1 /* bnx2x_sriov.c: QLogic Everest network driver.
2 *
3 * Copyright 2009-2013 Broadcom Corporation
4 * Copyright 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * Unless you and QLogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11 *
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other QLogic software provided under a
14 * license other than the GPL, without QLogic's express prior written
15 * consent.
16 *
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Shmulik Ravid
19 * Ariel Elior <ariel.elior@qlogic.com>
20 *
21 */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 struct bnx2x_virtf **vf,
31 struct pf_vf_bulletin_content **bulletin,
32 bool test_queue);
33
34 /* General service functions */
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 u16 pf_id)
37 {
38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 pf_id);
40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 pf_id);
42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 pf_id);
44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 pf_id);
46 }
47
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 u8 enable)
50 {
51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 enable);
53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 enable);
55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 enable);
57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 enable);
59 }
60
bnx2x_vf_idx_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 int idx;
64
65 for_each_vf(bp, idx)
66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 break;
68 return idx;
69 }
70
71 static
bnx2x_vf_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77
bnx2x_vf_igu_ack_sb(struct bnx2x * bp,struct bnx2x_virtf * vf,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 u8 update)
81 {
82 /* acking a VF sb through the PF - use the GRC */
83 u32 ctl;
84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 u32 func_encode = vf->abs_vfid;
87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 struct igu_regular cmd_data = {0};
89
90 cmd_data.sb_id_and_flags =
91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95
96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
97 func_encode << IGU_CTRL_REG_FID_SHIFT |
98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99
100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 cmd_data.sb_id_and_flags, igu_addr_data);
102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 barrier();
104
105 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
106 ctl, igu_addr_ctl);
107 REG_WR(bp, igu_addr_ctl, ctl);
108 barrier();
109 }
110
bnx2x_validate_vf_sp_objs(struct bnx2x * bp,struct bnx2x_virtf * vf,bool print_err)111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
112 struct bnx2x_virtf *vf,
113 bool print_err)
114 {
115 if (!bnx2x_leading_vfq(vf, sp_initialized)) {
116 if (print_err)
117 BNX2X_ERR("Slowpath objects not yet initialized!\n");
118 else
119 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
120 return false;
121 }
122 return true;
123 }
124
125 /* VFOP operations states */
bnx2x_vfop_qctor_dump_tx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
127 struct bnx2x_queue_init_params *init_params,
128 struct bnx2x_queue_setup_params *setup_params,
129 u16 q_idx, u16 sb_idx)
130 {
131 DP(BNX2X_MSG_IOV,
132 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
133 vf->abs_vfid,
134 q_idx,
135 sb_idx,
136 init_params->tx.sb_cq_index,
137 init_params->tx.hc_rate,
138 setup_params->flags,
139 setup_params->txq_params.traffic_type);
140 }
141
bnx2x_vfop_qctor_dump_rx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
143 struct bnx2x_queue_init_params *init_params,
144 struct bnx2x_queue_setup_params *setup_params,
145 u16 q_idx, u16 sb_idx)
146 {
147 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
148
149 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
151 vf->abs_vfid,
152 q_idx,
153 sb_idx,
154 init_params->rx.sb_cq_index,
155 init_params->rx.hc_rate,
156 setup_params->gen_params.mtu,
157 rxq_params->buf_sz,
158 rxq_params->sge_buf_sz,
159 rxq_params->max_sges_pkt,
160 rxq_params->tpa_agg_sz,
161 setup_params->flags,
162 rxq_params->drop_flags,
163 rxq_params->cache_line_log);
164 }
165
bnx2x_vfop_qctor_prep(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q,struct bnx2x_vf_queue_construct_params * p,unsigned long q_type)166 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
167 struct bnx2x_virtf *vf,
168 struct bnx2x_vf_queue *q,
169 struct bnx2x_vf_queue_construct_params *p,
170 unsigned long q_type)
171 {
172 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
173 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
174
175 /* INIT */
176
177 /* Enable host coalescing in the transition to INIT state */
178 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
179 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
180
181 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
182 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
183
184 /* FW SB ID */
185 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
186 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
187
188 /* context */
189 init_p->cxts[0] = q->cxt;
190
191 /* SETUP */
192
193 /* Setup-op general parameters */
194 setup_p->gen_params.spcl_id = vf->sp_cl_id;
195 setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
196 setup_p->gen_params.fp_hsi = vf->fp_hsi;
197
198 /* Setup-op flags:
199 * collect statistics, zero statistics, local-switching, security,
200 * OV for Flex10, RSS and MCAST for leading
201 */
202 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
203 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
204
205 /* for VFs, enable tx switching, bd coherency, and mac address
206 * anti-spoofing
207 */
208 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
209 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
210 if (vf->spoofchk)
211 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
212 else
213 __clear_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
214
215 /* Setup-op rx parameters */
216 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
217 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
218
219 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
220 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
221 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
222
223 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
224 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
225 }
226
227 /* Setup-op tx parameters */
228 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
229 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
230 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
231 }
232 }
233
bnx2x_vf_queue_create(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)234 static int bnx2x_vf_queue_create(struct bnx2x *bp,
235 struct bnx2x_virtf *vf, int qid,
236 struct bnx2x_vf_queue_construct_params *qctor)
237 {
238 struct bnx2x_queue_state_params *q_params;
239 int rc = 0;
240
241 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
242
243 /* Prepare ramrod information */
244 q_params = &qctor->qstate;
245 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
246 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
247
248 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
249 BNX2X_Q_LOGICAL_STATE_ACTIVE) {
250 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
251 goto out;
252 }
253
254 /* Run Queue 'construction' ramrods */
255 q_params->cmd = BNX2X_Q_CMD_INIT;
256 rc = bnx2x_queue_state_change(bp, q_params);
257 if (rc)
258 goto out;
259
260 memcpy(&q_params->params.setup, &qctor->prep_qsetup,
261 sizeof(struct bnx2x_queue_setup_params));
262 q_params->cmd = BNX2X_Q_CMD_SETUP;
263 rc = bnx2x_queue_state_change(bp, q_params);
264 if (rc)
265 goto out;
266
267 /* enable interrupts */
268 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
269 USTORM_ID, 0, IGU_INT_ENABLE, 0);
270 out:
271 return rc;
272 }
273
bnx2x_vf_queue_destroy(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)274 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
275 int qid)
276 {
277 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
278 BNX2X_Q_CMD_TERMINATE,
279 BNX2X_Q_CMD_CFC_DEL};
280 struct bnx2x_queue_state_params q_params;
281 int rc, i;
282
283 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
284
285 /* Prepare ramrod information */
286 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
287 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
288 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
289
290 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
291 BNX2X_Q_LOGICAL_STATE_STOPPED) {
292 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
293 goto out;
294 }
295
296 /* Run Queue 'destruction' ramrods */
297 for (i = 0; i < ARRAY_SIZE(cmds); i++) {
298 q_params.cmd = cmds[i];
299 rc = bnx2x_queue_state_change(bp, &q_params);
300 if (rc) {
301 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
302 return rc;
303 }
304 }
305 out:
306 /* Clean Context */
307 if (bnx2x_vfq(vf, qid, cxt)) {
308 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
309 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
310 }
311
312 return 0;
313 }
314
315 static void
bnx2x_vf_set_igu_info(struct bnx2x * bp,u8 igu_sb_id,u8 abs_vfid)316 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
317 {
318 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
319 if (vf) {
320 /* the first igu entry belonging to VFs of this PF */
321 if (!BP_VFDB(bp)->first_vf_igu_entry)
322 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
323
324 /* the first igu entry belonging to this VF */
325 if (!vf_sb_count(vf))
326 vf->igu_base_id = igu_sb_id;
327
328 ++vf_sb_count(vf);
329 ++vf->sb_count;
330 }
331 BP_VFDB(bp)->vf_sbs_pool++;
332 }
333
bnx2x_vf_vlan_mac_clear(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,bool drv_only,int type)334 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
335 int qid, bool drv_only, int type)
336 {
337 struct bnx2x_vlan_mac_ramrod_params ramrod;
338 int rc;
339
340 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
341 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
342 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
343
344 /* Prepare ramrod params */
345 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
346 if (type == BNX2X_VF_FILTER_VLAN_MAC) {
347 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
348 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
349 } else if (type == BNX2X_VF_FILTER_MAC) {
350 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
351 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
352 } else {
353 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
354 }
355 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
356
357 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
358 if (drv_only)
359 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
360 else
361 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
362
363 /* Start deleting */
364 rc = ramrod.vlan_mac_obj->delete_all(bp,
365 ramrod.vlan_mac_obj,
366 &ramrod.user_req.vlan_mac_flags,
367 &ramrod.ramrod_flags);
368 if (rc) {
369 BNX2X_ERR("Failed to delete all %s\n",
370 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
371 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
372 return rc;
373 }
374
375 return 0;
376 }
377
bnx2x_vf_mac_vlan_config(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_mac_vlan_filter * filter,bool drv_only)378 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
379 struct bnx2x_virtf *vf, int qid,
380 struct bnx2x_vf_mac_vlan_filter *filter,
381 bool drv_only)
382 {
383 struct bnx2x_vlan_mac_ramrod_params ramrod;
384 int rc;
385
386 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
387 vf->abs_vfid, filter->add ? "Adding" : "Deleting",
388 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
389 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
390
391 /* Prepare ramrod params */
392 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
393 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
394 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
395 ramrod.user_req.u.vlan.vlan = filter->vid;
396 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
397 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
398 } else if (filter->type == BNX2X_VF_FILTER_VLAN) {
399 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
400 ramrod.user_req.u.vlan.vlan = filter->vid;
401 } else {
402 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
403 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
404 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
405 }
406 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
407 BNX2X_VLAN_MAC_DEL;
408
409 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
410 if (drv_only)
411 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
412 else
413 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
414
415 /* Add/Remove the filter */
416 rc = bnx2x_config_vlan_mac(bp, &ramrod);
417 if (rc == -EEXIST)
418 return 0;
419 if (rc) {
420 BNX2X_ERR("Failed to %s %s\n",
421 filter->add ? "add" : "delete",
422 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
423 "VLAN-MAC" :
424 (filter->type == BNX2X_VF_FILTER_MAC) ?
