1 /* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2012 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/semaphore.h>
56 #include <linux/stringify.h>
57 #include <linux/vmalloc.h>
58
59 #include "bnx2x.h"
60 #include "bnx2x_init.h"
61 #include "bnx2x_init_ops.h"
62 #include "bnx2x_cmn.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION \
70 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
71 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
72 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
73 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT (5*HZ)
80
81 static char version[] __devinitdata =
82 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 "BCM57710/57711/57711E/"
88 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95
96 static int multi_mode = 1;
97 module_param(multi_mode, int, 0);
98 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
99 "(0 Disable; 1 Enable (default))");
100
101 int num_queues;
102 module_param(num_queues, int, 0);
103 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
104 " (default is as a number of CPUs)");
105
106 static int disable_tpa;
107 module_param(disable_tpa, int, 0);
108 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
109
110 #define INT_MODE_INTx 1
111 #define INT_MODE_MSI 2
112 static int int_mode;
113 module_param(int_mode, int, 0);
114 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
115 "(1 INT#x; 2 MSI)");
116
117 static int dropless_fc;
118 module_param(dropless_fc, int, 0);
119 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
120
121 static int mrrs = -1;
122 module_param(mrrs, int, 0);
123 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
124
125 static int debug;
126 module_param(debug, int, 0);
127 MODULE_PARM_DESC(debug, " Default debug msglevel");
128
129
130
131 struct workqueue_struct *bnx2x_wq;
132
133 enum bnx2x_board_type {
134 BCM57710 = 0,
135 BCM57711,
136 BCM57711E,
137 BCM57712,
138 BCM57712_MF,
139 BCM57800,
140 BCM57800_MF,
141 BCM57810,
142 BCM57810_MF,
143 BCM57840,
144 BCM57840_MF
145 };
146
147 /* indexed by board_type, above */
148 static struct {
149 char *name;
150 } board_info[] __devinitdata = {
151 { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
152 { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
153 { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
154 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
155 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
156 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
157 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
158 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
159 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
160 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
161 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
162 "Ethernet Multi Function"}
163 };
164
165 #ifndef PCI_DEVICE_ID_NX2_57710
166 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
167 #endif
168 #ifndef PCI_DEVICE_ID_NX2_57711
169 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
170 #endif
171 #ifndef PCI_DEVICE_ID_NX2_57711E
172 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57712
175 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57712_MF
178 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57800
181 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57800_MF
184 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57810
187 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57810_MF
190 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57840
193 #define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57840_MF
196 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
197 #endif
198 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
199 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
200 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
201 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
202 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
203 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
204 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
205 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
206 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
207 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
208 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
209 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
210 { 0 }
211 };
212
213 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
214
215 /* Global resources for unloading a previously loaded device */
216 #define BNX2X_PREV_WAIT_NEEDED 1
217 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
218 static LIST_HEAD(bnx2x_prev_list);
219 /****************************************************************************
220 * General service functions
221 ****************************************************************************/
222
__storm_memset_dma_mapping(struct bnx2x * bp,u32 addr,dma_addr_t mapping)223 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
224 u32 addr, dma_addr_t mapping)
225 {
226 REG_WR(bp, addr, U64_LO(mapping));
227 REG_WR(bp, addr + 4, U64_HI(mapping));
228 }
229
storm_memset_spq_addr(struct bnx2x * bp,dma_addr_t mapping,u16 abs_fid)230 static inline void storm_memset_spq_addr(struct bnx2x *bp,
231 dma_addr_t mapping, u16 abs_fid)
232 {
233 u32 addr = XSEM_REG_FAST_MEMORY +
234 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
235
236 __storm_memset_dma_mapping(bp, addr, mapping);
237 }
238
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)239 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
240 u16 pf_id)
241 {
242 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
243 pf_id);
244 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
245 pf_id);
246 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
247 pf_id);
248 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
249 pf_id);
250 }
251
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)252 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
253 u8 enable)
254 {
255 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
256 enable);
257 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
258 enable);
259 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
260 enable);
261 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
262 enable);
263 }
264
storm_memset_eq_data(struct bnx2x * bp,struct event_ring_data * eq_data,u16 pfid)265 static inline void storm_memset_eq_data(struct bnx2x *bp,
266 struct event_ring_data *eq_data,
267 u16 pfid)
268 {
269 size_t size = sizeof(struct event_ring_data);
270
271 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
272
273 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
274 }
275
storm_memset_eq_prod(struct bnx2x * bp,u16 eq_prod,u16 pfid)276 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
277 u16 pfid)
278 {
279 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
280 REG_WR16(bp, addr, eq_prod);
281 }
282
283 /* used only at init
284 * locking is done by mcp
285 */
bnx2x_reg_wr_ind(struct bnx2x * bp,u32 addr,u32 val)286 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
287 {
288 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
289 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
290 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
291 PCICFG_VENDOR_ID_OFFSET);
292 }
293
bnx2x_reg_rd_ind(struct bnx2x * bp,u32 addr)294 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
295 {
296 u32 val;
297
298 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
299 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
300 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
301 PCICFG_VENDOR_ID_OFFSET);
302
303 return val;
304 }
305
306 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
307 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
308 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
309 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
310 #define DMAE_DP_DST_NONE "dst_addr [none]"
311
bnx2x_dp_dmae(struct bnx2x * bp,struct dmae_command * dmae,int msglvl)312 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
313 int msglvl)
314 {
315 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
316
317 switch (dmae->opcode & DMAE_COMMAND_DST) {
318 case DMAE_CMD_DST_PCI:
319 if (src_type == DMAE_CMD_SRC_PCI)
320 DP(msglvl, "DMAE: opcode 0x%08x\n"
321 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
322 "comp_addr [%x:%08x], comp_val 0x%08x\n",
323 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
324 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
325 dmae->comp_addr_hi, dmae->comp_addr_lo,
326 dmae->comp_val);
327 else
328 DP(msglvl, "DMAE: opcode 0x%08x\n"
329 "src [%08x], len [%d*4], dst [%x:%08x]\n"
330 "comp_addr [%x:%08x], comp_val 0x%08x\n",
331 dmae->opcode, dmae->src_addr_lo >> 2,
332 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
333 dmae->comp_addr_hi, dmae->comp_addr_lo,
334 dmae->comp_val);
335 break;
336 case DMAE_CMD_DST_GRC:
337 if (src_type == DMAE_CMD_SRC_PCI)
338 DP(msglvl, "DMAE: opcode 0x%08x\n"
339 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
340 "comp_addr [%x:%08x], comp_val 0x%08x\n",
341 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
342 dmae->len, dmae->dst_addr_lo >> 2,
343 dmae->comp_addr_hi, dmae->comp_addr_lo,
344 dmae->comp_val);
345 else
346 DP(msglvl, "DMAE: opcode 0x%08x\n"
347 "src [%08x], len [%d*4], dst [%08x]\n"
348 "comp_addr [%x:%08x], comp_val 0x%08x\n",
349 dmae->opcode, dmae->src_addr_lo >> 2,
350 dmae->len, dmae->dst_addr_lo >> 2,
351 dmae->comp_addr_hi, dmae->comp_addr_lo,
352 dmae->comp_val);
353 break;
354 default:
355 if (src_type == DMAE_CMD_SRC_PCI)
356 DP(msglvl, "DMAE: opcode 0x%08x\n"
357 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
358 "comp_addr [%x:%08x] comp_val 0x%08x\n",
359 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
360 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
361 dmae->comp_val);
362 else
363 DP(msglvl, "DMAE: opcode 0x%08x\n"
364 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
365 "comp_addr [%x:%08x] comp_val 0x%08x\n",
366 dmae->opcode, dmae->src_addr_lo >> 2,
367 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
368 dmae->comp_val);
369 break;
370 }
371
372 }
373
374 /* copy command into DMAE command memory and set DMAE command go */
bnx2x_post_dmae(struct bnx2x * bp,struct dmae_command * dmae,int idx)375 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
376 {
377 u32 cmd_offset;
378 int i;
379
380 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
381 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
382 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
383 }
384 REG_WR(bp, dmae_reg_go_c[idx], 1);
385 }
386
bnx2x_dmae_opcode_add_comp(u32 opcode,u8 comp_type)387 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
388 {
389 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
390 DMAE_CMD_C_ENABLE);
391 }
392
bnx2x_dmae_opcode_clr_src_reset(u32 opcode)393 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
394 {
395 return opcode & ~DMAE_CMD_SRC_RESET;
396 }
397
bnx2x_dmae_opcode(struct bnx2x * bp,u8 src_type,u8 dst_type,bool with_comp,u8 comp_type)398 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
399 bool with_comp, u8 comp_type)
400 {
401 u32 opcode = 0;
402
403 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
404 (dst_type << DMAE_COMMAND_DST_SHIFT));
405
406 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
407
408 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
409 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
410 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
411 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
412
413 #ifdef __BIG_ENDIAN
414 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
415 #else
416 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
417 #endif
418 if (with_comp)
419 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
420 return opcode;
421 }
422
bnx2x_prep_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u8 src_type,u8 dst_type)423 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
424 struct dmae_command *dmae,
425 u8 src_type, u8 dst_type)
426 {
427 memset(dmae, 0, sizeof(struct dmae_command));
428
429 /* set the opcode */
430 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
431 true, DMAE_COMP_PCI);
432
433 /* fill in the completion parameters */
434 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
435 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
436 dmae->comp_val = DMAE_COMP_VAL;
437 }
438
439 /* issue a dmae command over the init-channel and wailt for completion */
bnx2x_issue_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae)440 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
441 struct dmae_command *dmae)
442 {
443 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
444 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
445 int rc = 0;
446
447 /*
448 * Lock the dmae channel. Disable BHs to prevent a dead-lock
449 * as long as this code is called both from syscall context and
450 * from ndo_set_rx_mode() flow that may be called from BH.
