1 /* smp.c: Sparc SMP support.
2  *
3  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4  * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5  * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6  */
7 
8 #include <asm/head.h>
9 
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
26 
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35 #include <asm/leon.h>
36 
37 #include "irq.h"
38 
39 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
40 unsigned char boot_cpu_id = 0;
41 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
42 
43 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
44 
45 /* The only guaranteed locking primitive available on all Sparc
46  * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
47  * places the current byte at the effective address into dest_reg and
48  * places 0xff there afterwards.  Pretty lame locking primitive
49  * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
50  * instruction which is much better...
51  */
52 
smp_store_cpu_info(int id)53 void __cpuinit smp_store_cpu_info(int id)
54 {
55 	int cpu_node;
56 	int mid;
57 
58 	cpu_data(id).udelay_val = loops_per_jiffy;
59 
60 	cpu_find_by_mid(id, &cpu_node);
61 	cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
62 						     "clock-frequency", 0);
63 	cpu_data(id).prom_node = cpu_node;
64 	mid = cpu_get_hwmid(cpu_node);
65 
66 	if (mid < 0) {
67 		printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
68 		mid = 0;
69 	}
70 	cpu_data(id).mid = mid;
71 }
72 
smp_cpus_done(unsigned int max_cpus)73 void __init smp_cpus_done(unsigned int max_cpus)
74 {
75 	extern void smp4m_smp_done(void);
76 	extern void smp4d_smp_done(void);
77 	unsigned long bogosum = 0;
78 	int cpu, num = 0;
79 
80 	for_each_online_cpu(cpu) {
81 		num++;
82 		bogosum += cpu_data(cpu).udelay_val;
83 	}
84 
85 	printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
86 		num, bogosum/(500000/HZ),
87 		(bogosum/(5000/HZ))%100);
88 
89 	switch(sparc_cpu_model) {
90 	case sun4:
91 		printk("SUN4\n");
92 		BUG();
93 		break;
94 	case sun4c:
95 		printk("SUN4C\n");
96 		BUG();
97 		break;
98 	case sun4m:
99 		smp4m_smp_done();
100 		break;
101 	case sun4d:
102 		smp4d_smp_done();
103 		break;
104 	case sparc_leon:
105 		leon_smp_done();
106 		break;
107 	case sun4e:
108 		printk("SUN4E\n");
109 		BUG();
110 		break;
111 	case sun4u:
112 		printk("SUN4U\n");
113 		BUG();
114 		break;
115 	default:
116 		printk("UNKNOWN!\n");
117 		BUG();
118 		break;
119 	};
120 }
121 
cpu_panic(void)122 void cpu_panic(void)
123 {
124 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
125 	panic("SMP bolixed\n");
126 }
127 
128 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
129 
smp_send_reschedule(int cpu)130 void smp_send_reschedule(int cpu)
131 {
132 	/* See sparc64 */
133 }
134 
smp_send_stop(void)135 void smp_send_stop(void)
136 {
137 }
138 
smp_flush_cache_all(void)139 void smp_flush_cache_all(void)
140 {
141 	xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
142 	local_flush_cache_all();
143 }
144 
smp_flush_tlb_all(void)145 void smp_flush_tlb_all(void)
146 {
147 	xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
148 	local_flush_tlb_all();
149 }
150 
smp_flush_cache_mm(struct mm_struct * mm)151 void smp_flush_cache_mm(struct mm_struct *mm)
152 {
153 	if(mm->context != NO_CONTEXT) {
154 		cpumask_t cpu_mask = *mm_cpumask(mm);
155 		cpu_clear(smp_processor_id(), cpu_mask);
156 		if (!cpus_empty(cpu_mask))
157 			xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
158 		local_flush_cache_mm(mm);
159 	}
160 }
161 
smp_flush_tlb_mm(struct mm_struct * mm)162 void smp_flush_tlb_mm(struct mm_struct *mm)
163 {
164 	if(mm->context != NO_CONTEXT) {
165 		cpumask_t cpu_mask = *mm_cpumask(mm);
166 		cpu_clear(smp_processor_id(), cpu_mask);
167 		if (!cpus_empty(cpu_mask)) {
168 			xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
169 			if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
170 				cpumask_copy(mm_cpumask(mm),
171 					     cpumask_of(smp_processor_id()));
172 		}
173 		local_flush_tlb_mm(mm);
174 	}
175 }
176 
smp_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)177 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
178 			   unsigned long end)
179 {
180 	struct mm_struct *mm = vma->vm_mm;
181 
182 	if (mm->context != NO_CONTEXT) {
183 		cpumask_t cpu_mask = *mm_cpumask(mm);
184 		cpu_clear(smp_processor_id(), cpu_mask);
185 		if (!cpus_empty(cpu_mask))
186 			xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
