
1796 elem->next = env->head;
1797 elem->log_pos = env->log.len_used;
1798 env->head = elem;
1799 env->stack_size++;
1800 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1801 verbose(env,
1802 "The sequence of %d jumps is too complex for async cb.\n",
1803 env->stack_size);
1804 goto err;
1805 }
1806 /* Unlike push_stack() do not copy_verifier_state().
1807 * The caller state doesn't matter.
1808 * This is async callback. It starts in a fresh stack.
1809 * Initialize it similar to do_check_common().
1810 */
1811 elem->st.branches = 1;
1812 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1813 if (!frame)
1814 goto err;
1815 init_func_state(env, frame,
1816 BPF_MAIN_FUNC /* callsite */,
1817 0 /* frameno within this callchain */,
1818 subprog /* subprog number within this prog */);
1819 elem->st.frame[0] = frame;
1820 return &elem->st;
1821 err:
1822 free_verifier_state(env->cur_state, true);
1823 env->cur_state = NULL;
1824 /* pop all elements and return */
1825 while (!pop_stack(env, NULL, NULL, false));
1826 return NULL;
1827 }
1828
1829
1830 enum reg_arg_type {
1831 SRC_OP, /* register is used as source operand */
1832 DST_OP, /* register is used as destination operand */
1833 DST_OP_NO_MARK /* same as above, check only, don't mark */
1834 };
1835
cmp_subprogs(const void * a,const void * b)1836 static int cmp_subprogs(const void *a, const void *b)
1837 {
1838 return ((struct bpf_subprog_info *)a)->start -
1839 ((struct bpf_subprog_info *)b)->start;
1840 }
1841
find_subprog(struct bpf_verifier_env * env,int off)1842 static int find_subprog(struct bpf_verifier_env *env, int off)
1843 {
1844 struct bpf_subprog_info *p;
1845
1846 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1847 sizeof(env->subprog_info[0]), cmp_subprogs);
1848 if (!p)
1849 return -ENOENT;
1850 return p - env->subprog_info;
1851
1852 }
1853
add_subprog(struct bpf_verifier_env * env,int off)1854 static int add_subprog(struct bpf_verifier_env *env, int off)
1855 {
1856 int insn_cnt = env->prog->len;
1857 int ret;
1858
1859 if (off >= insn_cnt || off < 0) {
1860 verbose(env, "call to invalid destination\n");
1861 return -EINVAL;
1862 }
1863 ret = find_subprog(env, off);
1864 if (ret >= 0)
1865 return ret;
1866 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1867 verbose(env, "too many subprograms\n");
1868 return -E2BIG;
1869 }
1870 /* determine subprog starts. The end is one before the next starts */
1871 env->subprog_info[env->subprog_cnt++].start = off;
1872 sort(env->subprog_info, env->subprog_cnt,
1873 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1874 return env->subprog_cnt - 1;
1875 }
1876
1877 #define MAX_KFUNC_DESCS 256
1878 #define MAX_KFUNC_BTFS 256
1879
1880 struct bpf_kfunc_desc {
1881 struct btf_func_model func_model;
1882 u32 func_id;
1883 s32 imm;
1884 u16 offset;
1885 };
1886
1887 struct bpf_kfunc_btf {
1888 struct btf *btf;
1889 struct module *module;
1890 u16 offset;
1891 };
1892
1893 struct bpf_kfunc_desc_tab {
1894 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1895 u32 nr_descs;
1896 };
1897
1898 struct bpf_kfunc_btf_tab {
1899 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1900 u32 nr_descs;
1901 };
1902
kfunc_desc_cmp_by_id_off(const void * a,const void * b)1903 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1904 {
1905 const struct bpf_kfunc_desc *d0 = a;
1906 const struct bpf_kfunc_desc *d1 = b;
1907
1908 /* func_id is not greater than BTF_MAX_TYPE */
1909 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1910 }
1911
kfunc_btf_cmp_by_off(const void * a,const void * b)1912 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1913 {
1914 const struct bpf_kfunc_btf *d0 = a;
1915 const struct bpf_kfunc_btf *d1 = b;
1916
1917 return d0->offset - d1->offset;
1918 }
1919
1920 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)1921 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1922 {
1923 struct bpf_kfunc_desc desc = {
1924 .func_id = func_id,
1925 .offset = offset,
1926 };
1927 struct bpf_kfunc_desc_tab *tab;
1928
1929 tab = prog->aux->kfunc_tab;
1930 return bsearch(&desc, tab->descs, tab->nr_descs,
1931 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1932 }
1933
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)1934 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1935 s16 offset)
1936 {
1937 struct bpf_kfunc_btf kf_btf = { .offset = offset };
1938 struct bpf_kfunc_btf_tab *tab;
1939 struct bpf_kfunc_btf *b;
1940 struct module *mod;
1941 struct btf *btf;
1942 int btf_fd;
1943
1944 tab = env->prog->aux->kfunc_btf_tab;
1945 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1946 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1947 if (!b) {
1948 if (tab->nr_descs == MAX_KFUNC_BTFS) {
1949 verbose(env, "too many different module BTFs\n");
1950 return ERR_PTR(-E2BIG);
1951 }
1952
1953 if (bpfptr_is_null(env->fd_array)) {
1954 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1955 return ERR_PTR(-EPROTO);
1956 }
1957
1958 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1959 offset * sizeof(btf_fd),
1960 sizeof(btf_fd)))
1961 return ERR_PTR(-EFAULT);
1962
1963 btf = btf_get_by_fd(btf_fd);
1964 if (IS_ERR(btf)) {
1965 verbose(env, "invalid module BTF fd specified\n");
1966 return btf;
1967 }
1968
1969 if (!btf_is_module(btf)) {
1970 verbose(env, "BTF fd for kfunc is not a module BTF\n");
1971 btf_put(btf);
1972 return ERR_PTR(-EINVAL);
1973 }
1974
1975 mod = btf_try_get_module(btf);
1976 if (!mod) {
1977 btf_put(btf);
1978 return ERR_PTR(-ENXIO);
1979 }
1980
1981 b = &tab->descs[tab->nr_descs++];
1982 b->btf = btf;
1983 b->module = mod;
1984 b->offset = offset;
1985
1986 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1987 kfunc_btf_cmp_by_off, NULL);
1988 }
1989 return b->btf;
1990 }
1991
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)1992 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1993 {
1994 if (!tab)
1995 return;
1996
1997 while (tab->nr_descs--) {
1998 module_put(tab->descs[tab->nr_descs].module);
1999 btf_put(tab->descs[tab->nr_descs].btf);
2000 }
2001 kfree(tab);
2002 }
2003
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2004 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2005 {
2006 if (offset) {
2007 if (offset < 0) {
2008 /* In the future, this can be allowed to increase limit
2009 * of fd index into fd_array, interpreted as u16.
2010 */
2011 verbose(env, "negative offset disallowed for kernel module function call\n");
2012 return ERR_PTR(-EINVAL);
2013 }
2014
2015 return __find_kfunc_desc_btf(env, offset);
2016 }
2017 return btf_vmlinux ?: ERR_PTR(-ENOENT);
2018 }
2019
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)2020 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2021 {
2022 const struct btf_type *func, *func_proto;
2023 struct bpf_kfunc_btf_tab *btf_tab;
2024 struct bpf_kfunc_desc_tab *tab;
2025 struct bpf_prog_aux *prog_aux;
2026 struct bpf_kfunc_desc *desc;
2027 const char *func_name;
2028 struct btf *desc_btf;
2029 unsigned long call_imm;
2030 unsigned long addr;
2031 int err;
2032
2033 prog_aux = env->prog->aux;
2034 tab = prog_aux->kfunc_tab;
2035 btf_tab = prog_aux->kfunc_btf_tab;
2036 if (!tab) {
2037 if (!btf_vmlinux) {
2038 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2039 return -ENOTSUPP;
2040 }
2041
2042 if (!env->prog->jit_requested) {
2043 verbose(env, "JIT is required for calling kernel function\n");
2044 return -ENOTSUPP;
2045 }
2046
2047 if (!bpf_jit_supports_kfunc_call()) {
2048 verbose(env, "JIT does not support calling kernel function\n");
2049 return -ENOTSUPP;
2050 }
2051
2052 if (!env->prog->gpl_compatible) {
2053 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2054 return -EINVAL;
2055 }
2056
2057 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2058 if (!tab)
2059 return -ENOMEM;
2060 prog_aux->kfunc_tab = tab;
2061 }
2062
2063 /* func_id == 0 is always invalid, but instead of returning an error, be
2064 * conservative and wait until the code elimination pass before returning
2065 * error, so that invalid calls that get pruned out can be in BPF programs
2066 * loaded from userspace. It is also required that offset be untouched
2067 * for such calls.
2068 */
2069 if (!func_id && !offset)
2070 return 0;
2071
2072 if (!btf_tab && offset) {
2073 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2074 if (!btf_tab)
2075 return -ENOMEM;
2076 prog_aux->kfunc_btf_tab = btf_tab;
2077 }
2078
2079 desc_btf = find_kfunc_desc_btf(env, offset);
2080 if (IS_ERR(desc_btf)) {
2081 verbose(env, "failed to find BTF for kernel function\n");
2082 return PTR_ERR(desc_btf);
2083 }
2084
2085 if (find_kfunc_desc(env->prog, func_id, offset))
2086 return 0;
2087
2088 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2089 verbose(env, "too many different kernel function calls\n");
2090 return -E2BIG;
2091 }
2092
2093 func = btf_type_by_id(desc_btf, func_id);
2094 if (!func || !btf_type_is_func(func)) {
2095 verbose(env, "kernel btf_id %u is not a function\n",
2096 func_id);
2097 return -EINVAL;
2098 }
2099 func_proto = btf_type_by_id(desc_btf, func->type);
2100 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2101 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2102 func_id);
2103 return -EINVAL;
2104 }
2105
2106 func_name = btf_name_by_offset(desc_btf, func->name_off);
2107 addr = kallsyms_lookup_name(func_name);
2108 if (!addr) {
2109 verbose(env, "cannot find address for kernel function %s\n",
2110 func_name);
2111 return -EINVAL;
2112 }
2113
2114 call_imm = BPF_CALL_IMM(addr);
2115 /* Check whether or not the relative offset overflows desc->imm */
2116 if ((unsigned long)(s32)call_imm != call_imm) {
2117 verbose(env, "address of kernel function %s is out of range\n",
2118 func_name);
2119 return -EINVAL;
2120 }
2121
2122 desc = &tab->descs[tab->nr_descs++];
2123 desc->func_id = func_id;
2124 desc->imm = call_imm;
2125 desc->offset = offset;
2126 err = btf_distill_func_proto(&env->log, desc_btf,
2127 func_proto, func_name,
2128 &desc->func_model);
2129 if (!err)
2130 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2131 kfunc_desc_cmp_by_id_off, NULL);
2132 return err;
2133 }
2134
kfunc_desc_cmp_by_imm(const void * a,const void * b)2135 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2136 {
2137 const struct bpf_kfunc_desc *d0 = a;
2138 const struct bpf_kfunc_desc *d1 = b;
2139
2140 if (d0->imm > d1->imm)
2141 return 1;
2142 else if (d0->imm < d1->imm)
2143 return -1;
2144 return 0;
2145 }
2146
sort_kfunc_descs_by_imm(struct bpf_prog * prog)2147 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2148 {
2149 struct bpf_kfunc_desc_tab *tab;
2150
2151 tab = prog->aux->kfunc_tab;
2152 if (!tab)
2153 return;
2154
2155 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2156 kfunc_desc_cmp_by_imm, NULL);
2157 }
2158
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2159 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2160 {
2161 return !!prog->aux->kfunc_tab;
2162 }
2163
2164 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2165 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2166 const struct bpf_insn *insn)
2167 {
2168 const struct bpf_kfunc_desc desc = {
2169 .imm = insn->imm,
2170 };
2171 const struct bpf_kfunc_desc *res;
2172 struct bpf_kfunc_desc_tab *tab;
2173
2174 tab = prog->aux->kfunc_tab;
2175 res = bsearch(&desc, tab->descs, tab->nr_descs,
2176 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2177
2178 return res ? &res->func_model : NULL;
2179 }
2180
add_subprog_and_kfunc(struct bpf_verifier_env * env)2181 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2182 {
2183 struct bpf_subprog_info *subprog = env->subprog_info;
2184 struct bpf_insn *insn = env->prog->insnsi;
2185 int i, ret, insn_cnt = env->prog->len;
2186
2187 /* Add entry function. */
2188 ret = add_subprog(env, 0);
2189 if (ret)
2190 return ret;
2191
2192 for (i = 0; i < insn_cnt; i++, insn++) {
2193 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2194 !bpf_pseudo_kfunc_call(insn))
2195 continue;
2196
2197 if (!env->bpf_capable) {
2198 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2199 return -EPERM;
2200 }
2201
2202 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2203 ret = add_subprog(env, i + insn->imm + 1);
2204 else
2205 ret = add_kfunc_call(env, insn->imm, insn->off);
2206
2207 if (ret < 0)
2208 return ret;
2209 }
2210
2211 /* Add a fake 'exit' subprog which could simplify subprog iteration
2212 * logic. 'subprog_cnt' should not be increased.
2213 */
2214 subprog[env->subprog_cnt].start = insn_cnt;
2215
2216 if (env->log.level & BPF_LOG_LEVEL2)
2217 for (i = 0; i < env->subprog_cnt; i++)
2218 verbose(env, "func#%d @%d\n", i, subprog[i].start);
2219
2220 return 0;
2221 }
2222
check_subprogs(struct bpf_verifier_env * env)2223 static int check_subprogs(struct bpf_verifier_env *env)
2224 {
2225 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2226 struct bpf_subprog_info *subprog = env->subprog_info;
2227 struct bpf_insn *insn = env->prog->insnsi;
2228 int insn_cnt = env->prog->len;
2229
2230 /* now check that all jumps are within the same subprog */
2231 subprog_start = subprog[cur_subprog].start;
2232 subprog_end = subprog[cur_subprog + 1].start;
2233 for (i = 0; i < insn_cnt; i++) {
2234 u8 code = insn[i].code;
2235
2236 if (code == (BPF_JMP | BPF_CALL) &&
2237 insn[i].imm == BPF_FUNC_tail_call &&
2238 insn[i].src_reg != BPF_PSEUDO_CALL)
2239 subprog[cur_subprog].has_tail_call = true;
2240 if (BPF_CLASS(code) == BPF_LD &&
2241 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2242 subprog[cur_subprog].has_ld_abs = true;
2243 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2244 goto next;
2245 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2246 goto next;
2247 off = i + insn[i].off + 1;
2248 if (off < subprog_start || off >= subprog_end) {
2249 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2250 return -EINVAL;
2251 }
2252 next:
2253 if (i == subprog_end - 1) {
2254 /* to avoid fall-through from one subprog into another
2255 * the last insn of the subprog should be either exit
2256 * or unconditional jump back
2257 */
2258 if (code != (BPF_JMP | BPF_EXIT) &&
2259 code != (BPF_JMP | BPF_JA)) {
2260 verbose(env, "last insn is not an exit or jmp\n");
2261 return -EINVAL;
2262 }
2263 subprog_start = subprog_end;
2264 cur_subprog++;
2265 if (cur_subprog < env->subprog_cnt)
2266 subprog_end = subprog[cur_subprog + 1].start;
2267 }
2268 }
2269 return 0;
2270 }
2271
2272 /* Parentage chain of this register (or stack slot) should take care of all
2273 * issues like callee-saved registers, stack slot allocation time, etc.
2274 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)2275 static int mark_reg_read(struct bpf_verifier_env *env,
2276 const struct bpf_reg_state *state,
2277 struct bpf_reg_state *parent, u8 flag)
2278 {
2279 bool writes = parent == state->parent; /* Observe write marks */
2280 int cnt = 0;
2281
2282 while (parent) {
2283 /* if read wasn't screened by an earlier write ... */
2284 if (writes && state->live & REG_LIVE_WRITTEN)
2285 break;
2286 if (parent->live & REG_LIVE_DONE) {
2287 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2288 reg_type_str(env, parent->type),
2289 parent->var_off.value, parent->off);
2290 return -EFAULT;
2291 }
2292 /* The first condition is more likely to be true than the
2293 * second, checked it first.
2294 */
2295 if ((parent->live & REG_LIVE_READ) == flag ||
2296 parent->live & REG_LIVE_READ64)
2297 /* The parentage chain never changes and
2298 * this parent was already marked as LIVE_READ.
2299 * There is no need to keep walking the chain again and
2300 * keep re-marking all parents as LIVE_READ.
2301 * This case happens when the same register is read
2302 * multiple times without writes into it in-between.
2303 * Also, if parent has the stronger REG_LIVE_READ64 set,
2304 * then no need to set the weak REG_LIVE_READ32.
2305 */
2306 break;
2307 /* ... then we depend on parent's value */
2308 parent->live |= flag;
2309 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2310 if (flag == REG_LIVE_READ64)
2311 parent->live &= ~REG_LIVE_READ32;
2312 state = parent;
2313 parent = state->parent;
2314 writes = true;
2315 cnt++;
2316 }
2317
2318 if (env->longest_mark_read_walk < cnt)
2319 env->longest_mark_read_walk = cnt;
2320 return 0;
2321 }
2322
2323 /* This function is supposed to be used by the following 32-bit optimization
2324 * code only. It returns TRUE if the source or destination register operates
2325 * on 64-bit, otherwise return FALSE.
2326 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)2327 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2328 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2329 {
2330 u8 code, class, op;
2331
2332 code = insn->code;
2333 class = BPF_CLASS(code);
2334 op = BPF_OP(code);
2335 if (class == BPF_JMP) {
2336 /* BPF_EXIT for "main" will reach here. Return TRUE
2337 * conservatively.
2338 */
2339 if (op == BPF_EXIT)
2340 return true;
2341 if (op == BPF_CALL) {
2342 /* BPF to BPF call will reach here because of marking
2343 * caller saved clobber with DST_OP_NO_MARK for which we
2344 * don't care the register def because they are anyway
2345 * marked as NOT_INIT already.
2346 */
2347 if (insn->src_reg == BPF_PSEUDO_CALL)
2348 return false;
2349 /* Helper call will reach here because of arg type
2350 * check, conservatively return TRUE.
2351 */
2352 if (t == SRC_OP)
2353 return true;
2354
2355 return false;
2356 }
2357 }
2358
2359 if (class == BPF_ALU64 || class == BPF_JMP ||
2360 /* BPF_END always use BPF_ALU class. */
2361 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2362 return true;
2363
2364 if (class == BPF_ALU || class == BPF_JMP32)
2365 return false;
2366
2367 if (class == BPF_LDX) {
2368 if (t != SRC_OP)
2369 return BPF_SIZE(code) == BPF_DW;
2370 /* LDX source must be ptr. */
2371 return true;
2372 }
2373
2374 if (class == BPF_STX) {
2375 /* BPF_STX (including atomic variants) has multiple source
2376 * operands, one of which is a ptr. Check whether the caller is
2377 * asking about it.
2378 */
2379 if (t == SRC_OP && reg->type != SCALAR_VALUE)
2380 return true;
2381 return BPF_SIZE(code) == BPF_DW;
2382 }
2383
2384 if (class == BPF_LD) {
2385 u8 mode = BPF_MODE(code);
2386
2387 /* LD_IMM64 */
2388 if (mode == BPF_IMM)
2389 return true;
2390
2391 /* Both LD_IND and LD_ABS return 32-bit data. */
2392 if (t != SRC_OP)
2393 return false;
2394
2395 /* Implicit ctx ptr. */
2396 if (regno == BPF_REG_6)
2397 return true;
2398
2399 /* Explicit source could be any width. */
2400 return true;
2401 }
2402
2403 if (class == BPF_ST)
2404 /* The only source register for BPF_ST is a ptr. */
2405 return true;
2406
2407 /* Conservatively return true at default. */
2408 return true;
2409 }
2410
2411 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)2412 static int insn_def_regno(const struct bpf_insn *insn)
2413 {
2414 switch (BPF_CLASS(insn->code)) {
2415 case BPF_JMP:
2416 case BPF_JMP32:
2417 case BPF_ST:
2418 return -1;
2419 case BPF_STX:
2420 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2421 (insn->imm & BPF_FETCH)) {
2422 if (insn->imm == BPF_CMPXCHG)
2423 return BPF_REG_0;
2424 else
2425 return insn->src_reg;
2426 } else {
2427 return -1;
2428 }
2429 default:
2430 return insn->dst_reg;
2431 }
2432 }
2433
2434 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)2435 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2436 {
2437 int dst_reg = insn_def_regno(insn);
2438
2439 if (dst_reg == -1)
2440 return false;
2441
2442 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2443 }
2444
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)2445 static void mark_insn_zext(struct bpf_verifier_env *env,
2446 struct bpf_reg_state *reg)
2447 {
2448 s32 def_idx = reg->subreg_def;
2449
2450 if (def_idx == DEF_NOT_SUBREG)
2451 return;
2452
2453 env->insn_aux_data[def_idx - 1].zext_dst = true;
2454 /* The dst will be zero extended, so won't be sub-register anymore. */
2455 reg->subreg_def = DEF_NOT_SUBREG;
2456 }
2457
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)2458 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2459 enum reg_arg_type t)
2460 {
2461 struct bpf_verifier_state *vstate = env->cur_state;
2462 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2463 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2464 struct bpf_reg_state *reg, *regs = state->regs;
2465 bool rw64;
2466
2467 if (regno >= MAX_BPF_REG) {
2468 verbose(env, "R%d is invalid\n", regno);
2469 return -EINVAL;
2470 }
2471
2472 mark_reg_scratched(env, regno);
2473
2474 reg = ®s[regno];
2475 rw64 = is_reg64(env, insn, regno, reg, t);
2476 if (t == SRC_OP) {
2477 /* check whether register used as source operand can be read */
2478 if (reg->type == NOT_INIT) {
2479 verbose(env, "R%d !read_ok\n", regno);
2480 return -EACCES;
2481 }
2482 /* We don't need to worry about FP liveness because it's read-only */
2483 if (regno == BPF_REG_FP)
2484 return 0;
2485
2486 if (rw64)
2487 mark_insn_zext(env, reg);
2488
2489 return mark_reg_read(env, reg, reg->parent,
2490 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2491 } else {
2492 /* check whether register used as dest operand can be written to */
2493 if (regno == BPF_REG_FP) {
2494 verbose(env, "frame pointer is read only\n");
2495 return -EACCES;
2496 }
2497 reg->live |= REG_LIVE_WRITTEN;
2498 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2499 if (t == DST_OP)
2500 mark_reg_unknown(env, regs, regno);
2501 }
2502 return 0;
2503 }
2504
2505 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)2506 static int push_jmp_history(struct bpf_verifier_env *env,
2507 struct bpf_verifier_state *cur)
2508 {
2509 u32 cnt = cur->jmp_history_cnt;
2510 struct bpf_idx_pair *p;
2511 size_t alloc_size;
2512
2513 cnt++;
2514 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
2515 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
2516 if (!p)
2517 return -ENOMEM;
2518 p[cnt - 1].idx = env->insn_idx;
2519 p[cnt - 1].prev_idx = env->prev_insn_idx;
2520 cur->jmp_history = p;
2521 cur->jmp_history_cnt = cnt;
2522 return 0;
2523 }
2524
2525 /* Backtrack one insn at a time. If idx is not at the top of recorded
2526 * history then previous instruction came from straight line execution.
2527 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)2528 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2529 u32 *history)
2530 {
2531 u32 cnt = *history;
2532
2533 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2534 i = st->jmp_history[cnt - 1].prev_idx;
2535 (*history)--;
2536 } else {
2537 i--;
2538 }
2539 return i;
2540 }
2541
disasm_kfunc_name(void * data,const struct bpf_insn * insn)2542 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2543 {
2544 const struct btf_type *func;
2545 struct btf *desc_btf;
2546
2547 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2548 return NULL;
2549
2550 desc_btf = find_kfunc_desc_btf(data, insn->off);
2551 if (IS_ERR(desc_btf))
2552 return "<error>";
2553
2554 func = btf_type_by_id(desc_btf, insn->imm);
2555 return btf_name_by_offset(desc_btf, func->name_off);
2556 }
2557
2558 /* For given verifier state backtrack_insn() is called from the last insn to
2559 * the first insn. Its purpose is to compute a bitmask of registers and
2560 * stack slots that needs precision in the parent verifier state.
2561 */
backtrack_insn(struct bpf_verifier_env * env,int idx,u32 * reg_mask,u64 * stack_mask)2562 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2563 u32 *reg_mask, u64 *stack_mask)
2564 {
2565 const struct bpf_insn_cbs cbs = {
2566 .cb_call = disasm_kfunc_name,
2567 .cb_print = verbose,
2568 .private_data = env,
2569 };
2570 struct bpf_insn *insn = env->prog->insnsi + idx;
2571 u8 class = BPF_CLASS(insn->code);
2572 u8 opcode = BPF_OP(insn->code);
2573 u8 mode = BPF_MODE(insn->code);
2574 u32 dreg = 1u << insn->dst_reg;
2575 u32 sreg = 1u << insn->src_reg;
2576 u32 spi;
2577
2578 if (insn->code == 0)
2579 return 0;
2580 if (env->log.level & BPF_LOG_LEVEL2) {
2581 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2582 verbose(env, "%d: ", idx);
2583 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2584 }
2585
2586 if (class == BPF_ALU || class == BPF_ALU64) {
2587 if (!(*reg_mask & dreg))
2588 return 0;
2589 if (opcode == BPF_MOV) {
2590 if (BPF_SRC(insn->code) == BPF_X) {
2591 /* dreg = sreg
2592 * dreg needs precision after this insn
2593 * sreg needs precision before this insn
2594 */
2595 *reg_mask &= ~dreg;
2596 *reg_mask |= sreg;
2597 } else {
2598 /* dreg = K
2599 * dreg needs precision after this insn.
2600 * Corresponding register is already marked
2601 * as precise=true in this verifier state.
2602 * No further markings in parent are necessary
2603 */
2604 *reg_mask &= ~dreg;
2605 }
2606 } else {
2607 if (BPF_SRC(insn->code) == BPF_X) {
2608 /* dreg += sreg
2609 * both dreg and sreg need precision
2610 * before this insn
2611 */
2612 *reg_mask |= sreg;
2613 } /* else dreg += K
2614 * dreg still needs precision before this insn
2615 */
2616 }
2617 } else if (class == BPF_LDX) {
2618 if (!(*reg_mask & dreg))
2619 return 0;
2620 *reg_mask &= ~dreg;
2621
2622 /* scalars can only be spilled into stack w/o losing precision.
2623 * Load from any other memory can be zero extended.
2624 * The desire to keep that precision is already indicated
2625 * by 'precise' mark in corresponding register of this state.
2626 * No further tracking necessary.
2627 */
2628 if (insn->src_reg != BPF_REG_FP)
2629 return 0;
2630
2631 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2632 * that [fp - off] slot contains scalar that needs to be
2633 * tracked with precision
2634 */
2635 spi = (-insn->off - 1) / BPF_REG_SIZE;
2636 if (spi >= 64) {
2637 verbose(env, "BUG spi %d\n", spi);
2638 WARN_ONCE(1, "verifier backtracking bug");
2639 return -EFAULT;
2640 }
2641 *stack_mask |= 1ull << spi;
2642 } else if (class == BPF_STX || class == BPF_ST) {
2643 if (*reg_mask & dreg)
2644 /* stx & st shouldn't be using _scalar_ dst_reg
2645 * to access memory. It means backtracking
2646 * encountered a case of pointer subtraction.
2647 */
2648 return -ENOTSUPP;
2649 /* scalars can only be spilled into stack */
2650 if (insn->dst_reg != BPF_REG_FP)
2651 return 0;
2652 spi = (-insn->off - 1) / BPF_REG_SIZE;
2653 if (spi >= 64) {
2654 verbose(env, "BUG spi %d\n", spi);
2655 WARN_ONCE(1, "verifier backtracking bug");
2656 return -EFAULT;
2657 }
2658 if (!(*stack_mask & (1ull << spi)))
2659 return 0;
2660 *stack_mask &= ~(1ull << spi);
2661 if (class == BPF_STX)
2662 *reg_mask |= sreg;
2663 } else if (class == BPF_JMP || class == BPF_JMP32) {
2664 if (opcode == BPF_CALL) {
2665 if (insn->src_reg == BPF_PSEUDO_CALL)
2666 return -ENOTSUPP;
2667 /* regular helper call sets R0 */
2668 *reg_mask &= ~1;
2669 if (*reg_mask & 0x3f) {
2670 /* if backtracing was looking for registers R1-R5
2671 * they should have been found already.
2672 */
2673 verbose(env, "BUG regs %x\n", *reg_mask);
2674 WARN_ONCE(1, "verifier backtracking bug");
2675 return -EFAULT;
2676 }
2677 } else if (opcode == BPF_EXIT) {
2678 return -ENOTSUPP;
2679 }
2680 } else if (class == BPF_LD) {
2681 if (!(*reg_mask & dreg))
2682 return 0;
2683 *reg_mask &= ~dreg;
2684 /* It's ld_imm64 or ld_abs or ld_ind.
2685 * For ld_imm64 no further tracking of precision
2686 * into parent is necessary
2687 */
2688 if (mode == BPF_IND || mode == BPF_ABS)
2689 /* to be analyzed */
2690 return -ENOTSUPP;
2691 }
2692 return 0;
2693 }
2694
2695 /* the scalar precision tracking algorithm:
2696 * . at the start all registers have precise=false.
2697 * . scalar ranges are tracked as normal through alu and jmp insns.
2698 * . once precise value of the scalar register is used in:
2699 * . ptr + scalar alu
2700 * . if (scalar cond K|scalar)
2701 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2702 * backtrack through the verifier states and mark all registers and
2703 * stack slots with spilled constants that these scalar regisers
2704 * should be precise.
2705 * . during state pruning two registers (or spilled stack slots)
2706 * are equivalent if both are not precise.
2707 *
2708 * Note the verifier cannot simply walk register parentage chain,
2709 * since many different registers and stack slots could have been
2710 * used to compute single precise scalar.
2711 *
2712 * The approach of starting with precise=true for all registers and then
2713 * backtrack to mark a register as not precise when the verifier detects
2714 * that program doesn't care about specific value (e.g., when helper
2715 * takes register as ARG_ANYTHING parameter) is not safe.
2716 *
2717 * It's ok to walk single parentage chain of the verifier states.
2718 * It's possible that this backtracking will go all the way till 1st insn.
2719 * All other branches will be explored for needing precision later.
2720 *
2721 * The backtracking needs to deal with cases like:
2722 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2723 * r9 -= r8
2724 * r5 = r9
2725 * if r5 > 0x79f goto pc+7
2726 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2727 * r5 += 1
2728 * ...
2729 * call bpf_perf_event_output#25
2730 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2731 *
2732 * and this case:
2733 * r6 = 1
2734 * call foo // uses callee's r6 inside to compute r0
2735 * r0 += r6
2736 * if r0 == 0 goto
2737 *
2738 * to track above reg_mask/stack_mask needs to be independent for each frame.
2739 *
2740 * Also if parent's curframe > frame where backtracking started,
2741 * the verifier need to mark registers in both frames, otherwise callees
2742 * may incorrectly prune callers. This is similar to
2743 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2744 *
2745 * For now backtracking falls back into conservative marking.
2746 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2747 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2748 struct bpf_verifier_state *st)
2749 {
2750 struct bpf_func_state *func;
2751 struct bpf_reg_state *reg;
2752 int i, j;
2753
2754 /* big hammer: mark all scalars precise in this path.
2755 * pop_stack may still get !precise scalars.
2756 */
2757 for (; st; st = st->parent)
2758 for (i = 0; i <= st->curframe; i++) {
2759 func = st->frame[i];
2760 for (j = 0; j < BPF_REG_FP; j++) {
2761 reg = &func->regs[j];
2762 if (reg->type != SCALAR_VALUE)
2763 continue;
2764 reg->precise = true;
2765 }
2766 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2767 if (!is_spilled_reg(&func->stack[j]))
2768 continue;
2769 reg = &func->stack[j].spilled_ptr;
2770 if (reg->type != SCALAR_VALUE)
2771 continue;
2772 reg->precise = true;
2773 }
2774 }
2775 }
2776
__mark_chain_precision(struct bpf_verifier_env * env,int frame,int regno,int spi)2777 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2778 int spi)
2779 {
2780 struct bpf_verifier_state *st = env->cur_state;
2781 int first_idx = st->first_insn_idx;
2782 int last_idx = env->insn_idx;
2783 struct bpf_func_state *func;
2784 struct bpf_reg_state *reg;
2785 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2786 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2787 bool skip_first = true;
2788 bool new_marks = false;
2789 int i, err;
2790
2791 if (!env->bpf_capable)
2792 return 0;
2793
2794 func = st->frame[frame];
2795 if (regno >= 0) {
2796 reg = &func->regs[regno];
2797 if (reg->type != SCALAR_VALUE) {
2798 WARN_ONCE(1, "backtracing misuse");
2799 return -EFAULT;
2800 }
2801 if (!reg->precise)
2802 new_marks = true;
2803 else
2804 reg_mask = 0;
2805 reg->precise = true;
2806 }
2807
2808 while (spi >= 0) {
2809 if (!is_spilled_reg(&func->stack[spi])) {
2810 stack_mask = 0;
2811 break;
2812 }
2813 reg = &func->stack[spi].spilled_ptr;
2814 if (reg->type != SCALAR_VALUE) {
2815 stack_mask = 0;
2816 break;
2817 }
2818 if (!reg->precise)
2819 new_marks = true;
2820 else
2821 stack_mask = 0;
2822 reg->precise = true;
2823 break;
2824 }
2825
2826 if (!new_marks)
2827 return 0;
2828 if (!reg_mask && !stack_mask)
2829 return 0;
2830 for (;;) {
2831 DECLARE_BITMAP(mask, 64);
2832 u32 history = st->jmp_history_cnt;
2833
2834 if (env->log.level & BPF_LOG_LEVEL2)
2835 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2836 for (i = last_idx;;) {
2837 if (skip_first) {
2838 err = 0;
2839 skip_first = false;
2840 } else {
2841 err = backtrack_insn(env, i, ®_mask, &stack_mask);
2842 }
2843 if (err == -ENOTSUPP) {
2844 mark_all_scalars_precise(env, st);
2845 return 0;
2846 } else if (err) {
2847 return err;
2848 }
2849 if (!reg_mask && !stack_mask)
2850 /* Found assignment(s) into tracked register in this state.
2851 * Since this state is already marked, just return.
2852 * Nothing to be tracked further in the parent state.
2853 */
2854 return 0;
2855 if (i == first_idx)
2856 break;
2857 i = get_prev_insn_idx(st, i, &history);
2858 if (i >= env->prog->len) {
2859 /* This can happen if backtracking reached insn 0
2860 * and there are still reg_mask or stack_mask
2861 * to backtrack.
2862 * It means the backtracking missed the spot where
2863 * particular register was initialized with a constant.
2864 */
2865 verbose(env, "BUG backtracking idx %d\n", i);
2866 WARN_ONCE(1, "verifier backtracking bug");
2867 return -EFAULT;
2868 }
2869 }
2870 st = st->parent;
2871 if (!st)
2872 break;
2873
2874 new_marks = false;
2875 func = st->frame[frame];
2876 bitmap_from_u64(mask, reg_mask);
2877 for_each_set_bit(i, mask, 32) {
2878 reg = &func->regs[i];
2879 if (reg->type != SCALAR_VALUE) {
2880 reg_mask &= ~(1u << i);
2881 continue;
2882 }
2883 if (!reg->precise)
2884 new_marks = true;
2885 reg->precise = true;
2886 }
2887
2888 bitmap_from_u64(mask, stack_mask);
2889 for_each_set_bit(i, mask, 64) {
2890 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2891 /* the sequence of instructions:
2892 * 2: (bf) r3 = r10
2893 * 3: (7b) *(u64 *)(r3 -8) = r0
2894 * 4: (79) r4 = *(u64 *)(r10 -8)
2895 * doesn't contain jmps. It's backtracked
2896 * as a single block.
2897 * During backtracking insn 3 is not recognized as
2898 * stack access, so at the end of backtracking
2899 * stack slot fp-8 is still marked in stack_mask.
2900 * However the parent state may not have accessed
2901 * fp-8 and it's "unallocated" stack space.
2902 * In such case fallback to conservative.
2903 */
2904 mark_all_scalars_precise(env, st);
2905 return 0;
2906 }
2907
2908 if (!is_spilled_reg(&func->stack[i])) {
2909 stack_mask &= ~(1ull << i);
2910 continue;
2911 }
2912 reg = &func->stack[i].spilled_ptr;
2913 if (reg->type != SCALAR_VALUE) {
2914 stack_mask &= ~(1ull << i);
2915 continue;
2916 }
2917 if (!reg->precise)
2918 new_marks = true;
2919 reg->precise = true;
2920 }
2921 if (env->log.level & BPF_LOG_LEVEL2) {
2922 verbose(env, "parent %s regs=%x stack=%llx marks:",
2923 new_marks ? "didn't have" : "already had",
2924 reg_mask, stack_mask);
2925 print_verifier_state(env, func, true);
2926 }
2927
2928 if (!reg_mask && !stack_mask)
2929 break;
2930 if (!new_marks)
2931 break;
2932
2933 last_idx = st->last_insn_idx;
2934 first_idx = st->first_insn_idx;
2935 }
2936 return 0;
2937 }
2938
mark_chain_precision(struct bpf_verifier_env * env,int regno)2939 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2940 {
2941 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
2942 }
2943
mark_chain_precision_frame(struct bpf_verifier_env * env,int frame,int regno)2944 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
2945 {
2946 return __mark_chain_precision(env, frame, regno, -1);
2947 }
2948
mark_chain_precision_stack_frame(struct bpf_verifier_env * env,int frame,int spi)2949 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
2950 {
2951 return __mark_chain_precision(env, frame, -1, spi);
2952 }
2953
is_spillable_regtype(enum bpf_reg_type type)2954 static bool is_spillable_regtype(enum bpf_reg_type type)
2955 {
2956 switch (base_type(type)) {
2957 case PTR_TO_MAP_VALUE:
2958 case PTR_TO_STACK:
2959 case PTR_TO_CTX:
2960 case PTR_TO_PACKET:
2961 case PTR_TO_PACKET_META:
2962 case PTR_TO_PACKET_END:
2963 case PTR_TO_FLOW_KEYS:
2964 case CONST_PTR_TO_MAP:
2965 case PTR_TO_SOCKET:
2966 case PTR_TO_SOCK_COMMON:
2967 case PTR_TO_TCP_SOCK:
2968 case PTR_TO_XDP_SOCK:
2969 case PTR_TO_BTF_ID:
2970 case PTR_TO_BUF:
2971 case PTR_TO_MEM:
2972 case PTR_TO_FUNC:
2973 case PTR_TO_MAP_KEY:
2974 return true;
2975 default:
2976 return false;
2977 }
2978 }
2979
2980 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)2981 static bool register_is_null(struct bpf_reg_state *reg)
2982 {
2983 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2984 }
2985
register_is_const(struct bpf_reg_state * reg)2986 static bool register_is_const(struct bpf_reg_state *reg)
2987 {
2988 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2989 }
2990
__is_scalar_unbounded(struct bpf_reg_state * reg)2991 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2992 {
2993 return tnum_is_unknown(reg->var_off) &&
2994 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2995 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2996 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2997 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2998 }
2999
register_is_bounded(struct bpf_reg_state * reg)3000 static bool register_is_bounded(struct bpf_reg_state *reg)
3001 {
3002 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3003 }
3004
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)3005 static bool __is_pointer_value(bool allow_ptr_leaks,
3006 const struct bpf_reg_state *reg)
3007 {
3008 if (allow_ptr_leaks)
3009 return false;
3010
3011 return reg->type != SCALAR_VALUE;
3012 }
3013
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)3014 static void save_register_state(struct bpf_func_state *state,
3015 int spi, struct bpf_reg_state *reg,
3016 int size)
3017 {
3018 int i;
3019
3020 state->stack[spi].spilled_ptr = *reg;
3021 if (size == BPF_REG_SIZE)
3022 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3023
3024 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3025 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
3026
3027 /* size < 8 bytes spill */
3028 for (; i; i--)
3029 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
3030 }
3031
3032 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
3033 * stack boundary and alignment are checked in check_mem_access()
3034 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)3035 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3036 /* stack frame we're writing to */
3037 struct bpf_func_state *state,
3038 int off, int size, int value_regno,
3039 int insn_idx)
3040 {
3041 struct bpf_func_state *cur; /* state of the current function */
3042 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3043 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
3044 struct bpf_reg_state *reg = NULL;
3045
3046 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3047 if (err)
3048 return err;
3049 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3050 * so it's aligned access and [off, off + size) are within stack limits
3051 */
3052 if (!env->allow_ptr_leaks &&
3053 state->stack[spi].slot_type[0] == STACK_SPILL &&
3054 size != BPF_REG_SIZE) {
3055 verbose(env, "attempt to corrupt spilled pointer on stack\n");
3056 return -EACCES;
3057 }
3058
3059 cur = env->cur_state->frame[env->cur_state->curframe];
3060 if (value_regno >= 0)
3061 reg = &cur->regs[value_regno];
3062 if (!env->bypass_spec_v4) {
3063 bool sanitize = reg && is_spillable_regtype(reg->type);
3064
3065 for (i = 0; i < size; i++) {
3066 u8 type = state->stack[spi].slot_type[i];
3067
3068 if (type != STACK_MISC && type != STACK_ZERO) {
3069 sanitize = true;
3070 break;
3071 }
3072 }
3073
3074 if (sanitize)
3075 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3076 }
3077
3078 mark_stack_slot_scratched(env, spi);
3079 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3080 !register_is_null(reg) && env->bpf_capable) {
3081 if (dst_reg != BPF_REG_FP) {
3082 /* The backtracking logic can only recognize explicit
3083 * stack slot address like [fp - 8]. Other spill of
3084 * scalar via different register has to be conservative.
3085 * Backtrack from here and mark all registers as precise
3086 * that contributed into 'reg' being a constant.
3087 */
3088 err = mark_chain_precision(env, value_regno);
3089 if (err)
3090 return err;
3091 }
3092 save_register_state(state, spi, reg, size);
3093 } else if (reg && is_spillable_regtype(reg->type)) {
3094 /* register containing pointer is being spilled into stack */
3095 if (size != BPF_REG_SIZE) {
3096 verbose_linfo(env, insn_idx, "; ");
3097 verbose(env, "invalid size of register spill\n");
3098 return -EACCES;
3099 }
3100 if (state != cur && reg->type == PTR_TO_STACK) {
3101 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3102 return -EINVAL;
3103 }
3104 save_register_state(state, spi, reg, size);
3105 } else {
3106 u8 type = STACK_MISC;
3107
3108 /* regular write of data into stack destroys any spilled ptr */
3109 state->stack[spi].spilled_ptr.type = NOT_INIT;
3110 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3111 if (is_spilled_reg(&state->stack[spi]))
3112 for (i = 0; i < BPF_REG_SIZE; i++)
3113 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3114
3115 /* only mark the slot as written if all 8 bytes were written
3116 * otherwise read propagation may incorrectly stop too soon
3117 * when stack slots are partially written.
3118 * This heuristic means that read propagation will be
3119 * conservative, since it will add reg_live_read marks
3120 * to stack slots all the way to first state when programs
3121 * writes+reads less than 8 bytes
3122 */
3123 if (size == BPF_REG_SIZE)
3124 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3125
3126 /* when we zero initialize stack slots mark them as such */
3127 if (reg && register_is_null(reg)) {
3128 /* backtracking doesn't work for STACK_ZERO yet. */
3129 err = mark_chain_precision(env, value_regno);
3130 if (err)
3131 return err;
3132 type = STACK_ZERO;
3133 }
3134
3135 /* Mark slots affected by this stack write. */
3136 for (i = 0; i < size; i++)
3137 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3138 type;
3139 }
3140 return 0;
3141 }
3142
3143 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3144 * known to contain a variable offset.
3145 * This function checks whether the write is permitted and conservatively
3146 * tracks the effects of the write, considering that each stack slot in the
3147 * dynamic range is potentially written to.
3148 *
3149 * 'off' includes 'regno->off'.
3150 * 'value_regno' can be -1, meaning that an unknown value is being written to
3151 * the stack.
3152 *
3153 * Spilled pointers in range are not marked as written because we don't know
3154 * what's going to be actually written. This means that read propagation for
3155 * future reads cannot be terminated by this write.
3156 *
3157 * For privileged programs, uninitialized stack slots are considered
3158 * initialized by this write (even though we don't know exactly what offsets
3159 * are going to be written to). The idea is that we don't want the verifier to
3160 * reject future reads that access slots written to through variable offsets.
3161 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)3162 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3163 /* func where register points to */
3164 struct bpf_func_state *state,
3165 int ptr_regno, int off, int size,
3166 int value_regno, int insn_idx)
3167 {
3168 struct bpf_func_state *cur; /* state of the current function */
3169 int min_off, max_off;
3170 int i, err;
3171 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3172 bool writing_zero = false;
3173 /* set if the fact that we're writing a zero is used to let any
3174 * stack slots remain STACK_ZERO
3175 */
3176 bool zero_used = false;
3177
3178 cur = env->cur_state->frame[env->cur_state->curframe];
3179 ptr_reg = &cur->regs[ptr_regno];
3180 min_off = ptr_reg->smin_value + off;
3181 max_off = ptr_reg->smax_value + off + size;
3182 if (value_regno >= 0)
3183 value_reg = &cur->regs[value_regno];
3184 if (value_reg && register_is_null(value_reg))
3185 writing_zero = true;
3186
3187 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3188 if (err)
3189 return err;
3190
3191
3192 /* Variable offset writes destroy any spilled pointers in range. */
3193 for (i = min_off; i < max_off; i++) {
3194 u8 new_type, *stype;
3195 int slot, spi;
3196
3197 slot = -i - 1;
3198 spi = slot / BPF_REG_SIZE;
3199 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3200 mark_stack_slot_scratched(env, spi);
3201
3202 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3203 /* Reject the write if range we may write to has not
3204 * been initialized beforehand. If we didn't reject
3205 * here, the ptr status would be erased below (even
3206 * though not all slots are actually overwritten),
3207 * possibly opening the door to leaks.
3208 *
3209 * We do however catch STACK_INVALID case below, and
3210 * only allow reading possibly uninitialized memory
3211 * later for CAP_PERFMON, as the write may not happen to
3212 * that slot.
3213 */
3214 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3215 insn_idx, i);
3216 return -EINVAL;
3217 }
3218
3219 /* Erase all spilled pointers. */
3220 state->stack[spi].spilled_ptr.type = NOT_INIT;
3221
3222 /* Update the slot type. */
3223 new_type = STACK_MISC;
3224 if (writing_zero && *stype == STACK_ZERO) {
3225 new_type = STACK_ZERO;
3226 zero_used = true;
3227 }
3228 /* If the slot is STACK_INVALID, we check whether it's OK to
3229 * pretend that it will be initialized by this write. The slot
3230 * might not actually be written to, and so if we mark it as
3231 * initialized future reads might leak uninitialized memory.
3232 * For privileged programs, we will accept such reads to slots
3233 * that may or may not be written because, if we're reject
3234 * them, the error would be too confusing.
3235 */
3236 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3237 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3238 insn_idx, i);
3239 return -EINVAL;
3240 }
3241 *stype = new_type;
3242 }
3243 if (zero_used) {
3244 /* backtracking doesn't work for STACK_ZERO yet. */
3245 err = mark_chain_precision(env, value_regno);
3246 if (err)
3247 return err;
3248 }
3249 return 0;
3250 }
3251
3252 /* When register 'dst_regno' is assigned some values from stack[min_off,
3253 * max_off), we set the register's type according to the types of the
3254 * respective stack slots. If all the stack values are known to be zeros, then
3255 * so is the destination reg. Otherwise, the register is considered to be
3256 * SCALAR. This function does not deal with register filling; the caller must
3257 * ensure that all spilled registers in the stack range have been marked as
3258 * read.
3259 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)3260 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3261 /* func where src register points to */
3262 struct bpf_func_state *ptr_state,
3263 int min_off, int max_off, int dst_regno)
3264 {
3265 struct bpf_verifier_state *vstate = env->cur_state;
3266 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3267 int i, slot, spi;
3268 u8 *stype;
3269 int zeros = 0;
3270
3271 for (i = min_off; i < max_off; i++) {
3272 slot = -i - 1;
3273 spi = slot / BPF_REG_SIZE;
3274 stype = ptr_state->stack[spi].slot_type;
3275 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3276 break;
3277 zeros++;
3278 }
3279 if (zeros == max_off - min_off) {
3280 /* any access_size read into register is zero extended,
3281 * so the whole register == const_zero
3282 */
3283 __mark_reg_const_zero(&state->regs[dst_regno]);
3284 /* backtracking doesn't support STACK_ZERO yet,
3285 * so mark it precise here, so that later
3286 * backtracking can stop here.
3287 * Backtracking may not need this if this register
3288 * doesn't participate in pointer adjustment.
3289 * Forward propagation of precise flag is not
3290 * necessary either. This mark is only to stop
3291 * backtracking. Any register that contributed
3292 * to const 0 was marked precise before spill.
3293 */
3294 state->regs[dst_regno].precise = true;
3295 } else {
3296 /* have read misc data from the stack */
3297 mark_reg_unknown(env, state->regs, dst_regno);
3298 }
3299 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3300 }
3301
3302 /* Read the stack at 'off' and put the results into the register indicated by
3303 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3304 * spilled reg.
3305 *
3306 * 'dst_regno' can be -1, meaning that the read value is not going to a
3307 * register.
3308 *
3309 * The access is assumed to be within the current stack bounds.
3310 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)3311 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3312 /* func where src register points to */
3313 struct bpf_func_state *reg_state,
3314 int off, int size, int dst_regno)
3315 {
3316 struct bpf_verifier_state *vstate = env->cur_state;
3317 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3318 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3319 struct bpf_reg_state *reg;
3320 u8 *stype, type;
3321
3322 stype = reg_state->stack[spi].slot_type;
3323 reg = ®_state->stack[spi].spilled_ptr;
3324
3325 if (is_spilled_reg(®_state->stack[spi])) {
3326 u8 spill_size = 1;
3327
3328 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3329 spill_size++;
3330
3331 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3332 if (reg->type != SCALAR_VALUE) {
3333 verbose_linfo(env, env->insn_idx, "; ");
3334 verbose(env, "invalid size of register fill\n");
3335 return -EACCES;
3336 }
3337
3338 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3339 if (dst_regno < 0)
3340 return 0;
3341
3342 if (!(off % BPF_REG_SIZE) && size == spill_size) {
3343 /* The earlier check_reg_arg() has decided the
3344 * subreg_def for this insn. Save it first.
3345 */
3346 s32 subreg_def = state->regs[dst_regno].subreg_def;
3347
3348 state->regs[dst_regno] = *reg;
3349 state->regs[dst_regno].subreg_def = subreg_def;
3350 } else {
3351 for (i = 0; i < size; i++) {
3352 type = stype[(slot - i) % BPF_REG_SIZE];
3353 if (type == STACK_SPILL)
3354 continue;
3355 if (type == STACK_MISC)
3356 continue;
3357 verbose(env, "invalid read from stack off %d+%d size %d\n",
3358 off, i, size);
3359 return -EACCES;
3360 }
3361 mark_reg_unknown(env, state->regs, dst_regno);
3362 }
3363 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3364 return 0;
3365 }
3366
3367 if (dst_regno >= 0) {
3368 /* restore register state from stack */
3369 state->regs[dst_regno] = *reg;
3370 /* mark reg as written since spilled pointer state likely
3371 * has its liveness marks cleared by is_state_visited()
3372 * which resets stack/reg liveness for state transitions
3373 */
3374 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3375 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3376 /* If dst_regno==-1, the caller is asking us whether
3377 * it is acceptable to use this value as a SCALAR_VALUE
3378 * (e.g. for XADD).
3379 * We must not allow unprivileged callers to do that
3380 * with spilled pointers.
3381 */
3382 verbose(env, "leaking pointer from stack off %d\n",
3383 off);
3384 return -EACCES;
3385 }
3386 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3387 } else {
3388 for (i = 0; i < size; i++) {
3389 type = stype[(slot - i) % BPF_REG_SIZE];
3390 if (type == STACK_MISC)
3391 continue;
3392 if (type == STACK_ZERO)
3393 continue;
3394 verbose(env, "invalid read from stack off %d+%d size %d\n",
3395 off, i, size);
3396 return -EACCES;
3397 }
3398 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3399 if (dst_regno >= 0)
3400 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3401 }
3402 return 0;
3403 }
3404
3405 enum bpf_access_src {
3406 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3407 ACCESS_HELPER = 2, /* the access is performed by a helper */
3408 };
3409
3410 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3411 int regno, int off, int access_size,
3412 bool zero_size_allowed,
3413 enum bpf_access_src type,
3414 struct bpf_call_arg_meta *meta);
3415
reg_state(struct bpf_verifier_env * env,int regno)3416 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3417 {
3418 return cur_regs(env) + regno;
3419 }
3420
3421 /* Read the stack at 'ptr_regno + off' and put the result into the register
3422 * 'dst_regno'.
3423 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3424 * but not its variable offset.
3425 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3426 *
3427 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3428 * filling registers (i.e. reads of spilled register cannot be detected when
3429 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3430 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3431 * offset; for a fixed offset check_stack_read_fixed_off should be used
3432 * instead.
3433 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)3434 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3435 int ptr_regno, int off, int size, int dst_regno)
3436 {
3437 /* The state of the source register. */
3438 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3439 struct bpf_func_state *ptr_state = func(env, reg);
3440 int err;
3441 int min_off, max_off;
3442
3443 /* Note that we pass a NULL meta, so raw access will not be permitted.
3444 */
3445 err = check_stack_range_initialized(env, ptr_regno, off, size,
3446 false, ACCESS_DIRECT, NULL);
3447 if (err)
3448 return err;
3449
3450 min_off = reg->smin_value + off;
3451 max_off = reg->smax_value + off;
3452 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3453 return 0;
3454 }
3455
3456 /* check_stack_read dispatches to check_stack_read_fixed_off or
3457 * check_stack_read_var_off.
3458 *
3459 * The caller must ensure that the offset falls within the allocated stack
3460 * bounds.
3461 *
3462 * 'dst_regno' is a register which will receive the value from the stack. It
3463 * can be -1, meaning that the read value is not going to a register.
3464 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)3465 static int check_stack_read(struct bpf_verifier_env *env,
3466 int ptr_regno, int off, int size,
3467 int dst_regno)
3468 {
3469 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3470 struct bpf_func_state *state = func(env, reg);
3471 int err;
3472 /* Some accesses are only permitted with a static offset. */
3473 bool var_off = !tnum_is_const(reg->var_off);
3474
3475 /* The offset is required to be static when reads don't go to a
3476 * register, in order to not leak pointers (see
3477 * check_stack_read_fixed_off).
