1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct bpf_run_ctx;
46 struct capture_control;
47 struct cfs_rq;
48 struct fs_struct;
49 struct futex_pi_state;
50 struct io_context;
51 struct io_uring_task;
52 struct mempolicy;
53 struct nameidata;
54 struct nsproxy;
55 struct perf_event_context;
56 struct pid_namespace;
57 struct pipe_inode_info;
58 struct rcu_node;
59 struct reclaim_state;
60 struct robust_list_head;
61 struct root_domain;
62 struct rq;
63 struct sched_attr;
64 struct sched_param;
65 struct seq_file;
66 struct sighand_struct;
67 struct signal_struct;
68 struct task_delay_info;
69 struct task_group;
70
71 /*
72 * Task state bitmask. NOTE! These bits are also
73 * encoded in fs/proc/array.c: get_task_state().
74 *
75 * We have two separate sets of flags: task->state
76 * is about runnability, while task->exit_state are
77 * about the task exiting. Confusing, but this way
78 * modifying one set can't modify the other one by
79 * mistake.
80 */
81
82 /* Used in tsk->state: */
83 #define TASK_RUNNING 0x0000
84 #define TASK_INTERRUPTIBLE 0x0001
85 #define TASK_UNINTERRUPTIBLE 0x0002
86 #define __TASK_STOPPED 0x0004
87 #define __TASK_TRACED 0x0008
88 /* Used in tsk->exit_state: */
89 #define EXIT_DEAD 0x0010
90 #define EXIT_ZOMBIE 0x0020
91 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
92 /* Used in tsk->state again: */
93 #define TASK_PARKED 0x0040
94 #define TASK_DEAD 0x0080
95 #define TASK_WAKEKILL 0x0100
96 #define TASK_WAKING 0x0200
97 #define TASK_NOLOAD 0x0400
98 #define TASK_NEW 0x0800
99 /* RT specific auxilliary flag to mark RT lock waiters */
100 #define TASK_RTLOCK_WAIT 0x1000
101 #define TASK_STATE_MAX 0x2000
102
103 /* Convenience macros for the sake of set_current_state: */
104 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
106 #define TASK_TRACED __TASK_TRACED
107
108 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109
110 /* Convenience macros for the sake of wake_up(): */
111 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
112
113 /* get_task_state(): */
114 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 TASK_PARKED)
118
119 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
120
121 #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
122 #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
123 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
124
125 /*
126 * Special states are those that do not use the normal wait-loop pattern. See
127 * the comment with set_special_state().
128 */
129 #define is_special_task_state(state) \
130 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
131
132 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
133 # define debug_normal_state_change(state_value) \
134 do { \
135 WARN_ON_ONCE(is_special_task_state(state_value)); \
136 current->task_state_change = _THIS_IP_; \
137 } while (0)
138
139 # define debug_special_state_change(state_value) \
140 do { \
141 WARN_ON_ONCE(!is_special_task_state(state_value)); \
142 current->task_state_change = _THIS_IP_; \
143 } while (0)
144
145 # define debug_rtlock_wait_set_state() \
146 do { \
147 current->saved_state_change = current->task_state_change;\
148 current->task_state_change = _THIS_IP_; \
149 } while (0)
150
151 # define debug_rtlock_wait_restore_state() \
152 do { \
153 current->task_state_change = current->saved_state_change;\
154 } while (0)
155
156 #else
157 # define debug_normal_state_change(cond) do { } while (0)
158 # define debug_special_state_change(cond) do { } while (0)
159 # define debug_rtlock_wait_set_state() do { } while (0)
160 # define debug_rtlock_wait_restore_state() do { } while (0)
161 #endif
162
163 /*
164 * set_current_state() includes a barrier so that the write of current->state
165 * is correctly serialised wrt the caller's subsequent test of whether to
166 * actually sleep:
167 *
168 * for (;;) {
169 * set_current_state(TASK_UNINTERRUPTIBLE);
170 * if (CONDITION)
171 * break;
172 *
173 * schedule();
174 * }
175 * __set_current_state(TASK_RUNNING);
176 *
177 * If the caller does not need such serialisation (because, for instance, the
178 * CONDITION test and condition change and wakeup are under the same lock) then
179 * use __set_current_state().
180 *
181 * The above is typically ordered against the wakeup, which does:
182 *
183 * CONDITION = 1;
184 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
185 *
186 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
187 * accessing p->state.
188 *
189 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
190 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
191 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
192 *
193 * However, with slightly different timing the wakeup TASK_RUNNING store can
194 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
195 * a problem either because that will result in one extra go around the loop
196 * and our @cond test will save the day.
197 *
198 * Also see the comments of try_to_wake_up().
199 */
200 #define __set_current_state(state_value) \
201 do { \
202 debug_normal_state_change((state_value)); \
203 WRITE_ONCE(current->__state, (state_value)); \
204 } while (0)
205
206 #define set_current_state(state_value) \
207 do { \
208 debug_normal_state_change((state_value)); \
209 smp_store_mb(current->__state, (state_value)); \
210 } while (0)
211
212 /*
213 * set_special_state() should be used for those states when the blocking task
214 * can not use the regular condition based wait-loop. In that case we must
215 * serialize against wakeups such that any possible in-flight TASK_RUNNING
216 * stores will not collide with our state change.
217 */
218 #define set_special_state(state_value) \
219 do { \
220 unsigned long flags; /* may shadow */ \
221 \
222 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
223 debug_special_state_change((state_value)); \
224 WRITE_ONCE(current->__state, (state_value)); \
225 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
226 } while (0)
227
228 /*
229 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
230 *
231 * RT's spin/rwlock substitutions are state preserving. The state of the
232 * task when blocking on the lock is saved in task_struct::saved_state and
233 * restored after the lock has been acquired. These operations are
234 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
235 * lock related wakeups while the task is blocked on the lock are
236 * redirected to operate on task_struct::saved_state to ensure that these
237 * are not dropped. On restore task_struct::saved_state is set to
238 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
239 *
240 * The lock operation looks like this:
241 *
242 * current_save_and_set_rtlock_wait_state();
243 * for (;;) {
244 * if (try_lock())
245 * break;
246 * raw_spin_unlock_irq(&lock->wait_lock);
247 * schedule_rtlock();
248 * raw_spin_lock_irq(&lock->wait_lock);
249 * set_current_state(TASK_RTLOCK_WAIT);
250 * }
251 * current_restore_rtlock_saved_state();
252 */
253 #define current_save_and_set_rtlock_wait_state() \
254 do { \
255 lockdep_assert_irqs_disabled(); \
256 raw_spin_lock(¤t->pi_lock); \
257 current->saved_state = current->__state; \
258 debug_rtlock_wait_set_state(); \
259 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
260 raw_spin_unlock(¤t->pi_lock); \
261 } while (0);
262
263 #define current_restore_rtlock_saved_state() \
264 do { \
265 lockdep_assert_irqs_disabled(); \
266 raw_spin_lock(¤t->pi_lock); \
267 debug_rtlock_wait_restore_state(); \
268 WRITE_ONCE(current->__state, current->saved_state); \
269 current->saved_state = TASK_RUNNING; \
270 raw_spin_unlock(¤t->pi_lock); \
271 } while (0);
272
273 #define get_current_state() READ_ONCE(current->__state)
274
275 /*
276 * Define the task command name length as enum, then it can be visible to
277 * BPF programs.
278 */
279 enum {
280 TASK_COMM_LEN = 16,
281 };
282
283 extern void scheduler_tick(void);
284
285 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
286
287 extern long schedule_timeout(long timeout);
288 extern long schedule_timeout_interruptible(long timeout);
289 extern long schedule_timeout_killable(long timeout);
290 extern long schedule_timeout_uninterruptible(long timeout);
291 extern long schedule_timeout_idle(long timeout);
292 asmlinkage void schedule(void);
293 extern void schedule_preempt_disabled(void);
294 asmlinkage void preempt_schedule_irq(void);
295 #ifdef CONFIG_PREEMPT_RT
296 extern void schedule_rtlock(void);
297 #endif
298
299 extern int __must_check io_schedule_prepare(void);
300 extern void io_schedule_finish(int token);
301 extern long io_schedule_timeout(long timeout);
302 extern void io_schedule(void);
303
304 /**
305 * struct prev_cputime - snapshot of system and user cputime
306 * @utime: time spent in user mode
307 * @stime: time spent in system mode
308 * @lock: protects the above two fields
309 *
310 * Stores previous user/system time values such that we can guarantee
311 * monotonicity.
312 */
313 struct prev_cputime {
314 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
315 u64 utime;
316 u64 stime;
317 raw_spinlock_t lock;
318 #endif
319 };
320
321 enum vtime_state {
322 /* Task is sleeping or running in a CPU with VTIME inactive: */
323 VTIME_INACTIVE = 0,
324 /* Task is idle */
325 VTIME_IDLE,
326 /* Task runs in kernelspace in a CPU with VTIME active: */
327 VTIME_SYS,
328 /* Task runs in userspace in a CPU with VTIME active: */
329 VTIME_USER,
330 /* Task runs as guests in a CPU with VTIME active: */
331 VTIME_GUEST,
332 };
333
334 struct vtime {
335 seqcount_t seqcount;
336 unsigned long long starttime;
337 enum vtime_state state;
338 unsigned int cpu;
339 u64 utime;
340 u64 stime;
341 u64 gtime;
342 };
343
344 /*
345 * Utilization clamp constraints.