425 "MAC" : "VLAN");
426 return rc;
427 }
428
429 filter->applied = true;
430
431 return 0;
432 }
433
bnx2x_vf_mac_vlan_config_list(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_mac_vlan_filters * filters,int qid,bool drv_only)434 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
435 struct bnx2x_vf_mac_vlan_filters *filters,
436 int qid, bool drv_only)
437 {
438 int rc = 0, i;
439
440 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
441
442 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
443 return -EINVAL;
444
445 /* Prepare ramrod params */
446 for (i = 0; i < filters->count; i++) {
447 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
448 &filters->filters[i], drv_only);
449 if (rc)
450 break;
451 }
452
453 /* Rollback if needed */
454 if (i != filters->count) {
455 BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
456 i, filters->count);
457 while (--i >= 0) {
458 if (!filters->filters[i].applied)
459 continue;
460 filters->filters[i].add = !filters->filters[i].add;
461 bnx2x_vf_mac_vlan_config(bp, vf, qid,
462 &filters->filters[i],
463 drv_only);
464 }
465 }
466
467 /* It's our responsibility to free the filters */
468 kfree(filters);
469
470 return rc;
471 }
472
bnx2x_vf_queue_setup(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)473 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
474 struct bnx2x_vf_queue_construct_params *qctor)
475 {
476 int rc;
477
478 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
479
480 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
481 if (rc)
482 goto op_err;
483
484 /* Schedule the configuration of any pending vlan filters */
485 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
486 BNX2X_MSG_IOV);
487 return 0;
488 op_err:
489 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
490 return rc;
491 }
492
bnx2x_vf_queue_flr(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)493 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
494 int qid)
495 {
496 int rc;
497
498 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
499
500 /* If needed, clean the filtering data base */
501 if ((qid == LEADING_IDX) &&
502 bnx2x_validate_vf_sp_objs(bp, vf, false)) {
503 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
504 BNX2X_VF_FILTER_VLAN_MAC);
505 if (rc)
506 goto op_err;
507 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
508 BNX2X_VF_FILTER_VLAN);
509 if (rc)
510 goto op_err;
511 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
512 BNX2X_VF_FILTER_MAC);
513 if (rc)
514 goto op_err;
515 }
516
517 /* Terminate queue */
518 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
519 struct bnx2x_queue_state_params qstate;
520
521 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
522 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
523 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
524 qstate.cmd = BNX2X_Q_CMD_TERMINATE;
525 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
526 rc = bnx2x_queue_state_change(bp, &qstate);
527 if (rc)
528 goto op_err;
529 }
530
531 return 0;
532 op_err:
533 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
534 return rc;
535 }
536
bnx2x_vf_mcast(struct bnx2x * bp,struct bnx2x_virtf * vf,bnx2x_mac_addr_t * mcasts,int mc_num,bool drv_only)537 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
538 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
539 {
540 struct bnx2x_mcast_list_elem *mc = NULL;
541 struct bnx2x_mcast_ramrod_params mcast;
542 int rc, i;
543
544 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
545
546 /* Prepare Multicast command */
547 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
548 mcast.mcast_obj = &vf->mcast_obj;
549 if (drv_only)
550 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
551 else
552 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
553 if (mc_num) {
554 mc = kcalloc(mc_num, sizeof(struct bnx2x_mcast_list_elem),
555 GFP_KERNEL);
556 if (!mc) {
557 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
558 return -ENOMEM;
559 }
560 }
561
562 if (mc_num) {
563 INIT_LIST_HEAD(&mcast.mcast_list);
564 for (i = 0; i < mc_num; i++) {
565 mc[i].mac = mcasts[i];
566 list_add_tail(&mc[i].link,
567 &mcast.mcast_list);
568 }
569
570 /* add new mcasts */
571 mcast.mcast_list_len = mc_num;
572 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
573 if (rc)
574 BNX2X_ERR("Failed to set multicasts\n");
575 } else {
576 /* clear existing mcasts */
577 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
578 if (rc)
579 BNX2X_ERR("Failed to remove multicasts\n");
580 }
581
582 kfree(mc);
583
584 return rc;
585 }
586
bnx2x_vf_prep_rx_mode(struct bnx2x * bp,u8 qid,struct bnx2x_rx_mode_ramrod_params * ramrod,struct bnx2x_virtf * vf,unsigned long accept_flags)587 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
588 struct bnx2x_rx_mode_ramrod_params *ramrod,
589 struct bnx2x_virtf *vf,
590 unsigned long accept_flags)
591 {
592 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
593
594 memset(ramrod, 0, sizeof(*ramrod));
595 ramrod->cid = vfq->cid;
596 ramrod->cl_id = vfq_cl_id(vf, vfq);
597 ramrod->rx_mode_obj = &bp->rx_mode_obj;
598 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
599 ramrod->rx_accept_flags = accept_flags;
600 ramrod->tx_accept_flags = accept_flags;
601 ramrod->pstate = &vf->filter_state;
602 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
603
604 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
605 set_bit(RAMROD_RX, &ramrod->ramrod_flags);
606 set_bit(RAMROD_TX, &ramrod->ramrod_flags);
607
608 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
609 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
610 }
611
bnx2x_vf_rxmode(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,unsigned long accept_flags)612 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
613 int qid, unsigned long accept_flags)
614 {
615 struct bnx2x_rx_mode_ramrod_params ramrod;
616
617 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
618
619 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
620 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
621 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
622 return bnx2x_config_rx_mode(bp, &ramrod);
623 }
624
bnx2x_vf_queue_teardown(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)625 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
626 {
627 int rc;
628
629 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
630
631 /* Remove all classification configuration for leading queue */
632 if (qid == LEADING_IDX) {
633 rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
634 if (rc)
635 goto op_err;
636
637 /* Remove filtering if feasible */
638 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
639 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
640 false,
641 BNX2X_VF_FILTER_VLAN_MAC);
642 if (rc)
643 goto op_err;
644 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
645 false,
646 BNX2X_VF_FILTER_VLAN);
647 if (rc)
648 goto op_err;
649 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
650 false,
651 BNX2X_VF_FILTER_MAC);
652 if (rc)
653 goto op_err;
654 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
655 if (rc)
656 goto op_err;
657 }
658 }
659
660 /* Destroy queue */
661 rc = bnx2x_vf_queue_destroy(bp, vf, qid);
662 if (rc)
663 goto op_err;
664 return rc;
665 op_err:
666 BNX2X_ERR("vf[%d:%d] error: rc %d\n",
667 vf->abs_vfid, qid, rc);
668 return rc;
669 }
670
671 /* VF enable primitives
672 * when pretend is required the caller is responsible
673 * for calling pretend prior to calling these routines
674 */
675
676 /* internal vf enable - until vf is enabled internally all transactions
677 * are blocked. This routine should always be called last with pretend.
678 */
bnx2x_vf_enable_internal(struct bnx2x * bp,u8 enable)679 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
680 {
681 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
682 }
683
684 /* clears vf error in all semi blocks */
bnx2x_vf_semi_clear_err(struct bnx2x * bp,u8 abs_vfid)685 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
686 {
687 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
688 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
689 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
690 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
691 }
692
bnx2x_vf_pglue_clear_err(struct bnx2x * bp,u8 abs_vfid)693 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
694 {
695 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
696 u32 was_err_reg = 0;
697
698 switch (was_err_group) {
699 case 0:
700 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
701 break;
702 case 1:
703 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
704 break;
705 case 2:
706 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
707 break;
708 case 3:
709 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
710 break;
711 }
712 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
713 }
714
bnx2x_vf_igu_reset(struct bnx2x * bp,struct bnx2x_virtf * vf)715 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
716 {
717 int i;
718 u32 val;
719
720 /* Set VF masks and configuration - pretend */
721 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
722
723 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
724 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
725 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
726 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
727 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
728 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
729
730 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
731 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
732 val &= ~IGU_VF_CONF_PARENT_MASK;
733 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
734 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
735
736 DP(BNX2X_MSG_IOV,
737 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
738 vf->abs_vfid, val);
739
740 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
741
742 /* iterate over all queues, clear sb consumer */
743 for (i = 0; i < vf_sb_count(vf); i++) {
744 u8 igu_sb_id = vf_igu_sb(vf, i);
745
746 /* zero prod memory */
747 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
748
749 /* clear sb state machine */
750 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
751 false /* VF */);
752
753 /* disable + update */
754 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
755 IGU_INT_DISABLE, 1);
756 }
757 }
758
bnx2x_vf_enable_access(struct bnx2x * bp,u8 abs_vfid)759 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
760 {
761 u16 abs_fid;
762
763 abs_fid = FW_VF_HANDLE(abs_vfid);
764
765 /* set the VF-PF association in the FW */
766 storm_memset_vf_to_pf(bp, abs_fid, BP_FUNC(bp));
767 storm_memset_func_en(bp, abs_fid, 1);
768
769 /* Invalidate fp_hsi version for vfs */
770 if (bp->fw_cap & FW_CAP_INVALIDATE_VF_FP_HSI)
771 REG_WR8(bp, BAR_XSTRORM_INTMEM +
772 XSTORM_ETH_FUNCTION_INFO_FP_HSI_VALID_E2_OFFSET(abs_fid), 0);
773
774 /* clear vf errors*/
775 bnx2x_vf_semi_clear_err(bp, abs_vfid);
776 bnx2x_vf_pglue_clear_err(bp, abs_vfid);
777
778 /* internal vf-enable - pretend */
779 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
780 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
781 bnx2x_vf_enable_internal(bp, true);
782 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
783 }
784
bnx2x_vf_enable_traffic(struct bnx2x * bp,struct bnx2x_virtf * vf)785 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
786 {
787 /* Reset vf in IGU interrupts are still disabled */
788 bnx2x_vf_igu_reset(bp, vf);
789
790 /* pretend to enable the vf with the PBF */
791 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
792 REG_WR(bp, PBF_REG_DISABLE_VF, 0);
793 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
794 }
795
bnx2x_vf_is_pcie_pending(struct bnx2x * bp,u8 abs_vfid)796 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
797 {
798 struct pci_dev *dev;
799 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
800
801 if (!vf)
802 return false;
803
804 dev = pci_get_domain_bus_and_slot(vf->domain, vf->bus, vf->devfn);
805 if (dev)
806 return bnx2x_is_pcie_pending(dev);
807 return false;
808 }
809
bnx2x_vf_flr_clnup_epilog(struct bnx2x * bp,u8 abs_vfid)810 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
811 {
812 /* Verify no pending pci transactions */
813 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
814 BNX2X_ERR("PCIE Transactions still pending\n");
815
816 return 0;
817 }
818
819 /* must be called after the number of PF queues and the number of VFs are
820 * both known
821 */
822 static void
bnx2x_iov_static_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)823 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
824 {
825 struct vf_pf_resc_request *resc = &vf->alloc_resc;
826
827 /* will be set only during VF-ACQUIRE */
828 resc->num_rxqs = 0;
829 resc->num_txqs = 0;
830
831 resc->num_mac_filters = VF_MAC_CREDIT_CNT;
832 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
833
834 /* no real limitation */
835 resc->num_mc_filters = 0;
836
837 /* num_sbs already set */
838 resc->num_sbs = vf->sb_count;
839 }
840
841 /* FLR routines: */
bnx2x_vf_free_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)842 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
843 {
844 /* reset the state variables */
845 bnx2x_iov_static_resc(bp, vf);
846 vf->state = VF_FREE;
847 }
848
bnx2x_vf_flr_clnup_hw(struct bnx2x * bp,struct bnx2x_virtf * vf)849 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
850 {
851 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
852
853 /* DQ usage counter */
854 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
855 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
856 "DQ VF usage counter timed out",
857 poll_cnt);
858 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
859
860 /* FW cleanup command - poll for the results */
861 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
862 poll_cnt))
863 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
864
865 /* verify TX hw is flushed */
866 bnx2x_tx_hw_flushed(bp, poll_cnt);
867 }
868
bnx2x_vf_flr(struct bnx2x * bp,struct bnx2x_virtf * vf)869 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
870 {
871 int rc, i;
872
873 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
874
875 /* the cleanup operations are valid if and only if the VF
876 * was first acquired.