3478 */
3479 if (dst_regno < 0 && var_off) {
3480 char tn_buf[48];
3481
3482 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3483 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3484 tn_buf, off, size);
3485 return -EACCES;
3486 }
3487 /* Variable offset is prohibited for unprivileged mode for simplicity
3488 * since it requires corresponding support in Spectre masking for stack
3489 * ALU. See also retrieve_ptr_limit().
3490 */
3491 if (!env->bypass_spec_v1 && var_off) {
3492 char tn_buf[48];
3493
3494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3495 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3496 ptr_regno, tn_buf);
3497 return -EACCES;
3498 }
3499
3500 if (!var_off) {
3501 off += reg->var_off.value;
3502 err = check_stack_read_fixed_off(env, state, off, size,
3503 dst_regno);
3504 } else {
3505 /* Variable offset stack reads need more conservative handling
3506 * than fixed offset ones. Note that dst_regno >= 0 on this
3507 * branch.
3508 */
3509 err = check_stack_read_var_off(env, ptr_regno, off, size,
3510 dst_regno);
3511 }
3512 return err;
3513 }
3514
3515
3516 /* check_stack_write dispatches to check_stack_write_fixed_off or
3517 * check_stack_write_var_off.
3518 *
3519 * 'ptr_regno' is the register used as a pointer into the stack.
3520 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3521 * 'value_regno' is the register whose value we're writing to the stack. It can
3522 * be -1, meaning that we're not writing from a register.
3523 *
3524 * The caller must ensure that the offset falls within the maximum stack size.
3525 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)3526 static int check_stack_write(struct bpf_verifier_env *env,
3527 int ptr_regno, int off, int size,
3528 int value_regno, int insn_idx)
3529 {
3530 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3531 struct bpf_func_state *state = func(env, reg);
3532 int err;
3533
3534 if (tnum_is_const(reg->var_off)) {
3535 off += reg->var_off.value;
3536 err = check_stack_write_fixed_off(env, state, off, size,
3537 value_regno, insn_idx);
3538 } else {
3539 /* Variable offset stack reads need more conservative handling
3540 * than fixed offset ones.
3541 */
3542 err = check_stack_write_var_off(env, state,
3543 ptr_regno, off, size,
3544 value_regno, insn_idx);
3545 }
3546 return err;
3547 }
3548
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)3549 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3550 int off, int size, enum bpf_access_type type)
3551 {
3552 struct bpf_reg_state *regs = cur_regs(env);
3553 struct bpf_map *map = regs[regno].map_ptr;
3554 u32 cap = bpf_map_flags_to_cap(map);
3555
3556 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3557 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3558 map->value_size, off, size);
3559 return -EACCES;
3560 }
3561
3562 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3563 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3564 map->value_size, off, size);
3565 return -EACCES;
3566 }
3567
3568 return 0;
3569 }
3570
3571 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)3572 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3573 int off, int size, u32 mem_size,
3574 bool zero_size_allowed)
3575 {
3576 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3577 struct bpf_reg_state *reg;
3578
3579 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3580 return 0;
3581
3582 reg = &cur_regs(env)[regno];
3583 switch (reg->type) {
3584 case PTR_TO_MAP_KEY:
3585 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3586 mem_size, off, size);
3587 break;
3588 case PTR_TO_MAP_VALUE:
3589 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3590 mem_size, off, size);
3591 break;
3592 case PTR_TO_PACKET:
3593 case PTR_TO_PACKET_META:
3594 case PTR_TO_PACKET_END:
3595 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3596 off, size, regno, reg->id, off, mem_size);
3597 break;
3598 case PTR_TO_MEM:
3599 default:
3600 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3601 mem_size, off, size);
3602 }
3603
3604 return -EACCES;
3605 }
3606
3607 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)3608 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3609 int off, int size, u32 mem_size,
3610 bool zero_size_allowed)
3611 {
3612 struct bpf_verifier_state *vstate = env->cur_state;
3613 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3614 struct bpf_reg_state *reg = &state->regs[regno];
3615 int err;
3616
3617 /* We may have adjusted the register pointing to memory region, so we
3618 * need to try adding each of min_value and max_value to off
3619 * to make sure our theoretical access will be safe.
3620 *
3621 * The minimum value is only important with signed
3622 * comparisons where we can't assume the floor of a
3623 * value is 0. If we are using signed variables for our
3624 * index'es we need to make sure that whatever we use
3625 * will have a set floor within our range.
3626 */
3627 if (reg->smin_value < 0 &&
3628 (reg->smin_value == S64_MIN ||
3629 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3630 reg->smin_value + off < 0)) {
3631 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3632 regno);
3633 return -EACCES;
3634 }
3635 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3636 mem_size, zero_size_allowed);
3637 if (err) {
3638 verbose(env, "R%d min value is outside of the allowed memory range\n",
3639 regno);
3640 return err;
3641 }
3642
3643 /* If we haven't set a max value then we need to bail since we can't be
3644 * sure we won't do bad things.
3645 * If reg->umax_value + off could overflow, treat that as unbounded too.
3646 */
3647 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3648 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3649 regno);
3650 return -EACCES;
3651 }
3652 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3653 mem_size, zero_size_allowed);
3654 if (err) {
3655 verbose(env, "R%d max value is outside of the allowed memory range\n",
3656 regno);
3657 return err;
3658 }
3659
3660 return 0;
3661 }
3662
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)3663 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3664 const struct bpf_reg_state *reg, int regno,
3665 bool fixed_off_ok)
3666 {
3667 /* Access to this pointer-typed register or passing it to a helper
3668 * is only allowed in its original, unmodified form.
3669 */
3670
3671 if (reg->off < 0) {
3672 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3673 reg_type_str(env, reg->type), regno, reg->off);
3674 return -EACCES;
3675 }
3676
3677 if (!fixed_off_ok && reg->off) {
3678 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3679 reg_type_str(env, reg->type), regno, reg->off);
3680 return -EACCES;
3681 }
3682
3683 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3684 char tn_buf[48];
3685
3686 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3687 verbose(env, "variable %s access var_off=%s disallowed\n",
3688 reg_type_str(env, reg->type), tn_buf);
3689 return -EACCES;
3690 }
3691
3692 return 0;
3693 }
3694
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)3695 int check_ptr_off_reg(struct bpf_verifier_env *env,
3696 const struct bpf_reg_state *reg, int regno)
3697 {
3698 return __check_ptr_off_reg(env, reg, regno, false);
3699 }
3700
map_kptr_match_type(struct bpf_verifier_env * env,struct bpf_map_value_off_desc * off_desc,struct bpf_reg_state * reg,u32 regno)3701 static int map_kptr_match_type(struct bpf_verifier_env *env,
3702 struct bpf_map_value_off_desc *off_desc,
3703 struct bpf_reg_state *reg, u32 regno)
3704 {
3705 const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id);
3706 int perm_flags = PTR_MAYBE_NULL;
3707 const char *reg_name = "";
3708
3709 /* Only unreferenced case accepts untrusted pointers */
3710 if (off_desc->type == BPF_KPTR_UNREF)
3711 perm_flags |= PTR_UNTRUSTED;
3712
3713 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
3714 goto bad_type;
3715
3716 if (!btf_is_kernel(reg->btf)) {
3717 verbose(env, "R%d must point to kernel BTF\n", regno);
3718 return -EINVAL;
3719 }
3720 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
3721 reg_name = kernel_type_name(reg->btf, reg->btf_id);
3722
3723 /* For ref_ptr case, release function check should ensure we get one
3724 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3725 * normal store of unreferenced kptr, we must ensure var_off is zero.
3726 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3727 * reg->off and reg->ref_obj_id are not needed here.
3728 */
3729 if (__check_ptr_off_reg(env, reg, regno, true))
3730 return -EACCES;
3731
3732 /* A full type match is needed, as BTF can be vmlinux or module BTF, and
3733 * we also need to take into account the reg->off.
3734 *
3735 * We want to support cases like:
3736 *
3737 * struct foo {
3738 * struct bar br;
3739 * struct baz bz;
3740 * };
3741 *
3742 * struct foo *v;
3743 * v = func(); // PTR_TO_BTF_ID
3744 * val->foo = v; // reg->off is zero, btf and btf_id match type
3745 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3746 * // first member type of struct after comparison fails
3747 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3748 * // to match type
3749 *
3750 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
3751 * is zero. We must also ensure that btf_struct_ids_match does not walk
3752 * the struct to match type against first member of struct, i.e. reject
3753 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3754 * strict mode to true for type match.
3755 */
3756 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
3757 off_desc->kptr.btf, off_desc->kptr.btf_id,
3758 off_desc->type == BPF_KPTR_REF))
3759 goto bad_type;
3760 return 0;
3761 bad_type:
3762 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3763 reg_type_str(env, reg->type), reg_name);
3764 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
3765 if (off_desc->type == BPF_KPTR_UNREF)
3766 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3767 targ_name);
3768 else
3769 verbose(env, "\n");
3770 return -EINVAL;
3771 }
3772
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct bpf_map_value_off_desc * off_desc)3773 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3774 int value_regno, int insn_idx,
3775 struct bpf_map_value_off_desc *off_desc)
3776 {
3777 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3778 int class = BPF_CLASS(insn->code);
3779 struct bpf_reg_state *val_reg;
3780
3781 /* Things we already checked for in check_map_access and caller:
3782 * - Reject cases where variable offset may touch kptr
3783 * - size of access (must be BPF_DW)
3784 * - tnum_is_const(reg->var_off)
3785 * - off_desc->offset == off + reg->var_off.value
3786 */
3787 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3788 if (BPF_MODE(insn->code) != BPF_MEM) {
3789 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3790 return -EACCES;
3791 }
3792
3793 /* We only allow loading referenced kptr, since it will be marked as
3794 * untrusted, similar to unreferenced kptr.
3795 */
3796 if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) {
3797 verbose(env, "store to referenced kptr disallowed\n");
3798 return -EACCES;
3799 }
3800
3801 if (class == BPF_LDX) {
3802 val_reg = reg_state(env, value_regno);
3803 /* We can simply mark the value_regno receiving the pointer
3804 * value from map as PTR_TO_BTF_ID, with the correct type.
3805 */
3806 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf,
3807 off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
3808 /* For mark_ptr_or_null_reg */
3809 val_reg->id = ++env->id_gen;
3810 } else if (class == BPF_STX) {
3811 val_reg = reg_state(env, value_regno);
3812 if (!register_is_null(val_reg) &&
3813 map_kptr_match_type(env, off_desc, val_reg, value_regno))
3814 return -EACCES;
3815 } else if (class == BPF_ST) {
3816 if (insn->imm) {
3817 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
3818 off_desc->offset);
3819 return -EACCES;
3820 }
3821 } else {
3822 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
3823 return -EACCES;
3824 }
3825 return 0;
3826 }
3827
3828 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)3829 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3830 int off, int size, bool zero_size_allowed,
3831 enum bpf_access_src src)
3832 {
3833 struct bpf_verifier_state *vstate = env->cur_state;
3834 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3835 struct bpf_reg_state *reg = &state->regs[regno];
3836 struct bpf_map *map = reg->map_ptr;
3837 int err;
3838
3839 err = check_mem_region_access(env, regno, off, size, map->value_size,
3840 zero_size_allowed);
3841 if (err)
3842 return err;
3843
3844 if (map_value_has_spin_lock(map)) {
3845 u32 lock = map->spin_lock_off;
3846
3847 /* if any part of struct bpf_spin_lock can be touched by
3848 * load/store reject this program.
3849 * To check that [x1, x2) overlaps with [y1, y2)
3850 * it is sufficient to check x1 < y2 && y1 < x2.
3851 */
3852 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3853 lock < reg->umax_value + off + size) {
3854 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3855 return -EACCES;
3856 }
3857 }
3858 if (map_value_has_timer(map)) {
3859 u32 t = map->timer_off;
3860
3861 if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3862 t < reg->umax_value + off + size) {
3863 verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3864 return -EACCES;
3865 }
3866 }
3867 if (map_value_has_kptrs(map)) {
3868 struct bpf_map_value_off *tab = map->kptr_off_tab;
3869 int i;
3870
3871 for (i = 0; i < tab->nr_off; i++) {
3872 u32 p = tab->off[i].offset;
3873
3874 if (reg->smin_value + off < p + sizeof(u64) &&
3875 p < reg->umax_value + off + size) {
3876 if (src != ACCESS_DIRECT) {
3877 verbose(env, "kptr cannot be accessed indirectly by helper\n");
3878 return -EACCES;
3879 }
3880 if (!tnum_is_const(reg->var_off)) {
3881 verbose(env, "kptr access cannot have variable offset\n");
3882 return -EACCES;
3883 }
3884 if (p != off + reg->var_off.value) {
3885 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
3886 p, off + reg->var_off.value);
3887 return -EACCES;
3888 }
3889 if (size != bpf_size_to_bytes(BPF_DW)) {
3890 verbose(env, "kptr access size must be BPF_DW\n");
3891 return -EACCES;
3892 }
3893 break;
3894 }
3895 }
3896 }
3897 return err;
3898 }
3899
3900 #define MAX_PACKET_OFF 0xffff
3901
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)3902 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3903 const struct bpf_call_arg_meta *meta,
3904 enum bpf_access_type t)
3905 {
3906 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3907
3908 switch (prog_type) {
3909 /* Program types only with direct read access go here! */
3910 case BPF_PROG_TYPE_LWT_IN:
3911 case BPF_PROG_TYPE_LWT_OUT:
3912 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3913 case BPF_PROG_TYPE_SK_REUSEPORT:
3914 case BPF_PROG_TYPE_FLOW_DISSECTOR:
3915 case BPF_PROG_TYPE_CGROUP_SKB:
3916 if (t == BPF_WRITE)
3917 return false;
3918 fallthrough;
3919
3920 /* Program types with direct read + write access go here! */
3921 case BPF_PROG_TYPE_SCHED_CLS:
3922 case BPF_PROG_TYPE_SCHED_ACT:
3923 case BPF_PROG_TYPE_XDP:
3924 case BPF_PROG_TYPE_LWT_XMIT:
3925 case BPF_PROG_TYPE_SK_SKB:
3926 case BPF_PROG_TYPE_SK_MSG:
3927 if (meta)
3928 return meta->pkt_access;
3929
3930 env->seen_direct_write = true;
3931 return true;
3932
3933 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3934 if (t == BPF_WRITE)
3935 env->seen_direct_write = true;
3936
3937 return true;
3938
3939 default:
3940 return false;
3941 }
3942 }
3943
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)3944 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3945 int size, bool zero_size_allowed)
3946 {
3947 struct bpf_reg_state *regs = cur_regs(env);
3948 struct bpf_reg_state *reg = ®s[regno];
3949 int err;
3950
3951 /* We may have added a variable offset to the packet pointer; but any
3952 * reg->range we have comes after that. We are only checking the fixed
3953 * offset.
3954 */
3955
3956 /* We don't allow negative numbers, because we aren't tracking enough
3957 * detail to prove they're safe.
3958 */
3959 if (reg->smin_value < 0) {
3960 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3961 regno);
3962 return -EACCES;
3963 }
3964
3965 err = reg->range < 0 ? -EINVAL :
3966 __check_mem_access(env, regno, off, size, reg->range,
3967 zero_size_allowed);
3968 if (err) {
3969 verbose(env, "R%d offset is outside of the packet\n", regno);
3970 return err;
3971 }
3972
3973 /* __check_mem_access has made sure "off + size - 1" is within u16.
3974 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3975 * otherwise find_good_pkt_pointers would have refused to set range info
3976 * that __check_mem_access would have rejected this pkt access.
3977 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3978 */
3979 env->prog->aux->max_pkt_offset =
3980 max_t(u32, env->prog->aux->max_pkt_offset,
3981 off + reg->umax_value + size - 1);
3982
3983 return err;
3984 }
3985
3986 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,struct btf ** btf,u32 * btf_id)3987 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3988 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3989 struct btf **btf, u32 *btf_id)
3990 {
3991 struct bpf_insn_access_aux info = {
3992 .reg_type = *reg_type,
3993 .log = &env->log,
3994 };
3995
3996 if (env->ops->is_valid_access &&
3997 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3998 /* A non zero info.ctx_field_size indicates that this field is a
3999 * candidate for later verifier transformation to load the whole
4000 * field and then apply a mask when accessed with a narrower
4001 * access than actual ctx access size. A zero info.ctx_field_size
4002 * will only allow for whole field access and rejects any other
4003 * type of narrower access.
4004 */
4005 *reg_type = info.reg_type;
4006
4007 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
4008 *btf = info.btf;
4009 *btf_id = info.btf_id;
4010 } else {
4011 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
4012 }
4013 /* remember the offset of last byte accessed in ctx */
4014 if (env->prog->aux->max_ctx_offset < off + size)
4015 env->prog->aux->max_ctx_offset = off + size;
4016 return 0;
4017 }
4018
4019 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
4020 return -EACCES;
4021 }
4022
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)4023 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4024 int size)
4025 {
4026 if (size < 0 || off < 0 ||
4027 (u64)off + size > sizeof(struct bpf_flow_keys)) {
4028 verbose(env, "invalid access to flow keys off=%d size=%d\n",
4029 off, size);
4030 return -EACCES;
4031 }
4032 return 0;
4033 }
4034
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)4035 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4036 u32 regno, int off, int size,
4037 enum bpf_access_type t)
4038 {
4039 struct bpf_reg_state *regs = cur_regs(env);
4040 struct bpf_reg_state *reg = ®s[regno];
4041 struct bpf_insn_access_aux info = {};
4042 bool valid;
4043
4044 if (reg->smin_value < 0) {
4045 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4046 regno);
4047 return -EACCES;
4048 }
4049
4050 switch (reg->type) {
4051 case PTR_TO_SOCK_COMMON:
4052 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4053 break;
4054 case PTR_TO_SOCKET:
4055 valid = bpf_sock_is_valid_access(off, size, t, &info);
4056 break;
4057 case PTR_TO_TCP_SOCK:
4058 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4059 break;
4060 case PTR_TO_XDP_SOCK:
4061 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4062 break;
4063 default:
4064 valid = false;
4065 }
4066
4067
4068 if (valid) {
4069 env->insn_aux_data[insn_idx].ctx_field_size =
4070 info.ctx_field_size;
4071 return 0;
4072 }
4073
4074 verbose(env, "R%d invalid %s access off=%d size=%d\n",
4075 regno, reg_type_str(env, reg->type), off, size);
4076
4077 return -EACCES;
4078 }
4079
is_pointer_value(struct bpf_verifier_env * env,int regno)4080 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4081 {
4082 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4083 }
4084
is_ctx_reg(struct bpf_verifier_env * env,int regno)4085 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4086 {
4087 const struct bpf_reg_state *reg = reg_state(env, regno);
4088
4089 return reg->type == PTR_TO_CTX;
4090 }
4091
is_sk_reg(struct bpf_verifier_env * env,int regno)4092 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4093 {
4094 const struct bpf_reg_state *reg = reg_state(env, regno);
4095
4096 return type_is_sk_pointer(reg->type);
4097 }
4098
is_pkt_reg(struct bpf_verifier_env * env,int regno)4099 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4100 {
4101 const struct bpf_reg_state *reg = reg_state(env, regno);
4102
4103 return type_is_pkt_pointer(reg->type);
4104 }
4105
is_flow_key_reg(struct bpf_verifier_env * env,int regno)4106 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4107 {
4108 const struct bpf_reg_state *reg = reg_state(env, regno);
4109
4110 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4111 return reg->type == PTR_TO_FLOW_KEYS;
4112 }
4113
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)4114 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4115 const struct bpf_reg_state *reg,
4116 int off, int size, bool strict)
4117 {
4118 struct tnum reg_off;
4119 int ip_align;
4120
4121 /* Byte size accesses are always allowed. */
4122 if (!strict || size == 1)
4123 return 0;
4124
4125 /* For platforms that do not have a Kconfig enabling
4126 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4127 * NET_IP_ALIGN is universally set to '2'. And on platforms
4128 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4129 * to this code only in strict mode where we want to emulate
4130 * the NET_IP_ALIGN==2 checking. Therefore use an
4131 * unconditional IP align value of '2'.
4132 */
4133 ip_align = 2;
4134
4135 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4136 if (!tnum_is_aligned(reg_off, size)) {
4137 char tn_buf[48];
4138
4139 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4140 verbose(env,
4141 "misaligned packet access off %d+%s+%d+%d size %d\n",
4142 ip_align, tn_buf, reg->off, off, size);
4143 return -EACCES;
4144 }
4145
4146 return 0;
4147 }
4148
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)4149 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4150 const struct bpf_reg_state *reg,
4151 const char *pointer_desc,
4152 int off, int size, bool strict)
4153 {
4154 struct tnum reg_off;
4155
4156 /* Byte size accesses are always allowed. */
4157 if (!strict || size == 1)
4158 return 0;
4159
4160 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4161 if (!tnum_is_aligned(reg_off, size)) {
4162 char tn_buf[48];
4163
4164 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4165 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4166 pointer_desc, tn_buf, reg->off, off, size);
4167 return -EACCES;
4168 }
4169
4170 return 0;
4171 }
4172
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)4173 static int check_ptr_alignment(struct bpf_verifier_env *env,
4174 const struct bpf_reg_state *reg, int off,
4175 int size, bool strict_alignment_once)
4176 {
4177 bool strict = env->strict_alignment || strict_alignment_once;
4178 const char *pointer_desc = "";
4179
4180 switch (reg->type) {
4181 case PTR_TO_PACKET:
4182 case PTR_TO_PACKET_META:
4183 /* Special case, because of NET_IP_ALIGN. Given metadata sits
4184 * right in front, treat it the very same way.
4185 */
4186 return check_pkt_ptr_alignment(env, reg, off, size, strict);
4187 case PTR_TO_FLOW_KEYS:
4188 pointer_desc = "flow keys ";
4189 break;
4190 case PTR_TO_MAP_KEY:
4191 pointer_desc = "key ";
4192 break;
4193 case PTR_TO_MAP_VALUE:
4194 pointer_desc = "value ";
4195 break;
4196 case PTR_TO_CTX:
4197 pointer_desc = "context ";
4198 break;
4199 case PTR_TO_STACK:
4200 pointer_desc = "stack ";
4201 /* The stack spill tracking logic in check_stack_write_fixed_off()
4202 * and check_stack_read_fixed_off() relies on stack accesses being
4203 * aligned.
4204 */
4205 strict = true;
4206 break;
4207 case PTR_TO_SOCKET:
4208 pointer_desc = "sock ";
4209 break;
4210 case PTR_TO_SOCK_COMMON:
4211 pointer_desc = "sock_common ";
4212 break;
4213 case PTR_TO_TCP_SOCK:
4214 pointer_desc = "tcp_sock ";
4215 break;
4216 case PTR_TO_XDP_SOCK:
4217 pointer_desc = "xdp_sock ";
4218 break;
4219 default:
4220 break;
4221 }
4222 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4223 strict);
4224 }
4225
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)4226 static int update_stack_depth(struct bpf_verifier_env *env,
4227 const struct bpf_func_state *func,
4228 int off)
4229 {
4230 u16 stack = env->subprog_info[func->subprogno].stack_depth;
4231
4232 if (stack >= -off)
4233 return 0;
4234
4235 /* update known max for given subprogram */
4236 env->subprog_info[func->subprogno].stack_depth = -off;
4237 return 0;
4238 }
4239
4240 /* starting from main bpf function walk all instructions of the function
4241 * and recursively walk all callees that given function can call.
4242 * Ignore jump and exit insns.
4243 * Since recursion is prevented by check_cfg() this algorithm
4244 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4245 */
check_max_stack_depth(struct bpf_verifier_env * env)4246 static int check_max_stack_depth(struct bpf_verifier_env *env)
4247 {
4248 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4249 struct bpf_subprog_info *subprog = env->subprog_info;
4250 struct bpf_insn *insn = env->prog->insnsi;
4251 bool tail_call_reachable = false;
4252 int ret_insn[MAX_CALL_FRAMES];
4253 int ret_prog[MAX_CALL_FRAMES];
4254 int j;
4255
4256 process_func:
4257 /* protect against potential stack overflow that might happen when
4258 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4259 * depth for such case down to 256 so that the worst case scenario
4260 * would result in 8k stack size (32 which is tailcall limit * 256 =
4261 * 8k).
4262 *
4263 * To get the idea what might happen, see an example:
4264 * func1 -> sub rsp, 128
4265 * subfunc1 -> sub rsp, 256
4266 * tailcall1 -> add rsp, 256
4267 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4268 * subfunc2 -> sub rsp, 64
4269 * subfunc22 -> sub rsp, 128
4270 * tailcall2 -> add rsp, 128
4271 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4272 *
4273 * tailcall will unwind the current stack frame but it will not get rid
4274 * of caller's stack as shown on the example above.
4275 */
4276 if (idx && subprog[idx].has_tail_call && depth >= 256) {
4277 verbose(env,
4278 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4279 depth);
4280 return -EACCES;
4281 }
4282 /* round up to 32-bytes, since this is granularity
4283 * of interpreter stack size
4284 */
4285 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4286 if (depth > MAX_BPF_STACK) {
4287 verbose(env, "combined stack size of %d calls is %d. Too large\n",
4288 frame + 1, depth);
4289 return -EACCES;
4290 }
4291 continue_func:
4292 subprog_end = subprog[idx + 1].start;
4293 for (; i < subprog_end; i++) {
4294 int next_insn;
4295
4296 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4297 continue;
4298 /* remember insn and function to return to */
4299 ret_insn[frame] = i + 1;
4300 ret_prog[frame] = idx;
4301
4302 /* find the callee */
4303 next_insn = i + insn[i].imm + 1;
4304 idx = find_subprog(env, next_insn);
4305 if (idx < 0) {
4306 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4307 next_insn);
4308 return -EFAULT;
4309 }
4310 if (subprog[idx].is_async_cb) {
4311 if (subprog[idx].has_tail_call) {
4312 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4313 return -EFAULT;
4314 }
4315 /* async callbacks don't increase bpf prog stack size */
4316 continue;
4317 }
4318 i = next_insn;
4319
4320 if (subprog[idx].has_tail_call)
4321 tail_call_reachable = true;
4322
4323 frame++;
4324 if (frame >= MAX_CALL_FRAMES) {
4325 verbose(env, "the call stack of %d frames is too deep !\n",
4326 frame);
4327 return -E2BIG;
4328 }
4329 goto process_func;
4330 }
4331 /* if tail call got detected across bpf2bpf calls then mark each of the
4332 * currently present subprog frames as tail call reachable subprogs;
4333 * this info will be utilized by JIT so that we will be preserving the
4334 * tail call counter throughout bpf2bpf calls combined with tailcalls
4335 */
4336 if (tail_call_reachable)
4337 for (j = 0; j < frame; j++)
4338 subprog[ret_prog[j]].tail_call_reachable = true;
4339 if (subprog[0].tail_call_reachable)
4340 env->prog->aux->tail_call_reachable = true;
4341
4342 /* end of for() loop means the last insn of the 'subprog'
4343 * was reached. Doesn't matter whether it was JA or EXIT
4344 */
4345 if (frame == 0)
4346 return 0;
4347 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4348 frame--;
4349 i = ret_insn[frame];
4350 idx = ret_prog[frame];
4351 goto continue_func;
4352 }
4353
4354 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)4355 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4356 const struct bpf_insn *insn, int idx)
4357 {
4358 int start = idx + insn->imm + 1, subprog;
4359
4360 subprog = find_subprog(env, start);
4361 if (subprog < 0) {
4362 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4363 start);
4364 return -EFAULT;
4365 }
4366 return env->subprog_info[subprog].stack_depth;
4367 }
4368 #endif
4369
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)4370 static int __check_buffer_access(struct bpf_verifier_env *env,
4371 const char *buf_info,
4372 const struct bpf_reg_state *reg,
4373 int regno, int off, int size)
4374 {
4375 if (off < 0) {
4376 verbose(env,
4377 "R%d invalid %s buffer access: off=%d, size=%d\n",
4378 regno, buf_info, off, size);
4379 return -EACCES;
4380 }
4381 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4382 char tn_buf[48];
4383
4384 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4385 verbose(env,
4386 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4387 regno, off, tn_buf);
4388 return -EACCES;
4389 }
4390
4391 return 0;
4392 }
4393
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)4394 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4395 const struct bpf_reg_state *reg,
4396 int regno, int off, int size)
4397 {
4398 int err;
4399
4400 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4401 if (err)
4402 return err;
4403
4404 if (off + size > env->prog->aux->max_tp_access)
4405 env->prog->aux->max_tp_access = off + size;
4406
4407 return 0;
4408 }
4409
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)4410 static int check_buffer_access(struct bpf_verifier_env *env,
4411 const struct bpf_reg_state *reg,
4412 int regno, int off, int size,
4413 bool zero_size_allowed,
4414 u32 *max_access)
4415 {
4416 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4417 int err;
4418
4419 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4420 if (err)
4421 return err;
4422
4423 if (off + size > *max_access)
4424 *max_access = off + size;
4425
4426 return 0;
4427 }
4428
4429 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)4430 static void zext_32_to_64(struct bpf_reg_state *reg)
4431 {
4432 reg->var_off = tnum_subreg(reg->var_off);
4433 __reg_assign_32_into_64(reg);
4434 }
4435
4436 /* truncate register to smaller size (in bytes)
4437 * must be called with size < BPF_REG_SIZE
4438 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)4439 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4440 {
4441 u64 mask;
4442
4443 /* clear high bits in bit representation */
4444 reg->var_off = tnum_cast(reg->var_off, size);
4445
4446 /* fix arithmetic bounds */
4447 mask = ((u64)1 << (size * 8)) - 1;
4448 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4449 reg->umin_value &= mask;
4450 reg->umax_value &= mask;
4451 } else {
4452 reg->umin_value = 0;
4453 reg->umax_value = mask;
4454 }
4455 reg->smin_value = reg->umin_value;
4456 reg->smax_value = reg->umax_value;
4457
4458 /* If size is smaller than 32bit register the 32bit register
4459 * values are also truncated so we push 64-bit bounds into
4460 * 32-bit bounds. Above were truncated < 32-bits already.
4461 */
4462 if (size >= 4)
4463 return;
4464 __reg_combine_64_into_32(reg);
4465 }
4466
bpf_map_is_rdonly(const struct bpf_map * map)4467 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4468 {
4469 /* A map is considered read-only if the following condition are true:
4470 *
4471 * 1) BPF program side cannot change any of the map content. The
4472 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4473 * and was set at map creation time.
4474 * 2) The map value(s) have been initialized from user space by a
4475 * loader and then "frozen", such that no new map update/delete
4476 * operations from syscall side are possible for the rest of
4477 * the map's lifetime from that point onwards.
4478 * 3) Any parallel/pending map update/delete operations from syscall
4479 * side have been completed. Only after that point, it's safe to
4480 * assume that map value(s) are immutable.
4481 */
4482 return (map->map_flags & BPF_F_RDONLY_PROG) &&
4483 READ_ONCE(map->frozen) &&
4484 !bpf_map_write_active(map);
4485 }
4486
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val)4487 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4488 {
4489 void *ptr;
4490 u64 addr;
4491 int err;
4492
4493 err = map->ops->map_direct_value_addr(map, &addr, off);
4494 if (err)
4495 return err;
4496 ptr = (void *)(long)addr + off;
4497
4498 switch (size) {
4499 case sizeof(u8):
4500 *val = (u64)*(u8 *)ptr;
4501 break;
4502 case sizeof(u16):
4503 *val = (u64)*(u16 *)ptr;
4504 break;
4505 case sizeof(u32):
4506 *val = (u64)*(u32 *)ptr;
4507 break;
4508 case sizeof(u64):
4509 *val = *(u64 *)ptr;
4510 break;
4511 default:
4512 return -EINVAL;
4513 }
4514 return 0;
4515 }
4516
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)4517 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4518 struct bpf_reg_state *regs,
4519 int regno, int off, int size,
4520 enum bpf_access_type atype,
4521 int value_regno)
4522 {
4523 struct bpf_reg_state *reg = regs + regno;
4524 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4525 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4526 enum bpf_type_flag flag = 0;
4527 u32 btf_id;
4528 int ret;
4529
4530 if (off < 0) {
4531 verbose(env,
4532 "R%d is ptr_%s invalid negative access: off=%d\n",
4533 regno, tname, off);
4534 return -EACCES;
4535 }
4536 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4537 char tn_buf[48];
4538
4539 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4540 verbose(env,
4541 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4542 regno, tname, off, tn_buf);
4543 return -EACCES;
4544 }
4545
4546 if (reg->type & MEM_USER) {
4547 verbose(env,
4548 "R%d is ptr_%s access user memory: off=%d\n",
4549 regno, tname, off);
4550 return -EACCES;
4551 }
4552
4553 if (reg->type & MEM_PERCPU) {
4554 verbose(env,
4555 "R%d is ptr_%s access percpu memory: off=%d\n",
4556 regno, tname, off);
4557 return -EACCES;
4558 }
4559
4560 if (env->ops->btf_struct_access) {
4561 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4562 off, size, atype, &btf_id, &flag);
4563 } else {
4564 if (atype != BPF_READ) {
4565 verbose(env, "only read is supported\n");
4566 return -EACCES;
4567 }
4568
4569 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4570 atype, &btf_id, &flag);
4571 }
4572
4573 if (ret < 0)
4574 return ret;
4575
4576 /* If this is an untrusted pointer, all pointers formed by walking it
4577 * also inherit the untrusted flag.
4578 */
4579 if (type_flag(reg->type) & PTR_UNTRUSTED)
4580 flag |= PTR_UNTRUSTED;
4581
4582 if (atype == BPF_READ && value_regno >= 0)
4583 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
4584
4585 return 0;
4586 }
4587
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)4588 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4589 struct bpf_reg_state *regs,
4590 int regno, int off, int size,
4591 enum bpf_access_type atype,
4592 int value_regno)
4593 {
4594 struct bpf_reg_state *reg = regs + regno;
4595 struct bpf_map *map = reg->map_ptr;
4596 enum bpf_type_flag flag = 0;
4597 const struct btf_type *t;
4598 const char *tname;
4599 u32 btf_id;
4600 int ret;
4601
4602 if (!btf_vmlinux) {
4603 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4604 return -ENOTSUPP;
4605 }
4606
4607 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4608 verbose(env, "map_ptr access not supported for map type %d\n",
4609 map->map_type);
4610 return -ENOTSUPP;
4611 }
4612
4613 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4614 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4615
4616 if (!env->allow_ptr_to_map_access) {
4617 verbose(env,
4618 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4619 tname);
4620 return -EPERM;
4621 }
4622
4623 if (off < 0) {
4624 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4625 regno, tname, off);
4626 return -EACCES;
4627 }
4628
4629 if (atype != BPF_READ) {
4630 verbose(env, "only read from %s is supported\n", tname);
4631 return -EACCES;
4632 }
4633
4634 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag);
4635 if (ret < 0)
4636 return ret;
4637
4638 if (value_regno >= 0)
4639 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
4640
4641 return 0;
4642 }
4643
4644 /* Check that the stack access at the given offset is within bounds. The
4645 * maximum valid offset is -1.
4646 *
4647 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4648 * -state->allocated_stack for reads.
4649 */
check_stack_slot_within_bounds(int off,struct bpf_func_state * state,enum bpf_access_type t)4650 static int check_stack_slot_within_bounds(int off,
4651 struct bpf_func_state *state,
4652 enum bpf_access_type t)
4653 {
4654 int min_valid_off;
4655
4656 if (t == BPF_WRITE)
4657 min_valid_off = -MAX_BPF_STACK;
4658 else
4659 min_valid_off = -state->allocated_stack;
4660
4661 if (off < min_valid_off || off > -1)
4662 return -EACCES;
4663 return 0;
4664 }
4665
4666 /* Check that the stack access at 'regno + off' falls within the maximum stack
4667 * bounds.
4668 *
4669 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4670 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_src src,enum bpf_access_type type)4671 static int check_stack_access_within_bounds(
4672 struct bpf_verifier_env *env,
4673 int regno, int off, int access_size,
4674 enum bpf_access_src src, enum bpf_access_type type)
4675 {
4676 struct bpf_reg_state *regs = cur_regs(env);
4677 struct bpf_reg_state *reg = regs + regno;
4678 struct bpf_func_state *state = func(env, reg);
4679 int min_off, max_off;
4680 int err;
4681 char *err_extra;
4682
4683 if (src == ACCESS_HELPER)
4684 /* We don't know if helpers are reading or writing (or both). */
4685 err_extra = " indirect access to";
4686 else if (type == BPF_READ)
4687 err_extra = " read from";
4688 else
4689 err_extra = " write to";
4690
4691 if (tnum_is_const(reg->var_off)) {
4692 min_off = reg->var_off.value + off;
4693 if (access_size > 0)
4694 max_off = min_off + access_size - 1;
4695 else
4696 max_off = min_off;
4697 } else {
4698 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4699 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4700 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4701 err_extra, regno);
4702 return -EACCES;
4703 }
4704 min_off = reg->smin_value + off;
4705 if (access_size > 0)
4706 max_off = reg->smax_value + off + access_size - 1;
4707 else
4708 max_off = min_off;
4709 }
4710
4711 err = check_stack_slot_within_bounds(min_off, state, type);
4712 if (!err)
4713 err = check_stack_slot_within_bounds(max_off, state, type);
4714
4715 if (err) {
4716 if (tnum_is_const(reg->var_off)) {
4717 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4718 err_extra, regno, off, access_size);
4719 } else {
4720 char tn_buf[48];
4721
4722 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4723 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4724 err_extra, regno, tn_buf, access_size);
4725 }
4726 }
4727 return err;
4728 }
4729
4730 /* check whether memory at (regno + off) is accessible for t = (read | write)
4731 * if t==write, value_regno is a register which value is stored into memory
4732 * if t==read, value_regno is a register which will receive the value from memory
4733 * if t==write && value_regno==-1, some unknown value is stored into memory
4734 * if t==read && value_regno==-1, don't care what we read from memory
4735 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)4736 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4737 int off, int bpf_size, enum bpf_access_type t,
4738 int value_regno, bool strict_alignment_once)
4739 {
4740 struct bpf_reg_state *regs = cur_regs(env);
4741 struct bpf_reg_state *reg = regs + regno;
4742 struct bpf_func_state *state;
4743 int size, err = 0;
4744
4745 size = bpf_size_to_bytes(bpf_size);
4746 if (size < 0)
4747 return size;
4748
4749 /* alignment checks will add in reg->off themselves */
4750 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4751 if (err)
4752 return err;
4753
4754 /* for access checks, reg->off is just part of off */
4755 off += reg->off;
4756
4757 if (reg->type == PTR_TO_MAP_KEY) {
4758 if (t == BPF_WRITE) {
4759 verbose(env, "write to change key R%d not allowed\n", regno);
4760 return -EACCES;
4761 }
4762
4763 err = check_mem_region_access(env, regno, off, size,
4764 reg->map_ptr->key_size, false);
4765 if (err)
4766 return err;
4767 if (value_regno >= 0)
4768 mark_reg_unknown(env, regs, value_regno);
4769 } else if (reg->type == PTR_TO_MAP_VALUE) {
4770 struct bpf_map_value_off_desc *kptr_off_desc = NULL;
4771
4772 if (t == BPF_WRITE && value_regno >= 0 &&
4773 is_pointer_value(env, value_regno)) {
4774 verbose(env, "R%d leaks addr into map\n", value_regno);
4775 return -EACCES;
4776 }
4777 err = check_map_access_type(env, regno, off, size, t);
4778 if (err)
4779 return err;
4780 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
4781 if (err)
4782 return err;
4783 if (tnum_is_const(reg->var_off))
4784 kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr,
4785 off + reg->var_off.value);
4786 if (kptr_off_desc) {
4787 err = check_map_kptr_access(env, regno, value_regno, insn_idx,
4788 kptr_off_desc);
4789 } else if (t == BPF_READ && value_regno >= 0) {
4790 struct bpf_map *map = reg->map_ptr;
4791
4792 /* if map is read-only, track its contents as scalars */
4793 if (tnum_is_const(reg->var_off) &&
4794 bpf_map_is_rdonly(map) &&
4795 map->ops->map_direct_value_addr) {
4796 int map_off = off + reg->var_off.value;
4797 u64 val = 0;
4798
4799 err = bpf_map_direct_read(map, map_off, size,
4800 &val);
4801 if (err)
4802 return err;
4803
4804 regs[value_regno].type = SCALAR_VALUE;
4805 __mark_reg_known(®s[value_regno], val);
4806 } else {
4807 mark_reg_unknown(env, regs, value_regno);
4808 }
4809 }
4810 } else if (base_type(reg->type) == PTR_TO_MEM) {
4811 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4812
4813 if (type_may_be_null(reg->type)) {
4814 verbose(env, "R%d invalid mem access '%s'\n", regno,
4815 reg_type_str(env, reg->type));
4816 return -EACCES;
4817 }
4818
4819 if (t == BPF_WRITE && rdonly_mem) {
4820 verbose(env, "R%d cannot write into %s\n",
4821 regno, reg_type_str(env, reg->type));
4822 return -EACCES;
4823 }
4824
4825 if (t == BPF_WRITE && value_regno >= 0 &&
4826 is_pointer_value(env, value_regno)) {
4827 verbose(env, "R%d leaks addr into mem\n", value_regno);
4828 return -EACCES;
4829 }
4830
4831 err = check_mem_region_access(env, regno, off, size,
4832 reg->mem_size, false);
4833 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
4834 mark_reg_unknown(env, regs, value_regno);
4835 } else if (reg->type == PTR_TO_CTX) {
4836 enum bpf_reg_type reg_type = SCALAR_VALUE;
4837 struct btf *btf = NULL;
4838 u32 btf_id = 0;
4839
4840 if (t == BPF_WRITE && value_regno >= 0 &&
4841 is_pointer_value(env, value_regno)) {
4842 verbose(env, "R%d leaks addr into ctx\n", value_regno);
4843 return -EACCES;
4844 }
4845
4846 err = check_ptr_off_reg(env, reg, regno);
4847 if (err < 0)
4848 return err;
4849
4850 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf,
4851 &btf_id);
4852 if (err)
4853 verbose_linfo(env, insn_idx, "; ");
4854 if (!err && t == BPF_READ && value_regno >= 0) {
4855 /* ctx access returns either a scalar, or a
4856 * PTR_TO_PACKET[_META,_END]. In the latter
4857 * case, we know the offset is zero.
4858 */
4859 if (reg_type == SCALAR_VALUE) {
4860 mark_reg_unknown(env, regs, value_regno);
4861 } else {
4862 mark_reg_known_zero(env, regs,
4863 value_regno);
4864 if (type_may_be_null(reg_type))
4865 regs[value_regno].id = ++env->id_gen;
4866 /* A load of ctx field could have different
4867 * actual load size with the one encoded in the
4868 * insn. When the dst is PTR, it is for sure not
4869 * a sub-register.
4870 */
4871 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4872 if (base_type(reg_type) == PTR_TO_BTF_ID) {
4873 regs[value_regno].btf = btf;
4874 regs[value_regno].btf_id = btf_id;
4875 }
4876 }
4877 regs[value_regno].type = reg_type;
4878 }
4879
4880 } else if (reg->type == PTR_TO_STACK) {
4881 /* Basic bounds checks. */
4882 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4883 if (err)
4884 return err;
4885
4886 state = func(env, reg);
4887 err = update_stack_depth(env, state, off);
4888 if (err)
4889 return err;
4890
4891 if (t == BPF_READ)
4892 err = check_stack_read(env, regno, off, size,
4893 value_regno);
4894 else
4895 err = check_stack_write(env, regno, off, size,
4896 value_regno, insn_idx);
4897 } else if (reg_is_pkt_pointer(reg)) {
4898 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4899 verbose(env, "cannot write into packet\n");
4900 return -EACCES;
4901 }
4902 if (t == BPF_WRITE && value_regno >= 0 &&
4903 is_pointer_value(env, value_regno)) {
4904 verbose(env, "R%d leaks addr into packet\n",
4905 value_regno);
4906 return -EACCES;
4907 }
4908 err = check_packet_access(env, regno, off, size, false);
4909 if (!err && t == BPF_READ && value_regno >= 0)
4910 mark_reg_unknown(env, regs, value_regno);
4911 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4912 if (t == BPF_WRITE && value_regno >= 0 &&
4913 is_pointer_value(env, value_regno)) {
4914 verbose(env, "R%d leaks addr into flow keys\n",
4915 value_regno);
4916 return -EACCES;
4917 }
4918
4919 err = check_flow_keys_access(env, off, size);
4920 if (!err && t == BPF_READ && value_regno >= 0)
4921 mark_reg_unknown(env, regs, value_regno);
4922 } else if (type_is_sk_pointer(reg->type)) {
4923 if (t == BPF_WRITE) {
4924 verbose(env, "R%d cannot write into %s\n",
4925 regno, reg_type_str(env, reg->type));
4926 return -EACCES;
4927 }
4928 err = check_sock_access(env, insn_idx, regno, off, size, t);
4929 if (!err && value_regno >= 0)
4930 mark_reg_unknown(env, regs, value_regno);
4931 } else if (reg->type == PTR_TO_TP_BUFFER) {
4932 err = check_tp_buffer_access(env, reg, regno, off, size);
4933 if (!err && t == BPF_READ && value_regno >= 0)
4934 mark_reg_unknown(env, regs, value_regno);
4935 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
4936 !type_may_be_null(reg->type)) {
4937 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4938 value_regno);
4939 } else if (reg->type == CONST_PTR_TO_MAP) {
4940 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4941 value_regno);
4942 } else if (base_type(reg->type) == PTR_TO_BUF) {
4943 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4944 u32 *max_access;
4945
4946 if (rdonly_mem) {
4947 if (t == BPF_WRITE) {
4948 verbose(env, "R%d cannot write into %s\n",
4949 regno, reg_type_str(env, reg->type));
4950 return -EACCES;
4951 }
4952 max_access = &env->prog->aux->max_rdonly_access;
4953 } else {
4954 max_access = &env->prog->aux->max_rdwr_access;
4955 }
4956
4957 err = check_buffer_access(env, reg, regno, off, size, false,
4958 max_access);
4959
4960 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4961 mark_reg_unknown(env, regs, value_regno);
4962 } else {
4963 verbose(env, "R%d invalid mem access '%s'\n", regno,
4964 reg_type_str(env, reg->type));
4965 return -EACCES;
4966 }
4967
4968 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4969 regs[value_regno].type == SCALAR_VALUE) {
4970 /* b/h/w load zero-extends, mark upper bits as known 0 */
4971 coerce_reg_to_size(®s[value_regno], size);
4972 }
4973 return err;
4974 }
4975
check_atomic(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)4976 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4977 {
4978 int load_reg;
4979 int err;
4980
4981 switch (insn->imm) {
4982 case BPF_ADD:
4983 case BPF_ADD | BPF_FETCH:
4984 case BPF_AND:
4985 case BPF_AND | BPF_FETCH:
4986 case BPF_OR:
4987 case BPF_OR | BPF_FETCH:
4988 case BPF_XOR:
4989 case BPF_XOR | BPF_FETCH:
4990 case BPF_XCHG:
4991 case BPF_CMPXCHG:
4992 break;
4993 default:
4994 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4995 return -EINVAL;
4996 }
4997
4998 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4999 verbose(env, "invalid atomic operand size\n");
5000 return -EINVAL;
5001 }
5002
5003 /* check src1 operand */
5004 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5005 if (err)
5006 return err;
5007
5008 /* check src2 operand */
5009 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5010 if (err)
5011 return err;
5012
5013 if (insn->imm == BPF_CMPXCHG) {
5014 /* Check comparison of R0 with memory location */
5015 const u32 aux_reg = BPF_REG_0;
5016
5017 err = check_reg_arg(env, aux_reg, SRC_OP);
5018 if (err)
5019 return err;
5020
5021 if (is_pointer_value(env, aux_reg)) {
5022 verbose(env, "R%d leaks addr into mem\n", aux_reg);
5023 return -EACCES;
5024 }
5025 }
5026
5027 if (is_pointer_value(env, insn->src_reg)) {
5028 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
5029 return -EACCES;
5030 }
5031
5032 if (is_ctx_reg(env, insn->dst_reg) ||
5033 is_pkt_reg(env, insn->dst_reg) ||
5034 is_flow_key_reg(env, insn->dst_reg) ||
5035 is_sk_reg(env, insn->dst_reg)) {
5036 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
5037 insn->dst_reg,
5038 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
5039 return -EACCES;
5040 }
5041
5042 if (insn->imm & BPF_FETCH) {
5043 if (insn->imm == BPF_CMPXCHG)
5044 load_reg = BPF_REG_0;
5045 else
5046 load_reg = insn->src_reg;
5047
5048 /* check and record load of old value */
5049 err = check_reg_arg(env, load_reg, DST_OP);
5050 if (err)
5051 return err;
5052 } else {
5053 /* This instruction accesses a memory location but doesn't
5054 * actually load it into a register.
5055 */
5056 load_reg = -1;
5057 }
5058
5059 /* Check whether we can read the memory, with second call for fetch
5060 * case to simulate the register fill.
5061 */
5062 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5063 BPF_SIZE(insn->code), BPF_READ, -1, true);
5064 if (!err && load_reg >= 0)
5065 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5066 BPF_SIZE(insn->code), BPF_READ, load_reg,
5067 true);
5068 if (err)
5069 return err;
5070
5071 /* Check whether we can write into the same memory. */
5072 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5073 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5074 if (err)
5075 return err;
5076
5077 return 0;
5078 }
5079
5080 /* When register 'regno' is used to read the stack (either directly or through
5081 * a helper function) make sure that it's within stack boundary and, depending
5082 * on the access type, that all elements of the stack are initialized.
5083 *
5084 * 'off' includes 'regno->off', but not its dynamic part (if any).
5085 *
5086 * All registers that have been spilled on the stack in the slots within the
5087 * read offsets are marked as read.
5088 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_src type,struct bpf_call_arg_meta * meta)5089 static int check_stack_range_initialized(
5090 struct bpf_verifier_env *env, int regno, int off,
5091 int access_size, bool zero_size_allowed,
5092 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5093 {
5094 struct bpf_reg_state *reg = reg_state(env, regno);
5095 struct bpf_func_state *state = func(env, reg);
5096 int err, min_off, max_off, i, j, slot, spi;
5097 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5098 enum bpf_access_type bounds_check_type;
5099 /* Some accesses can write anything into the stack, others are
5100 * read-only.
5101 */
5102 bool clobber = false;
5103
5104 if (access_size == 0 && !zero_size_allowed) {
5105 verbose(env, "invalid zero-sized read\n");
5106 return -EACCES;
5107 }
5108
5109 if (type == ACCESS_HELPER) {
5110 /* The bounds checks for writes are more permissive than for
5111 * reads. However, if raw_mode is not set, we'll do extra
5112 * checks below.
5113 */
5114 bounds_check_type = BPF_WRITE;
5115 clobber = true;
5116 } else {
5117 bounds_check_type = BPF_READ;
5118 }
5119 err = check_stack_access_within_bounds(env, regno, off, access_size,
5120 type, bounds_check_type);
5121 if (err)
5122 return err;
5123
5124
5125 if (tnum_is_const(reg->var_off)) {
5126 min_off = max_off = reg->var_off.value + off;
5127 } else {
5128 /* Variable offset is prohibited for unprivileged mode for
5129 * simplicity since it requires corresponding support in
5130 * Spectre masking for stack ALU.
5131 * See also retrieve_ptr_limit().
5132 */
5133 if (!env->bypass_spec_v1) {
5134 char tn_buf[48];
5135
5136 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5137 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5138 regno, err_extra, tn_buf);
5139 return -EACCES;
5140 }
5141 /* Only initialized buffer on stack is allowed to be accessed
5142 * with variable offset. With uninitialized buffer it's hard to
5143 * guarantee that whole memory is marked as initialized on
5144 * helper return since specific bounds are unknown what may
5145 * cause uninitialized stack leaking.
5146 */
5147 if (meta && meta->raw_mode)
5148 meta = NULL;
5149
5150 min_off = reg->smin_value + off;
5151 max_off = reg->smax_value + off;
5152 }
5153
5154 if (meta && meta->raw_mode) {
5155 meta->access_size = access_size;
5156 meta->regno = regno;
5157 return 0;
5158 }
5159
5160 for (i = min_off; i < max_off + access_size; i++) {
5161 u8 *stype;
5162
5163 slot = -i - 1;
5164 spi = slot / BPF_REG_SIZE;
5165 if (state->allocated_stack <= slot)
5166 goto err;
5167 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5168 if (*stype == STACK_MISC)
5169 goto mark;
5170 if (*stype == STACK_ZERO) {
5171 if (clobber) {
5172 /* helper can write anything into the stack */
5173 *stype = STACK_MISC;
5174 }
5175 goto mark;
5176 }
5177
5178 if (is_spilled_reg(&state->stack[spi]) &&
5179 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5180 env->allow_ptr_leaks)) {
5181 if (clobber) {
5182 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5183 for (j = 0; j < BPF_REG_SIZE; j++)
5184 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5185 }
5186 goto mark;
5187 }
5188
5189 err:
5190 if (tnum_is_const(reg->var_off)) {
5191 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5192 err_extra, regno, min_off, i - min_off, access_size);
5193 } else {
5194 char tn_buf[48];
5195
5196 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5197 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5198 err_extra, regno, tn_buf, i - min_off, access_size);
5199 }
5200 return -EACCES;
5201 mark:
5202 /* reading any byte out of 8-byte 'spill_slot' will cause
5203 * the whole slot to be marked as 'read'
5204 */
5205 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5206 state->stack[spi].spilled_ptr.parent,
5207 REG_LIVE_READ64);
5208 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
5209 * be sure that whether stack slot is written to or not. Hence,
5210 * we must still conservatively propagate reads upwards even if
5211 * helper may write to the entire memory range.
5212 */
5213 }
5214 return update_stack_depth(env, state, min_off);
5215 }
5216
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)5217 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5218 int access_size, bool zero_size_allowed,
5219 struct bpf_call_arg_meta *meta)
5220 {
5221 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5222 u32 *max_access;
5223
5224 switch (base_type(reg->type)) {
5225 case PTR_TO_PACKET:
5226 case PTR_TO_PACKET_META:
5227 return check_packet_access(env, regno, reg->off, access_size,
5228 zero_size_allowed);
5229 case PTR_TO_MAP_KEY:
5230 if (meta && meta->raw_mode) {
5231 verbose(env, "R%d cannot write into %s\n", regno,
5232 reg_type_str(env, reg->type));
5233 return -EACCES;
5234 }
5235 return check_mem_region_access(env, regno, reg->off, access_size,
5236 reg->map_ptr->key_size, false);
5237 case PTR_TO_MAP_VALUE:
5238 if (check_map_access_type(env, regno, reg->off, access_size,
5239 meta && meta->raw_mode ? BPF_WRITE :
5240 BPF_READ))
5241 return -EACCES;
5242 return check_map_access(env, regno, reg->off, access_size,
5243 zero_size_allowed, ACCESS_HELPER);
5244 case PTR_TO_MEM:
5245 if (type_is_rdonly_mem(reg->type)) {
5246 if (meta && meta->raw_mode) {
5247 verbose(env, "R%d cannot write into %s\n", regno,
5248 reg_type_str(env, reg->type));
5249 return -EACCES;
5250 }
5251 }
5252 return check_mem_region_access(env, regno, reg->off,
5253 access_size, reg->mem_size,
5254 zero_size_allowed);
5255 case PTR_TO_BUF:
5256 if (type_is_rdonly_mem(reg->type)) {
5257 if (meta && meta->raw_mode) {
5258 verbose(env, "R%d cannot write into %s\n", regno,
5259 reg_type_str(env, reg->type));
5260 return -EACCES;
5261 }
5262
5263 max_access = &env->prog->aux->max_rdonly_access;
5264 } else {
5265 max_access = &env->prog->aux->max_rdwr_access;
5266 }
5267 return check_buffer_access(env, reg, regno, reg->off,
5268 access_size, zero_size_allowed,
5269 max_access);
5270 case PTR_TO_STACK:
5271 return check_stack_range_initialized(
5272 env,
5273 regno, reg->off, access_size,
5274 zero_size_allowed, ACCESS_HELPER, meta);
5275 case PTR_TO_CTX:
5276 /* in case the function doesn't know how to access the context,
5277 * (because we are in a program of type SYSCALL for example), we
5278 * can not statically check its size.