346 * @UCLAMP_MIN: Minimum utilization
347 * @UCLAMP_MAX: Maximum utilization
348 * @UCLAMP_CNT: Utilization clamp constraints count
349 */
350 enum uclamp_id {
351 UCLAMP_MIN = 0,
352 UCLAMP_MAX,
353 UCLAMP_CNT
354 };
355
356 #ifdef CONFIG_SMP
357 extern struct root_domain def_root_domain;
358 extern struct mutex sched_domains_mutex;
359 #endif
360
361 struct sched_info {
362 #ifdef CONFIG_SCHED_INFO
363 /* Cumulative counters: */
364
365 /* # of times we have run on this CPU: */
366 unsigned long pcount;
367
368 /* Time spent waiting on a runqueue: */
369 unsigned long long run_delay;
370
371 /* Timestamps: */
372
373 /* When did we last run on a CPU? */
374 unsigned long long last_arrival;
375
376 /* When were we last queued to run? */
377 unsigned long long last_queued;
378
379 #endif /* CONFIG_SCHED_INFO */
380 };
381
382 /*
383 * Integer metrics need fixed point arithmetic, e.g., sched/fair
384 * has a few: load, load_avg, util_avg, freq, and capacity.
385 *
386 * We define a basic fixed point arithmetic range, and then formalize
387 * all these metrics based on that basic range.
388 */
389 # define SCHED_FIXEDPOINT_SHIFT 10
390 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
391
392 /* Increase resolution of cpu_capacity calculations */
393 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
394 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
395
396 struct load_weight {
397 unsigned long weight;
398 u32 inv_weight;
399 };
400
401 /**
402 * struct util_est - Estimation utilization of FAIR tasks
403 * @enqueued: instantaneous estimated utilization of a task/cpu
404 * @ewma: the Exponential Weighted Moving Average (EWMA)
405 * utilization of a task
406 *
407 * Support data structure to track an Exponential Weighted Moving Average
408 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
409 * average each time a task completes an activation. Sample's weight is chosen
410 * so that the EWMA will be relatively insensitive to transient changes to the
411 * task's workload.
412 *
413 * The enqueued attribute has a slightly different meaning for tasks and cpus:
414 * - task: the task's util_avg at last task dequeue time
415 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
416 * Thus, the util_est.enqueued of a task represents the contribution on the
417 * estimated utilization of the CPU where that task is currently enqueued.
418 *
419 * Only for tasks we track a moving average of the past instantaneous
420 * estimated utilization. This allows to absorb sporadic drops in utilization
421 * of an otherwise almost periodic task.
422 *
423 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
424 * updates. When a task is dequeued, its util_est should not be updated if its
425 * util_avg has not been updated in the meantime.
426 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
427 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
428 * for a task) it is safe to use MSB.
429 */
430 struct util_est {
431 unsigned int enqueued;
432 unsigned int ewma;
433 #define UTIL_EST_WEIGHT_SHIFT 2
434 #define UTIL_AVG_UNCHANGED 0x80000000
435 } __attribute__((__aligned__(sizeof(u64))));
436
437 /*
438 * The load/runnable/util_avg accumulates an infinite geometric series
439 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
440 *
441 * [load_avg definition]
442 *
443 * load_avg = runnable% * scale_load_down(load)
444 *
445 * [runnable_avg definition]
446 *
447 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
448 *
449 * [util_avg definition]
450 *
451 * util_avg = running% * SCHED_CAPACITY_SCALE
452 *
453 * where runnable% is the time ratio that a sched_entity is runnable and
454 * running% the time ratio that a sched_entity is running.
455 *
456 * For cfs_rq, they are the aggregated values of all runnable and blocked
457 * sched_entities.
458 *
459 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
460 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
461 * for computing those signals (see update_rq_clock_pelt())
462 *
463 * N.B., the above ratios (runnable% and running%) themselves are in the
464 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
465 * to as large a range as necessary. This is for example reflected by
466 * util_avg's SCHED_CAPACITY_SCALE.
467 *
468 * [Overflow issue]
469 *
470 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
471 * with the highest load (=88761), always runnable on a single cfs_rq,
472 * and should not overflow as the number already hits PID_MAX_LIMIT.
473 *
474 * For all other cases (including 32-bit kernels), struct load_weight's
475 * weight will overflow first before we do, because:
476 *
477 * Max(load_avg) <= Max(load.weight)
478 *
479 * Then it is the load_weight's responsibility to consider overflow
480 * issues.
481 */
482 struct sched_avg {
483 u64 last_update_time;
484 u64 load_sum;
485 u64 runnable_sum;
486 u32 util_sum;
487 u32 period_contrib;
488 unsigned long load_avg;
489 unsigned long runnable_avg;
490 unsigned long util_avg;
491 struct util_est util_est;
492 } ____cacheline_aligned;
493
494 struct sched_statistics {
495 #ifdef CONFIG_SCHEDSTATS
496 u64 wait_start;
497 u64 wait_max;
498 u64 wait_count;
499 u64 wait_sum;
500 u64 iowait_count;
501 u64 iowait_sum;
502
503 u64 sleep_start;
504 u64 sleep_max;
505 s64 sum_sleep_runtime;
506
507 u64 block_start;
508 u64 block_max;
509 s64 sum_block_runtime;
510
511 u64 exec_max;
512 u64 slice_max;
513
514 u64 nr_migrations_cold;
515 u64 nr_failed_migrations_affine;
516 u64 nr_failed_migrations_running;
517 u64 nr_failed_migrations_hot;
518 u64 nr_forced_migrations;
519
520 u64 nr_wakeups;
521 u64 nr_wakeups_sync;
522 u64 nr_wakeups_migrate;
523 u64 nr_wakeups_local;
524 u64 nr_wakeups_remote;
525 u64 nr_wakeups_affine;
526 u64 nr_wakeups_affine_attempts;
527 u64 nr_wakeups_passive;
528 u64 nr_wakeups_idle;
529
530 #ifdef CONFIG_SCHED_CORE
531 u64 core_forceidle_sum;
532 #endif
533 #endif /* CONFIG_SCHEDSTATS */
534 } ____cacheline_aligned;
535
536 struct sched_entity {
537 /* For load-balancing: */
538 struct load_weight load;
539 struct rb_node run_node;
540 struct list_head group_node;
541 unsigned int on_rq;
542
543 u64 exec_start;
544 u64 sum_exec_runtime;
545 u64 vruntime;
546 u64 prev_sum_exec_runtime;
547
548 u64 nr_migrations;
549
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 int depth;
552 struct sched_entity *parent;
553 /* rq on which this entity is (to be) queued: */
554 struct cfs_rq *cfs_rq;
555 /* rq "owned" by this entity/group: */
556 struct cfs_rq *my_q;
557 /* cached value of my_q->h_nr_running */
558 unsigned long runnable_weight;
559 #endif
560
561 #ifdef CONFIG_SMP
562 /*
563 * Per entity load average tracking.
564 *
565 * Put into separate cache line so it does not
566 * collide with read-mostly values above.
567 */
568 struct sched_avg avg;
569 #endif
570 };
571
572 struct sched_rt_entity {
573 struct list_head run_list;
574 unsigned long timeout;
575 unsigned long watchdog_stamp;
576 unsigned int time_slice;
577 unsigned short on_rq;
578 unsigned short on_list;
579
580 struct sched_rt_entity *back;
581 #ifdef CONFIG_RT_GROUP_SCHED
582 struct sched_rt_entity *parent;
583 /* rq on which this entity is (to be) queued: */
584 struct rt_rq *rt_rq;
585 /* rq "owned" by this entity/group: */
586 struct rt_rq *my_q;
587 #endif
588 } __randomize_layout;
589
590 struct sched_dl_entity {
591 struct rb_node rb_node;
592
593 /*
594 * Original scheduling parameters. Copied here from sched_attr
595 * during sched_setattr(), they will remain the same until
596 * the next sched_setattr().
597 */
598 u64 dl_runtime; /* Maximum runtime for each instance */
599 u64 dl_deadline; /* Relative deadline of each instance */
600 u64 dl_period; /* Separation of two instances (period) */
601 u64 dl_bw; /* dl_runtime / dl_period */
602 u64 dl_density; /* dl_runtime / dl_deadline */
603
604 /*
605 * Actual scheduling parameters. Initialized with the values above,
606 * they are continuously updated during task execution. Note that
607 * the remaining runtime could be < 0 in case we are in overrun.