877 */
878 for (i = 0; i < vf_rxq_count(vf); i++) {
879 rc = bnx2x_vf_queue_flr(bp, vf, i);
880 if (rc)
881 goto out;
882 }
883
884 /* remove multicasts */
885 bnx2x_vf_mcast(bp, vf, NULL, 0, true);
886
887 /* dispatch final cleanup and wait for HW queues to flush */
888 bnx2x_vf_flr_clnup_hw(bp, vf);
889
890 /* release VF resources */
891 bnx2x_vf_free_resc(bp, vf);
892
893 vf->malicious = false;
894
895 /* re-open the mailbox */
896 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
897 return;
898 out:
899 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
900 vf->abs_vfid, i, rc);
901 }
902
bnx2x_vf_flr_clnup(struct bnx2x * bp)903 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
904 {
905 struct bnx2x_virtf *vf;
906 int i;
907
908 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
909 /* VF should be RESET & in FLR cleanup states */
910 if (bnx2x_vf(bp, i, state) != VF_RESET ||
911 !bnx2x_vf(bp, i, flr_clnup_stage))
912 continue;
913
914 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
915 i, BNX2X_NR_VIRTFN(bp));
916
917 vf = BP_VF(bp, i);
918
919 /* lock the vf pf channel */
920 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
921
922 /* invoke the VF FLR SM */
923 bnx2x_vf_flr(bp, vf);
924
925 /* mark the VF to be ACKED and continue */
926 vf->flr_clnup_stage = false;
927 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
928 }
929
930 /* Acknowledge the handled VFs.
931 * we are acknowledge all the vfs which an flr was requested for, even
932 * if amongst them there are such that we never opened, since the mcp
933 * will interrupt us immediately again if we only ack some of the bits,
934 * resulting in an endless loop. This can happen for example in KVM
935 * where an 'all ones' flr request is sometimes given by hyper visor
936 */
937 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
938 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
939 for (i = 0; i < FLRD_VFS_DWORDS; i++)
940 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
941 bp->vfdb->flrd_vfs[i]);
942
943 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
944
945 /* clear the acked bits - better yet if the MCP implemented
946 * write to clear semantics
947 */
948 for (i = 0; i < FLRD_VFS_DWORDS; i++)
949 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
950 }
951
bnx2x_vf_handle_flr_event(struct bnx2x * bp)952 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
953 {
954 int i;
955
956 /* Read FLR'd VFs */
957 for (i = 0; i < FLRD_VFS_DWORDS; i++)
958 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
959
960 DP(BNX2X_MSG_MCP,
961 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
962 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
963
964 for_each_vf(bp, i) {
965 struct bnx2x_virtf *vf = BP_VF(bp, i);
966 u32 reset = 0;
967
968 if (vf->abs_vfid < 32)
969 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
970 else
971 reset = bp->vfdb->flrd_vfs[1] &
972 (1 << (vf->abs_vfid - 32));
973
974 if (reset) {
975 /* set as reset and ready for cleanup */
976 vf->state = VF_RESET;
977 vf->flr_clnup_stage = true;
978
979 DP(BNX2X_MSG_IOV,
980 "Initiating Final cleanup for VF %d\n",
981 vf->abs_vfid);
982 }
983 }
984
985 /* do the FLR cleanup for all marked VFs*/
986 bnx2x_vf_flr_clnup(bp);
987 }
988
989 /* IOV global initialization routines */
bnx2x_iov_init_dq(struct bnx2x * bp)990 void bnx2x_iov_init_dq(struct bnx2x *bp)
991 {
992 if (!IS_SRIOV(bp))
993 return;
994
995 /* Set the DQ such that the CID reflect the abs_vfid */
996 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
997 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
998
999 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1000 * the PF L2 queues
1001 */
1002 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1003
1004 /* The VF window size is the log2 of the max number of CIDs per VF */
1005 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1006
1007 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
1008 * the Pf doorbell size although the 2 are independent.
1009 */
1010 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1011
1012 /* No security checks for now -
1013 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1014 * CID range 0 - 0x1ffff
1015 */
1016 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1017 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1018 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1019 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1020
1021 /* set the VF doorbell threshold. This threshold represents the amount
1022 * of doorbells allowed in the main DORQ fifo for a specific VF.
1023 */
1024 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1025 }
1026
bnx2x_iov_init_dmae(struct bnx2x * bp)1027 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1028 {
1029 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1030 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1031 }
1032
bnx2x_vf_domain(struct bnx2x * bp,int vfid)1033 static int bnx2x_vf_domain(struct bnx2x *bp, int vfid)
1034 {
1035 struct pci_dev *dev = bp->pdev;
1036
1037 return pci_domain_nr(dev->bus);
1038 }
1039
bnx2x_vf_bus(struct bnx2x * bp,int vfid)1040 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1041 {
1042 struct pci_dev *dev = bp->pdev;
1043 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1044
1045 return dev->bus->number + ((dev->devfn + iov->offset +
1046 iov->stride * vfid) >> 8);
1047 }
1048
bnx2x_vf_devfn(struct bnx2x * bp,int vfid)1049 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1050 {
1051 struct pci_dev *dev = bp->pdev;
1052 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1053
1054 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1055 }
1056
bnx2x_vf_set_bars(struct bnx2x * bp,struct bnx2x_virtf * vf)1057 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1058 {
1059 int i, n;
1060 struct pci_dev *dev = bp->pdev;
1061 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1062
1063 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1064 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1065 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1066
1067 size /= iov->total;
1068 vf->bars[n].bar = start + size * vf->abs_vfid;
1069 vf->bars[n].size = size;
1070 }
1071 }
1072
1073 static int
bnx2x_get_vf_igu_cam_info(struct bnx2x * bp)1074 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1075 {
1076 int sb_id;
1077 u32 val;
1078 u8 fid, current_pf = 0;
1079
1080 /* IGU in normal mode - read CAM */
1081 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1082 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1083 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1084 continue;
1085 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1086 if (fid & IGU_FID_ENCODE_IS_PF)
1087 current_pf = fid & IGU_FID_PF_NUM_MASK;
1088 else if (current_pf == BP_FUNC(bp))
1089 bnx2x_vf_set_igu_info(bp, sb_id,
1090 (fid & IGU_FID_VF_NUM_MASK));
1091 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1092 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1093 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1094 (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1095 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1096 }
1097 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1098 return BP_VFDB(bp)->vf_sbs_pool;
1099 }
1100
__bnx2x_iov_free_vfdb(struct bnx2x * bp)1101 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1102 {
1103 if (bp->vfdb) {
1104 kfree(bp->vfdb->vfqs);
1105 kfree(bp->vfdb->vfs);
1106 kfree(bp->vfdb);
1107 }
1108 bp->vfdb = NULL;
1109 }
1110
bnx2x_sriov_pci_cfg_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1111 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1112 {
1113 int pos;
1114 struct pci_dev *dev = bp->pdev;
1115
1116 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1117 if (!pos) {
1118 BNX2X_ERR("failed to find SRIOV capability in device\n");
1119 return -ENODEV;
1120 }
1121
1122 iov->pos = pos;
1123 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1124 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1125 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1126 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1127 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1128 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1129 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1130 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1131 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1132
1133 return 0;
1134 }
1135
bnx2x_sriov_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1136 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1137 {
1138 u32 val;
1139
1140 /* read the SRIOV capability structure
1141 * The fields can be read via configuration read or
1142 * directly from the device (starting at offset PCICFG_OFFSET)
1143 */
1144 if (bnx2x_sriov_pci_cfg_info(bp, iov))
1145 return -ENODEV;
1146
1147 /* get the number of SRIOV bars */
1148 iov->nres = 0;
1149
1150 /* read the first_vfid */
1151 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1152 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1153 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1154
1155 DP(BNX2X_MSG_IOV,
1156 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1157 BP_FUNC(bp),
1158 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1159 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1160
1161 return 0;
1162 }
1163
1164 /* must be called after PF bars are mapped */
bnx2x_iov_init_one(struct bnx2x * bp,int int_mode_param,int num_vfs_param)1165 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1166 int num_vfs_param)
1167 {
1168 int err, i;
1169 struct bnx2x_sriov *iov;
1170 struct pci_dev *dev = bp->pdev;
1171
1172 bp->vfdb = NULL;
1173
1174 /* verify is pf */
1175 if (IS_VF(bp))
1176 return 0;
1177
1178 /* verify sriov capability is present in configuration space */
1179 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1180 return 0;
1181
1182 /* verify chip revision */
1183 if (CHIP_IS_E1x(bp))
1184 return 0;
1185
1186 /* check if SRIOV support is turned off */
1187 if (!num_vfs_param)
1188 return 0;
1189
1190 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1191 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1192 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1193 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1194 return 0;
1195 }
1196
1197 /* SRIOV can be enabled only with MSIX */
1198 if (int_mode_param == BNX2X_INT_MODE_MSI ||
1199 int_mode_param == BNX2X_INT_MODE_INTX) {
1200 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1201 return 0;
1202 }
1203
1204 /* verify ari is enabled */
1205 if (!pci_ari_enabled(bp->pdev->bus)) {
1206 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1207 return 0;
1208 }
1209
1210 /* verify igu is in normal mode */
1211 if (CHIP_INT_MODE_IS_BC(bp)) {
1212 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
1213 return 0;
1214 }
1215
1216 /* allocate the vfs database */
1217 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1218 if (!bp->vfdb) {
1219 BNX2X_ERR("failed to allocate vf database\n");
1220 err = -ENOMEM;
1221 goto failed;
1222 }
1223
1224 /* get the sriov info - Linux already collected all the pertinent
1225 * information, however the sriov structure is for the private use
1226 * of the pci module. Also we want this information regardless
1227 * of the hyper-visor.