187 		local_flush_cache_range(vma, start, end);
188 	}
189 }
190 
smp_flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)191 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
192 			 unsigned long end)
193 {
194 	struct mm_struct *mm = vma->vm_mm;
195 
196 	if (mm->context != NO_CONTEXT) {
197 		cpumask_t cpu_mask = *mm_cpumask(mm);
198 		cpu_clear(smp_processor_id(), cpu_mask);
199 		if (!cpus_empty(cpu_mask))
200 			xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
201 		local_flush_tlb_range(vma, start, end);
202 	}
203 }
204 
smp_flush_cache_page(struct vm_area_struct * vma,unsigned long page)205 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
206 {
207 	struct mm_struct *mm = vma->vm_mm;
208 
209 	if(mm->context != NO_CONTEXT) {
210 		cpumask_t cpu_mask = *mm_cpumask(mm);
211 		cpu_clear(smp_processor_id(), cpu_mask);
212 		if (!cpus_empty(cpu_mask))
213 			xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
214 		local_flush_cache_page(vma, page);
215 	}
216 }
217 
smp_flush_tlb_page(struct vm_area_struct * vma,unsigned long page)218 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
219 {
220 	struct mm_struct *mm = vma->vm_mm;
221 
222 	if(mm->context != NO_CONTEXT) {
223 		cpumask_t cpu_mask = *mm_cpumask(mm);
224 		cpu_clear(smp_processor_id(), cpu_mask);
225 		if (!cpus_empty(cpu_mask))
226 			xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
227 		local_flush_tlb_page(vma, page);
228 	}
229 }
230 
smp_reschedule_irq(void)231 void smp_reschedule_irq(void)
232 {
233 	set_need_resched();
234 }
235 
smp_flush_page_to_ram(unsigned long page)236 void smp_flush_page_to_ram(unsigned long page)
237 {
238 	/* Current theory is that those who call this are the one's
239 	 * who have just dirtied their cache with the pages contents
240 	 * in kernel space, therefore we only run this on local cpu.
241 	 *
242 	 * XXX This experiment failed, research further... -DaveM
243 	 */
244 #if 1
245 	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
246 #endif
247 	local_flush_page_to_ram(page);
248 }
249 
smp_flush_sig_insns(struct mm_struct * mm,unsigned long insn_addr)250 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
251 {
252 	cpumask_t cpu_mask = *mm_cpumask(mm);
253 	cpu_clear(smp_processor_id(), cpu_mask);
254 	if (!cpus_empty(cpu_mask))
255 		xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
256 	local_flush_sig_insns(mm, insn_addr);
257 }
258 
259 extern unsigned int lvl14_resolution;
260 
261 /* /proc/profile writes can call this, don't __init it please. */
262 static DEFINE_SPINLOCK(prof_setup_lock);
263 
setup_profiling_timer(unsigned int multiplier)264 int setup_profiling_timer(unsigned int multiplier)
265 {
266 	int i;
267 	unsigned long flags;
268 
269 	/* Prevent level14 ticker IRQ flooding. */
270 	if((!multiplier) || (lvl14_resolution / multiplier) < 500)
271 		return -EINVAL;
272 
273 	spin_lock_irqsave(&prof_setup_lock, flags);
274 	for_each_possible_cpu(i) {
275 		load_profile_irq(i, lvl14_resolution / multiplier);
276 		prof_multiplier(i) = multiplier;
277 	}
278 	spin_unlock_irqrestore(&prof_setup_lock, flags);
279 
280 	return 0;
281 }
282 
smp_prepare_cpus(unsigned int max_cpus)283 void __init smp_prepare_cpus(unsigned int max_cpus)
284 {
285 	extern void __init smp4m_boot_cpus(void);
286 	extern void __init smp4d_boot_cpus(void);
287 	int i, cpuid, extra;
288 
289 	printk("Entering SMP Mode...\n");
290 
291 	extra = 0;
292 	for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
293 		if (cpuid >= NR_CPUS)
294 			extra++;
295 	}
296 	/* i = number of cpus */
297 	if (extra && max_cpus > i - extra)
298 		printk("Warning: NR_CPUS is too low to start all cpus\n");
299 
300 	smp_store_cpu_info(boot_cpu_id);
301 
302 	switch(sparc_cpu_model) {
303 	case sun4:
304 		printk("SUN4\n");
305 		BUG();
306 		break;
307 	case sun4c:
308 		printk("SUN4C\n");
309 		BUG();
310 		break;
311 	case sun4m:
312 		smp4m_boot_cpus();
313 		break;
314 	case sun4d:
315 		smp4d_boot_cpus();
316 		break;
317 	case sparc_leon:
318 		leon_boot_cpus();
319 		break;
320 	case sun4e:
321 		printk("SUN4E\n");
322 		BUG();
323 		break;
324 	case sun4u:
325 		printk("SUN4U\n");
326 		BUG();
327 		break;
328 	default:
329 		printk("UNKNOWN!\n");
330 		BUG();
331 		break;
332 	};
333 }
334 
335 /* Set this up early so that things like the scheduler can init
336  * properly.  We use the same cpu mask for both the present and
337  * possible cpu map.