608 */
609 s64 runtime; /* Remaining runtime for this instance */
610 u64 deadline; /* Absolute deadline for this instance */
611 unsigned int flags; /* Specifying the scheduler behaviour */
612
613 /*
614 * Some bool flags:
615 *
616 * @dl_throttled tells if we exhausted the runtime. If so, the
617 * task has to wait for a replenishment to be performed at the
618 * next firing of dl_timer.
619 *
620 * @dl_yielded tells if task gave up the CPU before consuming
621 * all its available runtime during the last job.
622 *
623 * @dl_non_contending tells if the task is inactive while still
624 * contributing to the active utilization. In other words, it
625 * indicates if the inactive timer has been armed and its handler
626 * has not been executed yet. This flag is useful to avoid race
627 * conditions between the inactive timer handler and the wakeup
628 * code.
629 *
630 * @dl_overrun tells if the task asked to be informed about runtime
631 * overruns.
632 */
633 unsigned int dl_throttled : 1;
634 unsigned int dl_yielded : 1;
635 unsigned int dl_non_contending : 1;
636 unsigned int dl_overrun : 1;
637
638 /*
639 * Bandwidth enforcement timer. Each -deadline task has its
640 * own bandwidth to be enforced, thus we need one timer per task.
641 */
642 struct hrtimer dl_timer;
643
644 /*
645 * Inactive timer, responsible for decreasing the active utilization
646 * at the "0-lag time". When a -deadline task blocks, it contributes
647 * to GRUB's active utilization until the "0-lag time", hence a
648 * timer is needed to decrease the active utilization at the correct
649 * time.
650 */
651 struct hrtimer inactive_timer;
652
653 #ifdef CONFIG_RT_MUTEXES
654 /*
655 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
656 * pi_se points to the donor, otherwise points to the dl_se it belongs
657 * to (the original one/itself).
658 */
659 struct sched_dl_entity *pi_se;
660 #endif
661 };
662
663 #ifdef CONFIG_UCLAMP_TASK
664 /* Number of utilization clamp buckets (shorter alias) */
665 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
666
667 /*
668 * Utilization clamp for a scheduling entity
669 * @value: clamp value "assigned" to a se
670 * @bucket_id: bucket index corresponding to the "assigned" value
671 * @active: the se is currently refcounted in a rq's bucket
672 * @user_defined: the requested clamp value comes from user-space
673 *
674 * The bucket_id is the index of the clamp bucket matching the clamp value
675 * which is pre-computed and stored to avoid expensive integer divisions from
676 * the fast path.
677 *
678 * The active bit is set whenever a task has got an "effective" value assigned,
679 * which can be different from the clamp value "requested" from user-space.
680 * This allows to know a task is refcounted in the rq's bucket corresponding
681 * to the "effective" bucket_id.
682 *
683 * The user_defined bit is set whenever a task has got a task-specific clamp
684 * value requested from userspace, i.e. the system defaults apply to this task
685 * just as a restriction. This allows to relax default clamps when a less
686 * restrictive task-specific value has been requested, thus allowing to
687 * implement a "nice" semantic. For example, a task running with a 20%
688 * default boost can still drop its own boosting to 0%.
689 */
690 struct uclamp_se {
691 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
692 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
693 unsigned int active : 1;
694 unsigned int user_defined : 1;
695 };
696 #endif /* CONFIG_UCLAMP_TASK */
697
698 union rcu_special {
699 struct {
700 u8 blocked;
701 u8 need_qs;
702 u8 exp_hint; /* Hint for performance. */
703 u8 need_mb; /* Readers need smp_mb(). */
704 } b; /* Bits. */
705 u32 s; /* Set of bits. */
706 };
707
708 enum perf_event_task_context {
709 perf_invalid_context = -1,
710 perf_hw_context = 0,
711 perf_sw_context,
712 perf_nr_task_contexts,
713 };
714
715 struct wake_q_node {
716 struct wake_q_node *next;
717 };
718
719 struct kmap_ctrl {
720 #ifdef CONFIG_KMAP_LOCAL
721 int idx;
722 pte_t pteval[KM_MAX_IDX];
723 #endif
724 };
725
726 struct task_struct {
727 #ifdef CONFIG_THREAD_INFO_IN_TASK
728 /*
729 * For reasons of header soup (see current_thread_info()), this
730 * must be the first element of task_struct.
731 */
732 struct thread_info thread_info;
733 #endif
734 unsigned int __state;
735
736 #ifdef CONFIG_PREEMPT_RT
737 /* saved state for "spinlock sleepers" */
738 unsigned int saved_state;
739 #endif
740
741 /*
742 * This begins the randomizable portion of task_struct. Only
743 * scheduling-critical items should be added above here.
744 */
745 randomized_struct_fields_start
746
747 void *stack;
748 refcount_t usage;
749 /* Per task flags (PF_*), defined further below: */
750 unsigned int flags;
751 unsigned int ptrace;
752
753 #ifdef CONFIG_SMP
754 int on_cpu;
755 struct __call_single_node wake_entry;
756 unsigned int wakee_flips;
757 unsigned long wakee_flip_decay_ts;
758 struct task_struct *last_wakee;
759
760 /*
761 * recent_used_cpu is initially set as the last CPU used by a task
762 * that wakes affine another task. Waker/wakee relationships can
763 * push tasks around a CPU where each wakeup moves to the next one.
764 * Tracking a recently used CPU allows a quick search for a recently
765 * used CPU that may be idle.
766 */
767 int recent_used_cpu;
768 int wake_cpu;
769 #endif
770 int on_rq;
771
772 int prio;
773 int static_prio;
774 int normal_prio;
775 unsigned int rt_priority;
776
777 struct sched_entity se;
778 struct sched_rt_entity rt;
779 struct sched_dl_entity dl;
780 const struct sched_class *sched_class;
781
782 #ifdef CONFIG_SCHED_CORE
783 struct rb_node core_node;
784 unsigned long core_cookie;
785 unsigned int core_occupation;
786 #endif
787
788 #ifdef CONFIG_CGROUP_SCHED
789 struct task_group *sched_task_group;
790 #endif
791
792 #ifdef CONFIG_UCLAMP_TASK
793 /*
794 * Clamp values requested for a scheduling entity.
795 * Must be updated with task_rq_lock() held.
796 */
797 struct uclamp_se uclamp_req[UCLAMP_CNT];
798 /*
799 * Effective clamp values used for a scheduling entity.
800 * Must be updated with task_rq_lock() held.
801 */
802 struct uclamp_se uclamp[UCLAMP_CNT];
803 #endif
804
805 struct sched_statistics stats;
806
807 #ifdef CONFIG_PREEMPT_NOTIFIERS
808 /* List of struct preempt_notifier: */
809 struct hlist_head preempt_notifiers;
810 #endif
811
812 #ifdef CONFIG_BLK_DEV_IO_TRACE
813 unsigned int btrace_seq;
814 #endif
815
816 unsigned int policy;
817 int nr_cpus_allowed;
818 const cpumask_t *cpus_ptr;
819 cpumask_t *user_cpus_ptr;
820 cpumask_t cpus_mask;
821 void *migration_pending;
822 #ifdef CONFIG_SMP
823 unsigned short migration_disabled;
824 #endif
825 unsigned short migration_flags;
826
827 #ifdef CONFIG_PREEMPT_RCU
828 int rcu_read_lock_nesting;
829 union rcu_special rcu_read_unlock_special;
830 struct list_head rcu_node_entry;
831 struct rcu_node *rcu_blocked_node;
832 #endif /* #ifdef CONFIG_PREEMPT_RCU */
833
834 #ifdef CONFIG_TASKS_RCU
835 unsigned long rcu_tasks_nvcsw;
836 u8 rcu_tasks_holdout;
837 u8 rcu_tasks_idx;
838 int rcu_tasks_idle_cpu;
839 struct list_head rcu_tasks_holdout_list;
840 #endif /* #ifdef CONFIG_TASKS_RCU */
841
842 #ifdef CONFIG_TASKS_TRACE_RCU
843 int trc_reader_nesting;
844 int trc_ipi_to_cpu;
845 union rcu_special trc_reader_special;
846 bool trc_reader_checked;
847 struct list_head trc_holdout_list;
848 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
849
850 struct sched_info sched_info;
851
852 struct list_head tasks;
853 #ifdef CONFIG_SMP
854 struct plist_node pushable_tasks;
855 struct rb_node pushable_dl_tasks;
856 #endif
857
858 struct mm_struct *mm;
859 struct mm_struct *active_mm;
860
861 /* Per-thread vma caching: */
862 struct vmacache vmacache;
863
864 #ifdef SPLIT_RSS_COUNTING
865 struct task_rss_stat rss_stat;
866 #endif
867 int exit_state;
868 int exit_code;
869 int exit_signal;
870 /* The signal sent when the parent dies: */
871 int pdeath_signal;
872 /* JOBCTL_*, siglock protected: */
873 unsigned long jobctl;
874
875 /* Used for emulating ABI behavior of previous Linux versions: */
876 unsigned int personality;
877
878 /* Scheduler bits, serialized by scheduler locks: */
879 unsigned sched_reset_on_fork:1;
880 unsigned sched_contributes_to_load:1;
881 unsigned sched_migrated:1;
882 #ifdef CONFIG_PSI
883 unsigned sched_psi_wake_requeue:1;
884 #endif
885
886 /* Force alignment to the next boundary: */
887 unsigned :0;
888
889 /* Unserialized, strictly 'current' */
890
891 /*
892 * This field must not be in the scheduler word above due to wakelist
893 * queueing no longer being serialized by p->on_cpu. However:
894 *
895 * p->XXX = X; ttwu()
896 * schedule() if (p->on_rq && ..) // false
897 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
898 * deactivate_task() ttwu_queue_wakelist())
899 * p->on_rq = 0; p->sched_remote_wakeup = Y;
900 *
901 * guarantees all stores of 'current' are visible before
902 * ->sched_remote_wakeup gets used, so it can be in this word.