451 */
452 spin_lock_bh(&bp->dmae_lock);
453
454 /* reset completion */
455 *wb_comp = 0;
456
457 /* post the command on the channel used for initializations */
458 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
459
460 /* wait for completion */
461 udelay(5);
462 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
463
464 if (!cnt ||
465 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
466 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
467 BNX2X_ERR("DMAE timeout!\n");
468 rc = DMAE_TIMEOUT;
469 goto unlock;
470 }
471 cnt--;
472 udelay(50);
473 }
474 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
475 BNX2X_ERR("DMAE PCI error!\n");
476 rc = DMAE_PCI_ERROR;
477 }
478
479 unlock:
480 spin_unlock_bh(&bp->dmae_lock);
481 return rc;
482 }
483
bnx2x_write_dmae(struct bnx2x * bp,dma_addr_t dma_addr,u32 dst_addr,u32 len32)484 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
485 u32 len32)
486 {
487 struct dmae_command dmae;
488
489 if (!bp->dmae_ready) {
490 u32 *data = bnx2x_sp(bp, wb_data[0]);
491
492 if (CHIP_IS_E1(bp))
493 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
494 else
495 bnx2x_init_str_wr(bp, dst_addr, data, len32);
496 return;
497 }
498
499 /* set opcode and fixed command fields */
500 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
501
502 /* fill in addresses and len */
503 dmae.src_addr_lo = U64_LO(dma_addr);
504 dmae.src_addr_hi = U64_HI(dma_addr);
505 dmae.dst_addr_lo = dst_addr >> 2;
506 dmae.dst_addr_hi = 0;
507 dmae.len = len32;
508
509 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
510
511 /* issue the command and wait for completion */
512 bnx2x_issue_dmae_with_comp(bp, &dmae);
513 }
514
bnx2x_read_dmae(struct bnx2x * bp,u32 src_addr,u32 len32)515 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
516 {
517 struct dmae_command dmae;
518
519 if (!bp->dmae_ready) {
520 u32 *data = bnx2x_sp(bp, wb_data[0]);
521 int i;
522
523 if (CHIP_IS_E1(bp))
524 for (i = 0; i < len32; i++)
525 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
526 else
527 for (i = 0; i < len32; i++)
528 data[i] = REG_RD(bp, src_addr + i*4);
529
530 return;
531 }
532
533 /* set opcode and fixed command fields */
534 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
535
536 /* fill in addresses and len */
537 dmae.src_addr_lo = src_addr >> 2;
538 dmae.src_addr_hi = 0;
539 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
540 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
541 dmae.len = len32;
542
543 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
544
545 /* issue the command and wait for completion */
546 bnx2x_issue_dmae_with_comp(bp, &dmae);
547 }
548
bnx2x_write_dmae_phys_len(struct bnx2x * bp,dma_addr_t phys_addr,u32 addr,u32 len)549 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
550 u32 addr, u32 len)
551 {
552 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
553 int offset = 0;
554
555 while (len > dmae_wr_max) {
556 bnx2x_write_dmae(bp, phys_addr + offset,
557 addr + offset, dmae_wr_max);
558 offset += dmae_wr_max * 4;
559 len -= dmae_wr_max;
560 }
561
562 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
563 }
564
565 /* used only for slowpath so not inlined */
bnx2x_wb_wr(struct bnx2x * bp,int reg,u32 val_hi,u32 val_lo)566 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
567 {
568 u32 wb_write[2];
569
570 wb_write[0] = val_hi;
571 wb_write[1] = val_lo;
572 REG_WR_DMAE(bp, reg, wb_write, 2);
573 }
574
575 #ifdef USE_WB_RD
bnx2x_wb_rd(struct bnx2x * bp,int reg)576 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
577 {
578 u32 wb_data[2];
579
580 REG_RD_DMAE(bp, reg, wb_data, 2);
581
582 return HILO_U64(wb_data[0], wb_data[1]);
583 }
584 #endif
585
bnx2x_mc_assert(struct bnx2x * bp)586 static int bnx2x_mc_assert(struct bnx2x *bp)
587 {
588 char last_idx;
589 int i, rc = 0;
590 u32 row0, row1, row2, row3;
591
592 /* XSTORM */
593 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
594 XSTORM_ASSERT_LIST_INDEX_OFFSET);
595 if (last_idx)
596 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
597
598 /* print the asserts */
599 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
600
601 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
602 XSTORM_ASSERT_LIST_OFFSET(i));
603 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
604 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
605 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
606 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
607 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
608 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
609
610 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
611 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
612 i, row3, row2, row1, row0);
613 rc++;
614 } else {
615 break;
616 }
617 }
618
619 /* TSTORM */
620 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
621 TSTORM_ASSERT_LIST_INDEX_OFFSET);
622 if (last_idx)
623 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
624
625 /* print the asserts */
626 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
627
628 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
629 TSTORM_ASSERT_LIST_OFFSET(i));
630 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
631 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
632 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
633 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
634 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
635 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
636
637 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
638 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
639 i, row3, row2, row1, row0);
640 rc++;
641 } else {
642 break;
643 }
644 }
645
646 /* CSTORM */
647 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
648 CSTORM_ASSERT_LIST_INDEX_OFFSET);
649 if (last_idx)
650 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
651
652 /* print the asserts */
653 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
654
655 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
656 CSTORM_ASSERT_LIST_OFFSET(i));
657 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
658 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
659 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
660 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
661 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
662 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
663
664 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
665 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
666 i, row3, row2, row1, row0);
667 rc++;
668 } else {
669 break;
670 }
671 }
672
673 /* USTORM */
674 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
675 USTORM_ASSERT_LIST_INDEX_OFFSET);
676 if (last_idx)
677 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
678
679 /* print the asserts */
680 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
681
682 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
683 USTORM_ASSERT_LIST_OFFSET(i));
684 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
685 USTORM_ASSERT_LIST_OFFSET(i) + 4);
686 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
687 USTORM_ASSERT_LIST_OFFSET(i) + 8);
688 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
689 USTORM_ASSERT_LIST_OFFSET(i) + 12);
690
691 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
692 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
693 i, row3, row2, row1, row0);
694 rc++;
695 } else {
696 break;
697 }
698 }
699
700 return rc;
701 }
702
bnx2x_fw_dump_lvl(struct bnx2x * bp,const char * lvl)703 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
704 {
705 u32 addr, val;
706 u32 mark, offset;
707 __be32 data[9];
708 int word;
709 u32 trace_shmem_base;
710 if (BP_NOMCP(bp)) {
711 BNX2X_ERR("NO MCP - can not dump\n");
712 return;
713 }
714 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
715 (bp->common.bc_ver & 0xff0000) >> 16,
716 (bp->common.bc_ver & 0xff00) >> 8,
717 (bp->common.bc_ver & 0xff));
718
719 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
720 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
721 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
722
723 if (BP_PATH(bp) == 0)
724 trace_shmem_base = bp->common.shmem_base;
725 else
726 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
727 addr = trace_shmem_base - 0x800;
728
729 /* validate TRCB signature */
730 mark = REG_RD(bp, addr);
731 if (mark != MFW_TRACE_SIGNATURE) {
732 BNX2X_ERR("Trace buffer signature is missing.");
733 return ;
734 }
735
736 /* read cyclic buffer pointer */
737 addr += 4;
738 mark = REG_RD(bp, addr);
739 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
740 + ((mark + 0x3) & ~0x3) - 0x08000000;
741 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
742
743 printk("%s", lvl);
744 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
745 for (word = 0; word < 8; word++)
746 data[word] = htonl(REG_RD(bp, offset + 4*word));
747 data[8] = 0x0;
748 pr_cont("%s", (char *)data);
749 }
750 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
751 for (word = 0; word < 8; word++)
752 data[word] = htonl(REG_RD(bp, offset + 4*word));
753 data[8] = 0x0;
754 pr_cont("%s", (char *)data);
755 }
756 printk("%s" "end of fw dump\n", lvl);
757 }
758
bnx2x_fw_dump(struct bnx2x * bp)759 static inline void bnx2x_fw_dump(struct bnx2x *bp)
760 {
761 bnx2x_fw_dump_lvl(bp, KERN_ERR);
762 }
763
bnx2x_panic_dump(struct bnx2x * bp)764 void bnx2x_panic_dump(struct bnx2x *bp)
765 {
766 int i;
767 u16 j;
768 struct hc_sp_status_block_data sp_sb_data;
769 int func = BP_FUNC(bp);
770 #ifdef BNX2X_STOP_ON_ERROR
771 u16 start = 0, end = 0;
772 u8 cos;
773 #endif
774
775 bp->stats_state = STATS_STATE_DISABLED;
776 bp->eth_stats.unrecoverable_error++;
777 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
778
779 BNX2X_ERR("begin crash dump -----------------\n");
780
781 /* Indices */
782 /* Common */
783 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
784 bp->def_idx, bp->def_att_idx, bp->attn_state,
785 bp->spq_prod_idx, bp->stats_counter);
786 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
787 bp->def_status_blk->atten_status_block.attn_bits,
788 bp->def_status_blk->atten_status_block.attn_bits_ack,
789 bp->def_status_blk->atten_status_block.status_block_id,
790 bp->def_status_blk->atten_status_block.attn_bits_index);
791 BNX2X_ERR(" def (");
792 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
793 pr_cont("0x%x%s",
794 bp->def_status_blk->sp_sb.index_values[i],
795 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
796
797 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
798 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
799 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
800 i*sizeof(u32));
801
802 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
803 sp_sb_data.igu_sb_id,
804 sp_sb_data.igu_seg_id,
805 sp_sb_data.p_func.pf_id,
806 sp_sb_data.p_func.vnic_id,
807 sp_sb_data.p_func.vf_id,
808 sp_sb_data.p_func.vf_valid,
809 sp_sb_data.state);
810
811
812 for_each_eth_queue(bp, i) {
813 struct bnx2x_fastpath *fp = &bp->fp[i];
814 int loop;
815 struct hc_status_block_data_e2 sb_data_e2;
816 struct hc_status_block_data_e1x sb_data_e1x;
817 struct hc_status_block_sm *hc_sm_p =
818 CHIP_IS_E1x(bp) ?
819 sb_data_e1x.common.state_machine :
820 sb_data_e2.common.state_machine;
821 struct hc_index_data *hc_index_p =
822 CHIP_IS_E1x(bp) ?
823 sb_data_e1x.index_data :
824 sb_data_e2.index_data;
825 u8 data_size, cos;
826 u32 *sb_data_p;
827 struct bnx2x_fp_txdata txdata;
828
829 /* Rx */
830 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
831 i, fp->rx_bd_prod, fp->rx_bd_cons,
832 fp->rx_comp_prod,
833 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
834 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
835 fp->rx_sge_prod, fp->last_max_sge,
836 le16_to_cpu(fp->fp_hc_idx));
837
838 /* Tx */
839 for_each_cos_in_tx_queue(fp, cos)
840 {
841 txdata = fp->txdata[cos];
842 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
843 i, txdata.tx_pkt_prod,
844 txdata.tx_pkt_cons, txdata.tx_bd_prod,
845 txdata.tx_bd_cons,
846 le16_to_cpu(*txdata.tx_cons_sb));
847 }
848
849 loop = CHIP_IS_E1x(bp) ?
850 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
851
852 /* host sb data */
853
854 #ifdef BCM_CNIC
855 if (IS_FCOE_FP(fp))
856 continue;
857 #endif
858 BNX2X_ERR(" run indexes (");
859 for (j = 0; j < HC_SB_MAX_SM; j++)
860 pr_cont("0x%x%s",
861 fp->sb_running_index[j],
862 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
863
864 BNX2X_ERR(" indexes (");
865 for (j = 0; j < loop; j++)
866 pr_cont("0x%x%s",
867 fp->sb_index_values[j],
868 (j == loop - 1) ? ")" : " ");
869 /* fw sb data */
870 data_size = CHIP_IS_E1x(bp) ?
871 sizeof(struct hc_status_block_data_e1x) :
872 sizeof(struct hc_status_block_data_e2);
873 data_size /= sizeof(u32);
874 sb_data_p = CHIP_IS_E1x(bp) ?
875 (u32 *)&sb_data_e1x :
876 (u32 *)&sb_data_e2;
877 /* copy sb data in here */
878 for (j = 0; j < data_size; j++)
879 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
880 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
881 j * sizeof(u32));
882
883 if (!CHIP_IS_E1x(bp)) {
884 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
885 sb_data_e2.common.p_func.pf_id,
886 sb_data_e2.common.p_func.vf_id,
887 sb_data_e2.common.p_func.vf_valid,
888 sb_data_e2.common.p_func.vnic_id,
889 sb_data_e2.common.same_igu_sb_1b,
890 sb_data_e2.common.state);
891 } else {
892 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
893 sb_data_e1x.common.p_func.pf_id,
894 sb_data_e1x.common.p_func.vf_id,
895 sb_data_e1x.common.p_func.vf_valid,
896 sb_data_e1x.common.p_func.vnic_id,
897 sb_data_e1x.common.same_igu_sb_1b,
898 sb_data_e1x.common.state);
899 }
900
901 /* SB_SMs data */
902 for (j = 0; j < HC_SB_MAX_SM; j++) {
903 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
904 j, hc_sm_p[j].__flags,
905 hc_sm_p[j].igu_sb_id,
906 hc_sm_p[j].igu_seg_id,
907 hc_sm_p[j].time_to_expire,
908 hc_sm_p[j].timer_value);
909 }
910
911 /* Indecies data */
912 for (j = 0; j < loop; j++) {
913 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
914 hc_index_p[j].flags,
915 hc_index_p[j].timeout);
916 }
917 }
918
919 #ifdef BNX2X_STOP_ON_ERROR
920 /* Rings */
921 /* Rx */
922 for_each_rx_queue(bp, i) {
923 struct bnx2x_fastpath *fp = &bp->fp[i];
924
925 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
926 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
927 for (j = start; j != end; j = RX_BD(j + 1)) {
928 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
929 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
930
931 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
932 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
933 }
934
935 start = RX_SGE(fp->rx_sge_prod);
936 end = RX_SGE(fp->last_max_sge);
937 for (j = start; j != end; j = RX_SGE(j + 1)) {
938 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
939 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
940
941 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
942 i, j, rx_sge[1], rx_sge[0], sw_page->page);
943 }
944
945 start = RCQ_BD(fp->rx_comp_cons - 10);
946 end = RCQ_BD(fp->rx_comp_cons + 503);
947 for (j = start; j != end; j = RCQ_BD(j + 1)) {
948 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
949
950 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
951 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
952 }
953 }
954
955 /* Tx */
956 for_each_tx_queue(bp, i) {
957 struct bnx2x_fastpath *fp = &bp->fp[i];
958 for_each_cos_in_tx_queue(fp, cos) {
959 struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
960
961 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
962 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
963 for (j = start; j != end; j = TX_BD(j + 1)) {
964 struct sw_tx_bd *sw_bd =
965 &txdata->tx_buf_ring[j];
966
967 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
968 i, cos, j, sw_bd->skb,
969 sw_bd->first_bd);
970 }
971
972 start = TX_BD(txdata->tx_bd_cons - 10);
973 end = TX_BD(txdata->tx_bd_cons + 254);
974 for (j = start; j != end; j = TX_BD(j + 1)) {
975 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
976
977 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
978 i, cos, j, tx_bd[0], tx_bd[1],
979 tx_bd[2], tx_bd[3]);
980 }
981 }
982 }
983 #endif
984 bnx2x_fw_dump(bp);
985 bnx2x_mc_assert(bp);
986 BNX2X_ERR("end crash dump -----------------\n");
987 }
988
989 /*
990 * FLR Support for E2
991 *
992 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
993 * initialization.
994 */
995 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
996 #define FLR_WAIT_INTERVAL 50 /* usec */
997 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
998
999 struct pbf_pN_buf_regs {
1000 int pN;
1001 u32 init_crd;
1002 u32 crd;
1003 u32 crd_freed;
1004 };
1005
1006 struct pbf_pN_cmd_regs {
1007 int pN;
1008 u32 lines_occup;
1009 u32 lines_freed;
1010 };
1011
bnx2x_pbf_pN_buf_flushed(struct bnx2x * bp,struct pbf_pN_buf_regs * regs,u32 poll_count)1012 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1013 struct pbf_pN_buf_regs *regs,
1014 u32 poll_count)
1015 {
1016 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1017 u32 cur_cnt = poll_count;
1018
1019 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1020 crd = crd_start = REG_RD(bp, regs->crd);
1021 init_crd = REG_RD(bp, regs->init_crd);
1022
1023 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1024 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1025 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1026
1027 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1028 (init_crd - crd_start))) {
1029 if (cur_cnt--) {
1030 udelay(FLR_WAIT_INTERVAL);
1031 crd = REG_RD(bp, regs->crd);
1032 crd_freed = REG_RD(bp, regs->crd_freed);
1033 } else {
1034 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1035 regs->pN);
1036 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1037 regs->pN, crd);
1038 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1039 regs->pN, crd_freed);
1040 break;
1041 }
1042 }
1043 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1044 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1045 }
1046
bnx2x_pbf_pN_cmd_flushed(struct bnx2x * bp,struct pbf_pN_cmd_regs * regs,u32 poll_count)1047 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1048 struct pbf_pN_cmd_regs *regs,
1049 u32 poll_count)
1050 {
1051 u32 occup, to_free, freed, freed_start;
1052 u32 cur_cnt = poll_count;
1053
1054 occup = to_free = REG_RD(bp, regs->lines_occup);
1055 freed = freed_start = REG_RD(bp, regs->lines_freed);
1056
1057 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1058 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1059
1060 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1061 if (cur_cnt--) {
1062 udelay(FLR_WAIT_INTERVAL);
1063 occup = REG_RD(bp, regs->lines_occup);
1064 freed = REG_RD(bp, regs->lines_freed);
1065 } else {
1066 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1067 regs->pN);
1068 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1069 regs->pN, occup);
1070 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1071 regs->pN, freed);
1072 break;
1073 }
1074 }
1075 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1076 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1077 }
1078
bnx2x_flr_clnup_reg_poll(struct bnx2x * bp,u32 reg,u32 expected,u32 poll_count)1079 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1080 u32 expected, u32 poll_count)
1081 {
1082 u32 cur_cnt = poll_count;
1083 u32 val;
1084
1085 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1086 udelay(FLR_WAIT_INTERVAL);
1087
1088 return val;
1089 }
1090
bnx2x_flr_clnup_poll_hw_counter(struct bnx2x * bp,u32 reg,char * msg,u32 poll_cnt)1091 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1092 char *msg, u32 poll_cnt)
1093 {
1094 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1095 if (val != 0) {
1096 BNX2X_ERR("%s usage count=%d\n", msg, val);
1097 return 1;
1098 }
1099 return 0;
1100 }
1101
bnx2x_flr_clnup_poll_count(struct bnx2x * bp)1102 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1103 {
1104 /* adjust polling timeout */
1105 if (CHIP_REV_IS_EMUL(bp))
1106 return FLR_POLL_CNT * 2000;
1107
1108 if (CHIP_REV_IS_FPGA(bp))
1109 return FLR_POLL_CNT * 120;
1110
1111 return FLR_POLL_CNT;
1112 }
1113
bnx2x_tx_hw_flushed(struct bnx2x * bp,u32 poll_count)1114 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1115 {
1116 struct pbf_pN_cmd_regs cmd_regs[] = {
1117 {0, (CHIP_IS_E3B0(bp)) ?