5279 * Dynamically check it now.
5280 */
5281 if (!env->ops->convert_ctx_access) {
5282 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5283 int offset = access_size - 1;
5284
5285 /* Allow zero-byte read from PTR_TO_CTX */
5286 if (access_size == 0)
5287 return zero_size_allowed ? 0 : -EACCES;
5288
5289 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5290 atype, -1, false);
5291 }
5292
5293 fallthrough;
5294 default: /* scalar_value or invalid ptr */
5295 /* Allow zero-byte read from NULL, regardless of pointer type */
5296 if (zero_size_allowed && access_size == 0 &&
5297 register_is_null(reg))
5298 return 0;
5299
5300 verbose(env, "R%d type=%s ", regno,
5301 reg_type_str(env, reg->type));
5302 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5303 return -EACCES;
5304 }
5305 }
5306
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,bool zero_size_allowed,struct bpf_call_arg_meta * meta)5307 static int check_mem_size_reg(struct bpf_verifier_env *env,
5308 struct bpf_reg_state *reg, u32 regno,
5309 bool zero_size_allowed,
5310 struct bpf_call_arg_meta *meta)
5311 {
5312 int err;
5313
5314 /* This is used to refine r0 return value bounds for helpers
5315 * that enforce this value as an upper bound on return values.
5316 * See do_refine_retval_range() for helpers that can refine
5317 * the return value. C type of helper is u32 so we pull register
5318 * bound from umax_value however, if negative verifier errors
5319 * out. Only upper bounds can be learned because retval is an
5320 * int type and negative retvals are allowed.
5321 */
5322 meta->msize_max_value = reg->umax_value;
5323
5324 /* The register is SCALAR_VALUE; the access check
5325 * happens using its boundaries.
5326 */
5327 if (!tnum_is_const(reg->var_off))
5328 /* For unprivileged variable accesses, disable raw
5329 * mode so that the program is required to
5330 * initialize all the memory that the helper could
5331 * just partially fill up.
5332 */
5333 meta = NULL;
5334
5335 if (reg->smin_value < 0) {
5336 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5337 regno);
5338 return -EACCES;
5339 }
5340
5341 if (reg->umin_value == 0) {
5342 err = check_helper_mem_access(env, regno - 1, 0,
5343 zero_size_allowed,
5344 meta);
5345 if (err)
5346 return err;
5347 }
5348
5349 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5350 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5351 regno);
5352 return -EACCES;
5353 }
5354 err = check_helper_mem_access(env, regno - 1,
5355 reg->umax_value,
5356 zero_size_allowed, meta);
5357 if (!err)
5358 err = mark_chain_precision(env, regno);
5359 return err;
5360 }
5361
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)5362 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5363 u32 regno, u32 mem_size)
5364 {
5365 bool may_be_null = type_may_be_null(reg->type);
5366 struct bpf_reg_state saved_reg;
5367 struct bpf_call_arg_meta meta;
5368 int err;
5369
5370 if (register_is_null(reg))
5371 return 0;
5372
5373 memset(&meta, 0, sizeof(meta));
5374 /* Assuming that the register contains a value check if the memory
5375 * access is safe. Temporarily save and restore the register's state as
5376 * the conversion shouldn't be visible to a caller.
5377 */
5378 if (may_be_null) {
5379 saved_reg = *reg;
5380 mark_ptr_not_null_reg(reg);
5381 }
5382
5383 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5384 /* Check access for BPF_WRITE */
5385 meta.raw_mode = true;
5386 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5387
5388 if (may_be_null)
5389 *reg = saved_reg;
5390
5391 return err;
5392 }
5393
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)5394 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5395 u32 regno)
5396 {
5397 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5398 bool may_be_null = type_may_be_null(mem_reg->type);
5399 struct bpf_reg_state saved_reg;
5400 struct bpf_call_arg_meta meta;
5401 int err;
5402
5403 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5404
5405 memset(&meta, 0, sizeof(meta));
5406
5407 if (may_be_null) {
5408 saved_reg = *mem_reg;
5409 mark_ptr_not_null_reg(mem_reg);
5410 }
5411
5412 err = check_mem_size_reg(env, reg, regno, true, &meta);
5413 /* Check access for BPF_WRITE */
5414 meta.raw_mode = true;
5415 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5416
5417 if (may_be_null)
5418 *mem_reg = saved_reg;
5419 return err;
5420 }
5421
5422 /* Implementation details:
5423 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
5424 * Two bpf_map_lookups (even with the same key) will have different reg->id.
5425 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
5426 * value_or_null->value transition, since the verifier only cares about
5427 * the range of access to valid map value pointer and doesn't care about actual
5428 * address of the map element.
5429 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5430 * reg->id > 0 after value_or_null->value transition. By doing so
5431 * two bpf_map_lookups will be considered two different pointers that
5432 * point to different bpf_spin_locks.
5433 * The verifier allows taking only one bpf_spin_lock at a time to avoid
5434 * dead-locks.
5435 * Since only one bpf_spin_lock is allowed the checks are simpler than
5436 * reg_is_refcounted() logic. The verifier needs to remember only
5437 * one spin_lock instead of array of acquired_refs.
5438 * cur_state->active_spin_lock remembers which map value element got locked
5439 * and clears it after bpf_spin_unlock.
5440 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)5441 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5442 bool is_lock)
5443 {
5444 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5445 struct bpf_verifier_state *cur = env->cur_state;
5446 bool is_const = tnum_is_const(reg->var_off);
5447 struct bpf_map *map = reg->map_ptr;
5448 u64 val = reg->var_off.value;
5449
5450 if (!is_const) {
5451 verbose(env,
5452 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5453 regno);
5454 return -EINVAL;
5455 }
5456 if (!map->btf) {
5457 verbose(env,
5458 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
5459 map->name);
5460 return -EINVAL;
5461 }
5462 if (!map_value_has_spin_lock(map)) {
5463 if (map->spin_lock_off == -E2BIG)
5464 verbose(env,
5465 "map '%s' has more than one 'struct bpf_spin_lock'\n",
5466 map->name);
5467 else if (map->spin_lock_off == -ENOENT)
5468 verbose(env,
5469 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
5470 map->name);
5471 else
5472 verbose(env,
5473 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
5474 map->name);
5475 return -EINVAL;
5476 }
5477 if (map->spin_lock_off != val + reg->off) {
5478 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
5479 val + reg->off);
5480 return -EINVAL;
5481 }
5482 if (is_lock) {
5483 if (cur->active_spin_lock) {
5484 verbose(env,
5485 "Locking two bpf_spin_locks are not allowed\n");
5486 return -EINVAL;
5487 }
5488 cur->active_spin_lock = reg->id;
5489 } else {
5490 if (!cur->active_spin_lock) {
5491 verbose(env, "bpf_spin_unlock without taking a lock\n");
5492 return -EINVAL;
5493 }
5494 if (cur->active_spin_lock != reg->id) {
5495 verbose(env, "bpf_spin_unlock of different lock\n");
5496 return -EINVAL;
5497 }
5498 cur->active_spin_lock = 0;
5499 }
5500 return 0;
5501 }
5502
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)5503 static int process_timer_func(struct bpf_verifier_env *env, int regno,
5504 struct bpf_call_arg_meta *meta)
5505 {
5506 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5507 bool is_const = tnum_is_const(reg->var_off);
5508 struct bpf_map *map = reg->map_ptr;
5509 u64 val = reg->var_off.value;
5510
5511 if (!is_const) {
5512 verbose(env,
5513 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5514 regno);
5515 return -EINVAL;
5516 }
5517 if (!map->btf) {
5518 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5519 map->name);
5520 return -EINVAL;
5521 }
5522 if (!map_value_has_timer(map)) {
5523 if (map->timer_off == -E2BIG)
5524 verbose(env,
5525 "map '%s' has more than one 'struct bpf_timer'\n",
5526 map->name);
5527 else if (map->timer_off == -ENOENT)
5528 verbose(env,
5529 "map '%s' doesn't have 'struct bpf_timer'\n",
5530 map->name);
5531 else
5532 verbose(env,
5533 "map '%s' is not a struct type or bpf_timer is mangled\n",
5534 map->name);
5535 return -EINVAL;
5536 }
5537 if (map->timer_off != val + reg->off) {
5538 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5539 val + reg->off, map->timer_off);
5540 return -EINVAL;
5541 }
5542 if (meta->map_ptr) {
5543 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5544 return -EFAULT;
5545 }
5546 meta->map_uid = reg->map_uid;
5547 meta->map_ptr = map;
5548 return 0;
5549 }
5550
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)5551 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5552 struct bpf_call_arg_meta *meta)
5553 {
5554 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5555 struct bpf_map_value_off_desc *off_desc;
5556 struct bpf_map *map_ptr = reg->map_ptr;
5557 u32 kptr_off;
5558 int ret;
5559
5560 if (!tnum_is_const(reg->var_off)) {
5561 verbose(env,
5562 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5563 regno);
5564 return -EINVAL;
5565 }
5566 if (!map_ptr->btf) {
5567 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5568 map_ptr->name);
5569 return -EINVAL;
5570 }
5571 if (!map_value_has_kptrs(map_ptr)) {
5572 ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab);
5573 if (ret == -E2BIG)
5574 verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name,
5575 BPF_MAP_VALUE_OFF_MAX);
5576 else if (ret == -EEXIST)
5577 verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name);
5578 else
5579 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
5580 return -EINVAL;
5581 }
5582
5583 meta->map_ptr = map_ptr;
5584 kptr_off = reg->off + reg->var_off.value;
5585 off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off);
5586 if (!off_desc) {
5587 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5588 return -EACCES;
5589 }
5590 if (off_desc->type != BPF_KPTR_REF) {
5591 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5592 return -EACCES;
5593 }
5594 meta->kptr_off_desc = off_desc;
5595 return 0;
5596 }
5597
arg_type_is_mem_size(enum bpf_arg_type type)5598 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5599 {
5600 return type == ARG_CONST_SIZE ||
5601 type == ARG_CONST_SIZE_OR_ZERO;
5602 }
5603
arg_type_is_release(enum bpf_arg_type type)5604 static bool arg_type_is_release(enum bpf_arg_type type)
5605 {
5606 return type & OBJ_RELEASE;
5607 }
5608
arg_type_is_dynptr(enum bpf_arg_type type)5609 static bool arg_type_is_dynptr(enum bpf_arg_type type)
5610 {
5611 return base_type(type) == ARG_PTR_TO_DYNPTR;
5612 }
5613
int_ptr_type_to_size(enum bpf_arg_type type)5614 static int int_ptr_type_to_size(enum bpf_arg_type type)
5615 {
5616 if (type == ARG_PTR_TO_INT)
5617 return sizeof(u32);
5618 else if (type == ARG_PTR_TO_LONG)
5619 return sizeof(u64);
5620
5621 return -EINVAL;
5622 }
5623
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)5624 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5625 const struct bpf_call_arg_meta *meta,
5626 enum bpf_arg_type *arg_type)
5627 {
5628 if (!meta->map_ptr) {
5629 /* kernel subsystem misconfigured verifier */
5630 verbose(env, "invalid map_ptr to access map->type\n");
5631 return -EACCES;
5632 }
5633
5634 switch (meta->map_ptr->map_type) {
5635 case BPF_MAP_TYPE_SOCKMAP:
5636 case BPF_MAP_TYPE_SOCKHASH:
5637 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5638 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5639 } else {
5640 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5641 return -EINVAL;
5642 }
5643 break;
5644 case BPF_MAP_TYPE_BLOOM_FILTER:
5645 if (meta->func_id == BPF_FUNC_map_peek_elem)
5646 *arg_type = ARG_PTR_TO_MAP_VALUE;
5647 break;
5648 default:
5649 break;
5650 }
5651 return 0;
5652 }
5653
5654 struct bpf_reg_types {
5655 const enum bpf_reg_type types[10];
5656 u32 *btf_id;
5657 };
5658
5659 static const struct bpf_reg_types map_key_value_types = {
5660 .types = {
5661 PTR_TO_STACK,
5662 PTR_TO_PACKET,
5663 PTR_TO_PACKET_META,
5664 PTR_TO_MAP_KEY,
5665 PTR_TO_MAP_VALUE,
5666 },
5667 };
5668
5669 static const struct bpf_reg_types sock_types = {
5670 .types = {
5671 PTR_TO_SOCK_COMMON,
5672 PTR_TO_SOCKET,
5673 PTR_TO_TCP_SOCK,
5674 PTR_TO_XDP_SOCK,
5675 },
5676 };
5677
5678 #ifdef CONFIG_NET
5679 static const struct bpf_reg_types btf_id_sock_common_types = {
5680 .types = {
5681 PTR_TO_SOCK_COMMON,
5682 PTR_TO_SOCKET,
5683 PTR_TO_TCP_SOCK,
5684 PTR_TO_XDP_SOCK,
5685 PTR_TO_BTF_ID,
5686 },
5687 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5688 };
5689 #endif
5690
5691 static const struct bpf_reg_types mem_types = {
5692 .types = {
5693 PTR_TO_STACK,
5694 PTR_TO_PACKET,
5695 PTR_TO_PACKET_META,
5696 PTR_TO_MAP_KEY,
5697 PTR_TO_MAP_VALUE,
5698 PTR_TO_MEM,
5699 PTR_TO_MEM | MEM_ALLOC,
5700 PTR_TO_BUF,
5701 },
5702 };
5703
5704 static const struct bpf_reg_types int_ptr_types = {
5705 .types = {
5706 PTR_TO_STACK,
5707 PTR_TO_PACKET,
5708 PTR_TO_PACKET_META,
5709 PTR_TO_MAP_KEY,
5710 PTR_TO_MAP_VALUE,
5711 },
5712 };
5713
5714 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5715 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5716 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5717 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
5718 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5719 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5720 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5721 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
5722 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5723 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5724 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5725 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5726 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
5727 static const struct bpf_reg_types dynptr_types = {
5728 .types = {
5729 PTR_TO_STACK,
5730 PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL,
5731 }
5732 };
5733
5734 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5735 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
5736 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
5737 [ARG_CONST_SIZE] = &scalar_types,
5738 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5739 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5740 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5741 [ARG_PTR_TO_CTX] = &context_types,
5742 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
5743 #ifdef CONFIG_NET
5744 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
5745 #endif
5746 [ARG_PTR_TO_SOCKET] = &fullsock_types,
5747 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5748 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5749 [ARG_PTR_TO_MEM] = &mem_types,
5750 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
5751 [ARG_PTR_TO_INT] = &int_ptr_types,
5752 [ARG_PTR_TO_LONG] = &int_ptr_types,
5753 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
5754 [ARG_PTR_TO_FUNC] = &func_ptr_types,
5755 [ARG_PTR_TO_STACK] = &stack_ptr_types,
5756 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
5757 [ARG_PTR_TO_TIMER] = &timer_types,
5758 [ARG_PTR_TO_KPTR] = &kptr_types,
5759 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
5760 };
5761
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)5762 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5763 enum bpf_arg_type arg_type,
5764 const u32 *arg_btf_id,
5765 struct bpf_call_arg_meta *meta)
5766 {
5767 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5768 enum bpf_reg_type expected, type = reg->type;
5769 const struct bpf_reg_types *compatible;
5770 int i, j;
5771
5772 compatible = compatible_reg_types[base_type(arg_type)];
5773 if (!compatible) {
5774 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5775 return -EFAULT;
5776 }
5777
5778 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5779 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5780 *
5781 * Same for MAYBE_NULL:
5782 *
5783 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5784 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5785 *
5786 * Therefore we fold these flags depending on the arg_type before comparison.
5787 */
5788 if (arg_type & MEM_RDONLY)
5789 type &= ~MEM_RDONLY;
5790 if (arg_type & PTR_MAYBE_NULL)
5791 type &= ~PTR_MAYBE_NULL;
5792
5793 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5794 expected = compatible->types[i];
5795 if (expected == NOT_INIT)
5796 break;
5797
5798 if (type == expected)
5799 goto found;
5800 }
5801
5802 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
5803 for (j = 0; j + 1 < i; j++)
5804 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5805 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
5806 return -EACCES;
5807
5808 found:
5809 if (reg->type == PTR_TO_BTF_ID) {
5810 /* For bpf_sk_release, it needs to match against first member
5811 * 'struct sock_common', hence make an exception for it. This
5812 * allows bpf_sk_release to work for multiple socket types.
5813 */
5814 bool strict_type_match = arg_type_is_release(arg_type) &&
5815 meta->func_id != BPF_FUNC_sk_release;
5816
5817 if (!arg_btf_id) {
5818 if (!compatible->btf_id) {
5819 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5820 return -EFAULT;
5821 }
5822 arg_btf_id = compatible->btf_id;
5823 }
5824
5825 if (meta->func_id == BPF_FUNC_kptr_xchg) {
5826 if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno))
5827 return -EACCES;
5828 } else {
5829 if (arg_btf_id == BPF_PTR_POISON) {
5830 verbose(env, "verifier internal error:");
5831 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
5832 regno);
5833 return -EACCES;
5834 }
5835
5836 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5837 btf_vmlinux, *arg_btf_id,
5838 strict_type_match)) {
5839 verbose(env, "R%d is of type %s but %s is expected\n",
5840 regno, kernel_type_name(reg->btf, reg->btf_id),
5841 kernel_type_name(btf_vmlinux, *arg_btf_id));
5842 return -EACCES;
5843 }
5844 }
5845 }
5846
5847 return 0;
5848 }
5849
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)5850 int check_func_arg_reg_off(struct bpf_verifier_env *env,
5851 const struct bpf_reg_state *reg, int regno,
5852 enum bpf_arg_type arg_type)
5853 {
5854 enum bpf_reg_type type = reg->type;
5855 bool fixed_off_ok = false;
5856
5857 switch ((u32)type) {
5858 /* Pointer types where reg offset is explicitly allowed: */
5859 case PTR_TO_STACK:
5860 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
5861 verbose(env, "cannot pass in dynptr at an offset\n");
5862 return -EINVAL;
5863 }
5864 fallthrough;
5865 case PTR_TO_PACKET:
5866 case PTR_TO_PACKET_META:
5867 case PTR_TO_MAP_KEY:
5868 case PTR_TO_MAP_VALUE:
5869 case PTR_TO_MEM:
5870 case PTR_TO_MEM | MEM_RDONLY:
5871 case PTR_TO_MEM | MEM_ALLOC:
5872 case PTR_TO_BUF:
5873 case PTR_TO_BUF | MEM_RDONLY:
5874 case SCALAR_VALUE:
5875 /* Some of the argument types nevertheless require a
5876 * zero register offset.
5877 */
5878 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM)
5879 return 0;
5880 break;
5881 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
5882 * fixed offset.
5883 */
5884 case PTR_TO_BTF_ID:
5885 /* When referenced PTR_TO_BTF_ID is passed to release function,
5886 * it's fixed offset must be 0. In the other cases, fixed offset
5887 * can be non-zero.
5888 */
5889 if (arg_type_is_release(arg_type) && reg->off) {
5890 verbose(env, "R%d must have zero offset when passed to release func\n",
5891 regno);
5892 return -EINVAL;
5893 }
5894 /* For arg is release pointer, fixed_off_ok must be false, but
5895 * we already checked and rejected reg->off != 0 above, so set
5896 * to true to allow fixed offset for all other cases.
5897 */
5898 fixed_off_ok = true;
5899 break;
5900 default:
5901 break;
5902 }
5903 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
5904 }
5905
stack_slot_get_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)5906 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
5907 {
5908 struct bpf_func_state *state = func(env, reg);
5909 int spi = get_spi(reg->off);
5910
5911 return state->stack[spi].spilled_ptr.id;
5912 }
5913
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn)5914 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5915 struct bpf_call_arg_meta *meta,
5916 const struct bpf_func_proto *fn)
5917 {
5918 u32 regno = BPF_REG_1 + arg;
5919 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5920 enum bpf_arg_type arg_type = fn->arg_type[arg];
5921 enum bpf_reg_type type = reg->type;
5922 u32 *arg_btf_id = NULL;
5923 int err = 0;
5924
5925 if (arg_type == ARG_DONTCARE)
5926 return 0;
5927
5928 err = check_reg_arg(env, regno, SRC_OP);
5929 if (err)
5930 return err;
5931
5932 if (arg_type == ARG_ANYTHING) {
5933 if (is_pointer_value(env, regno)) {
5934 verbose(env, "R%d leaks addr into helper function\n",
5935 regno);
5936 return -EACCES;
5937 }
5938 return 0;
5939 }
5940
5941 if (type_is_pkt_pointer(type) &&
5942 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5943 verbose(env, "helper access to the packet is not allowed\n");
5944 return -EACCES;
5945 }
5946
5947 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
5948 err = resolve_map_arg_type(env, meta, &arg_type);
5949 if (err)
5950 return err;
5951 }
5952
5953 if (register_is_null(reg) && type_may_be_null(arg_type))
5954 /* A NULL register has a SCALAR_VALUE type, so skip
5955 * type checking.
5956 */
5957 goto skip_type_check;
5958
5959 /* arg_btf_id and arg_size are in a union. */
5960 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID)
5961 arg_btf_id = fn->arg_btf_id[arg];
5962
5963 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
5964 if (err)
5965 return err;
5966
5967 err = check_func_arg_reg_off(env, reg, regno, arg_type);
5968 if (err)
5969 return err;
5970
5971 skip_type_check:
5972 if (arg_type_is_release(arg_type)) {
5973 if (arg_type_is_dynptr(arg_type)) {
5974 struct bpf_func_state *state = func(env, reg);
5975 int spi = get_spi(reg->off);
5976
5977 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
5978 !state->stack[spi].spilled_ptr.id) {
5979 verbose(env, "arg %d is an unacquired reference\n", regno);
5980 return -EINVAL;
5981 }
5982 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
5983 verbose(env, "R%d must be referenced when passed to release function\n",
5984 regno);
5985 return -EINVAL;
5986 }
5987 if (meta->release_regno) {
5988 verbose(env, "verifier internal error: more than one release argument\n");
5989 return -EFAULT;
5990 }
5991 meta->release_regno = regno;
5992 }
5993
5994 if (reg->ref_obj_id) {
5995 if (meta->ref_obj_id) {
5996 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5997 regno, reg->ref_obj_id,
5998 meta->ref_obj_id);
5999 return -EFAULT;
6000 }
6001 meta->ref_obj_id = reg->ref_obj_id;
6002 }
6003
6004 switch (base_type(arg_type)) {
6005 case ARG_CONST_MAP_PTR:
6006 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
6007 if (meta->map_ptr) {
6008 /* Use map_uid (which is unique id of inner map) to reject:
6009 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
6010 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
6011 * if (inner_map1 && inner_map2) {
6012 * timer = bpf_map_lookup_elem(inner_map1);
6013 * if (timer)
6014 * // mismatch would have been allowed
6015 * bpf_timer_init(timer, inner_map2);
6016 * }
6017 *
6018 * Comparing map_ptr is enough to distinguish normal and outer maps.
6019 */
6020 if (meta->map_ptr != reg->map_ptr ||
6021 meta->map_uid != reg->map_uid) {
6022 verbose(env,
6023 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6024 meta->map_uid, reg->map_uid);
6025 return -EINVAL;
6026 }
6027 }
6028 meta->map_ptr = reg->map_ptr;
6029 meta->map_uid = reg->map_uid;
6030 break;
6031 case ARG_PTR_TO_MAP_KEY:
6032 /* bpf_map_xxx(..., map_ptr, ..., key) call:
6033 * check that [key, key + map->key_size) are within
6034 * stack limits and initialized
6035 */
6036 if (!meta->map_ptr) {
6037 /* in function declaration map_ptr must come before
6038 * map_key, so that it's verified and known before
6039 * we have to check map_key here. Otherwise it means
6040 * that kernel subsystem misconfigured verifier
6041 */
6042 verbose(env, "invalid map_ptr to access map->key\n");
6043 return -EACCES;
6044 }
6045 err = check_helper_mem_access(env, regno,
6046 meta->map_ptr->key_size, false,
6047 NULL);
6048 break;
6049 case ARG_PTR_TO_MAP_VALUE:
6050 if (type_may_be_null(arg_type) && register_is_null(reg))
6051 return 0;
6052
6053 /* bpf_map_xxx(..., map_ptr, ..., value) call:
6054 * check [value, value + map->value_size) validity
6055 */
6056 if (!meta->map_ptr) {
6057 /* kernel subsystem misconfigured verifier */
6058 verbose(env, "invalid map_ptr to access map->value\n");
6059 return -EACCES;
6060 }
6061 meta->raw_mode = arg_type & MEM_UNINIT;
6062 err = check_helper_mem_access(env, regno,
6063 meta->map_ptr->value_size, false,
6064 meta);
6065 break;
6066 case ARG_PTR_TO_PERCPU_BTF_ID:
6067 if (!reg->btf_id) {
6068 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6069 return -EACCES;
6070 }
6071 meta->ret_btf = reg->btf;
6072 meta->ret_btf_id = reg->btf_id;
6073 break;
6074 case ARG_PTR_TO_SPIN_LOCK:
6075 if (meta->func_id == BPF_FUNC_spin_lock) {
6076 if (process_spin_lock(env, regno, true))
6077 return -EACCES;
6078 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
6079 if (process_spin_lock(env, regno, false))
6080 return -EACCES;
6081 } else {
6082 verbose(env, "verifier internal error\n");
6083 return -EFAULT;
6084 }
6085 break;
6086 case ARG_PTR_TO_TIMER:
6087 if (process_timer_func(env, regno, meta))
6088 return -EACCES;
6089 break;
6090 case ARG_PTR_TO_FUNC:
6091 meta->subprogno = reg->subprogno;
6092 break;
6093 case ARG_PTR_TO_MEM:
6094 /* The access to this pointer is only checked when we hit the
6095 * next is_mem_size argument below.
6096 */
6097 meta->raw_mode = arg_type & MEM_UNINIT;
6098 if (arg_type & MEM_FIXED_SIZE) {
6099 err = check_helper_mem_access(env, regno,
6100 fn->arg_size[arg], false,
6101 meta);
6102 }
6103 break;
6104 case ARG_CONST_SIZE:
6105 err = check_mem_size_reg(env, reg, regno, false, meta);
6106 break;
6107 case ARG_CONST_SIZE_OR_ZERO:
6108 err = check_mem_size_reg(env, reg, regno, true, meta);
6109 break;
6110 case ARG_PTR_TO_DYNPTR:
6111 /* We only need to check for initialized / uninitialized helper
6112 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the
6113 * assumption is that if it is, that a helper function
6114 * initialized the dynptr on behalf of the BPF program.
6115 */
6116 if (base_type(reg->type) == PTR_TO_DYNPTR)
6117 break;
6118 if (arg_type & MEM_UNINIT) {
6119 if (!is_dynptr_reg_valid_uninit(env, reg)) {
6120 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6121 return -EINVAL;
6122 }
6123
6124 /* We only support one dynptr being uninitialized at the moment,
6125 * which is sufficient for the helper functions we have right now.
6126 */
6127 if (meta->uninit_dynptr_regno) {
6128 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6129 return -EFAULT;
6130 }
6131
6132 meta->uninit_dynptr_regno = regno;
6133 } else if (!is_dynptr_reg_valid_init(env, reg)) {
6134 verbose(env,
6135 "Expected an initialized dynptr as arg #%d\n",
6136 arg + 1);
6137 return -EINVAL;
6138 } else if (!is_dynptr_type_expected(env, reg, arg_type)) {
6139 const char *err_extra = "";
6140
6141 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6142 case DYNPTR_TYPE_LOCAL:
6143 err_extra = "local";
6144 break;
6145 case DYNPTR_TYPE_RINGBUF:
6146 err_extra = "ringbuf";
6147 break;
6148 default:
6149 err_extra = "<unknown>";
6150 break;
6151 }
6152 verbose(env,
6153 "Expected a dynptr of type %s as arg #%d\n",
6154 err_extra, arg + 1);
6155 return -EINVAL;
6156 }
6157 break;
6158 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
6159 if (!tnum_is_const(reg->var_off)) {
6160 verbose(env, "R%d is not a known constant'\n",
6161 regno);
6162 return -EACCES;
6163 }
6164 meta->mem_size = reg->var_off.value;
6165 err = mark_chain_precision(env, regno);
6166 if (err)
6167 return err;
6168 break;
6169 case ARG_PTR_TO_INT:
6170 case ARG_PTR_TO_LONG:
6171 {
6172 int size = int_ptr_type_to_size(arg_type);
6173
6174 err = check_helper_mem_access(env, regno, size, false, meta);
6175 if (err)
6176 return err;
6177 err = check_ptr_alignment(env, reg, 0, size, true);
6178 break;
6179 }
6180 case ARG_PTR_TO_CONST_STR:
6181 {
6182 struct bpf_map *map = reg->map_ptr;
6183 int map_off;
6184 u64 map_addr;
6185 char *str_ptr;
6186
6187 if (!bpf_map_is_rdonly(map)) {
6188 verbose(env, "R%d does not point to a readonly map'\n", regno);
6189 return -EACCES;
6190 }
6191
6192 if (!tnum_is_const(reg->var_off)) {
6193 verbose(env, "R%d is not a constant address'\n", regno);
6194 return -EACCES;
6195 }
6196
6197 if (!map->ops->map_direct_value_addr) {
6198 verbose(env, "no direct value access support for this map type\n");
6199 return -EACCES;
6200 }
6201
6202 err = check_map_access(env, regno, reg->off,
6203 map->value_size - reg->off, false,
6204 ACCESS_HELPER);
6205 if (err)
6206 return err;
6207
6208 map_off = reg->off + reg->var_off.value;
6209 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6210 if (err) {
6211 verbose(env, "direct value access on string failed\n");
6212 return err;
6213 }
6214
6215 str_ptr = (char *)(long)(map_addr);
6216 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6217 verbose(env, "string is not zero-terminated\n");
6218 return -EINVAL;
6219 }
6220 break;
6221 }
6222 case ARG_PTR_TO_KPTR:
6223 if (process_kptr_func(env, regno, meta))
6224 return -EACCES;
6225 break;
6226 }
6227
6228 return err;
6229 }
6230
may_update_sockmap(struct bpf_verifier_env * env,int func_id)6231 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6232 {
6233 enum bpf_attach_type eatype = env->prog->expected_attach_type;
6234 enum bpf_prog_type type = resolve_prog_type(env->prog);
6235
6236 if (func_id != BPF_FUNC_map_update_elem)
6237 return false;
6238
6239 /* It's not possible to get access to a locked struct sock in these
6240 * contexts, so updating is safe.
6241 */
6242 switch (type) {
6243 case BPF_PROG_TYPE_TRACING:
6244 if (eatype == BPF_TRACE_ITER)
6245 return true;
6246 break;
6247 case BPF_PROG_TYPE_SOCKET_FILTER:
6248 case BPF_PROG_TYPE_SCHED_CLS:
6249 case BPF_PROG_TYPE_SCHED_ACT:
6250 case BPF_PROG_TYPE_XDP:
6251 case BPF_PROG_TYPE_SK_REUSEPORT:
6252 case BPF_PROG_TYPE_FLOW_DISSECTOR:
6253 case BPF_PROG_TYPE_SK_LOOKUP:
6254 return true;
6255 default:
6256 break;
6257 }
6258
6259 verbose(env, "cannot update sockmap in this context\n");
6260 return false;
6261 }
6262
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)6263 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6264 {
6265 return env->prog->jit_requested &&
6266 bpf_jit_supports_subprog_tailcalls();
6267 }
6268
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)6269 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6270 struct bpf_map *map, int func_id)
6271 {
6272 if (!map)
6273 return 0;
6274
6275 /* We need a two way check, first is from map perspective ... */
6276 switch (map->map_type) {
6277 case BPF_MAP_TYPE_PROG_ARRAY:
6278 if (func_id != BPF_FUNC_tail_call)
6279 goto error;
6280 break;
6281 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6282 if (func_id != BPF_FUNC_perf_event_read &&
6283 func_id != BPF_FUNC_perf_event_output &&
6284 func_id != BPF_FUNC_skb_output &&
6285 func_id != BPF_FUNC_perf_event_read_value &&
6286 func_id != BPF_FUNC_xdp_output)
6287 goto error;
6288 break;
6289 case BPF_MAP_TYPE_RINGBUF:
6290 if (func_id != BPF_FUNC_ringbuf_output &&
6291 func_id != BPF_FUNC_ringbuf_reserve &&
6292 func_id != BPF_FUNC_ringbuf_query &&
6293 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6294 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6295 func_id != BPF_FUNC_ringbuf_discard_dynptr)
6296 goto error;
6297 break;
6298 case BPF_MAP_TYPE_USER_RINGBUF:
6299 if (func_id != BPF_FUNC_user_ringbuf_drain)
6300 goto error;
6301 break;
6302 case BPF_MAP_TYPE_STACK_TRACE:
6303 if (func_id != BPF_FUNC_get_stackid)
6304 goto error;
6305 break;
6306 case BPF_MAP_TYPE_CGROUP_ARRAY:
6307 if (func_id != BPF_FUNC_skb_under_cgroup &&
6308 func_id != BPF_FUNC_current_task_under_cgroup)
6309 goto error;
6310 break;
6311 case BPF_MAP_TYPE_CGROUP_STORAGE:
6312 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6313 if (func_id != BPF_FUNC_get_local_storage)
6314 goto error;
6315 break;
6316 case BPF_MAP_TYPE_DEVMAP:
6317 case BPF_MAP_TYPE_DEVMAP_HASH:
6318 if (func_id != BPF_FUNC_redirect_map &&
6319 func_id != BPF_FUNC_map_lookup_elem)
6320 goto error;
6321 break;
6322 /* Restrict bpf side of cpumap and xskmap, open when use-cases
6323 * appear.
6324 */
6325 case BPF_MAP_TYPE_CPUMAP:
6326 if (func_id != BPF_FUNC_redirect_map)
6327 goto error;
6328 break;
6329 case BPF_MAP_TYPE_XSKMAP:
6330 if (func_id != BPF_FUNC_redirect_map &&
6331 func_id != BPF_FUNC_map_lookup_elem)
6332 goto error;
6333 break;
6334 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6335 case BPF_MAP_TYPE_HASH_OF_MAPS:
6336 if (func_id != BPF_FUNC_map_lookup_elem)
6337 goto error;
6338 break;
6339 case BPF_MAP_TYPE_SOCKMAP:
6340 if (func_id != BPF_FUNC_sk_redirect_map &&
6341 func_id != BPF_FUNC_sock_map_update &&
6342 func_id != BPF_FUNC_map_delete_elem &&
6343 func_id != BPF_FUNC_msg_redirect_map &&
6344 func_id != BPF_FUNC_sk_select_reuseport &&
6345 func_id != BPF_FUNC_map_lookup_elem &&
6346 !may_update_sockmap(env, func_id))
6347 goto error;
6348 break;
6349 case BPF_MAP_TYPE_SOCKHASH:
6350 if (func_id != BPF_FUNC_sk_redirect_hash &&
6351 func_id != BPF_FUNC_sock_hash_update &&
6352 func_id != BPF_FUNC_map_delete_elem &&
6353 func_id != BPF_FUNC_msg_redirect_hash &&
6354 func_id != BPF_FUNC_sk_select_reuseport &&
6355 func_id != BPF_FUNC_map_lookup_elem &&
6356 !may_update_sockmap(env, func_id))
6357 goto error;
6358 break;
6359 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6360 if (func_id != BPF_FUNC_sk_select_reuseport)
6361 goto error;
6362 break;
6363 case BPF_MAP_TYPE_QUEUE:
6364 case BPF_MAP_TYPE_STACK:
6365 if (func_id != BPF_FUNC_map_peek_elem &&
6366 func_id != BPF_FUNC_map_pop_elem &&
6367 func_id != BPF_FUNC_map_push_elem)
6368 goto error;
6369 break;
6370 case BPF_MAP_TYPE_SK_STORAGE:
6371 if (func_id != BPF_FUNC_sk_storage_get &&
6372 func_id != BPF_FUNC_sk_storage_delete)
6373 goto error;
6374 break;
6375 case BPF_MAP_TYPE_INODE_STORAGE:
6376 if (func_id != BPF_FUNC_inode_storage_get &&
6377 func_id != BPF_FUNC_inode_storage_delete)
6378 goto error;
6379 break;
6380 case BPF_MAP_TYPE_TASK_STORAGE:
6381 if (func_id != BPF_FUNC_task_storage_get &&
6382 func_id != BPF_FUNC_task_storage_delete)
6383 goto error;
6384 break;
6385 case BPF_MAP_TYPE_BLOOM_FILTER:
6386 if (func_id != BPF_FUNC_map_peek_elem &&
6387 func_id != BPF_FUNC_map_push_elem)
6388 goto error;
6389 break;
6390 default:
6391 break;
6392 }
6393
6394 /* ... and second from the function itself. */
6395 switch (func_id) {
6396 case BPF_FUNC_tail_call:
6397 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6398 goto error;
6399 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6400 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
6401 return -EINVAL;
6402 }
6403 break;
6404 case BPF_FUNC_perf_event_read:
6405 case BPF_FUNC_perf_event_output:
6406 case BPF_FUNC_perf_event_read_value:
6407 case BPF_FUNC_skb_output:
6408 case BPF_FUNC_xdp_output:
6409 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6410 goto error;
6411 break;
6412 case BPF_FUNC_ringbuf_output:
6413 case BPF_FUNC_ringbuf_reserve:
6414 case BPF_FUNC_ringbuf_query:
6415 case BPF_FUNC_ringbuf_reserve_dynptr:
6416 case BPF_FUNC_ringbuf_submit_dynptr:
6417 case BPF_FUNC_ringbuf_discard_dynptr:
6418 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6419 goto error;
6420 break;
6421 case BPF_FUNC_user_ringbuf_drain:
6422 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
6423 goto error;
6424 break;
6425 case BPF_FUNC_get_stackid:
6426 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6427 goto error;
6428 break;
6429 case BPF_FUNC_current_task_under_cgroup:
6430 case BPF_FUNC_skb_under_cgroup:
6431 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6432 goto error;
6433 break;
6434 case BPF_FUNC_redirect_map:
6435 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6436 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
6437 map->map_type != BPF_MAP_TYPE_CPUMAP &&
6438 map->map_type != BPF_MAP_TYPE_XSKMAP)
6439 goto error;
6440 break;
6441 case BPF_FUNC_sk_redirect_map:
6442 case BPF_FUNC_msg_redirect_map:
6443 case BPF_FUNC_sock_map_update:
6444 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6445 goto error;
6446 break;
6447 case BPF_FUNC_sk_redirect_hash:
6448 case BPF_FUNC_msg_redirect_hash:
6449 case BPF_FUNC_sock_hash_update:
6450 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
6451 goto error;
6452 break;
6453 case BPF_FUNC_get_local_storage:
6454 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6455 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
6456 goto error;
6457 break;
6458 case BPF_FUNC_sk_select_reuseport:
6459 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6460 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6461 map->map_type != BPF_MAP_TYPE_SOCKHASH)
6462 goto error;
6463 break;
6464 case BPF_FUNC_map_pop_elem:
6465 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6466 map->map_type != BPF_MAP_TYPE_STACK)
6467 goto error;
6468 break;
6469 case BPF_FUNC_map_peek_elem:
6470 case BPF_FUNC_map_push_elem:
6471 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6472 map->map_type != BPF_MAP_TYPE_STACK &&
6473 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6474 goto error;
6475 break;
6476 case BPF_FUNC_map_lookup_percpu_elem:
6477 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6478 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6479 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6480 goto error;
6481 break;
6482 case BPF_FUNC_sk_storage_get:
6483 case BPF_FUNC_sk_storage_delete:
6484 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6485 goto error;
6486 break;
6487 case BPF_FUNC_inode_storage_get:
6488 case BPF_FUNC_inode_storage_delete:
6489 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6490 goto error;
6491 break;
6492 case BPF_FUNC_task_storage_get:
6493 case BPF_FUNC_task_storage_delete:
6494 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6495 goto error;
6496 break;
6497 default:
6498 break;
6499 }
6500
6501 return 0;
6502 error:
6503 verbose(env, "cannot pass map_type %d into func %s#%d\n",
6504 map->map_type, func_id_name(func_id), func_id);
6505 return -EINVAL;
6506 }
6507
check_raw_mode_ok(const struct bpf_func_proto * fn)6508 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
6509 {
6510 int count = 0;
6511
6512 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
6513 count++;
6514 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
6515 count++;
6516 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
6517 count++;
6518 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
6519 count++;
6520 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
6521 count++;
6522
6523 /* We only support one arg being in raw mode at the moment,
6524 * which is sufficient for the helper functions we have
6525 * right now.
6526 */
6527 return count <= 1;
6528 }
6529
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)6530 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
6531 {
6532 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6533 bool has_size = fn->arg_size[arg] != 0;
6534 bool is_next_size = false;
6535
6536 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6537 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6538
6539 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6540 return is_next_size;
6541
6542 return has_size == is_next_size || is_next_size == is_fixed;
6543 }
6544
check_arg_pair_ok(const struct bpf_func_proto * fn)6545 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6546 {
6547 /* bpf_xxx(..., buf, len) call will access 'len'
6548 * bytes from memory 'buf'. Both arg types need
6549 * to be paired, so make sure there's no buggy
6550 * helper function specification.
6551 */
6552 if (arg_type_is_mem_size(fn->arg1_type) ||
6553 check_args_pair_invalid(fn, 0) ||
6554 check_args_pair_invalid(fn, 1) ||
6555 check_args_pair_invalid(fn, 2) ||
6556 check_args_pair_invalid(fn, 3) ||
6557 check_args_pair_invalid(fn, 4))
6558 return false;
6559
6560 return true;
6561 }
6562
check_btf_id_ok(const struct bpf_func_proto * fn)6563 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6564 {
6565 int i;
6566
6567 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
6568 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
6569 return false;
6570
6571 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6572 /* arg_btf_id and arg_size are in a union. */
6573 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6574 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
6575 return false;
6576 }
6577
6578 return true;
6579 }
6580
check_func_proto(const struct bpf_func_proto * fn,int func_id)6581 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
6582 {
6583 return check_raw_mode_ok(fn) &&
6584 check_arg_pair_ok(fn) &&
6585 check_btf_id_ok(fn) ? 0 : -EINVAL;
6586 }
6587
6588 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6589 * are now invalid, so turn them into unknown SCALAR_VALUE.
6590 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)6591 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
6592 {
6593 struct bpf_func_state *state;
6594 struct bpf_reg_state *reg;
6595
6596 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6597 if (reg_is_pkt_pointer_any(reg))
6598 __mark_reg_unknown(env, reg);
6599 }));
6600 }
6601
6602 enum {
6603 AT_PKT_END = -1,
6604 BEYOND_PKT_END = -2,
6605 };
6606
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)6607 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6608 {
6609 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6610 struct bpf_reg_state *reg = &state->regs[regn];
6611
6612 if (reg->type != PTR_TO_PACKET)
6613 /* PTR_TO_PACKET_META is not supported yet */
6614 return;
6615
6616 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6617 * How far beyond pkt_end it goes is unknown.
6618 * if (!range_open) it's the case of pkt >= pkt_end
6619 * if (range_open) it's the case of pkt > pkt_end
6620 * hence this pointer is at least 1 byte bigger than pkt_end
6621 */
6622 if (range_open)
6623 reg->range = BEYOND_PKT_END;
6624 else
6625 reg->range = AT_PKT_END;
6626 }
6627
6628 /* The pointer with the specified id has released its reference to kernel
6629 * resources. Identify all copies of the same pointer and clear the reference.
6630 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)6631 static int release_reference(struct bpf_verifier_env *env,
6632 int ref_obj_id)
6633 {
6634 struct bpf_func_state *state;
6635 struct bpf_reg_state *reg;
6636 int err;
6637
6638 err = release_reference_state(cur_func(env), ref_obj_id);
6639 if (err)
6640 return err;
6641
6642 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6643 if (reg->ref_obj_id == ref_obj_id) {
6644 if (!env->allow_ptr_leaks)
6645 __mark_reg_not_init(env, reg);
6646 else
6647 __mark_reg_unknown(env, reg);
6648 }
6649 }));
6650
6651 return 0;
6652 }
6653
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)6654 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6655 struct bpf_reg_state *regs)
6656 {
6657 int i;
6658
6659 /* after the call registers r0 - r5 were scratched */
6660 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6661 mark_reg_not_init(env, regs, caller_saved[i]);
6662 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6663 }
6664 }
6665
6666 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6667 struct bpf_func_state *caller,
6668 struct bpf_func_state *callee,
6669 int insn_idx);
6670
__check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)6671 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6672 int *insn_idx, int subprog,
6673 set_callee_state_fn set_callee_state_cb)
6674 {
6675 struct bpf_verifier_state *state = env->cur_state;
6676 struct bpf_func_info_aux *func_info_aux;
6677 struct bpf_func_state *caller, *callee;
6678 int err;
6679 bool is_global = false;
6680
6681 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
6682 verbose(env, "the call stack of %d frames is too deep\n",
6683 state->curframe + 2);
6684 return -E2BIG;
6685 }
6686
6687 caller = state->frame[state->curframe];
6688 if (state->frame[state->curframe + 1]) {
6689 verbose(env, "verifier bug. Frame %d already allocated\n",
6690 state->curframe + 1);
6691 return -EFAULT;
6692 }
6693
6694 func_info_aux = env->prog->aux->func_info_aux;
6695 if (func_info_aux)
6696 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6697 err = btf_check_subprog_call(env, subprog, caller->regs);
6698 if (err == -EFAULT)
6699 return err;
6700 if (is_global) {
6701 if (err) {
6702 verbose(env, "Caller passes invalid args into func#%d\n",
6703 subprog);
6704 return err;
6705 } else {
6706 if (env->log.level & BPF_LOG_LEVEL)
6707 verbose(env,
6708 "Func#%d is global and valid. Skipping.\n",
6709 subprog);
6710 clear_caller_saved_regs(env, caller->regs);
6711
6712 /* All global functions return a 64-bit SCALAR_VALUE */
6713 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6714 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6715
6716 /* continue with next insn after call */
6717 return 0;
6718 }
6719 }
6720
6721 if (insn->code == (BPF_JMP | BPF_CALL) &&
6722 insn->src_reg == 0 &&
6723 insn->imm == BPF_FUNC_timer_set_callback) {
6724 struct bpf_verifier_state *async_cb;
6725
6726 /* there is no real recursion here. timer callbacks are async */
6727 env->subprog_info[subprog].is_async_cb = true;
6728 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6729 *insn_idx, subprog);
6730 if (!async_cb)
6731 return -EFAULT;
6732 callee = async_cb->frame[0];
6733 callee->async_entry_cnt = caller->async_entry_cnt + 1;
6734
6735 /* Convert bpf_timer_set_callback() args into timer callback args */
6736 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6737 if (err)
6738 return err;
6739
6740 clear_caller_saved_regs(env, caller->regs);
6741 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6742 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6743 /* continue with next insn after call */
6744 return 0;
6745 }
6746
6747 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6748 if (!callee)
6749 return -ENOMEM;
6750 state->frame[state->curframe + 1] = callee;
6751
6752 /* callee cannot access r0, r6 - r9 for reading and has to write
6753 * into its own stack before reading from it.
6754 * callee can read/write into caller's stack
6755 */
6756 init_func_state(env, callee,
6757 /* remember the callsite, it will be used by bpf_exit */
6758 *insn_idx /* callsite */,
6759 state->curframe + 1 /* frameno within this callchain */,
6760 subprog /* subprog number within this prog */);
6761
6762 /* Transfer references to the callee */
6763 err = copy_reference_state(callee, caller);
6764 if (err)
6765 goto err_out;
6766
6767 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6768 if (err)
6769 goto err_out;
6770
6771 clear_caller_saved_regs(env, caller->regs);
6772
6773 /* only increment it after check_reg_arg() finished */
6774 state->curframe++;
6775
6776 /* and go analyze first insn of the callee */
6777 *insn_idx = env->subprog_info[subprog].start - 1;
6778
6779 if (env->log.level & BPF_LOG_LEVEL) {
6780 verbose(env, "caller:\n");
6781 print_verifier_state(env, caller, true);
6782 verbose(env, "callee:\n");
6783 print_verifier_state(env, callee, true);
6784 }
6785 return 0;
6786
6787 err_out:
6788 free_func_state(callee);
6789 state->frame[state->curframe + 1] = NULL;
6790 return err;
6791 }
6792
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)6793 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6794 struct bpf_func_state *caller,
6795 struct bpf_func_state *callee)
6796 {
6797 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6798 * void *callback_ctx, u64 flags);
6799 * callback_fn(struct bpf_map *map, void *key, void *value,
6800 * void *callback_ctx);
6801 */
6802 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6803
6804 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6805 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6806 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6807
6808 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6809 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6810 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6811
6812 /* pointer to stack or null */
6813 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6814
6815 /* unused */
6816 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6817 return 0;
6818 }
6819
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6820 static int set_callee_state(struct bpf_verifier_env *env,
6821 struct bpf_func_state *caller,
6822 struct bpf_func_state *callee, int insn_idx)
6823 {
6824 int i;
6825
6826 /* copy r1 - r5 args that callee can access. The copy includes parent
6827 * pointers, which connects us up to the liveness chain
6828 */
6829 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6830 callee->regs[i] = caller->regs[i];
6831 return 0;
6832 }
6833
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)6834 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6835 int *insn_idx)
6836 {
6837 int subprog, target_insn;
6838
6839 target_insn = *insn_idx + insn->imm + 1;
6840 subprog = find_subprog(env, target_insn);
6841 if (subprog < 0) {
6842 verbose(env, "verifier bug. No program starts at insn %d\n",
6843 target_insn);
6844 return -EFAULT;
6845 }
6846
6847 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6848 }
6849
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6850 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6851 struct bpf_func_state *caller,
6852 struct bpf_func_state *callee,
6853 int insn_idx)
6854 {
6855 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6856 struct bpf_map *map;
6857 int err;
6858
6859 if (bpf_map_ptr_poisoned(insn_aux)) {
6860 verbose(env, "tail_call abusing map_ptr\n");
6861 return -EINVAL;
6862 }
6863
6864 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6865 if (!map->ops->map_set_for_each_callback_args ||
6866 !map->ops->map_for_each_callback) {
6867 verbose(env, "callback function not allowed for map\n");
6868 return -ENOTSUPP;
6869 }
6870
6871 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6872 if (err)
6873 return err;
6874
6875 callee->in_callback_fn = true;
6876 callee->callback_ret_range = tnum_range(0, 1);
6877 return 0;
6878 }
6879
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6880 static int set_loop_callback_state(struct bpf_verifier_env *env,
6881 struct bpf_func_state *caller,
6882 struct bpf_func_state *callee,
6883 int insn_idx)
6884 {
6885 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6886 * u64 flags);
6887 * callback_fn(u32 index, void *callback_ctx);
6888 */
6889 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6890 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6891
6892 /* unused */
6893 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6894 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6895 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6896
6897 callee->in_callback_fn = true;
6898 callee->callback_ret_range = tnum_range(0, 1);
6899 return 0;
6900 }
6901
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6902 static int set_timer_callback_state(struct bpf_verifier_env *env,
6903 struct bpf_func_state *caller,
6904 struct bpf_func_state *callee,
6905 int insn_idx)
6906 {
6907 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6908
6909 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6910 * callback_fn(struct bpf_map *map, void *key, void *value);
6911 */
6912 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6913 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6914 callee->regs[BPF_REG_1].map_ptr = map_ptr;
6915
6916 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6917 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6918 callee->regs[BPF_REG_2].map_ptr = map_ptr;
6919
6920 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6921 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6922 callee->regs[BPF_REG_3].map_ptr = map_ptr;
6923
6924 /* unused */
6925 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6926 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6927 callee->in_async_callback_fn = true;
6928 callee->callback_ret_range = tnum_range(0, 1);
6929 return 0;
6930 }
6931
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6932 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6933 struct bpf_func_state *caller,
6934 struct bpf_func_state *callee,
6935 int insn_idx)
6936 {
6937 /* bpf_find_vma(struct task_struct *task, u64 addr,
6938 * void *callback_fn, void *callback_ctx, u64 flags)
6939 * (callback_fn)(struct task_struct *task,
6940 * struct vm_area_struct *vma, void *callback_ctx);
6941 */
6942 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6943
6944 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6945 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6946 callee->regs[BPF_REG_2].btf = btf_vmlinux;
6947 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
6948
6949 /* pointer to stack or null */
6950 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6951
6952 /* unused */
6953 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6954 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6955 callee->in_callback_fn = true;
6956 callee->callback_ret_range = tnum_range(0, 1);
6957 return 0;
6958 }
6959
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6960 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
6961 struct bpf_func_state *caller,
6962 struct bpf_func_state *callee,
6963 int insn_idx)
6964 {
6965 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
6966 * callback_ctx, u64 flags);
6967 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx);
6968 */
6969 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
6970 callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL;
6971 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6972 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6973
6974 /* unused */
6975 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6976 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6977 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6978
6979 callee->in_callback_fn = true;
6980 callee->callback_ret_range = tnum_range(0, 1);
6981 return 0;
6982 }
6983
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)6984 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6985 {
6986 struct bpf_verifier_state *state = env->cur_state;
6987 struct bpf_func_state *caller, *callee;
6988 struct bpf_reg_state *r0;
6989 int err;
6990
6991 callee = state->frame[state->curframe];
6992 r0 = &callee->regs[BPF_REG_0];
6993 if (r0->type == PTR_TO_STACK) {
6994 /* technically it's ok to return caller's stack pointer
6995 * (or caller's caller's pointer) back to the caller,
6996 * since these pointers are valid. Only current stack
6997 * pointer will be invalid as soon as function exits,
6998 * but let's be conservative
6999 */
7000 verbose(env, "cannot return stack pointer to the caller\n");
7001 return -EINVAL;
7002 }
7003
7004 caller = state->frame[state->curframe - 1];
7005 if (callee->in_callback_fn) {
7006 /* enforce R0 return value range [0, 1]. */
7007 struct tnum range = callee->callback_ret_range;
7008
7009 if (r0->type != SCALAR_VALUE) {
7010 verbose(env, "R0 not a scalar value\n");
7011 return -EACCES;
7012 }
7013 if (!tnum_in(range, r0->var_off)) {
7014 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
7015 return -EINVAL;
7016 }
7017 } else {
7018 /* return to the caller whatever r0 had in the callee */
7019 caller->regs[BPF_REG_0] = *r0;
7020 }
7021
7022 /* callback_fn frame should have released its own additions to parent's
7023 * reference state at this point, or check_reference_leak would
7024 * complain, hence it must be the same as the caller. There is no need
7025 * to copy it back.