903 */
904 unsigned sched_remote_wakeup:1;
905
906 /* Bit to tell LSMs we're in execve(): */
907 unsigned in_execve:1;
908 unsigned in_iowait:1;
909 #ifndef TIF_RESTORE_SIGMASK
910 unsigned restore_sigmask:1;
911 #endif
912 #ifdef CONFIG_MEMCG
913 unsigned in_user_fault:1;
914 #endif
915 #ifdef CONFIG_COMPAT_BRK
916 unsigned brk_randomized:1;
917 #endif
918 #ifdef CONFIG_CGROUPS
919 /* disallow userland-initiated cgroup migration */
920 unsigned no_cgroup_migration:1;
921 /* task is frozen/stopped (used by the cgroup freezer) */
922 unsigned frozen:1;
923 #endif
924 #ifdef CONFIG_BLK_CGROUP
925 unsigned use_memdelay:1;
926 #endif
927 #ifdef CONFIG_PSI
928 /* Stalled due to lack of memory */
929 unsigned in_memstall:1;
930 #endif
931 #ifdef CONFIG_PAGE_OWNER
932 /* Used by page_owner=on to detect recursion in page tracking. */
933 unsigned in_page_owner:1;
934 #endif
935 #ifdef CONFIG_EVENTFD
936 /* Recursion prevention for eventfd_signal() */
937 unsigned in_eventfd_signal:1;
938 #endif
939 #ifdef CONFIG_IOMMU_SVA
940 unsigned pasid_activated:1;
941 #endif
942 #ifdef CONFIG_CPU_SUP_INTEL
943 unsigned reported_split_lock:1;
944 #endif
945
946 unsigned long atomic_flags; /* Flags requiring atomic access. */
947
948 struct restart_block restart_block;
949
950 pid_t pid;
951 pid_t tgid;
952
953 #ifdef CONFIG_STACKPROTECTOR
954 /* Canary value for the -fstack-protector GCC feature: */
955 unsigned long stack_canary;
956 #endif
957 /*
958 * Pointers to the (original) parent process, youngest child, younger sibling,
959 * older sibling, respectively. (p->father can be replaced with
960 * p->real_parent->pid)
961 */
962
963 /* Real parent process: */
964 struct task_struct __rcu *real_parent;
965
966 /* Recipient of SIGCHLD, wait4() reports: */
967 struct task_struct __rcu *parent;
968
969 /*
970 * Children/sibling form the list of natural children:
971 */
972 struct list_head children;
973 struct list_head sibling;
974 struct task_struct *group_leader;
975
976 /*
977 * 'ptraced' is the list of tasks this task is using ptrace() on.
978 *
979 * This includes both natural children and PTRACE_ATTACH targets.
980 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
981 */
982 struct list_head ptraced;
983 struct list_head ptrace_entry;
984
985 /* PID/PID hash table linkage. */
986 struct pid *thread_pid;
987 struct hlist_node pid_links[PIDTYPE_MAX];
988 struct list_head thread_group;
989 struct list_head thread_node;
990
991 struct completion *vfork_done;
992
993 /* CLONE_CHILD_SETTID: */
994 int __user *set_child_tid;
995
996 /* CLONE_CHILD_CLEARTID: */
997 int __user *clear_child_tid;
998
999 /* PF_KTHREAD | PF_IO_WORKER */
1000 void *worker_private;
1001
1002 u64 utime;
1003 u64 stime;
1004 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1005 u64 utimescaled;
1006 u64 stimescaled;
1007 #endif
1008 u64 gtime;
1009 struct prev_cputime prev_cputime;
1010 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1011 struct vtime vtime;
1012 #endif
1013
1014 #ifdef CONFIG_NO_HZ_FULL
1015 atomic_t tick_dep_mask;
1016 #endif
1017 /* Context switch counts: */
1018 unsigned long nvcsw;
1019 unsigned long nivcsw;
1020
1021 /* Monotonic time in nsecs: */
1022 u64 start_time;
1023
1024 /* Boot based time in nsecs: */
1025 u64 start_boottime;
1026
1027 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1028 unsigned long min_flt;
1029 unsigned long maj_flt;
1030
1031 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1032 struct posix_cputimers posix_cputimers;
1033
1034 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1035 struct posix_cputimers_work posix_cputimers_work;
1036 #endif
1037
1038 /* Process credentials: */
1039
1040 /* Tracer's credentials at attach: */
1041 const struct cred __rcu *ptracer_cred;
1042
1043 /* Objective and real subjective task credentials (COW): */
1044 const struct cred __rcu *real_cred;
1045
1046 /* Effective (overridable) subjective task credentials (COW): */
1047 const struct cred __rcu *cred;
1048
1049 #ifdef CONFIG_KEYS
1050 /* Cached requested key. */
1051 struct key *cached_requested_key;
1052 #endif
1053
1054 /*
1055 * executable name, excluding path.
1056 *
1057 * - normally initialized setup_new_exec()
1058 * - access it with [gs]et_task_comm()
1059 * - lock it with task_lock()
1060 */
1061 char comm[TASK_COMM_LEN];
1062
1063 struct nameidata *nameidata;
1064
1065 #ifdef CONFIG_SYSVIPC
1066 struct sysv_sem sysvsem;
1067 struct sysv_shm sysvshm;
1068 #endif
1069 #ifdef CONFIG_DETECT_HUNG_TASK
1070 unsigned long last_switch_count;
1071 unsigned long last_switch_time;
1072 #endif
1073 /* Filesystem information: */
1074 struct fs_struct *fs;
1075
1076 /* Open file information: */
1077 struct files_struct *files;
1078
1079 #ifdef CONFIG_IO_URING
1080 struct io_uring_task *io_uring;
1081 #endif
1082
1083 /* Namespaces: */
1084 struct nsproxy *nsproxy;
1085
1086 /* Signal handlers: */
1087 struct signal_struct *signal;
1088 struct sighand_struct __rcu *sighand;
1089 sigset_t blocked;
1090 sigset_t real_blocked;
1091 /* Restored if set_restore_sigmask() was used: */
1092 sigset_t saved_sigmask;
1093 struct sigpending pending;
1094 unsigned long sas_ss_sp;
1095 size_t sas_ss_size;
1096 unsigned int sas_ss_flags;
1097
1098 struct callback_head *task_works;
1099
1100 #ifdef CONFIG_AUDIT
1101 #ifdef CONFIG_AUDITSYSCALL
1102 struct audit_context *audit_context;
1103 #endif
1104 kuid_t loginuid;
1105 unsigned int sessionid;
1106 #endif
1107 struct seccomp seccomp;
1108 struct syscall_user_dispatch syscall_dispatch;
1109
1110 /* Thread group tracking: */
1111 u64 parent_exec_id;
1112 u64 self_exec_id;
1113
1114 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1115 spinlock_t alloc_lock;
1116
1117 /* Protection of the PI data structures: */
1118 raw_spinlock_t pi_lock;
1119
1120 struct wake_q_node wake_q;
1121
1122 #ifdef CONFIG_RT_MUTEXES
1123 /* PI waiters blocked on a rt_mutex held by this task: */
1124 struct rb_root_cached pi_waiters;
1125 /* Updated under owner's pi_lock and rq lock */
1126 struct task_struct *pi_top_task;
1127 /* Deadlock detection and priority inheritance handling: */
1128 struct rt_mutex_waiter *pi_blocked_on;
1129 #endif
1130
1131 #ifdef CONFIG_DEBUG_MUTEXES