338  */
smp_setup_cpu_possible_map(void)339 void __init smp_setup_cpu_possible_map(void)
340 {
341 	int instance, mid;
342 
343 	instance = 0;
344 	while (!cpu_find_by_instance(instance, NULL, &mid)) {
345 		if (mid < NR_CPUS) {
346 			set_cpu_possible(mid, true);
347 			set_cpu_present(mid, true);
348 		}
349 		instance++;
350 	}
351 }
352 
smp_prepare_boot_cpu(void)353 void __init smp_prepare_boot_cpu(void)
354 {
355 	int cpuid = hard_smp_processor_id();
356 
357 	if (cpuid >= NR_CPUS) {
358 		prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
359 		prom_halt();
360 	}
361 	if (cpuid != 0)
362 		printk("boot cpu id != 0, this could work but is untested\n");
363 
364 	current_thread_info()->cpu = cpuid;
365 	set_cpu_online(cpuid, true);
366 	set_cpu_possible(cpuid, true);
367 }
368 
__cpu_up(unsigned int cpu)369 int __cpuinit __cpu_up(unsigned int cpu)
370 {
371 	extern int __cpuinit smp4m_boot_one_cpu(int);
372 	extern int __cpuinit smp4d_boot_one_cpu(int);
373 	int ret=0;
374 
375 	switch(sparc_cpu_model) {
376 	case sun4:
377 		printk("SUN4\n");
378 		BUG();
379 		break;
380 	case sun4c:
381 		printk("SUN4C\n");
382 		BUG();
383 		break;
384 	case sun4m:
385 		ret = smp4m_boot_one_cpu(cpu);
386 		break;
387 	case sun4d:
388 		ret = smp4d_boot_one_cpu(cpu);
389 		break;
390 	case sparc_leon:
391 		ret = leon_boot_one_cpu(cpu);
392 		break;
393 	case sun4e:
394 		printk("SUN4E\n");
395 		BUG();
396 		break;
397 	case sun4u:
398 		printk("SUN4U\n");
399 		BUG();
400 		break;
401 	default:
402 		printk("UNKNOWN!\n");
403 		BUG();
404 		break;
405 	};
406 
407 	if (!ret) {
408 		cpu_set(cpu, smp_commenced_mask);
409 		while (!cpu_online(cpu))
410 			mb();
411 	}
412 	return ret;
413 }
414 
smp_bogo(struct seq_file * m)415 void smp_bogo(struct seq_file *m)
416 {
417 	int i;
418 
419 	for_each_online_cpu(i) {
420 		seq_printf(m,
421 			   "Cpu%dBogo\t: %lu.%02lu\n",
422 			   i,
423 			   cpu_data(i).udelay_val/(500000/HZ),
424 			   (cpu_data(i).udelay_val/(5000/HZ))%100);
425 	}
426 }
427 
smp_info(struct seq_file * m)428 void smp_info(struct seq_file *m)
429 {
430 	int i;
431 
432 	seq_printf(m, "State:\n");
433 	for_each_online_cpu(i)
434 		seq_printf(m, "CPU%d\t\t: online\n", i);
435 }
436