1228 */
1229 iov = &(bp->vfdb->sriov);
1230 err = bnx2x_sriov_info(bp, iov);
1231 if (err)
1232 goto failed;
1233
1234 /* SR-IOV capability was enabled but there are no VFs*/
1235 if (iov->total == 0) {
1236 err = 0;
1237 goto failed;
1238 }
1239
1240 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1241
1242 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1243 num_vfs_param, iov->nr_virtfn);
1244
1245 /* allocate the vf array */
1246 bp->vfdb->vfs = kcalloc(BNX2X_NR_VIRTFN(bp),
1247 sizeof(struct bnx2x_virtf),
1248 GFP_KERNEL);
1249 if (!bp->vfdb->vfs) {
1250 BNX2X_ERR("failed to allocate vf array\n");
1251 err = -ENOMEM;
1252 goto failed;
1253 }
1254
1255 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1256 for_each_vf(bp, i) {
1257 bnx2x_vf(bp, i, index) = i;
1258 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1259 bnx2x_vf(bp, i, state) = VF_FREE;
1260 mutex_init(&bnx2x_vf(bp, i, op_mutex));
1261 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1262 /* enable spoofchk by default */
1263 bnx2x_vf(bp, i, spoofchk) = 1;
1264 }
1265
1266 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1267 if (!bnx2x_get_vf_igu_cam_info(bp)) {
1268 BNX2X_ERR("No entries in IGU CAM for vfs\n");
1269 err = -EINVAL;
1270 goto failed;
1271 }
1272
1273 /* allocate the queue arrays for all VFs */
1274 bp->vfdb->vfqs = kcalloc(BNX2X_MAX_NUM_VF_QUEUES,
1275 sizeof(struct bnx2x_vf_queue),
1276 GFP_KERNEL);
1277
1278 if (!bp->vfdb->vfqs) {
1279 BNX2X_ERR("failed to allocate vf queue array\n");
1280 err = -ENOMEM;
1281 goto failed;
1282 }
1283
1284 /* Prepare the VFs event synchronization mechanism */
1285 mutex_init(&bp->vfdb->event_mutex);
1286
1287 mutex_init(&bp->vfdb->bulletin_mutex);
1288
1289 if (SHMEM2_HAS(bp, sriov_switch_mode))
1290 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1291
1292 return 0;
1293 failed:
1294 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1295 __bnx2x_iov_free_vfdb(bp);
1296 return err;
1297 }
1298
bnx2x_iov_remove_one(struct bnx2x * bp)1299 void bnx2x_iov_remove_one(struct bnx2x *bp)
1300 {
1301 int vf_idx;
1302
1303 /* if SRIOV is not enabled there's nothing to do */
1304 if (!IS_SRIOV(bp))
1305 return;
1306
1307 bnx2x_disable_sriov(bp);
1308
1309 /* disable access to all VFs */
1310 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1311 bnx2x_pretend_func(bp,
1312 HW_VF_HANDLE(bp,
1313 bp->vfdb->sriov.first_vf_in_pf +
1314 vf_idx));
1315 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1316 bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1317 bnx2x_vf_enable_internal(bp, 0);
1318 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1319 }
1320
1321 /* free vf database */
1322 __bnx2x_iov_free_vfdb(bp);
1323 }
1324
bnx2x_iov_free_mem(struct bnx2x * bp)1325 void bnx2x_iov_free_mem(struct bnx2x *bp)
1326 {
1327 int i;
1328
1329 if (!IS_SRIOV(bp))
1330 return;
1331
1332 /* free vfs hw contexts */
1333 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1334 struct hw_dma *cxt = &bp->vfdb->context[i];
1335 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1336 }
1337
1338 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1339 BP_VFDB(bp)->sp_dma.mapping,
1340 BP_VFDB(bp)->sp_dma.size);
1341
1342 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1343 BP_VF_MBX_DMA(bp)->mapping,
1344 BP_VF_MBX_DMA(bp)->size);
1345
1346 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1347 BP_VF_BULLETIN_DMA(bp)->mapping,
1348 BP_VF_BULLETIN_DMA(bp)->size);
1349 }
1350
bnx2x_iov_alloc_mem(struct bnx2x * bp)1351 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1352 {
1353 size_t tot_size;
1354 int i, rc = 0;
1355
1356 if (!IS_SRIOV(bp))
1357 return rc;
1358
1359 /* allocate vfs hw contexts */
1360 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1361 BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1362
1363 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1364 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1365 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1366
1367 if (cxt->size) {
1368 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1369 if (!cxt->addr)
1370 goto alloc_mem_err;
1371 } else {
1372 cxt->addr = NULL;
1373 cxt->mapping = 0;
1374 }
1375 tot_size -= cxt->size;
1376 }
1377
1378 /* allocate vfs ramrods dma memory - client_init and set_mac */
1379 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1380 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1381 tot_size);
1382 if (!BP_VFDB(bp)->sp_dma.addr)
1383 goto alloc_mem_err;
1384 BP_VFDB(bp)->sp_dma.size = tot_size;
1385
1386 /* allocate mailboxes */
1387 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1388 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1389 tot_size);
1390 if (!BP_VF_MBX_DMA(bp)->addr)
1391 goto alloc_mem_err;
1392
1393 BP_VF_MBX_DMA(bp)->size = tot_size;
1394
1395 /* allocate local bulletin boards */
1396 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1397 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1398 tot_size);
1399 if (!BP_VF_BULLETIN_DMA(bp)->addr)
1400 goto alloc_mem_err;
1401
1402 BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1403
1404 return 0;
1405
1406 alloc_mem_err:
1407 return -ENOMEM;
1408 }
1409
bnx2x_vfq_init(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q)1410 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1411 struct bnx2x_vf_queue *q)
1412 {
1413 u8 cl_id = vfq_cl_id(vf, q);
1414 u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1415 unsigned long q_type = 0;
1416
1417 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1418 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1419
1420 /* Queue State object */
1421 bnx2x_init_queue_obj(bp, &q->sp_obj,
1422 cl_id, &q->cid, 1, func_id,
1423 bnx2x_vf_sp(bp, vf, q_data),
1424 bnx2x_vf_sp_map(bp, vf, q_data),
1425 q_type);
1426
1427 /* sp indication is set only when vlan/mac/etc. are initialized */
1428 q->sp_initialized = false;
1429
1430 DP(BNX2X_MSG_IOV,
1431 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1432 vf->abs_vfid, q->sp_obj.func_id, q->cid);
1433 }
1434
bnx2x_max_speed_cap(struct bnx2x * bp)1435 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1436 {
1437 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1438
1439 if (supported &
1440 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1441 return 20000;
1442
1443 return 10000; /* assume lowest supported speed is 10G */
1444 }
1445
bnx2x_iov_link_update_vf(struct bnx2x * bp,int idx)1446 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1447 {
1448 struct bnx2x_link_report_data *state = &bp->last_reported_link;
1449 struct pf_vf_bulletin_content *bulletin;
1450 struct bnx2x_virtf *vf;
1451 bool update = true;
1452 int rc = 0;
1453
1454 /* sanity and init */
1455 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1456 if (rc)
1457 return rc;
1458
1459 mutex_lock(&bp->vfdb->bulletin_mutex);
1460
1461 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1462 bulletin->valid_bitmap |= 1 << LINK_VALID;
1463
1464 bulletin->link_speed = state->line_speed;
1465 bulletin->link_flags = 0;
1466 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1467 &state->link_report_flags))
1468 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1469 if (test_bit(BNX2X_LINK_REPORT_FD,
1470 &state->link_report_flags))
1471 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1472 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1473 &state->link_report_flags))
1474 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1475 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1476 &state->link_report_flags))
1477 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1478 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1479 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1480 bulletin->valid_bitmap |= 1 << LINK_VALID;
1481 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1482 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1483 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1484 bulletin->valid_bitmap |= 1 << LINK_VALID;
1485 bulletin->link_speed = bnx2x_max_speed_cap(bp);
1486 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1487 } else {
1488 update = false;
1489 }
1490
1491 if (update) {
1492 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1493 "vf %d mode %u speed %d flags %x\n", idx,
1494 vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1495
1496 /* Post update on VF's bulletin board */
1497 rc = bnx2x_post_vf_bulletin(bp, idx);
1498 if (rc) {
1499 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1500 goto out;
1501 }
1502 }
1503
1504 out:
1505 mutex_unlock(&bp->vfdb->bulletin_mutex);
1506 return rc;
1507 }
1508
bnx2x_set_vf_link_state(struct net_device * dev,int idx,int link_state)1509 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1510 {
1511 struct bnx2x *bp = netdev_priv(dev);
1512 struct bnx2x_virtf *vf = BP_VF(bp, idx);
1513
1514 if (!vf)
1515 return -EINVAL;
1516
1517 if (vf->link_cfg == link_state)
1518 return 0; /* nothing todo */
1519
1520 vf->link_cfg = link_state;
1521
1522 return bnx2x_iov_link_update_vf(bp, idx);
1523 }
1524
bnx2x_iov_link_update(struct bnx2x * bp)1525 void bnx2x_iov_link_update(struct bnx2x *bp)
1526 {
1527 int vfid;
1528
1529 if (!IS_SRIOV(bp))
1530 return;
1531
1532 for_each_vf(bp, vfid)
1533 bnx2x_iov_link_update_vf(bp, vfid);
1534 }
1535
1536 /* called by bnx2x_nic_load */
bnx2x_iov_nic_init(struct bnx2x * bp)1537 int bnx2x_iov_nic_init(struct bnx2x *bp)
1538 {
1539 int vfid;
1540
1541 if (!IS_SRIOV(bp)) {
1542 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1543 return 0;
1544 }
1545
1546 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1547
1548 /* let FLR complete ... */
1549 msleep(100);
1550
1551 /* initialize vf database */
1552 for_each_vf(bp, vfid) {
1553 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1554
1555 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1556 BNX2X_CIDS_PER_VF;
1557
1558 union cdu_context *base_cxt = (union cdu_context *)
1559 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1560 (base_vf_cid & (ILT_PAGE_CIDS-1));
1561
1562 DP(BNX2X_MSG_IOV,
1563 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1564 vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1565 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1566
1567 /* init statically provisioned resources */
1568 bnx2x_iov_static_resc(bp, vf);
1569
1570 /* queues are initialized during VF-ACQUIRE */
1571 vf->filter_state = 0;
1572 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1573
1574 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1575 vf_vlan_rules_cnt(vf));
1576 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1577 vf_mac_rules_cnt(vf));
1578
1579 /* init mcast object - This object will be re-initialized
1580 * during VF-ACQUIRE with the proper cl_id and cid.
1581 * It needs to be initialized here so that it can be safely
1582 * handled by a subsequent FLR flow.