1132 /* Mutex deadlock detection: */
1133 struct mutex_waiter *blocked_on;
1134 #endif
1135
1136 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1137 int non_block_count;
1138 #endif
1139
1140 #ifdef CONFIG_TRACE_IRQFLAGS
1141 struct irqtrace_events irqtrace;
1142 unsigned int hardirq_threaded;
1143 u64 hardirq_chain_key;
1144 int softirqs_enabled;
1145 int softirq_context;
1146 int irq_config;
1147 #endif
1148 #ifdef CONFIG_PREEMPT_RT
1149 int softirq_disable_cnt;
1150 #endif
1151
1152 #ifdef CONFIG_LOCKDEP
1153 # define MAX_LOCK_DEPTH 48UL
1154 u64 curr_chain_key;
1155 int lockdep_depth;
1156 unsigned int lockdep_recursion;
1157 struct held_lock held_locks[MAX_LOCK_DEPTH];
1158 #endif
1159
1160 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1161 unsigned int in_ubsan;
1162 #endif
1163
1164 /* Journalling filesystem info: */
1165 void *journal_info;
1166
1167 /* Stacked block device info: */
1168 struct bio_list *bio_list;
1169
1170 /* Stack plugging: */
1171 struct blk_plug *plug;
1172
1173 /* VM state: */
1174 struct reclaim_state *reclaim_state;
1175
1176 struct backing_dev_info *backing_dev_info;
1177
1178 struct io_context *io_context;
1179
1180 #ifdef CONFIG_COMPACTION
1181 struct capture_control *capture_control;
1182 #endif
1183 /* Ptrace state: */
1184 unsigned long ptrace_message;
1185 kernel_siginfo_t *last_siginfo;
1186
1187 struct task_io_accounting ioac;
1188 #ifdef CONFIG_PSI
1189 /* Pressure stall state */
1190 unsigned int psi_flags;
1191 #endif
1192 #ifdef CONFIG_TASK_XACCT
1193 /* Accumulated RSS usage: */
1194 u64 acct_rss_mem1;
1195 /* Accumulated virtual memory usage: */
1196 u64 acct_vm_mem1;
1197 /* stime + utime since last update: */
1198 u64 acct_timexpd;
1199 #endif
1200 #ifdef CONFIG_CPUSETS
1201 /* Protected by ->alloc_lock: */
1202 nodemask_t mems_allowed;
1203 /* Sequence number to catch updates: */
1204 seqcount_spinlock_t mems_allowed_seq;
1205 int cpuset_mem_spread_rotor;
1206 int cpuset_slab_spread_rotor;
1207 #endif
1208 #ifdef CONFIG_CGROUPS
1209 /* Control Group info protected by css_set_lock: */
1210 struct css_set __rcu *cgroups;
1211 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1212 struct list_head cg_list;
1213 #endif
1214 #ifdef CONFIG_X86_CPU_RESCTRL
1215 u32 closid;
1216 u32 rmid;
1217 #endif
1218 #ifdef CONFIG_FUTEX
1219 struct robust_list_head __user *robust_list;
1220 #ifdef CONFIG_COMPAT
1221 struct compat_robust_list_head __user *compat_robust_list;
1222 #endif
1223 struct list_head pi_state_list;
1224 struct futex_pi_state *pi_state_cache;
1225 struct mutex futex_exit_mutex;
1226 unsigned int futex_state;
1227 #endif
1228 #ifdef CONFIG_PERF_EVENTS
1229 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1230 struct mutex perf_event_mutex;
1231 struct list_head perf_event_list;
1232 #endif
1233 #ifdef CONFIG_DEBUG_PREEMPT
1234 unsigned long preempt_disable_ip;
1235 #endif
1236 #ifdef CONFIG_NUMA
1237 /* Protected by alloc_lock: */
1238 struct mempolicy *mempolicy;
1239 short il_prev;
1240 short pref_node_fork;
1241 #endif
1242 #ifdef CONFIG_NUMA_BALANCING
1243 int numa_scan_seq;
1244 unsigned int numa_scan_period;
1245 unsigned int numa_scan_period_max;
1246 int numa_preferred_nid;
1247 unsigned long numa_migrate_retry;
1248 /* Migration stamp: */
1249 u64 node_stamp;
1250 u64 last_task_numa_placement;
1251 u64 last_sum_exec_runtime;
1252 struct callback_head numa_work;
1253
1254 /*
1255 * This pointer is only modified for current in syscall and
1256 * pagefault context (and for tasks being destroyed), so it can be read
1257 * from any of the following contexts:
1258 * - RCU read-side critical section
1259 * - current->numa_group from everywhere
1260 * - task's runqueue locked, task not running
1261 */
1262 struct numa_group __rcu *numa_group;
1263
1264 /*
1265 * numa_faults is an array split into four regions:
1266 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1267 * in this precise order.
1268 *
1269 * faults_memory: Exponential decaying average of faults on a per-node
1270 * basis. Scheduling placement decisions are made based on these
1271 * counts. The values remain static for the duration of a PTE scan.
1272 * faults_cpu: Track the nodes the process was running on when a NUMA
1273 * hinting fault was incurred.
1274 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1275 * during the current scan window. When the scan completes, the counts
1276 * in faults_memory and faults_cpu decay and these values are copied.
1277 */
1278 unsigned long *numa_faults;
1279 unsigned long total_numa_faults;
1280
1281 /*
1282 * numa_faults_locality tracks if faults recorded during the last
1283 * scan window were remote/local or failed to migrate. The task scan
1284 * period is adapted based on the locality of the faults with different
1285 * weights depending on whether they were shared or private faults
1286 */
1287 unsigned long numa_faults_locality[3];
1288
1289 unsigned long numa_pages_migrated;
1290 #endif /* CONFIG_NUMA_BALANCING */
1291
1292 #ifdef CONFIG_RSEQ
1293 struct rseq __user *rseq;
1294 u32 rseq_sig;
1295 /*
1296 * RmW on rseq_event_mask must be performed atomically
1297 * with respect to preemption.
1298 */
1299 unsigned long rseq_event_mask;
1300 #endif
1301
1302 struct tlbflush_unmap_batch tlb_ubc;
1303
1304 union {
1305 refcount_t rcu_users;
1306 struct rcu_head rcu;
1307 };
1308
1309 /* Cache last used pipe for splice(): */
1310 struct pipe_inode_info *splice_pipe;
1311
1312 struct page_frag task_frag;
1313
1314 #ifdef CONFIG_TASK_DELAY_ACCT
1315 struct task_delay_info *delays;
1316 #endif
1317
1318 #ifdef CONFIG_FAULT_INJECTION
1319 int make_it_fail;
1320 unsigned int fail_nth;
1321 #endif
1322 /*
1323 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1324 * balance_dirty_pages() for a dirty throttling pause:
1325 */
1326 int nr_dirtied;
1327 int nr_dirtied_pause;
1328 /* Start of a write-and-pause period: */
1329 unsigned long dirty_paused_when;
1330
1331 #ifdef CONFIG_LATENCYTOP
1332 int latency_record_count;
1333 struct latency_record latency_record[LT_SAVECOUNT];
1334 #endif
1335 /*
1336 * Time slack values; these are used to round up poll() and
1337 * select() etc timeout values. These are in nanoseconds.