1118 PBF_REG_TQ_OCCUPANCY_Q0 :
1119 PBF_REG_P0_TQ_OCCUPANCY,
1120 (CHIP_IS_E3B0(bp)) ?
1121 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1122 PBF_REG_P0_TQ_LINES_FREED_CNT},
1123 {1, (CHIP_IS_E3B0(bp)) ?
1124 PBF_REG_TQ_OCCUPANCY_Q1 :
1125 PBF_REG_P1_TQ_OCCUPANCY,
1126 (CHIP_IS_E3B0(bp)) ?
1127 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1128 PBF_REG_P1_TQ_LINES_FREED_CNT},
1129 {4, (CHIP_IS_E3B0(bp)) ?
1130 PBF_REG_TQ_OCCUPANCY_LB_Q :
1131 PBF_REG_P4_TQ_OCCUPANCY,
1132 (CHIP_IS_E3B0(bp)) ?
1133 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1134 PBF_REG_P4_TQ_LINES_FREED_CNT}
1135 };
1136
1137 struct pbf_pN_buf_regs buf_regs[] = {
1138 {0, (CHIP_IS_E3B0(bp)) ?
1139 PBF_REG_INIT_CRD_Q0 :
1140 PBF_REG_P0_INIT_CRD ,
1141 (CHIP_IS_E3B0(bp)) ?
1142 PBF_REG_CREDIT_Q0 :
1143 PBF_REG_P0_CREDIT,
1144 (CHIP_IS_E3B0(bp)) ?
1145 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1146 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1147 {1, (CHIP_IS_E3B0(bp)) ?
1148 PBF_REG_INIT_CRD_Q1 :
1149 PBF_REG_P1_INIT_CRD,
1150 (CHIP_IS_E3B0(bp)) ?
1151 PBF_REG_CREDIT_Q1 :
1152 PBF_REG_P1_CREDIT,
1153 (CHIP_IS_E3B0(bp)) ?
1154 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1155 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1156 {4, (CHIP_IS_E3B0(bp)) ?
1157 PBF_REG_INIT_CRD_LB_Q :
1158 PBF_REG_P4_INIT_CRD,
1159 (CHIP_IS_E3B0(bp)) ?
1160 PBF_REG_CREDIT_LB_Q :
1161 PBF_REG_P4_CREDIT,
1162 (CHIP_IS_E3B0(bp)) ?
1163 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1164 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1165 };
1166
1167 int i;
1168
1169 /* Verify the command queues are flushed P0, P1, P4 */
1170 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1171 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1172
1173
1174 /* Verify the transmission buffers are flushed P0, P1, P4 */
1175 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1176 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1177 }
1178
1179 #define OP_GEN_PARAM(param) \
1180 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1181
1182 #define OP_GEN_TYPE(type) \
1183 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1184
1185 #define OP_GEN_AGG_VECT(index) \
1186 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1187
1188
bnx2x_send_final_clnup(struct bnx2x * bp,u8 clnup_func,u32 poll_cnt)1189 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1190 u32 poll_cnt)
1191 {
1192 struct sdm_op_gen op_gen = {0};
1193
1194 u32 comp_addr = BAR_CSTRORM_INTMEM +
1195 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1196 int ret = 0;
1197
1198 if (REG_RD(bp, comp_addr)) {
1199 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1200 return 1;
1201 }
1202
1203 op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1204 op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1205 op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1206 op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1207
1208 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1209 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1210
1211 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1212 BNX2X_ERR("FW final cleanup did not succeed\n");
1213 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1214 (REG_RD(bp, comp_addr)));
1215 ret = 1;
1216 }
1217 /* Zero completion for nxt FLR */
1218 REG_WR(bp, comp_addr, 0);
1219
1220 return ret;
1221 }
1222
bnx2x_is_pcie_pending(struct pci_dev * dev)1223 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1224 {
1225 int pos;
1226 u16 status;
1227
1228 pos = pci_pcie_cap(dev);
1229 if (!pos)
1230 return false;
1231
1232 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1233 return status & PCI_EXP_DEVSTA_TRPND;
1234 }
1235
1236 /* PF FLR specific routines
1237 */
bnx2x_poll_hw_usage_counters(struct bnx2x * bp,u32 poll_cnt)1238 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1239 {
1240
1241 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1242 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1243 CFC_REG_NUM_LCIDS_INSIDE_PF,
1244 "CFC PF usage counter timed out",
1245 poll_cnt))
1246 return 1;
1247
1248
1249 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1250 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1251 DORQ_REG_PF_USAGE_CNT,
1252 "DQ PF usage counter timed out",
1253 poll_cnt))
1254 return 1;
1255
1256 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1257 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1258 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1259 "QM PF usage counter timed out",
1260 poll_cnt))
1261 return 1;
1262
1263 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1264 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1265 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1266 "Timers VNIC usage counter timed out",
1267 poll_cnt))
1268 return 1;
1269 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1270 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1271 "Timers NUM_SCANS usage counter timed out",
1272 poll_cnt))
1273 return 1;
1274
1275 /* Wait DMAE PF usage counter to zero */
1276 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1277 dmae_reg_go_c[INIT_DMAE_C(bp)],
1278 "DMAE dommand register timed out",
1279 poll_cnt))
1280 return 1;
1281
1282 return 0;
1283 }
1284
bnx2x_hw_enable_status(struct bnx2x * bp)1285 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1286 {
1287 u32 val;
1288
1289 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1290 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1291
1292 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1293 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1294
1295 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1296 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1297
1298 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1299 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1300
1301 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1302 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1303
1304 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1305 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1306
1307 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1308 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1309
1310 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1311 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1312 val);
1313 }
1314
bnx2x_pf_flr_clnup(struct bnx2x * bp)1315 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1316 {
1317 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1318
1319 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1320
1321 /* Re-enable PF target read access */
1322 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1323
1324 /* Poll HW usage counters */
1325 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1326 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1327 return -EBUSY;
1328
1329 /* Zero the igu 'trailing edge' and 'leading edge' */
1330
1331 /* Send the FW cleanup command */
1332 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1333 return -EBUSY;
1334
1335 /* ATC cleanup */
1336
1337 /* Verify TX hw is flushed */
1338 bnx2x_tx_hw_flushed(bp, poll_cnt);
1339
1340 /* Wait 100ms (not adjusted according to platform) */
1341 msleep(100);
1342
1343 /* Verify no pending pci transactions */
1344 if (bnx2x_is_pcie_pending(bp->pdev))
1345 BNX2X_ERR("PCIE Transactions still pending\n");
1346
1347 /* Debug */
1348 bnx2x_hw_enable_status(bp);
1349
1350 /*
1351 * Master enable - Due to WB DMAE writes performed before this
1352 * register is re-initialized as part of the regular function init
1353 */
1354 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1355
1356 return 0;
1357 }
1358
bnx2x_hc_int_enable(struct bnx2x * bp)1359 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1360 {
1361 int port = BP_PORT(bp);
1362 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1363 u32 val = REG_RD(bp, addr);
1364 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1365 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1366
1367 if (msix) {
1368 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1369 HC_CONFIG_0_REG_INT_LINE_EN_0);
1370 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1371 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1372 } else if (msi) {
1373 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1374 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1375 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1376 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1377 } else {
1378 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1379 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1380 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1381 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1382
1383 if (!CHIP_IS_E1(bp)) {
1384 DP(NETIF_MSG_IFUP,
1385 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1386
1387 REG_WR(bp, addr, val);
1388
1389 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1390 }
1391 }
1392
1393 if (CHIP_IS_E1(bp))
1394 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1395
1396 DP(NETIF_MSG_IFUP,
1397 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1398 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1399
1400 REG_WR(bp, addr, val);
1401 /*
1402 * Ensure that HC_CONFIG is written before leading/trailing edge config
1403 */
1404 mmiowb();
1405 barrier();
1406
1407 if (!CHIP_IS_E1(bp)) {
1408 /* init leading/trailing edge */
1409 if (IS_MF(bp)) {
1410 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1411 if (bp->port.pmf)
1412 /* enable nig and gpio3 attention */
1413 val |= 0x1100;
1414 } else
1415 val = 0xffff;
1416
1417 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1418 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1419 }
1420
1421 /* Make sure that interrupts are indeed enabled from here on */
1422 mmiowb();
1423 }
1424
bnx2x_igu_int_enable(struct bnx2x * bp)1425 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1426 {
1427 u32 val;
1428 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1429 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1430
1431 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1432
1433 if (msix) {
1434 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1435 IGU_PF_CONF_SINGLE_ISR_EN);
1436 val |= (IGU_PF_CONF_FUNC_EN |
1437 IGU_PF_CONF_MSI_MSIX_EN |
1438 IGU_PF_CONF_ATTN_BIT_EN);
1439 } else if (msi) {
1440 val &= ~IGU_PF_CONF_INT_LINE_EN;
1441 val |= (IGU_PF_CONF_FUNC_EN |
1442 IGU_PF_CONF_MSI_MSIX_EN |
1443 IGU_PF_CONF_ATTN_BIT_EN |
1444 IGU_PF_CONF_SINGLE_ISR_EN);
1445 } else {
1446 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1447 val |= (IGU_PF_CONF_FUNC_EN |
1448 IGU_PF_CONF_INT_LINE_EN |
1449 IGU_PF_CONF_ATTN_BIT_EN |
1450 IGU_PF_CONF_SINGLE_ISR_EN);
1451 }
1452
1453 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1454 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1455
1456 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1457
1458 barrier();
1459
1460 /* init leading/trailing edge */
1461 if (IS_MF(bp)) {
1462 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1463 if (bp->port.pmf)
1464 /* enable nig and gpio3 attention */
1465 val |= 0x1100;
1466 } else
1467 val = 0xffff;
1468
1469 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1470 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1471
1472 /* Make sure that interrupts are indeed enabled from here on */
1473 mmiowb();
1474 }
1475
bnx2x_int_enable(struct bnx2x * bp)1476 void bnx2x_int_enable(struct bnx2x *bp)
1477 {
1478 if (bp->common.int_block == INT_BLOCK_HC)
1479 bnx2x_hc_int_enable(bp);
1480 else
1481 bnx2x_igu_int_enable(bp);
1482 }
1483
bnx2x_hc_int_disable(struct bnx2x * bp)1484 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1485 {
1486 int port = BP_PORT(bp);
1487 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1488 u32 val = REG_RD(bp, addr);
1489
1490 /*
1491 * in E1 we must use only PCI configuration space to disable
1492 * MSI/MSIX capablility
1493 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1494 */
1495 if (CHIP_IS_E1(bp)) {
1496 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
1497 * Use mask register to prevent from HC sending interrupts
1498 * after we exit the function
1499 */
1500 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1501
1502 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1503 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1504 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1505 } else
1506 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1507 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1508 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1509 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1510
1511 DP(NETIF_MSG_IFDOWN,
1512 "write %x to HC %d (addr 0x%x)\n",
1513 val, port, addr);
1514
1515 /* flush all outstanding writes */
1516 mmiowb();
1517
1518 REG_WR(bp, addr, val);
1519 if (REG_RD(bp, addr) != val)
1520 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1521 }
1522
bnx2x_igu_int_disable(struct bnx2x * bp)1523 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1524 {
1525 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1526
1527 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1528 IGU_PF_CONF_INT_LINE_EN |
1529 IGU_PF_CONF_ATTN_BIT_EN);
1530
1531 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1532
1533 /* flush all outstanding writes */
1534 mmiowb();
1535
1536 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1537 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1538 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1539 }
1540
bnx2x_int_disable(struct bnx2x * bp)1541 void bnx2x_int_disable(struct bnx2x *bp)
1542 {
1543 if (bp->common.int_block == INT_BLOCK_HC)
1544 bnx2x_hc_int_disable(bp);
1545 else
1546 bnx2x_igu_int_disable(bp);
1547 }
1548
bnx2x_int_disable_sync(struct bnx2x * bp,int disable_hw)1549 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1550 {
1551 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1552 int i, offset;
1553
1554 if (disable_hw)
1555 /* prevent the HW from sending interrupts */
1556 bnx2x_int_disable(bp);
1557
1558 /* make sure all ISRs are done */
1559 if (msix) {
1560 synchronize_irq(bp->msix_table[0].vector);
1561 offset = 1;
1562 #ifdef BCM_CNIC
1563 offset++;
1564 #endif
1565 for_each_eth_queue(bp, i)
1566 synchronize_irq(bp->msix_table[offset++].vector);
1567 } else
1568 synchronize_irq(bp->pdev->irq);
1569
1570 /* make sure sp_task is not running */
1571 cancel_delayed_work(&bp->sp_task);
1572 cancel_delayed_work(&bp->period_task);
1573 flush_workqueue(bnx2x_wq);
1574 }
1575
1576 /* fast path */
1577
1578 /*
1579 * General service functions
1580 */
1581
1582 /* Return true if succeeded to acquire the lock */
bnx2x_trylock_hw_lock(struct bnx2x * bp,u32 resource)1583 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1584 {
1585 u32 lock_status;
1586 u32 resource_bit = (1 << resource);
1587 int func = BP_FUNC(bp);
1588 u32 hw_lock_control_reg;
1589
1590 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1591 "Trying to take a lock on resource %d\n", resource);
1592
1593 /* Validating that the resource is within range */
1594 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1595 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1596 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1597 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1598 return false;
1599 }
1600
1601 if (func <= 5)
1602 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1603 else
1604 hw_lock_control_reg =
1605 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1606
1607 /* Try to acquire the lock */
1608 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1609 lock_status = REG_RD(bp, hw_lock_control_reg);
1610 if (lock_status & resource_bit)
1611 return true;
1612
1613 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1614 "Failed to get a lock on resource %d\n", resource);
1615 return false;
1616 }
1617
1618 /**
1619 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1620 *
1621 * @bp: driver handle
1622 *
1623 * Returns the recovery leader resource id according to the engine this function
1624 * belongs to. Currently only only 2 engines is supported.