1583 */
1584 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1585 0xFF, 0xFF, 0xFF,
1586 bnx2x_vf_sp(bp, vf, mcast_rdata),
1587 bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1588 BNX2X_FILTER_MCAST_PENDING,
1589 &vf->filter_state,
1590 BNX2X_OBJ_TYPE_RX_TX);
1591
1592 /* set the mailbox message addresses */
1593 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1594 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1595 MBX_MSG_ALIGNED_SIZE);
1596
1597 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1598 vfid * MBX_MSG_ALIGNED_SIZE;
1599
1600 /* Enable vf mailbox */
1601 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1602 }
1603
1604 /* Final VF init */
1605 for_each_vf(bp, vfid) {
1606 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1607
1608 /* fill in the BDF and bars */
1609 vf->domain = bnx2x_vf_domain(bp, vfid);
1610 vf->bus = bnx2x_vf_bus(bp, vfid);
1611 vf->devfn = bnx2x_vf_devfn(bp, vfid);
1612 bnx2x_vf_set_bars(bp, vf);
1613
1614 DP(BNX2X_MSG_IOV,
1615 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1616 vf->abs_vfid, vf->bus, vf->devfn,
1617 (unsigned)vf->bars[0].bar, vf->bars[0].size,
1618 (unsigned)vf->bars[1].bar, vf->bars[1].size,
1619 (unsigned)vf->bars[2].bar, vf->bars[2].size);
1620 }
1621
1622 return 0;
1623 }
1624
1625 /* called by bnx2x_chip_cleanup */
bnx2x_iov_chip_cleanup(struct bnx2x * bp)1626 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1627 {
1628 int i;
1629
1630 if (!IS_SRIOV(bp))
1631 return 0;
1632
1633 /* release all the VFs */
1634 for_each_vf(bp, i)
1635 bnx2x_vf_release(bp, BP_VF(bp, i));
1636
1637 return 0;
1638 }
1639
1640 /* called by bnx2x_init_hw_func, returns the next ilt line */
bnx2x_iov_init_ilt(struct bnx2x * bp,u16 line)1641 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1642 {
1643 int i;
1644 struct bnx2x_ilt *ilt = BP_ILT(bp);
1645
1646 if (!IS_SRIOV(bp))
1647 return line;
1648
1649 /* set vfs ilt lines */
1650 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1651 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1652
1653 ilt->lines[line+i].page = hw_cxt->addr;
1654 ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1655 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1656 }
1657 return line + i;
1658 }
1659
bnx2x_iov_is_vf_cid(struct bnx2x * bp,u16 cid)1660 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1661 {
1662 return ((cid >= BNX2X_FIRST_VF_CID) &&
1663 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1664 }
1665
1666 static
bnx2x_vf_handle_classification_eqe(struct bnx2x * bp,struct bnx2x_vf_queue * vfq,union event_ring_elem * elem)1667 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1668 struct bnx2x_vf_queue *vfq,
1669 union event_ring_elem *elem)
1670 {
1671 unsigned long ramrod_flags = 0;
1672 int rc = 0;
1673 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1674
1675 /* Always push next commands out, don't wait here */
1676 set_bit(RAMROD_CONT, &ramrod_flags);
1677
1678 switch (echo >> BNX2X_SWCID_SHIFT) {
1679 case BNX2X_FILTER_MAC_PENDING:
1680 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1681 &ramrod_flags);
1682 break;
1683 case BNX2X_FILTER_VLAN_PENDING:
1684 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1685 &ramrod_flags);
1686 break;
1687 default:
1688 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1689 return;
1690 }
1691 if (rc < 0)
1692 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1693 else if (rc > 0)
1694 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1695 }
1696
1697 static
bnx2x_vf_handle_mcast_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1698 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1699 struct bnx2x_virtf *vf)
1700 {
1701 struct bnx2x_mcast_ramrod_params rparam = {NULL};
1702 int rc;
1703
1704 rparam.mcast_obj = &vf->mcast_obj;
1705 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1706
1707 /* If there are pending mcast commands - send them */
1708 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1709 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1710 if (rc < 0)
1711 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1712 rc);
1713 }
1714 }
1715
1716 static
bnx2x_vf_handle_filters_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1717 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1718 struct bnx2x_virtf *vf)
1719 {
1720 smp_mb__before_atomic();
1721 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1722 smp_mb__after_atomic();
1723 }
1724
bnx2x_vf_handle_rss_update_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1725 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1726 struct bnx2x_virtf *vf)
1727 {
1728 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1729 }
1730
bnx2x_iov_eq_sp_event(struct bnx2x * bp,union event_ring_elem * elem)1731 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1732 {
1733 struct bnx2x_virtf *vf;
1734 int qidx = 0, abs_vfid;
1735 u8 opcode;
1736 u16 cid = 0xffff;
1737
1738 if (!IS_SRIOV(bp))
1739 return 1;
1740
1741 /* first get the cid - the only events we handle here are cfc-delete
1742 * and set-mac completion
1743 */
1744 opcode = elem->message.opcode;
1745
1746 switch (opcode) {
1747 case EVENT_RING_OPCODE_CFC_DEL:
1748 cid = SW_CID(elem->message.data.cfc_del_event.cid);
1749 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1750 break;
1751 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1752 case EVENT_RING_OPCODE_MULTICAST_RULES:
1753 case EVENT_RING_OPCODE_FILTERS_RULES:
1754 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1755 cid = SW_CID(elem->message.data.eth_event.echo);
1756 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1757 break;
1758 case EVENT_RING_OPCODE_VF_FLR:
1759 abs_vfid = elem->message.data.vf_flr_event.vf_id;
1760 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1761 abs_vfid);
1762 goto get_vf;
1763 case EVENT_RING_OPCODE_MALICIOUS_VF:
1764 abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1765 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1766 abs_vfid,
1767 elem->message.data.malicious_vf_event.err_id);
1768 goto get_vf;
1769 default:
1770 return 1;
1771 }
1772
1773 /* check if the cid is the VF range */
1774 if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1775 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1776 return 1;
1777 }
1778
1779 /* extract vf and rxq index from vf_cid - relies on the following:
1780 * 1. vfid on cid reflects the true abs_vfid
1781 * 2. The max number of VFs (per path) is 64
1782 */
1783 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1784 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1785 get_vf:
1786 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1787
1788 if (!vf) {
1789 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1790 cid, abs_vfid);
1791 return 0;
1792 }
1793
1794 switch (opcode) {
1795 case EVENT_RING_OPCODE_CFC_DEL:
1796 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1797 vf->abs_vfid, qidx);
1798 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1799 &vfq_get(vf,
1800 qidx)->sp_obj,
1801 BNX2X_Q_CMD_CFC_DEL);
1802 break;
1803 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1804 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1805 vf->abs_vfid, qidx);
1806 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1807 break;
1808 case EVENT_RING_OPCODE_MULTICAST_RULES:
1809 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1810 vf->abs_vfid, qidx);
1811 bnx2x_vf_handle_mcast_eqe(bp, vf);
1812 break;
1813 case EVENT_RING_OPCODE_FILTERS_RULES:
1814 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1815 vf->abs_vfid, qidx);
1816 bnx2x_vf_handle_filters_eqe(bp, vf);
1817 break;
1818 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1819 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1820 vf->abs_vfid, qidx);
1821 bnx2x_vf_handle_rss_update_eqe(bp, vf);
1822 fallthrough;
1823 case EVENT_RING_OPCODE_VF_FLR:
1824 /* Do nothing for now */
1825 return 0;
1826 case EVENT_RING_OPCODE_MALICIOUS_VF:
1827 vf->malicious = true;
1828 return 0;
1829 }
1830
1831 return 0;
1832 }
1833
bnx2x_vf_by_cid(struct bnx2x * bp,int vf_cid)1834 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1835 {
1836 /* extract the vf from vf_cid - relies on the following:
1837 * 1. vfid on cid reflects the true abs_vfid
1838 * 2. The max number of VFs (per path) is 64
1839 */
1840 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1841 return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1842 }
1843
bnx2x_iov_set_queue_sp_obj(struct bnx2x * bp,int vf_cid,struct bnx2x_queue_sp_obj ** q_obj)1844 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1845 struct bnx2x_queue_sp_obj **q_obj)
1846 {
1847 struct bnx2x_virtf *vf;
1848
1849 if (!IS_SRIOV(bp))
1850 return;
1851
1852 vf = bnx2x_vf_by_cid(bp, vf_cid);
1853
1854 if (vf) {
1855 /* extract queue index from vf_cid - relies on the following:
1856 * 1. vfid on cid reflects the true abs_vfid
1857 * 2. The max number of VFs (per path) is 64
1858 */
1859 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1860 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1861 } else {
1862 BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1863 }
1864 }
1865
bnx2x_iov_adjust_stats_req(struct bnx2x * bp)1866 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1867 {
1868 int i;
1869 int first_queue_query_index, num_queues_req;
1870 struct stats_query_entry *cur_query_entry;
1871 u8 stats_count = 0;
1872 bool is_fcoe = false;
1873
1874 if (!IS_SRIOV(bp))
1875 return;
1876
1877 if (!NO_FCOE(bp))
1878 is_fcoe = true;
1879
1880 /* fcoe adds one global request and one queue request */
1881 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1882 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1883 (is_fcoe ? 0 : 1);
1884
1885 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1886 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1887 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1888 first_queue_query_index + num_queues_req);
1889
1890 cur_query_entry = &bp->fw_stats_req->
1891 query[first_queue_query_index + num_queues_req];
1892
1893 for_each_vf(bp, i) {
1894 int j;
1895 struct bnx2x_virtf *vf = BP_VF(bp, i);
1896
1897 if (vf->state != VF_ENABLED) {
1898 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1899 "vf %d not enabled so no stats for it\n",
1900 vf->abs_vfid);
1901 continue;
1902 }
1903
1904 if (vf->malicious) {
1905 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1906 "vf %d malicious so no stats for it\n",
1907 vf->abs_vfid);
1908 continue;
1909 }
1910
1911 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1912 "add addresses for vf %d\n", vf->abs_vfid);
1913 for_each_vfq(vf, j) {
1914 struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1915
1916 dma_addr_t q_stats_addr =
1917 vf->fw_stat_map + j * vf->stats_stride;
1918
1919 /* collect stats fro active queues only */
1920 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1921 BNX2X_Q_LOGICAL_STATE_STOPPED)
1922 continue;
1923
1924 /* create stats query entry for this queue */
1925 cur_query_entry->kind = STATS_TYPE_QUEUE;
1926 cur_query_entry->index = vfq_stat_id(vf, rxq);
1927 cur_query_entry->funcID =
1928 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1929 cur_query_entry->address.hi =
1930 cpu_to_le32(U64_HI(q_stats_addr));
1931 cur_query_entry->address.lo =
1932 cpu_to_le32(U64_LO(q_stats_addr));
1933 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1934 "added address %x %x for vf %d queue %d client %d\n",
1935 cur_query_entry->address.hi,
1936 cur_query_entry->address.lo,
1937 cur_query_entry->funcID,
1938 j, cur_query_entry->index);
1939 cur_query_entry++;
1940 stats_count++;
1941
1942 /* all stats are coalesced to the leading queue */
1943 if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1944 break;
1945 }
1946 }
1947 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1948 }
1949
1950 /* VF API helpers */
bnx2x_vf_qtbl_set_q(struct bnx2x * bp,u8 abs_vfid,u8 qid,u8 enable)1951 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1952 u8 enable)
1953 {
1954 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1955 u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1956
1957 REG_WR(bp, reg, val);
1958 }
1959
bnx2x_vf_clr_qtbl(struct bnx2x * bp,struct bnx2x_virtf * vf)1960 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1961 {
1962 int i;
1963
1964 for_each_vfq(vf, i)
1965 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1966 vfq_qzone_id(vf, vfq_get(vf, i)), false);
1967 }
1968
bnx2x_vf_igu_disable(struct bnx2x * bp,struct bnx2x_virtf * vf)1969 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1970 {
1971 u32 val;
1972
1973 /* clear the VF configuration - pretend */
1974 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1975 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1976 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1977 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1978 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1979 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1980 }
1981
bnx2x_vf_max_queue_cnt(struct bnx2x * bp,struct bnx2x_virtf * vf)1982 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1983 {
1984 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1985 BNX2X_VF_MAX_QUEUES);
1986 }
1987
1988 static
bnx2x_vf_chk_avail_resc(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * req_resc)1989 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1990 struct vf_pf_resc_request *req_resc)
1991 {
1992 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1993 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1994
1995 return ((req_resc->num_rxqs <= rxq_cnt) &&
1996 (req_resc->num_txqs <= txq_cnt) &&
1997 (req_resc->num_sbs <= vf_sb_count(vf)) &&
1998 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1999 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
2000 }
2001
2002 /* CORE VF API */
bnx2x_vf_acquire(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * resc)2003 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2004 struct vf_pf_resc_request *resc)
2005 {
2006 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2007 BNX2X_CIDS_PER_VF;
2008
2009 union cdu_context *base_cxt = (union cdu_context *)
2010 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2011 (base_vf_cid & (ILT_PAGE_CIDS-1));
2012 int i;
2013
2014 /* if state is 'acquired' the VF was not released or FLR'd, in
2015 * this case the returned resources match the acquired already
2016 * acquired resources. Verify that the requested numbers do
2017 * not exceed the already acquired numbers.