7026 */
7027 if (!callee->in_callback_fn) {
7028 /* Transfer references to the caller */
7029 err = copy_reference_state(caller, callee);
7030 if (err)
7031 return err;
7032 }
7033
7034 *insn_idx = callee->callsite + 1;
7035 if (env->log.level & BPF_LOG_LEVEL) {
7036 verbose(env, "returning from callee:\n");
7037 print_verifier_state(env, callee, true);
7038 verbose(env, "to caller at %d:\n", *insn_idx);
7039 print_verifier_state(env, caller, true);
7040 }
7041 /* clear everything in the callee */
7042 free_func_state(callee);
7043 state->frame[state->curframe--] = NULL;
7044 return 0;
7045 }
7046
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)7047 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7048 int func_id,
7049 struct bpf_call_arg_meta *meta)
7050 {
7051 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
7052
7053 if (ret_type != RET_INTEGER ||
7054 (func_id != BPF_FUNC_get_stack &&
7055 func_id != BPF_FUNC_get_task_stack &&
7056 func_id != BPF_FUNC_probe_read_str &&
7057 func_id != BPF_FUNC_probe_read_kernel_str &&
7058 func_id != BPF_FUNC_probe_read_user_str))
7059 return;
7060
7061 ret_reg->smax_value = meta->msize_max_value;
7062 ret_reg->s32_max_value = meta->msize_max_value;
7063 ret_reg->smin_value = -MAX_ERRNO;
7064 ret_reg->s32_min_value = -MAX_ERRNO;
7065 reg_bounds_sync(ret_reg);
7066 }
7067
7068 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)7069 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7070 int func_id, int insn_idx)
7071 {
7072 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7073 struct bpf_map *map = meta->map_ptr;
7074
7075 if (func_id != BPF_FUNC_tail_call &&
7076 func_id != BPF_FUNC_map_lookup_elem &&
7077 func_id != BPF_FUNC_map_update_elem &&
7078 func_id != BPF_FUNC_map_delete_elem &&
7079 func_id != BPF_FUNC_map_push_elem &&
7080 func_id != BPF_FUNC_map_pop_elem &&
7081 func_id != BPF_FUNC_map_peek_elem &&
7082 func_id != BPF_FUNC_for_each_map_elem &&
7083 func_id != BPF_FUNC_redirect_map &&
7084 func_id != BPF_FUNC_map_lookup_percpu_elem)
7085 return 0;
7086
7087 if (map == NULL) {
7088 verbose(env, "kernel subsystem misconfigured verifier\n");
7089 return -EINVAL;
7090 }
7091
7092 /* In case of read-only, some additional restrictions
7093 * need to be applied in order to prevent altering the
7094 * state of the map from program side.
7095 */
7096 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7097 (func_id == BPF_FUNC_map_delete_elem ||
7098 func_id == BPF_FUNC_map_update_elem ||
7099 func_id == BPF_FUNC_map_push_elem ||
7100 func_id == BPF_FUNC_map_pop_elem)) {
7101 verbose(env, "write into map forbidden\n");
7102 return -EACCES;
7103 }
7104
7105 if (!BPF_MAP_PTR(aux->map_ptr_state))
7106 bpf_map_ptr_store(aux, meta->map_ptr,
7107 !meta->map_ptr->bypass_spec_v1);
7108 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7109 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7110 !meta->map_ptr->bypass_spec_v1);
7111 return 0;
7112 }
7113
7114 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)7115 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7116 int func_id, int insn_idx)
7117 {
7118 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7119 struct bpf_reg_state *regs = cur_regs(env), *reg;
7120 struct bpf_map *map = meta->map_ptr;
7121 u64 val, max;
7122 int err;
7123
7124 if (func_id != BPF_FUNC_tail_call)
7125 return 0;
7126 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7127 verbose(env, "kernel subsystem misconfigured verifier\n");
7128 return -EINVAL;
7129 }
7130
7131 reg = ®s[BPF_REG_3];
7132 val = reg->var_off.value;
7133 max = map->max_entries;
7134
7135 if (!(register_is_const(reg) && val < max)) {
7136 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7137 return 0;
7138 }
7139
7140 err = mark_chain_precision(env, BPF_REG_3);
7141 if (err)
7142 return err;
7143 if (bpf_map_key_unseen(aux))
7144 bpf_map_key_store(aux, val);
7145 else if (!bpf_map_key_poisoned(aux) &&
7146 bpf_map_key_immediate(aux) != val)
7147 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7148 return 0;
7149 }
7150
check_reference_leak(struct bpf_verifier_env * env)7151 static int check_reference_leak(struct bpf_verifier_env *env)
7152 {
7153 struct bpf_func_state *state = cur_func(env);
7154 bool refs_lingering = false;
7155 int i;
7156
7157 if (state->frameno && !state->in_callback_fn)
7158 return 0;
7159
7160 for (i = 0; i < state->acquired_refs; i++) {
7161 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7162 continue;
7163 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7164 state->refs[i].id, state->refs[i].insn_idx);
7165 refs_lingering = true;
7166 }
7167 return refs_lingering ? -EINVAL : 0;
7168 }
7169
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)7170 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7171 struct bpf_reg_state *regs)
7172 {
7173 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
7174 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
7175 struct bpf_map *fmt_map = fmt_reg->map_ptr;
7176 int err, fmt_map_off, num_args;
7177 u64 fmt_addr;
7178 char *fmt;
7179
7180 /* data must be an array of u64 */
7181 if (data_len_reg->var_off.value % 8)
7182 return -EINVAL;
7183 num_args = data_len_reg->var_off.value / 8;
7184
7185 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7186 * and map_direct_value_addr is set.
7187 */
7188 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7189 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7190 fmt_map_off);
7191 if (err) {
7192 verbose(env, "verifier bug\n");
7193 return -EFAULT;
7194 }
7195 fmt = (char *)(long)fmt_addr + fmt_map_off;
7196
7197 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7198 * can focus on validating the format specifiers.
7199 */
7200 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7201 if (err < 0)
7202 verbose(env, "Invalid format string\n");
7203
7204 return err;
7205 }
7206
check_get_func_ip(struct bpf_verifier_env * env)7207 static int check_get_func_ip(struct bpf_verifier_env *env)
7208 {
7209 enum bpf_prog_type type = resolve_prog_type(env->prog);
7210 int func_id = BPF_FUNC_get_func_ip;
7211
7212 if (type == BPF_PROG_TYPE_TRACING) {
7213 if (!bpf_prog_has_trampoline(env->prog)) {
7214 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7215 func_id_name(func_id), func_id);
7216 return -ENOTSUPP;
7217 }
7218 return 0;
7219 } else if (type == BPF_PROG_TYPE_KPROBE) {
7220 return 0;
7221 }
7222
7223 verbose(env, "func %s#%d not supported for program type %d\n",
7224 func_id_name(func_id), func_id, type);
7225 return -ENOTSUPP;
7226 }
7227
cur_aux(struct bpf_verifier_env * env)7228 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7229 {
7230 return &env->insn_aux_data[env->insn_idx];
7231 }
7232
loop_flag_is_zero(struct bpf_verifier_env * env)7233 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7234 {
7235 struct bpf_reg_state *regs = cur_regs(env);
7236 struct bpf_reg_state *reg = ®s[BPF_REG_4];
7237 bool reg_is_null = register_is_null(reg);
7238
7239 if (reg_is_null)
7240 mark_chain_precision(env, BPF_REG_4);
7241
7242 return reg_is_null;
7243 }
7244
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)7245 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7246 {
7247 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7248
7249 if (!state->initialized) {
7250 state->initialized = 1;
7251 state->fit_for_inline = loop_flag_is_zero(env);
7252 state->callback_subprogno = subprogno;
7253 return;
7254 }
7255
7256 if (!state->fit_for_inline)
7257 return;
7258
7259 state->fit_for_inline = (loop_flag_is_zero(env) &&
7260 state->callback_subprogno == subprogno);
7261 }
7262
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)7263 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7264 int *insn_idx_p)
7265 {
7266 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7267 const struct bpf_func_proto *fn = NULL;
7268 enum bpf_return_type ret_type;
7269 enum bpf_type_flag ret_flag;
7270 struct bpf_reg_state *regs;
7271 struct bpf_call_arg_meta meta;
7272 int insn_idx = *insn_idx_p;
7273 bool changes_data;
7274 int i, err, func_id;
7275
7276 /* find function prototype */
7277 func_id = insn->imm;
7278 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7279 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7280 func_id);
7281 return -EINVAL;
7282 }
7283
7284 if (env->ops->get_func_proto)
7285 fn = env->ops->get_func_proto(func_id, env->prog);
7286 if (!fn) {
7287 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7288 func_id);
7289 return -EINVAL;
7290 }
7291
7292 /* eBPF programs must be GPL compatible to use GPL-ed functions */
7293 if (!env->prog->gpl_compatible && fn->gpl_only) {
7294 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
7295 return -EINVAL;
7296 }
7297
7298 if (fn->allowed && !fn->allowed(env->prog)) {
7299 verbose(env, "helper call is not allowed in probe\n");
7300 return -EINVAL;
7301 }
7302
7303 /* With LD_ABS/IND some JITs save/restore skb from r1. */
7304 changes_data = bpf_helper_changes_pkt_data(fn->func);
7305 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7306 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7307 func_id_name(func_id), func_id);
7308 return -EINVAL;
7309 }
7310
7311 memset(&meta, 0, sizeof(meta));
7312 meta.pkt_access = fn->pkt_access;
7313
7314 err = check_func_proto(fn, func_id);
7315 if (err) {
7316 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
7317 func_id_name(func_id), func_id);
7318 return err;
7319 }
7320
7321 meta.func_id = func_id;
7322 /* check args */
7323 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7324 err = check_func_arg(env, i, &meta, fn);
7325 if (err)
7326 return err;
7327 }
7328
7329 err = record_func_map(env, &meta, func_id, insn_idx);
7330 if (err)
7331 return err;
7332
7333 err = record_func_key(env, &meta, func_id, insn_idx);
7334 if (err)
7335 return err;
7336
7337 /* Mark slots with STACK_MISC in case of raw mode, stack offset
7338 * is inferred from register state.
7339 */
7340 for (i = 0; i < meta.access_size; i++) {
7341 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7342 BPF_WRITE, -1, false);
7343 if (err)
7344 return err;
7345 }
7346
7347 regs = cur_regs(env);
7348
7349 if (meta.uninit_dynptr_regno) {
7350 /* we write BPF_DW bits (8 bytes) at a time */
7351 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7352 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7353 i, BPF_DW, BPF_WRITE, -1, false);
7354 if (err)
7355 return err;
7356 }
7357
7358 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno],
7359 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7360 insn_idx);
7361 if (err)
7362 return err;
7363 }
7364
7365 if (meta.release_regno) {
7366 err = -EINVAL;
7367 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7368 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
7369 else if (meta.ref_obj_id)
7370 err = release_reference(env, meta.ref_obj_id);
7371 /* meta.ref_obj_id can only be 0 if register that is meant to be
7372 * released is NULL, which must be > R0.
7373 */
7374 else if (register_is_null(®s[meta.release_regno]))
7375 err = 0;
7376 if (err) {
7377 verbose(env, "func %s#%d reference has not been acquired before\n",
7378 func_id_name(func_id), func_id);
7379 return err;
7380 }
7381 }
7382
7383 switch (func_id) {
7384 case BPF_FUNC_tail_call:
7385 err = check_reference_leak(env);
7386 if (err) {
7387 verbose(env, "tail_call would lead to reference leak\n");
7388 return err;
7389 }
7390 break;
7391 case BPF_FUNC_get_local_storage:
7392 /* check that flags argument in get_local_storage(map, flags) is 0,
7393 * this is required because get_local_storage() can't return an error.
7394 */
7395 if (!register_is_null(®s[BPF_REG_2])) {
7396 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7397 return -EINVAL;
7398 }
7399 break;
7400 case BPF_FUNC_for_each_map_elem:
7401 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7402 set_map_elem_callback_state);
7403 break;
7404 case BPF_FUNC_timer_set_callback:
7405 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7406 set_timer_callback_state);
7407 break;
7408 case BPF_FUNC_find_vma:
7409 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7410 set_find_vma_callback_state);
7411 break;
7412 case BPF_FUNC_snprintf:
7413 err = check_bpf_snprintf_call(env, regs);
7414 break;
7415 case BPF_FUNC_loop:
7416 update_loop_inline_state(env, meta.subprogno);
7417 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7418 set_loop_callback_state);
7419 break;
7420 case BPF_FUNC_dynptr_from_mem:
7421 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7422 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7423 reg_type_str(env, regs[BPF_REG_1].type));
7424 return -EACCES;
7425 }
7426 break;
7427 case BPF_FUNC_set_retval:
7428 if (prog_type == BPF_PROG_TYPE_LSM &&
7429 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
7430 if (!env->prog->aux->attach_func_proto->type) {
7431 /* Make sure programs that attach to void
7432 * hooks don't try to modify return value.
7433 */
7434 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7435 return -EINVAL;
7436 }
7437 }
7438 break;
7439 case BPF_FUNC_dynptr_data:
7440 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7441 if (arg_type_is_dynptr(fn->arg_type[i])) {
7442 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i];
7443
7444 if (meta.ref_obj_id) {
7445 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
7446 return -EFAULT;
7447 }
7448
7449 if (base_type(reg->type) != PTR_TO_DYNPTR)
7450 /* Find the id of the dynptr we're
7451 * tracking the reference of
7452 */
7453 meta.ref_obj_id = stack_slot_get_id(env, reg);
7454 break;
7455 }
7456 }
7457 if (i == MAX_BPF_FUNC_REG_ARGS) {
7458 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
7459 return -EFAULT;
7460 }
7461 break;
7462 case BPF_FUNC_user_ringbuf_drain:
7463 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7464 set_user_ringbuf_callback_state);
7465 break;
7466 }
7467
7468 if (err)
7469 return err;
7470
7471 /* reset caller saved regs */
7472 for (i = 0; i < CALLER_SAVED_REGS; i++) {
7473 mark_reg_not_init(env, regs, caller_saved[i]);
7474 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7475 }
7476
7477 /* helper call returns 64-bit value. */
7478 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7479
7480 /* update return register (already marked as written above) */
7481 ret_type = fn->ret_type;
7482 ret_flag = type_flag(ret_type);
7483
7484 switch (base_type(ret_type)) {
7485 case RET_INTEGER:
7486 /* sets type to SCALAR_VALUE */
7487 mark_reg_unknown(env, regs, BPF_REG_0);
7488 break;
7489 case RET_VOID:
7490 regs[BPF_REG_0].type = NOT_INIT;
7491 break;
7492 case RET_PTR_TO_MAP_VALUE:
7493 /* There is no offset yet applied, variable or fixed */
7494 mark_reg_known_zero(env, regs, BPF_REG_0);
7495 /* remember map_ptr, so that check_map_access()
7496 * can check 'value_size' boundary of memory access
7497 * to map element returned from bpf_map_lookup_elem()
7498 */
7499 if (meta.map_ptr == NULL) {
7500 verbose(env,
7501 "kernel subsystem misconfigured verifier\n");
7502 return -EINVAL;
7503 }
7504 regs[BPF_REG_0].map_ptr = meta.map_ptr;
7505 regs[BPF_REG_0].map_uid = meta.map_uid;
7506 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7507 if (!type_may_be_null(ret_type) &&
7508 map_value_has_spin_lock(meta.map_ptr)) {
7509 regs[BPF_REG_0].id = ++env->id_gen;
7510 }
7511 break;
7512 case RET_PTR_TO_SOCKET:
7513 mark_reg_known_zero(env, regs, BPF_REG_0);
7514 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
7515 break;
7516 case RET_PTR_TO_SOCK_COMMON:
7517 mark_reg_known_zero(env, regs, BPF_REG_0);
7518 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
7519 break;
7520 case RET_PTR_TO_TCP_SOCK:
7521 mark_reg_known_zero(env, regs, BPF_REG_0);
7522 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
7523 break;
7524 case RET_PTR_TO_ALLOC_MEM:
7525 mark_reg_known_zero(env, regs, BPF_REG_0);
7526 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7527 regs[BPF_REG_0].mem_size = meta.mem_size;
7528 break;
7529 case RET_PTR_TO_MEM_OR_BTF_ID:
7530 {
7531 const struct btf_type *t;
7532
7533 mark_reg_known_zero(env, regs, BPF_REG_0);
7534 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
7535 if (!btf_type_is_struct(t)) {
7536 u32 tsize;
7537 const struct btf_type *ret;
7538 const char *tname;
7539
7540 /* resolve the type size of ksym. */
7541 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
7542 if (IS_ERR(ret)) {
7543 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
7544 verbose(env, "unable to resolve the size of type '%s': %ld\n",
7545 tname, PTR_ERR(ret));
7546 return -EINVAL;
7547 }
7548 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7549 regs[BPF_REG_0].mem_size = tsize;
7550 } else {
7551 /* MEM_RDONLY may be carried from ret_flag, but it
7552 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7553 * it will confuse the check of PTR_TO_BTF_ID in
7554 * check_mem_access().
7555 */
7556 ret_flag &= ~MEM_RDONLY;
7557
7558 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7559 regs[BPF_REG_0].btf = meta.ret_btf;
7560 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7561 }
7562 break;
7563 }
7564 case RET_PTR_TO_BTF_ID:
7565 {
7566 struct btf *ret_btf;
7567 int ret_btf_id;
7568
7569 mark_reg_known_zero(env, regs, BPF_REG_0);
7570 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7571 if (func_id == BPF_FUNC_kptr_xchg) {
7572 ret_btf = meta.kptr_off_desc->kptr.btf;
7573 ret_btf_id = meta.kptr_off_desc->kptr.btf_id;
7574 } else {
7575 if (fn->ret_btf_id == BPF_PTR_POISON) {
7576 verbose(env, "verifier internal error:");
7577 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
7578 func_id_name(func_id));
7579 return -EINVAL;
7580 }
7581 ret_btf = btf_vmlinux;
7582 ret_btf_id = *fn->ret_btf_id;
7583 }
7584 if (ret_btf_id == 0) {
7585 verbose(env, "invalid return type %u of func %s#%d\n",
7586 base_type(ret_type), func_id_name(func_id),
7587 func_id);
7588 return -EINVAL;
7589 }
7590 regs[BPF_REG_0].btf = ret_btf;
7591 regs[BPF_REG_0].btf_id = ret_btf_id;
7592 break;
7593 }
7594 default:
7595 verbose(env, "unknown return type %u of func %s#%d\n",
7596 base_type(ret_type), func_id_name(func_id), func_id);
7597 return -EINVAL;
7598 }
7599
7600 if (type_may_be_null(regs[BPF_REG_0].type))
7601 regs[BPF_REG_0].id = ++env->id_gen;
7602
7603 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
7604 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
7605 func_id_name(func_id), func_id);
7606 return -EFAULT;
7607 }
7608
7609 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
7610 /* For release_reference() */
7611 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7612 } else if (is_acquire_function(func_id, meta.map_ptr)) {
7613 int id = acquire_reference_state(env, insn_idx);
7614
7615 if (id < 0)
7616 return id;
7617 /* For mark_ptr_or_null_reg() */
7618 regs[BPF_REG_0].id = id;
7619 /* For release_reference() */
7620 regs[BPF_REG_0].ref_obj_id = id;
7621 }
7622
7623 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7624
7625 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
7626 if (err)
7627 return err;
7628
7629 if ((func_id == BPF_FUNC_get_stack ||
7630 func_id == BPF_FUNC_get_task_stack) &&
7631 !env->prog->has_callchain_buf) {
7632 const char *err_str;
7633
7634 #ifdef CONFIG_PERF_EVENTS
7635 err = get_callchain_buffers(sysctl_perf_event_max_stack);
7636 err_str = "cannot get callchain buffer for func %s#%d\n";
7637 #else
7638 err = -ENOTSUPP;
7639 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7640 #endif
7641 if (err) {
7642 verbose(env, err_str, func_id_name(func_id), func_id);
7643 return err;
7644 }
7645
7646 env->prog->has_callchain_buf = true;
7647 }
7648
7649 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7650 env->prog->call_get_stack = true;
7651
7652 if (func_id == BPF_FUNC_get_func_ip) {
7653 if (check_get_func_ip(env))
7654 return -ENOTSUPP;
7655 env->prog->call_get_func_ip = true;
7656 }
7657
7658 if (changes_data)
7659 clear_all_pkt_pointers(env);
7660 return 0;
7661 }
7662
7663 /* mark_btf_func_reg_size() is used when the reg size is determined by
7664 * the BTF func_proto's return value size and argument.
7665 */
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)7666 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7667 size_t reg_size)
7668 {
7669 struct bpf_reg_state *reg = &cur_regs(env)[regno];
7670
7671 if (regno == BPF_REG_0) {
7672 /* Function return value */
7673 reg->live |= REG_LIVE_WRITTEN;
7674 reg->subreg_def = reg_size == sizeof(u64) ?
7675 DEF_NOT_SUBREG : env->insn_idx + 1;
7676 } else {
7677 /* Function argument */
7678 if (reg_size == sizeof(u64)) {
7679 mark_insn_zext(env, reg);
7680 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7681 } else {
7682 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7683 }
7684 }
7685 }
7686
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)7687 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7688 int *insn_idx_p)
7689 {
7690 const struct btf_type *t, *func, *func_proto, *ptr_type;
7691 struct bpf_reg_state *regs = cur_regs(env);
7692 struct bpf_kfunc_arg_meta meta = { 0 };
7693 const char *func_name, *ptr_type_name;
7694 u32 i, nargs, func_id, ptr_type_id;
7695 int err, insn_idx = *insn_idx_p;
7696 const struct btf_param *args;
7697 struct btf *desc_btf;
7698 u32 *kfunc_flags;
7699 bool acq;
7700
7701 /* skip for now, but return error when we find this in fixup_kfunc_call */
7702 if (!insn->imm)
7703 return 0;
7704
7705 desc_btf = find_kfunc_desc_btf(env, insn->off);
7706 if (IS_ERR(desc_btf))
7707 return PTR_ERR(desc_btf);
7708
7709 func_id = insn->imm;
7710 func = btf_type_by_id(desc_btf, func_id);
7711 func_name = btf_name_by_offset(desc_btf, func->name_off);
7712 func_proto = btf_type_by_id(desc_btf, func->type);
7713
7714 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
7715 if (!kfunc_flags) {
7716 verbose(env, "calling kernel function %s is not allowed\n",
7717 func_name);
7718 return -EACCES;
7719 }
7720 if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) {
7721 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n");
7722 return -EACCES;
7723 }
7724
7725 acq = *kfunc_flags & KF_ACQUIRE;
7726
7727 meta.flags = *kfunc_flags;
7728
7729 /* Check the arguments */
7730 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, &meta);
7731 if (err < 0)
7732 return err;
7733 /* In case of release function, we get register number of refcounted
7734 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now
7735 */
7736 if (err) {
7737 err = release_reference(env, regs[err].ref_obj_id);
7738 if (err) {
7739 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
7740 func_name, func_id);
7741 return err;
7742 }
7743 }
7744
7745 for (i = 0; i < CALLER_SAVED_REGS; i++)
7746 mark_reg_not_init(env, regs, caller_saved[i]);
7747
7748 /* Check return type */
7749 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
7750
7751 if (acq && !btf_type_is_struct_ptr(desc_btf, t)) {
7752 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
7753 return -EINVAL;
7754 }
7755
7756 if (btf_type_is_scalar(t)) {
7757 mark_reg_unknown(env, regs, BPF_REG_0);
7758 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
7759 } else if (btf_type_is_ptr(t)) {
7760 ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
7761 &ptr_type_id);
7762 if (!btf_type_is_struct(ptr_type)) {
7763 if (!meta.r0_size) {
7764 ptr_type_name = btf_name_by_offset(desc_btf,
7765 ptr_type->name_off);
7766 verbose(env,
7767 "kernel function %s returns pointer type %s %s is not supported\n",
7768 func_name,
7769 btf_type_str(ptr_type),
7770 ptr_type_name);
7771 return -EINVAL;
7772 }
7773
7774 mark_reg_known_zero(env, regs, BPF_REG_0);
7775 regs[BPF_REG_0].type = PTR_TO_MEM;
7776 regs[BPF_REG_0].mem_size = meta.r0_size;
7777
7778 if (meta.r0_rdonly)
7779 regs[BPF_REG_0].type |= MEM_RDONLY;
7780
7781 /* Ensures we don't access the memory after a release_reference() */
7782 if (meta.ref_obj_id)
7783 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7784 } else {
7785 mark_reg_known_zero(env, regs, BPF_REG_0);
7786 regs[BPF_REG_0].btf = desc_btf;
7787 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
7788 regs[BPF_REG_0].btf_id = ptr_type_id;
7789 }
7790 if (*kfunc_flags & KF_RET_NULL) {
7791 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
7792 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
7793 regs[BPF_REG_0].id = ++env->id_gen;
7794 }
7795 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
7796 if (acq) {
7797 int id = acquire_reference_state(env, insn_idx);
7798
7799 if (id < 0)
7800 return id;
7801 regs[BPF_REG_0].id = id;
7802 regs[BPF_REG_0].ref_obj_id = id;
7803 }
7804 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
7805
7806 nargs = btf_type_vlen(func_proto);
7807 args = (const struct btf_param *)(func_proto + 1);
7808 for (i = 0; i < nargs; i++) {
7809 u32 regno = i + 1;
7810
7811 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
7812 if (btf_type_is_ptr(t))
7813 mark_btf_func_reg_size(env, regno, sizeof(void *));
7814 else
7815 /* scalar. ensured by btf_check_kfunc_arg_match() */
7816 mark_btf_func_reg_size(env, regno, t->size);
7817 }
7818
7819 return 0;
7820 }
7821
signed_add_overflows(s64 a,s64 b)7822 static bool signed_add_overflows(s64 a, s64 b)
7823 {
7824 /* Do the add in u64, where overflow is well-defined */
7825 s64 res = (s64)((u64)a + (u64)b);
7826
7827 if (b < 0)
7828 return res > a;
7829 return res < a;
7830 }
7831
signed_add32_overflows(s32 a,s32 b)7832 static bool signed_add32_overflows(s32 a, s32 b)
7833 {
7834 /* Do the add in u32, where overflow is well-defined */
7835 s32 res = (s32)((u32)a + (u32)b);
7836
7837 if (b < 0)
7838 return res > a;
7839 return res < a;
7840 }
7841
signed_sub_overflows(s64 a,s64 b)7842 static bool signed_sub_overflows(s64 a, s64 b)
7843 {
7844 /* Do the sub in u64, where overflow is well-defined */
7845 s64 res = (s64)((u64)a - (u64)b);
7846
7847 if (b < 0)
7848 return res < a;
7849 return res > a;
7850 }
7851
signed_sub32_overflows(s32 a,s32 b)7852 static bool signed_sub32_overflows(s32 a, s32 b)
7853 {
7854 /* Do the sub in u32, where overflow is well-defined */
7855 s32 res = (s32)((u32)a - (u32)b);
7856
7857 if (b < 0)
7858 return res < a;
7859 return res > a;
7860 }
7861
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)7862 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
7863 const struct bpf_reg_state *reg,
7864 enum bpf_reg_type type)
7865 {
7866 bool known = tnum_is_const(reg->var_off);
7867 s64 val = reg->var_off.value;
7868 s64 smin = reg->smin_value;
7869
7870 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
7871 verbose(env, "math between %s pointer and %lld is not allowed\n",
7872 reg_type_str(env, type), val);
7873 return false;
7874 }
7875
7876 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
7877 verbose(env, "%s pointer offset %d is not allowed\n",
7878 reg_type_str(env, type), reg->off);
7879 return false;
7880 }
7881
7882 if (smin == S64_MIN) {
7883 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
7884 reg_type_str(env, type));
7885 return false;
7886 }
7887
7888 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
7889 verbose(env, "value %lld makes %s pointer be out of bounds\n",
7890 smin, reg_type_str(env, type));
7891 return false;
7892 }
7893
7894 return true;
7895 }
7896
7897 enum {
7898 REASON_BOUNDS = -1,
7899 REASON_TYPE = -2,
7900 REASON_PATHS = -3,
7901 REASON_LIMIT = -4,
7902 REASON_STACK = -5,
7903 };
7904
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)7905 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
7906 u32 *alu_limit, bool mask_to_left)
7907 {
7908 u32 max = 0, ptr_limit = 0;
7909
7910 switch (ptr_reg->type) {
7911 case PTR_TO_STACK:
7912 /* Offset 0 is out-of-bounds, but acceptable start for the
7913 * left direction, see BPF_REG_FP. Also, unknown scalar
7914 * offset where we would need to deal with min/max bounds is
7915 * currently prohibited for unprivileged.
7916 */
7917 max = MAX_BPF_STACK + mask_to_left;
7918 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
7919 break;
7920 case PTR_TO_MAP_VALUE:
7921 max = ptr_reg->map_ptr->value_size;
7922 ptr_limit = (mask_to_left ?
7923 ptr_reg->smin_value :
7924 ptr_reg->umax_value) + ptr_reg->off;
7925 break;
7926 default:
7927 return REASON_TYPE;
7928 }
7929
7930 if (ptr_limit >= max)
7931 return REASON_LIMIT;
7932 *alu_limit = ptr_limit;
7933 return 0;
7934 }
7935
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)7936 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
7937 const struct bpf_insn *insn)
7938 {
7939 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
7940 }
7941
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)7942 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
7943 u32 alu_state, u32 alu_limit)
7944 {
7945 /* If we arrived here from different branches with different
7946 * state or limits to sanitize, then this won't work.
7947 */
7948 if (aux->alu_state &&
7949 (aux->alu_state != alu_state ||
7950 aux->alu_limit != alu_limit))
7951 return REASON_PATHS;
7952
7953 /* Corresponding fixup done in do_misc_fixups(). */
7954 aux->alu_state = alu_state;
7955 aux->alu_limit = alu_limit;
7956 return 0;
7957 }
7958
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)7959 static int sanitize_val_alu(struct bpf_verifier_env *env,
7960 struct bpf_insn *insn)
7961 {
7962 struct bpf_insn_aux_data *aux = cur_aux(env);
7963
7964 if (can_skip_alu_sanitation(env, insn))
7965 return 0;
7966
7967 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
7968 }
7969
sanitize_needed(u8 opcode)7970 static bool sanitize_needed(u8 opcode)
7971 {
7972 return opcode == BPF_ADD || opcode == BPF_SUB;
7973 }
7974
7975 struct bpf_sanitize_info {
7976 struct bpf_insn_aux_data aux;
7977 bool mask_to_left;
7978 };
7979
7980 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)7981 sanitize_speculative_path(struct bpf_verifier_env *env,
7982 const struct bpf_insn *insn,
7983 u32 next_idx, u32 curr_idx)
7984 {
7985 struct bpf_verifier_state *branch;
7986 struct bpf_reg_state *regs;
7987
7988 branch = push_stack(env, next_idx, curr_idx, true);
7989 if (branch && insn) {
7990 regs = branch->frame[branch->curframe]->regs;
7991 if (BPF_SRC(insn->code) == BPF_K) {
7992 mark_reg_unknown(env, regs, insn->dst_reg);
7993 } else if (BPF_SRC(insn->code) == BPF_X) {
7994 mark_reg_unknown(env, regs, insn->dst_reg);
7995 mark_reg_unknown(env, regs, insn->src_reg);
7996 }
7997 }
7998 return branch;
7999 }
8000
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)8001 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
8002 struct bpf_insn *insn,
8003 const struct bpf_reg_state *ptr_reg,
8004 const struct bpf_reg_state *off_reg,
8005 struct bpf_reg_state *dst_reg,
8006 struct bpf_sanitize_info *info,
8007 const bool commit_window)
8008 {
8009 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
8010 struct bpf_verifier_state *vstate = env->cur_state;
8011 bool off_is_imm = tnum_is_const(off_reg->var_off);
8012 bool off_is_neg = off_reg->smin_value < 0;
8013 bool ptr_is_dst_reg = ptr_reg == dst_reg;
8014 u8 opcode = BPF_OP(insn->code);
8015 u32 alu_state, alu_limit;
8016 struct bpf_reg_state tmp;
8017 bool ret;
8018 int err;
8019
8020 if (can_skip_alu_sanitation(env, insn))
8021 return 0;
8022
8023 /* We already marked aux for masking from non-speculative
8024 * paths, thus we got here in the first place. We only care
8025 * to explore bad access from here.
8026 */
8027 if (vstate->speculative)
8028 goto do_sim;
8029
8030 if (!commit_window) {
8031 if (!tnum_is_const(off_reg->var_off) &&
8032 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
8033 return REASON_BOUNDS;
8034
8035 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
8036 (opcode == BPF_SUB && !off_is_neg);
8037 }
8038
8039 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
8040 if (err < 0)
8041 return err;
8042
8043 if (commit_window) {
8044 /* In commit phase we narrow the masking window based on
8045 * the observed pointer move after the simulated operation.
8046 */
8047 alu_state = info->aux.alu_state;
8048 alu_limit = abs(info->aux.alu_limit - alu_limit);
8049 } else {
8050 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
8051 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
8052 alu_state |= ptr_is_dst_reg ?
8053 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
8054
8055 /* Limit pruning on unknown scalars to enable deep search for
8056 * potential masking differences from other program paths.
8057 */
8058 if (!off_is_imm)
8059 env->explore_alu_limits = true;
8060 }
8061
8062 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
8063 if (err < 0)
8064 return err;
8065 do_sim:
8066 /* If we're in commit phase, we're done here given we already
8067 * pushed the truncated dst_reg into the speculative verification
8068 * stack.
8069 *
8070 * Also, when register is a known constant, we rewrite register-based
8071 * operation to immediate-based, and thus do not need masking (and as
8072 * a consequence, do not need to simulate the zero-truncation either).
8073 */
8074 if (commit_window || off_is_imm)
8075 return 0;
8076
8077 /* Simulate and find potential out-of-bounds access under
8078 * speculative execution from truncation as a result of
8079 * masking when off was not within expected range. If off
8080 * sits in dst, then we temporarily need to move ptr there
8081 * to simulate dst (== 0) +/-= ptr. Needed, for example,
8082 * for cases where we use K-based arithmetic in one direction
8083 * and truncated reg-based in the other in order to explore
8084 * bad access.
8085 */
8086 if (!ptr_is_dst_reg) {
8087 tmp = *dst_reg;
8088 *dst_reg = *ptr_reg;
8089 }
8090 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
8091 env->insn_idx);
8092 if (!ptr_is_dst_reg && ret)
8093 *dst_reg = tmp;
8094 return !ret ? REASON_STACK : 0;
8095 }
8096
sanitize_mark_insn_seen(struct bpf_verifier_env * env)8097 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
8098 {
8099 struct bpf_verifier_state *vstate = env->cur_state;
8100
8101 /* If we simulate paths under speculation, we don't update the
8102 * insn as 'seen' such that when we verify unreachable paths in
8103 * the non-speculative domain, sanitize_dead_code() can still
8104 * rewrite/sanitize them.
8105 */
8106 if (!vstate->speculative)
8107 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8108 }
8109
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)8110 static int sanitize_err(struct bpf_verifier_env *env,
8111 const struct bpf_insn *insn, int reason,
8112 const struct bpf_reg_state *off_reg,
8113 const struct bpf_reg_state *dst_reg)
8114 {
8115 static const char *err = "pointer arithmetic with it prohibited for !root";
8116 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
8117 u32 dst = insn->dst_reg, src = insn->src_reg;
8118
8119 switch (reason) {
8120 case REASON_BOUNDS:
8121 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
8122 off_reg == dst_reg ? dst : src, err);
8123 break;
8124 case REASON_TYPE:
8125 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
8126 off_reg == dst_reg ? src : dst, err);
8127 break;
8128 case REASON_PATHS:
8129 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
8130 dst, op, err);
8131 break;
8132 case REASON_LIMIT:
8133 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
8134 dst, op, err);
8135 break;
8136 case REASON_STACK:
8137 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
8138 dst, err);
8139 break;
8140 default:
8141 verbose(env, "verifier internal error: unknown reason (%d)\n",
8142 reason);
8143 break;
8144 }
8145
8146 return -EACCES;
8147 }
8148
8149 /* check that stack access falls within stack limits and that 'reg' doesn't
8150 * have a variable offset.
8151 *
8152 * Variable offset is prohibited for unprivileged mode for simplicity since it
8153 * requires corresponding support in Spectre masking for stack ALU. See also
8154 * retrieve_ptr_limit().
8155 *
8156 *
8157 * 'off' includes 'reg->off'.
8158 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)8159 static int check_stack_access_for_ptr_arithmetic(
8160 struct bpf_verifier_env *env,
8161 int regno,
8162 const struct bpf_reg_state *reg,
8163 int off)
8164 {
8165 if (!tnum_is_const(reg->var_off)) {
8166 char tn_buf[48];
8167
8168 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8169 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
8170 regno, tn_buf, off);
8171 return -EACCES;
8172 }
8173
8174 if (off >= 0 || off < -MAX_BPF_STACK) {
8175 verbose(env, "R%d stack pointer arithmetic goes out of range, "
8176 "prohibited for !root; off=%d\n", regno, off);
8177 return -EACCES;
8178 }
8179
8180 return 0;
8181 }
8182
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)8183 static int sanitize_check_bounds(struct bpf_verifier_env *env,
8184 const struct bpf_insn *insn,
8185 const struct bpf_reg_state *dst_reg)
8186 {
8187 u32 dst = insn->dst_reg;
8188
8189 /* For unprivileged we require that resulting offset must be in bounds
8190 * in order to be able to sanitize access later on.
8191 */
8192 if (env->bypass_spec_v1)
8193 return 0;
8194
8195 switch (dst_reg->type) {
8196 case PTR_TO_STACK:
8197 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
8198 dst_reg->off + dst_reg->var_off.value))
8199 return -EACCES;
8200 break;
8201 case PTR_TO_MAP_VALUE:
8202 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
8203 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
8204 "prohibited for !root\n", dst);
8205 return -EACCES;
8206 }
8207 break;
8208 default:
8209 break;
8210 }
8211
8212 return 0;
8213 }
8214
8215 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
8216 * Caller should also handle BPF_MOV case separately.
8217 * If we return -EACCES, caller may want to try again treating pointer as a
8218 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
8219 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)8220 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
8221 struct bpf_insn *insn,
8222 const struct bpf_reg_state *ptr_reg,
8223 const struct bpf_reg_state *off_reg)
8224 {
8225 struct bpf_verifier_state *vstate = env->cur_state;
8226 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8227 struct bpf_reg_state *regs = state->regs, *dst_reg;
8228 bool known = tnum_is_const(off_reg->var_off);
8229 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
8230 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
8231 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
8232 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
8233 struct bpf_sanitize_info info = {};
8234 u8 opcode = BPF_OP(insn->code);
8235 u32 dst = insn->dst_reg;
8236 int ret;
8237
8238 dst_reg = ®s[dst];
8239
8240 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
8241 smin_val > smax_val || umin_val > umax_val) {
8242 /* Taint dst register if offset had invalid bounds derived from
8243 * e.g. dead branches.
8244 */
8245 __mark_reg_unknown(env, dst_reg);
8246 return 0;
8247 }
8248
8249 if (BPF_CLASS(insn->code) != BPF_ALU64) {
8250 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
8251 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8252 __mark_reg_unknown(env, dst_reg);
8253 return 0;
8254 }
8255
8256 verbose(env,
8257 "R%d 32-bit pointer arithmetic prohibited\n",
8258 dst);
8259 return -EACCES;
8260 }
8261
8262 if (ptr_reg->type & PTR_MAYBE_NULL) {
8263 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
8264 dst, reg_type_str(env, ptr_reg->type));
8265 return -EACCES;
8266 }
8267
8268 switch (base_type(ptr_reg->type)) {
8269 case CONST_PTR_TO_MAP:
8270 /* smin_val represents the known value */
8271 if (known && smin_val == 0 && opcode == BPF_ADD)
8272 break;
8273 fallthrough;
8274 case PTR_TO_PACKET_END:
8275 case PTR_TO_SOCKET:
8276 case PTR_TO_SOCK_COMMON:
8277 case PTR_TO_TCP_SOCK:
8278 case PTR_TO_XDP_SOCK:
8279 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
8280 dst, reg_type_str(env, ptr_reg->type));
8281 return -EACCES;
8282 default:
8283 break;
8284 }
8285
8286 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
8287 * The id may be overwritten later if we create a new variable offset.
8288 */
8289 dst_reg->type = ptr_reg->type;
8290 dst_reg->id = ptr_reg->id;
8291
8292 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
8293 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
8294 return -EINVAL;
8295
8296 /* pointer types do not carry 32-bit bounds at the moment. */
8297 __mark_reg32_unbounded(dst_reg);
8298
8299 if (sanitize_needed(opcode)) {
8300 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
8301 &info, false);
8302 if (ret < 0)
8303 return sanitize_err(env, insn, ret, off_reg, dst_reg);
8304 }
8305
8306 switch (opcode) {
8307 case BPF_ADD:
8308 /* We can take a fixed offset as long as it doesn't overflow
8309 * the s32 'off' field
8310 */
8311 if (known && (ptr_reg->off + smin_val ==
8312 (s64)(s32)(ptr_reg->off + smin_val))) {
8313 /* pointer += K. Accumulate it into fixed offset */
8314 dst_reg->smin_value = smin_ptr;
8315 dst_reg->smax_value = smax_ptr;
8316 dst_reg->umin_value = umin_ptr;
8317 dst_reg->umax_value = umax_ptr;
8318 dst_reg->var_off = ptr_reg->var_off;
8319 dst_reg->off = ptr_reg->off + smin_val;
8320 dst_reg->raw = ptr_reg->raw;
8321 break;
8322 }
8323 /* A new variable offset is created. Note that off_reg->off
8324 * == 0, since it's a scalar.
8325 * dst_reg gets the pointer type and since some positive
8326 * integer value was added to the pointer, give it a new 'id'
8327 * if it's a PTR_TO_PACKET.
8328 * this creates a new 'base' pointer, off_reg (variable) gets
8329 * added into the variable offset, and we copy the fixed offset
8330 * from ptr_reg.
8331 */
8332 if (signed_add_overflows(smin_ptr, smin_val) ||
8333 signed_add_overflows(smax_ptr, smax_val)) {
8334 dst_reg->smin_value = S64_MIN;
8335 dst_reg->smax_value = S64_MAX;
8336 } else {
8337 dst_reg->smin_value = smin_ptr + smin_val;
8338 dst_reg->smax_value = smax_ptr + smax_val;
8339 }
8340 if (umin_ptr + umin_val < umin_ptr ||
8341 umax_ptr + umax_val < umax_ptr) {
8342 dst_reg->umin_value = 0;
8343 dst_reg->umax_value = U64_MAX;
8344 } else {
8345 dst_reg->umin_value = umin_ptr + umin_val;
8346 dst_reg->umax_value = umax_ptr + umax_val;
8347 }
8348 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
8349 dst_reg->off = ptr_reg->off;
8350 dst_reg->raw = ptr_reg->raw;
8351 if (reg_is_pkt_pointer(ptr_reg)) {
8352 dst_reg->id = ++env->id_gen;
8353 /* something was added to pkt_ptr, set range to zero */
8354 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8355 }
8356 break;
8357 case BPF_SUB:
8358 if (dst_reg == off_reg) {
8359 /* scalar -= pointer. Creates an unknown scalar */
8360 verbose(env, "R%d tried to subtract pointer from scalar\n",
8361 dst);
8362 return -EACCES;
8363 }
8364 /* We don't allow subtraction from FP, because (according to
8365 * test_verifier.c test "invalid fp arithmetic", JITs might not
8366 * be able to deal with it.
8367 */
8368 if (ptr_reg->type == PTR_TO_STACK) {
8369 verbose(env, "R%d subtraction from stack pointer prohibited\n",
8370 dst);
8371 return -EACCES;
8372 }
8373 if (known && (ptr_reg->off - smin_val ==
8374 (s64)(s32)(ptr_reg->off - smin_val))) {
8375 /* pointer -= K. Subtract it from fixed offset */
8376 dst_reg->smin_value = smin_ptr;
8377 dst_reg->smax_value = smax_ptr;
8378 dst_reg->umin_value = umin_ptr;
8379 dst_reg->umax_value = umax_ptr;
8380 dst_reg->var_off = ptr_reg->var_off;
8381 dst_reg->id = ptr_reg->id;
8382 dst_reg->off = ptr_reg->off - smin_val;
8383 dst_reg->raw = ptr_reg->raw;
8384 break;
8385 }
8386 /* A new variable offset is created. If the subtrahend is known
8387 * nonnegative, then any reg->range we had before is still good.
8388 */
8389 if (signed_sub_overflows(smin_ptr, smax_val) ||
8390 signed_sub_overflows(smax_ptr, smin_val)) {
8391 /* Overflow possible, we know nothing */
8392 dst_reg->smin_value = S64_MIN;
8393 dst_reg->smax_value = S64_MAX;
8394 } else {
8395 dst_reg->smin_value = smin_ptr - smax_val;
8396 dst_reg->smax_value = smax_ptr - smin_val;
8397 }
8398 if (umin_ptr < umax_val) {
8399 /* Overflow possible, we know nothing */
8400 dst_reg->umin_value = 0;
8401 dst_reg->umax_value = U64_MAX;
8402 } else {
8403 /* Cannot overflow (as long as bounds are consistent) */
8404 dst_reg->umin_value = umin_ptr - umax_val;
8405 dst_reg->umax_value = umax_ptr - umin_val;
8406 }
8407 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
8408 dst_reg->off = ptr_reg->off;
8409 dst_reg->raw = ptr_reg->raw;
8410 if (reg_is_pkt_pointer(ptr_reg)) {
8411 dst_reg->id = ++env->id_gen;
8412 /* something was added to pkt_ptr, set range to zero */
8413 if (smin_val < 0)
8414 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8415 }
8416 break;
8417 case BPF_AND:
8418 case BPF_OR:
8419 case BPF_XOR:
8420 /* bitwise ops on pointers are troublesome, prohibit. */
8421 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
8422 dst, bpf_alu_string[opcode >> 4]);
8423 return -EACCES;
8424 default:
8425 /* other operators (e.g. MUL,LSH) produce non-pointer results */
8426 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
8427 dst, bpf_alu_string[opcode >> 4]);
8428 return -EACCES;
8429 }
8430
8431 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
8432 return -EINVAL;
8433 reg_bounds_sync(dst_reg);
8434 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
8435 return -EACCES;
8436 if (sanitize_needed(opcode)) {
8437 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
8438 &info, true);
8439 if (ret < 0)
8440 return sanitize_err(env, insn, ret, off_reg, dst_reg);
8441 }
8442
8443 return 0;
8444 }
8445
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8446 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
8447 struct bpf_reg_state *src_reg)
8448 {
8449 s32 smin_val = src_reg->s32_min_value;
8450 s32 smax_val = src_reg->s32_max_value;
8451 u32 umin_val = src_reg->u32_min_value;
8452 u32 umax_val = src_reg->u32_max_value;
8453
8454 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
8455 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
8456 dst_reg->s32_min_value = S32_MIN;
8457 dst_reg->s32_max_value = S32_MAX;
8458 } else {
8459 dst_reg->s32_min_value += smin_val;
8460 dst_reg->s32_max_value += smax_val;
8461 }
8462 if (dst_reg->u32_min_value + umin_val < umin_val ||
8463 dst_reg->u32_max_value + umax_val < umax_val) {
8464 dst_reg->u32_min_value = 0;
8465 dst_reg->u32_max_value = U32_MAX;
8466 } else {
8467 dst_reg->u32_min_value += umin_val;
8468 dst_reg->u32_max_value += umax_val;
8469 }
8470 }
8471
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8472 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
8473 struct bpf_reg_state *src_reg)
8474 {
8475 s64 smin_val = src_reg->smin_value;
8476 s64 smax_val = src_reg->smax_value;
8477 u64 umin_val = src_reg->umin_value;
8478 u64 umax_val = src_reg->umax_value;
8479
8480 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
8481 signed_add_overflows(dst_reg->smax_value, smax_val)) {
8482 dst_reg->smin_value = S64_MIN;
8483 dst_reg->smax_value = S64_MAX;
8484 } else {
8485 dst_reg->smin_value += smin_val;
8486 dst_reg->smax_value += smax_val;
8487 }
8488 if (dst_reg->umin_value + umin_val < umin_val ||
8489 dst_reg->umax_value + umax_val < umax_val) {
8490 dst_reg->umin_value = 0;
8491 dst_reg->umax_value = U64_MAX;
8492 } else {
8493 dst_reg->umin_value += umin_val;
8494 dst_reg->umax_value += umax_val;
8495 }
8496 }
8497
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8498 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
8499 struct bpf_reg_state *src_reg)
8500 {
8501 s32 smin_val = src_reg->s32_min_value;
8502 s32 smax_val = src_reg->s32_max_value;
8503 u32 umin_val = src_reg->u32_min_value;
8504 u32 umax_val = src_reg->u32_max_value;
8505
8506 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
8507 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
8508 /* Overflow possible, we know nothing */
8509 dst_reg->s32_min_value = S32_MIN;
8510 dst_reg->s32_max_value = S32_MAX;
8511 } else {
8512 dst_reg->s32_min_value -= smax_val;
8513 dst_reg->s32_max_value -= smin_val;
8514 }
8515 if (dst_reg->u32_min_value < umax_val) {
8516 /* Overflow possible, we know nothing */
8517 dst_reg->u32_min_value = 0;
8518 dst_reg->u32_max_value = U32_MAX;
8519 } else {
8520 /* Cannot overflow (as long as bounds are consistent) */
8521 dst_reg->u32_min_value -= umax_val;
8522 dst_reg->u32_max_value -= umin_val;
8523 }
8524 }
8525
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8526 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
8527 struct bpf_reg_state *src_reg)
8528 {
8529 s64 smin_val = src_reg->smin_value;
8530 s64 smax_val = src_reg->smax_value;
8531 u64 umin_val = src_reg->umin_value;
8532 u64 umax_val = src_reg->umax_value;
8533
8534 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
8535 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
8536 /* Overflow possible, we know nothing */
8537 dst_reg->smin_value = S64_MIN;
8538 dst_reg->smax_value = S64_MAX;
8539 } else {
8540 dst_reg->smin_value -= smax_val;
8541 dst_reg->smax_value -= smin_val;
8542 }
8543 if (dst_reg->umin_value < umax_val) {
8544 /* Overflow possible, we know nothing */
8545 dst_reg->umin_value = 0;
8546 dst_reg->umax_value = U64_MAX;
8547 } else {
8548 /* Cannot overflow (as long as bounds are consistent) */
8549 dst_reg->umin_value -= umax_val;
8550 dst_reg->umax_value -= umin_val;
8551 }
8552 }
8553
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8554 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
8555 struct bpf_reg_state *src_reg)
8556 {
8557 s32 smin_val = src_reg->s32_min_value;
8558 u32 umin_val = src_reg->u32_min_value;
8559 u32 umax_val = src_reg->u32_max_value;
8560
8561 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
8562 /* Ain't nobody got time to multiply that sign */
8563 __mark_reg32_unbounded(dst_reg);
8564 return;
8565 }
8566 /* Both values are positive, so we can work with unsigned and
8567 * copy the result to signed (unless it exceeds S32_MAX).
8568 */
8569 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
8570 /* Potential overflow, we know nothing */
8571 __mark_reg32_unbounded(dst_reg);
8572 return;
8573 }
8574 dst_reg->u32_min_value *= umin_val;
8575 dst_reg->u32_max_value *= umax_val;
8576 if (dst_reg->u32_max_value > S32_MAX) {
8577 /* Overflow possible, we know nothing */
8578 dst_reg->s32_min_value = S32_MIN;
8579 dst_reg->s32_max_value = S32_MAX;
8580 } else {
8581 dst_reg->s32_min_value = dst_reg->u32_min_value;
8582 dst_reg->s32_max_value = dst_reg->u32_max_value;
8583 }
8584 }
8585
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8586 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
8587 struct bpf_reg_state *src_reg)
8588 {
8589 s64 smin_val = src_reg->smin_value;
8590 u64 umin_val = src_reg->umin_value;
8591 u64 umax_val = src_reg->umax_value;
8592
8593 if (smin_val < 0 || dst_reg->smin_value < 0) {
8594 /* Ain't nobody got time to multiply that sign */
8595 __mark_reg64_unbounded(dst_reg);
8596 return;
8597 }
8598 /* Both values are positive, so we can work with unsigned and
8599 * copy the result to signed (unless it exceeds S64_MAX).
8600 */
8601 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
8602 /* Potential overflow, we know nothing */
8603 __mark_reg64_unbounded(dst_reg);
8604 return;
8605 }
8606 dst_reg->umin_value *= umin_val;
8607 dst_reg->umax_value *= umax_val;
8608 if (dst_reg->umax_value > S64_MAX) {
8609 /* Overflow possible, we know nothing */
8610 dst_reg->smin_value = S64_MIN;
8611 dst_reg->smax_value = S64_MAX;
8612 } else {
8613 dst_reg->smin_value = dst_reg->umin_value;
8614 dst_reg->smax_value = dst_reg->umax_value;
8615 }
8616 }
8617
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8618 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
8619 struct bpf_reg_state *src_reg)
8620 {
8621 bool src_known = tnum_subreg_is_const(src_reg->var_off);
8622 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8623 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8624 s32 smin_val = src_reg->s32_min_value;
8625 u32 umax_val = src_reg->u32_max_value;
8626
8627 if (src_known && dst_known) {
8628 __mark_reg32_known(dst_reg, var32_off.value);
8629 return;
8630 }
8631
8632 /* We get our minimum from the var_off, since that's inherently
8633 * bitwise. Our maximum is the minimum of the operands' maxima.
8634 */
8635 dst_reg->u32_min_value = var32_off.value;
8636 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
8637 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8638 /* Lose signed bounds when ANDing negative numbers,
8639 * ain't nobody got time for that.
8640 */
8641 dst_reg->s32_min_value = S32_MIN;
8642 dst_reg->s32_max_value = S32_MAX;
8643 } else {
8644 /* ANDing two positives gives a positive, so safe to
8645 * cast result into s64.