1338 */
1339 u64 timer_slack_ns;
1340 u64 default_timer_slack_ns;
1341
1342 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1343 unsigned int kasan_depth;
1344 #endif
1345
1346 #ifdef CONFIG_KCSAN
1347 struct kcsan_ctx kcsan_ctx;
1348 #ifdef CONFIG_TRACE_IRQFLAGS
1349 struct irqtrace_events kcsan_save_irqtrace;
1350 #endif
1351 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1352 int kcsan_stack_depth;
1353 #endif
1354 #endif
1355
1356 #if IS_ENABLED(CONFIG_KUNIT)
1357 struct kunit *kunit_test;
1358 #endif
1359
1360 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1361 /* Index of current stored address in ret_stack: */
1362 int curr_ret_stack;
1363 int curr_ret_depth;
1364
1365 /* Stack of return addresses for return function tracing: */
1366 struct ftrace_ret_stack *ret_stack;
1367
1368 /* Timestamp for last schedule: */
1369 unsigned long long ftrace_timestamp;
1370
1371 /*
1372 * Number of functions that haven't been traced
1373 * because of depth overrun:
1374 */
1375 atomic_t trace_overrun;
1376
1377 /* Pause tracing: */
1378 atomic_t tracing_graph_pause;
1379 #endif
1380
1381 #ifdef CONFIG_TRACING
1382 /* State flags for use by tracers: */
1383 unsigned long trace;
1384
1385 /* Bitmask and counter of trace recursion: */
1386 unsigned long trace_recursion;
1387 #endif /* CONFIG_TRACING */
1388
1389 #ifdef CONFIG_KCOV
1390 /* See kernel/kcov.c for more details. */
1391
1392 /* Coverage collection mode enabled for this task (0 if disabled): */
1393 unsigned int kcov_mode;
1394
1395 /* Size of the kcov_area: */
1396 unsigned int kcov_size;
1397
1398 /* Buffer for coverage collection: */
1399 void *kcov_area;
1400
1401 /* KCOV descriptor wired with this task or NULL: */
1402 struct kcov *kcov;
1403
1404 /* KCOV common handle for remote coverage collection: */
1405 u64 kcov_handle;
1406
1407 /* KCOV sequence number: */
1408 int kcov_sequence;
1409
1410 /* Collect coverage from softirq context: */
1411 unsigned int kcov_softirq;
1412 #endif
1413
1414 #ifdef CONFIG_MEMCG
1415 struct mem_cgroup *memcg_in_oom;
1416 gfp_t memcg_oom_gfp_mask;
1417 int memcg_oom_order;
1418
1419 /* Number of pages to reclaim on returning to userland: */
1420 unsigned int memcg_nr_pages_over_high;
1421
1422 /* Used by memcontrol for targeted memcg charge: */
1423 struct mem_cgroup *active_memcg;
1424 #endif
1425
1426 #ifdef CONFIG_BLK_CGROUP
1427 struct request_queue *throttle_queue;
1428 #endif
1429
1430 #ifdef CONFIG_UPROBES
1431 struct uprobe_task *utask;
1432 #endif
1433 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1434 unsigned int sequential_io;
1435 unsigned int sequential_io_avg;
1436 #endif
1437 struct kmap_ctrl kmap_ctrl;
1438 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1439 unsigned long task_state_change;
1440 # ifdef CONFIG_PREEMPT_RT
1441 unsigned long saved_state_change;
1442 # endif
1443 #endif
1444 int pagefault_disabled;
1445 #ifdef CONFIG_MMU
1446 struct task_struct *oom_reaper_list;
1447 struct timer_list oom_reaper_timer;
1448 #endif
1449 #ifdef CONFIG_VMAP_STACK
1450 struct vm_struct *stack_vm_area;
1451 #endif
1452 #ifdef CONFIG_THREAD_INFO_IN_TASK
1453 /* A live task holds one reference: */
1454 refcount_t stack_refcount;
1455 #endif
1456 #ifdef CONFIG_LIVEPATCH
1457 int patch_state;
1458 #endif
1459 #ifdef CONFIG_SECURITY
1460 /* Used by LSM modules for access restriction: */
1461 void *security;
1462 #endif
1463 #ifdef CONFIG_BPF_SYSCALL
1464 /* Used by BPF task local storage */
1465 struct bpf_local_storage __rcu *bpf_storage;
1466 /* Used for BPF run context */
1467 struct bpf_run_ctx *bpf_ctx;
1468 #endif
1469
1470 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1471 unsigned long lowest_stack;
1472 unsigned long prev_lowest_stack;
1473 #endif
1474
1475 #ifdef CONFIG_X86_MCE
1476 void __user *mce_vaddr;
1477 __u64 mce_kflags;
1478 u64 mce_addr;
1479 __u64 mce_ripv : 1,
1480 mce_whole_page : 1,
1481 __mce_reserved : 62;
1482 struct callback_head mce_kill_me;
1483 int mce_count;
1484 #endif
1485
1486 #ifdef CONFIG_KRETPROBES
1487 struct llist_head kretprobe_instances;
1488 #endif
1489 #ifdef CONFIG_RETHOOK
1490 struct llist_head rethooks;
1491 #endif
1492
1493 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1494 /*
1495 * If L1D flush is supported on mm context switch
1496 * then we use this callback head to queue kill work
1497 * to kill tasks that are not running on SMT disabled
1498 * cores
1499 */
1500 struct callback_head l1d_flush_kill;
1501 #endif
1502
1503 /*
1504 * New fields for task_struct should be added above here, so that
1505 * they are included in the randomized portion of task_struct.
1506 */
1507 randomized_struct_fields_end
1508
1509 /* CPU-specific state of this task: */
1510 struct thread_struct thread;
1511
1512 /*
1513 * WARNING: on x86, 'thread_struct' contains a variable-sized
1514 * structure. It *MUST* be at the end of 'task_struct'.
1515 *
1516 * Do not put anything below here!
1517 */
1518 };
1519
task_pid(struct task_struct * task)1520 static inline struct pid *task_pid(struct task_struct *task)
1521 {
1522 return task->thread_pid;
1523 }
1524
1525 /*
1526 * the helpers to get the task's different pids as they are seen
1527 * from various namespaces
1528 *
1529 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1530 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1531 * current.
1532 * task_xid_nr_ns() : id seen from the ns specified;
1533 *
1534 * see also pid_nr() etc in include/linux/pid.h
1535 */
1536 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1537
task_pid_nr(struct task_struct * tsk)1538 static inline pid_t task_pid_nr(struct task_struct *tsk)
1539 {
1540 return tsk->pid;
1541 }
1542
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1543 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1544 {
1545 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1546 }
1547
task_pid_vnr(struct task_struct * tsk)1548 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1549 {
1550 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1551 }
1552
1553
task_tgid_nr(struct task_struct * tsk)1554 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1555 {
1556 return tsk->tgid;
1557 }
1558
1559 /**
1560 * pid_alive - check that a task structure is not stale
1561 * @p: Task structure to be checked.
1562 *
1563 * Test if a process is not yet dead (at most zombie state)
1564 * If pid_alive fails, then pointers within the task structure
1565 * can be stale and must not be dereferenced.
1566 *
1567 * Return: 1 if the process is alive. 0 otherwise.
1568 */
pid_alive(const struct task_struct * p)1569 static inline int pid_alive(const struct task_struct *p)
1570 {
1571 return p->thread_pid != NULL;
1572 }
1573
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1574 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1575 {
1576 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1577 }
1578
task_pgrp_vnr(struct task_struct * tsk)1579 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1580 {
1581 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1582 }
1583
1584
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1585 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1586 {
1587 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1588 }
1589
task_session_vnr(struct task_struct * tsk)1590 static inline pid_t task_session_vnr(struct task_struct *tsk)
1591 {
1592 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1593 }
1594
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1595 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1596 {
1597 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1598 }
1599
task_tgid_vnr(struct task_struct * tsk)1600 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1601 {
1602 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1603 }
1604
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1605 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1606 {
1607 pid_t pid = 0;
1608
1609 rcu_read_lock();
1610 if (pid_alive(tsk))
1611 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1612 rcu_read_unlock();
1613
1614 return pid;
1615 }
1616
task_ppid_nr(const struct task_struct * tsk)1617 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1618 {
1619 return task_ppid_nr_ns(tsk, &init_pid_ns);
1620 }
1621
1622 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1623 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1624 {
1625 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1626 }
1627
1628 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1629 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1630
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1631 static inline unsigned int __task_state_index(unsigned int tsk_state,
1632 unsigned int tsk_exit_state)
1633 {
1634 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1635
1636 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1637
1638 if (tsk_state == TASK_IDLE)
1639 state = TASK_REPORT_IDLE;
1640
1641 /*
1642 * We're lying here, but rather than expose a completely new task state
1643 * to userspace, we can make this appear as if the task has gone through
1644 * a regular rt_mutex_lock() call.
1645 */
1646 if (tsk_state == TASK_RTLOCK_WAIT)
1647 state = TASK_UNINTERRUPTIBLE;
1648
1649 return fls(state);
1650 }
1651
task_state_index(struct task_struct * tsk)1652 static inline unsigned int task_state_index(struct task_struct *tsk)
1653 {
1654 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1655 }
1656
task_index_to_char(unsigned int state)1657 static inline char task_index_to_char(unsigned int state)
1658 {
1659 static const char state_char[] = "RSDTtXZPI";
1660
1661 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1662
1663 return state_char[state];
1664 }
1665
task_state_to_char(struct task_struct * tsk)1666 static inline char task_state_to_char(struct task_struct *tsk)
1667 {
1668 return task_index_to_char(task_state_index(tsk));
1669 }
1670
1671 /**
1672 * is_global_init - check if a task structure is init. Since init
1673 * is free to have sub-threads we need to check tgid.
1674 * @tsk: Task structure to be checked.
1675 *
1676 * Check if a task structure is the first user space task the kernel created.
1677 *
1678 * Return: 1 if the task structure is init. 0 otherwise.
1679 */
is_global_init(struct task_struct * tsk)1680 static inline int is_global_init(struct task_struct *tsk)
1681 {
1682 return task_tgid_nr(tsk) == 1;
1683 }
1684
1685 extern struct pid *cad_pid;
1686
1687 /*
1688 * Per process flags
1689 */
1690 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1691 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1692 #define PF_EXITING 0x00000004 /* Getting shut down */
1693 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1694 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1695 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1696 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1697 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1698 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1699 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1700 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1701 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1702 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1703 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1704 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1705 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1706 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1707 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1708 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1709 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1710 * I am cleaning dirty pages from some other bdi. */
1711 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1712 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1713 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1714 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1715 #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1716 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1717 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1718
1719 /*
1720 * Only the _current_ task can read/write to tsk->flags, but other
1721 * tasks can access tsk->flags in readonly mode for example
1722 * with tsk_used_math (like during threaded core dumping).
1723 * There is however an exception to this rule during ptrace
1724 * or during fork: the ptracer task is allowed to write to the
1725 * child->flags of its traced child (same goes for fork, the parent
1726 * can write to the child->flags), because we're guaranteed the
1727 * child is not running and in turn not changing child->flags
1728 * at the same time the parent does it.