2018 */
2019 if (vf->state == VF_ACQUIRED) {
2020 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2021 vf->abs_vfid);
2022
2023 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2024 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2025 vf->abs_vfid);
2026 return -EINVAL;
2027 }
2028 return 0;
2029 }
2030
2031 /* Otherwise vf state must be 'free' or 'reset' */
2032 if (vf->state != VF_FREE && vf->state != VF_RESET) {
2033 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2034 vf->abs_vfid, vf->state);
2035 return -EINVAL;
2036 }
2037
2038 /* static allocation:
2039 * the global maximum number are fixed per VF. Fail the request if
2040 * requested number exceed these globals
2041 */
2042 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2043 DP(BNX2X_MSG_IOV,
2044 "cannot fulfill vf resource request. Placing maximal available values in response\n");
2045 /* set the max resource in the vf */
2046 return -ENOMEM;
2047 }
2048
2049 /* Set resources counters - 0 request means max available */
2050 vf_sb_count(vf) = resc->num_sbs;
2051 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2052 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2053
2054 DP(BNX2X_MSG_IOV,
2055 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2056 vf_sb_count(vf), vf_rxq_count(vf),
2057 vf_txq_count(vf), vf_mac_rules_cnt(vf),
2058 vf_vlan_rules_cnt(vf));
2059
2060 /* Initialize the queues */
2061 if (!vf->vfqs) {
2062 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2063 return -EINVAL;
2064 }
2065
2066 for_each_vfq(vf, i) {
2067 struct bnx2x_vf_queue *q = vfq_get(vf, i);
2068
2069 if (!q) {
2070 BNX2X_ERR("q number %d was not allocated\n", i);
2071 return -EINVAL;
2072 }
2073
2074 q->index = i;
2075 q->cxt = &((base_cxt + i)->eth);
2076 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2077
2078 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2079 vf->abs_vfid, i, q->index, q->cid, q->cxt);
2080
2081 /* init SP objects */
2082 bnx2x_vfq_init(bp, vf, q);
2083 }
2084 vf->state = VF_ACQUIRED;
2085 return 0;
2086 }
2087
bnx2x_vf_init(struct bnx2x * bp,struct bnx2x_virtf * vf,dma_addr_t * sb_map)2088 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2089 {
2090 struct bnx2x_func_init_params func_init = {0};
2091 int i;
2092
2093 /* the sb resources are initialized at this point, do the
2094 * FW/HW initializations
2095 */
2096 for_each_vf_sb(vf, i)
2097 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2098 vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2099
2100 /* Sanity checks */
2101 if (vf->state != VF_ACQUIRED) {
2102 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2103 vf->abs_vfid, vf->state);
2104 return -EINVAL;
2105 }
2106
2107 /* let FLR complete ... */
2108 msleep(100);
2109
2110 /* FLR cleanup epilogue */
2111 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2112 return -EBUSY;
2113
2114 /* reset IGU VF statistics: MSIX */
2115 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2116
2117 /* function setup */
2118 func_init.pf_id = BP_FUNC(bp);
2119 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2120 bnx2x_func_init(bp, &func_init);
2121
2122 /* Enable the vf */
2123 bnx2x_vf_enable_access(bp, vf->abs_vfid);
2124 bnx2x_vf_enable_traffic(bp, vf);
2125
2126 /* queue protection table */
2127 for_each_vfq(vf, i)
2128 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2129 vfq_qzone_id(vf, vfq_get(vf, i)), true);
2130
2131 vf->state = VF_ENABLED;
2132
2133 /* update vf bulletin board */
2134 bnx2x_post_vf_bulletin(bp, vf->index);
2135
2136 return 0;
2137 }
2138
2139 struct set_vf_state_cookie {
2140 struct bnx2x_virtf *vf;
2141 u8 state;
2142 };
2143
bnx2x_set_vf_state(void * cookie)2144 static void bnx2x_set_vf_state(void *cookie)
2145 {
2146 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2147
2148 p->vf->state = p->state;
2149 }
2150
bnx2x_vf_close(struct bnx2x * bp,struct bnx2x_virtf * vf)2151 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2152 {
2153 int rc = 0, i;
2154
2155 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2156
2157 /* Close all queues */
2158 for (i = 0; i < vf_rxq_count(vf); i++) {
2159 rc = bnx2x_vf_queue_teardown(bp, vf, i);
2160 if (rc)
2161 goto op_err;
2162 }
2163
2164 /* disable the interrupts */
2165 DP(BNX2X_MSG_IOV, "disabling igu\n");
2166 bnx2x_vf_igu_disable(bp, vf);
2167
2168 /* disable the VF */
2169 DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2170 bnx2x_vf_clr_qtbl(bp, vf);
2171
2172 /* need to make sure there are no outstanding stats ramrods which may
2173 * cause the device to access the VF's stats buffer which it will free
2174 * as soon as we return from the close flow.
2175 */
2176 {
2177 struct set_vf_state_cookie cookie;
2178
2179 cookie.vf = vf;
2180 cookie.state = VF_ACQUIRED;
2181 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2182 if (rc)
2183 goto op_err;
2184 }
2185
2186 DP(BNX2X_MSG_IOV, "set state to acquired\n");
2187
2188 return 0;
2189 op_err:
2190 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2191 return rc;
2192 }
2193
2194 /* VF release can be called either: 1. The VF was acquired but
2195 * not enabled 2. the vf was enabled or in the process of being
2196 * enabled
2197 */
bnx2x_vf_free(struct bnx2x * bp,struct bnx2x_virtf * vf)2198 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2199 {
2200 int rc;
2201
2202 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2203 vf->state == VF_FREE ? "Free" :
2204 vf->state == VF_ACQUIRED ? "Acquired" :
2205 vf->state == VF_ENABLED ? "Enabled" :
2206 vf->state == VF_RESET ? "Reset" :
2207 "Unknown");
2208
2209 switch (vf->state) {
2210 case VF_ENABLED:
2211 rc = bnx2x_vf_close(bp, vf);
2212 if (rc)
2213 goto op_err;
2214 fallthrough; /* to release resources */
2215 case VF_ACQUIRED:
2216 DP(BNX2X_MSG_IOV, "about to free resources\n");
2217 bnx2x_vf_free_resc(bp, vf);
2218 break;
2219
2220 case VF_FREE:
2221 case VF_RESET:
2222 default:
2223 break;
2224 }
2225 return 0;
2226 op_err:
2227 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2228 return rc;
2229 }
2230
bnx2x_vf_rss_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_config_rss_params * rss)2231 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2232 struct bnx2x_config_rss_params *rss)
2233 {
2234 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2235 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2236 return bnx2x_config_rss(bp, rss);
2237 }
2238
bnx2x_vf_tpa_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vfpf_tpa_tlv * tlv,struct bnx2x_queue_update_tpa_params * params)2239 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2240 struct vfpf_tpa_tlv *tlv,
2241 struct bnx2x_queue_update_tpa_params *params)
2242 {
2243 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2244 struct bnx2x_queue_state_params qstate;
2245 int qid, rc = 0;
2246
2247 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2248
2249 /* Set ramrod params */
2250 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2251 memcpy(&qstate.params.update_tpa, params,
2252 sizeof(struct bnx2x_queue_update_tpa_params));
2253 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2254 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2255
2256 for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2257 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2258 qstate.params.update_tpa.sge_map = sge_addr[qid];
2259 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2260 vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2261 U64_LO(sge_addr[qid]));
2262 rc = bnx2x_queue_state_change(bp, &qstate);
2263 if (rc) {
2264 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2265 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2266 vf->abs_vfid, qid);
2267 return rc;
2268 }
2269 }
2270
2271 return rc;
2272 }
2273
2274 /* VF release ~ VF close + VF release-resources
2275 * Release is the ultimate SW shutdown and is called whenever an
2276 * irrecoverable error is encountered.
2277 */
bnx2x_vf_release(struct bnx2x * bp,struct bnx2x_virtf * vf)2278 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2279 {
2280 int rc;
2281
2282 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2283 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2284
2285 rc = bnx2x_vf_free(bp, vf);
2286 if (rc)
2287 WARN(rc,
2288 "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2289 vf->abs_vfid, rc);
2290 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2291 return rc;
2292 }
2293
bnx2x_lock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs tlv)2294 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2295 enum channel_tlvs tlv)
2296 {
2297 /* we don't lock the channel for unsupported tlvs */
2298 if (!bnx2x_tlv_supported(tlv)) {
2299 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2300 return;
2301 }
2302
2303 /* lock the channel */
2304 mutex_lock(&vf->op_mutex);
2305
2306 /* record the locking op */
2307 vf->op_current = tlv;
2308
2309 /* log the lock */
2310 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2311 vf->abs_vfid, tlv);
2312 }
2313
bnx2x_unlock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs expected_tlv)2314 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2315 enum channel_tlvs expected_tlv)
2316 {
2317 enum channel_tlvs current_tlv;
2318
2319 if (!vf) {
2320 BNX2X_ERR("VF was %p\n", vf);
2321 return;
2322 }
2323
2324 current_tlv = vf->op_current;
2325
2326 /* we don't unlock the channel for unsupported tlvs */
2327 if (!bnx2x_tlv_supported(expected_tlv))
2328 return;
2329
2330 WARN(expected_tlv != vf->op_current,
2331 "lock mismatch: expected %d found %d", expected_tlv,
2332 vf->op_current);
2333
2334 /* record the locking op */
2335 vf->op_current = CHANNEL_TLV_NONE;
2336
2337 /* lock the channel */
2338 mutex_unlock(&vf->op_mutex);
2339
2340 /* log the unlock */
2341 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2342 vf->abs_vfid, current_tlv);
2343 }
2344
bnx2x_set_pf_tx_switching(struct bnx2x * bp,bool enable)2345 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2346 {
2347 struct bnx2x_queue_state_params q_params;
2348 u32 prev_flags;
2349 int i, rc;
2350
2351 /* Verify changes are needed and record current Tx switching state */
2352 prev_flags = bp->flags;
2353 if (enable)
2354 bp->flags |= TX_SWITCHING;
2355 else
2356 bp->flags &= ~TX_SWITCHING;
2357 if (prev_flags == bp->flags)
2358 return 0;
2359
2360 /* Verify state enables the sending of queue ramrods */
2361 if ((bp->state != BNX2X_STATE_OPEN) ||
2362 (bnx2x_get_q_logical_state(bp,
2363 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2364 BNX2X_Q_LOGICAL_STATE_ACTIVE))
2365 return 0;
2366
2367 /* send q. update ramrod to configure Tx switching */
2368 memset(&q_params, 0, sizeof(q_params));
2369 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2370 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2371 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2372 &q_params.params.update.update_flags);
2373 if (enable)
2374 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2375 &q_params.params.update.update_flags);
2376 else
2377 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2378 &q_params.params.update.update_flags);
2379
2380 /* send the ramrod on all the queues of the PF */
2381 for_each_eth_queue(bp, i) {
2382 struct bnx2x_fastpath *fp = &bp->fp[i];
2383 int tx_idx;
2384
2385 /* Set the appropriate Queue object */
2386 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2387
2388 for (tx_idx = FIRST_TX_COS_INDEX;
2389 tx_idx < fp->max_cos; tx_idx++) {
2390 q_params.params.update.cid_index = tx_idx;
2391
2392 /* Update the Queue state */
2393 rc = bnx2x_queue_state_change(bp, &q_params);
2394 if (rc) {
2395 BNX2X_ERR("Failed to configure Tx switching\n");
2396 return rc;
2397 }
2398 }
2399 }
2400
2401 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2402 return 0;
2403 }
2404
bnx2x_sriov_configure(struct pci_dev * dev,int num_vfs_param)2405 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2406 {
2407 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2408
2409 if (!IS_SRIOV(bp)) {
2410 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2411 return -EINVAL;
2412 }
2413
2414 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2415 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2416
2417 /* HW channel is only operational when PF is up */
2418 if (bp->state != BNX2X_STATE_OPEN) {
2419 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2420 return -EINVAL;
2421 }
2422
2423 /* we are always bound by the total_vfs in the configuration space */
2424 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2425 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2426 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2427 num_vfs_param = BNX2X_NR_VIRTFN(bp);
2428 }
2429
2430 bp->requested_nr_virtfn = num_vfs_param;
2431 if (num_vfs_param == 0) {
2432 bnx2x_set_pf_tx_switching(bp, false);
2433 bnx2x_disable_sriov(bp);
2434 return 0;
2435 } else {
2436 return bnx2x_enable_sriov(bp);
2437 }
2438 }
2439
2440 #define IGU_ENTRY_SIZE 4
2441
bnx2x_enable_sriov(struct bnx2x * bp)2442 int bnx2x_enable_sriov(struct bnx2x *bp)
2443 {
2444 int rc = 0, req_vfs = bp->requested_nr_virtfn;
2445 int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2446 u32 igu_entry, address;
2447 u16 num_vf_queues;
2448
2449 if (req_vfs == 0)
2450 return 0;
2451
2452 first_vf = bp->vfdb->sriov.first_vf_in_pf;
2453
2454 /* statically distribute vf sb pool between VFs */
2455 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2456 BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2457
2458 /* zero previous values learned from igu cam */
2459 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2460 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2461
2462 vf->sb_count = 0;
2463 vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2464 }
2465 bp->vfdb->vf_sbs_pool = 0;
2466
2467 /* prepare IGU cam */
2468 sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2469 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2470 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2471 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2472 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2473 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2474 IGU_REG_MAPPING_MEMORY_VALID;
2475 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2476 sb_idx, vf_idx);
2477 REG_WR(bp, address, igu_entry);
2478 sb_idx++;
2479 address += IGU_ENTRY_SIZE;
2480 }
2481 }
2482
2483 /* Reinitialize vf database according to igu cam */
2484 bnx2x_get_vf_igu_cam_info(bp);
2485
2486 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2487 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2488
2489 qcount = 0;
2490 for_each_vf(bp, vf_idx) {
2491 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2492
2493 /* set local queue arrays */
2494 vf->vfqs = &bp->vfdb->vfqs[qcount];
2495 qcount += vf_sb_count(vf);
2496 bnx2x_iov_static_resc(bp, vf);
2497 }
2498
2499 /* prepare msix vectors in VF configuration space - the value in the
2500 * PCI configuration space should be the index of the last entry,
2501 * namely one less than the actual size of the table
2502 */
2503 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2504 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2505 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2506 num_vf_queues - 1);
2507 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2508 vf_idx, num_vf_queues - 1);
2509 }
2510 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2511
2512 /* enable sriov. This will probe all the VFs, and consequentially cause
2513 * the "acquire" messages to appear on the VF PF channel.