8646 */
8647 dst_reg->s32_min_value = dst_reg->u32_min_value;
8648 dst_reg->s32_max_value = dst_reg->u32_max_value;
8649 }
8650 }
8651
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8652 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
8653 struct bpf_reg_state *src_reg)
8654 {
8655 bool src_known = tnum_is_const(src_reg->var_off);
8656 bool dst_known = tnum_is_const(dst_reg->var_off);
8657 s64 smin_val = src_reg->smin_value;
8658 u64 umax_val = src_reg->umax_value;
8659
8660 if (src_known && dst_known) {
8661 __mark_reg_known(dst_reg, dst_reg->var_off.value);
8662 return;
8663 }
8664
8665 /* We get our minimum from the var_off, since that's inherently
8666 * bitwise. Our maximum is the minimum of the operands' maxima.
8667 */
8668 dst_reg->umin_value = dst_reg->var_off.value;
8669 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
8670 if (dst_reg->smin_value < 0 || smin_val < 0) {
8671 /* Lose signed bounds when ANDing negative numbers,
8672 * ain't nobody got time for that.
8673 */
8674 dst_reg->smin_value = S64_MIN;
8675 dst_reg->smax_value = S64_MAX;
8676 } else {
8677 /* ANDing two positives gives a positive, so safe to
8678 * cast result into s64.
8679 */
8680 dst_reg->smin_value = dst_reg->umin_value;
8681 dst_reg->smax_value = dst_reg->umax_value;
8682 }
8683 /* We may learn something more from the var_off */
8684 __update_reg_bounds(dst_reg);
8685 }
8686
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8687 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
8688 struct bpf_reg_state *src_reg)
8689 {
8690 bool src_known = tnum_subreg_is_const(src_reg->var_off);
8691 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8692 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8693 s32 smin_val = src_reg->s32_min_value;
8694 u32 umin_val = src_reg->u32_min_value;
8695
8696 if (src_known && dst_known) {
8697 __mark_reg32_known(dst_reg, var32_off.value);
8698 return;
8699 }
8700
8701 /* We get our maximum from the var_off, and our minimum is the
8702 * maximum of the operands' minima
8703 */
8704 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
8705 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8706 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8707 /* Lose signed bounds when ORing negative numbers,
8708 * ain't nobody got time for that.
8709 */
8710 dst_reg->s32_min_value = S32_MIN;
8711 dst_reg->s32_max_value = S32_MAX;
8712 } else {
8713 /* ORing two positives gives a positive, so safe to
8714 * cast result into s64.
8715 */
8716 dst_reg->s32_min_value = dst_reg->u32_min_value;
8717 dst_reg->s32_max_value = dst_reg->u32_max_value;
8718 }
8719 }
8720
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8721 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
8722 struct bpf_reg_state *src_reg)
8723 {
8724 bool src_known = tnum_is_const(src_reg->var_off);
8725 bool dst_known = tnum_is_const(dst_reg->var_off);
8726 s64 smin_val = src_reg->smin_value;
8727 u64 umin_val = src_reg->umin_value;
8728
8729 if (src_known && dst_known) {
8730 __mark_reg_known(dst_reg, dst_reg->var_off.value);
8731 return;
8732 }
8733
8734 /* We get our maximum from the var_off, and our minimum is the
8735 * maximum of the operands' minima
8736 */
8737 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
8738 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8739 if (dst_reg->smin_value < 0 || smin_val < 0) {
8740 /* Lose signed bounds when ORing negative numbers,
8741 * ain't nobody got time for that.
8742 */
8743 dst_reg->smin_value = S64_MIN;
8744 dst_reg->smax_value = S64_MAX;
8745 } else {
8746 /* ORing two positives gives a positive, so safe to
8747 * cast result into s64.
8748 */
8749 dst_reg->smin_value = dst_reg->umin_value;
8750 dst_reg->smax_value = dst_reg->umax_value;
8751 }
8752 /* We may learn something more from the var_off */
8753 __update_reg_bounds(dst_reg);
8754 }
8755
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8756 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
8757 struct bpf_reg_state *src_reg)
8758 {
8759 bool src_known = tnum_subreg_is_const(src_reg->var_off);
8760 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8761 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8762 s32 smin_val = src_reg->s32_min_value;
8763
8764 if (src_known && dst_known) {
8765 __mark_reg32_known(dst_reg, var32_off.value);
8766 return;
8767 }
8768
8769 /* We get both minimum and maximum from the var32_off. */
8770 dst_reg->u32_min_value = var32_off.value;
8771 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8772
8773 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
8774 /* XORing two positive sign numbers gives a positive,
8775 * so safe to cast u32 result into s32.
8776 */
8777 dst_reg->s32_min_value = dst_reg->u32_min_value;
8778 dst_reg->s32_max_value = dst_reg->u32_max_value;
8779 } else {
8780 dst_reg->s32_min_value = S32_MIN;
8781 dst_reg->s32_max_value = S32_MAX;
8782 }
8783 }
8784
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8785 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
8786 struct bpf_reg_state *src_reg)
8787 {
8788 bool src_known = tnum_is_const(src_reg->var_off);
8789 bool dst_known = tnum_is_const(dst_reg->var_off);
8790 s64 smin_val = src_reg->smin_value;
8791
8792 if (src_known && dst_known) {
8793 /* dst_reg->var_off.value has been updated earlier */
8794 __mark_reg_known(dst_reg, dst_reg->var_off.value);
8795 return;
8796 }
8797
8798 /* We get both minimum and maximum from the var_off. */
8799 dst_reg->umin_value = dst_reg->var_off.value;
8800 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8801
8802 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
8803 /* XORing two positive sign numbers gives a positive,
8804 * so safe to cast u64 result into s64.
8805 */
8806 dst_reg->smin_value = dst_reg->umin_value;
8807 dst_reg->smax_value = dst_reg->umax_value;
8808 } else {
8809 dst_reg->smin_value = S64_MIN;
8810 dst_reg->smax_value = S64_MAX;
8811 }
8812
8813 __update_reg_bounds(dst_reg);
8814 }
8815
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)8816 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8817 u64 umin_val, u64 umax_val)
8818 {
8819 /* We lose all sign bit information (except what we can pick
8820 * up from var_off)
8821 */
8822 dst_reg->s32_min_value = S32_MIN;
8823 dst_reg->s32_max_value = S32_MAX;
8824 /* If we might shift our top bit out, then we know nothing */
8825 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
8826 dst_reg->u32_min_value = 0;
8827 dst_reg->u32_max_value = U32_MAX;
8828 } else {
8829 dst_reg->u32_min_value <<= umin_val;
8830 dst_reg->u32_max_value <<= umax_val;
8831 }
8832 }
8833
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8834 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8835 struct bpf_reg_state *src_reg)
8836 {
8837 u32 umax_val = src_reg->u32_max_value;
8838 u32 umin_val = src_reg->u32_min_value;
8839 /* u32 alu operation will zext upper bits */
8840 struct tnum subreg = tnum_subreg(dst_reg->var_off);
8841
8842 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8843 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
8844 /* Not required but being careful mark reg64 bounds as unknown so
8845 * that we are forced to pick them up from tnum and zext later and
8846 * if some path skips this step we are still safe.
8847 */
8848 __mark_reg64_unbounded(dst_reg);
8849 __update_reg32_bounds(dst_reg);
8850 }
8851
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)8852 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
8853 u64 umin_val, u64 umax_val)
8854 {
8855 /* Special case <<32 because it is a common compiler pattern to sign
8856 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
8857 * positive we know this shift will also be positive so we can track
8858 * bounds correctly. Otherwise we lose all sign bit information except
8859 * what we can pick up from var_off. Perhaps we can generalize this
8860 * later to shifts of any length.
8861 */
8862 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
8863 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
8864 else
8865 dst_reg->smax_value = S64_MAX;
8866
8867 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
8868 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
8869 else
8870 dst_reg->smin_value = S64_MIN;
8871
8872 /* If we might shift our top bit out, then we know nothing */
8873 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
8874 dst_reg->umin_value = 0;
8875 dst_reg->umax_value = U64_MAX;
8876 } else {
8877 dst_reg->umin_value <<= umin_val;
8878 dst_reg->umax_value <<= umax_val;
8879 }
8880 }
8881
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8882 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
8883 struct bpf_reg_state *src_reg)
8884 {
8885 u64 umax_val = src_reg->umax_value;
8886 u64 umin_val = src_reg->umin_value;
8887
8888 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
8889 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
8890 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8891
8892 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
8893 /* We may learn something more from the var_off */
8894 __update_reg_bounds(dst_reg);
8895 }
8896
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8897 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
8898 struct bpf_reg_state *src_reg)
8899 {
8900 struct tnum subreg = tnum_subreg(dst_reg->var_off);
8901 u32 umax_val = src_reg->u32_max_value;
8902 u32 umin_val = src_reg->u32_min_value;
8903
8904 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
8905 * be negative, then either:
8906 * 1) src_reg might be zero, so the sign bit of the result is
8907 * unknown, so we lose our signed bounds
8908 * 2) it's known negative, thus the unsigned bounds capture the
8909 * signed bounds
8910 * 3) the signed bounds cross zero, so they tell us nothing
8911 * about the result
8912 * If the value in dst_reg is known nonnegative, then again the
8913 * unsigned bounds capture the signed bounds.
8914 * Thus, in all cases it suffices to blow away our signed bounds
8915 * and rely on inferring new ones from the unsigned bounds and
8916 * var_off of the result.
8917 */
8918 dst_reg->s32_min_value = S32_MIN;
8919 dst_reg->s32_max_value = S32_MAX;
8920
8921 dst_reg->var_off = tnum_rshift(subreg, umin_val);
8922 dst_reg->u32_min_value >>= umax_val;
8923 dst_reg->u32_max_value >>= umin_val;
8924
8925 __mark_reg64_unbounded(dst_reg);
8926 __update_reg32_bounds(dst_reg);
8927 }
8928
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8929 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
8930 struct bpf_reg_state *src_reg)
8931 {
8932 u64 umax_val = src_reg->umax_value;
8933 u64 umin_val = src_reg->umin_value;
8934
8935 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
8936 * be negative, then either:
8937 * 1) src_reg might be zero, so the sign bit of the result is
8938 * unknown, so we lose our signed bounds
8939 * 2) it's known negative, thus the unsigned bounds capture the
8940 * signed bounds
8941 * 3) the signed bounds cross zero, so they tell us nothing
8942 * about the result
8943 * If the value in dst_reg is known nonnegative, then again the
8944 * unsigned bounds capture the signed bounds.
8945 * Thus, in all cases it suffices to blow away our signed bounds
8946 * and rely on inferring new ones from the unsigned bounds and
8947 * var_off of the result.
8948 */
8949 dst_reg->smin_value = S64_MIN;
8950 dst_reg->smax_value = S64_MAX;
8951 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
8952 dst_reg->umin_value >>= umax_val;
8953 dst_reg->umax_value >>= umin_val;
8954
8955 /* Its not easy to operate on alu32 bounds here because it depends
8956 * on bits being shifted in. Take easy way out and mark unbounded
8957 * so we can recalculate later from tnum.
8958 */
8959 __mark_reg32_unbounded(dst_reg);
8960 __update_reg_bounds(dst_reg);
8961 }
8962
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8963 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8964 struct bpf_reg_state *src_reg)
8965 {
8966 u64 umin_val = src_reg->u32_min_value;
8967
8968 /* Upon reaching here, src_known is true and
8969 * umax_val is equal to umin_val.
8970 */
8971 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8972 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
8973
8974 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8975
8976 /* blow away the dst_reg umin_value/umax_value and rely on
8977 * dst_reg var_off to refine the result.
8978 */
8979 dst_reg->u32_min_value = 0;
8980 dst_reg->u32_max_value = U32_MAX;
8981
8982 __mark_reg64_unbounded(dst_reg);
8983 __update_reg32_bounds(dst_reg);
8984 }
8985
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8986 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8987 struct bpf_reg_state *src_reg)
8988 {
8989 u64 umin_val = src_reg->umin_value;
8990
8991 /* Upon reaching here, src_known is true and umax_val is equal
8992 * to umin_val.
8993 */
8994 dst_reg->smin_value >>= umin_val;
8995 dst_reg->smax_value >>= umin_val;
8996
8997 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
8998
8999 /* blow away the dst_reg umin_value/umax_value and rely on
9000 * dst_reg var_off to refine the result.
9001 */
9002 dst_reg->umin_value = 0;
9003 dst_reg->umax_value = U64_MAX;
9004
9005 /* Its not easy to operate on alu32 bounds here because it depends
9006 * on bits being shifted in from upper 32-bits. Take easy way out
9007 * and mark unbounded so we can recalculate later from tnum.
9008 */
9009 __mark_reg32_unbounded(dst_reg);
9010 __update_reg_bounds(dst_reg);
9011 }
9012
9013 /* WARNING: This function does calculations on 64-bit values, but the actual
9014 * execution may occur on 32-bit values. Therefore, things like bitshifts
9015 * need extra checks in the 32-bit case.
9016 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)9017 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
9018 struct bpf_insn *insn,
9019 struct bpf_reg_state *dst_reg,
9020 struct bpf_reg_state src_reg)
9021 {
9022 struct bpf_reg_state *regs = cur_regs(env);
9023 u8 opcode = BPF_OP(insn->code);
9024 bool src_known;
9025 s64 smin_val, smax_val;
9026 u64 umin_val, umax_val;
9027 s32 s32_min_val, s32_max_val;
9028 u32 u32_min_val, u32_max_val;
9029 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
9030 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
9031 int ret;
9032
9033 smin_val = src_reg.smin_value;
9034 smax_val = src_reg.smax_value;
9035 umin_val = src_reg.umin_value;
9036 umax_val = src_reg.umax_value;
9037
9038 s32_min_val = src_reg.s32_min_value;
9039 s32_max_val = src_reg.s32_max_value;
9040 u32_min_val = src_reg.u32_min_value;
9041 u32_max_val = src_reg.u32_max_value;
9042
9043 if (alu32) {
9044 src_known = tnum_subreg_is_const(src_reg.var_off);
9045 if ((src_known &&
9046 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
9047 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
9048 /* Taint dst register if offset had invalid bounds
9049 * derived from e.g. dead branches.
9050 */
9051 __mark_reg_unknown(env, dst_reg);
9052 return 0;
9053 }
9054 } else {
9055 src_known = tnum_is_const(src_reg.var_off);
9056 if ((src_known &&
9057 (smin_val != smax_val || umin_val != umax_val)) ||
9058 smin_val > smax_val || umin_val > umax_val) {
9059 /* Taint dst register if offset had invalid bounds
9060 * derived from e.g. dead branches.
9061 */
9062 __mark_reg_unknown(env, dst_reg);
9063 return 0;
9064 }
9065 }
9066
9067 if (!src_known &&
9068 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
9069 __mark_reg_unknown(env, dst_reg);
9070 return 0;
9071 }
9072
9073 if (sanitize_needed(opcode)) {
9074 ret = sanitize_val_alu(env, insn);
9075 if (ret < 0)
9076 return sanitize_err(env, insn, ret, NULL, NULL);
9077 }
9078
9079 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
9080 * There are two classes of instructions: The first class we track both
9081 * alu32 and alu64 sign/unsigned bounds independently this provides the
9082 * greatest amount of precision when alu operations are mixed with jmp32
9083 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
9084 * and BPF_OR. This is possible because these ops have fairly easy to
9085 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
9086 * See alu32 verifier tests for examples. The second class of
9087 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
9088 * with regards to tracking sign/unsigned bounds because the bits may
9089 * cross subreg boundaries in the alu64 case. When this happens we mark
9090 * the reg unbounded in the subreg bound space and use the resulting
9091 * tnum to calculate an approximation of the sign/unsigned bounds.
9092 */
9093 switch (opcode) {
9094 case BPF_ADD:
9095 scalar32_min_max_add(dst_reg, &src_reg);
9096 scalar_min_max_add(dst_reg, &src_reg);
9097 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
9098 break;
9099 case BPF_SUB:
9100 scalar32_min_max_sub(dst_reg, &src_reg);
9101 scalar_min_max_sub(dst_reg, &src_reg);
9102 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
9103 break;
9104 case BPF_MUL:
9105 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
9106 scalar32_min_max_mul(dst_reg, &src_reg);
9107 scalar_min_max_mul(dst_reg, &src_reg);
9108 break;
9109 case BPF_AND:
9110 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
9111 scalar32_min_max_and(dst_reg, &src_reg);
9112 scalar_min_max_and(dst_reg, &src_reg);
9113 break;
9114 case BPF_OR:
9115 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
9116 scalar32_min_max_or(dst_reg, &src_reg);
9117 scalar_min_max_or(dst_reg, &src_reg);
9118 break;
9119 case BPF_XOR:
9120 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
9121 scalar32_min_max_xor(dst_reg, &src_reg);
9122 scalar_min_max_xor(dst_reg, &src_reg);
9123 break;
9124 case BPF_LSH:
9125 if (umax_val >= insn_bitness) {
9126 /* Shifts greater than 31 or 63 are undefined.
9127 * This includes shifts by a negative number.
9128 */
9129 mark_reg_unknown(env, regs, insn->dst_reg);
9130 break;
9131 }
9132 if (alu32)
9133 scalar32_min_max_lsh(dst_reg, &src_reg);
9134 else
9135 scalar_min_max_lsh(dst_reg, &src_reg);
9136 break;
9137 case BPF_RSH:
9138 if (umax_val >= insn_bitness) {
9139 /* Shifts greater than 31 or 63 are undefined.
9140 * This includes shifts by a negative number.
9141 */
9142 mark_reg_unknown(env, regs, insn->dst_reg);
9143 break;
9144 }
9145 if (alu32)
9146 scalar32_min_max_rsh(dst_reg, &src_reg);
9147 else
9148 scalar_min_max_rsh(dst_reg, &src_reg);
9149 break;
9150 case BPF_ARSH:
9151 if (umax_val >= insn_bitness) {
9152 /* Shifts greater than 31 or 63 are undefined.
9153 * This includes shifts by a negative number.
9154 */
9155 mark_reg_unknown(env, regs, insn->dst_reg);
9156 break;
9157 }
9158 if (alu32)
9159 scalar32_min_max_arsh(dst_reg, &src_reg);
9160 else
9161 scalar_min_max_arsh(dst_reg, &src_reg);
9162 break;
9163 default:
9164 mark_reg_unknown(env, regs, insn->dst_reg);
9165 break;
9166 }
9167
9168 /* ALU32 ops are zero extended into 64bit register */
9169 if (alu32)
9170 zext_32_to_64(dst_reg);
9171 reg_bounds_sync(dst_reg);
9172 return 0;
9173 }
9174
9175 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
9176 * and var_off.
9177 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)9178 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
9179 struct bpf_insn *insn)
9180 {
9181 struct bpf_verifier_state *vstate = env->cur_state;
9182 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9183 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
9184 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
9185 u8 opcode = BPF_OP(insn->code);
9186 int err;
9187
9188 dst_reg = ®s[insn->dst_reg];
9189 src_reg = NULL;
9190 if (dst_reg->type != SCALAR_VALUE)
9191 ptr_reg = dst_reg;
9192 else
9193 /* Make sure ID is cleared otherwise dst_reg min/max could be
9194 * incorrectly propagated into other registers by find_equal_scalars()
9195 */
9196 dst_reg->id = 0;
9197 if (BPF_SRC(insn->code) == BPF_X) {
9198 src_reg = ®s[insn->src_reg];
9199 if (src_reg->type != SCALAR_VALUE) {
9200 if (dst_reg->type != SCALAR_VALUE) {
9201 /* Combining two pointers by any ALU op yields
9202 * an arbitrary scalar. Disallow all math except
9203 * pointer subtraction
9204 */
9205 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9206 mark_reg_unknown(env, regs, insn->dst_reg);
9207 return 0;
9208 }
9209 verbose(env, "R%d pointer %s pointer prohibited\n",
9210 insn->dst_reg,
9211 bpf_alu_string[opcode >> 4]);
9212 return -EACCES;
9213 } else {
9214 /* scalar += pointer
9215 * This is legal, but we have to reverse our
9216 * src/dest handling in computing the range
9217 */
9218 err = mark_chain_precision(env, insn->dst_reg);
9219 if (err)
9220 return err;
9221 return adjust_ptr_min_max_vals(env, insn,
9222 src_reg, dst_reg);
9223 }
9224 } else if (ptr_reg) {
9225 /* pointer += scalar */
9226 err = mark_chain_precision(env, insn->src_reg);
9227 if (err)
9228 return err;
9229 return adjust_ptr_min_max_vals(env, insn,
9230 dst_reg, src_reg);
9231 } else if (dst_reg->precise) {
9232 /* if dst_reg is precise, src_reg should be precise as well */
9233 err = mark_chain_precision(env, insn->src_reg);
9234 if (err)
9235 return err;
9236 }
9237 } else {
9238 /* Pretend the src is a reg with a known value, since we only
9239 * need to be able to read from this state.
9240 */
9241 off_reg.type = SCALAR_VALUE;
9242 __mark_reg_known(&off_reg, insn->imm);
9243 src_reg = &off_reg;
9244 if (ptr_reg) /* pointer += K */
9245 return adjust_ptr_min_max_vals(env, insn,
9246 ptr_reg, src_reg);
9247 }
9248
9249 /* Got here implies adding two SCALAR_VALUEs */
9250 if (WARN_ON_ONCE(ptr_reg)) {
9251 print_verifier_state(env, state, true);
9252 verbose(env, "verifier internal error: unexpected ptr_reg\n");
9253 return -EINVAL;
9254 }
9255 if (WARN_ON(!src_reg)) {
9256 print_verifier_state(env, state, true);
9257 verbose(env, "verifier internal error: no src_reg\n");
9258 return -EINVAL;
9259 }
9260 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
9261 }
9262
9263 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)9264 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
9265 {
9266 struct bpf_reg_state *regs = cur_regs(env);
9267 u8 opcode = BPF_OP(insn->code);
9268 int err;
9269
9270 if (opcode == BPF_END || opcode == BPF_NEG) {
9271 if (opcode == BPF_NEG) {
9272 if (BPF_SRC(insn->code) != BPF_K ||
9273 insn->src_reg != BPF_REG_0 ||
9274 insn->off != 0 || insn->imm != 0) {
9275 verbose(env, "BPF_NEG uses reserved fields\n");
9276 return -EINVAL;
9277 }
9278 } else {
9279 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
9280 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
9281 BPF_CLASS(insn->code) == BPF_ALU64) {
9282 verbose(env, "BPF_END uses reserved fields\n");
9283 return -EINVAL;
9284 }
9285 }
9286
9287 /* check src operand */
9288 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9289 if (err)
9290 return err;
9291
9292 if (is_pointer_value(env, insn->dst_reg)) {
9293 verbose(env, "R%d pointer arithmetic prohibited\n",
9294 insn->dst_reg);
9295 return -EACCES;
9296 }
9297
9298 /* check dest operand */
9299 err = check_reg_arg(env, insn->dst_reg, DST_OP);
9300 if (err)
9301 return err;
9302
9303 } else if (opcode == BPF_MOV) {
9304
9305 if (BPF_SRC(insn->code) == BPF_X) {
9306 if (insn->imm != 0 || insn->off != 0) {
9307 verbose(env, "BPF_MOV uses reserved fields\n");
9308 return -EINVAL;
9309 }
9310
9311 /* check src operand */
9312 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9313 if (err)
9314 return err;
9315 } else {
9316 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9317 verbose(env, "BPF_MOV uses reserved fields\n");
9318 return -EINVAL;
9319 }
9320 }
9321
9322 /* check dest operand, mark as required later */
9323 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9324 if (err)
9325 return err;
9326
9327 if (BPF_SRC(insn->code) == BPF_X) {
9328 struct bpf_reg_state *src_reg = regs + insn->src_reg;
9329 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
9330
9331 if (BPF_CLASS(insn->code) == BPF_ALU64) {
9332 /* case: R1 = R2
9333 * copy register state to dest reg
9334 */
9335 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
9336 /* Assign src and dst registers the same ID
9337 * that will be used by find_equal_scalars()
9338 * to propagate min/max range.
9339 */
9340 src_reg->id = ++env->id_gen;
9341 *dst_reg = *src_reg;
9342 dst_reg->live |= REG_LIVE_WRITTEN;
9343 dst_reg->subreg_def = DEF_NOT_SUBREG;
9344 } else {
9345 /* R1 = (u32) R2 */
9346 if (is_pointer_value(env, insn->src_reg)) {
9347 verbose(env,
9348 "R%d partial copy of pointer\n",
9349 insn->src_reg);
9350 return -EACCES;
9351 } else if (src_reg->type == SCALAR_VALUE) {
9352 *dst_reg = *src_reg;
9353 /* Make sure ID is cleared otherwise
9354 * dst_reg min/max could be incorrectly
9355 * propagated into src_reg by find_equal_scalars()
9356 */
9357 dst_reg->id = 0;
9358 dst_reg->live |= REG_LIVE_WRITTEN;
9359 dst_reg->subreg_def = env->insn_idx + 1;
9360 } else {
9361 mark_reg_unknown(env, regs,
9362 insn->dst_reg);
9363 }
9364 zext_32_to_64(dst_reg);
9365 reg_bounds_sync(dst_reg);
9366 }
9367 } else {
9368 /* case: R = imm
9369 * remember the value we stored into this reg
9370 */
9371 /* clear any state __mark_reg_known doesn't set */
9372 mark_reg_unknown(env, regs, insn->dst_reg);
9373 regs[insn->dst_reg].type = SCALAR_VALUE;
9374 if (BPF_CLASS(insn->code) == BPF_ALU64) {
9375 __mark_reg_known(regs + insn->dst_reg,
9376 insn->imm);
9377 } else {
9378 __mark_reg_known(regs + insn->dst_reg,
9379 (u32)insn->imm);
9380 }
9381 }
9382
9383 } else if (opcode > BPF_END) {
9384 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
9385 return -EINVAL;
9386
9387 } else { /* all other ALU ops: and, sub, xor, add, ... */
9388
9389 if (BPF_SRC(insn->code) == BPF_X) {
9390 if (insn->imm != 0 || insn->off != 0) {
9391 verbose(env, "BPF_ALU uses reserved fields\n");
9392 return -EINVAL;
9393 }
9394 /* check src1 operand */
9395 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9396 if (err)
9397 return err;
9398 } else {
9399 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9400 verbose(env, "BPF_ALU uses reserved fields\n");
9401 return -EINVAL;
9402 }
9403 }
9404
9405 /* check src2 operand */
9406 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9407 if (err)
9408 return err;
9409
9410 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
9411 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
9412 verbose(env, "div by zero\n");
9413 return -EINVAL;
9414 }
9415
9416 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
9417 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
9418 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
9419
9420 if (insn->imm < 0 || insn->imm >= size) {
9421 verbose(env, "invalid shift %d\n", insn->imm);
9422 return -EINVAL;
9423 }
9424 }
9425
9426 /* check dest operand */
9427 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9428 if (err)
9429 return err;
9430
9431 return adjust_reg_min_max_vals(env, insn);
9432 }
9433
9434 return 0;
9435 }
9436
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)9437 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
9438 struct bpf_reg_state *dst_reg,
9439 enum bpf_reg_type type,
9440 bool range_right_open)
9441 {
9442 struct bpf_func_state *state;
9443 struct bpf_reg_state *reg;
9444 int new_range;
9445
9446 if (dst_reg->off < 0 ||
9447 (dst_reg->off == 0 && range_right_open))
9448 /* This doesn't give us any range */
9449 return;
9450
9451 if (dst_reg->umax_value > MAX_PACKET_OFF ||
9452 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
9453 /* Risk of overflow. For instance, ptr + (1<<63) may be less
9454 * than pkt_end, but that's because it's also less than pkt.
9455 */
9456 return;
9457
9458 new_range = dst_reg->off;
9459 if (range_right_open)
9460 new_range++;
9461
9462 /* Examples for register markings:
9463 *
9464 * pkt_data in dst register:
9465 *
9466 * r2 = r3;
9467 * r2 += 8;
9468 * if (r2 > pkt_end) goto <handle exception>
9469 * <access okay>
9470 *
9471 * r2 = r3;
9472 * r2 += 8;
9473 * if (r2 < pkt_end) goto <access okay>
9474 * <handle exception>
9475 *
9476 * Where:
9477 * r2 == dst_reg, pkt_end == src_reg
9478 * r2=pkt(id=n,off=8,r=0)
9479 * r3=pkt(id=n,off=0,r=0)
9480 *
9481 * pkt_data in src register:
9482 *
9483 * r2 = r3;
9484 * r2 += 8;
9485 * if (pkt_end >= r2) goto <access okay>
9486 * <handle exception>
9487 *
9488 * r2 = r3;
9489 * r2 += 8;
9490 * if (pkt_end <= r2) goto <handle exception>
9491 * <access okay>
9492 *
9493 * Where:
9494 * pkt_end == dst_reg, r2 == src_reg
9495 * r2=pkt(id=n,off=8,r=0)
9496 * r3=pkt(id=n,off=0,r=0)
9497 *
9498 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
9499 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
9500 * and [r3, r3 + 8-1) respectively is safe to access depending on
9501 * the check.
9502 */
9503
9504 /* If our ids match, then we must have the same max_value. And we
9505 * don't care about the other reg's fixed offset, since if it's too big
9506 * the range won't allow anything.
9507 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
9508 */
9509 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
9510 if (reg->type == type && reg->id == dst_reg->id)
9511 /* keep the maximum range already checked */
9512 reg->range = max(reg->range, new_range);
9513 }));
9514 }
9515
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)9516 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
9517 {
9518 struct tnum subreg = tnum_subreg(reg->var_off);
9519 s32 sval = (s32)val;
9520
9521 switch (opcode) {
9522 case BPF_JEQ:
9523 if (tnum_is_const(subreg))
9524 return !!tnum_equals_const(subreg, val);
9525 break;
9526 case BPF_JNE:
9527 if (tnum_is_const(subreg))
9528 return !tnum_equals_const(subreg, val);
9529 break;
9530 case BPF_JSET:
9531 if ((~subreg.mask & subreg.value) & val)
9532 return 1;
9533 if (!((subreg.mask | subreg.value) & val))
9534 return 0;
9535 break;
9536 case BPF_JGT:
9537 if (reg->u32_min_value > val)
9538 return 1;
9539 else if (reg->u32_max_value <= val)
9540 return 0;
9541 break;
9542 case BPF_JSGT:
9543 if (reg->s32_min_value > sval)
9544 return 1;
9545 else if (reg->s32_max_value <= sval)
9546 return 0;
9547 break;
9548 case BPF_JLT:
9549 if (reg->u32_max_value < val)
9550 return 1;
9551 else if (reg->u32_min_value >= val)
9552 return 0;
9553 break;
9554 case BPF_JSLT:
9555 if (reg->s32_max_value < sval)
9556 return 1;
9557 else if (reg->s32_min_value >= sval)
9558 return 0;
9559 break;
9560 case BPF_JGE:
9561 if (reg->u32_min_value >= val)
9562 return 1;
9563 else if (reg->u32_max_value < val)
9564 return 0;
9565 break;
9566 case BPF_JSGE:
9567 if (reg->s32_min_value >= sval)
9568 return 1;
9569 else if (reg->s32_max_value < sval)
9570 return 0;
9571 break;
9572 case BPF_JLE:
9573 if (reg->u32_max_value <= val)
9574 return 1;
9575 else if (reg->u32_min_value > val)
9576 return 0;
9577 break;
9578 case BPF_JSLE:
9579 if (reg->s32_max_value <= sval)
9580 return 1;
9581 else if (reg->s32_min_value > sval)
9582 return 0;
9583 break;
9584 }
9585
9586 return -1;
9587 }
9588
9589
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)9590 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
9591 {
9592 s64 sval = (s64)val;
9593
9594 switch (opcode) {
9595 case BPF_JEQ:
9596 if (tnum_is_const(reg->var_off))
9597 return !!tnum_equals_const(reg->var_off, val);
9598 break;
9599 case BPF_JNE:
9600 if (tnum_is_const(reg->var_off))
9601 return !tnum_equals_const(reg->var_off, val);
9602 break;
9603 case BPF_JSET:
9604 if ((~reg->var_off.mask & reg->var_off.value) & val)
9605 return 1;
9606 if (!((reg->var_off.mask | reg->var_off.value) & val))
9607 return 0;
9608 break;
9609 case BPF_JGT:
9610 if (reg->umin_value > val)
9611 return 1;
9612 else if (reg->umax_value <= val)
9613 return 0;
9614 break;
9615 case BPF_JSGT:
9616 if (reg->smin_value > sval)
9617 return 1;
9618 else if (reg->smax_value <= sval)
9619 return 0;
9620 break;
9621 case BPF_JLT:
9622 if (reg->umax_value < val)
9623 return 1;
9624 else if (reg->umin_value >= val)
9625 return 0;
9626 break;
9627 case BPF_JSLT:
9628 if (reg->smax_value < sval)
9629 return 1;
9630 else if (reg->smin_value >= sval)
9631 return 0;
9632 break;
9633 case BPF_JGE:
9634 if (reg->umin_value >= val)
9635 return 1;
9636 else if (reg->umax_value < val)
9637 return 0;
9638 break;
9639 case BPF_JSGE:
9640 if (reg->smin_value >= sval)
9641 return 1;
9642 else if (reg->smax_value < sval)
9643 return 0;
9644 break;
9645 case BPF_JLE:
9646 if (reg->umax_value <= val)
9647 return 1;
9648 else if (reg->umin_value > val)
9649 return 0;
9650 break;
9651 case BPF_JSLE:
9652 if (reg->smax_value <= sval)
9653 return 1;
9654 else if (reg->smin_value > sval)
9655 return 0;
9656 break;
9657 }
9658
9659 return -1;
9660 }
9661
9662 /* compute branch direction of the expression "if (reg opcode val) goto target;"
9663 * and return:
9664 * 1 - branch will be taken and "goto target" will be executed
9665 * 0 - branch will not be taken and fall-through to next insn
9666 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
9667 * range [0,10]
9668 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)9669 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
9670 bool is_jmp32)
9671 {
9672 if (__is_pointer_value(false, reg)) {
9673 if (!reg_type_not_null(reg->type))
9674 return -1;
9675
9676 /* If pointer is valid tests against zero will fail so we can
9677 * use this to direct branch taken.
9678 */
9679 if (val != 0)
9680 return -1;
9681
9682 switch (opcode) {
9683 case BPF_JEQ:
9684 return 0;
9685 case BPF_JNE:
9686 return 1;
9687 default:
9688 return -1;
9689 }
9690 }
9691
9692 if (is_jmp32)
9693 return is_branch32_taken(reg, val, opcode);
9694 return is_branch64_taken(reg, val, opcode);
9695 }
9696
flip_opcode(u32 opcode)9697 static int flip_opcode(u32 opcode)
9698 {
9699 /* How can we transform "a <op> b" into "b <op> a"? */
9700 static const u8 opcode_flip[16] = {
9701 /* these stay the same */
9702 [BPF_JEQ >> 4] = BPF_JEQ,
9703 [BPF_JNE >> 4] = BPF_JNE,
9704 [BPF_JSET >> 4] = BPF_JSET,
9705 /* these swap "lesser" and "greater" (L and G in the opcodes) */
9706 [BPF_JGE >> 4] = BPF_JLE,
9707 [BPF_JGT >> 4] = BPF_JLT,
9708 [BPF_JLE >> 4] = BPF_JGE,
9709 [BPF_JLT >> 4] = BPF_JGT,
9710 [BPF_JSGE >> 4] = BPF_JSLE,
9711 [BPF_JSGT >> 4] = BPF_JSLT,
9712 [BPF_JSLE >> 4] = BPF_JSGE,
9713 [BPF_JSLT >> 4] = BPF_JSGT
9714 };
9715 return opcode_flip[opcode >> 4];
9716 }
9717
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)9718 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
9719 struct bpf_reg_state *src_reg,
9720 u8 opcode)
9721 {
9722 struct bpf_reg_state *pkt;
9723
9724 if (src_reg->type == PTR_TO_PACKET_END) {
9725 pkt = dst_reg;
9726 } else if (dst_reg->type == PTR_TO_PACKET_END) {
9727 pkt = src_reg;
9728 opcode = flip_opcode(opcode);
9729 } else {
9730 return -1;
9731 }
9732
9733 if (pkt->range >= 0)
9734 return -1;
9735
9736 switch (opcode) {
9737 case BPF_JLE:
9738 /* pkt <= pkt_end */
9739 fallthrough;
9740 case BPF_JGT:
9741 /* pkt > pkt_end */
9742 if (pkt->range == BEYOND_PKT_END)
9743 /* pkt has at last one extra byte beyond pkt_end */
9744 return opcode == BPF_JGT;
9745 break;
9746 case BPF_JLT:
9747 /* pkt < pkt_end */
9748 fallthrough;
9749 case BPF_JGE:
9750 /* pkt >= pkt_end */
9751 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
9752 return opcode == BPF_JGE;
9753 break;
9754 }
9755 return -1;
9756 }
9757
9758 /* Adjusts the register min/max values in the case that the dst_reg is the
9759 * variable register that we are working on, and src_reg is a constant or we're
9760 * simply doing a BPF_K check.
9761 * In JEQ/JNE cases we also adjust the var_off values.
9762 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)9763 static void reg_set_min_max(struct bpf_reg_state *true_reg,
9764 struct bpf_reg_state *false_reg,
9765 u64 val, u32 val32,
9766 u8 opcode, bool is_jmp32)
9767 {
9768 struct tnum false_32off = tnum_subreg(false_reg->var_off);
9769 struct tnum false_64off = false_reg->var_off;
9770 struct tnum true_32off = tnum_subreg(true_reg->var_off);
9771 struct tnum true_64off = true_reg->var_off;
9772 s64 sval = (s64)val;
9773 s32 sval32 = (s32)val32;
9774
9775 /* If the dst_reg is a pointer, we can't learn anything about its
9776 * variable offset from the compare (unless src_reg were a pointer into
9777 * the same object, but we don't bother with that.
9778 * Since false_reg and true_reg have the same type by construction, we
9779 * only need to check one of them for pointerness.
9780 */
9781 if (__is_pointer_value(false, false_reg))
9782 return;
9783
9784 switch (opcode) {
9785 /* JEQ/JNE comparison doesn't change the register equivalence.
9786 *
9787 * r1 = r2;
9788 * if (r1 == 42) goto label;
9789 * ...
9790 * label: // here both r1 and r2 are known to be 42.
9791 *
9792 * Hence when marking register as known preserve it's ID.
9793 */
9794 case BPF_JEQ:
9795 if (is_jmp32) {
9796 __mark_reg32_known(true_reg, val32);
9797 true_32off = tnum_subreg(true_reg->var_off);
9798 } else {
9799 ___mark_reg_known(true_reg, val);
9800 true_64off = true_reg->var_off;
9801 }
9802 break;
9803 case BPF_JNE:
9804 if (is_jmp32) {
9805 __mark_reg32_known(false_reg, val32);
9806 false_32off = tnum_subreg(false_reg->var_off);
9807 } else {
9808 ___mark_reg_known(false_reg, val);
9809 false_64off = false_reg->var_off;
9810 }
9811 break;
9812 case BPF_JSET:
9813 if (is_jmp32) {
9814 false_32off = tnum_and(false_32off, tnum_const(~val32));
9815 if (is_power_of_2(val32))
9816 true_32off = tnum_or(true_32off,
9817 tnum_const(val32));
9818 } else {
9819 false_64off = tnum_and(false_64off, tnum_const(~val));
9820 if (is_power_of_2(val))
9821 true_64off = tnum_or(true_64off,
9822 tnum_const(val));
9823 }
9824 break;
9825 case BPF_JGE:
9826 case BPF_JGT:
9827 {
9828 if (is_jmp32) {
9829 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
9830 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
9831
9832 false_reg->u32_max_value = min(false_reg->u32_max_value,
9833 false_umax);
9834 true_reg->u32_min_value = max(true_reg->u32_min_value,
9835 true_umin);
9836 } else {
9837 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
9838 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
9839
9840 false_reg->umax_value = min(false_reg->umax_value, false_umax);
9841 true_reg->umin_value = max(true_reg->umin_value, true_umin);
9842 }
9843 break;
9844 }
9845 case BPF_JSGE:
9846 case BPF_JSGT:
9847 {
9848 if (is_jmp32) {
9849 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
9850 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
9851
9852 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
9853 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
9854 } else {
9855 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
9856 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
9857
9858 false_reg->smax_value = min(false_reg->smax_value, false_smax);
9859 true_reg->smin_value = max(true_reg->smin_value, true_smin);
9860 }
9861 break;
9862 }
9863 case BPF_JLE:
9864 case BPF_JLT:
9865 {
9866 if (is_jmp32) {
9867 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
9868 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
9869
9870 false_reg->u32_min_value = max(false_reg->u32_min_value,
9871 false_umin);
9872 true_reg->u32_max_value = min(true_reg->u32_max_value,
9873 true_umax);
9874 } else {
9875 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
9876 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
9877
9878 false_reg->umin_value = max(false_reg->umin_value, false_umin);
9879 true_reg->umax_value = min(true_reg->umax_value, true_umax);
9880 }
9881 break;
9882 }
9883 case BPF_JSLE:
9884 case BPF_JSLT:
9885 {
9886 if (is_jmp32) {
9887 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
9888 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
9889
9890 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
9891 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
9892 } else {
9893 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
9894 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
9895
9896 false_reg->smin_value = max(false_reg->smin_value, false_smin);
9897 true_reg->smax_value = min(true_reg->smax_value, true_smax);
9898 }
9899 break;
9900 }
9901 default:
9902 return;
9903 }
9904
9905 if (is_jmp32) {
9906 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
9907 tnum_subreg(false_32off));
9908 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
9909 tnum_subreg(true_32off));
9910 __reg_combine_32_into_64(false_reg);
9911 __reg_combine_32_into_64(true_reg);
9912 } else {
9913 false_reg->var_off = false_64off;
9914 true_reg->var_off = true_64off;
9915 __reg_combine_64_into_32(false_reg);
9916 __reg_combine_64_into_32(true_reg);
9917 }
9918 }
9919
9920 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
9921 * the variable reg.
9922 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)9923 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
9924 struct bpf_reg_state *false_reg,
9925 u64 val, u32 val32,
9926 u8 opcode, bool is_jmp32)
9927 {
9928 opcode = flip_opcode(opcode);
9929 /* This uses zero as "not present in table"; luckily the zero opcode,
9930 * BPF_JA, can't get here.
9931 */
9932 if (opcode)
9933 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
9934 }
9935
9936 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)9937 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
9938 struct bpf_reg_state *dst_reg)
9939 {
9940 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
9941 dst_reg->umin_value);
9942 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
9943 dst_reg->umax_value);
9944 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
9945 dst_reg->smin_value);
9946 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
9947 dst_reg->smax_value);
9948 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
9949 dst_reg->var_off);
9950 reg_bounds_sync(src_reg);
9951 reg_bounds_sync(dst_reg);
9952 }
9953
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)9954 static void reg_combine_min_max(struct bpf_reg_state *true_src,
9955 struct bpf_reg_state *true_dst,
9956 struct bpf_reg_state *false_src,
9957 struct bpf_reg_state *false_dst,
9958 u8 opcode)
9959 {
9960 switch (opcode) {
9961 case BPF_JEQ:
9962 __reg_combine_min_max(true_src, true_dst);
9963 break;
9964 case BPF_JNE:
9965 __reg_combine_min_max(false_src, false_dst);
9966 break;
9967 }
9968 }
9969
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)9970 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9971 struct bpf_reg_state *reg, u32 id,
9972 bool is_null)
9973 {
9974 if (type_may_be_null(reg->type) && reg->id == id &&
9975 !WARN_ON_ONCE(!reg->id)) {
9976 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9977 !tnum_equals_const(reg->var_off, 0) ||
9978 reg->off)) {
9979 /* Old offset (both fixed and variable parts) should
9980 * have been known-zero, because we don't allow pointer
9981 * arithmetic on pointers that might be NULL. If we
9982 * see this happening, don't convert the register.
9983 */
9984 return;
9985 }
9986 if (is_null) {
9987 reg->type = SCALAR_VALUE;
9988 /* We don't need id and ref_obj_id from this point
9989 * onwards anymore, thus we should better reset it,
9990 * so that state pruning has chances to take effect.
9991 */
9992 reg->id = 0;
9993 reg->ref_obj_id = 0;
9994
9995 return;
9996 }
9997
9998 mark_ptr_not_null_reg(reg);
9999
10000 if (!reg_may_point_to_spin_lock(reg)) {
10001 /* For not-NULL ptr, reg->ref_obj_id will be reset
10002 * in release_reference().
10003 *
10004 * reg->id is still used by spin_lock ptr. Other
10005 * than spin_lock ptr type, reg->id can be reset.
10006 */
10007 reg->id = 0;
10008 }
10009 }
10010 }
10011
10012 /* The logic is similar to find_good_pkt_pointers(), both could eventually
10013 * be folded together at some point.
10014 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)10015 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
10016 bool is_null)
10017 {
10018 struct bpf_func_state *state = vstate->frame[vstate->curframe];
10019 struct bpf_reg_state *regs = state->regs, *reg;
10020 u32 ref_obj_id = regs[regno].ref_obj_id;
10021 u32 id = regs[regno].id;
10022
10023 if (ref_obj_id && ref_obj_id == id && is_null)
10024 /* regs[regno] is in the " == NULL" branch.
10025 * No one could have freed the reference state before
10026 * doing the NULL check.
10027 */
10028 WARN_ON_ONCE(release_reference_state(state, id));
10029
10030 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10031 mark_ptr_or_null_reg(state, reg, id, is_null);
10032 }));
10033 }
10034
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)10035 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
10036 struct bpf_reg_state *dst_reg,
10037 struct bpf_reg_state *src_reg,
10038 struct bpf_verifier_state *this_branch,
10039 struct bpf_verifier_state *other_branch)
10040 {
10041 if (BPF_SRC(insn->code) != BPF_X)
10042 return false;
10043
10044 /* Pointers are always 64-bit. */
10045 if (BPF_CLASS(insn->code) == BPF_JMP32)
10046 return false;
10047
10048 switch (BPF_OP(insn->code)) {
10049 case BPF_JGT:
10050 if ((dst_reg->type == PTR_TO_PACKET &&
10051 src_reg->type == PTR_TO_PACKET_END) ||
10052 (dst_reg->type == PTR_TO_PACKET_META &&
10053 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10054 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
10055 find_good_pkt_pointers(this_branch, dst_reg,
10056 dst_reg->type, false);
10057 mark_pkt_end(other_branch, insn->dst_reg, true);
10058 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10059 src_reg->type == PTR_TO_PACKET) ||
10060 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10061 src_reg->type == PTR_TO_PACKET_META)) {
10062 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
10063 find_good_pkt_pointers(other_branch, src_reg,
10064 src_reg->type, true);
10065 mark_pkt_end(this_branch, insn->src_reg, false);
10066 } else {
10067 return false;
10068 }
10069 break;
10070 case BPF_JLT:
10071 if ((dst_reg->type == PTR_TO_PACKET &&
10072 src_reg->type == PTR_TO_PACKET_END) ||
10073 (dst_reg->type == PTR_TO_PACKET_META &&
10074 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10075 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
10076 find_good_pkt_pointers(other_branch, dst_reg,
10077 dst_reg->type, true);
10078 mark_pkt_end(this_branch, insn->dst_reg, false);
10079 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10080 src_reg->type == PTR_TO_PACKET) ||
10081 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10082 src_reg->type == PTR_TO_PACKET_META)) {
10083 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
10084 find_good_pkt_pointers(this_branch, src_reg,
10085 src_reg->type, false);
10086 mark_pkt_end(other_branch, insn->src_reg, true);
10087 } else {
10088 return false;
10089 }
10090 break;
10091 case BPF_JGE:
10092 if ((dst_reg->type == PTR_TO_PACKET &&
10093 src_reg->type == PTR_TO_PACKET_END) ||
10094 (dst_reg->type == PTR_TO_PACKET_META &&
10095 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10096 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
10097 find_good_pkt_pointers(this_branch, dst_reg,
10098 dst_reg->type, true);
10099 mark_pkt_end(other_branch, insn->dst_reg, false);
10100 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10101 src_reg->type == PTR_TO_PACKET) ||
10102 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10103 src_reg->type == PTR_TO_PACKET_META)) {
10104 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
10105 find_good_pkt_pointers(other_branch, src_reg,
10106 src_reg->type, false);
10107 mark_pkt_end(this_branch, insn->src_reg, true);
10108 } else {
10109 return false;
10110 }
10111 break;
10112 case BPF_JLE:
10113 if ((dst_reg->type == PTR_TO_PACKET &&
10114 src_reg->type == PTR_TO_PACKET_END) ||
10115 (dst_reg->type == PTR_TO_PACKET_META &&
10116 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10117 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
10118 find_good_pkt_pointers(other_branch, dst_reg,
10119 dst_reg->type, false);
10120 mark_pkt_end(this_branch, insn->dst_reg, true);
10121 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10122 src_reg->type == PTR_TO_PACKET) ||
10123 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10124 src_reg->type == PTR_TO_PACKET_META)) {
10125 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
10126 find_good_pkt_pointers(this_branch, src_reg,
10127 src_reg->type, true);
10128 mark_pkt_end(other_branch, insn->src_reg, false);
10129 } else {
10130 return false;
10131 }
10132 break;
10133 default:
10134 return false;
10135 }
10136
10137 return true;
10138 }
10139
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)10140 static void find_equal_scalars(struct bpf_verifier_state *vstate,
10141 struct bpf_reg_state *known_reg)
10142 {
10143 struct bpf_func_state *state;
10144 struct bpf_reg_state *reg;
10145
10146 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10147 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
10148 *reg = *known_reg;
10149 }));
10150 }
10151
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)10152 static int check_cond_jmp_op(struct bpf_verifier_env *env,
10153 struct bpf_insn *insn, int *insn_idx)
10154 {
10155 struct bpf_verifier_state *this_branch = env->cur_state;
10156 struct bpf_verifier_state *other_branch;
10157 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
10158 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
10159 u8 opcode = BPF_OP(insn->code);
10160 bool is_jmp32;
10161 int pred = -1;
10162 int err;
10163
10164 /* Only conditional jumps are expected to reach here. */
10165 if (opcode == BPF_JA || opcode > BPF_JSLE) {
10166 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
10167 return -EINVAL;
10168 }
10169
10170 if (BPF_SRC(insn->code) == BPF_X) {
10171 if (insn->imm != 0) {
10172 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10173 return -EINVAL;
10174 }
10175
10176 /* check src1 operand */
10177 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10178 if (err)
10179 return err;
10180
10181 if (is_pointer_value(env, insn->src_reg)) {
10182 verbose(env, "R%d pointer comparison prohibited\n",
10183 insn->src_reg);
10184 return -EACCES;
10185 }
10186 src_reg = ®s[insn->src_reg];
10187 } else {
10188 if (insn->src_reg != BPF_REG_0) {
10189 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10190 return -EINVAL;
10191 }
10192 }
10193
10194 /* check src2 operand */
10195 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10196 if (err)
10197 return err;
10198
10199 dst_reg = ®s[insn->dst_reg];
10200 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
10201
10202 if (BPF_SRC(insn->code) == BPF_K) {
10203 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
10204 } else if (src_reg->type == SCALAR_VALUE &&
10205 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
10206 pred = is_branch_taken(dst_reg,
10207 tnum_subreg(src_reg->var_off).value,
10208 opcode,
10209 is_jmp32);
10210 } else if (src_reg->type == SCALAR_VALUE &&
10211 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
10212 pred = is_branch_taken(dst_reg,
10213 src_reg->var_off.value,
10214 opcode,
10215 is_jmp32);
10216 } else if (reg_is_pkt_pointer_any(dst_reg) &&
10217 reg_is_pkt_pointer_any(src_reg) &&
10218 !is_jmp32) {
10219 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
10220 }
10221
10222 if (pred >= 0) {
10223 /* If we get here with a dst_reg pointer type it is because
10224 * above is_branch_taken() special cased the 0 comparison.
10225 */
10226 if (!__is_pointer_value(false, dst_reg))
10227 err = mark_chain_precision(env, insn->dst_reg);
10228 if (BPF_SRC(insn->code) == BPF_X && !err &&
10229 !__is_pointer_value(false, src_reg))
10230 err = mark_chain_precision(env, insn->src_reg);
10231 if (err)
10232 return err;
10233 }
10234
10235 if (pred == 1) {
10236 /* Only follow the goto, ignore fall-through. If needed, push
10237 * the fall-through branch for simulation under speculative
10238 * execution.
10239 */
10240 if (!env->bypass_spec_v1 &&
10241 !sanitize_speculative_path(env, insn, *insn_idx + 1,
10242 *insn_idx))
10243 return -EFAULT;
10244 *insn_idx += insn->off;
10245 return 0;
10246 } else if (pred == 0) {
10247 /* Only follow the fall-through branch, since that's where the
10248 * program will go. If needed, push the goto branch for
10249 * simulation under speculative execution.
10250 */
10251 if (!env->bypass_spec_v1 &&
10252 !sanitize_speculative_path(env, insn,
10253 *insn_idx + insn->off + 1,
10254 *insn_idx))
10255 return -EFAULT;
10256 return 0;
10257 }
10258
10259 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
10260 false);
10261 if (!other_branch)
10262 return -EFAULT;
10263 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
10264
10265 /* detect if we are comparing against a constant value so we can adjust
10266 * our min/max values for our dst register.
10267 * this is only legit if both are scalars (or pointers to the same
10268 * object, I suppose, but we don't support that right now), because
10269 * otherwise the different base pointers mean the offsets aren't
10270 * comparable.
10271 */
10272 if (BPF_SRC(insn->code) == BPF_X) {
10273 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
10274
10275 if (dst_reg->type == SCALAR_VALUE &&
10276 src_reg->type == SCALAR_VALUE) {
10277 if (tnum_is_const(src_reg->var_off) ||
10278 (is_jmp32 &&
10279 tnum_is_const(tnum_subreg(src_reg->var_off))))
10280 reg_set_min_max(&other_branch_regs[insn->dst_reg],
10281 dst_reg,
10282 src_reg->var_off.value,
10283 tnum_subreg(src_reg->var_off).value,
10284 opcode, is_jmp32);
10285 else if (tnum_is_const(dst_reg->var_off) ||
10286 (is_jmp32 &&
10287 tnum_is_const(tnum_subreg(dst_reg->var_off))))
10288 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
10289 src_reg,
10290 dst_reg->var_off.value,
10291 tnum_subreg(dst_reg->var_off).value,
10292 opcode, is_jmp32);
10293 else if (!is_jmp32 &&
10294 (opcode == BPF_JEQ || opcode == BPF_JNE))
10295 /* Comparing for equality, we can combine knowledge */
10296 reg_combine_min_max(&other_branch_regs[insn->src_reg],
10297 &other_branch_regs[insn->dst_reg],
10298 src_reg, dst_reg, opcode);
10299 if (src_reg->id &&
10300 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
10301 find_equal_scalars(this_branch, src_reg);
10302 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
10303 }
10304
10305 }
10306 } else if (dst_reg->type == SCALAR_VALUE) {
10307 reg_set_min_max(&other_branch_regs[insn->dst_reg],
10308 dst_reg, insn->imm, (u32)insn->imm,
10309 opcode, is_jmp32);
10310 }
10311
10312 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
10313 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
10314 find_equal_scalars(this_branch, dst_reg);
10315 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
10316 }
10317
10318 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
10319 * NOTE: these optimizations below are related with pointer comparison
10320 * which will never be JMP32.