1729 */
1730 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1731 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1732 #define clear_used_math() clear_stopped_child_used_math(current)
1733 #define set_used_math() set_stopped_child_used_math(current)
1734
1735 #define conditional_stopped_child_used_math(condition, child) \
1736 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1737
1738 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1739
1740 #define copy_to_stopped_child_used_math(child) \
1741 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1742
1743 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1744 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1745 #define used_math() tsk_used_math(current)
1746
is_percpu_thread(void)1747 static __always_inline bool is_percpu_thread(void)
1748 {
1749 #ifdef CONFIG_SMP
1750 return (current->flags & PF_NO_SETAFFINITY) &&
1751 (current->nr_cpus_allowed == 1);
1752 #else
1753 return true;
1754 #endif
1755 }
1756
1757 /* Per-process atomic flags. */
1758 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1759 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1760 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1761 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1762 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1763 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1764 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1765 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1766
1767 #define TASK_PFA_TEST(name, func) \
1768 static inline bool task_##func(struct task_struct *p) \
1769 { return test_bit(PFA_##name, &p->atomic_flags); }
1770
1771 #define TASK_PFA_SET(name, func) \
1772 static inline void task_set_##func(struct task_struct *p) \
1773 { set_bit(PFA_##name, &p->atomic_flags); }
1774
1775 #define TASK_PFA_CLEAR(name, func) \
1776 static inline void task_clear_##func(struct task_struct *p) \
1777 { clear_bit(PFA_##name, &p->atomic_flags); }
1778
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1779 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1780 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1781
1782 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1783 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1784 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1785
1786 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1787 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1788 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1789
1790 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1791 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1792 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1793
1794 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1795 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1796 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1797
1798 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1799 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1800
1801 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1802 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1803 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1804
1805 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1806 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1807
1808 static inline void
1809 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1810 {
1811 current->flags &= ~flags;
1812 current->flags |= orig_flags & flags;
1813 }
1814
1815 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1816 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus);
1817 #ifdef CONFIG_SMP
1818 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1819 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1820 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1821 extern void release_user_cpus_ptr(struct task_struct *p);
1822 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1823 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1824 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1825 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1826 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1827 {
1828 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1829 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1830 {
1831 if (!cpumask_test_cpu(0, new_mask))
1832 return -EINVAL;
1833 return 0;
1834 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1835 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1836 {
1837 if (src->user_cpus_ptr)
1838 return -EINVAL;
1839 return 0;
1840 }
release_user_cpus_ptr(struct task_struct * p)1841 static inline void release_user_cpus_ptr(struct task_struct *p)
1842 {
1843 WARN_ON(p->user_cpus_ptr);
1844 }
1845
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1846 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1847 {
1848 return 0;
1849 }
1850 #endif
1851
1852 extern int yield_to(struct task_struct *p, bool preempt);
1853 extern void set_user_nice(struct task_struct *p, long nice);
1854 extern int task_prio(const struct task_struct *p);
1855
1856 /**
1857 * task_nice - return the nice value of a given task.
1858 * @p: the task in question.
1859 *
1860 * Return: The nice value [ -20 ... 0 ... 19 ].
1861 */
task_nice(const struct task_struct * p)1862 static inline int task_nice(const struct task_struct *p)
1863 {
1864 return PRIO_TO_NICE((p)->static_prio);
1865 }
1866
1867 extern int can_nice(const struct task_struct *p, const int nice);
1868 extern int task_curr(const struct task_struct *p);
1869 extern int idle_cpu(int cpu);
1870 extern int available_idle_cpu(int cpu);
1871 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1872 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1873 extern void sched_set_fifo(struct task_struct *p);
1874 extern void sched_set_fifo_low(struct task_struct *p);
1875 extern void sched_set_normal(struct task_struct *p, int nice);
1876 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1877 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1878 extern struct task_struct *idle_task(int cpu);
1879
1880 /**
1881 * is_idle_task - is the specified task an idle task?
1882 * @p: the task in question.
1883 *
1884 * Return: 1 if @p is an idle task. 0 otherwise.
1885 */
is_idle_task(const struct task_struct * p)1886 static __always_inline bool is_idle_task(const struct task_struct *p)
1887 {
1888 return !!(p->flags & PF_IDLE);
1889 }
1890
1891 extern struct task_struct *curr_task(int cpu);
1892 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1893
1894 void yield(void);
1895
1896 union thread_union {
1897 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1898 struct task_struct task;
1899 #endif
1900 #ifndef CONFIG_THREAD_INFO_IN_TASK
1901 struct thread_info thread_info;
1902 #endif
1903 unsigned long stack[THREAD_SIZE/sizeof(long)];
1904 };
1905
1906 #ifndef CONFIG_THREAD_INFO_IN_TASK
1907 extern struct thread_info init_thread_info;
1908 #endif
1909
1910 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1911
1912 #ifdef CONFIG_THREAD_INFO_IN_TASK
1913 # define task_thread_info(task) (&(task)->thread_info)
1914 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1915 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1916 #endif
1917
1918 /*
1919 * find a task by one of its numerical ids
1920 *
1921 * find_task_by_pid_ns():
1922 * finds a task by its pid in the specified namespace
1923 * find_task_by_vpid():
1924 * finds a task by its virtual pid
1925 *
1926 * see also find_vpid() etc in include/linux/pid.h
1927 */
1928
1929 extern struct task_struct *find_task_by_vpid(pid_t nr);
1930 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1931
1932 /*
1933 * find a task by its virtual pid and get the task struct
1934 */
1935 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1936
1937 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1938 extern int wake_up_process(struct task_struct *tsk);
1939 extern void wake_up_new_task(struct task_struct *tsk);
1940
1941 #ifdef CONFIG_SMP
1942 extern void kick_process(struct task_struct *tsk);
1943 #else
kick_process(struct task_struct * tsk)1944 static inline void kick_process(struct task_struct *tsk) { }
1945 #endif
1946
1947 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1948
set_task_comm(struct task_struct * tsk,const char * from)1949 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1950 {
1951 __set_task_comm(tsk, from, false);
1952 }
1953
1954 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1955 #define get_task_comm(buf, tsk) ({ \
1956 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1957 __get_task_comm(buf, sizeof(buf), tsk); \
1958 })
1959
1960 #ifdef CONFIG_SMP
scheduler_ipi(void)1961 static __always_inline void scheduler_ipi(void)
1962 {
1963 /*
1964 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1965 * TIF_NEED_RESCHED remotely (for the first time) will also send
1966 * this IPI.
1967 */
1968 preempt_fold_need_resched();
1969 }
1970 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1971 #else
scheduler_ipi(void)1972 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,unsigned int match_state)1973 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1974 {
1975 return 1;
1976 }
1977 #endif
1978
1979 /*
1980 * Set thread flags in other task's structures.
1981 * See asm/thread_info.h for TIF_xxxx flags available:
1982 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)1983 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1984 {
1985 set_ti_thread_flag(task_thread_info(tsk), flag);
1986 }
1987
clear_tsk_thread_flag(struct task_struct * tsk,int flag)1988 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1989 {
1990 clear_ti_thread_flag(task_thread_info(tsk), flag);
1991 }
1992
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)1993 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1994 bool value)
1995 {
1996 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1997 }
1998
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)1999 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2000 {
2001 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2002 }
2003
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2004 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2005 {
2006 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2007 }
2008
test_tsk_thread_flag(struct task_struct * tsk,int flag)2009 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2010 {
2011 return test_ti_thread_flag(task_thread_info(tsk), flag);
2012 }
2013
set_tsk_need_resched(struct task_struct * tsk)2014 static inline void set_tsk_need_resched(struct task_struct *tsk)
2015 {
2016 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2017 }
2018
clear_tsk_need_resched(struct task_struct * tsk)2019 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2020 {
2021 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2022 }
2023
test_tsk_need_resched(struct task_struct * tsk)2024 static inline int test_tsk_need_resched(struct task_struct *tsk)
2025 {
2026 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2027 }
2028
2029 /*
2030 * cond_resched() and cond_resched_lock(): latency reduction via
2031 * explicit rescheduling in places that are safe. The return
2032 * value indicates whether a reschedule was done in fact.
2033 * cond_resched_lock() will drop the spinlock before scheduling,
2034 */
2035 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2036 extern int __cond_resched(void);
2037
2038 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2039
2040 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2041
_cond_resched(void)2042 static __always_inline int _cond_resched(void)
2043 {
2044 return static_call_mod(cond_resched)();
2045 }
2046
2047 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2048 extern int dynamic_cond_resched(void);
2049
_cond_resched(void)2050 static __always_inline int _cond_resched(void)
2051 {
2052 return dynamic_cond_resched();
2053 }
2054
2055 #else
2056
_cond_resched(void)2057 static inline int _cond_resched(void)
2058 {
2059 return __cond_resched();
2060 }
2061
2062 #endif /* CONFIG_PREEMPT_DYNAMIC */
2063
2064 #else
2065
_cond_resched(void)2066 static inline int _cond_resched(void) { return 0; }
2067
2068 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2069
2070 #define cond_resched() ({ \
2071 __might_resched(__FILE__, __LINE__, 0); \
2072 _cond_resched(); \
2073 })
2074
2075 extern int __cond_resched_lock(spinlock_t *lock);
2076 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2077 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2078
2079 #define MIGHT_RESCHED_RCU_SHIFT 8
2080 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2081
2082 #ifndef CONFIG_PREEMPT_RT
2083 /*
2084 * Non RT kernels have an elevated preempt count due to the held lock,
2085 * but are not allowed to be inside a RCU read side critical section
2086 */
2087 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2088 #else
2089 /*
2090 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2091 * cond_resched*lock() has to take that into account because it checks for
2092 * preempt_count() and rcu_preempt_depth().