2514 */
2515 DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2516 bnx2x_disable_sriov(bp);
2517
2518 rc = bnx2x_set_pf_tx_switching(bp, true);
2519 if (rc)
2520 return rc;
2521
2522 rc = pci_enable_sriov(bp->pdev, req_vfs);
2523 if (rc) {
2524 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2525 return rc;
2526 }
2527 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2528 return req_vfs;
2529 }
2530
bnx2x_pf_set_vfs_vlan(struct bnx2x * bp)2531 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2532 {
2533 int vfidx;
2534 struct pf_vf_bulletin_content *bulletin;
2535
2536 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2537 for_each_vf(bp, vfidx) {
2538 bulletin = BP_VF_BULLETIN(bp, vfidx);
2539 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2540 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2541 htons(ETH_P_8021Q));
2542 }
2543 }
2544
bnx2x_disable_sriov(struct bnx2x * bp)2545 void bnx2x_disable_sriov(struct bnx2x *bp)
2546 {
2547 if (pci_vfs_assigned(bp->pdev)) {
2548 DP(BNX2X_MSG_IOV,
2549 "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2550 return;
2551 }
2552
2553 pci_disable_sriov(bp->pdev);
2554 }
2555
bnx2x_vf_op_prep(struct bnx2x * bp,int vfidx,struct bnx2x_virtf ** vf,struct pf_vf_bulletin_content ** bulletin,bool test_queue)2556 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2557 struct bnx2x_virtf **vf,
2558 struct pf_vf_bulletin_content **bulletin,
2559 bool test_queue)
2560 {
2561 if (bp->state != BNX2X_STATE_OPEN) {
2562 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2563 return -EINVAL;
2564 }
2565
2566 if (!IS_SRIOV(bp)) {
2567 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2568 return -EINVAL;
2569 }
2570
2571 if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2572 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2573 vfidx, BNX2X_NR_VIRTFN(bp));
2574 return -EINVAL;
2575 }
2576
2577 /* init members */
2578 *vf = BP_VF(bp, vfidx);
2579 *bulletin = BP_VF_BULLETIN(bp, vfidx);
2580
2581 if (!*vf) {
2582 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2583 return -EINVAL;
2584 }
2585
2586 if (test_queue && !(*vf)->vfqs) {
2587 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2588 vfidx);
2589 return -EINVAL;
2590 }
2591
2592 if (!*bulletin) {
2593 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2594 vfidx);
2595 return -EINVAL;
2596 }
2597
2598 return 0;
2599 }
2600
bnx2x_get_vf_config(struct net_device * dev,int vfidx,struct ifla_vf_info * ivi)2601 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2602 struct ifla_vf_info *ivi)
2603 {
2604 struct bnx2x *bp = netdev_priv(dev);
2605 struct bnx2x_virtf *vf = NULL;
2606 struct pf_vf_bulletin_content *bulletin = NULL;
2607 struct bnx2x_vlan_mac_obj *mac_obj;
2608 struct bnx2x_vlan_mac_obj *vlan_obj;
2609 int rc;
2610
2611 /* sanity and init */
2612 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2613 if (rc)
2614 return rc;
2615
2616 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2617 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2618 if (!mac_obj || !vlan_obj) {
2619 BNX2X_ERR("VF partially initialized\n");
2620 return -EINVAL;
2621 }
2622
2623 ivi->vf = vfidx;
2624 ivi->qos = 0;
2625 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2626 ivi->min_tx_rate = 0;
2627 ivi->spoofchk = vf->spoofchk ? 1 : 0;
2628 ivi->linkstate = vf->link_cfg;
2629 if (vf->state == VF_ENABLED) {
2630 /* mac and vlan are in vlan_mac objects */
2631 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2632 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2633 0, ETH_ALEN);
2634 vlan_obj->get_n_elements(bp, vlan_obj, 1,
2635 (u8 *)&ivi->vlan, 0,
2636 VLAN_HLEN);
2637 }
2638 } else {
2639 mutex_lock(&bp->vfdb->bulletin_mutex);
2640 /* mac */
2641 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2642 /* mac configured by ndo so its in bulletin board */
2643 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2644 else
2645 /* function has not been loaded yet. Show mac as 0s */
2646 eth_zero_addr(ivi->mac);
2647
2648 /* vlan */
2649 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2650 /* vlan configured by ndo so its in bulletin board */
2651 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2652 else
2653 /* function has not been loaded yet. Show vlans as 0s */
2654 memset(&ivi->vlan, 0, VLAN_HLEN);
2655
2656 mutex_unlock(&bp->vfdb->bulletin_mutex);
2657 }
2658
2659 return 0;
2660 }
2661
2662 /* New mac for VF. Consider these cases:
2663 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2664 * supply at acquire.
2665 * 2. VF has already been acquired but has not yet initialized - store in local
2666 * bulletin board. mac will be posted on VF bulletin board after VF init. VF
2667 * will configure this mac when it is ready.
2668 * 3. VF has already initialized but has not yet setup a queue - post the new
2669 * mac on VF's bulletin board right now. VF will configure this mac when it
2670 * is ready.
2671 * 4. VF has already set a queue - delete any macs already configured for this
2672 * queue and manually config the new mac.
2673 * In any event, once this function has been called refuse any attempts by the
2674 * VF to configure any mac for itself except for this mac. In case of a race
2675 * where the VF fails to see the new post on its bulletin board before sending a
2676 * mac configuration request, the PF will simply fail the request and VF can try
2677 * again after consulting its bulletin board.
2678 */
bnx2x_set_vf_mac(struct net_device * dev,int vfidx,u8 * mac)2679 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2680 {
2681 struct bnx2x *bp = netdev_priv(dev);
2682 int rc, q_logical_state;
2683 struct bnx2x_virtf *vf = NULL;
2684 struct pf_vf_bulletin_content *bulletin = NULL;
2685
2686 if (!is_valid_ether_addr(mac)) {
2687 BNX2X_ERR("mac address invalid\n");
2688 return -EINVAL;
2689 }
2690
2691 /* sanity and init */
2692 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2693 if (rc)
2694 return rc;
2695
2696 mutex_lock(&bp->vfdb->bulletin_mutex);
2697
2698 /* update PF's copy of the VF's bulletin. Will no longer accept mac
2699 * configuration requests from vf unless match this mac
2700 */
2701 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2702 memcpy(bulletin->mac, mac, ETH_ALEN);
2703
2704 /* Post update on VF's bulletin board */
2705 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2706
2707 /* release lock before checking return code */
2708 mutex_unlock(&bp->vfdb->bulletin_mutex);
2709
2710 if (rc) {
2711 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2712 return rc;
2713 }
2714
2715 q_logical_state =
2716 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2717 if (vf->state == VF_ENABLED &&
2718 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2719 /* configure the mac in device on this vf's queue */
2720 unsigned long ramrod_flags = 0;
2721 struct bnx2x_vlan_mac_obj *mac_obj;
2722
2723 /* User should be able to see failure reason in system logs */
2724 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2725 return -EINVAL;
2726
2727 /* must lock vfpf channel to protect against vf flows */
2728 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2729
2730 /* remove existing eth macs */
2731 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2732 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2733 if (rc) {
2734 BNX2X_ERR("failed to delete eth macs\n");
2735 rc = -EINVAL;
2736 goto out;
2737 }
2738
2739 /* remove existing uc list macs */
2740 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2741 if (rc) {
2742 BNX2X_ERR("failed to delete uc_list macs\n");
2743 rc = -EINVAL;
2744 goto out;
2745 }
2746
2747 /* configure the new mac to device */
2748 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2749 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2750 BNX2X_ETH_MAC, &ramrod_flags);
2751
2752 out:
2753 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2754 }
2755
2756 return rc;
2757 }
2758
bnx2x_set_vf_vlan_acceptance(struct bnx2x * bp,struct bnx2x_virtf * vf,bool accept)2759 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2760 struct bnx2x_virtf *vf, bool accept)
2761 {
2762 struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2763 unsigned long accept_flags;
2764
2765 /* need to remove/add the VF's accept_any_vlan bit */
2766 accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2767 if (accept)
2768 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2769 else
2770 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2771
2772 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2773 accept_flags);
2774 bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2775 bnx2x_config_rx_mode(bp, &rx_ramrod);
2776 }
2777
bnx2x_set_vf_vlan_filter(struct bnx2x * bp,struct bnx2x_virtf * vf,u16 vlan,bool add)2778 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2779 u16 vlan, bool add)
2780 {
2781 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2782 unsigned long ramrod_flags = 0;
2783 int rc = 0;
2784
2785 /* configure the new vlan to device */
2786 memset(&ramrod_param, 0, sizeof(ramrod_param));
2787 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2788 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2789 ramrod_param.ramrod_flags = ramrod_flags;
2790 ramrod_param.user_req.u.vlan.vlan = vlan;
2791 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2792 : BNX2X_VLAN_MAC_DEL;
2793 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2794 if (rc) {
2795 BNX2X_ERR("failed to configure vlan\n");
2796 return -EINVAL;
2797 }
2798
2799 return 0;
2800 }
2801
bnx2x_set_vf_vlan(struct net_device * dev,int vfidx,u16 vlan,u8 qos,__be16 vlan_proto)2802 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2803 __be16 vlan_proto)
2804 {
2805 struct pf_vf_bulletin_content *bulletin = NULL;
2806 struct bnx2x *bp = netdev_priv(dev);
2807 struct bnx2x_vlan_mac_obj *vlan_obj;
2808 unsigned long vlan_mac_flags = 0;
2809 unsigned long ramrod_flags = 0;
2810 struct bnx2x_virtf *vf = NULL;
2811 int i, rc;
2812
2813 if (vlan > 4095) {
2814 BNX2X_ERR("illegal vlan value %d\n", vlan);
2815 return -EINVAL;
2816 }
2817
2818 if (vlan_proto != htons(ETH_P_8021Q))
2819 return -EPROTONOSUPPORT;
2820
2821 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2822 vfidx, vlan, 0);
2823
2824 /* sanity and init */
2825 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2826 if (rc)
2827 return rc;
2828
2829 /* update PF's copy of the VF's bulletin. No point in posting the vlan
2830 * to the VF since it doesn't have anything to do with it. But it useful
2831 * to store it here in case the VF is not up yet and we can only
2832 * configure the vlan later when it does. Treat vlan id 0 as remove the
2833 * Host tag.