10321 */
10322 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
10323 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
10324 type_may_be_null(dst_reg->type)) {
10325 /* Mark all identical registers in each branch as either
10326 * safe or unknown depending R == 0 or R != 0 conditional.
10327 */
10328 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
10329 opcode == BPF_JNE);
10330 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
10331 opcode == BPF_JEQ);
10332 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
10333 this_branch, other_branch) &&
10334 is_pointer_value(env, insn->dst_reg)) {
10335 verbose(env, "R%d pointer comparison prohibited\n",
10336 insn->dst_reg);
10337 return -EACCES;
10338 }
10339 if (env->log.level & BPF_LOG_LEVEL)
10340 print_insn_state(env, this_branch->frame[this_branch->curframe]);
10341 return 0;
10342 }
10343
10344 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)10345 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
10346 {
10347 struct bpf_insn_aux_data *aux = cur_aux(env);
10348 struct bpf_reg_state *regs = cur_regs(env);
10349 struct bpf_reg_state *dst_reg;
10350 struct bpf_map *map;
10351 int err;
10352
10353 if (BPF_SIZE(insn->code) != BPF_DW) {
10354 verbose(env, "invalid BPF_LD_IMM insn\n");
10355 return -EINVAL;
10356 }
10357 if (insn->off != 0) {
10358 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
10359 return -EINVAL;
10360 }
10361
10362 err = check_reg_arg(env, insn->dst_reg, DST_OP);
10363 if (err)
10364 return err;
10365
10366 dst_reg = ®s[insn->dst_reg];
10367 if (insn->src_reg == 0) {
10368 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
10369
10370 dst_reg->type = SCALAR_VALUE;
10371 __mark_reg_known(®s[insn->dst_reg], imm);
10372 return 0;
10373 }
10374
10375 /* All special src_reg cases are listed below. From this point onwards
10376 * we either succeed and assign a corresponding dst_reg->type after
10377 * zeroing the offset, or fail and reject the program.
10378 */
10379 mark_reg_known_zero(env, regs, insn->dst_reg);
10380
10381 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
10382 dst_reg->type = aux->btf_var.reg_type;
10383 switch (base_type(dst_reg->type)) {
10384 case PTR_TO_MEM:
10385 dst_reg->mem_size = aux->btf_var.mem_size;
10386 break;
10387 case PTR_TO_BTF_ID:
10388 dst_reg->btf = aux->btf_var.btf;
10389 dst_reg->btf_id = aux->btf_var.btf_id;
10390 break;
10391 default:
10392 verbose(env, "bpf verifier is misconfigured\n");
10393 return -EFAULT;
10394 }
10395 return 0;
10396 }
10397
10398 if (insn->src_reg == BPF_PSEUDO_FUNC) {
10399 struct bpf_prog_aux *aux = env->prog->aux;
10400 u32 subprogno = find_subprog(env,
10401 env->insn_idx + insn->imm + 1);
10402
10403 if (!aux->func_info) {
10404 verbose(env, "missing btf func_info\n");
10405 return -EINVAL;
10406 }
10407 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
10408 verbose(env, "callback function not static\n");
10409 return -EINVAL;
10410 }
10411
10412 dst_reg->type = PTR_TO_FUNC;
10413 dst_reg->subprogno = subprogno;
10414 return 0;
10415 }
10416
10417 map = env->used_maps[aux->map_index];
10418 dst_reg->map_ptr = map;
10419
10420 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
10421 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
10422 dst_reg->type = PTR_TO_MAP_VALUE;
10423 dst_reg->off = aux->map_off;
10424 if (map_value_has_spin_lock(map))
10425 dst_reg->id = ++env->id_gen;
10426 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
10427 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
10428 dst_reg->type = CONST_PTR_TO_MAP;
10429 } else {
10430 verbose(env, "bpf verifier is misconfigured\n");
10431 return -EINVAL;
10432 }
10433
10434 return 0;
10435 }
10436
may_access_skb(enum bpf_prog_type type)10437 static bool may_access_skb(enum bpf_prog_type type)
10438 {
10439 switch (type) {
10440 case BPF_PROG_TYPE_SOCKET_FILTER:
10441 case BPF_PROG_TYPE_SCHED_CLS:
10442 case BPF_PROG_TYPE_SCHED_ACT:
10443 return true;
10444 default:
10445 return false;
10446 }
10447 }
10448
10449 /* verify safety of LD_ABS|LD_IND instructions:
10450 * - they can only appear in the programs where ctx == skb
10451 * - since they are wrappers of function calls, they scratch R1-R5 registers,
10452 * preserve R6-R9, and store return value into R0
10453 *
10454 * Implicit input:
10455 * ctx == skb == R6 == CTX
10456 *
10457 * Explicit input:
10458 * SRC == any register
10459 * IMM == 32-bit immediate
10460 *
10461 * Output:
10462 * R0 - 8/16/32-bit skb data converted to cpu endianness
10463 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)10464 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
10465 {
10466 struct bpf_reg_state *regs = cur_regs(env);
10467 static const int ctx_reg = BPF_REG_6;
10468 u8 mode = BPF_MODE(insn->code);
10469 int i, err;
10470
10471 if (!may_access_skb(resolve_prog_type(env->prog))) {
10472 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
10473 return -EINVAL;
10474 }
10475
10476 if (!env->ops->gen_ld_abs) {
10477 verbose(env, "bpf verifier is misconfigured\n");
10478 return -EINVAL;
10479 }
10480
10481 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
10482 BPF_SIZE(insn->code) == BPF_DW ||
10483 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
10484 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
10485 return -EINVAL;
10486 }
10487
10488 /* check whether implicit source operand (register R6) is readable */
10489 err = check_reg_arg(env, ctx_reg, SRC_OP);
10490 if (err)
10491 return err;
10492
10493 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
10494 * gen_ld_abs() may terminate the program at runtime, leading to
10495 * reference leak.
10496 */
10497 err = check_reference_leak(env);
10498 if (err) {
10499 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
10500 return err;
10501 }
10502
10503 if (env->cur_state->active_spin_lock) {
10504 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
10505 return -EINVAL;
10506 }
10507
10508 if (regs[ctx_reg].type != PTR_TO_CTX) {
10509 verbose(env,
10510 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
10511 return -EINVAL;
10512 }
10513
10514 if (mode == BPF_IND) {
10515 /* check explicit source operand */
10516 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10517 if (err)
10518 return err;
10519 }
10520
10521 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
10522 if (err < 0)
10523 return err;
10524
10525 /* reset caller saved regs to unreadable */
10526 for (i = 0; i < CALLER_SAVED_REGS; i++) {
10527 mark_reg_not_init(env, regs, caller_saved[i]);
10528 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10529 }
10530
10531 /* mark destination R0 register as readable, since it contains
10532 * the value fetched from the packet.
10533 * Already marked as written above.
10534 */
10535 mark_reg_unknown(env, regs, BPF_REG_0);
10536 /* ld_abs load up to 32-bit skb data. */
10537 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
10538 return 0;
10539 }
10540
check_return_code(struct bpf_verifier_env * env)10541 static int check_return_code(struct bpf_verifier_env *env)
10542 {
10543 struct tnum enforce_attach_type_range = tnum_unknown;
10544 const struct bpf_prog *prog = env->prog;
10545 struct bpf_reg_state *reg;
10546 struct tnum range = tnum_range(0, 1);
10547 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10548 int err;
10549 struct bpf_func_state *frame = env->cur_state->frame[0];
10550 const bool is_subprog = frame->subprogno;
10551
10552 /* LSM and struct_ops func-ptr's return type could be "void" */
10553 if (!is_subprog) {
10554 switch (prog_type) {
10555 case BPF_PROG_TYPE_LSM:
10556 if (prog->expected_attach_type == BPF_LSM_CGROUP)
10557 /* See below, can be 0 or 0-1 depending on hook. */
10558 break;
10559 fallthrough;
10560 case BPF_PROG_TYPE_STRUCT_OPS:
10561 if (!prog->aux->attach_func_proto->type)
10562 return 0;
10563 break;
10564 default:
10565 break;
10566 }
10567 }
10568
10569 /* eBPF calling convention is such that R0 is used
10570 * to return the value from eBPF program.
10571 * Make sure that it's readable at this time
10572 * of bpf_exit, which means that program wrote
10573 * something into it earlier
10574 */
10575 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
10576 if (err)
10577 return err;
10578
10579 if (is_pointer_value(env, BPF_REG_0)) {
10580 verbose(env, "R0 leaks addr as return value\n");
10581 return -EACCES;
10582 }
10583
10584 reg = cur_regs(env) + BPF_REG_0;
10585
10586 if (frame->in_async_callback_fn) {
10587 /* enforce return zero from async callbacks like timer */
10588 if (reg->type != SCALAR_VALUE) {
10589 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
10590 reg_type_str(env, reg->type));
10591 return -EINVAL;
10592 }
10593
10594 if (!tnum_in(tnum_const(0), reg->var_off)) {
10595 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
10596 return -EINVAL;
10597 }
10598 return 0;
10599 }
10600
10601 if (is_subprog) {
10602 if (reg->type != SCALAR_VALUE) {
10603 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
10604 reg_type_str(env, reg->type));
10605 return -EINVAL;
10606 }
10607 return 0;
10608 }
10609
10610 switch (prog_type) {
10611 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
10612 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
10613 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
10614 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
10615 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
10616 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
10617 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
10618 range = tnum_range(1, 1);
10619 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
10620 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
10621 range = tnum_range(0, 3);
10622 break;
10623 case BPF_PROG_TYPE_CGROUP_SKB:
10624 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
10625 range = tnum_range(0, 3);
10626 enforce_attach_type_range = tnum_range(2, 3);
10627 }
10628 break;
10629 case BPF_PROG_TYPE_CGROUP_SOCK:
10630 case BPF_PROG_TYPE_SOCK_OPS:
10631 case BPF_PROG_TYPE_CGROUP_DEVICE:
10632 case BPF_PROG_TYPE_CGROUP_SYSCTL:
10633 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
10634 break;
10635 case BPF_PROG_TYPE_RAW_TRACEPOINT:
10636 if (!env->prog->aux->attach_btf_id)
10637 return 0;
10638 range = tnum_const(0);
10639 break;
10640 case BPF_PROG_TYPE_TRACING:
10641 switch (env->prog->expected_attach_type) {
10642 case BPF_TRACE_FENTRY:
10643 case BPF_TRACE_FEXIT:
10644 range = tnum_const(0);
10645 break;
10646 case BPF_TRACE_RAW_TP:
10647 case BPF_MODIFY_RETURN:
10648 return 0;
10649 case BPF_TRACE_ITER:
10650 break;
10651 default:
10652 return -ENOTSUPP;
10653 }
10654 break;
10655 case BPF_PROG_TYPE_SK_LOOKUP:
10656 range = tnum_range(SK_DROP, SK_PASS);
10657 break;
10658
10659 case BPF_PROG_TYPE_LSM:
10660 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
10661 /* Regular BPF_PROG_TYPE_LSM programs can return
10662 * any value.
10663 */
10664 return 0;
10665 }
10666 if (!env->prog->aux->attach_func_proto->type) {
10667 /* Make sure programs that attach to void
10668 * hooks don't try to modify return value.
10669 */
10670 range = tnum_range(1, 1);
10671 }
10672 break;
10673
10674 case BPF_PROG_TYPE_EXT:
10675 /* freplace program can return anything as its return value
10676 * depends on the to-be-replaced kernel func or bpf program.
10677 */
10678 default:
10679 return 0;
10680 }
10681
10682 if (reg->type != SCALAR_VALUE) {
10683 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
10684 reg_type_str(env, reg->type));
10685 return -EINVAL;
10686 }
10687
10688 if (!tnum_in(range, reg->var_off)) {
10689 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
10690 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
10691 prog_type == BPF_PROG_TYPE_LSM &&
10692 !prog->aux->attach_func_proto->type)
10693 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10694 return -EINVAL;
10695 }
10696
10697 if (!tnum_is_unknown(enforce_attach_type_range) &&
10698 tnum_in(enforce_attach_type_range, reg->var_off))
10699 env->prog->enforce_expected_attach_type = 1;
10700 return 0;
10701 }
10702
10703 /* non-recursive DFS pseudo code
10704 * 1 procedure DFS-iterative(G,v):
10705 * 2 label v as discovered
10706 * 3 let S be a stack
10707 * 4 S.push(v)
10708 * 5 while S is not empty
10709 * 6 t <- S.pop()
10710 * 7 if t is what we're looking for:
10711 * 8 return t
10712 * 9 for all edges e in G.adjacentEdges(t) do
10713 * 10 if edge e is already labelled
10714 * 11 continue with the next edge
10715 * 12 w <- G.adjacentVertex(t,e)
10716 * 13 if vertex w is not discovered and not explored
10717 * 14 label e as tree-edge
10718 * 15 label w as discovered
10719 * 16 S.push(w)
10720 * 17 continue at 5
10721 * 18 else if vertex w is discovered
10722 * 19 label e as back-edge
10723 * 20 else
10724 * 21 // vertex w is explored
10725 * 22 label e as forward- or cross-edge
10726 * 23 label t as explored
10727 * 24 S.pop()
10728 *
10729 * convention:
10730 * 0x10 - discovered
10731 * 0x11 - discovered and fall-through edge labelled
10732 * 0x12 - discovered and fall-through and branch edges labelled
10733 * 0x20 - explored
10734 */
10735
10736 enum {
10737 DISCOVERED = 0x10,
10738 EXPLORED = 0x20,
10739 FALLTHROUGH = 1,
10740 BRANCH = 2,
10741 };
10742
state_htab_size(struct bpf_verifier_env * env)10743 static u32 state_htab_size(struct bpf_verifier_env *env)
10744 {
10745 return env->prog->len;
10746 }
10747
explored_state(struct bpf_verifier_env * env,int idx)10748 static struct bpf_verifier_state_list **explored_state(
10749 struct bpf_verifier_env *env,
10750 int idx)
10751 {
10752 struct bpf_verifier_state *cur = env->cur_state;
10753 struct bpf_func_state *state = cur->frame[cur->curframe];
10754
10755 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
10756 }
10757
init_explored_state(struct bpf_verifier_env * env,int idx)10758 static void init_explored_state(struct bpf_verifier_env *env, int idx)
10759 {
10760 env->insn_aux_data[idx].prune_point = true;
10761 }
10762
10763 enum {
10764 DONE_EXPLORING = 0,
10765 KEEP_EXPLORING = 1,
10766 };
10767
10768 /* t, w, e - match pseudo-code above:
10769 * t - index of current instruction
10770 * w - next instruction
10771 * e - edge
10772 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env,bool loop_ok)10773 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
10774 bool loop_ok)
10775 {
10776 int *insn_stack = env->cfg.insn_stack;
10777 int *insn_state = env->cfg.insn_state;
10778
10779 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
10780 return DONE_EXPLORING;
10781
10782 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
10783 return DONE_EXPLORING;
10784
10785 if (w < 0 || w >= env->prog->len) {
10786 verbose_linfo(env, t, "%d: ", t);
10787 verbose(env, "jump out of range from insn %d to %d\n", t, w);
10788 return -EINVAL;
10789 }
10790
10791 if (e == BRANCH)
10792 /* mark branch target for state pruning */
10793 init_explored_state(env, w);
10794
10795 if (insn_state[w] == 0) {
10796 /* tree-edge */
10797 insn_state[t] = DISCOVERED | e;
10798 insn_state[w] = DISCOVERED;
10799 if (env->cfg.cur_stack >= env->prog->len)
10800 return -E2BIG;
10801 insn_stack[env->cfg.cur_stack++] = w;
10802 return KEEP_EXPLORING;
10803 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
10804 if (loop_ok && env->bpf_capable)
10805 return DONE_EXPLORING;
10806 verbose_linfo(env, t, "%d: ", t);
10807 verbose_linfo(env, w, "%d: ", w);
10808 verbose(env, "back-edge from insn %d to %d\n", t, w);
10809 return -EINVAL;
10810 } else if (insn_state[w] == EXPLORED) {
10811 /* forward- or cross-edge */
10812 insn_state[t] = DISCOVERED | e;
10813 } else {
10814 verbose(env, "insn state internal bug\n");
10815 return -EFAULT;
10816 }
10817 return DONE_EXPLORING;
10818 }
10819
visit_func_call_insn(int t,int insn_cnt,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)10820 static int visit_func_call_insn(int t, int insn_cnt,
10821 struct bpf_insn *insns,
10822 struct bpf_verifier_env *env,
10823 bool visit_callee)
10824 {
10825 int ret;
10826
10827 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
10828 if (ret)
10829 return ret;
10830
10831 if (t + 1 < insn_cnt)
10832 init_explored_state(env, t + 1);
10833 if (visit_callee) {
10834 init_explored_state(env, t);
10835 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
10836 /* It's ok to allow recursion from CFG point of
10837 * view. __check_func_call() will do the actual
10838 * check.
10839 */
10840 bpf_pseudo_func(insns + t));
10841 }
10842 return ret;
10843 }
10844
10845 /* Visits the instruction at index t and returns one of the following:
10846 * < 0 - an error occurred
10847 * DONE_EXPLORING - the instruction was fully explored
10848 * KEEP_EXPLORING - there is still work to be done before it is fully explored
10849 */
visit_insn(int t,int insn_cnt,struct bpf_verifier_env * env)10850 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
10851 {
10852 struct bpf_insn *insns = env->prog->insnsi;
10853 int ret;
10854
10855 if (bpf_pseudo_func(insns + t))
10856 return visit_func_call_insn(t, insn_cnt, insns, env, true);
10857
10858 /* All non-branch instructions have a single fall-through edge. */
10859 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
10860 BPF_CLASS(insns[t].code) != BPF_JMP32)
10861 return push_insn(t, t + 1, FALLTHROUGH, env, false);
10862
10863 switch (BPF_OP(insns[t].code)) {
10864 case BPF_EXIT:
10865 return DONE_EXPLORING;
10866
10867 case BPF_CALL:
10868 if (insns[t].imm == BPF_FUNC_timer_set_callback)
10869 /* Mark this call insn to trigger is_state_visited() check
10870 * before call itself is processed by __check_func_call().
10871 * Otherwise new async state will be pushed for further
10872 * exploration.
10873 */
10874 init_explored_state(env, t);
10875 return visit_func_call_insn(t, insn_cnt, insns, env,
10876 insns[t].src_reg == BPF_PSEUDO_CALL);
10877
10878 case BPF_JA:
10879 if (BPF_SRC(insns[t].code) != BPF_K)
10880 return -EINVAL;
10881
10882 /* unconditional jump with single edge */
10883 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
10884 true);
10885 if (ret)
10886 return ret;
10887
10888 /* unconditional jmp is not a good pruning point,
10889 * but it's marked, since backtracking needs
10890 * to record jmp history in is_state_visited().
10891 */
10892 init_explored_state(env, t + insns[t].off + 1);
10893 /* tell verifier to check for equivalent states
10894 * after every call and jump
10895 */
10896 if (t + 1 < insn_cnt)
10897 init_explored_state(env, t + 1);
10898
10899 return ret;
10900
10901 default:
10902 /* conditional jump with two edges */
10903 init_explored_state(env, t);
10904 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
10905 if (ret)
10906 return ret;
10907
10908 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
10909 }
10910 }
10911
10912 /* non-recursive depth-first-search to detect loops in BPF program
10913 * loop == back-edge in directed graph
10914 */
check_cfg(struct bpf_verifier_env * env)10915 static int check_cfg(struct bpf_verifier_env *env)
10916 {
10917 int insn_cnt = env->prog->len;
10918 int *insn_stack, *insn_state;
10919 int ret = 0;
10920 int i;
10921
10922 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10923 if (!insn_state)
10924 return -ENOMEM;
10925
10926 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10927 if (!insn_stack) {
10928 kvfree(insn_state);
10929 return -ENOMEM;
10930 }
10931
10932 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
10933 insn_stack[0] = 0; /* 0 is the first instruction */
10934 env->cfg.cur_stack = 1;
10935
10936 while (env->cfg.cur_stack > 0) {
10937 int t = insn_stack[env->cfg.cur_stack - 1];
10938
10939 ret = visit_insn(t, insn_cnt, env);
10940 switch (ret) {
10941 case DONE_EXPLORING:
10942 insn_state[t] = EXPLORED;
10943 env->cfg.cur_stack--;
10944 break;
10945 case KEEP_EXPLORING:
10946 break;
10947 default:
10948 if (ret > 0) {
10949 verbose(env, "visit_insn internal bug\n");
10950 ret = -EFAULT;
10951 }
10952 goto err_free;
10953 }
10954 }
10955
10956 if (env->cfg.cur_stack < 0) {
10957 verbose(env, "pop stack internal bug\n");
10958 ret = -EFAULT;
10959 goto err_free;
10960 }
10961
10962 for (i = 0; i < insn_cnt; i++) {
10963 if (insn_state[i] != EXPLORED) {
10964 verbose(env, "unreachable insn %d\n", i);
10965 ret = -EINVAL;
10966 goto err_free;
10967 }
10968 }
10969 ret = 0; /* cfg looks good */
10970
10971 err_free:
10972 kvfree(insn_state);
10973 kvfree(insn_stack);
10974 env->cfg.insn_state = env->cfg.insn_stack = NULL;
10975 return ret;
10976 }
10977
check_abnormal_return(struct bpf_verifier_env * env)10978 static int check_abnormal_return(struct bpf_verifier_env *env)
10979 {
10980 int i;
10981
10982 for (i = 1; i < env->subprog_cnt; i++) {
10983 if (env->subprog_info[i].has_ld_abs) {
10984 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10985 return -EINVAL;
10986 }
10987 if (env->subprog_info[i].has_tail_call) {
10988 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10989 return -EINVAL;
10990 }
10991 }
10992 return 0;
10993 }
10994
10995 /* The minimum supported BTF func info size */
10996 #define MIN_BPF_FUNCINFO_SIZE 8
10997 #define MAX_FUNCINFO_REC_SIZE 252
10998
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)10999 static int check_btf_func(struct bpf_verifier_env *env,
11000 const union bpf_attr *attr,
11001 bpfptr_t uattr)
11002 {
11003 const struct btf_type *type, *func_proto, *ret_type;
11004 u32 i, nfuncs, urec_size, min_size;
11005 u32 krec_size = sizeof(struct bpf_func_info);
11006 struct bpf_func_info *krecord;
11007 struct bpf_func_info_aux *info_aux = NULL;
11008 struct bpf_prog *prog;
11009 const struct btf *btf;
11010 bpfptr_t urecord;
11011 u32 prev_offset = 0;
11012 bool scalar_return;
11013 int ret = -ENOMEM;
11014
11015 nfuncs = attr->func_info_cnt;
11016 if (!nfuncs) {
11017 if (check_abnormal_return(env))
11018 return -EINVAL;
11019 return 0;
11020 }
11021
11022 if (nfuncs != env->subprog_cnt) {
11023 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
11024 return -EINVAL;
11025 }
11026
11027 urec_size = attr->func_info_rec_size;
11028 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
11029 urec_size > MAX_FUNCINFO_REC_SIZE ||
11030 urec_size % sizeof(u32)) {
11031 verbose(env, "invalid func info rec size %u\n", urec_size);
11032 return -EINVAL;
11033 }
11034
11035 prog = env->prog;
11036 btf = prog->aux->btf;
11037
11038 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
11039 min_size = min_t(u32, krec_size, urec_size);
11040
11041 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
11042 if (!krecord)
11043 return -ENOMEM;
11044 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
11045 if (!info_aux)
11046 goto err_free;
11047
11048 for (i = 0; i < nfuncs; i++) {
11049 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
11050 if (ret) {
11051 if (ret == -E2BIG) {
11052 verbose(env, "nonzero tailing record in func info");
11053 /* set the size kernel expects so loader can zero
11054 * out the rest of the record.
11055 */
11056 if (copy_to_bpfptr_offset(uattr,
11057 offsetof(union bpf_attr, func_info_rec_size),
11058 &min_size, sizeof(min_size)))
11059 ret = -EFAULT;
11060 }
11061 goto err_free;
11062 }
11063
11064 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
11065 ret = -EFAULT;
11066 goto err_free;
11067 }
11068
11069 /* check insn_off */
11070 ret = -EINVAL;
11071 if (i == 0) {
11072 if (krecord[i].insn_off) {
11073 verbose(env,
11074 "nonzero insn_off %u for the first func info record",
11075 krecord[i].insn_off);
11076 goto err_free;
11077 }
11078 } else if (krecord[i].insn_off <= prev_offset) {
11079 verbose(env,
11080 "same or smaller insn offset (%u) than previous func info record (%u)",
11081 krecord[i].insn_off, prev_offset);
11082 goto err_free;
11083 }
11084
11085 if (env->subprog_info[i].start != krecord[i].insn_off) {
11086 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
11087 goto err_free;
11088 }
11089
11090 /* check type_id */
11091 type = btf_type_by_id(btf, krecord[i].type_id);
11092 if (!type || !btf_type_is_func(type)) {
11093 verbose(env, "invalid type id %d in func info",
11094 krecord[i].type_id);
11095 goto err_free;
11096 }
11097 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
11098
11099 func_proto = btf_type_by_id(btf, type->type);
11100 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
11101 /* btf_func_check() already verified it during BTF load */
11102 goto err_free;
11103 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
11104 scalar_return =
11105 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
11106 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
11107 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
11108 goto err_free;
11109 }
11110 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
11111 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
11112 goto err_free;
11113 }
11114
11115 prev_offset = krecord[i].insn_off;
11116 bpfptr_add(&urecord, urec_size);
11117 }
11118
11119 prog->aux->func_info = krecord;
11120 prog->aux->func_info_cnt = nfuncs;
11121 prog->aux->func_info_aux = info_aux;
11122 return 0;
11123
11124 err_free:
11125 kvfree(krecord);
11126 kfree(info_aux);
11127 return ret;
11128 }
11129
adjust_btf_func(struct bpf_verifier_env * env)11130 static void adjust_btf_func(struct bpf_verifier_env *env)
11131 {
11132 struct bpf_prog_aux *aux = env->prog->aux;
11133 int i;
11134
11135 if (!aux->func_info)
11136 return;
11137
11138 for (i = 0; i < env->subprog_cnt; i++)
11139 aux->func_info[i].insn_off = env->subprog_info[i].start;
11140 }
11141
11142 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
11143 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
11144
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)11145 static int check_btf_line(struct bpf_verifier_env *env,
11146 const union bpf_attr *attr,
11147 bpfptr_t uattr)
11148 {
11149 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
11150 struct bpf_subprog_info *sub;
11151 struct bpf_line_info *linfo;
11152 struct bpf_prog *prog;
11153 const struct btf *btf;
11154 bpfptr_t ulinfo;
11155 int err;
11156
11157 nr_linfo = attr->line_info_cnt;
11158 if (!nr_linfo)
11159 return 0;
11160 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
11161 return -EINVAL;
11162
11163 rec_size = attr->line_info_rec_size;
11164 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
11165 rec_size > MAX_LINEINFO_REC_SIZE ||
11166 rec_size & (sizeof(u32) - 1))
11167 return -EINVAL;
11168
11169 /* Need to zero it in case the userspace may
11170 * pass in a smaller bpf_line_info object.
11171 */
11172 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
11173 GFP_KERNEL | __GFP_NOWARN);
11174 if (!linfo)
11175 return -ENOMEM;
11176
11177 prog = env->prog;
11178 btf = prog->aux->btf;
11179
11180 s = 0;
11181 sub = env->subprog_info;
11182 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
11183 expected_size = sizeof(struct bpf_line_info);
11184 ncopy = min_t(u32, expected_size, rec_size);
11185 for (i = 0; i < nr_linfo; i++) {
11186 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
11187 if (err) {
11188 if (err == -E2BIG) {
11189 verbose(env, "nonzero tailing record in line_info");
11190 if (copy_to_bpfptr_offset(uattr,
11191 offsetof(union bpf_attr, line_info_rec_size),
11192 &expected_size, sizeof(expected_size)))
11193 err = -EFAULT;
11194 }
11195 goto err_free;
11196 }
11197
11198 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
11199 err = -EFAULT;
11200 goto err_free;
11201 }
11202
11203 /*
11204 * Check insn_off to ensure
11205 * 1) strictly increasing AND
11206 * 2) bounded by prog->len
11207 *
11208 * The linfo[0].insn_off == 0 check logically falls into
11209 * the later "missing bpf_line_info for func..." case
11210 * because the first linfo[0].insn_off must be the
11211 * first sub also and the first sub must have
11212 * subprog_info[0].start == 0.
11213 */
11214 if ((i && linfo[i].insn_off <= prev_offset) ||
11215 linfo[i].insn_off >= prog->len) {
11216 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
11217 i, linfo[i].insn_off, prev_offset,
11218 prog->len);
11219 err = -EINVAL;
11220 goto err_free;
11221 }
11222
11223 if (!prog->insnsi[linfo[i].insn_off].code) {
11224 verbose(env,
11225 "Invalid insn code at line_info[%u].insn_off\n",
11226 i);
11227 err = -EINVAL;
11228 goto err_free;
11229 }
11230
11231 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
11232 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
11233 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
11234 err = -EINVAL;
11235 goto err_free;
11236 }
11237
11238 if (s != env->subprog_cnt) {
11239 if (linfo[i].insn_off == sub[s].start) {
11240 sub[s].linfo_idx = i;
11241 s++;
11242 } else if (sub[s].start < linfo[i].insn_off) {
11243 verbose(env, "missing bpf_line_info for func#%u\n", s);
11244 err = -EINVAL;
11245 goto err_free;
11246 }
11247 }
11248
11249 prev_offset = linfo[i].insn_off;
11250 bpfptr_add(&ulinfo, rec_size);
11251 }
11252
11253 if (s != env->subprog_cnt) {
11254 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
11255 env->subprog_cnt - s, s);
11256 err = -EINVAL;
11257 goto err_free;
11258 }
11259
11260 prog->aux->linfo = linfo;
11261 prog->aux->nr_linfo = nr_linfo;
11262
11263 return 0;
11264
11265 err_free:
11266 kvfree(linfo);
11267 return err;
11268 }
11269
11270 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
11271 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
11272
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)11273 static int check_core_relo(struct bpf_verifier_env *env,
11274 const union bpf_attr *attr,
11275 bpfptr_t uattr)
11276 {
11277 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
11278 struct bpf_core_relo core_relo = {};
11279 struct bpf_prog *prog = env->prog;
11280 const struct btf *btf = prog->aux->btf;
11281 struct bpf_core_ctx ctx = {
11282 .log = &env->log,
11283 .btf = btf,
11284 };
11285 bpfptr_t u_core_relo;
11286 int err;
11287
11288 nr_core_relo = attr->core_relo_cnt;
11289 if (!nr_core_relo)
11290 return 0;
11291 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
11292 return -EINVAL;
11293
11294 rec_size = attr->core_relo_rec_size;
11295 if (rec_size < MIN_CORE_RELO_SIZE ||
11296 rec_size > MAX_CORE_RELO_SIZE ||
11297 rec_size % sizeof(u32))
11298 return -EINVAL;
11299
11300 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
11301 expected_size = sizeof(struct bpf_core_relo);
11302 ncopy = min_t(u32, expected_size, rec_size);
11303
11304 /* Unlike func_info and line_info, copy and apply each CO-RE
11305 * relocation record one at a time.
11306 */
11307 for (i = 0; i < nr_core_relo; i++) {
11308 /* future proofing when sizeof(bpf_core_relo) changes */
11309 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
11310 if (err) {
11311 if (err == -E2BIG) {
11312 verbose(env, "nonzero tailing record in core_relo");
11313 if (copy_to_bpfptr_offset(uattr,
11314 offsetof(union bpf_attr, core_relo_rec_size),
11315 &expected_size, sizeof(expected_size)))
11316 err = -EFAULT;
11317 }
11318 break;
11319 }
11320
11321 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
11322 err = -EFAULT;
11323 break;
11324 }
11325
11326 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
11327 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
11328 i, core_relo.insn_off, prog->len);
11329 err = -EINVAL;
11330 break;
11331 }
11332
11333 err = bpf_core_apply(&ctx, &core_relo, i,
11334 &prog->insnsi[core_relo.insn_off / 8]);
11335 if (err)
11336 break;
11337 bpfptr_add(&u_core_relo, rec_size);
11338 }
11339 return err;
11340 }
11341
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)11342 static int check_btf_info(struct bpf_verifier_env *env,
11343 const union bpf_attr *attr,
11344 bpfptr_t uattr)
11345 {
11346 struct btf *btf;
11347 int err;
11348
11349 if (!attr->func_info_cnt && !attr->line_info_cnt) {
11350 if (check_abnormal_return(env))
11351 return -EINVAL;
11352 return 0;
11353 }
11354
11355 btf = btf_get_by_fd(attr->prog_btf_fd);
11356 if (IS_ERR(btf))
11357 return PTR_ERR(btf);
11358 if (btf_is_kernel(btf)) {
11359 btf_put(btf);
11360 return -EACCES;
11361 }
11362 env->prog->aux->btf = btf;
11363
11364 err = check_btf_func(env, attr, uattr);
11365 if (err)
11366 return err;
11367
11368 err = check_btf_line(env, attr, uattr);
11369 if (err)
11370 return err;
11371
11372 err = check_core_relo(env, attr, uattr);
11373 if (err)
11374 return err;
11375
11376 return 0;
11377 }
11378
11379 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)11380 static bool range_within(struct bpf_reg_state *old,
11381 struct bpf_reg_state *cur)
11382 {
11383 return old->umin_value <= cur->umin_value &&
11384 old->umax_value >= cur->umax_value &&
11385 old->smin_value <= cur->smin_value &&
11386 old->smax_value >= cur->smax_value &&
11387 old->u32_min_value <= cur->u32_min_value &&
11388 old->u32_max_value >= cur->u32_max_value &&
11389 old->s32_min_value <= cur->s32_min_value &&
11390 old->s32_max_value >= cur->s32_max_value;
11391 }
11392
11393 /* If in the old state two registers had the same id, then they need to have
11394 * the same id in the new state as well. But that id could be different from
11395 * the old state, so we need to track the mapping from old to new ids.
11396 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
11397 * regs with old id 5 must also have new id 9 for the new state to be safe. But
11398 * regs with a different old id could still have new id 9, we don't care about
11399 * that.
11400 * So we look through our idmap to see if this old id has been seen before. If
11401 * so, we require the new id to match; otherwise, we add the id pair to the map.
11402 */
check_ids(u32 old_id,u32 cur_id,struct bpf_id_pair * idmap)11403 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
11404 {
11405 unsigned int i;
11406
11407 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
11408 if (!idmap[i].old) {
11409 /* Reached an empty slot; haven't seen this id before */
11410 idmap[i].old = old_id;
11411 idmap[i].cur = cur_id;
11412 return true;
11413 }
11414 if (idmap[i].old == old_id)
11415 return idmap[i].cur == cur_id;
11416 }
11417 /* We ran out of idmap slots, which should be impossible */
11418 WARN_ON_ONCE(1);
11419 return false;
11420 }
11421
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)11422 static void clean_func_state(struct bpf_verifier_env *env,
11423 struct bpf_func_state *st)
11424 {
11425 enum bpf_reg_liveness live;
11426 int i, j;
11427
11428 for (i = 0; i < BPF_REG_FP; i++) {
11429 live = st->regs[i].live;
11430 /* liveness must not touch this register anymore */
11431 st->regs[i].live |= REG_LIVE_DONE;
11432 if (!(live & REG_LIVE_READ))
11433 /* since the register is unused, clear its state
11434 * to make further comparison simpler
11435 */
11436 __mark_reg_not_init(env, &st->regs[i]);
11437 }
11438
11439 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
11440 live = st->stack[i].spilled_ptr.live;
11441 /* liveness must not touch this stack slot anymore */
11442 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
11443 if (!(live & REG_LIVE_READ)) {
11444 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
11445 for (j = 0; j < BPF_REG_SIZE; j++)
11446 st->stack[i].slot_type[j] = STACK_INVALID;
11447 }
11448 }
11449 }
11450
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)11451 static void clean_verifier_state(struct bpf_verifier_env *env,
11452 struct bpf_verifier_state *st)
11453 {
11454 int i;
11455
11456 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
11457 /* all regs in this state in all frames were already marked */
11458 return;
11459
11460 for (i = 0; i <= st->curframe; i++)
11461 clean_func_state(env, st->frame[i]);
11462 }
11463
11464 /* the parentage chains form a tree.
11465 * the verifier states are added to state lists at given insn and
11466 * pushed into state stack for future exploration.
11467 * when the verifier reaches bpf_exit insn some of the verifer states
11468 * stored in the state lists have their final liveness state already,
11469 * but a lot of states will get revised from liveness point of view when
11470 * the verifier explores other branches.
11471 * Example:
11472 * 1: r0 = 1
11473 * 2: if r1 == 100 goto pc+1
11474 * 3: r0 = 2
11475 * 4: exit
11476 * when the verifier reaches exit insn the register r0 in the state list of
11477 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
11478 * of insn 2 and goes exploring further. At the insn 4 it will walk the
11479 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
11480 *
11481 * Since the verifier pushes the branch states as it sees them while exploring
11482 * the program the condition of walking the branch instruction for the second
11483 * time means that all states below this branch were already explored and
11484 * their final liveness marks are already propagated.
11485 * Hence when the verifier completes the search of state list in is_state_visited()
11486 * we can call this clean_live_states() function to mark all liveness states
11487 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
11488 * will not be used.
11489 * This function also clears the registers and stack for states that !READ
11490 * to simplify state merging.
11491 *
11492 * Important note here that walking the same branch instruction in the callee
11493 * doesn't meant that the states are DONE. The verifier has to compare
11494 * the callsites
11495 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)11496 static void clean_live_states(struct bpf_verifier_env *env, int insn,
11497 struct bpf_verifier_state *cur)
11498 {
11499 struct bpf_verifier_state_list *sl;
11500 int i;
11501
11502 sl = *explored_state(env, insn);
11503 while (sl) {
11504 if (sl->state.branches)
11505 goto next;
11506 if (sl->state.insn_idx != insn ||
11507 sl->state.curframe != cur->curframe)
11508 goto next;
11509 for (i = 0; i <= cur->curframe; i++)
11510 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
11511 goto next;
11512 clean_verifier_state(env, &sl->state);
11513 next:
11514 sl = sl->next;
11515 }
11516 }
11517
11518 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_id_pair * idmap)11519 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
11520 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
11521 {
11522 bool equal;
11523
11524 if (!(rold->live & REG_LIVE_READ))
11525 /* explored state didn't use this */
11526 return true;
11527
11528 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
11529
11530 if (rold->type == PTR_TO_STACK)
11531 /* two stack pointers are equal only if they're pointing to
11532 * the same stack frame, since fp-8 in foo != fp-8 in bar
11533 */
11534 return equal && rold->frameno == rcur->frameno;
11535
11536 if (equal)
11537 return true;
11538
11539 if (rold->type == NOT_INIT)
11540 /* explored state can't have used this */
11541 return true;
11542 if (rcur->type == NOT_INIT)
11543 return false;
11544 switch (base_type(rold->type)) {
11545 case SCALAR_VALUE:
11546 if (env->explore_alu_limits)
11547 return false;
11548 if (rcur->type == SCALAR_VALUE) {
11549 if (!rold->precise && !rcur->precise)
11550 return true;
11551 /* new val must satisfy old val knowledge */
11552 return range_within(rold, rcur) &&
11553 tnum_in(rold->var_off, rcur->var_off);
11554 } else {
11555 /* We're trying to use a pointer in place of a scalar.
11556 * Even if the scalar was unbounded, this could lead to
11557 * pointer leaks because scalars are allowed to leak
11558 * while pointers are not. We could make this safe in
11559 * special cases if root is calling us, but it's
11560 * probably not worth the hassle.
11561 */
11562 return false;
11563 }
11564 case PTR_TO_MAP_KEY:
11565 case PTR_TO_MAP_VALUE:
11566 /* a PTR_TO_MAP_VALUE could be safe to use as a
11567 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
11568 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
11569 * checked, doing so could have affected others with the same
11570 * id, and we can't check for that because we lost the id when
11571 * we converted to a PTR_TO_MAP_VALUE.
11572 */
11573 if (type_may_be_null(rold->type)) {
11574 if (!type_may_be_null(rcur->type))
11575 return false;
11576 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
11577 return false;
11578 /* Check our ids match any regs they're supposed to */
11579 return check_ids(rold->id, rcur->id, idmap);
11580 }
11581
11582 /* If the new min/max/var_off satisfy the old ones and
11583 * everything else matches, we are OK.
11584 * 'id' is not compared, since it's only used for maps with
11585 * bpf_spin_lock inside map element and in such cases if
11586 * the rest of the prog is valid for one map element then
11587 * it's valid for all map elements regardless of the key
11588 * used in bpf_map_lookup()
11589 */
11590 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
11591 range_within(rold, rcur) &&
11592 tnum_in(rold->var_off, rcur->var_off);
11593 case PTR_TO_PACKET_META:
11594 case PTR_TO_PACKET:
11595 if (rcur->type != rold->type)
11596 return false;
11597 /* We must have at least as much range as the old ptr
11598 * did, so that any accesses which were safe before are
11599 * still safe. This is true even if old range < old off,
11600 * since someone could have accessed through (ptr - k), or
11601 * even done ptr -= k in a register, to get a safe access.
11602 */
11603 if (rold->range > rcur->range)
11604 return false;
11605 /* If the offsets don't match, we can't trust our alignment;
11606 * nor can we be sure that we won't fall out of range.
11607 */
11608 if (rold->off != rcur->off)
11609 return false;
11610 /* id relations must be preserved */
11611 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
11612 return false;
11613 /* new val must satisfy old val knowledge */
11614 return range_within(rold, rcur) &&
11615 tnum_in(rold->var_off, rcur->var_off);
11616 case PTR_TO_CTX:
11617 case CONST_PTR_TO_MAP:
11618 case PTR_TO_PACKET_END:
11619 case PTR_TO_FLOW_KEYS:
11620 case PTR_TO_SOCKET:
11621 case PTR_TO_SOCK_COMMON:
11622 case PTR_TO_TCP_SOCK:
11623 case PTR_TO_XDP_SOCK:
11624 /* Only valid matches are exact, which memcmp() above
11625 * would have accepted
11626 */
11627 default:
11628 /* Don't know what's going on, just say it's not safe */
11629 return false;
11630 }
11631
11632 /* Shouldn't get here; if we do, say it's not safe */
11633 WARN_ON_ONCE(1);
11634 return false;
11635 }
11636
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_id_pair * idmap)11637 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
11638 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
11639 {
11640 int i, spi;
11641
11642 /* walk slots of the explored stack and ignore any additional
11643 * slots in the current stack, since explored(safe) state
11644 * didn't use them
11645 */
11646 for (i = 0; i < old->allocated_stack; i++) {
11647 spi = i / BPF_REG_SIZE;
11648
11649 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
11650 i += BPF_REG_SIZE - 1;
11651 /* explored state didn't use this */
11652 continue;
11653 }
11654
11655 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
11656 continue;
11657
11658 /* explored stack has more populated slots than current stack
11659 * and these slots were used
11660 */
11661 if (i >= cur->allocated_stack)
11662 return false;
11663
11664 /* if old state was safe with misc data in the stack
11665 * it will be safe with zero-initialized stack.
11666 * The opposite is not true
11667 */
11668 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
11669 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
11670 continue;
11671 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
11672 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
11673 /* Ex: old explored (safe) state has STACK_SPILL in
11674 * this stack slot, but current has STACK_MISC ->
11675 * this verifier states are not equivalent,
11676 * return false to continue verification of this path
11677 */
11678 return false;
11679 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
11680 continue;
11681 if (!is_spilled_reg(&old->stack[spi]))
11682 continue;
11683 if (!regsafe(env, &old->stack[spi].spilled_ptr,
11684 &cur->stack[spi].spilled_ptr, idmap))
11685 /* when explored and current stack slot are both storing
11686 * spilled registers, check that stored pointers types
11687 * are the same as well.
11688 * Ex: explored safe path could have stored
11689 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
11690 * but current path has stored:
11691 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
11692 * such verifier states are not equivalent.
11693 * return false to continue verification of this path
11694 */
11695 return false;
11696 }
11697 return true;
11698 }
11699
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur)11700 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
11701 {
11702 if (old->acquired_refs != cur->acquired_refs)
11703 return false;
11704 return !memcmp(old->refs, cur->refs,
11705 sizeof(*old->refs) * old->acquired_refs);
11706 }
11707
11708 /* compare two verifier states
11709 *
11710 * all states stored in state_list are known to be valid, since
11711 * verifier reached 'bpf_exit' instruction through them
11712 *
11713 * this function is called when verifier exploring different branches of
11714 * execution popped from the state stack. If it sees an old state that has
11715 * more strict register state and more strict stack state then this execution
11716 * branch doesn't need to be explored further, since verifier already
11717 * concluded that more strict state leads to valid finish.
11718 *
11719 * Therefore two states are equivalent if register state is more conservative
11720 * and explored stack state is more conservative than the current one.
11721 * Example:
11722 * explored current
11723 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
11724 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
11725 *
11726 * In other words if current stack state (one being explored) has more
11727 * valid slots than old one that already passed validation, it means
11728 * the verifier can stop exploring and conclude that current state is valid too
11729 *
11730 * Similarly with registers. If explored state has register type as invalid
11731 * whereas register type in current state is meaningful, it means that
11732 * the current state will reach 'bpf_exit' instruction safely
11733 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur)11734 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
11735 struct bpf_func_state *cur)
11736 {
11737 int i;
11738
11739 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
11740 for (i = 0; i < MAX_BPF_REG; i++)
11741 if (!regsafe(env, &old->regs[i], &cur->regs[i],
11742 env->idmap_scratch))
11743 return false;
11744
11745 if (!stacksafe(env, old, cur, env->idmap_scratch))
11746 return false;
11747
11748 if (!refsafe(old, cur))
11749 return false;
11750
11751 return true;
11752 }
11753
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)11754 static bool states_equal(struct bpf_verifier_env *env,
11755 struct bpf_verifier_state *old,
11756 struct bpf_verifier_state *cur)
11757 {
11758 int i;
11759
11760 if (old->curframe != cur->curframe)
11761 return false;
11762
11763 /* Verification state from speculative execution simulation
11764 * must never prune a non-speculative execution one.
11765 */
11766 if (old->speculative && !cur->speculative)
11767 return false;
11768
11769 if (old->active_spin_lock != cur->active_spin_lock)
11770 return false;
11771
11772 /* for states to be equal callsites have to be the same
11773 * and all frame states need to be equivalent
11774 */
11775 for (i = 0; i <= old->curframe; i++) {
11776 if (old->frame[i]->callsite != cur->frame[i]->callsite)
11777 return false;
11778 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
11779 return false;
11780 }
11781 return true;
11782 }
11783
11784 /* Return 0 if no propagation happened. Return negative error code if error
11785 * happened. Otherwise, return the propagated bit.
11786 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)11787 static int propagate_liveness_reg(struct bpf_verifier_env *env,
11788 struct bpf_reg_state *reg,
11789 struct bpf_reg_state *parent_reg)
11790 {
11791 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
11792 u8 flag = reg->live & REG_LIVE_READ;
11793 int err;
11794
11795 /* When comes here, read flags of PARENT_REG or REG could be any of
11796 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
11797 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
11798 */
11799 if (parent_flag == REG_LIVE_READ64 ||
11800 /* Or if there is no read flag from REG. */
11801 !flag ||
11802 /* Or if the read flag from REG is the same as PARENT_REG. */
11803 parent_flag == flag)
11804 return 0;
11805
11806 err = mark_reg_read(env, reg, parent_reg, flag);
11807 if (err)
11808 return err;
11809
11810 return flag;
11811 }
11812
11813 /* A write screens off any subsequent reads; but write marks come from the
11814 * straight-line code between a state and its parent. When we arrive at an
11815 * equivalent state (jump target or such) we didn't arrive by the straight-line
11816 * code, so read marks in the state must propagate to the parent regardless
11817 * of the state's write marks. That's what 'parent == state->parent' comparison
11818 * in mark_reg_read() is for.
11819 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)11820 static int propagate_liveness(struct bpf_verifier_env *env,
11821 const struct bpf_verifier_state *vstate,
11822 struct bpf_verifier_state *vparent)
11823 {
11824 struct bpf_reg_state *state_reg, *parent_reg;
11825 struct bpf_func_state *state, *parent;
11826 int i, frame, err = 0;
11827
11828 if (vparent->curframe != vstate->curframe) {
11829 WARN(1, "propagate_live: parent frame %d current frame %d\n",
11830 vparent->curframe, vstate->curframe);
11831 return -EFAULT;
11832 }
11833 /* Propagate read liveness of registers... */
11834 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
11835 for (frame = 0; frame <= vstate->curframe; frame++) {
11836 parent = vparent->frame[frame];
11837 state = vstate->frame[frame];
11838 parent_reg = parent->regs;
11839 state_reg = state->regs;
11840 /* We don't need to worry about FP liveness, it's read-only */
11841 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
11842 err = propagate_liveness_reg(env, &state_reg[i],
11843 &parent_reg[i]);
11844 if (err < 0)
11845 return err;
11846 if (err == REG_LIVE_READ64)
11847 mark_insn_zext(env, &parent_reg[i]);
11848 }
11849
11850 /* Propagate stack slots. */
11851 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
11852 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
11853 parent_reg = &parent->stack[i].spilled_ptr;
11854 state_reg = &state->stack[i].spilled_ptr;
11855 err = propagate_liveness_reg(env, state_reg,
11856 parent_reg);
11857 if (err < 0)
11858 return err;
11859 }
11860 }
11861 return 0;
11862 }
11863
11864 /* find precise scalars in the previous equivalent state and
11865 * propagate them into the current state
11866 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)11867 static int propagate_precision(struct bpf_verifier_env *env,
11868 const struct bpf_verifier_state *old)
11869 {
11870 struct bpf_reg_state *state_reg;
11871 struct bpf_func_state *state;
11872 int i, err = 0, fr;
11873
11874 for (fr = old->curframe; fr >= 0; fr--) {
11875 state = old->frame[fr];
11876 state_reg = state->regs;
11877 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
11878 if (state_reg->type != SCALAR_VALUE ||
11879 !state_reg->precise)
11880 continue;
11881 if (env->log.level & BPF_LOG_LEVEL2)
11882 verbose(env, "frame %d: propagating r%d\n", i, fr);
11883 err = mark_chain_precision_frame(env, fr, i);
11884 if (err < 0)
11885 return err;
11886 }
11887
11888 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
11889 if (!is_spilled_reg(&state->stack[i]))
11890 continue;
11891 state_reg = &state->stack[i].spilled_ptr;
11892 if (state_reg->type != SCALAR_VALUE ||
11893 !state_reg->precise)
11894 continue;
11895 if (env->log.level & BPF_LOG_LEVEL2)
11896 verbose(env, "frame %d: propagating fp%d\n",
11897 (-i - 1) * BPF_REG_SIZE, fr);
11898 err = mark_chain_precision_stack_frame(env, fr, i);
11899 if (err < 0)
11900 return err;
11901 }
11902 }
11903 return 0;
11904 }
11905
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)11906 static bool states_maybe_looping(struct bpf_verifier_state *old,
11907 struct bpf_verifier_state *cur)
11908 {
11909 struct bpf_func_state *fold, *fcur;
11910 int i, fr = cur->curframe;
11911
11912 if (old->curframe != fr)
11913 return false;
11914
11915 fold = old->frame[fr];
11916 fcur = cur->frame[fr];
11917 for (i = 0; i < MAX_BPF_REG; i++)
11918 if (memcmp(&fold->regs[i], &fcur->regs[i],
11919 offsetof(struct bpf_reg_state, parent)))
11920 return false;
11921 return true;
11922 }
11923
11924
is_state_visited(struct bpf_verifier_env * env,int insn_idx)11925 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
11926 {
11927 struct bpf_verifier_state_list *new_sl;
11928 struct bpf_verifier_state_list *sl, **pprev;
11929 struct bpf_verifier_state *cur = env->cur_state, *new;
11930 int i, j, err, states_cnt = 0;
11931 bool add_new_state = env->test_state_freq ? true : false;
11932
11933 cur->last_insn_idx = env->prev_insn_idx;
11934 if (!env->insn_aux_data[insn_idx].prune_point)
11935 /* this 'insn_idx' instruction wasn't marked, so we will not
11936 * be doing state search here
11937 */
11938 return 0;
11939
11940 /* bpf progs typically have pruning point every 4 instructions
11941 * http://vger.kernel.org/bpfconf2019.html#session-1
11942 * Do not add new state for future pruning if the verifier hasn't seen
11943 * at least 2 jumps and at least 8 instructions.
11944 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
11945 * In tests that amounts to up to 50% reduction into total verifier
11946 * memory consumption and 20% verifier time speedup.
11947 */
11948 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
11949 env->insn_processed - env->prev_insn_processed >= 8)
11950 add_new_state = true;
11951
11952 pprev = explored_state(env, insn_idx);
11953 sl = *pprev;
11954
11955 clean_live_states(env, insn_idx, cur);
11956
11957 while (sl) {
11958 states_cnt++;
11959 if (sl->state.insn_idx != insn_idx)
11960 goto next;
11961
11962 if (sl->state.branches) {
11963 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
11964
11965 if (frame->in_async_callback_fn &&
11966 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
11967 /* Different async_entry_cnt means that the verifier is
11968 * processing another entry into async callback.
11969 * Seeing the same state is not an indication of infinite
11970 * loop or infinite recursion.
11971 * But finding the same state doesn't mean that it's safe
11972 * to stop processing the current state. The previous state
11973 * hasn't yet reached bpf_exit, since state.branches > 0.
11974 * Checking in_async_callback_fn alone is not enough either.
11975 * Since the verifier still needs to catch infinite loops
11976 * inside async callbacks.
11977 */
11978 } else if (states_maybe_looping(&sl->state, cur) &&
11979 states_equal(env, &sl->state, cur)) {
11980 verbose_linfo(env, insn_idx, "; ");
11981 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11982 return -EINVAL;
11983 }
11984 /* if the verifier is processing a loop, avoid adding new state
11985 * too often, since different loop iterations have distinct
11986 * states and may not help future pruning.
11987 * This threshold shouldn't be too low to make sure that
11988 * a loop with large bound will be rejected quickly.
11989 * The most abusive loop will be:
11990 * r1 += 1
11991 * if r1 < 1000000 goto pc-2
11992 * 1M insn_procssed limit / 100 == 10k peak states.
11993 * This threshold shouldn't be too high either, since states
11994 * at the end of the loop are likely to be useful in pruning.
11995 */
11996 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11997 env->insn_processed - env->prev_insn_processed < 100)
11998 add_new_state = false;
11999 goto miss;
12000 }
12001 if (states_equal(env, &sl->state, cur)) {
12002 sl->hit_cnt++;
12003 /* reached equivalent register/stack state,
12004 * prune the search.