1625 */
bnx2x_get_leader_lock_resource(struct bnx2x * bp)1626 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1627 {
1628 if (BP_PATH(bp))
1629 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1630 else
1631 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1632 }
1633
1634 /**
1635 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1636 *
1637 * @bp: driver handle
1638 *
1639 * Tries to aquire a leader lock for cuurent engine.
1640 */
bnx2x_trylock_leader_lock(struct bnx2x * bp)1641 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1642 {
1643 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1644 }
1645
1646 #ifdef BCM_CNIC
1647 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1648 #endif
1649
bnx2x_sp_event(struct bnx2x_fastpath * fp,union eth_rx_cqe * rr_cqe)1650 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1651 {
1652 struct bnx2x *bp = fp->bp;
1653 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1654 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1655 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1656 struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1657
1658 DP(BNX2X_MSG_SP,
1659 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1660 fp->index, cid, command, bp->state,
1661 rr_cqe->ramrod_cqe.ramrod_type);
1662
1663 switch (command) {
1664 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1665 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1666 drv_cmd = BNX2X_Q_CMD_UPDATE;
1667 break;
1668
1669 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1670 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1671 drv_cmd = BNX2X_Q_CMD_SETUP;
1672 break;
1673
1674 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1675 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1676 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1677 break;
1678
1679 case (RAMROD_CMD_ID_ETH_HALT):
1680 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1681 drv_cmd = BNX2X_Q_CMD_HALT;
1682 break;
1683
1684 case (RAMROD_CMD_ID_ETH_TERMINATE):
1685 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1686 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1687 break;
1688
1689 case (RAMROD_CMD_ID_ETH_EMPTY):
1690 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1691 drv_cmd = BNX2X_Q_CMD_EMPTY;
1692 break;
1693
1694 default:
1695 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1696 command, fp->index);
1697 return;
1698 }
1699
1700 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1701 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1702 /* q_obj->complete_cmd() failure means that this was
1703 * an unexpected completion.
1704 *
1705 * In this case we don't want to increase the bp->spq_left
1706 * because apparently we haven't sent this command the first
1707 * place.
1708 */
1709 #ifdef BNX2X_STOP_ON_ERROR
1710 bnx2x_panic();
1711 #else
1712 return;
1713 #endif
1714
1715 smp_mb__before_atomic_inc();
1716 atomic_inc(&bp->cq_spq_left);
1717 /* push the change in bp->spq_left and towards the memory */
1718 smp_mb__after_atomic_inc();
1719
1720 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1721
1722 return;
1723 }
1724
bnx2x_update_rx_prod(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 bd_prod,u16 rx_comp_prod,u16 rx_sge_prod)1725 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1726 u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1727 {
1728 u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1729
1730 bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1731 start);
1732 }
1733
bnx2x_interrupt(int irq,void * dev_instance)1734 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1735 {
1736 struct bnx2x *bp = netdev_priv(dev_instance);
1737 u16 status = bnx2x_ack_int(bp);
1738 u16 mask;
1739 int i;
1740 u8 cos;
1741
1742 /* Return here if interrupt is shared and it's not for us */
1743 if (unlikely(status == 0)) {
1744 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1745 return IRQ_NONE;
1746 }
1747 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1748
1749 #ifdef BNX2X_STOP_ON_ERROR
1750 if (unlikely(bp->panic))
1751 return IRQ_HANDLED;
1752 #endif
1753
1754 for_each_eth_queue(bp, i) {
1755 struct bnx2x_fastpath *fp = &bp->fp[i];
1756
1757 mask = 0x2 << (fp->index + CNIC_PRESENT);
1758 if (status & mask) {
1759 /* Handle Rx or Tx according to SB id */
1760 prefetch(fp->rx_cons_sb);
1761 for_each_cos_in_tx_queue(fp, cos)
1762 prefetch(fp->txdata[cos].tx_cons_sb);
1763 prefetch(&fp->sb_running_index[SM_RX_ID]);
1764 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1765 status &= ~mask;
1766 }
1767 }
1768
1769 #ifdef BCM_CNIC
1770 mask = 0x2;
1771 if (status & (mask | 0x1)) {
1772 struct cnic_ops *c_ops = NULL;
1773
1774 if (likely(bp->state == BNX2X_STATE_OPEN)) {
1775 rcu_read_lock();
1776 c_ops = rcu_dereference(bp->cnic_ops);
1777 if (c_ops)
1778 c_ops->cnic_handler(bp->cnic_data, NULL);
1779 rcu_read_unlock();
1780 }
1781
1782 status &= ~mask;
1783 }
1784 #endif
1785
1786 if (unlikely(status & 0x1)) {
1787 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1788
1789 status &= ~0x1;
1790 if (!status)
1791 return IRQ_HANDLED;
1792 }
1793
1794 if (unlikely(status))
1795 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1796 status);
1797
1798 return IRQ_HANDLED;
1799 }
1800
1801 /* Link */
1802
1803 /*
1804 * General service functions
1805 */
1806
bnx2x_acquire_hw_lock(struct bnx2x * bp,u32 resource)1807 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1808 {
1809 u32 lock_status;
1810 u32 resource_bit = (1 << resource);
1811 int func = BP_FUNC(bp);
1812 u32 hw_lock_control_reg;
1813 int cnt;
1814
1815 /* Validating that the resource is within range */
1816 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1817 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1818 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1819 return -EINVAL;
1820 }
1821
1822 if (func <= 5) {
1823 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1824 } else {
1825 hw_lock_control_reg =
1826 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1827 }
1828
1829 /* Validating that the resource is not already taken */
1830 lock_status = REG_RD(bp, hw_lock_control_reg);
1831 if (lock_status & resource_bit) {
1832 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
1833 lock_status, resource_bit);
1834 return -EEXIST;
1835 }
1836
1837 /* Try for 5 second every 5ms */
1838 for (cnt = 0; cnt < 1000; cnt++) {
1839 /* Try to acquire the lock */
1840 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1841 lock_status = REG_RD(bp, hw_lock_control_reg);
1842 if (lock_status & resource_bit)
1843 return 0;
1844
1845 msleep(5);
1846 }
1847 BNX2X_ERR("Timeout\n");
1848 return -EAGAIN;
1849 }
1850
bnx2x_release_leader_lock(struct bnx2x * bp)1851 int bnx2x_release_leader_lock(struct bnx2x *bp)
1852 {
1853 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1854 }
1855
bnx2x_release_hw_lock(struct bnx2x * bp,u32 resource)1856 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1857 {
1858 u32 lock_status;
1859 u32 resource_bit = (1 << resource);
1860 int func = BP_FUNC(bp);
1861 u32 hw_lock_control_reg;
1862
1863 /* Validating that the resource is within range */
1864 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1865 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1866 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1867 return -EINVAL;
1868 }
1869
1870 if (func <= 5) {
1871 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1872 } else {
1873 hw_lock_control_reg =
1874 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1875 }
1876
1877 /* Validating that the resource is currently taken */
1878 lock_status = REG_RD(bp, hw_lock_control_reg);
1879 if (!(lock_status & resource_bit)) {
1880 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1881 lock_status, resource_bit);
1882 return -EFAULT;
1883 }
1884
1885 REG_WR(bp, hw_lock_control_reg, resource_bit);
1886 return 0;
1887 }
1888
1889
bnx2x_get_gpio(struct bnx2x * bp,int gpio_num,u8 port)1890 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1891 {
1892 /* The GPIO should be swapped if swap register is set and active */
1893 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1894 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1895 int gpio_shift = gpio_num +
1896 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1897 u32 gpio_mask = (1 << gpio_shift);
1898 u32 gpio_reg;
1899 int value;
1900
1901 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1902 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1903 return -EINVAL;
1904 }
1905
1906 /* read GPIO value */
1907 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1908
1909 /* get the requested pin value */
1910 if ((gpio_reg & gpio_mask) == gpio_mask)
1911 value = 1;
1912 else
1913 value = 0;
1914
1915 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
1916
1917 return value;
1918 }
1919
bnx2x_set_gpio(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)1920 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1921 {
1922 /* The GPIO should be swapped if swap register is set and active */
1923 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1924 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1925 int gpio_shift = gpio_num +
1926 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1927 u32 gpio_mask = (1 << gpio_shift);
1928 u32 gpio_reg;
1929
1930 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1931 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1932 return -EINVAL;
1933 }
1934
1935 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1936 /* read GPIO and mask except the float bits */
1937 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1938
1939 switch (mode) {
1940 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1941 DP(NETIF_MSG_LINK,
1942 "Set GPIO %d (shift %d) -> output low\n",
1943 gpio_num, gpio_shift);
1944 /* clear FLOAT and set CLR */
1945 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1946 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1947 break;
1948
1949 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1950 DP(NETIF_MSG_LINK,
1951 "Set GPIO %d (shift %d) -> output high\n",
1952 gpio_num, gpio_shift);
1953 /* clear FLOAT and set SET */
1954 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1955 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1956 break;
1957
1958 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1959 DP(NETIF_MSG_LINK,
1960 "Set GPIO %d (shift %d) -> input\n",
1961 gpio_num, gpio_shift);
1962 /* set FLOAT */
1963 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1964 break;
1965
1966 default:
1967 break;
1968 }
1969
1970 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1971 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1972
1973 return 0;
1974 }
1975
bnx2x_set_mult_gpio(struct bnx2x * bp,u8 pins,u32 mode)1976 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1977 {
1978 u32 gpio_reg = 0;
1979 int rc = 0;
1980
1981 /* Any port swapping should be handled by caller. */
1982
1983 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1984 /* read GPIO and mask except the float bits */
1985 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1986 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1987 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1988 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1989
1990 switch (mode) {
1991 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1992 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1993 /* set CLR */
1994 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1995 break;
1996
1997 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1998 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1999 /* set SET */
2000 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2001 break;
2002
2003 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2004 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2005 /* set FLOAT */
2006 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2007 break;
2008
2009 default:
2010 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2011 rc = -EINVAL;
2012 break;
2013 }
2014
2015 if (rc == 0)
2016 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2017
2018 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2019
2020 return rc;
2021 }
2022
bnx2x_set_gpio_int(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2023 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2024 {
2025 /* The GPIO should be swapped if swap register is set and active */
2026 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2027 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2028 int gpio_shift = gpio_num +
2029 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2030 u32 gpio_mask = (1 << gpio_shift);
2031 u32 gpio_reg;
2032
2033 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2034 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2035 return -EINVAL;
2036 }
2037
2038 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2039 /* read GPIO int */
2040 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2041
2042 switch (mode) {
2043 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2044 DP(NETIF_MSG_LINK,
2045 "Clear GPIO INT %d (shift %d) -> output low\n",
2046 gpio_num, gpio_shift);
2047 /* clear SET and set CLR */
2048 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2049 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2050 break;
2051
2052 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2053 DP(NETIF_MSG_LINK,
2054 "Set GPIO INT %d (shift %d) -> output high\n",
2055 gpio_num, gpio_shift);
2056 /* clear CLR and set SET */
2057 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2058 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2059 break;
2060
2061 default:
2062 break;
2063 }
2064
2065 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2066 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2067
2068 return 0;
2069 }
2070
bnx2x_set_spio(struct bnx2x * bp,int spio_num,u32 mode)2071 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2072 {
2073 u32 spio_mask = (1 << spio_num);
2074 u32 spio_reg;
2075
2076 if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2077 (spio_num > MISC_REGISTERS_SPIO_7)) {
2078 BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2079 return -EINVAL;
2080 }
2081
2082 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2083 /* read SPIO and mask except the float bits */
2084 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2085
2086 switch (mode) {
2087 case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2088 DP(NETIF_MSG_HW, "Set SPIO %d -> output low\n", spio_num);
2089 /* clear FLOAT and set CLR */
2090 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2091 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2092 break;
2093
2094 case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2095 DP(NETIF_MSG_HW, "Set SPIO %d -> output high\n", spio_num);
2096 /* clear FLOAT and set SET */
2097 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2098 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2099 break;
2100
2101 case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2102 DP(NETIF_MSG_HW, "Set SPIO %d -> input\n", spio_num);
2103 /* set FLOAT */
2104 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2105 break;
2106
2107 default:
2108 break;
2109 }
2110
2111 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2112 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2113
2114 return 0;
2115 }
2116
bnx2x_calc_fc_adv(struct bnx2x * bp)2117 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2118 {
2119 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2120 switch (bp->link_vars.ieee_fc &
2121 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2122 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2123 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2124 ADVERTISED_Pause);
2125 break;
2126
2127 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2128 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2129 ADVERTISED_Pause);
2130 break;
2131
2132 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2133 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2134 break;
2135
2136 default:
2137 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2138 ADVERTISED_Pause);
2139 break;
2140 }
2141 }
2142