2834 */
2835 mutex_lock(&bp->vfdb->bulletin_mutex);
2836
2837 if (vlan > 0)
2838 bulletin->valid_bitmap |= 1 << VLAN_VALID;
2839 else
2840 bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2841 bulletin->vlan = vlan;
2842
2843 /* Post update on VF's bulletin board */
2844 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2845 if (rc)
2846 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2847 mutex_unlock(&bp->vfdb->bulletin_mutex);
2848
2849 /* is vf initialized and queue set up? */
2850 if (vf->state != VF_ENABLED ||
2851 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2852 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2853 return rc;
2854
2855 /* User should be able to see error in system logs */
2856 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2857 return -EINVAL;
2858
2859 /* must lock vfpf channel to protect against vf flows */
2860 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2861
2862 /* remove existing vlans */
2863 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2864 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2865 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2866 &ramrod_flags);
2867 if (rc) {
2868 BNX2X_ERR("failed to delete vlans\n");
2869 rc = -EINVAL;
2870 goto out;
2871 }
2872
2873 /* clear accept_any_vlan when HV forces vlan, otherwise
2874 * according to VF capabilities
2875 */
2876 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2877 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2878
2879 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2880 if (rc)
2881 goto out;
2882
2883 /* send queue update ramrods to configure default vlan and
2884 * silent vlan removal
2885 */
2886 for_each_vfq(vf, i) {
2887 struct bnx2x_queue_state_params q_params = {NULL};
2888 struct bnx2x_queue_update_params *update_params;
2889
2890 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2891
2892 /* validate the Q is UP */
2893 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2894 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2895 continue;
2896
2897 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2898 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2899 update_params = &q_params.params.update;
2900 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2901 &update_params->update_flags);
2902 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2903 &update_params->update_flags);
2904 if (vlan == 0) {
2905 /* if vlan is 0 then we want to leave the VF traffic
2906 * untagged, and leave the incoming traffic untouched
2907 * (i.e. do not remove any vlan tags).
2908 */
2909 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2910 &update_params->update_flags);
2911 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2912 &update_params->update_flags);
2913 } else {
2914 /* configure default vlan to vf queue and set silent
2915 * vlan removal (the vf remains unaware of this vlan).
2916 */
2917 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2918 &update_params->update_flags);
2919 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2920 &update_params->update_flags);
2921 update_params->def_vlan = vlan;
2922 update_params->silent_removal_value =
2923 vlan & VLAN_VID_MASK;
2924 update_params->silent_removal_mask = VLAN_VID_MASK;
2925 }
2926
2927 /* Update the Queue state */
2928 rc = bnx2x_queue_state_change(bp, &q_params);
2929 if (rc) {
2930 BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2931 i);
2932 goto out;
2933 }
2934 }
2935 out:
2936 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2937
2938 if (rc)
2939 DP(BNX2X_MSG_IOV,
2940 "updated VF[%d] vlan configuration (vlan = %d)\n",
2941 vfidx, vlan);
2942
2943 return rc;
2944 }
2945
bnx2x_set_vf_spoofchk(struct net_device * dev,int idx,bool val)2946 int bnx2x_set_vf_spoofchk(struct net_device *dev, int idx, bool val)
2947 {
2948 struct bnx2x *bp = netdev_priv(dev);
2949 struct bnx2x_virtf *vf;
2950 int i, rc = 0;
2951
2952 vf = BP_VF(bp, idx);
2953 if (!vf)
2954 return -EINVAL;
2955
2956 /* nothing to do */
2957 if (vf->spoofchk == val)
2958 return 0;
2959
2960 vf->spoofchk = val ? 1 : 0;
2961
2962 DP(BNX2X_MSG_IOV, "%s spoofchk for VF %d\n",
2963 val ? "enabling" : "disabling", idx);
2964
2965 /* is vf initialized and queue set up? */
2966 if (vf->state != VF_ENABLED ||
2967 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2968 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2969 return rc;
2970
2971 /* User should be able to see error in system logs */
2972 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2973 return -EINVAL;
2974
2975 /* send queue update ramrods to configure spoofchk */
2976 for_each_vfq(vf, i) {
2977 struct bnx2x_queue_state_params q_params = {NULL};
2978 struct bnx2x_queue_update_params *update_params;
2979
2980 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2981
2982 /* validate the Q is UP */
2983 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2984 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2985 continue;
2986
2987 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2988 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2989 update_params = &q_params.params.update;
2990 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG,
2991 &update_params->update_flags);
2992 if (val) {
2993 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
2994 &update_params->update_flags);
2995 } else {
2996 __clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF,
2997 &update_params->update_flags);
2998 }
2999
3000 /* Update the Queue state */
3001 rc = bnx2x_queue_state_change(bp, &q_params);
3002 if (rc) {
3003 BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n",
3004 val ? "enable" : "disable", idx, i);
3005 goto out;
3006 }
3007 }
3008 out:
3009 if (!rc)
3010 DP(BNX2X_MSG_IOV,
3011 "%s spoofchk for VF[%d]\n", val ? "Enabled" : "Disabled",
3012 idx);
3013
3014 return rc;
3015 }
3016
3017 /* crc is the first field in the bulletin board. Compute the crc over the
3018 * entire bulletin board excluding the crc field itself. Use the length field
3019 * as the Bulletin Board was posted by a PF with possibly a different version
3020 * from the vf which will sample it. Therefore, the length is computed by the
3021 * PF and then used blindly by the VF.
3022 */
bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content * bulletin)3023 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
3024 {
3025 return crc32(BULLETIN_CRC_SEED,
3026 ((u8 *)bulletin) + sizeof(bulletin->crc),
3027 bulletin->length - sizeof(bulletin->crc));
3028 }
3029
3030 /* Check for new posts on the bulletin board */
bnx2x_sample_bulletin(struct bnx2x * bp)3031 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
3032 {
3033 struct pf_vf_bulletin_content *bulletin;
3034 int attempts;
3035
3036 /* sampling structure in mid post may result with corrupted data
3037 * validate crc to ensure coherency.
3038 */
3039 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
3040 u32 crc;
3041
3042 /* sample the bulletin board */
3043 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
3044 sizeof(union pf_vf_bulletin));
3045
3046 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
3047
3048 if (bp->shadow_bulletin.content.crc == crc)
3049 break;
3050
3051 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
3052 bp->shadow_bulletin.content.crc, crc);
3053 }
3054
3055 if (attempts >= BULLETIN_ATTEMPTS) {
3056 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3057 attempts);
3058 return PFVF_BULLETIN_CRC_ERR;
3059 }
3060 bulletin = &bp->shadow_bulletin.content;
3061
3062 /* bulletin board hasn't changed since last sample */
3063 if (bp->old_bulletin.version == bulletin->version)
3064 return PFVF_BULLETIN_UNCHANGED;
3065
3066 /* the mac address in bulletin board is valid and is new */
3067 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3068 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3069 /* update new mac to net device */
3070 eth_hw_addr_set(bp->dev, bulletin->mac);
3071 }
3072
3073 if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3074 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3075 bulletin->link_speed, bulletin->link_flags);
3076
3077 bp->vf_link_vars.line_speed = bulletin->link_speed;
3078 bp->vf_link_vars.link_report_flags = 0;
3079 /* Link is down */
3080 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3081 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3082 &bp->vf_link_vars.link_report_flags);
3083 /* Full DUPLEX */
3084 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3085 __set_bit(BNX2X_LINK_REPORT_FD,
3086 &bp->vf_link_vars.link_report_flags);
3087 /* Rx Flow Control is ON */
3088 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3089 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3090 &bp->vf_link_vars.link_report_flags);
3091 /* Tx Flow Control is ON */
3092 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3093 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3094 &bp->vf_link_vars.link_report_flags);
3095 __bnx2x_link_report(bp);
3096 }
3097
3098 /* copy new bulletin board to bp */
3099 memcpy(&bp->old_bulletin, bulletin,
3100 sizeof(struct pf_vf_bulletin_content));
3101
3102 return PFVF_BULLETIN_UPDATED;
3103 }
3104
bnx2x_timer_sriov(struct bnx2x * bp)3105 void bnx2x_timer_sriov(struct bnx2x *bp)
3106 {
3107 bnx2x_sample_bulletin(bp);
3108
3109 /* if channel is down we need to self destruct */
3110 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3111 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3112 BNX2X_MSG_IOV);
3113 }
3114
bnx2x_vf_doorbells(struct bnx2x * bp)3115 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3116 {
3117 /* vf doorbells are embedded within the regview */
3118 return bp->regview + PXP_VF_ADDR_DB_START;
3119 }
3120
bnx2x_vf_pci_dealloc(struct bnx2x * bp)3121 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3122 {
3123 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3124 sizeof(struct bnx2x_vf_mbx_msg));
3125 BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3126 sizeof(union pf_vf_bulletin));
3127 }
3128
bnx2x_vf_pci_alloc(struct bnx2x * bp)3129 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3130 {
3131 mutex_init(&bp->vf2pf_mutex);
3132
3133 /* allocate vf2pf mailbox for vf to pf channel */
3134 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3135 sizeof(struct bnx2x_vf_mbx_msg));
3136 if (!bp->vf2pf_mbox)
3137 goto alloc_mem_err;
3138
3139 /* allocate pf 2 vf bulletin board */
3140 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3141 sizeof(union pf_vf_bulletin));
3142 if (!bp->pf2vf_bulletin)
3143 goto alloc_mem_err;
3144
3145 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3146
3147 return 0;
3148
3149 alloc_mem_err:
3150 bnx2x_vf_pci_dealloc(bp);
3151 return -ENOMEM;
3152 }
3153
bnx2x_iov_channel_down(struct bnx2x * bp)3154 void bnx2x_iov_channel_down(struct bnx2x *bp)
3155 {
3156 int vf_idx;
3157 struct pf_vf_bulletin_content *bulletin;
3158
3159 if (!IS_SRIOV(bp))
3160 return;
3161
3162 for_each_vf(bp, vf_idx) {
3163 /* locate this VFs bulletin board and update the channel down
3164 * bit
3165 */
3166 bulletin = BP_VF_BULLETIN(bp, vf_idx);
3167 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3168
3169 /* update vf bulletin board */
3170 bnx2x_post_vf_bulletin(bp, vf_idx);
3171 }
3172 }
3173
bnx2x_iov_task(struct work_struct * work)3174 void bnx2x_iov_task(struct work_struct *work)
3175 {
3176 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3177
3178 if (!netif_running(bp->dev))
3179 return;
3180
3181 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3182 &bp->iov_task_state))
3183 bnx2x_vf_handle_flr_event(bp);
3184
3185 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3186 &bp->iov_task_state))
3187 bnx2x_vf_mbx(bp);
3188 }
3189
bnx2x_schedule_iov_task(struct bnx2x * bp,enum bnx2x_iov_flag flag)3190 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3191 {
3192 smp_mb__before_atomic();
3193 set_bit(flag, &bp->iov_task_state);
3194 smp_mb__after_atomic();
3195 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3196 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3197 }
3198