12005 * Registers read by the continuation are read by us.
12006 * If we have any write marks in env->cur_state, they
12007 * will prevent corresponding reads in the continuation
12008 * from reaching our parent (an explored_state). Our
12009 * own state will get the read marks recorded, but
12010 * they'll be immediately forgotten as we're pruning
12011 * this state and will pop a new one.
12012 */
12013 err = propagate_liveness(env, &sl->state, cur);
12014
12015 /* if previous state reached the exit with precision and
12016 * current state is equivalent to it (except precsion marks)
12017 * the precision needs to be propagated back in
12018 * the current state.
12019 */
12020 err = err ? : push_jmp_history(env, cur);
12021 err = err ? : propagate_precision(env, &sl->state);
12022 if (err)
12023 return err;
12024 return 1;
12025 }
12026 miss:
12027 /* when new state is not going to be added do not increase miss count.
12028 * Otherwise several loop iterations will remove the state
12029 * recorded earlier. The goal of these heuristics is to have
12030 * states from some iterations of the loop (some in the beginning
12031 * and some at the end) to help pruning.
12032 */
12033 if (add_new_state)
12034 sl->miss_cnt++;
12035 /* heuristic to determine whether this state is beneficial
12036 * to keep checking from state equivalence point of view.
12037 * Higher numbers increase max_states_per_insn and verification time,
12038 * but do not meaningfully decrease insn_processed.
12039 */
12040 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
12041 /* the state is unlikely to be useful. Remove it to
12042 * speed up verification
12043 */
12044 *pprev = sl->next;
12045 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
12046 u32 br = sl->state.branches;
12047
12048 WARN_ONCE(br,
12049 "BUG live_done but branches_to_explore %d\n",
12050 br);
12051 free_verifier_state(&sl->state, false);
12052 kfree(sl);
12053 env->peak_states--;
12054 } else {
12055 /* cannot free this state, since parentage chain may
12056 * walk it later. Add it for free_list instead to
12057 * be freed at the end of verification
12058 */
12059 sl->next = env->free_list;
12060 env->free_list = sl;
12061 }
12062 sl = *pprev;
12063 continue;
12064 }
12065 next:
12066 pprev = &sl->next;
12067 sl = *pprev;
12068 }
12069
12070 if (env->max_states_per_insn < states_cnt)
12071 env->max_states_per_insn = states_cnt;
12072
12073 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
12074 return push_jmp_history(env, cur);
12075
12076 if (!add_new_state)
12077 return push_jmp_history(env, cur);
12078
12079 /* There were no equivalent states, remember the current one.
12080 * Technically the current state is not proven to be safe yet,
12081 * but it will either reach outer most bpf_exit (which means it's safe)
12082 * or it will be rejected. When there are no loops the verifier won't be
12083 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
12084 * again on the way to bpf_exit.
12085 * When looping the sl->state.branches will be > 0 and this state
12086 * will not be considered for equivalence until branches == 0.
12087 */
12088 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
12089 if (!new_sl)
12090 return -ENOMEM;
12091 env->total_states++;
12092 env->peak_states++;
12093 env->prev_jmps_processed = env->jmps_processed;
12094 env->prev_insn_processed = env->insn_processed;
12095
12096 /* add new state to the head of linked list */
12097 new = &new_sl->state;
12098 err = copy_verifier_state(new, cur);
12099 if (err) {
12100 free_verifier_state(new, false);
12101 kfree(new_sl);
12102 return err;
12103 }
12104 new->insn_idx = insn_idx;
12105 WARN_ONCE(new->branches != 1,
12106 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
12107
12108 cur->parent = new;
12109 cur->first_insn_idx = insn_idx;
12110 clear_jmp_history(cur);
12111 new_sl->next = *explored_state(env, insn_idx);
12112 *explored_state(env, insn_idx) = new_sl;
12113 /* connect new state to parentage chain. Current frame needs all
12114 * registers connected. Only r6 - r9 of the callers are alive (pushed
12115 * to the stack implicitly by JITs) so in callers' frames connect just
12116 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
12117 * the state of the call instruction (with WRITTEN set), and r0 comes
12118 * from callee with its full parentage chain, anyway.
12119 */
12120 /* clear write marks in current state: the writes we did are not writes
12121 * our child did, so they don't screen off its reads from us.
12122 * (There are no read marks in current state, because reads always mark
12123 * their parent and current state never has children yet. Only
12124 * explored_states can get read marks.)
12125 */
12126 for (j = 0; j <= cur->curframe; j++) {
12127 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
12128 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
12129 for (i = 0; i < BPF_REG_FP; i++)
12130 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
12131 }
12132
12133 /* all stack frames are accessible from callee, clear them all */
12134 for (j = 0; j <= cur->curframe; j++) {
12135 struct bpf_func_state *frame = cur->frame[j];
12136 struct bpf_func_state *newframe = new->frame[j];
12137
12138 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
12139 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
12140 frame->stack[i].spilled_ptr.parent =
12141 &newframe->stack[i].spilled_ptr;
12142 }
12143 }
12144 return 0;
12145 }
12146
12147 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)12148 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
12149 {
12150 switch (base_type(type)) {
12151 case PTR_TO_CTX:
12152 case PTR_TO_SOCKET:
12153 case PTR_TO_SOCK_COMMON:
12154 case PTR_TO_TCP_SOCK:
12155 case PTR_TO_XDP_SOCK:
12156 case PTR_TO_BTF_ID:
12157 return false;
12158 default:
12159 return true;
12160 }
12161 }
12162
12163 /* If an instruction was previously used with particular pointer types, then we
12164 * need to be careful to avoid cases such as the below, where it may be ok
12165 * for one branch accessing the pointer, but not ok for the other branch:
12166 *
12167 * R1 = sock_ptr
12168 * goto X;
12169 * ...
12170 * R1 = some_other_valid_ptr;
12171 * goto X;
12172 * ...
12173 * R2 = *(u32 *)(R1 + 0);
12174 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)12175 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
12176 {
12177 return src != prev && (!reg_type_mismatch_ok(src) ||
12178 !reg_type_mismatch_ok(prev));
12179 }
12180
do_check(struct bpf_verifier_env * env)12181 static int do_check(struct bpf_verifier_env *env)
12182 {
12183 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12184 struct bpf_verifier_state *state = env->cur_state;
12185 struct bpf_insn *insns = env->prog->insnsi;
12186 struct bpf_reg_state *regs;
12187 int insn_cnt = env->prog->len;
12188 bool do_print_state = false;
12189 int prev_insn_idx = -1;
12190
12191 for (;;) {
12192 struct bpf_insn *insn;
12193 u8 class;
12194 int err;
12195
12196 env->prev_insn_idx = prev_insn_idx;
12197 if (env->insn_idx >= insn_cnt) {
12198 verbose(env, "invalid insn idx %d insn_cnt %d\n",
12199 env->insn_idx, insn_cnt);
12200 return -EFAULT;
12201 }
12202
12203 insn = &insns[env->insn_idx];
12204 class = BPF_CLASS(insn->code);
12205
12206 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
12207 verbose(env,
12208 "BPF program is too large. Processed %d insn\n",
12209 env->insn_processed);
12210 return -E2BIG;
12211 }
12212
12213 err = is_state_visited(env, env->insn_idx);
12214 if (err < 0)
12215 return err;
12216 if (err == 1) {
12217 /* found equivalent state, can prune the search */
12218 if (env->log.level & BPF_LOG_LEVEL) {
12219 if (do_print_state)
12220 verbose(env, "\nfrom %d to %d%s: safe\n",
12221 env->prev_insn_idx, env->insn_idx,
12222 env->cur_state->speculative ?
12223 " (speculative execution)" : "");
12224 else
12225 verbose(env, "%d: safe\n", env->insn_idx);
12226 }
12227 goto process_bpf_exit;
12228 }
12229
12230 if (signal_pending(current))
12231 return -EAGAIN;
12232
12233 if (need_resched())
12234 cond_resched();
12235
12236 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
12237 verbose(env, "\nfrom %d to %d%s:",
12238 env->prev_insn_idx, env->insn_idx,
12239 env->cur_state->speculative ?
12240 " (speculative execution)" : "");
12241 print_verifier_state(env, state->frame[state->curframe], true);
12242 do_print_state = false;
12243 }
12244
12245 if (env->log.level & BPF_LOG_LEVEL) {
12246 const struct bpf_insn_cbs cbs = {
12247 .cb_call = disasm_kfunc_name,
12248 .cb_print = verbose,
12249 .private_data = env,
12250 };
12251
12252 if (verifier_state_scratched(env))
12253 print_insn_state(env, state->frame[state->curframe]);
12254
12255 verbose_linfo(env, env->insn_idx, "; ");
12256 env->prev_log_len = env->log.len_used;
12257 verbose(env, "%d: ", env->insn_idx);
12258 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
12259 env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
12260 env->prev_log_len = env->log.len_used;
12261 }
12262
12263 if (bpf_prog_is_dev_bound(env->prog->aux)) {
12264 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
12265 env->prev_insn_idx);
12266 if (err)
12267 return err;
12268 }
12269
12270 regs = cur_regs(env);
12271 sanitize_mark_insn_seen(env);
12272 prev_insn_idx = env->insn_idx;
12273
12274 if (class == BPF_ALU || class == BPF_ALU64) {
12275 err = check_alu_op(env, insn);
12276 if (err)
12277 return err;
12278
12279 } else if (class == BPF_LDX) {
12280 enum bpf_reg_type *prev_src_type, src_reg_type;
12281
12282 /* check for reserved fields is already done */
12283
12284 /* check src operand */
12285 err = check_reg_arg(env, insn->src_reg, SRC_OP);
12286 if (err)
12287 return err;
12288
12289 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12290 if (err)
12291 return err;
12292
12293 src_reg_type = regs[insn->src_reg].type;
12294
12295 /* check that memory (src_reg + off) is readable,
12296 * the state of dst_reg will be updated by this func
12297 */
12298 err = check_mem_access(env, env->insn_idx, insn->src_reg,
12299 insn->off, BPF_SIZE(insn->code),
12300 BPF_READ, insn->dst_reg, false);
12301 if (err)
12302 return err;
12303
12304 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12305
12306 if (*prev_src_type == NOT_INIT) {
12307 /* saw a valid insn
12308 * dst_reg = *(u32 *)(src_reg + off)
12309 * save type to validate intersecting paths
12310 */
12311 *prev_src_type = src_reg_type;
12312
12313 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
12314 /* ABuser program is trying to use the same insn
12315 * dst_reg = *(u32*) (src_reg + off)
12316 * with different pointer types:
12317 * src_reg == ctx in one branch and
12318 * src_reg == stack|map in some other branch.
12319 * Reject it.
12320 */
12321 verbose(env, "same insn cannot be used with different pointers\n");
12322 return -EINVAL;
12323 }
12324
12325 } else if (class == BPF_STX) {
12326 enum bpf_reg_type *prev_dst_type, dst_reg_type;
12327
12328 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
12329 err = check_atomic(env, env->insn_idx, insn);
12330 if (err)
12331 return err;
12332 env->insn_idx++;
12333 continue;
12334 }
12335
12336 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
12337 verbose(env, "BPF_STX uses reserved fields\n");
12338 return -EINVAL;
12339 }
12340
12341 /* check src1 operand */
12342 err = check_reg_arg(env, insn->src_reg, SRC_OP);
12343 if (err)
12344 return err;
12345 /* check src2 operand */
12346 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12347 if (err)
12348 return err;
12349
12350 dst_reg_type = regs[insn->dst_reg].type;
12351
12352 /* check that memory (dst_reg + off) is writeable */
12353 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12354 insn->off, BPF_SIZE(insn->code),
12355 BPF_WRITE, insn->src_reg, false);
12356 if (err)
12357 return err;
12358
12359 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12360
12361 if (*prev_dst_type == NOT_INIT) {
12362 *prev_dst_type = dst_reg_type;
12363 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
12364 verbose(env, "same insn cannot be used with different pointers\n");
12365 return -EINVAL;
12366 }
12367
12368 } else if (class == BPF_ST) {
12369 if (BPF_MODE(insn->code) != BPF_MEM ||
12370 insn->src_reg != BPF_REG_0) {
12371 verbose(env, "BPF_ST uses reserved fields\n");
12372 return -EINVAL;
12373 }
12374 /* check src operand */
12375 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12376 if (err)
12377 return err;
12378
12379 if (is_ctx_reg(env, insn->dst_reg)) {
12380 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
12381 insn->dst_reg,
12382 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
12383 return -EACCES;
12384 }
12385
12386 /* check that memory (dst_reg + off) is writeable */
12387 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12388 insn->off, BPF_SIZE(insn->code),
12389 BPF_WRITE, -1, false);
12390 if (err)
12391 return err;
12392
12393 } else if (class == BPF_JMP || class == BPF_JMP32) {
12394 u8 opcode = BPF_OP(insn->code);
12395
12396 env->jmps_processed++;
12397 if (opcode == BPF_CALL) {
12398 if (BPF_SRC(insn->code) != BPF_K ||
12399 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
12400 && insn->off != 0) ||
12401 (insn->src_reg != BPF_REG_0 &&
12402 insn->src_reg != BPF_PSEUDO_CALL &&
12403 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
12404 insn->dst_reg != BPF_REG_0 ||
12405 class == BPF_JMP32) {
12406 verbose(env, "BPF_CALL uses reserved fields\n");
12407 return -EINVAL;
12408 }
12409
12410 if (env->cur_state->active_spin_lock &&
12411 (insn->src_reg == BPF_PSEUDO_CALL ||
12412 insn->imm != BPF_FUNC_spin_unlock)) {
12413 verbose(env, "function calls are not allowed while holding a lock\n");
12414 return -EINVAL;
12415 }
12416 if (insn->src_reg == BPF_PSEUDO_CALL)
12417 err = check_func_call(env, insn, &env->insn_idx);
12418 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
12419 err = check_kfunc_call(env, insn, &env->insn_idx);
12420 else
12421 err = check_helper_call(env, insn, &env->insn_idx);
12422 if (err)
12423 return err;
12424 } else if (opcode == BPF_JA) {
12425 if (BPF_SRC(insn->code) != BPF_K ||
12426 insn->imm != 0 ||
12427 insn->src_reg != BPF_REG_0 ||
12428 insn->dst_reg != BPF_REG_0 ||
12429 class == BPF_JMP32) {
12430 verbose(env, "BPF_JA uses reserved fields\n");
12431 return -EINVAL;
12432 }
12433
12434 env->insn_idx += insn->off + 1;
12435 continue;
12436
12437 } else if (opcode == BPF_EXIT) {
12438 if (BPF_SRC(insn->code) != BPF_K ||
12439 insn->imm != 0 ||
12440 insn->src_reg != BPF_REG_0 ||
12441 insn->dst_reg != BPF_REG_0 ||
12442 class == BPF_JMP32) {
12443 verbose(env, "BPF_EXIT uses reserved fields\n");
12444 return -EINVAL;
12445 }
12446
12447 if (env->cur_state->active_spin_lock) {
12448 verbose(env, "bpf_spin_unlock is missing\n");
12449 return -EINVAL;
12450 }
12451
12452 /* We must do check_reference_leak here before
12453 * prepare_func_exit to handle the case when
12454 * state->curframe > 0, it may be a callback
12455 * function, for which reference_state must
12456 * match caller reference state when it exits.
12457 */
12458 err = check_reference_leak(env);
12459 if (err)
12460 return err;
12461
12462 if (state->curframe) {
12463 /* exit from nested function */
12464 err = prepare_func_exit(env, &env->insn_idx);
12465 if (err)
12466 return err;
12467 do_print_state = true;
12468 continue;
12469 }
12470
12471 err = check_return_code(env);
12472 if (err)
12473 return err;
12474 process_bpf_exit:
12475 mark_verifier_state_scratched(env);
12476 update_branch_counts(env, env->cur_state);
12477 err = pop_stack(env, &prev_insn_idx,
12478 &env->insn_idx, pop_log);
12479 if (err < 0) {
12480 if (err != -ENOENT)
12481 return err;
12482 break;
12483 } else {
12484 do_print_state = true;
12485 continue;
12486 }
12487 } else {
12488 err = check_cond_jmp_op(env, insn, &env->insn_idx);
12489 if (err)
12490 return err;
12491 }
12492 } else if (class == BPF_LD) {
12493 u8 mode = BPF_MODE(insn->code);
12494
12495 if (mode == BPF_ABS || mode == BPF_IND) {
12496 err = check_ld_abs(env, insn);
12497 if (err)
12498 return err;
12499
12500 } else if (mode == BPF_IMM) {
12501 err = check_ld_imm(env, insn);
12502 if (err)
12503 return err;
12504
12505 env->insn_idx++;
12506 sanitize_mark_insn_seen(env);
12507 } else {
12508 verbose(env, "invalid BPF_LD mode\n");
12509 return -EINVAL;
12510 }
12511 } else {
12512 verbose(env, "unknown insn class %d\n", class);
12513 return -EINVAL;
12514 }
12515
12516 env->insn_idx++;
12517 }
12518
12519 return 0;
12520 }
12521
find_btf_percpu_datasec(struct btf * btf)12522 static int find_btf_percpu_datasec(struct btf *btf)
12523 {
12524 const struct btf_type *t;
12525 const char *tname;
12526 int i, n;
12527
12528 /*
12529 * Both vmlinux and module each have their own ".data..percpu"
12530 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
12531 * types to look at only module's own BTF types.
12532 */
12533 n = btf_nr_types(btf);
12534 if (btf_is_module(btf))
12535 i = btf_nr_types(btf_vmlinux);
12536 else
12537 i = 1;
12538
12539 for(; i < n; i++) {
12540 t = btf_type_by_id(btf, i);
12541 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
12542 continue;
12543
12544 tname = btf_name_by_offset(btf, t->name_off);
12545 if (!strcmp(tname, ".data..percpu"))
12546 return i;
12547 }
12548
12549 return -ENOENT;
12550 }
12551
12552 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)12553 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
12554 struct bpf_insn *insn,
12555 struct bpf_insn_aux_data *aux)
12556 {
12557 const struct btf_var_secinfo *vsi;
12558 const struct btf_type *datasec;
12559 struct btf_mod_pair *btf_mod;
12560 const struct btf_type *t;
12561 const char *sym_name;
12562 bool percpu = false;
12563 u32 type, id = insn->imm;
12564 struct btf *btf;
12565 s32 datasec_id;
12566 u64 addr;
12567 int i, btf_fd, err;
12568
12569 btf_fd = insn[1].imm;
12570 if (btf_fd) {
12571 btf = btf_get_by_fd(btf_fd);
12572 if (IS_ERR(btf)) {
12573 verbose(env, "invalid module BTF object FD specified.\n");
12574 return -EINVAL;
12575 }
12576 } else {
12577 if (!btf_vmlinux) {
12578 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
12579 return -EINVAL;
12580 }
12581 btf = btf_vmlinux;
12582 btf_get(btf);
12583 }
12584
12585 t = btf_type_by_id(btf, id);
12586 if (!t) {
12587 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
12588 err = -ENOENT;
12589 goto err_put;
12590 }
12591
12592 if (!btf_type_is_var(t)) {
12593 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
12594 err = -EINVAL;
12595 goto err_put;
12596 }
12597
12598 sym_name = btf_name_by_offset(btf, t->name_off);
12599 addr = kallsyms_lookup_name(sym_name);
12600 if (!addr) {
12601 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
12602 sym_name);
12603 err = -ENOENT;
12604 goto err_put;
12605 }
12606
12607 datasec_id = find_btf_percpu_datasec(btf);
12608 if (datasec_id > 0) {
12609 datasec = btf_type_by_id(btf, datasec_id);
12610 for_each_vsi(i, datasec, vsi) {
12611 if (vsi->type == id) {
12612 percpu = true;
12613 break;
12614 }
12615 }
12616 }
12617
12618 insn[0].imm = (u32)addr;
12619 insn[1].imm = addr >> 32;
12620
12621 type = t->type;
12622 t = btf_type_skip_modifiers(btf, type, NULL);
12623 if (percpu) {
12624 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
12625 aux->btf_var.btf = btf;
12626 aux->btf_var.btf_id = type;
12627 } else if (!btf_type_is_struct(t)) {
12628 const struct btf_type *ret;
12629 const char *tname;
12630 u32 tsize;
12631
12632 /* resolve the type size of ksym. */
12633 ret = btf_resolve_size(btf, t, &tsize);
12634 if (IS_ERR(ret)) {
12635 tname = btf_name_by_offset(btf, t->name_off);
12636 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
12637 tname, PTR_ERR(ret));
12638 err = -EINVAL;
12639 goto err_put;
12640 }
12641 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
12642 aux->btf_var.mem_size = tsize;
12643 } else {
12644 aux->btf_var.reg_type = PTR_TO_BTF_ID;
12645 aux->btf_var.btf = btf;
12646 aux->btf_var.btf_id = type;
12647 }
12648
12649 /* check whether we recorded this BTF (and maybe module) already */
12650 for (i = 0; i < env->used_btf_cnt; i++) {
12651 if (env->used_btfs[i].btf == btf) {
12652 btf_put(btf);
12653 return 0;
12654 }
12655 }
12656
12657 if (env->used_btf_cnt >= MAX_USED_BTFS) {
12658 err = -E2BIG;
12659 goto err_put;
12660 }
12661
12662 btf_mod = &env->used_btfs[env->used_btf_cnt];
12663 btf_mod->btf = btf;
12664 btf_mod->module = NULL;
12665
12666 /* if we reference variables from kernel module, bump its refcount */
12667 if (btf_is_module(btf)) {
12668 btf_mod->module = btf_try_get_module(btf);
12669 if (!btf_mod->module) {
12670 err = -ENXIO;
12671 goto err_put;
12672 }
12673 }
12674
12675 env->used_btf_cnt++;
12676
12677 return 0;
12678 err_put:
12679 btf_put(btf);
12680 return err;
12681 }
12682
is_tracing_prog_type(enum bpf_prog_type type)12683 static bool is_tracing_prog_type(enum bpf_prog_type type)
12684 {
12685 switch (type) {
12686 case BPF_PROG_TYPE_KPROBE:
12687 case BPF_PROG_TYPE_TRACEPOINT:
12688 case BPF_PROG_TYPE_PERF_EVENT:
12689 case BPF_PROG_TYPE_RAW_TRACEPOINT:
12690 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
12691 return true;
12692 default:
12693 return false;
12694 }
12695 }
12696
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)12697 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
12698 struct bpf_map *map,
12699 struct bpf_prog *prog)
12700
12701 {
12702 enum bpf_prog_type prog_type = resolve_prog_type(prog);
12703
12704 if (map_value_has_spin_lock(map)) {
12705 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
12706 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
12707 return -EINVAL;
12708 }
12709
12710 if (is_tracing_prog_type(prog_type)) {
12711 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
12712 return -EINVAL;
12713 }
12714
12715 if (prog->aux->sleepable) {
12716 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
12717 return -EINVAL;
12718 }
12719 }
12720
12721 if (map_value_has_timer(map)) {
12722 if (is_tracing_prog_type(prog_type)) {
12723 verbose(env, "tracing progs cannot use bpf_timer yet\n");
12724 return -EINVAL;
12725 }
12726 }
12727
12728 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
12729 !bpf_offload_prog_map_match(prog, map)) {
12730 verbose(env, "offload device mismatch between prog and map\n");
12731 return -EINVAL;
12732 }
12733
12734 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
12735 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
12736 return -EINVAL;
12737 }
12738
12739 if (prog->aux->sleepable)
12740 switch (map->map_type) {
12741 case BPF_MAP_TYPE_HASH:
12742 case BPF_MAP_TYPE_LRU_HASH:
12743 case BPF_MAP_TYPE_ARRAY:
12744 case BPF_MAP_TYPE_PERCPU_HASH:
12745 case BPF_MAP_TYPE_PERCPU_ARRAY:
12746 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
12747 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
12748 case BPF_MAP_TYPE_HASH_OF_MAPS:
12749 case BPF_MAP_TYPE_RINGBUF:
12750 case BPF_MAP_TYPE_USER_RINGBUF:
12751 case BPF_MAP_TYPE_INODE_STORAGE:
12752 case BPF_MAP_TYPE_SK_STORAGE:
12753 case BPF_MAP_TYPE_TASK_STORAGE:
12754 break;
12755 default:
12756 verbose(env,
12757 "Sleepable programs can only use array, hash, and ringbuf maps\n");
12758 return -EINVAL;
12759 }
12760
12761 return 0;
12762 }
12763
bpf_map_is_cgroup_storage(struct bpf_map * map)12764 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
12765 {
12766 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
12767 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
12768 }
12769
12770 /* find and rewrite pseudo imm in ld_imm64 instructions:
12771 *
12772 * 1. if it accesses map FD, replace it with actual map pointer.
12773 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
12774 *
12775 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
12776 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)12777 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
12778 {
12779 struct bpf_insn *insn = env->prog->insnsi;
12780 int insn_cnt = env->prog->len;
12781 int i, j, err;
12782
12783 err = bpf_prog_calc_tag(env->prog);
12784 if (err)
12785 return err;
12786
12787 for (i = 0; i < insn_cnt; i++, insn++) {
12788 if (BPF_CLASS(insn->code) == BPF_LDX &&
12789 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
12790 verbose(env, "BPF_LDX uses reserved fields\n");
12791 return -EINVAL;
12792 }
12793
12794 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
12795 struct bpf_insn_aux_data *aux;
12796 struct bpf_map *map;
12797 struct fd f;
12798 u64 addr;
12799 u32 fd;
12800
12801 if (i == insn_cnt - 1 || insn[1].code != 0 ||
12802 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
12803 insn[1].off != 0) {
12804 verbose(env, "invalid bpf_ld_imm64 insn\n");
12805 return -EINVAL;
12806 }
12807
12808 if (insn[0].src_reg == 0)
12809 /* valid generic load 64-bit imm */
12810 goto next_insn;
12811
12812 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
12813 aux = &env->insn_aux_data[i];
12814 err = check_pseudo_btf_id(env, insn, aux);
12815 if (err)
12816 return err;
12817 goto next_insn;
12818 }
12819
12820 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
12821 aux = &env->insn_aux_data[i];
12822 aux->ptr_type = PTR_TO_FUNC;
12823 goto next_insn;
12824 }
12825
12826 /* In final convert_pseudo_ld_imm64() step, this is
12827 * converted into regular 64-bit imm load insn.
12828 */
12829 switch (insn[0].src_reg) {
12830 case BPF_PSEUDO_MAP_VALUE:
12831 case BPF_PSEUDO_MAP_IDX_VALUE:
12832 break;
12833 case BPF_PSEUDO_MAP_FD:
12834 case BPF_PSEUDO_MAP_IDX:
12835 if (insn[1].imm == 0)
12836 break;
12837 fallthrough;
12838 default:
12839 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
12840 return -EINVAL;
12841 }
12842
12843 switch (insn[0].src_reg) {
12844 case BPF_PSEUDO_MAP_IDX_VALUE:
12845 case BPF_PSEUDO_MAP_IDX:
12846 if (bpfptr_is_null(env->fd_array)) {
12847 verbose(env, "fd_idx without fd_array is invalid\n");
12848 return -EPROTO;
12849 }
12850 if (copy_from_bpfptr_offset(&fd, env->fd_array,
12851 insn[0].imm * sizeof(fd),
12852 sizeof(fd)))
12853 return -EFAULT;
12854 break;
12855 default:
12856 fd = insn[0].imm;
12857 break;
12858 }
12859
12860 f = fdget(fd);
12861 map = __bpf_map_get(f);
12862 if (IS_ERR(map)) {
12863 verbose(env, "fd %d is not pointing to valid bpf_map\n",
12864 insn[0].imm);
12865 return PTR_ERR(map);
12866 }
12867
12868 err = check_map_prog_compatibility(env, map, env->prog);
12869 if (err) {
12870 fdput(f);
12871 return err;
12872 }
12873
12874 aux = &env->insn_aux_data[i];
12875 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
12876 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
12877 addr = (unsigned long)map;
12878 } else {
12879 u32 off = insn[1].imm;
12880
12881 if (off >= BPF_MAX_VAR_OFF) {
12882 verbose(env, "direct value offset of %u is not allowed\n", off);
12883 fdput(f);
12884 return -EINVAL;
12885 }
12886
12887 if (!map->ops->map_direct_value_addr) {
12888 verbose(env, "no direct value access support for this map type\n");
12889 fdput(f);
12890 return -EINVAL;
12891 }
12892
12893 err = map->ops->map_direct_value_addr(map, &addr, off);
12894 if (err) {
12895 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
12896 map->value_size, off);
12897 fdput(f);
12898 return err;
12899 }
12900
12901 aux->map_off = off;
12902 addr += off;
12903 }
12904
12905 insn[0].imm = (u32)addr;
12906 insn[1].imm = addr >> 32;
12907
12908 /* check whether we recorded this map already */
12909 for (j = 0; j < env->used_map_cnt; j++) {
12910 if (env->used_maps[j] == map) {
12911 aux->map_index = j;
12912 fdput(f);
12913 goto next_insn;
12914 }
12915 }
12916
12917 if (env->used_map_cnt >= MAX_USED_MAPS) {
12918 fdput(f);
12919 return -E2BIG;
12920 }
12921
12922 /* hold the map. If the program is rejected by verifier,
12923 * the map will be released by release_maps() or it
12924 * will be used by the valid program until it's unloaded
12925 * and all maps are released in free_used_maps()
12926 */
12927 bpf_map_inc(map);
12928
12929 aux->map_index = env->used_map_cnt;
12930 env->used_maps[env->used_map_cnt++] = map;
12931
12932 if (bpf_map_is_cgroup_storage(map) &&
12933 bpf_cgroup_storage_assign(env->prog->aux, map)) {
12934 verbose(env, "only one cgroup storage of each type is allowed\n");
12935 fdput(f);
12936 return -EBUSY;
12937 }
12938
12939 fdput(f);
12940 next_insn:
12941 insn++;
12942 i++;
12943 continue;
12944 }
12945
12946 /* Basic sanity check before we invest more work here. */
12947 if (!bpf_opcode_in_insntable(insn->code)) {
12948 verbose(env, "unknown opcode %02x\n", insn->code);
12949 return -EINVAL;
12950 }
12951 }
12952
12953 /* now all pseudo BPF_LD_IMM64 instructions load valid
12954 * 'struct bpf_map *' into a register instead of user map_fd.
12955 * These pointers will be used later by verifier to validate map access.
12956 */
12957 return 0;
12958 }
12959
12960 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)12961 static void release_maps(struct bpf_verifier_env *env)
12962 {
12963 __bpf_free_used_maps(env->prog->aux, env->used_maps,
12964 env->used_map_cnt);
12965 }
12966
12967 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)12968 static void release_btfs(struct bpf_verifier_env *env)
12969 {
12970 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12971 env->used_btf_cnt);
12972 }
12973
12974 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)12975 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
12976 {
12977 struct bpf_insn *insn = env->prog->insnsi;
12978 int insn_cnt = env->prog->len;
12979 int i;
12980
12981 for (i = 0; i < insn_cnt; i++, insn++) {
12982 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12983 continue;
12984 if (insn->src_reg == BPF_PSEUDO_FUNC)
12985 continue;
12986 insn->src_reg = 0;
12987 }
12988 }
12989
12990 /* single env->prog->insni[off] instruction was replaced with the range
12991 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
12992 * [0, off) and [off, end) to new locations, so the patched range stays zero
12993 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)12994 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12995 struct bpf_insn_aux_data *new_data,
12996 struct bpf_prog *new_prog, u32 off, u32 cnt)
12997 {
12998 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
12999 struct bpf_insn *insn = new_prog->insnsi;
13000 u32 old_seen = old_data[off].seen;
13001 u32 prog_len;
13002 int i;
13003
13004 /* aux info at OFF always needs adjustment, no matter fast path
13005 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
13006 * original insn at old prog.
13007 */
13008 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
13009
13010 if (cnt == 1)
13011 return;
13012 prog_len = new_prog->len;
13013
13014 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
13015 memcpy(new_data + off + cnt - 1, old_data + off,
13016 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
13017 for (i = off; i < off + cnt - 1; i++) {
13018 /* Expand insni[off]'s seen count to the patched range. */
13019 new_data[i].seen = old_seen;
13020 new_data[i].zext_dst = insn_has_def32(env, insn + i);
13021 }
13022 env->insn_aux_data = new_data;
13023 vfree(old_data);
13024 }
13025
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)13026 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
13027 {
13028 int i;
13029
13030 if (len == 1)
13031 return;
13032 /* NOTE: fake 'exit' subprog should be updated as well. */
13033 for (i = 0; i <= env->subprog_cnt; i++) {
13034 if (env->subprog_info[i].start <= off)
13035 continue;
13036 env->subprog_info[i].start += len - 1;
13037 }
13038 }
13039
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)13040 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
13041 {
13042 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
13043 int i, sz = prog->aux->size_poke_tab;
13044 struct bpf_jit_poke_descriptor *desc;
13045
13046 for (i = 0; i < sz; i++) {
13047 desc = &tab[i];
13048 if (desc->insn_idx <= off)
13049 continue;
13050 desc->insn_idx += len - 1;
13051 }
13052 }
13053
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)13054 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
13055 const struct bpf_insn *patch, u32 len)
13056 {
13057 struct bpf_prog *new_prog;
13058 struct bpf_insn_aux_data *new_data = NULL;
13059
13060 if (len > 1) {
13061 new_data = vzalloc(array_size(env->prog->len + len - 1,
13062 sizeof(struct bpf_insn_aux_data)));
13063 if (!new_data)
13064 return NULL;
13065 }
13066
13067 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
13068 if (IS_ERR(new_prog)) {
13069 if (PTR_ERR(new_prog) == -ERANGE)
13070 verbose(env,
13071 "insn %d cannot be patched due to 16-bit range\n",
13072 env->insn_aux_data[off].orig_idx);
13073 vfree(new_data);
13074 return NULL;
13075 }
13076 adjust_insn_aux_data(env, new_data, new_prog, off, len);
13077 adjust_subprog_starts(env, off, len);
13078 adjust_poke_descs(new_prog, off, len);
13079 return new_prog;
13080 }
13081
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)13082 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
13083 u32 off, u32 cnt)
13084 {
13085 int i, j;
13086
13087 /* find first prog starting at or after off (first to remove) */
13088 for (i = 0; i < env->subprog_cnt; i++)
13089 if (env->subprog_info[i].start >= off)
13090 break;
13091 /* find first prog starting at or after off + cnt (first to stay) */
13092 for (j = i; j < env->subprog_cnt; j++)
13093 if (env->subprog_info[j].start >= off + cnt)
13094 break;
13095 /* if j doesn't start exactly at off + cnt, we are just removing
13096 * the front of previous prog
13097 */
13098 if (env->subprog_info[j].start != off + cnt)
13099 j--;
13100
13101 if (j > i) {
13102 struct bpf_prog_aux *aux = env->prog->aux;
13103 int move;
13104
13105 /* move fake 'exit' subprog as well */
13106 move = env->subprog_cnt + 1 - j;
13107
13108 memmove(env->subprog_info + i,
13109 env->subprog_info + j,
13110 sizeof(*env->subprog_info) * move);
13111 env->subprog_cnt -= j - i;
13112
13113 /* remove func_info */
13114 if (aux->func_info) {
13115 move = aux->func_info_cnt - j;
13116
13117 memmove(aux->func_info + i,
13118 aux->func_info + j,
13119 sizeof(*aux->func_info) * move);
13120 aux->func_info_cnt -= j - i;
13121 /* func_info->insn_off is set after all code rewrites,
13122 * in adjust_btf_func() - no need to adjust
13123 */
13124 }
13125 } else {
13126 /* convert i from "first prog to remove" to "first to adjust" */
13127 if (env->subprog_info[i].start == off)
13128 i++;
13129 }
13130
13131 /* update fake 'exit' subprog as well */
13132 for (; i <= env->subprog_cnt; i++)
13133 env->subprog_info[i].start -= cnt;
13134
13135 return 0;
13136 }
13137
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)13138 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
13139 u32 cnt)
13140 {
13141 struct bpf_prog *prog = env->prog;
13142 u32 i, l_off, l_cnt, nr_linfo;
13143 struct bpf_line_info *linfo;
13144
13145 nr_linfo = prog->aux->nr_linfo;
13146 if (!nr_linfo)
13147 return 0;
13148
13149 linfo = prog->aux->linfo;
13150
13151 /* find first line info to remove, count lines to be removed */
13152 for (i = 0; i < nr_linfo; i++)
13153 if (linfo[i].insn_off >= off)
13154 break;
13155
13156 l_off = i;
13157 l_cnt = 0;
13158 for (; i < nr_linfo; i++)
13159 if (linfo[i].insn_off < off + cnt)
13160 l_cnt++;
13161 else
13162 break;
13163
13164 /* First live insn doesn't match first live linfo, it needs to "inherit"
13165 * last removed linfo. prog is already modified, so prog->len == off
13166 * means no live instructions after (tail of the program was removed).
13167 */
13168 if (prog->len != off && l_cnt &&
13169 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
13170 l_cnt--;
13171 linfo[--i].insn_off = off + cnt;
13172 }
13173
13174 /* remove the line info which refer to the removed instructions */
13175 if (l_cnt) {
13176 memmove(linfo + l_off, linfo + i,
13177 sizeof(*linfo) * (nr_linfo - i));
13178
13179 prog->aux->nr_linfo -= l_cnt;
13180 nr_linfo = prog->aux->nr_linfo;
13181 }
13182
13183 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
13184 for (i = l_off; i < nr_linfo; i++)
13185 linfo[i].insn_off -= cnt;
13186
13187 /* fix up all subprogs (incl. 'exit') which start >= off */
13188 for (i = 0; i <= env->subprog_cnt; i++)
13189 if (env->subprog_info[i].linfo_idx > l_off) {
13190 /* program may have started in the removed region but
13191 * may not be fully removed
13192 */
13193 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
13194 env->subprog_info[i].linfo_idx -= l_cnt;
13195 else
13196 env->subprog_info[i].linfo_idx = l_off;
13197 }
13198
13199 return 0;
13200 }
13201
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)13202 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
13203 {
13204 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13205 unsigned int orig_prog_len = env->prog->len;
13206 int err;
13207
13208 if (bpf_prog_is_dev_bound(env->prog->aux))
13209 bpf_prog_offload_remove_insns(env, off, cnt);
13210
13211 err = bpf_remove_insns(env->prog, off, cnt);
13212 if (err)
13213 return err;
13214
13215 err = adjust_subprog_starts_after_remove(env, off, cnt);
13216 if (err)
13217 return err;
13218
13219 err = bpf_adj_linfo_after_remove(env, off, cnt);
13220 if (err)
13221 return err;
13222
13223 memmove(aux_data + off, aux_data + off + cnt,
13224 sizeof(*aux_data) * (orig_prog_len - off - cnt));
13225
13226 return 0;
13227 }
13228
13229 /* The verifier does more data flow analysis than llvm and will not
13230 * explore branches that are dead at run time. Malicious programs can
13231 * have dead code too. Therefore replace all dead at-run-time code
13232 * with 'ja -1'.
13233 *
13234 * Just nops are not optimal, e.g. if they would sit at the end of the
13235 * program and through another bug we would manage to jump there, then
13236 * we'd execute beyond program memory otherwise. Returning exception
13237 * code also wouldn't work since we can have subprogs where the dead
13238 * code could be located.
13239 */
sanitize_dead_code(struct bpf_verifier_env * env)13240 static void sanitize_dead_code(struct bpf_verifier_env *env)
13241 {
13242 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13243 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
13244 struct bpf_insn *insn = env->prog->insnsi;
13245 const int insn_cnt = env->prog->len;
13246 int i;
13247
13248 for (i = 0; i < insn_cnt; i++) {
13249 if (aux_data[i].seen)
13250 continue;
13251 memcpy(insn + i, &trap, sizeof(trap));
13252 aux_data[i].zext_dst = false;
13253 }
13254 }
13255
insn_is_cond_jump(u8 code)13256 static bool insn_is_cond_jump(u8 code)
13257 {
13258 u8 op;
13259
13260 if (BPF_CLASS(code) == BPF_JMP32)
13261 return true;
13262
13263 if (BPF_CLASS(code) != BPF_JMP)
13264 return false;
13265
13266 op = BPF_OP(code);
13267 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
13268 }
13269
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)13270 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
13271 {
13272 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13273 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13274 struct bpf_insn *insn = env->prog->insnsi;
13275 const int insn_cnt = env->prog->len;
13276 int i;
13277
13278 for (i = 0; i < insn_cnt; i++, insn++) {
13279 if (!insn_is_cond_jump(insn->code))
13280 continue;
13281
13282 if (!aux_data[i + 1].seen)
13283 ja.off = insn->off;
13284 else if (!aux_data[i + 1 + insn->off].seen)
13285 ja.off = 0;
13286 else
13287 continue;
13288
13289 if (bpf_prog_is_dev_bound(env->prog->aux))
13290 bpf_prog_offload_replace_insn(env, i, &ja);
13291
13292 memcpy(insn, &ja, sizeof(ja));
13293 }
13294 }
13295
opt_remove_dead_code(struct bpf_verifier_env * env)13296 static int opt_remove_dead_code(struct bpf_verifier_env *env)
13297 {
13298 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13299 int insn_cnt = env->prog->len;
13300 int i, err;
13301
13302 for (i = 0; i < insn_cnt; i++) {
13303 int j;
13304
13305 j = 0;
13306 while (i + j < insn_cnt && !aux_data[i + j].seen)
13307 j++;
13308 if (!j)
13309 continue;
13310
13311 err = verifier_remove_insns(env, i, j);
13312 if (err)
13313 return err;
13314 insn_cnt = env->prog->len;
13315 }
13316
13317 return 0;
13318 }
13319
opt_remove_nops(struct bpf_verifier_env * env)13320 static int opt_remove_nops(struct bpf_verifier_env *env)
13321 {
13322 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13323 struct bpf_insn *insn = env->prog->insnsi;
13324 int insn_cnt = env->prog->len;
13325 int i, err;
13326
13327 for (i = 0; i < insn_cnt; i++) {
13328 if (memcmp(&insn[i], &ja, sizeof(ja)))
13329 continue;
13330
13331 err = verifier_remove_insns(env, i, 1);
13332 if (err)
13333 return err;
13334 insn_cnt--;
13335 i--;
13336 }
13337
13338 return 0;
13339 }
13340
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)13341 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
13342 const union bpf_attr *attr)
13343 {
13344 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
13345 struct bpf_insn_aux_data *aux = env->insn_aux_data;
13346 int i, patch_len, delta = 0, len = env->prog->len;
13347 struct bpf_insn *insns = env->prog->insnsi;
13348 struct bpf_prog *new_prog;
13349 bool rnd_hi32;
13350
13351 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
13352 zext_patch[1] = BPF_ZEXT_REG(0);
13353 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
13354 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
13355 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
13356 for (i = 0; i < len; i++) {
13357 int adj_idx = i + delta;
13358 struct bpf_insn insn;
13359 int load_reg;
13360
13361 insn = insns[adj_idx];
13362 load_reg = insn_def_regno(&insn);
13363 if (!aux[adj_idx].zext_dst) {
13364 u8 code, class;
13365 u32 imm_rnd;
13366
13367 if (!rnd_hi32)
13368 continue;
13369
13370 code = insn.code;
13371 class = BPF_CLASS(code);
13372 if (load_reg == -1)
13373 continue;
13374
13375 /* NOTE: arg "reg" (the fourth one) is only used for
13376 * BPF_STX + SRC_OP, so it is safe to pass NULL
13377 * here.
13378 */
13379 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
13380 if (class == BPF_LD &&
13381 BPF_MODE(code) == BPF_IMM)
13382 i++;
13383 continue;
13384 }
13385
13386 /* ctx load could be transformed into wider load. */
13387 if (class == BPF_LDX &&
13388 aux[adj_idx].ptr_type == PTR_TO_CTX)
13389 continue;
13390
13391 imm_rnd = get_random_u32();
13392 rnd_hi32_patch[0] = insn;
13393 rnd_hi32_patch[1].imm = imm_rnd;
13394 rnd_hi32_patch[3].dst_reg = load_reg;
13395 patch = rnd_hi32_patch;
13396 patch_len = 4;
13397 goto apply_patch_buffer;
13398 }
13399
13400 /* Add in an zero-extend instruction if a) the JIT has requested
13401 * it or b) it's a CMPXCHG.
13402 *
13403 * The latter is because: BPF_CMPXCHG always loads a value into
13404 * R0, therefore always zero-extends. However some archs'
13405 * equivalent instruction only does this load when the
13406 * comparison is successful. This detail of CMPXCHG is
13407 * orthogonal to the general zero-extension behaviour of the
13408 * CPU, so it's treated independently of bpf_jit_needs_zext.
13409 */
13410 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
13411 continue;
13412
13413 /* Zero-extension is done by the caller. */
13414 if (bpf_pseudo_kfunc_call(&insn))
13415 continue;
13416
13417 if (WARN_ON(load_reg == -1)) {
13418 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
13419 return -EFAULT;
13420 }
13421
13422 zext_patch[0] = insn;
13423 zext_patch[1].dst_reg = load_reg;
13424 zext_patch[1].src_reg = load_reg;
13425 patch = zext_patch;
13426 patch_len = 2;
13427 apply_patch_buffer:
13428 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
13429 if (!new_prog)
13430 return -ENOMEM;
13431 env->prog = new_prog;
13432 insns = new_prog->insnsi;
13433 aux = env->insn_aux_data;
13434 delta += patch_len - 1;
13435 }
13436
13437 return 0;
13438 }
13439
13440 /* convert load instructions that access fields of a context type into a
13441 * sequence of instructions that access fields of the underlying structure:
13442 * struct __sk_buff -> struct sk_buff
13443 * struct bpf_sock_ops -> struct sock
13444 */
convert_ctx_accesses(struct bpf_verifier_env * env)13445 static int convert_ctx_accesses(struct bpf_verifier_env *env)
13446 {
13447 const struct bpf_verifier_ops *ops = env->ops;
13448 int i, cnt, size, ctx_field_size, delta = 0;
13449 const int insn_cnt = env->prog->len;
13450 struct bpf_insn insn_buf[16], *insn;
13451 u32 target_size, size_default, off;
13452 struct bpf_prog *new_prog;
13453 enum bpf_access_type type;
13454 bool is_narrower_load;
13455
13456 if (ops->gen_prologue || env->seen_direct_write) {
13457 if (!ops->gen_prologue) {
13458 verbose(env, "bpf verifier is misconfigured\n");
13459 return -EINVAL;
13460 }
13461 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
13462 env->prog);
13463 if (cnt >= ARRAY_SIZE(insn_buf)) {
13464 verbose(env, "bpf verifier is misconfigured\n");
13465 return -EINVAL;
13466 } else if (cnt) {
13467 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
13468 if (!new_prog)
13469 return -ENOMEM;
13470
13471 env->prog = new_prog;
13472 delta += cnt - 1;
13473 }
13474 }
13475
13476 if (bpf_prog_is_dev_bound(env->prog->aux))
13477 return 0;
13478
13479 insn = env->prog->insnsi + delta;
13480
13481 for (i = 0; i < insn_cnt; i++, insn++) {
13482 bpf_convert_ctx_access_t convert_ctx_access;
13483 bool ctx_access;
13484
13485 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
13486 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
13487 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
13488 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
13489 type = BPF_READ;
13490 ctx_access = true;
13491 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
13492 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
13493 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
13494 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
13495 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
13496 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
13497 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
13498 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
13499 type = BPF_WRITE;
13500 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
13501 } else {
13502 continue;
13503 }
13504
13505 if (type == BPF_WRITE &&
13506 env->insn_aux_data[i + delta].sanitize_stack_spill) {
13507 struct bpf_insn patch[] = {
13508 *insn,
13509 BPF_ST_NOSPEC(),
13510 };
13511
13512 cnt = ARRAY_SIZE(patch);
13513 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
13514 if (!new_prog)
13515 return -ENOMEM;
13516
13517 delta += cnt - 1;
13518 env->prog = new_prog;
13519 insn = new_prog->insnsi + i + delta;
13520 continue;
13521 }
13522
13523 if (!ctx_access)
13524 continue;
13525
13526 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
13527 case PTR_TO_CTX:
13528 if (!ops->convert_ctx_access)
13529 continue;
13530 convert_ctx_access = ops->convert_ctx_access;
13531 break;
13532 case PTR_TO_SOCKET:
13533 case PTR_TO_SOCK_COMMON:
13534 convert_ctx_access = bpf_sock_convert_ctx_access;
13535 break;
13536 case PTR_TO_TCP_SOCK:
13537 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
13538 break;
13539 case PTR_TO_XDP_SOCK:
13540 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
13541 break;
13542 case PTR_TO_BTF_ID:
13543 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
13544 if (type == BPF_READ) {
13545 insn->code = BPF_LDX | BPF_PROBE_MEM |
13546 BPF_SIZE((insn)->code);
13547 env->prog->aux->num_exentries++;
13548 }
13549 continue;
13550 default:
13551 continue;
13552 }
13553
13554 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
13555 size = BPF_LDST_BYTES(insn);
13556
13557 /* If the read access is a narrower load of the field,
13558 * convert to a 4/8-byte load, to minimum program type specific
13559 * convert_ctx_access changes. If conversion is successful,
13560 * we will apply proper mask to the result.
13561 */
13562 is_narrower_load = size < ctx_field_size;
13563 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
13564 off = insn->off;
13565 if (is_narrower_load) {
13566 u8 size_code;
13567
13568 if (type == BPF_WRITE) {
13569 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
13570 return -EINVAL;
13571 }
13572
13573 size_code = BPF_H;
13574 if (ctx_field_size == 4)
13575 size_code = BPF_W;
13576 else if (ctx_field_size == 8)
13577 size_code = BPF_DW;
13578
13579 insn->off = off & ~(size_default - 1);
13580 insn->code = BPF_LDX | BPF_MEM | size_code;
13581 }
13582
13583 target_size = 0;
13584 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
13585 &target_size);
13586 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
13587 (ctx_field_size && !target_size)) {
13588 verbose(env, "bpf verifier is misconfigured\n");
13589 return -EINVAL;
13590 }
13591
13592 if (is_narrower_load && size < target_size) {
13593 u8 shift = bpf_ctx_narrow_access_offset(
13594 off, size, size_default) * 8;
13595 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
13596 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
13597 return -EINVAL;
13598 }
13599 if (ctx_field_size <= 4) {
13600 if (shift)
13601 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
13602 insn->dst_reg,
13603 shift);
13604 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
13605 (1 << size * 8) - 1);
13606 } else {
13607 if (shift)
13608 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
13609 insn->dst_reg,
13610 shift);
13611 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
13612 (1ULL << size * 8) - 1);
13613 }
13614 }
13615
13616 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13617 if (!new_prog)
13618 return -ENOMEM;
13619
13620 delta += cnt - 1;
13621
13622 /* keep walking new program and skip insns we just inserted */
13623 env->prog = new_prog;
13624 insn = new_prog->insnsi + i + delta;
13625 }
13626
13627 return 0;
13628 }
13629
jit_subprogs(struct bpf_verifier_env * env)13630 static int jit_subprogs(struct bpf_verifier_env *env)
13631 {
13632 struct bpf_prog *prog = env->prog, **func, *tmp;
13633 int i, j, subprog_start, subprog_end = 0, len, subprog;
13634 struct bpf_map *map_ptr;
13635 struct bpf_insn *insn;
13636 void *old_bpf_func;
13637 int err, num_exentries;
13638
13639 if (env->subprog_cnt <= 1)
13640 return 0;
13641
13642 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13643 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
13644 continue;
13645
13646 /* Upon error here we cannot fall back to interpreter but
13647 * need a hard reject of the program. Thus -EFAULT is
13648 * propagated in any case.
13649 */
13650 subprog = find_subprog(env, i + insn->imm + 1);
13651 if (subprog < 0) {
13652 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
13653 i + insn->imm + 1);
13654 return -EFAULT;
13655 }
13656 /* temporarily remember subprog id inside insn instead of
13657 * aux_data, since next loop will split up all insns into funcs
13658 */
13659 insn->off = subprog;
13660 /* remember original imm in case JIT fails and fallback
13661 * to interpreter will be needed
13662 */
13663 env->insn_aux_data[i].call_imm = insn->imm;
13664 /* point imm to __bpf_call_base+1 from JITs point of view */
13665 insn->imm = 1;
13666 if (bpf_pseudo_func(insn))
13667 /* jit (e.g. x86_64) may emit fewer instructions
13668 * if it learns a u32 imm is the same as a u64 imm.
13669 * Force a non zero here.
13670 */
13671 insn[1].imm = 1;
13672 }
13673
13674 err = bpf_prog_alloc_jited_linfo(prog);
13675 if (err)
13676 goto out_undo_insn;
13677
13678 err = -ENOMEM;
13679 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
13680 if (!func)
13681 goto out_undo_insn;
13682
13683 for (i = 0; i < env->subprog_cnt; i++) {
13684 subprog_start = subprog_end;
13685 subprog_end = env->subprog_info[i + 1].start;
13686
13687 len = subprog_end - subprog_start;
13688 /* bpf_prog_run() doesn't call subprogs directly,
13689 * hence main prog stats include the runtime of subprogs.