bnx2x_initial_phy_init(struct bnx2x * bp,int load_mode)2143 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2144 {
2145 if (!BP_NOMCP(bp)) {
2146 u8 rc;
2147 int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2148 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2149 /*
2150 * Initialize link parameters structure variables
2151 * It is recommended to turn off RX FC for jumbo frames
2152 * for better performance
2153 */
2154 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2155 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2156 else
2157 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2158
2159 bnx2x_acquire_phy_lock(bp);
2160
2161 if (load_mode == LOAD_DIAG) {
2162 struct link_params *lp = &bp->link_params;
2163 lp->loopback_mode = LOOPBACK_XGXS;
2164 /* do PHY loopback at 10G speed, if possible */
2165 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2166 if (lp->speed_cap_mask[cfx_idx] &
2167 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2168 lp->req_line_speed[cfx_idx] =
2169 SPEED_10000;
2170 else
2171 lp->req_line_speed[cfx_idx] =
2172 SPEED_1000;
2173 }
2174 }
2175
2176 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2177
2178 bnx2x_release_phy_lock(bp);
2179
2180 bnx2x_calc_fc_adv(bp);
2181
2182 if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2183 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2184 bnx2x_link_report(bp);
2185 } else
2186 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2187 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2188 return rc;
2189 }
2190 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2191 return -EINVAL;
2192 }
2193
bnx2x_link_set(struct bnx2x * bp)2194 void bnx2x_link_set(struct bnx2x *bp)
2195 {
2196 if (!BP_NOMCP(bp)) {
2197 bnx2x_acquire_phy_lock(bp);
2198 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2199 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2200 bnx2x_release_phy_lock(bp);
2201
2202 bnx2x_calc_fc_adv(bp);
2203 } else
2204 BNX2X_ERR("Bootcode is missing - can not set link\n");
2205 }
2206
bnx2x__link_reset(struct bnx2x * bp)2207 static void bnx2x__link_reset(struct bnx2x *bp)
2208 {
2209 if (!BP_NOMCP(bp)) {
2210 bnx2x_acquire_phy_lock(bp);
2211 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2212 bnx2x_release_phy_lock(bp);
2213 } else
2214 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2215 }
2216
bnx2x_link_test(struct bnx2x * bp,u8 is_serdes)2217 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2218 {
2219 u8 rc = 0;
2220
2221 if (!BP_NOMCP(bp)) {
2222 bnx2x_acquire_phy_lock(bp);
2223 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2224 is_serdes);
2225 bnx2x_release_phy_lock(bp);
2226 } else
2227 BNX2X_ERR("Bootcode is missing - can not test link\n");
2228
2229 return rc;
2230 }
2231
bnx2x_init_port_minmax(struct bnx2x * bp)2232 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2233 {
2234 u32 r_param = bp->link_vars.line_speed / 8;
2235 u32 fair_periodic_timeout_usec;
2236 u32 t_fair;
2237
2238 memset(&(bp->cmng.rs_vars), 0,
2239 sizeof(struct rate_shaping_vars_per_port));
2240 memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2241
2242 /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2243 bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2244
2245 /* this is the threshold below which no timer arming will occur
2246 1.25 coefficient is for the threshold to be a little bigger
2247 than the real time, to compensate for timer in-accuracy */
2248 bp->cmng.rs_vars.rs_threshold =
2249 (RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2250
2251 /* resolution of fairness timer */
2252 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2253 /* for 10G it is 1000usec. for 1G it is 10000usec. */
2254 t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2255
2256 /* this is the threshold below which we won't arm the timer anymore */
2257 bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2258
2259 /* we multiply by 1e3/8 to get bytes/msec.
2260 We don't want the credits to pass a credit
2261 of the t_fair*FAIR_MEM (algorithm resolution) */
2262 bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2263 /* since each tick is 4 usec */
2264 bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2265 }
2266
2267 /* Calculates the sum of vn_min_rates.
2268 It's needed for further normalizing of the min_rates.
2269 Returns:
2270 sum of vn_min_rates.
2271 or
2272 0 - if all the min_rates are 0.
2273 In the later case fainess algorithm should be deactivated.
2274 If not all min_rates are zero then those that are zeroes will be set to 1.
2275 */
bnx2x_calc_vn_weight_sum(struct bnx2x * bp)2276 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2277 {
2278 int all_zero = 1;
2279 int vn;
2280
2281 bp->vn_weight_sum = 0;
2282 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2283 u32 vn_cfg = bp->mf_config[vn];
2284 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2285 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2286
2287 /* Skip hidden vns */
2288 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2289 continue;
2290
2291 /* If min rate is zero - set it to 1 */
2292 if (!vn_min_rate)
2293 vn_min_rate = DEF_MIN_RATE;
2294 else
2295 all_zero = 0;
2296
2297 bp->vn_weight_sum += vn_min_rate;
2298 }
2299
2300 /* if ETS or all min rates are zeros - disable fairness */
2301 if (BNX2X_IS_ETS_ENABLED(bp)) {
2302 bp->cmng.flags.cmng_enables &=
2303 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2304 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2305 } else if (all_zero) {
2306 bp->cmng.flags.cmng_enables &=
2307 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2308 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2309 " fairness will be disabled\n");
2310 } else
2311 bp->cmng.flags.cmng_enables |=
2312 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2313 }
2314
bnx2x_init_vn_minmax(struct bnx2x * bp,int vn)2315 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2316 {
2317 struct rate_shaping_vars_per_vn m_rs_vn;
2318 struct fairness_vars_per_vn m_fair_vn;
2319 u32 vn_cfg = bp->mf_config[vn];
2320 int func = func_by_vn(bp, vn);
2321 u16 vn_min_rate, vn_max_rate;
2322 int i;
2323
2324 /* If function is hidden - set min and max to zeroes */
2325 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2326 vn_min_rate = 0;
2327 vn_max_rate = 0;
2328
2329 } else {
2330 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2331
2332 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2333 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2334 /* If fairness is enabled (not all min rates are zeroes) and
2335 if current min rate is zero - set it to 1.
2336 This is a requirement of the algorithm. */
2337 if (bp->vn_weight_sum && (vn_min_rate == 0))
2338 vn_min_rate = DEF_MIN_RATE;
2339
2340 if (IS_MF_SI(bp))
2341 /* maxCfg in percents of linkspeed */
2342 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2343 else
2344 /* maxCfg is absolute in 100Mb units */
2345 vn_max_rate = maxCfg * 100;
2346 }
2347
2348 DP(NETIF_MSG_IFUP,
2349 "func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
2350 func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2351
2352 memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2353 memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2354
2355 /* global vn counter - maximal Mbps for this vn */
2356 m_rs_vn.vn_counter.rate = vn_max_rate;
2357
2358 /* quota - number of bytes transmitted in this period */
2359 m_rs_vn.vn_counter.quota =
2360 (vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2361
2362 if (bp->vn_weight_sum) {
2363 /* credit for each period of the fairness algorithm:
2364 number of bytes in T_FAIR (the vn share the port rate).
2365 vn_weight_sum should not be larger than 10000, thus
2366 T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2367 than zero */
2368 m_fair_vn.vn_credit_delta =
2369 max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2370 (8 * bp->vn_weight_sum))),
2371 (bp->cmng.fair_vars.fair_threshold +
2372 MIN_ABOVE_THRESH));
2373 DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2374 m_fair_vn.vn_credit_delta);
2375 }
2376
2377 /* Store it to internal memory */
2378 for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2379 REG_WR(bp, BAR_XSTRORM_INTMEM +
2380 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2381 ((u32 *)(&m_rs_vn))[i]);
2382
2383 for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2384 REG_WR(bp, BAR_XSTRORM_INTMEM +
2385 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2386 ((u32 *)(&m_fair_vn))[i]);
2387 }
2388
bnx2x_get_cmng_fns_mode(struct bnx2x * bp)2389 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2390 {
2391 if (CHIP_REV_IS_SLOW(bp))
2392 return CMNG_FNS_NONE;
2393 if (IS_MF(bp))
2394 return CMNG_FNS_MINMAX;
2395
2396 return CMNG_FNS_NONE;
2397 }
2398
bnx2x_read_mf_cfg(struct bnx2x * bp)2399 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2400 {
2401 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2402
2403 if (BP_NOMCP(bp))
2404 return; /* what should be the default bvalue in this case */
2405
2406 /* For 2 port configuration the absolute function number formula
2407 * is:
2408 * abs_func = 2 * vn + BP_PORT + BP_PATH
2409 *
2410 * and there are 4 functions per port
2411 *
2412 * For 4 port configuration it is
2413 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2414 *
2415 * and there are 2 functions per port
2416 */
2417 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2418 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2419
2420 if (func >= E1H_FUNC_MAX)
2421 break;
2422
2423 bp->mf_config[vn] =
2424 MF_CFG_RD(bp, func_mf_config[func].config);
2425 }
2426 }
2427
bnx2x_cmng_fns_init(struct bnx2x * bp,u8 read_cfg,u8 cmng_type)2428 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2429 {
2430
2431 if (cmng_type == CMNG_FNS_MINMAX) {
2432 int vn;
2433
2434 /* clear cmng_enables */
2435 bp->cmng.flags.cmng_enables = 0;
2436
2437 /* read mf conf from shmem */
2438 if (read_cfg)
2439 bnx2x_read_mf_cfg(bp);
2440
2441 /* Init rate shaping and fairness contexts */
2442 bnx2x_init_port_minmax(bp);
2443
2444 /* vn_weight_sum and enable fairness if not 0 */
2445 bnx2x_calc_vn_weight_sum(bp);
2446
2447 /* calculate and set min-max rate for each vn */
2448 if (bp->port.pmf)
2449 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2450 bnx2x_init_vn_minmax(bp, vn);
2451
2452 /* always enable rate shaping and fairness */
2453 bp->cmng.flags.cmng_enables |=
2454 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2455 if (!bp->vn_weight_sum)
2456 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2457 " fairness will be disabled\n");
2458 return;
2459 }
2460
2461 /* rate shaping and fairness are disabled */
2462 DP(NETIF_MSG_IFUP,
2463 "rate shaping and fairness are disabled\n");
2464 }
2465
2466 /* This function is called upon link interrupt */
bnx2x_link_attn(struct bnx2x * bp)2467 static void bnx2x_link_attn(struct bnx2x *bp)
2468 {
2469 /* Make sure that we are synced with the current statistics */
2470 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2471
2472 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2473
2474 if (bp->link_vars.link_up) {
2475
2476 /* dropless flow control */
2477 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2478 int port = BP_PORT(bp);
2479 u32 pause_enabled = 0;
2480
2481 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2482 pause_enabled = 1;
2483
2484 REG_WR(bp, BAR_USTRORM_INTMEM +
2485 USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2486 pause_enabled);
2487 }
2488
2489 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2490 struct host_port_stats *pstats;
2491
2492 pstats = bnx2x_sp(bp, port_stats);
2493 /* reset old mac stats */
2494 memset(&(pstats->mac_stx[0]), 0,
2495 sizeof(struct mac_stx));
2496 }
2497 if (bp->state == BNX2X_STATE_OPEN)
2498 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2499 }
2500
2501 if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2502 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2503
2504 if (cmng_fns != CMNG_FNS_NONE) {
2505 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2506 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2507 } else
2508 /* rate shaping and fairness are disabled */
2509 DP(NETIF_MSG_IFUP,
2510 "single function mode without fairness\n");
2511 }
2512
2513 __bnx2x_link_report(bp);
2514
2515 if (IS_MF(bp))
2516 bnx2x_link_sync_notify(bp);
2517 }
2518
bnx2x__link_status_update(struct bnx2x * bp)2519 void bnx2x__link_status_update(struct bnx2x *bp)
2520 {
2521 if (bp->state != BNX2X_STATE_OPEN)
2522 return;
2523
2524 /* read updated dcb configuration */
2525 bnx2x_dcbx_pmf_update(bp);
2526
2527 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2528
2529 if (bp->link_vars.link_up)
2530 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2531 else
2532 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2533
2534 /* indicate link status */
2535 bnx2x_link_report(bp);
2536 }
2537
bnx2x_pmf_update(struct bnx2x * bp)2538 static void bnx2x_pmf_update(struct bnx2x *bp)
2539 {
2540 int port = BP_PORT(bp);
2541 u32 val;
2542
2543 bp->port.pmf = 1;
2544 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2545
2546 /*
2547 * We need the mb() to ensure the ordering between the writing to
2548 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2549 */
2550 smp_mb();
2551
2552 /* queue a periodic task */
2553 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2554
2555 bnx2x_dcbx_pmf_update(bp);
2556
2557 /* enable nig attention */
2558 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2559 if (bp->common.int_block == INT_BLOCK_HC) {
2560 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2561 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2562 } else if (!CHIP_IS_E1x(bp)) {
2563 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2564 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2565 }
2566
2567 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2568 }
2569
2570 /* end of Link */
2571
2572 /* slow path */
2573
2574 /*
2575 * General service functions
2576 */
2577
2578 /* send the MCP a request, block until there is a reply */
bnx2x_fw_command(struct bnx2x * bp,u32 command,u32 param)2579 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2580 {
2581 int mb_idx = BP_FW_MB_IDX(bp);
2582 u32 seq;
2583 u32 rc = 0;
2584 u32 cnt = 1;
2585 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2586
2587 mutex_lock(&bp->fw_mb_mutex);
2588 seq = ++bp->fw_seq;
2589 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2590 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2591
2592 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2593 (command | seq), param);
2594
2595 do {
2596 /* let the FW do it's magic ... */
2597 msleep(delay);
2598
2599 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2600
2601 /* Give the FW up to 5 second (500*10ms) */
2602 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2603
2604 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2605 cnt*delay, rc, seq);
2606
2607 /* is this a reply to our command? */
2608 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2609 rc &= FW_MSG_CODE_MASK;
2610 else {
2611 /* FW BUG! */
2612 BNX2X_ERR("FW failed to respond!\n");
2613 bnx2x_fw_dump(bp);
2614 rc = 0;
2615 }
2616 mutex_unlock(&bp->fw_mb_mutex);
2617
2618 return rc;
2619 }
2620
2621
bnx2x_func_init(struct bnx2x * bp,struct bnx2x_func_init_params * p)2622 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2623 {
2624 if (CHIP_IS_E1x(bp)) {
2625 struct tstorm_eth_function_common_config tcfg = {0};
2626
2627 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2628 }
2629
2630 /* Enable the function in the FW */
2631 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2632 storm_memset_func_en(bp, p->func_id, 1);
2633
2634 /* spq */
2635 if (p->func_flgs & FUNC_FLG_SPQ) {
2636 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2637 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2638 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2639 }
2640 }
2641
2642 /**
2643 * bnx2x_get_tx_only_flags - Return common flags
2644 *
2645 * @bp device handle
2646 * @fp queue handle
2647 * @zero_stats TRUE if statistics zeroing is needed
2648 *
2649 * Return the flags that are common for the Tx-only and not normal connections.