2093 */
2094 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2095 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2096 #endif
2097
2098 #define cond_resched_lock(lock) ({ \
2099 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2100 __cond_resched_lock(lock); \
2101 })
2102
2103 #define cond_resched_rwlock_read(lock) ({ \
2104 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2105 __cond_resched_rwlock_read(lock); \
2106 })
2107
2108 #define cond_resched_rwlock_write(lock) ({ \
2109 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2110 __cond_resched_rwlock_write(lock); \
2111 })
2112
cond_resched_rcu(void)2113 static inline void cond_resched_rcu(void)
2114 {
2115 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2116 rcu_read_unlock();
2117 cond_resched();
2118 rcu_read_lock();
2119 #endif
2120 }
2121
2122 #ifdef CONFIG_PREEMPT_DYNAMIC
2123
2124 extern bool preempt_model_none(void);
2125 extern bool preempt_model_voluntary(void);
2126 extern bool preempt_model_full(void);
2127
2128 #else
2129
preempt_model_none(void)2130 static inline bool preempt_model_none(void)
2131 {
2132 return IS_ENABLED(CONFIG_PREEMPT_NONE);
2133 }
preempt_model_voluntary(void)2134 static inline bool preempt_model_voluntary(void)
2135 {
2136 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2137 }
preempt_model_full(void)2138 static inline bool preempt_model_full(void)
2139 {
2140 return IS_ENABLED(CONFIG_PREEMPT);
2141 }
2142
2143 #endif
2144
preempt_model_rt(void)2145 static inline bool preempt_model_rt(void)
2146 {
2147 return IS_ENABLED(CONFIG_PREEMPT_RT);
2148 }
2149
2150 /*
2151 * Does the preemption model allow non-cooperative preemption?
2152 *
2153 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2154 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2155 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2156 * PREEMPT_NONE model.
2157 */
preempt_model_preemptible(void)2158 static inline bool preempt_model_preemptible(void)
2159 {
2160 return preempt_model_full() || preempt_model_rt();
2161 }
2162
2163 /*
2164 * Does a critical section need to be broken due to another
2165 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2166 * but a general need for low latency)
2167 */
spin_needbreak(spinlock_t * lock)2168 static inline int spin_needbreak(spinlock_t *lock)
2169 {
2170 #ifdef CONFIG_PREEMPTION
2171 return spin_is_contended(lock);
2172 #else
2173 return 0;
2174 #endif
2175 }
2176
2177 /*
2178 * Check if a rwlock is contended.
2179 * Returns non-zero if there is another task waiting on the rwlock.
2180 * Returns zero if the lock is not contended or the system / underlying
2181 * rwlock implementation does not support contention detection.
2182 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2183 * for low latency.
2184 */
rwlock_needbreak(rwlock_t * lock)2185 static inline int rwlock_needbreak(rwlock_t *lock)
2186 {
2187 #ifdef CONFIG_PREEMPTION
2188 return rwlock_is_contended(lock);
2189 #else
2190 return 0;
2191 #endif
2192 }
2193
need_resched(void)2194 static __always_inline bool need_resched(void)
2195 {
2196 return unlikely(tif_need_resched());
2197 }
2198
2199 /*
2200 * Wrappers for p->thread_info->cpu access. No-op on UP.
2201 */
2202 #ifdef CONFIG_SMP
2203
task_cpu(const struct task_struct * p)2204 static inline unsigned int task_cpu(const struct task_struct *p)
2205 {
2206 return READ_ONCE(task_thread_info(p)->cpu);
2207 }
2208
2209 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2210
2211 #else
2212
task_cpu(const struct task_struct * p)2213 static inline unsigned int task_cpu(const struct task_struct *p)
2214 {
2215 return 0;
2216 }
2217
set_task_cpu(struct task_struct * p,unsigned int cpu)2218 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2219 {
2220 }
2221
2222 #endif /* CONFIG_SMP */
2223
2224 extern bool sched_task_on_rq(struct task_struct *p);
2225 extern unsigned long get_wchan(struct task_struct *p);
2226
2227 /*
2228 * In order to reduce various lock holder preemption latencies provide an
2229 * interface to see if a vCPU is currently running or not.
2230 *
2231 * This allows us to terminate optimistic spin loops and block, analogous to
2232 * the native optimistic spin heuristic of testing if the lock owner task is
2233 * running or not.
2234 */
2235 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2236 static inline bool vcpu_is_preempted(int cpu)
2237 {
2238 return false;
2239 }
2240 #endif
2241
2242 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2243 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2244
2245 #ifndef TASK_SIZE_OF
2246 #define TASK_SIZE_OF(tsk) TASK_SIZE
2247 #endif
2248
2249 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2250 static inline bool owner_on_cpu(struct task_struct *owner)
2251 {
2252 /*
2253 * As lock holder preemption issue, we both skip spinning if
2254 * task is not on cpu or its cpu is preempted
2255 */
2256 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2257 }
2258
2259 /* Returns effective CPU energy utilization, as seen by the scheduler */
2260 unsigned long sched_cpu_util(int cpu, unsigned long max);
2261 #endif /* CONFIG_SMP */
2262
2263 #ifdef CONFIG_RSEQ
2264
2265 /*
2266 * Map the event mask on the user-space ABI enum rseq_cs_flags
2267 * for direct mask checks.
2268 */
2269 enum rseq_event_mask_bits {
2270 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2271 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2272 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2273 };
2274
2275 enum rseq_event_mask {
2276 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2277 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2278 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2279 };
2280
rseq_set_notify_resume(struct task_struct * t)2281 static inline void rseq_set_notify_resume(struct task_struct *t)
2282 {
2283 if (t->rseq)
2284 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2285 }
2286
2287 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2288
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2289 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2290 struct pt_regs *regs)
2291 {
2292 if (current->rseq)
2293 __rseq_handle_notify_resume(ksig, regs);
2294 }
2295
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2296 static inline void rseq_signal_deliver(struct ksignal *ksig,
2297 struct pt_regs *regs)
2298 {
2299 preempt_disable();
2300 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2301 preempt_enable();
2302 rseq_handle_notify_resume(ksig, regs);
2303 }
2304
2305 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2306 static inline void rseq_preempt(struct task_struct *t)
2307 {
2308 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2309 rseq_set_notify_resume(t);
2310 }
2311
2312 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2313 static inline void rseq_migrate(struct task_struct *t)
2314 {
2315 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2316 rseq_set_notify_resume(t);
2317 }
2318
2319 /*
2320 * If parent process has a registered restartable sequences area, the
2321 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2322 */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2323 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2324 {
2325 if (clone_flags & CLONE_VM) {
2326 t->rseq = NULL;
2327 t->rseq_sig = 0;
2328 t->rseq_event_mask = 0;
2329 } else {
2330 t->rseq = current->rseq;
2331 t->rseq_sig = current->rseq_sig;
2332 t->rseq_event_mask = current->rseq_event_mask;
2333 }
2334 }
2335
rseq_execve(struct task_struct * t)2336 static inline void rseq_execve(struct task_struct *t)
2337 {
2338 t->rseq = NULL;
2339 t->rseq_sig = 0;
2340 t->rseq_event_mask = 0;
2341 }
2342
2343 #else
2344
rseq_set_notify_resume(struct task_struct * t)2345 static inline void rseq_set_notify_resume(struct task_struct *t)
2346 {
2347 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2348 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2349 struct pt_regs *regs)
2350 {
2351 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2352 static inline void rseq_signal_deliver(struct ksignal *ksig,
2353 struct pt_regs *regs)
2354 {
2355 }
rseq_preempt(struct task_struct * t)2356 static inline void rseq_preempt(struct task_struct *t)
2357 {
2358 }
rseq_migrate(struct task_struct * t)2359 static inline void rseq_migrate(struct task_struct *t)
2360 {
2361 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2362 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2363 {
2364 }
rseq_execve(struct task_struct * t)2365 static inline void rseq_execve(struct task_struct *t)
2366 {
2367 }
2368
2369 #endif
2370
2371 #ifdef CONFIG_DEBUG_RSEQ
2372
2373 void rseq_syscall(struct pt_regs *regs);
2374
2375 #else
2376
rseq_syscall(struct pt_regs * regs)2377 static inline void rseq_syscall(struct pt_regs *regs)
2378 {
2379 }
2380
2381 #endif
2382
2383 #ifdef CONFIG_SCHED_CORE
2384 extern void sched_core_free(struct task_struct *tsk);
2385 extern void sched_core_fork(struct task_struct *p);
2386 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2387 unsigned long uaddr);
2388 #else
sched_core_free(struct task_struct * tsk)2389 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2390 static inline void sched_core_fork(struct task_struct *p) { }
2391 #endif
2392
2393 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2394
2395 #endif
2396