13690 * subprogs don't have IDs and not reachable via prog_get_next_id
13691 * func[i]->stats will never be accessed and stays NULL
13692 */
13693 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
13694 if (!func[i])
13695 goto out_free;
13696 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
13697 len * sizeof(struct bpf_insn));
13698 func[i]->type = prog->type;
13699 func[i]->len = len;
13700 if (bpf_prog_calc_tag(func[i]))
13701 goto out_free;
13702 func[i]->is_func = 1;
13703 func[i]->aux->func_idx = i;
13704 /* Below members will be freed only at prog->aux */
13705 func[i]->aux->btf = prog->aux->btf;
13706 func[i]->aux->func_info = prog->aux->func_info;
13707 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
13708 func[i]->aux->poke_tab = prog->aux->poke_tab;
13709 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
13710
13711 for (j = 0; j < prog->aux->size_poke_tab; j++) {
13712 struct bpf_jit_poke_descriptor *poke;
13713
13714 poke = &prog->aux->poke_tab[j];
13715 if (poke->insn_idx < subprog_end &&
13716 poke->insn_idx >= subprog_start)
13717 poke->aux = func[i]->aux;
13718 }
13719
13720 func[i]->aux->name[0] = 'F';
13721 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
13722 func[i]->jit_requested = 1;
13723 func[i]->blinding_requested = prog->blinding_requested;
13724 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
13725 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
13726 func[i]->aux->linfo = prog->aux->linfo;
13727 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
13728 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
13729 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
13730 num_exentries = 0;
13731 insn = func[i]->insnsi;
13732 for (j = 0; j < func[i]->len; j++, insn++) {
13733 if (BPF_CLASS(insn->code) == BPF_LDX &&
13734 BPF_MODE(insn->code) == BPF_PROBE_MEM)
13735 num_exentries++;
13736 }
13737 func[i]->aux->num_exentries = num_exentries;
13738 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
13739 func[i] = bpf_int_jit_compile(func[i]);
13740 if (!func[i]->jited) {
13741 err = -ENOTSUPP;
13742 goto out_free;
13743 }
13744 cond_resched();
13745 }
13746
13747 /* at this point all bpf functions were successfully JITed
13748 * now populate all bpf_calls with correct addresses and
13749 * run last pass of JIT
13750 */
13751 for (i = 0; i < env->subprog_cnt; i++) {
13752 insn = func[i]->insnsi;
13753 for (j = 0; j < func[i]->len; j++, insn++) {
13754 if (bpf_pseudo_func(insn)) {
13755 subprog = insn->off;
13756 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
13757 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
13758 continue;
13759 }
13760 if (!bpf_pseudo_call(insn))
13761 continue;
13762 subprog = insn->off;
13763 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
13764 }
13765
13766 /* we use the aux data to keep a list of the start addresses
13767 * of the JITed images for each function in the program
13768 *
13769 * for some architectures, such as powerpc64, the imm field
13770 * might not be large enough to hold the offset of the start
13771 * address of the callee's JITed image from __bpf_call_base
13772 *
13773 * in such cases, we can lookup the start address of a callee
13774 * by using its subprog id, available from the off field of
13775 * the call instruction, as an index for this list
13776 */
13777 func[i]->aux->func = func;
13778 func[i]->aux->func_cnt = env->subprog_cnt;
13779 }
13780 for (i = 0; i < env->subprog_cnt; i++) {
13781 old_bpf_func = func[i]->bpf_func;
13782 tmp = bpf_int_jit_compile(func[i]);
13783 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
13784 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
13785 err = -ENOTSUPP;
13786 goto out_free;
13787 }
13788 cond_resched();
13789 }
13790
13791 /* finally lock prog and jit images for all functions and
13792 * populate kallsysm
13793 */
13794 for (i = 0; i < env->subprog_cnt; i++) {
13795 bpf_prog_lock_ro(func[i]);
13796 bpf_prog_kallsyms_add(func[i]);
13797 }
13798
13799 /* Last step: make now unused interpreter insns from main
13800 * prog consistent for later dump requests, so they can
13801 * later look the same as if they were interpreted only.
13802 */
13803 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13804 if (bpf_pseudo_func(insn)) {
13805 insn[0].imm = env->insn_aux_data[i].call_imm;
13806 insn[1].imm = insn->off;
13807 insn->off = 0;
13808 continue;
13809 }
13810 if (!bpf_pseudo_call(insn))
13811 continue;
13812 insn->off = env->insn_aux_data[i].call_imm;
13813 subprog = find_subprog(env, i + insn->off + 1);
13814 insn->imm = subprog;
13815 }
13816
13817 prog->jited = 1;
13818 prog->bpf_func = func[0]->bpf_func;
13819 prog->jited_len = func[0]->jited_len;
13820 prog->aux->func = func;
13821 prog->aux->func_cnt = env->subprog_cnt;
13822 bpf_prog_jit_attempt_done(prog);
13823 return 0;
13824 out_free:
13825 /* We failed JIT'ing, so at this point we need to unregister poke
13826 * descriptors from subprogs, so that kernel is not attempting to
13827 * patch it anymore as we're freeing the subprog JIT memory.
13828 */
13829 for (i = 0; i < prog->aux->size_poke_tab; i++) {
13830 map_ptr = prog->aux->poke_tab[i].tail_call.map;
13831 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
13832 }
13833 /* At this point we're guaranteed that poke descriptors are not
13834 * live anymore. We can just unlink its descriptor table as it's
13835 * released with the main prog.
13836 */
13837 for (i = 0; i < env->subprog_cnt; i++) {
13838 if (!func[i])
13839 continue;
13840 func[i]->aux->poke_tab = NULL;
13841 bpf_jit_free(func[i]);
13842 }
13843 kfree(func);
13844 out_undo_insn:
13845 /* cleanup main prog to be interpreted */
13846 prog->jit_requested = 0;
13847 prog->blinding_requested = 0;
13848 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13849 if (!bpf_pseudo_call(insn))
13850 continue;
13851 insn->off = 0;
13852 insn->imm = env->insn_aux_data[i].call_imm;
13853 }
13854 bpf_prog_jit_attempt_done(prog);
13855 return err;
13856 }
13857
fixup_call_args(struct bpf_verifier_env * env)13858 static int fixup_call_args(struct bpf_verifier_env *env)
13859 {
13860 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13861 struct bpf_prog *prog = env->prog;
13862 struct bpf_insn *insn = prog->insnsi;
13863 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
13864 int i, depth;
13865 #endif
13866 int err = 0;
13867
13868 if (env->prog->jit_requested &&
13869 !bpf_prog_is_dev_bound(env->prog->aux)) {
13870 err = jit_subprogs(env);
13871 if (err == 0)
13872 return 0;
13873 if (err == -EFAULT)
13874 return err;
13875 }
13876 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13877 if (has_kfunc_call) {
13878 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
13879 return -EINVAL;
13880 }
13881 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
13882 /* When JIT fails the progs with bpf2bpf calls and tail_calls
13883 * have to be rejected, since interpreter doesn't support them yet.
13884 */
13885 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
13886 return -EINVAL;
13887 }
13888 for (i = 0; i < prog->len; i++, insn++) {
13889 if (bpf_pseudo_func(insn)) {
13890 /* When JIT fails the progs with callback calls
13891 * have to be rejected, since interpreter doesn't support them yet.
13892 */
13893 verbose(env, "callbacks are not allowed in non-JITed programs\n");
13894 return -EINVAL;
13895 }
13896
13897 if (!bpf_pseudo_call(insn))
13898 continue;
13899 depth = get_callee_stack_depth(env, insn, i);
13900 if (depth < 0)
13901 return depth;
13902 bpf_patch_call_args(insn, depth);
13903 }
13904 err = 0;
13905 #endif
13906 return err;
13907 }
13908
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn)13909 static int fixup_kfunc_call(struct bpf_verifier_env *env,
13910 struct bpf_insn *insn)
13911 {
13912 const struct bpf_kfunc_desc *desc;
13913
13914 if (!insn->imm) {
13915 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
13916 return -EINVAL;
13917 }
13918
13919 /* insn->imm has the btf func_id. Replace it with
13920 * an address (relative to __bpf_base_call).
13921 */
13922 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
13923 if (!desc) {
13924 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
13925 insn->imm);
13926 return -EFAULT;
13927 }
13928
13929 insn->imm = desc->imm;
13930
13931 return 0;
13932 }
13933
13934 /* Do various post-verification rewrites in a single program pass.
13935 * These rewrites simplify JIT and interpreter implementations.
13936 */
do_misc_fixups(struct bpf_verifier_env * env)13937 static int do_misc_fixups(struct bpf_verifier_env *env)
13938 {
13939 struct bpf_prog *prog = env->prog;
13940 enum bpf_attach_type eatype = prog->expected_attach_type;
13941 enum bpf_prog_type prog_type = resolve_prog_type(prog);
13942 struct bpf_insn *insn = prog->insnsi;
13943 const struct bpf_func_proto *fn;
13944 const int insn_cnt = prog->len;
13945 const struct bpf_map_ops *ops;
13946 struct bpf_insn_aux_data *aux;
13947 struct bpf_insn insn_buf[16];
13948 struct bpf_prog *new_prog;
13949 struct bpf_map *map_ptr;
13950 int i, ret, cnt, delta = 0;
13951
13952 for (i = 0; i < insn_cnt; i++, insn++) {
13953 /* Make divide-by-zero exceptions impossible. */
13954 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13955 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13956 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
13957 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
13958 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
13959 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13960 struct bpf_insn *patchlet;
13961 struct bpf_insn chk_and_div[] = {
13962 /* [R,W]x div 0 -> 0 */
13963 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13964 BPF_JNE | BPF_K, insn->src_reg,
13965 0, 2, 0),
13966 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13967 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13968 *insn,
13969 };
13970 struct bpf_insn chk_and_mod[] = {
13971 /* [R,W]x mod 0 -> [R,W]x */
13972 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13973 BPF_JEQ | BPF_K, insn->src_reg,
13974 0, 1 + (is64 ? 0 : 1), 0),
13975 *insn,
13976 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13977 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
13978 };
13979
13980 patchlet = isdiv ? chk_and_div : chk_and_mod;
13981 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
13982 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
13983
13984 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
13985 if (!new_prog)
13986 return -ENOMEM;
13987
13988 delta += cnt - 1;
13989 env->prog = prog = new_prog;
13990 insn = new_prog->insnsi + i + delta;
13991 continue;
13992 }
13993
13994 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
13995 if (BPF_CLASS(insn->code) == BPF_LD &&
13996 (BPF_MODE(insn->code) == BPF_ABS ||
13997 BPF_MODE(insn->code) == BPF_IND)) {
13998 cnt = env->ops->gen_ld_abs(insn, insn_buf);
13999 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
14000 verbose(env, "bpf verifier is misconfigured\n");
14001 return -EINVAL;
14002 }
14003
14004 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14005 if (!new_prog)
14006 return -ENOMEM;
14007
14008 delta += cnt - 1;
14009 env->prog = prog = new_prog;
14010 insn = new_prog->insnsi + i + delta;
14011 continue;
14012 }
14013
14014 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
14015 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
14016 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
14017 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
14018 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
14019 struct bpf_insn *patch = &insn_buf[0];
14020 bool issrc, isneg, isimm;
14021 u32 off_reg;
14022
14023 aux = &env->insn_aux_data[i + delta];
14024 if (!aux->alu_state ||
14025 aux->alu_state == BPF_ALU_NON_POINTER)
14026 continue;
14027
14028 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
14029 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
14030 BPF_ALU_SANITIZE_SRC;
14031 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
14032
14033 off_reg = issrc ? insn->src_reg : insn->dst_reg;
14034 if (isimm) {
14035 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
14036 } else {
14037 if (isneg)
14038 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
14039 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
14040 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
14041 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
14042 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
14043 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
14044 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
14045 }
14046 if (!issrc)
14047 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
14048 insn->src_reg = BPF_REG_AX;
14049 if (isneg)
14050 insn->code = insn->code == code_add ?
14051 code_sub : code_add;
14052 *patch++ = *insn;
14053 if (issrc && isneg && !isimm)
14054 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
14055 cnt = patch - insn_buf;
14056
14057 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14058 if (!new_prog)
14059 return -ENOMEM;
14060
14061 delta += cnt - 1;
14062 env->prog = prog = new_prog;
14063 insn = new_prog->insnsi + i + delta;
14064 continue;
14065 }
14066
14067 if (insn->code != (BPF_JMP | BPF_CALL))
14068 continue;
14069 if (insn->src_reg == BPF_PSEUDO_CALL)
14070 continue;
14071 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14072 ret = fixup_kfunc_call(env, insn);
14073 if (ret)
14074 return ret;
14075 continue;
14076 }
14077
14078 if (insn->imm == BPF_FUNC_get_route_realm)
14079 prog->dst_needed = 1;
14080 if (insn->imm == BPF_FUNC_get_prandom_u32)
14081 bpf_user_rnd_init_once();
14082 if (insn->imm == BPF_FUNC_override_return)
14083 prog->kprobe_override = 1;
14084 if (insn->imm == BPF_FUNC_tail_call) {
14085 /* If we tail call into other programs, we
14086 * cannot make any assumptions since they can
14087 * be replaced dynamically during runtime in
14088 * the program array.
14089 */
14090 prog->cb_access = 1;
14091 if (!allow_tail_call_in_subprogs(env))
14092 prog->aux->stack_depth = MAX_BPF_STACK;
14093 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
14094
14095 /* mark bpf_tail_call as different opcode to avoid
14096 * conditional branch in the interpreter for every normal
14097 * call and to prevent accidental JITing by JIT compiler
14098 * that doesn't support bpf_tail_call yet
14099 */
14100 insn->imm = 0;
14101 insn->code = BPF_JMP | BPF_TAIL_CALL;
14102
14103 aux = &env->insn_aux_data[i + delta];
14104 if (env->bpf_capable && !prog->blinding_requested &&
14105 prog->jit_requested &&
14106 !bpf_map_key_poisoned(aux) &&
14107 !bpf_map_ptr_poisoned(aux) &&
14108 !bpf_map_ptr_unpriv(aux)) {
14109 struct bpf_jit_poke_descriptor desc = {
14110 .reason = BPF_POKE_REASON_TAIL_CALL,
14111 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
14112 .tail_call.key = bpf_map_key_immediate(aux),
14113 .insn_idx = i + delta,
14114 };
14115
14116 ret = bpf_jit_add_poke_descriptor(prog, &desc);
14117 if (ret < 0) {
14118 verbose(env, "adding tail call poke descriptor failed\n");
14119 return ret;
14120 }
14121
14122 insn->imm = ret + 1;
14123 continue;
14124 }
14125
14126 if (!bpf_map_ptr_unpriv(aux))
14127 continue;
14128
14129 /* instead of changing every JIT dealing with tail_call
14130 * emit two extra insns:
14131 * if (index >= max_entries) goto out;
14132 * index &= array->index_mask;
14133 * to avoid out-of-bounds cpu speculation
14134 */
14135 if (bpf_map_ptr_poisoned(aux)) {
14136 verbose(env, "tail_call abusing map_ptr\n");
14137 return -EINVAL;
14138 }
14139
14140 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14141 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
14142 map_ptr->max_entries, 2);
14143 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
14144 container_of(map_ptr,
14145 struct bpf_array,
14146 map)->index_mask);
14147 insn_buf[2] = *insn;
14148 cnt = 3;
14149 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14150 if (!new_prog)
14151 return -ENOMEM;
14152
14153 delta += cnt - 1;
14154 env->prog = prog = new_prog;
14155 insn = new_prog->insnsi + i + delta;
14156 continue;
14157 }
14158
14159 if (insn->imm == BPF_FUNC_timer_set_callback) {
14160 /* The verifier will process callback_fn as many times as necessary
14161 * with different maps and the register states prepared by
14162 * set_timer_callback_state will be accurate.
14163 *
14164 * The following use case is valid:
14165 * map1 is shared by prog1, prog2, prog3.
14166 * prog1 calls bpf_timer_init for some map1 elements
14167 * prog2 calls bpf_timer_set_callback for some map1 elements.
14168 * Those that were not bpf_timer_init-ed will return -EINVAL.
14169 * prog3 calls bpf_timer_start for some map1 elements.
14170 * Those that were not both bpf_timer_init-ed and
14171 * bpf_timer_set_callback-ed will return -EINVAL.
14172 */
14173 struct bpf_insn ld_addrs[2] = {
14174 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
14175 };
14176
14177 insn_buf[0] = ld_addrs[0];
14178 insn_buf[1] = ld_addrs[1];
14179 insn_buf[2] = *insn;
14180 cnt = 3;
14181
14182 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14183 if (!new_prog)
14184 return -ENOMEM;
14185
14186 delta += cnt - 1;
14187 env->prog = prog = new_prog;
14188 insn = new_prog->insnsi + i + delta;
14189 goto patch_call_imm;
14190 }
14191
14192 if (insn->imm == BPF_FUNC_task_storage_get ||
14193 insn->imm == BPF_FUNC_sk_storage_get ||
14194 insn->imm == BPF_FUNC_inode_storage_get) {
14195 if (env->prog->aux->sleepable)
14196 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
14197 else
14198 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
14199 insn_buf[1] = *insn;
14200 cnt = 2;
14201
14202 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14203 if (!new_prog)
14204 return -ENOMEM;
14205
14206 delta += cnt - 1;
14207 env->prog = prog = new_prog;
14208 insn = new_prog->insnsi + i + delta;
14209 goto patch_call_imm;
14210 }
14211
14212 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
14213 * and other inlining handlers are currently limited to 64 bit
14214 * only.
14215 */
14216 if (prog->jit_requested && BITS_PER_LONG == 64 &&
14217 (insn->imm == BPF_FUNC_map_lookup_elem ||
14218 insn->imm == BPF_FUNC_map_update_elem ||
14219 insn->imm == BPF_FUNC_map_delete_elem ||
14220 insn->imm == BPF_FUNC_map_push_elem ||
14221 insn->imm == BPF_FUNC_map_pop_elem ||
14222 insn->imm == BPF_FUNC_map_peek_elem ||
14223 insn->imm == BPF_FUNC_redirect_map ||
14224 insn->imm == BPF_FUNC_for_each_map_elem ||
14225 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
14226 aux = &env->insn_aux_data[i + delta];
14227 if (bpf_map_ptr_poisoned(aux))
14228 goto patch_call_imm;
14229
14230 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14231 ops = map_ptr->ops;
14232 if (insn->imm == BPF_FUNC_map_lookup_elem &&
14233 ops->map_gen_lookup) {
14234 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
14235 if (cnt == -EOPNOTSUPP)
14236 goto patch_map_ops_generic;
14237 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
14238 verbose(env, "bpf verifier is misconfigured\n");
14239 return -EINVAL;
14240 }
14241
14242 new_prog = bpf_patch_insn_data(env, i + delta,
14243 insn_buf, cnt);
14244 if (!new_prog)
14245 return -ENOMEM;
14246
14247 delta += cnt - 1;
14248 env->prog = prog = new_prog;
14249 insn = new_prog->insnsi + i + delta;
14250 continue;
14251 }
14252
14253 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
14254 (void *(*)(struct bpf_map *map, void *key))NULL));
14255 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
14256 (int (*)(struct bpf_map *map, void *key))NULL));
14257 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
14258 (int (*)(struct bpf_map *map, void *key, void *value,
14259 u64 flags))NULL));
14260 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
14261 (int (*)(struct bpf_map *map, void *value,
14262 u64 flags))NULL));
14263 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
14264 (int (*)(struct bpf_map *map, void *value))NULL));
14265 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
14266 (int (*)(struct bpf_map *map, void *value))NULL));
14267 BUILD_BUG_ON(!__same_type(ops->map_redirect,
14268 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
14269 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
14270 (int (*)(struct bpf_map *map,
14271 bpf_callback_t callback_fn,
14272 void *callback_ctx,
14273 u64 flags))NULL));
14274 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
14275 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
14276
14277 patch_map_ops_generic:
14278 switch (insn->imm) {
14279 case BPF_FUNC_map_lookup_elem:
14280 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
14281 continue;
14282 case BPF_FUNC_map_update_elem:
14283 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
14284 continue;
14285 case BPF_FUNC_map_delete_elem:
14286 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
14287 continue;
14288 case BPF_FUNC_map_push_elem:
14289 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
14290 continue;
14291 case BPF_FUNC_map_pop_elem:
14292 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
14293 continue;
14294 case BPF_FUNC_map_peek_elem:
14295 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
14296 continue;
14297 case BPF_FUNC_redirect_map:
14298 insn->imm = BPF_CALL_IMM(ops->map_redirect);
14299 continue;
14300 case BPF_FUNC_for_each_map_elem:
14301 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
14302 continue;
14303 case BPF_FUNC_map_lookup_percpu_elem:
14304 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
14305 continue;
14306 }
14307
14308 goto patch_call_imm;
14309 }
14310
14311 /* Implement bpf_jiffies64 inline. */
14312 if (prog->jit_requested && BITS_PER_LONG == 64 &&
14313 insn->imm == BPF_FUNC_jiffies64) {
14314 struct bpf_insn ld_jiffies_addr[2] = {
14315 BPF_LD_IMM64(BPF_REG_0,
14316 (unsigned long)&jiffies),
14317 };
14318
14319 insn_buf[0] = ld_jiffies_addr[0];
14320 insn_buf[1] = ld_jiffies_addr[1];
14321 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
14322 BPF_REG_0, 0);
14323 cnt = 3;
14324
14325 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
14326 cnt);
14327 if (!new_prog)
14328 return -ENOMEM;
14329
14330 delta += cnt - 1;
14331 env->prog = prog = new_prog;
14332 insn = new_prog->insnsi + i + delta;
14333 continue;
14334 }
14335
14336 /* Implement bpf_get_func_arg inline. */
14337 if (prog_type == BPF_PROG_TYPE_TRACING &&
14338 insn->imm == BPF_FUNC_get_func_arg) {
14339 /* Load nr_args from ctx - 8 */
14340 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14341 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
14342 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
14343 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
14344 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
14345 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14346 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
14347 insn_buf[7] = BPF_JMP_A(1);
14348 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
14349 cnt = 9;
14350
14351 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14352 if (!new_prog)
14353 return -ENOMEM;
14354
14355 delta += cnt - 1;
14356 env->prog = prog = new_prog;
14357 insn = new_prog->insnsi + i + delta;
14358 continue;
14359 }
14360
14361 /* Implement bpf_get_func_ret inline. */
14362 if (prog_type == BPF_PROG_TYPE_TRACING &&
14363 insn->imm == BPF_FUNC_get_func_ret) {
14364 if (eatype == BPF_TRACE_FEXIT ||
14365 eatype == BPF_MODIFY_RETURN) {
14366 /* Load nr_args from ctx - 8 */
14367 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14368 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
14369 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
14370 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14371 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
14372 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
14373 cnt = 6;
14374 } else {
14375 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
14376 cnt = 1;
14377 }
14378
14379 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14380 if (!new_prog)
14381 return -ENOMEM;
14382
14383 delta += cnt - 1;
14384 env->prog = prog = new_prog;
14385 insn = new_prog->insnsi + i + delta;
14386 continue;
14387 }
14388
14389 /* Implement get_func_arg_cnt inline. */
14390 if (prog_type == BPF_PROG_TYPE_TRACING &&
14391 insn->imm == BPF_FUNC_get_func_arg_cnt) {
14392 /* Load nr_args from ctx - 8 */
14393 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14394
14395 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14396 if (!new_prog)
14397 return -ENOMEM;
14398
14399 env->prog = prog = new_prog;
14400 insn = new_prog->insnsi + i + delta;
14401 continue;
14402 }
14403
14404 /* Implement bpf_get_func_ip inline. */
14405 if (prog_type == BPF_PROG_TYPE_TRACING &&
14406 insn->imm == BPF_FUNC_get_func_ip) {
14407 /* Load IP address from ctx - 16 */
14408 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
14409
14410 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14411 if (!new_prog)
14412 return -ENOMEM;
14413
14414 env->prog = prog = new_prog;
14415 insn = new_prog->insnsi + i + delta;
14416 continue;
14417 }
14418
14419 patch_call_imm:
14420 fn = env->ops->get_func_proto(insn->imm, env->prog);
14421 /* all functions that have prototype and verifier allowed
14422 * programs to call them, must be real in-kernel functions
14423 */
14424 if (!fn->func) {
14425 verbose(env,
14426 "kernel subsystem misconfigured func %s#%d\n",
14427 func_id_name(insn->imm), insn->imm);
14428 return -EFAULT;
14429 }
14430 insn->imm = fn->func - __bpf_call_base;
14431 }
14432
14433 /* Since poke tab is now finalized, publish aux to tracker. */
14434 for (i = 0; i < prog->aux->size_poke_tab; i++) {
14435 map_ptr = prog->aux->poke_tab[i].tail_call.map;
14436 if (!map_ptr->ops->map_poke_track ||
14437 !map_ptr->ops->map_poke_untrack ||
14438 !map_ptr->ops->map_poke_run) {
14439 verbose(env, "bpf verifier is misconfigured\n");
14440 return -EINVAL;
14441 }
14442
14443 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
14444 if (ret < 0) {
14445 verbose(env, "tracking tail call prog failed\n");
14446 return ret;
14447 }
14448 }
14449
14450 sort_kfunc_descs_by_imm(env->prog);
14451
14452 return 0;
14453 }
14454
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * cnt)14455 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
14456 int position,
14457 s32 stack_base,
14458 u32 callback_subprogno,
14459 u32 *cnt)
14460 {
14461 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
14462 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
14463 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
14464 int reg_loop_max = BPF_REG_6;
14465 int reg_loop_cnt = BPF_REG_7;
14466 int reg_loop_ctx = BPF_REG_8;
14467
14468 struct bpf_prog *new_prog;
14469 u32 callback_start;
14470 u32 call_insn_offset;
14471 s32 callback_offset;
14472
14473 /* This represents an inlined version of bpf_iter.c:bpf_loop,
14474 * be careful to modify this code in sync.
14475 */
14476 struct bpf_insn insn_buf[] = {
14477 /* Return error and jump to the end of the patch if
14478 * expected number of iterations is too big.
14479 */
14480 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
14481 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
14482 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
14483 /* spill R6, R7, R8 to use these as loop vars */
14484 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
14485 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
14486 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
14487 /* initialize loop vars */
14488 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
14489 BPF_MOV32_IMM(reg_loop_cnt, 0),
14490 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
14491 /* loop header,
14492 * if reg_loop_cnt >= reg_loop_max skip the loop body
14493 */
14494 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
14495 /* callback call,
14496 * correct callback offset would be set after patching
14497 */
14498 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
14499 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
14500 BPF_CALL_REL(0),
14501 /* increment loop counter */
14502 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
14503 /* jump to loop header if callback returned 0 */
14504 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
14505 /* return value of bpf_loop,
14506 * set R0 to the number of iterations
14507 */
14508 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
14509 /* restore original values of R6, R7, R8 */
14510 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
14511 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
14512 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
14513 };
14514
14515 *cnt = ARRAY_SIZE(insn_buf);
14516 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
14517 if (!new_prog)
14518 return new_prog;
14519
14520 /* callback start is known only after patching */
14521 callback_start = env->subprog_info[callback_subprogno].start;
14522 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
14523 call_insn_offset = position + 12;
14524 callback_offset = callback_start - call_insn_offset - 1;
14525 new_prog->insnsi[call_insn_offset].imm = callback_offset;
14526
14527 return new_prog;
14528 }
14529
is_bpf_loop_call(struct bpf_insn * insn)14530 static bool is_bpf_loop_call(struct bpf_insn *insn)
14531 {
14532 return insn->code == (BPF_JMP | BPF_CALL) &&
14533 insn->src_reg == 0 &&
14534 insn->imm == BPF_FUNC_loop;
14535 }
14536
14537 /* For all sub-programs in the program (including main) check
14538 * insn_aux_data to see if there are bpf_loop calls that require
14539 * inlining. If such calls are found the calls are replaced with a
14540 * sequence of instructions produced by `inline_bpf_loop` function and
14541 * subprog stack_depth is increased by the size of 3 registers.
14542 * This stack space is used to spill values of the R6, R7, R8. These
14543 * registers are used to store the loop bound, counter and context
14544 * variables.
14545 */
optimize_bpf_loop(struct bpf_verifier_env * env)14546 static int optimize_bpf_loop(struct bpf_verifier_env *env)
14547 {
14548 struct bpf_subprog_info *subprogs = env->subprog_info;
14549 int i, cur_subprog = 0, cnt, delta = 0;
14550 struct bpf_insn *insn = env->prog->insnsi;
14551 int insn_cnt = env->prog->len;
14552 u16 stack_depth = subprogs[cur_subprog].stack_depth;
14553 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14554 u16 stack_depth_extra = 0;
14555
14556 for (i = 0; i < insn_cnt; i++, insn++) {
14557 struct bpf_loop_inline_state *inline_state =
14558 &env->insn_aux_data[i + delta].loop_inline_state;
14559
14560 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
14561 struct bpf_prog *new_prog;
14562
14563 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
14564 new_prog = inline_bpf_loop(env,
14565 i + delta,
14566 -(stack_depth + stack_depth_extra),
14567 inline_state->callback_subprogno,
14568 &cnt);
14569 if (!new_prog)
14570 return -ENOMEM;
14571
14572 delta += cnt - 1;
14573 env->prog = new_prog;
14574 insn = new_prog->insnsi + i + delta;
14575 }
14576
14577 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
14578 subprogs[cur_subprog].stack_depth += stack_depth_extra;
14579 cur_subprog++;
14580 stack_depth = subprogs[cur_subprog].stack_depth;
14581 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14582 stack_depth_extra = 0;
14583 }
14584 }
14585
14586 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14587
14588 return 0;
14589 }
14590
free_states(struct bpf_verifier_env * env)14591 static void free_states(struct bpf_verifier_env *env)
14592 {
14593 struct bpf_verifier_state_list *sl, *sln;
14594 int i;
14595
14596 sl = env->free_list;
14597 while (sl) {
14598 sln = sl->next;
14599 free_verifier_state(&sl->state, false);
14600 kfree(sl);
14601 sl = sln;
14602 }
14603 env->free_list = NULL;
14604
14605 if (!env->explored_states)
14606 return;
14607
14608 for (i = 0; i < state_htab_size(env); i++) {
14609 sl = env->explored_states[i];
14610
14611 while (sl) {
14612 sln = sl->next;
14613 free_verifier_state(&sl->state, false);
14614 kfree(sl);
14615 sl = sln;
14616 }
14617 env->explored_states[i] = NULL;
14618 }
14619 }
14620
do_check_common(struct bpf_verifier_env * env,int subprog)14621 static int do_check_common(struct bpf_verifier_env *env, int subprog)
14622 {
14623 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
14624 struct bpf_verifier_state *state;
14625 struct bpf_reg_state *regs;
14626 int ret, i;
14627
14628 env->prev_linfo = NULL;
14629 env->pass_cnt++;
14630
14631 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
14632 if (!state)
14633 return -ENOMEM;
14634 state->curframe = 0;
14635 state->speculative = false;
14636 state->branches = 1;
14637 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
14638 if (!state->frame[0]) {
14639 kfree(state);
14640 return -ENOMEM;
14641 }
14642 env->cur_state = state;
14643 init_func_state(env, state->frame[0],
14644 BPF_MAIN_FUNC /* callsite */,
14645 0 /* frameno */,
14646 subprog);
14647
14648 regs = state->frame[state->curframe]->regs;
14649 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
14650 ret = btf_prepare_func_args(env, subprog, regs);
14651 if (ret)
14652 goto out;
14653 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
14654 if (regs[i].type == PTR_TO_CTX)
14655 mark_reg_known_zero(env, regs, i);
14656 else if (regs[i].type == SCALAR_VALUE)
14657 mark_reg_unknown(env, regs, i);
14658 else if (base_type(regs[i].type) == PTR_TO_MEM) {
14659 const u32 mem_size = regs[i].mem_size;
14660
14661 mark_reg_known_zero(env, regs, i);
14662 regs[i].mem_size = mem_size;
14663 regs[i].id = ++env->id_gen;
14664 }
14665 }
14666 } else {
14667 /* 1st arg to a function */
14668 regs[BPF_REG_1].type = PTR_TO_CTX;
14669 mark_reg_known_zero(env, regs, BPF_REG_1);
14670 ret = btf_check_subprog_arg_match(env, subprog, regs);
14671 if (ret == -EFAULT)
14672 /* unlikely verifier bug. abort.
14673 * ret == 0 and ret < 0 are sadly acceptable for
14674 * main() function due to backward compatibility.
14675 * Like socket filter program may be written as:
14676 * int bpf_prog(struct pt_regs *ctx)
14677 * and never dereference that ctx in the program.
14678 * 'struct pt_regs' is a type mismatch for socket
14679 * filter that should be using 'struct __sk_buff'.
14680 */
14681 goto out;
14682 }
14683
14684 ret = do_check(env);
14685 out:
14686 /* check for NULL is necessary, since cur_state can be freed inside
14687 * do_check() under memory pressure.
14688 */
14689 if (env->cur_state) {
14690 free_verifier_state(env->cur_state, true);
14691 env->cur_state = NULL;
14692 }
14693 while (!pop_stack(env, NULL, NULL, false));
14694 if (!ret && pop_log)
14695 bpf_vlog_reset(&env->log, 0);
14696 free_states(env);
14697 return ret;
14698 }
14699
14700 /* Verify all global functions in a BPF program one by one based on their BTF.
14701 * All global functions must pass verification. Otherwise the whole program is rejected.
14702 * Consider:
14703 * int bar(int);
14704 * int foo(int f)
14705 * {
14706 * return bar(f);
14707 * }
14708 * int bar(int b)
14709 * {
14710 * ...
14711 * }
14712 * foo() will be verified first for R1=any_scalar_value. During verification it
14713 * will be assumed that bar() already verified successfully and call to bar()
14714 * from foo() will be checked for type match only. Later bar() will be verified
14715 * independently to check that it's safe for R1=any_scalar_value.
14716 */
do_check_subprogs(struct bpf_verifier_env * env)14717 static int do_check_subprogs(struct bpf_verifier_env *env)
14718 {
14719 struct bpf_prog_aux *aux = env->prog->aux;
14720 int i, ret;
14721
14722 if (!aux->func_info)
14723 return 0;
14724
14725 for (i = 1; i < env->subprog_cnt; i++) {
14726 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
14727 continue;
14728 env->insn_idx = env->subprog_info[i].start;
14729 WARN_ON_ONCE(env->insn_idx == 0);
14730 ret = do_check_common(env, i);
14731 if (ret) {
14732 return ret;
14733 } else if (env->log.level & BPF_LOG_LEVEL) {
14734 verbose(env,
14735 "Func#%d is safe for any args that match its prototype\n",
14736 i);
14737 }
14738 }
14739 return 0;
14740 }
14741
do_check_main(struct bpf_verifier_env * env)14742 static int do_check_main(struct bpf_verifier_env *env)
14743 {
14744 int ret;
14745
14746 env->insn_idx = 0;
14747 ret = do_check_common(env, 0);
14748 if (!ret)
14749 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14750 return ret;
14751 }
14752
14753
print_verification_stats(struct bpf_verifier_env * env)14754 static void print_verification_stats(struct bpf_verifier_env *env)
14755 {
14756 int i;
14757
14758 if (env->log.level & BPF_LOG_STATS) {
14759 verbose(env, "verification time %lld usec\n",
14760 div_u64(env->verification_time, 1000));
14761 verbose(env, "stack depth ");
14762 for (i = 0; i < env->subprog_cnt; i++) {
14763 u32 depth = env->subprog_info[i].stack_depth;
14764
14765 verbose(env, "%d", depth);
14766 if (i + 1 < env->subprog_cnt)
14767 verbose(env, "+");
14768 }
14769 verbose(env, "\n");
14770 }
14771 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
14772 "total_states %d peak_states %d mark_read %d\n",
14773 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
14774 env->max_states_per_insn, env->total_states,
14775 env->peak_states, env->longest_mark_read_walk);
14776 }
14777
check_struct_ops_btf_id(struct bpf_verifier_env * env)14778 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
14779 {
14780 const struct btf_type *t, *func_proto;
14781 const struct bpf_struct_ops *st_ops;
14782 const struct btf_member *member;
14783 struct bpf_prog *prog = env->prog;
14784 u32 btf_id, member_idx;
14785 const char *mname;
14786
14787 if (!prog->gpl_compatible) {
14788 verbose(env, "struct ops programs must have a GPL compatible license\n");
14789 return -EINVAL;
14790 }
14791
14792 btf_id = prog->aux->attach_btf_id;
14793 st_ops = bpf_struct_ops_find(btf_id);
14794 if (!st_ops) {
14795 verbose(env, "attach_btf_id %u is not a supported struct\n",
14796 btf_id);
14797 return -ENOTSUPP;
14798 }
14799
14800 t = st_ops->type;
14801 member_idx = prog->expected_attach_type;
14802 if (member_idx >= btf_type_vlen(t)) {
14803 verbose(env, "attach to invalid member idx %u of struct %s\n",
14804 member_idx, st_ops->name);
14805 return -EINVAL;
14806 }
14807
14808 member = &btf_type_member(t)[member_idx];
14809 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
14810 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
14811 NULL);
14812 if (!func_proto) {
14813 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
14814 mname, member_idx, st_ops->name);
14815 return -EINVAL;
14816 }
14817
14818 if (st_ops->check_member) {
14819 int err = st_ops->check_member(t, member);
14820
14821 if (err) {
14822 verbose(env, "attach to unsupported member %s of struct %s\n",
14823 mname, st_ops->name);
14824 return err;
14825 }
14826 }
14827
14828 prog->aux->attach_func_proto = func_proto;
14829 prog->aux->attach_func_name = mname;
14830 env->ops = st_ops->verifier_ops;
14831
14832 return 0;
14833 }
14834 #define SECURITY_PREFIX "security_"
14835
check_attach_modify_return(unsigned long addr,const char * func_name)14836 static int check_attach_modify_return(unsigned long addr, const char *func_name)
14837 {
14838 if (within_error_injection_list(addr) ||
14839 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
14840 return 0;
14841
14842 return -EINVAL;
14843 }
14844
14845 /* list of non-sleepable functions that are otherwise on
14846 * ALLOW_ERROR_INJECTION list
14847 */
14848 BTF_SET_START(btf_non_sleepable_error_inject)
14849 /* Three functions below can be called from sleepable and non-sleepable context.
14850 * Assume non-sleepable from bpf safety point of view.
14851 */
BTF_ID(func,__filemap_add_folio)14852 BTF_ID(func, __filemap_add_folio)
14853 BTF_ID(func, should_fail_alloc_page)
14854 BTF_ID(func, should_failslab)
14855 BTF_SET_END(btf_non_sleepable_error_inject)
14856
14857 static int check_non_sleepable_error_inject(u32 btf_id)
14858 {
14859 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
14860 }
14861
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)14862 int bpf_check_attach_target(struct bpf_verifier_log *log,
14863 const struct bpf_prog *prog,
14864 const struct bpf_prog *tgt_prog,
14865 u32 btf_id,
14866 struct bpf_attach_target_info *tgt_info)
14867 {
14868 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
14869 const char prefix[] = "btf_trace_";
14870 int ret = 0, subprog = -1, i;
14871 const struct btf_type *t;
14872 bool conservative = true;
14873 const char *tname;
14874 struct btf *btf;
14875 long addr = 0;
14876
14877 if (!btf_id) {
14878 bpf_log(log, "Tracing programs must provide btf_id\n");
14879 return -EINVAL;
14880 }
14881 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
14882 if (!btf) {
14883 bpf_log(log,
14884 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
14885 return -EINVAL;
14886 }
14887 t = btf_type_by_id(btf, btf_id);
14888 if (!t) {
14889 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
14890 return -EINVAL;
14891 }
14892 tname = btf_name_by_offset(btf, t->name_off);
14893 if (!tname) {
14894 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
14895 return -EINVAL;
14896 }
14897 if (tgt_prog) {
14898 struct bpf_prog_aux *aux = tgt_prog->aux;
14899
14900 for (i = 0; i < aux->func_info_cnt; i++)
14901 if (aux->func_info[i].type_id == btf_id) {
14902 subprog = i;
14903 break;
14904 }
14905 if (subprog == -1) {
14906 bpf_log(log, "Subprog %s doesn't exist\n", tname);
14907 return -EINVAL;
14908 }
14909 conservative = aux->func_info_aux[subprog].unreliable;
14910 if (prog_extension) {
14911 if (conservative) {
14912 bpf_log(log,
14913 "Cannot replace static functions\n");
14914 return -EINVAL;
14915 }
14916 if (!prog->jit_requested) {
14917 bpf_log(log,
14918 "Extension programs should be JITed\n");
14919 return -EINVAL;
14920 }
14921 }
14922 if (!tgt_prog->jited) {
14923 bpf_log(log, "Can attach to only JITed progs\n");
14924 return -EINVAL;
14925 }
14926 if (tgt_prog->type == prog->type) {
14927 /* Cannot fentry/fexit another fentry/fexit program.
14928 * Cannot attach program extension to another extension.
14929 * It's ok to attach fentry/fexit to extension program.
14930 */
14931 bpf_log(log, "Cannot recursively attach\n");
14932 return -EINVAL;
14933 }
14934 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
14935 prog_extension &&
14936 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
14937 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
14938 /* Program extensions can extend all program types
14939 * except fentry/fexit. The reason is the following.
14940 * The fentry/fexit programs are used for performance
14941 * analysis, stats and can be attached to any program
14942 * type except themselves. When extension program is
14943 * replacing XDP function it is necessary to allow
14944 * performance analysis of all functions. Both original
14945 * XDP program and its program extension. Hence
14946 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
14947 * allowed. If extending of fentry/fexit was allowed it
14948 * would be possible to create long call chain
14949 * fentry->extension->fentry->extension beyond
14950 * reasonable stack size. Hence extending fentry is not
14951 * allowed.
14952 */
14953 bpf_log(log, "Cannot extend fentry/fexit\n");
14954 return -EINVAL;
14955 }
14956 } else {
14957 if (prog_extension) {
14958 bpf_log(log, "Cannot replace kernel functions\n");
14959 return -EINVAL;
14960 }
14961 }
14962
14963 switch (prog->expected_attach_type) {
14964 case BPF_TRACE_RAW_TP:
14965 if (tgt_prog) {
14966 bpf_log(log,
14967 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
14968 return -EINVAL;
14969 }
14970 if (!btf_type_is_typedef(t)) {
14971 bpf_log(log, "attach_btf_id %u is not a typedef\n",
14972 btf_id);
14973 return -EINVAL;
14974 }
14975 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
14976 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
14977 btf_id, tname);
14978 return -EINVAL;
14979 }
14980 tname += sizeof(prefix) - 1;
14981 t = btf_type_by_id(btf, t->type);
14982 if (!btf_type_is_ptr(t))
14983 /* should never happen in valid vmlinux build */
14984 return -EINVAL;
14985 t = btf_type_by_id(btf, t->type);
14986 if (!btf_type_is_func_proto(t))
14987 /* should never happen in valid vmlinux build */
14988 return -EINVAL;
14989
14990 break;
14991 case BPF_TRACE_ITER:
14992 if (!btf_type_is_func(t)) {
14993 bpf_log(log, "attach_btf_id %u is not a function\n",
14994 btf_id);
14995 return -EINVAL;
14996 }
14997 t = btf_type_by_id(btf, t->type);
14998 if (!btf_type_is_func_proto(t))
14999 return -EINVAL;
15000 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
15001 if (ret)
15002 return ret;
15003 break;
15004 default:
15005 if (!prog_extension)
15006 return -EINVAL;
15007 fallthrough;
15008 case BPF_MODIFY_RETURN:
15009 case BPF_LSM_MAC:
15010 case BPF_LSM_CGROUP:
15011 case BPF_TRACE_FENTRY:
15012 case BPF_TRACE_FEXIT:
15013 if (!btf_type_is_func(t)) {
15014 bpf_log(log, "attach_btf_id %u is not a function\n",
15015 btf_id);
15016 return -EINVAL;
15017 }
15018 if (prog_extension &&
15019 btf_check_type_match(log, prog, btf, t))
15020 return -EINVAL;
15021 t = btf_type_by_id(btf, t->type);
15022 if (!btf_type_is_func_proto(t))
15023 return -EINVAL;
15024
15025 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
15026 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
15027 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
15028 return -EINVAL;
15029
15030 if (tgt_prog && conservative)
15031 t = NULL;
15032
15033 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
15034 if (ret < 0)
15035 return ret;
15036
15037 if (tgt_prog) {
15038 if (subprog == 0)
15039 addr = (long) tgt_prog->bpf_func;
15040 else
15041 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
15042 } else {
15043 addr = kallsyms_lookup_name(tname);
15044 if (!addr) {
15045 bpf_log(log,
15046 "The address of function %s cannot be found\n",
15047 tname);
15048 return -ENOENT;
15049 }
15050 }
15051
15052 if (prog->aux->sleepable) {
15053 ret = -EINVAL;
15054 switch (prog->type) {
15055 case BPF_PROG_TYPE_TRACING:
15056 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
15057 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
15058 */
15059 if (!check_non_sleepable_error_inject(btf_id) &&
15060 within_error_injection_list(addr))
15061 ret = 0;
15062 break;
15063 case BPF_PROG_TYPE_LSM:
15064 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
15065 * Only some of them are sleepable.
15066 */
15067 if (bpf_lsm_is_sleepable_hook(btf_id))
15068 ret = 0;
15069 break;
15070 default:
15071 break;
15072 }
15073 if (ret) {
15074 bpf_log(log, "%s is not sleepable\n", tname);
15075 return ret;
15076 }
15077 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
15078 if (tgt_prog) {
15079 bpf_log(log, "can't modify return codes of BPF programs\n");
15080 return -EINVAL;
15081 }
15082 ret = check_attach_modify_return(addr, tname);
15083 if (ret) {
15084 bpf_log(log, "%s() is not modifiable\n", tname);
15085 return ret;
15086 }
15087 }
15088
15089 break;
15090 }
15091 tgt_info->tgt_addr = addr;
15092 tgt_info->tgt_name = tname;
15093 tgt_info->tgt_type = t;
15094 return 0;
15095 }
15096
BTF_SET_START(btf_id_deny)15097 BTF_SET_START(btf_id_deny)
15098 BTF_ID_UNUSED
15099 #ifdef CONFIG_SMP
15100 BTF_ID(func, migrate_disable)
15101 BTF_ID(func, migrate_enable)
15102 #endif
15103 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
15104 BTF_ID(func, rcu_read_unlock_strict)
15105 #endif
15106 BTF_SET_END(btf_id_deny)
15107
15108 static int check_attach_btf_id(struct bpf_verifier_env *env)
15109 {
15110 struct bpf_prog *prog = env->prog;
15111 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
15112 struct bpf_attach_target_info tgt_info = {};
15113 u32 btf_id = prog->aux->attach_btf_id;
15114 struct bpf_trampoline *tr;
15115 int ret;
15116 u64 key;
15117
15118 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
15119 if (prog->aux->sleepable)
15120 /* attach_btf_id checked to be zero already */
15121 return 0;
15122 verbose(env, "Syscall programs can only be sleepable\n");
15123 return -EINVAL;
15124 }
15125
15126 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
15127 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
15128 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
15129 return -EINVAL;
15130 }
15131
15132 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
15133 return check_struct_ops_btf_id(env);
15134
15135 if (prog->type != BPF_PROG_TYPE_TRACING &&
15136 prog->type != BPF_PROG_TYPE_LSM &&
15137 prog->type != BPF_PROG_TYPE_EXT)
15138 return 0;
15139
15140 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
15141 if (ret)
15142 return ret;
15143
15144 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
15145 /* to make freplace equivalent to their targets, they need to
15146 * inherit env->ops and expected_attach_type for the rest of the
15147 * verification
15148 */
15149 env->ops = bpf_verifier_ops[tgt_prog->type];
15150 prog->expected_attach_type = tgt_prog->expected_attach_type;
15151 }
15152
15153 /* store info about the attachment target that will be used later */
15154 prog->aux->attach_func_proto = tgt_info.tgt_type;
15155 prog->aux->attach_func_name = tgt_info.tgt_name;
15156
15157 if (tgt_prog) {
15158 prog->aux->saved_dst_prog_type = tgt_prog->type;
15159 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
15160 }
15161
15162 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
15163 prog->aux->attach_btf_trace = true;
15164 return 0;
15165 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
15166 if (!bpf_iter_prog_supported(prog))
15167 return -EINVAL;
15168 return 0;
15169 }
15170
15171 if (prog->type == BPF_PROG_TYPE_LSM) {
15172 ret = bpf_lsm_verify_prog(&env->log, prog);
15173 if (ret < 0)
15174 return ret;
15175 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
15176 btf_id_set_contains(&btf_id_deny, btf_id)) {
15177 return -EINVAL;
15178 }
15179
15180 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
15181 tr = bpf_trampoline_get(key, &tgt_info);
15182 if (!tr)
15183 return -ENOMEM;
15184
15185 prog->aux->dst_trampoline = tr;
15186 return 0;
15187 }
15188
bpf_get_btf_vmlinux(void)15189 struct btf *bpf_get_btf_vmlinux(void)
15190 {
15191 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
15192 mutex_lock(&bpf_verifier_lock);
15193 if (!btf_vmlinux)
15194 btf_vmlinux = btf_parse_vmlinux();
15195 mutex_unlock(&bpf_verifier_lock);
15196 }
15197 return btf_vmlinux;
15198 }
15199
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr)15200 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
15201 {
15202 u64 start_time = ktime_get_ns();
15203 struct bpf_verifier_env *env;
15204 struct bpf_verifier_log *log;
15205 int i, len, ret = -EINVAL;
15206 bool is_priv;
15207
15208 /* no program is valid */
15209 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
15210 return -EINVAL;
15211
15212 /* 'struct bpf_verifier_env' can be global, but since it's not small,
15213 * allocate/free it every time bpf_check() is called
15214 */
15215 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
15216 if (!env)
15217 return -ENOMEM;
15218 log = &env->log;
15219
15220 len = (*prog)->len;
15221 env->insn_aux_data =
15222 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
15223 ret = -ENOMEM;
15224 if (!env->insn_aux_data)
15225 goto err_free_env;
15226 for (i = 0; i < len; i++)
15227 env->insn_aux_data[i].orig_idx = i;
15228 env->prog = *prog;
15229 env->ops = bpf_verifier_ops[env->prog->type];
15230 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
15231 is_priv = bpf_capable();
15232
15233 bpf_get_btf_vmlinux();
15234
15235 /* grab the mutex to protect few globals used by verifier */
15236 if (!is_priv)
15237 mutex_lock(&bpf_verifier_lock);
15238
15239 if (attr->log_level || attr->log_buf || attr->log_size) {
15240 /* user requested verbose verifier output
15241 * and supplied buffer to store the verification trace
15242 */
15243 log->level = attr->log_level;
15244 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
15245 log->len_total = attr->log_size;
15246
15247 /* log attributes have to be sane */
15248 if (!bpf_verifier_log_attr_valid(log)) {
15249 ret = -EINVAL;
15250 goto err_unlock;
15251 }
15252 }
15253
15254 mark_verifier_state_clean(env);
15255
15256 if (IS_ERR(btf_vmlinux)) {
15257 /* Either gcc or pahole or kernel are broken. */
15258 verbose(env, "in-kernel BTF is malformed\n");
15259 ret = PTR_ERR(btf_vmlinux);
15260 goto skip_full_check;
15261 }
15262
15263 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
15264 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
15265 env->strict_alignment = true;
15266 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
15267 env->strict_alignment = false;
15268
15269 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
15270 env->allow_uninit_stack = bpf_allow_uninit_stack();
15271 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
15272 env->bypass_spec_v1 = bpf_bypass_spec_v1();
15273 env->bypass_spec_v4 = bpf_bypass_spec_v4();
15274 env->bpf_capable = bpf_capable();
15275
15276 if (is_priv)
15277 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
15278
15279 env->explored_states = kvcalloc(state_htab_size(env),
15280 sizeof(struct bpf_verifier_state_list *),
15281 GFP_USER);
15282 ret = -ENOMEM;
15283 if (!env->explored_states)
15284 goto skip_full_check;
15285
15286 ret = add_subprog_and_kfunc(env);
15287 if (ret < 0)
15288 goto skip_full_check;
15289
15290 ret = check_subprogs(env);
15291 if (ret < 0)
15292 goto skip_full_check;
15293
15294 ret = check_btf_info(env, attr, uattr);
15295 if (ret < 0)
15296 goto skip_full_check;
15297
15298 ret = check_attach_btf_id(env);
15299 if (ret)
15300 goto skip_full_check;
15301
15302 ret = resolve_pseudo_ldimm64(env);
15303 if (ret < 0)
15304 goto skip_full_check;
15305
15306 if (bpf_prog_is_dev_bound(env->prog->aux)) {
15307 ret = bpf_prog_offload_verifier_prep(env->prog);
15308 if (ret)
15309 goto skip_full_check;
15310 }
15311
15312 ret = check_cfg(env);
15313 if (ret < 0)
15314 goto skip_full_check;
15315
15316 ret = do_check_subprogs(env);
15317 ret = ret ?: do_check_main(env);
15318
15319 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
15320 ret = bpf_prog_offload_finalize(env);
15321
15322 skip_full_check:
15323 kvfree(env->explored_states);
15324
15325 if (ret == 0)
15326 ret = check_max_stack_depth(env);
15327
15328 /* instruction rewrites happen after this point */
15329 if (ret == 0)
15330 ret = optimize_bpf_loop(env);
15331
15332 if (is_priv) {
15333 if (ret == 0)
15334 opt_hard_wire_dead_code_branches(env);
15335 if (ret == 0)
15336 ret = opt_remove_dead_code(env);
15337 if (ret == 0)
15338 ret = opt_remove_nops(env);
15339 } else {
15340 if (ret == 0)
15341 sanitize_dead_code(env);
15342 }
15343
15344 if (ret == 0)
15345 /* program is valid, convert *(u32*)(ctx + off) accesses */
15346 ret = convert_ctx_accesses(env);
15347
15348 if (ret == 0)
15349 ret = do_misc_fixups(env);
15350
15351 /* do 32-bit optimization after insn patching has done so those patched
15352 * insns could be handled correctly.
15353 */
15354 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
15355 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
15356 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
15357 : false;
15358 }
15359
15360 if (ret == 0)
15361 ret = fixup_call_args(env);
15362
15363 env->verification_time = ktime_get_ns() - start_time;
15364 print_verification_stats(env);
15365 env->prog->aux->verified_insns = env->insn_processed;
15366
15367 if (log->level && bpf_verifier_log_full(log))
15368 ret = -ENOSPC;
15369 if (log->level && !log->ubuf) {
15370 ret = -EFAULT;
15371 goto err_release_maps;
15372 }
15373
15374 if (ret)
15375 goto err_release_maps;
15376
15377 if (env->used_map_cnt) {
15378 /* if program passed verifier, update used_maps in bpf_prog_info */
15379 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
15380 sizeof(env->used_maps[0]),
15381 GFP_KERNEL);
15382
15383 if (!env->prog->aux->used_maps) {
15384 ret = -ENOMEM;
15385 goto err_release_maps;
15386 }
15387
15388 memcpy(env->prog->aux->used_maps, env->used_maps,
15389 sizeof(env->used_maps[0]) * env->used_map_cnt);
15390 env->prog->aux->used_map_cnt = env->used_map_cnt;
15391 }
15392 if (env->used_btf_cnt) {
15393 /* if program passed verifier, update used_btfs in bpf_prog_aux */
15394 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
15395 sizeof(env->used_btfs[0]),
15396 GFP_KERNEL);
15397 if (!env->prog->aux->used_btfs) {
15398 ret = -ENOMEM;
15399 goto err_release_maps;
15400 }
15401
15402 memcpy(env->prog->aux->used_btfs, env->used_btfs,
15403 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
15404 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
15405 }
15406 if (env->used_map_cnt || env->used_btf_cnt) {
15407 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
15408 * bpf_ld_imm64 instructions
15409 */
15410 convert_pseudo_ld_imm64(env);
15411 }
15412
15413 adjust_btf_func(env);
15414
15415 err_release_maps:
15416 if (!env->prog->aux->used_maps)
15417 /* if we didn't copy map pointers into bpf_prog_info, release
15418 * them now. Otherwise free_used_maps() will release them.
15419 */
15420 release_maps(env);
15421 if (!env->prog->aux->used_btfs)
15422 release_btfs(env);
15423
15424 /* extension progs temporarily inherit the attach_type of their targets
15425 for verification purposes, so set it back to zero before returning
15426 */
15427 if (env->prog->type == BPF_PROG_TYPE_EXT)
15428 env->prog->expected_attach_type = 0;
15429
15430 *prog = env->prog;
15431 err_unlock:
15432 if (!is_priv)
15433 mutex_unlock(&bpf_verifier_lock);
15434 vfree(env->insn_aux_data);
15435 err_free_env:
15436 kfree(env);
15437 return ret;
15438 }
15439