2650 */
bnx2x_get_common_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool zero_stats)2651 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2652 struct bnx2x_fastpath *fp,
2653 bool zero_stats)
2654 {
2655 unsigned long flags = 0;
2656
2657 /* PF driver will always initialize the Queue to an ACTIVE state */
2658 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2659
2660 /* tx only connections collect statistics (on the same index as the
2661 * parent connection). The statistics are zeroed when the parent
2662 * connection is initialized.
2663 */
2664
2665 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2666 if (zero_stats)
2667 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2668
2669
2670 return flags;
2671 }
2672
bnx2x_get_q_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)2673 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2674 struct bnx2x_fastpath *fp,
2675 bool leading)
2676 {
2677 unsigned long flags = 0;
2678
2679 /* calculate other queue flags */
2680 if (IS_MF_SD(bp))
2681 __set_bit(BNX2X_Q_FLG_OV, &flags);
2682
2683 if (IS_FCOE_FP(fp))
2684 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2685
2686 if (!fp->disable_tpa) {
2687 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2688 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2689 if (fp->mode == TPA_MODE_GRO)
2690 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2691 }
2692
2693 if (leading) {
2694 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2695 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2696 }
2697
2698 /* Always set HW VLAN stripping */
2699 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2700
2701
2702 return flags | bnx2x_get_common_flags(bp, fp, true);
2703 }
2704
bnx2x_pf_q_prep_general(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_general_setup_params * gen_init,u8 cos)2705 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2706 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2707 u8 cos)
2708 {
2709 gen_init->stat_id = bnx2x_stats_id(fp);
2710 gen_init->spcl_id = fp->cl_id;
2711
2712 /* Always use mini-jumbo MTU for FCoE L2 ring */
2713 if (IS_FCOE_FP(fp))
2714 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2715 else
2716 gen_init->mtu = bp->dev->mtu;
2717
2718 gen_init->cos = cos;
2719 }
2720
bnx2x_pf_rx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct rxq_pause_params * pause,struct bnx2x_rxq_setup_params * rxq_init)2721 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2722 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2723 struct bnx2x_rxq_setup_params *rxq_init)
2724 {
2725 u8 max_sge = 0;
2726 u16 sge_sz = 0;
2727 u16 tpa_agg_size = 0;
2728
2729 if (!fp->disable_tpa) {
2730 pause->sge_th_lo = SGE_TH_LO(bp);
2731 pause->sge_th_hi = SGE_TH_HI(bp);
2732
2733 /* validate SGE ring has enough to cross high threshold */
2734 WARN_ON(bp->dropless_fc &&
2735 pause->sge_th_hi + FW_PREFETCH_CNT >
2736 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2737
2738 tpa_agg_size = min_t(u32,
2739 (min_t(u32, 8, MAX_SKB_FRAGS) *
2740 SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2741 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2742 SGE_PAGE_SHIFT;
2743 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2744 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2745 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2746 0xffff);
2747 }
2748
2749 /* pause - not for e1 */
2750 if (!CHIP_IS_E1(bp)) {
2751 pause->bd_th_lo = BD_TH_LO(bp);
2752 pause->bd_th_hi = BD_TH_HI(bp);
2753
2754 pause->rcq_th_lo = RCQ_TH_LO(bp);
2755 pause->rcq_th_hi = RCQ_TH_HI(bp);
2756 /*
2757 * validate that rings have enough entries to cross
2758 * high thresholds
2759 */
2760 WARN_ON(bp->dropless_fc &&
2761 pause->bd_th_hi + FW_PREFETCH_CNT >
2762 bp->rx_ring_size);
2763 WARN_ON(bp->dropless_fc &&
2764 pause->rcq_th_hi + FW_PREFETCH_CNT >
2765 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2766
2767 pause->pri_map = 1;
2768 }
2769
2770 /* rxq setup */
2771 rxq_init->dscr_map = fp->rx_desc_mapping;
2772 rxq_init->sge_map = fp->rx_sge_mapping;
2773 rxq_init->rcq_map = fp->rx_comp_mapping;
2774 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2775
2776 /* This should be a maximum number of data bytes that may be
2777 * placed on the BD (not including paddings).
2778 */
2779 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2780 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
2781
2782 rxq_init->cl_qzone_id = fp->cl_qzone_id;
2783 rxq_init->tpa_agg_sz = tpa_agg_size;
2784 rxq_init->sge_buf_sz = sge_sz;
2785 rxq_init->max_sges_pkt = max_sge;
2786 rxq_init->rss_engine_id = BP_FUNC(bp);
2787 rxq_init->mcast_engine_id = BP_FUNC(bp);
2788
2789 /* Maximum number or simultaneous TPA aggregation for this Queue.
2790 *
2791 * For PF Clients it should be the maximum avaliable number.
2792 * VF driver(s) may want to define it to a smaller value.
2793 */
2794 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2795
2796 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2797 rxq_init->fw_sb_id = fp->fw_sb_id;
2798
2799 if (IS_FCOE_FP(fp))
2800 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2801 else
2802 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2803 }
2804
bnx2x_pf_tx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_txq_setup_params * txq_init,u8 cos)2805 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2806 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2807 u8 cos)
2808 {
2809 txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2810 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2811 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2812 txq_init->fw_sb_id = fp->fw_sb_id;
2813
2814 /*
2815 * set the tss leading client id for TX classfication ==
2816 * leading RSS client id
2817 */
2818 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2819
2820 if (IS_FCOE_FP(fp)) {
2821 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2822 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2823 }
2824 }
2825
bnx2x_pf_init(struct bnx2x * bp)2826 static void bnx2x_pf_init(struct bnx2x *bp)
2827 {
2828 struct bnx2x_func_init_params func_init = {0};
2829 struct event_ring_data eq_data = { {0} };
2830 u16 flags;
2831
2832 if (!CHIP_IS_E1x(bp)) {
2833 /* reset IGU PF statistics: MSIX + ATTN */
2834 /* PF */
2835 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2836 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2837 (CHIP_MODE_IS_4_PORT(bp) ?
2838 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2839 /* ATTN */
2840 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2841 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2842 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2843 (CHIP_MODE_IS_4_PORT(bp) ?
2844 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2845 }
2846
2847 /* function setup flags */
2848 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2849
2850 /* This flag is relevant for E1x only.
2851 * E2 doesn't have a TPA configuration in a function level.
2852 */
2853 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2854
2855 func_init.func_flgs = flags;
2856 func_init.pf_id = BP_FUNC(bp);
2857 func_init.func_id = BP_FUNC(bp);
2858 func_init.spq_map = bp->spq_mapping;
2859 func_init.spq_prod = bp->spq_prod_idx;
2860
2861 bnx2x_func_init(bp, &func_init);
2862
2863 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2864
2865 /*
2866 * Congestion management values depend on the link rate
2867 * There is no active link so initial link rate is set to 10 Gbps.
2868 * When the link comes up The congestion management values are
2869 * re-calculated according to the actual link rate.
2870 */
2871 bp->link_vars.line_speed = SPEED_10000;
2872 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2873
2874 /* Only the PMF sets the HW */
2875 if (bp->port.pmf)
2876 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2877
2878 /* init Event Queue */
2879 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2880 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2881 eq_data.producer = bp->eq_prod;
2882 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2883 eq_data.sb_id = DEF_SB_ID;
2884 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2885 }
2886
2887
bnx2x_e1h_disable(struct bnx2x * bp)2888 static void bnx2x_e1h_disable(struct bnx2x *bp)
2889 {
2890 int port = BP_PORT(bp);
2891
2892 bnx2x_tx_disable(bp);
2893
2894 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2895 }
2896
bnx2x_e1h_enable(struct bnx2x * bp)2897 static void bnx2x_e1h_enable(struct bnx2x *bp)
2898 {
2899 int port = BP_PORT(bp);
2900
2901 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2902
2903 /* Tx queue should be only reenabled */
2904 netif_tx_wake_all_queues(bp->dev);
2905
2906 /*
2907 * Should not call netif_carrier_on since it will be called if the link
2908 * is up when checking for link state
2909 */
2910 }
2911
2912 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2913
bnx2x_drv_info_ether_stat(struct bnx2x * bp)2914 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2915 {
2916 struct eth_stats_info *ether_stat =
2917 &bp->slowpath->drv_info_to_mcp.ether_stat;
2918
2919 /* leave last char as NULL */
2920 memcpy(ether_stat->version, DRV_MODULE_VERSION,
2921 ETH_STAT_INFO_VERSION_LEN - 1);
2922
2923 bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2924 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2925 ether_stat->mac_local);
2926
2927 ether_stat->mtu_size = bp->dev->mtu;
2928
2929 if (bp->dev->features & NETIF_F_RXCSUM)
2930 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2931 if (bp->dev->features & NETIF_F_TSO)
2932 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2933 ether_stat->feature_flags |= bp->common.boot_mode;
2934
2935 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2936
2937 ether_stat->txq_size = bp->tx_ring_size;
2938 ether_stat->rxq_size = bp->rx_ring_size;
2939 }
2940
bnx2x_drv_info_fcoe_stat(struct bnx2x * bp)2941 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2942 {
2943 #ifdef BCM_CNIC
2944 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2945 struct fcoe_stats_info *fcoe_stat =
2946 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
2947
2948 memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2949
2950 fcoe_stat->qos_priority =
2951 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2952
2953 /* insert FCoE stats from ramrod response */
2954 if (!NO_FCOE(bp)) {
2955 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2956 &bp->fw_stats_data->queue_stats[FCOE_IDX].
2957 tstorm_queue_statistics;
2958
2959 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2960 &bp->fw_stats_data->queue_stats[FCOE_IDX].
2961 xstorm_queue_statistics;
2962
2963 struct fcoe_statistics_params *fw_fcoe_stat =
2964 &bp->fw_stats_data->fcoe;
2965
2966 ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2967 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2968
2969 ADD_64(fcoe_stat->rx_bytes_hi,
2970 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2971 fcoe_stat->rx_bytes_lo,
2972 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2973
2974 ADD_64(fcoe_stat->rx_bytes_hi,
2975 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2976 fcoe_stat->rx_bytes_lo,
2977 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2978
2979 ADD_64(fcoe_stat->rx_bytes_hi,
2980 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2981 fcoe_stat->rx_bytes_lo,
2982 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
2983
2984 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2985 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
2986
2987 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2988 fcoe_q_tstorm_stats->rcv_ucast_pkts);
2989
2990 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2991 fcoe_q_tstorm_stats->rcv_bcast_pkts);
2992
2993 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2994 fcoe_q_tstorm_stats->rcv_mcast_pkts);
2995
2996 ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
2997 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
2998
2999 ADD_64(fcoe_stat->tx_bytes_hi,
3000 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3001 fcoe_stat->tx_bytes_lo,
3002 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3003
3004 ADD_64(fcoe_stat->tx_bytes_hi,
3005 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3006 fcoe_stat->tx_bytes_lo,
3007 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3008
3009 ADD_64(fcoe_stat->tx_bytes_hi,
3010 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3011 fcoe_stat->tx_bytes_lo,
3012 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3013
3014 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3015 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3016
3017 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3018 fcoe_q_xstorm_stats->ucast_pkts_sent);
3019
3020 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3021 fcoe_q_xstorm_stats->bcast_pkts_sent);
3022
3023 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3024 fcoe_q_xstorm_stats->mcast_pkts_sent);
3025 }
3026
3027 /* ask L5 driver to add data to the struct */
3028 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3029 #endif
3030 }
3031
bnx2x_drv_info_iscsi_stat(struct bnx2x * bp)3032 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3033 {
3034 #ifdef BCM_CNIC
3035 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3036 struct iscsi_stats_info *iscsi_stat =
3037 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3038
3039 memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3040
3041 iscsi_stat->qos_priority =
3042 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3043
3044 /* ask L5 driver to add data to the struct */
3045 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3046 #endif
3047 }
3048
3049 /* called due to MCP event (on pmf):
3050 * reread new bandwidth configuration
3051 * configure FW
3052 * notify others function about the change
3053 */
bnx2x_config_mf_bw(struct bnx2x * bp)3054 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3055 {
3056 if (bp->link_vars.link_up) {
3057 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3058 bnx2x_link_sync_notify(bp);
3059 }
3060 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3061 }
3062
bnx2x_set_mf_bw(struct bnx2x * bp)3063 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3064 {
3065 bnx2x_config_mf_bw(bp);
3066 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3067 }
3068
bnx2x_handle_drv_info_req(struct bnx2x * bp)3069 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3070 {
3071 enum drv_info_opcode op_code;
3072 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3073
3074 /* if drv_info version supported by MFW doesn't match - send NACK */
3075 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3076 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3077 return;
3078 }
3079
3080 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3081 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3082
3083 memset(&bp->slowpath->drv_info_to_mcp, 0,
3084 sizeof(union drv_info_to_mcp));
3085
3086 switch (op_code) {
3087 case ETH_STATS_OPCODE:
3088 bnx2x_drv_info_ether_stat(bp);
3089 break;
3090 case FCOE_STATS_OPCODE:
3091 bnx2x_drv_info_fcoe_stat(bp);
3092 break;
3093 case ISCSI_STATS_OPCODE:
3094 bnx2x_drv_info_iscsi_stat(bp);
3095 break;
3096 default:
3097 /* if op code isn't supported - send NACK */
3098 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3099 return;
3100 }
3101
3102 /* if we got drv_info attn from MFW then these fields are defined in
3103 * shmem2 for sure
3104 */
3105 SHMEM2_WR(bp, drv_info_host_addr_lo,
3106 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3107 SHMEM2_WR(bp, drv_info_host_addr_hi,
3108 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3109
3110 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3111 }
3112
bnx2x_dcc_event(struct bnx2x * bp,u32 dcc_event)3113 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3114 {
3115 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3116
3117 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3118
3119 /*
3120 * This is the only place besides the function initialization
3121 * where the bp->flags can change so it is done without any
3122 * locks
3123 */
3124 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3125 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3126 bp->flags |= MF_FUNC_DIS;
3127
3128 bnx2x_e1h_disable(bp);
3129 } else {
3130 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3131 bp->flags &= ~MF_FUNC_DIS;
3132
3133 bnx2x_e1h_enable(bp);
3134 }
3135 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3136 }
3137 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3138 bnx2x_config_mf_bw(bp);
3139 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3140 }
3141
3142 /* Report results to MCP */
3143 if (dcc_event)
3144 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3145 else
3146 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3147 }
3148
3149 /* must be called under the spq lock */
bnx2x_sp_get_next(struct bnx2x * bp)3150 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3151 {
3152 struct eth_spe *next_spe = bp->spq_prod_bd;
3153
3154 if (bp->spq_prod_bd == bp->spq_last_bd) {
3155 bp->spq_prod_bd = bp->spq;
3156 bp->spq_prod_idx = 0;
3157 DP(BNX2X_MSG_SP, "end of spq\n");
3158 } else {
3159 bp->spq_prod_bd++;
3160 bp->spq_prod_idx++;
3161 }
3162 return next_spe;
3163 }
3164
3165 /* must be called under the spq lock */
bnx2x_sp_prod_update(struct bnx2x * bp)3166 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3167 {
3168 int func = BP_FUNC(bp);
3169
3170 /*
3171 * Make sure that BD data is updated before writing the producer:
3172 * BD data is written to the memory, the producer is read from the
3173 * memory, thus we need a full memory barrier to ensure the ordering.
3174 */
3175 mb();
3176
3177 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3178 bp->spq_prod_idx);
3179 mmiowb();
3180 }
3181
3182 /**
3183 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3184 *
3185 * @cmd: command to check
3186 * @cmd_type: command type
3187 */
bnx2x_is_contextless_ramrod(int cmd,int cmd_type)3188 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3189 {
3190 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3191 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3192 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3193 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3194 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3195 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3196 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3197 return true;
3198 else
3199 return false;
3200
3201 }
3202
3203
3204 /**
3205 * bnx2x_sp_post - place a single command on an SP ring
3206 *
3207 * @bp: driver handle
3208 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3209 * @cid: SW CID the command is related to
3210 * @data_hi: command private data address (high 32 bits)
3211 * @data_lo: command private data address (low 32 bits)
3212 * @cmd_type: command type (e.g. NONE, ETH)
3213 *
3214 * SP data is handled as if it's always an address pair, thus data fields are
3215 * not swapped to little endian in upper functions. Instead this function swaps
3216 * data as if it's two u32 fields.
3217 */
bnx2x_sp_post(struct bnx2x * bp,int command,int cid,u32 data_hi,u32 data_lo,int cmd_type)3218 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3219 u32 data_hi, u32 data_lo, int cmd_type)
3220 {
3221 struct eth_spe *spe;
3222 u16 type;
3223 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3224
3225 #ifdef BNX2X_STOP_ON_ERROR
3226 if (unlikely(bp->panic)) {
3227 BNX2X_ERR("Can't post SP when there is panic\n");
3228 return -EIO;
3229 }
3230 #endif
3231
3232 spin_lock_bh(&bp->spq_lock);
3233
3234 if (common) {
3235 if (!atomic_read(&bp->eq_spq_left)) {
3236 BNX2X_ERR("BUG! EQ ring full!\n");
3237 spin_unlock_bh(&bp->spq_lock);
3238 bnx2x_panic();
3239 return -EBUSY;
3240 }
3241 } else if (!atomic_read(&bp->cq_spq_left)) {
3242 BNX2X_ERR("BUG! SPQ ring full!\n");
3243 spin_unlock_bh(&bp->spq_lock);
3244 bnx2x_panic();
3245 return -EBUSY;
3246 }
3247
3248 spe = bnx2x_sp_get_next(bp);
3249
3250 /* CID needs port number to be encoded int it */
3251 spe->hdr.conn_and_cmd_data =
3252 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3253 HW_CID(bp, cid));
3254
3255 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3256
3257 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3258 SPE_HDR_FUNCTION_ID);
3259
3260 spe->hdr.type = cpu_to_le16(type);
3261
3262 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3263 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3264
3265 /*
3266 * It's ok if the actual decrement is issued towards the memory
3267 * somewhere between the spin_lock and spin_unlock. Thus no
3268 * more explict memory barrier is needed.
3269 */
3270 if (common)
3271 atomic_dec(&bp->eq_spq_left);
3272 else
3273 atomic_dec(&bp->cq_spq_left);
3274
3275
3276 DP(BNX2X_MSG_SP,
3277 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3278 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3279 (u32)(U64_LO(bp->spq_mapping) +
3280 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3281 HW_CID(bp, cid), data_hi, data_lo, type,
3282 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3283
3284 bnx2x_sp_prod_update(bp);
3285 spin_unlock_bh(&bp->spq_lock);
3286 return 0;
3287 }
3288
3289 /* acquire split MCP access lock register */
bnx2x_acquire_alr(struct bnx2x * bp)3290 static int bnx2x_acquire_alr(struct bnx2x *bp)
3291 {
3292 u32 j, val;
3293 int rc = 0;
3294
3295 might_sleep();
3296 for (j = 0; j < 1000; j++) {
3297 val = (1UL << 31);
3298 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3299 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3300 if (val & (1L << 31))
3301 break;
3302
3303 msleep(5);
3304 }
3305 if (!(val & (1L << 31))) {
3306 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3307 rc = -EBUSY;
3308 }
3309
3310 return rc;
3311 }
3312
3313 /* release split MCP access lock register */
bnx2x_release_alr(struct bnx2x * bp)3314 static void bnx2x_release_alr(struct bnx2x *bp)
3315 {
3316 REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3317 }
3318
3319 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3320 #define BNX2X_DEF_SB_IDX 0x0002
3321
bnx2x_update_dsb_idx(struct bnx2x * bp)3322 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3323 {
3324 struct host_sp_status_block *def_sb = bp->def_status_blk;
3325 u16 rc = 0;
3326
3327 barrier(); /* status block is written to by the chip */
3328 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3329 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3330 rc |= BNX2X_DEF_SB_ATT_IDX;
3331 }
3332
3333 if (bp->def_idx != def_sb->sp_sb.running_index) {
3334 bp->def_idx = def_sb->sp_sb.running_index;
3335 rc |= BNX2X_DEF_SB_IDX;
3336 }
3337
3338 /* Do not reorder: indecies reading should complete before handling */
3339 barrier();
3340 return rc;
3341 }
3342
3343 /*
3344 * slow path service functions
3345 */
3346
bnx2x_attn_int_asserted(struct bnx2x * bp,u32 asserted)3347 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3348 {
3349 int port = BP_PORT(bp);
3350 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3351 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3352 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3353 NIG_REG_MASK_INTERRUPT_PORT0;
3354 u32 aeu_mask;
3355 u32 nig_mask = 0;
3356 u32 reg_addr;
3357
3358 if (bp->attn_state & asserted)
3359 BNX2X_ERR("IGU ERROR\n");
3360
3361 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3362 aeu_mask = REG_RD(bp, aeu_addr);
3363
3364 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3365 aeu_mask, asserted);
3366 aeu_mask &= ~(asserted & 0x3ff);
3367 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3368
3369 REG_WR(bp, aeu_addr, aeu_mask);
3370 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3371
3372 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3373 bp->attn_state |= asserted;
3374 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3375
3376 if (asserted & ATTN_HARD_WIRED_MASK) {
3377 if (asserted & ATTN_NIG_FOR_FUNC) {
3378
3379 bnx2x_acquire_phy_lock(bp);
3380
3381 /* save nig interrupt mask */
3382 nig_mask = REG_RD(bp, nig_int_mask_addr);
3383
3384 /* If nig_mask is not set, no need to call the update
3385 * function.
3386 */
3387 if (nig_mask) {
3388 REG_WR(bp, nig_int_mask_addr, 0);
3389
3390 bnx2x_link_attn(bp);
3391 }
3392
3393 /* handle unicore attn? */
3394 }
3395 if (asserted & ATTN_SW_TIMER_4_FUNC)
3396 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3397
3398 if (asserted & GPIO_2_FUNC)
3399 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3400
3401 if (asserted & GPIO_3_FUNC)
3402 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3403
3404 if (asserted & GPIO_4_FUNC)
3405 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3406
3407 if (port == 0) {
3408 if (asserted & ATTN_GENERAL_ATTN_1) {
3409 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3410 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3411 }
3412 if (asserted & ATTN_GENERAL_ATTN_2) {
3413 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3414 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3415 }
3416 if (asserted & ATTN_GENERAL_ATTN_3) {
3417 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3418 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3419 }
3420 } else {
3421 if (asserted & ATTN_GENERAL_ATTN_4) {
3422 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3423 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3424 }
3425 if (asserted & ATTN_GENERAL_ATTN_5) {
3426 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3427 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3428 }
3429 if (asserted & ATTN_GENERAL_ATTN_6) {
3430 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3431 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3432 }
3433 }
3434
3435 } /* if hardwired */
3436
3437 if (bp->common.int_block == INT_BLOCK_HC)
3438 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3439 COMMAND_REG_ATTN_BITS_SET);
3440 else
3441 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3442
3443 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3444 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3445 REG_WR(bp, reg_addr, asserted);
3446
3447 /* now set back the mask */
3448 if (asserted & ATTN_NIG_FOR_FUNC) {
3449 REG_WR(bp, nig_int_mask_addr, nig_mask);
3450 bnx2x_release_phy_lock(bp);
3451 }
3452 }
3453
bnx2x_fan_failure(struct bnx2x * bp)3454 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3455 {
3456 int port = BP_PORT(bp);
3457 u32 ext_phy_config;
3458 /* mark the failure */
3459 ext_phy_config =
3460 SHMEM_RD(bp,
3461 dev_info.port_hw_config[port].external_phy_config);
3462
3463 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3464 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3465 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3466 ext_phy_config);
3467
3468 /* log the failure */
3469 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3470 "Please contact OEM Support for assistance\n");
3471
3472 /*
3473 * Scheudle device reset (unload)
3474 * This is due to some boards consuming sufficient power when driver is
3475 * up to overheat if fan fails.
3476 */
3477 smp_mb__before_clear_bit();
3478 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3479 smp_mb__after_clear_bit();
3480 schedule_delayed_work(&bp->sp_rtnl_task, 0);
3481
3482 }
3483
bnx2x_attn_int_deasserted0(struct bnx2x * bp,u32 attn)3484 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3485 {
3486 int port = BP_PORT(bp);
3487 int reg_offset;
3488 u32 val;
3489
3490 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3491 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3492
3493 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3494
3495 val = REG_RD(bp, reg_offset);
3496 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3497 REG_WR(bp, reg_offset, val);
3498
3499 BNX2X_ERR("SPIO5 hw attention\n");
3500
3501 /* Fan failure attention */
3502 bnx2x_hw_reset_phy(&bp->link_params);
3503 bnx2x_fan_failure(bp);
3504 }
3505
3506 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3507 bnx2x_acquire_phy_lock(bp);
3508 bnx2x_handle_module_detect_int(&bp->link_params);
3509 bnx2x_release_phy_lock(bp);
3510 }
3511
3512 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3513
3514 val = REG_RD(bp, reg_offset);
3515 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3516 REG_WR(bp, reg_offset, val);
3517
3518 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3519 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3520 bnx2x_panic();
3521 }
3522 }
3523
bnx2x_attn_int_deasserted1(struct bnx2x * bp,u32 attn)3524 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3525 {
3526 u32 val;
3527
3528 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3529
3530 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3531 BNX2X_ERR("DB hw attention 0x%x\n", val);
3532 /* DORQ discard attention */
3533 if (val & 0x2)
3534 BNX2X_ERR("FATAL error from DORQ\n");
3535 }
3536
3537 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3538
3539 int port = BP_PORT(bp);
3540 int reg_offset;
3541
3542 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3543 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3544
3545 val = REG_RD(bp, reg_offset);
3546 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3547 REG_WR(bp, reg_offset, val);
3548
3549 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3550 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3551 bnx2x_panic();
3552 }
3553 }
3554
bnx2x_attn_int_deasserted2(struct bnx2x * bp,u32 attn)3555 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3556 {
3557 u32 val;
3558
3559 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3560
3561 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3562 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3563 /* CFC error attention */
3564 if (val & 0x2)
3565 BNX2X_ERR("FATAL error from CFC\n");
3566 }
3567
3568 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3569 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3570 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3571 /* RQ_USDMDP_FIFO_OVERFLOW */
3572 if (val & 0x18000)
3573 BNX2X_ERR("FATAL error from PXP\n");
3574
3575 if (!CHIP_IS_E1x(bp)) {
3576 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3577 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3578 }
3579 }
3580
3581 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3582
3583 int port = BP_PORT(bp);
3584 int reg_offset;
3585
3586 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3587 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3588
3589 val = REG_RD(bp, reg_offset);
3590 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3591 REG_WR(bp, reg_offset, val);
3592
3593 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3594 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3595 bnx2x_panic();
3596 }
3597 }
3598
bnx2x_attn_int_deasserted3(struct bnx2x * bp,u32 attn)3599 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3600 {
3601 u32 val;
3602
3603 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3604
3605 if (attn & BNX2X_PMF_LINK_ASSERT) {
3606 int func = BP_FUNC(bp);
3607
3608 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3609 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3610 func_mf_config[BP_ABS_FUNC(bp)].config);
3611 val = SHMEM_RD(bp,
3612 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3613 if (val & DRV_STATUS_DCC_EVENT_MASK)
3614 bnx2x_dcc_event(bp,
3615 (val & DRV_STATUS_DCC_EVENT_MASK));
3616
3617 if (val & DRV_STATUS_SET_MF_BW)
3618 bnx2x_set_mf_bw(bp);
3619
3620 if (val & DRV_STATUS_DRV_INFO_REQ)
3621 bnx2x_handle_drv_info_req(bp);
3622 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3623 bnx2x_pmf_update(bp);
3624
3625 if (bp->port.pmf &&
3626 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3627 bp->dcbx_enabled > 0)
3628 /* start dcbx state machine */
3629 bnx2x_dcbx_set_params(bp,
3630 BNX2X_DCBX_STATE_NEG_RECEIVED);
3631 if (bp->link_vars.periodic_flags &
3632 PERIODIC_FLAGS_LINK_EVENT) {
3633 /* sync with link */
3634 bnx2x_acquire_phy_lock(bp);
3635 bp->link_vars.periodic_flags &=
3636 ~PERIODIC_FLAGS_LINK_EVENT;
3637 bnx2x_release_phy_lock(bp);
3638 if (IS_MF(bp))
3639 bnx2x_link_sync_notify(bp);
3640 bnx2x_link_report(bp);
3641 }
3642 /* Always call it here: bnx2x_link_report() will
3643 * prevent the link indication duplication.
3644 */
3645 bnx2x__link_status_update(bp);
3646 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3647
3648 BNX2X_ERR("MC assert!\n");
3649 bnx2x_mc_assert(bp);
3650 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3651 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3652 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3653 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3654 bnx2x_panic();
3655
3656 } else if (attn & BNX2X_MCP_ASSERT) {
3657
3658 BNX2X_ERR("MCP assert!\n");
3659 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3660 bnx2x_fw_dump(bp);
3661
3662 } else
3663 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3664 }
3665
3666 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3667 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3668 if (attn & BNX2X_GRC_TIMEOUT) {
3669 val = CHIP_IS_E1(bp) ? 0 :
3670 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3671 BNX2X_ERR("GRC time-out 0x%08x\n", val);
3672 }
3673 if (attn & BNX2X_GRC_RSV) {
3674 val = CHIP_IS_E1(bp) ? 0 :
3675 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3676 BNX2X_ERR("GRC reserved 0x%08x\n", val);
3677 }
3678 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3679 }
3680 }
3681
3682 /*
3683 * Bits map:
3684 * 0-7 - Engine0 load counter.
3685 * 8-15 - Engine1 load counter.
3686 * 16 - Engine0 RESET_IN_PROGRESS bit.
3687 * 17 - Engine1 RESET_IN_PROGRESS bit.
3688 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3689 * on the engine
3690 * 19 - Engine1 ONE_IS_LOADED.
3691 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
3692 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
3693 * just the one belonging to its engine).
3694 *
3695 */
3696 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
3697
3698 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
3699 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
3700 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
3701 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
3702 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
3703 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
3704 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
3705
3706 /*
3707 * Set the GLOBAL_RESET bit.
3708 *
3709 * Should be run under rtnl lock
3710 */
bnx2x_set_reset_global(struct bnx2x * bp)3711 void bnx2x_set_reset_global(struct bnx2x *bp)
3712 {
3713 u32 val;
3714 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3715 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3716 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3717 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3718 }
3719
3720 /*
3721 * Clear the GLOBAL_RESET bit.
3722 *
3723 * Should be run under rtnl lock
3724 */
bnx2x_clear_reset_global(struct bnx2x * bp)3725 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3726 {
3727 u32 val;
3728 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3729 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3730 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3731 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3732 }
3733
3734 /*
3735 * Checks the GLOBAL_RESET bit.
3736 *
3737 * should be run under rtnl lock
3738 */
bnx2x_reset_is_global(struct bnx2x * bp)3739 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3740 {
3741 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3742
3743 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3744 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3745 }
3746
3747 /*
3748 * Clear RESET_IN_PROGRESS bit for the current engine.
3749 *
3750 * Should be run under rtnl lock
3751 */
bnx2x_set_reset_done(struct bnx2x * bp)3752 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3753 {
3754 u32 val;
3755 u32 bit = BP_PATH(bp) ?
3756 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3757 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3758 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3759
3760 /* Clear the bit */
3761 val &= ~bit;
3762 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3763
3764 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3765 }
3766
3767 /*
3768 * Set RESET_IN_PROGRESS for the current engine.
3769 *
3770 * should be run under rtnl lock
3771 */
bnx2x_set_reset_in_progress(struct bnx2x * bp)3772 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3773 {
3774 u32 val;
3775 u32 bit = BP_PATH(bp) ?
3776 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3777 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3778 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3779
3780 /* Set the bit */
3781 val |= bit;
3782 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3783 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3784 }
3785
3786 /*
3787 * Checks the RESET_IN_PROGRESS bit for the given engine.
3788 * should be run under rtnl lock
3789 */
bnx2x_reset_is_done(struct bnx2x * bp,int engine)3790 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3791 {
3792 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3793 u32 bit = engine ?
3794 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3795
3796 /* return false if bit is set */
3797 return (val & bit) ? false : true;
3798 }
3799
3800 /*
3801 * set pf load for the current pf.
3802 *
3803 * should be run under rtnl lock
3804 */
bnx2x_set_pf_load(struct bnx2x * bp)3805 void bnx2x_set_pf_load(struct bnx2x *bp)
3806 {
3807 u32 val1, val;
3808 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3809 BNX2X_PATH0_LOAD_CNT_MASK;
3810 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3811 BNX2X_PATH0_LOAD_CNT_SHIFT;
3812
3813 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3814 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3815
3816 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3817
3818 /* get the current counter value */
3819 val1 = (val & mask) >> shift;
3820
3821 /* set bit of that PF */
3822 val1 |= (1 << bp->pf_num);
3823
3824 /* clear the old value */
3825 val &= ~mask;
3826
3827 /* set the new one */
3828 val |= ((val1 << shift) & mask);
3829
3830 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3831 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3832 }
3833
3834 /**
3835 * bnx2x_clear_pf_load - clear pf load mark
3836 *
3837 * @bp: driver handle
3838 *
3839 * Should be run under rtnl lock.
3840 * Decrements the load counter for the current engine. Returns
3841 * whether other functions are still loaded
3842 */
bnx2x_clear_pf_load(struct bnx2x * bp)3843 bool bnx2x_clear_pf_load(struct bnx2x *bp)
3844 {
3845 u32 val1, val;
3846 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3847 BNX2X_PATH0_LOAD_CNT_MASK;
3848 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3849 BNX2X_PATH0_LOAD_CNT_SHIFT;
3850
3851 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3852 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3853 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
3854
3855 /* get the current counter value */
3856 val1 = (val & mask) >> shift;
3857
3858 /* clear bit of that PF */
3859 val1 &= ~(1 << bp->pf_num);
3860
3861 /* clear the old value */
3862 val &= ~mask;
3863
3864 /* set the new one */
3865 val |= ((val1 << shift) & mask);
3866
3867 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3868 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3869 return val1 != 0;
3870 }
3871
3872 /*
3873 * Read the load status for the current engine.
3874 *
3875 * should be run under rtnl lock
3876 */
bnx2x_get_load_status(struct bnx2x * bp,int engine)3877 static inline bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
3878 {
3879 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3880 BNX2X_PATH0_LOAD_CNT_MASK);
3881 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3882 BNX2X_PATH0_LOAD_CNT_SHIFT);
3883 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3884
3885 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
3886
3887 val = (val & mask) >> shift;
3888
3889 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
3890 engine, val);
3891
3892 return val != 0;
3893 }
3894
3895 /*
3896 * Reset the load status for the current engine.
3897 */
bnx2x_clear_load_status(struct bnx2x * bp)3898 static inline void bnx2x_clear_load_status(struct bnx2x *bp)
3899 {
3900 u32 val;
3901 u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3902 BNX2X_PATH0_LOAD_CNT_MASK);
3903 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3904 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3905 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3906 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3907 }
3908
_print_next_block(int idx,const char * blk)3909 static inline void _print_next_block(int idx, const char *blk)
3910 {
3911 pr_cont("%s%s", idx ? ", " : "", blk);
3912 }
3913
bnx2x_check_blocks_with_parity0(u32 sig,int par_num,bool print)3914 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3915 bool print)
3916 {
3917 int i = 0;
3918 u32 cur_bit = 0;
3919 for (i = 0; sig; i++) {
3920 cur_bit = ((u32)0x1 << i);
3921 if (sig & cur_bit) {
3922 switch (cur_bit) {
3923 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3924 if (print)
3925 _print_next_block(par_num++, "BRB");
3926 break;
3927 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3928 if (print)
3929 _print_next_block(par_num++, "PARSER");
3930 break;
3931 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3932 if (print)
3933 _print_next_block(par_num++, "TSDM");
3934 break;
3935 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3936 if (print)
3937 _print_next_block(par_num++,
3938 "SEARCHER");
3939 break;
3940 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3941 if (print)
3942 _print_next_block(par_num++, "TCM");
3943 break;
3944 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3945 if (print)
3946 _print_next_block(par_num++, "TSEMI");
3947 break;
3948 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3949 if (print)
3950 _print_next_block(par_num++, "XPB");
3951 break;
3952 }
3953
3954 /* Clear the bit */
3955 sig &= ~cur_bit;
3956 }
3957 }
3958
3959 return par_num;
3960 }
3961
bnx2x_check_blocks_with_parity1(u32 sig,int par_num,bool * global,bool print)3962 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3963 bool *global, bool print)
3964 {
3965 int i = 0;
3966 u32 cur_bit = 0;
3967 for (i = 0; sig; i++) {
3968 cur_bit = ((u32)0x1 << i);
3969 if (sig & cur_bit) {
3970 switch (cur_bit) {
3971 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3972 if (print)
3973 _print_next_block(par_num++, "PBF");
3974 break;
3975 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3976 if (print)
3977 _print_next_block(par_num++, "QM");
3978 break;
3979 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3980 if (print)
3981 _print_next_block(par_num++, "TM");
3982 break;
3983 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3984 if (print)
3985 _print_next_block(par_num++, "XSDM");
3986 break;
3987 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3988 if (print)
3989 _print_next_block(par_num++, "XCM");
3990 break;
3991 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3992 if (print)
3993 _print_next_block(par_num++, "XSEMI");
3994 break;
3995 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3996 if (print)
3997 _print_next_block(par_num++,
3998 "DOORBELLQ");
3999 break;
4000 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4001 if (print)
4002 _print_next_block(par_num++, "NIG");
4003 break;
4004 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4005 if (print)
4006 _print_next_block(par_num++,
4007 "VAUX PCI CORE");
4008 *global = true;
4009 break;
4010 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4011 if (print)
4012 _print_next_block(par_num++, "DEBUG");
4013 break;
4014 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4015 if (print)
4016 _print_next_block(par_num++, "USDM");
4017 break;
4018 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4019 if (print)
4020 _print_next_block(par_num++, "UCM");
4021 break;
4022 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4023 if (print)
4024 _print_next_block(par_num++, "USEMI");
4025 break;
4026 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4027 if (print)
4028 _print_next_block(par_num++, "UPB");
4029 break;
4030 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4031 if (print)
4032 _print_next_block(par_num++, "CSDM");
4033 break;
4034 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4035 if (print)
4036 _print_next_block(par_num++, "CCM");
4037 break;
4038 }
4039
4040 /* Clear the bit */
4041 sig &= ~cur_bit;
4042 }
4043 }
4044
4045 return par_num;
4046 }
4047
bnx2x_check_blocks_with_parity2(u32 sig,int par_num,bool print)4048 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4049 bool print)
4050 {
4051 int i = 0;
4052 u32 cur_bit = 0;
4053 for (i = 0; sig; i++) {
4054 cur_bit = ((u32)0x1 << i);
4055 if (sig & cur_bit) {
4056 switch (cur_bit) {
4057 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4058 if (print)
4059 _print_next_block(par_num++, "CSEMI");
4060 break;
4061 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4062 if (print)
4063 _print_next_block(par_num++, "PXP");
4064 break;
4065 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4066 if (print)
4067 _print_next_block(par_num++,
4068 "PXPPCICLOCKCLIENT");
4069 break;
4070 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4071 if (print)
4072 _print_next_block(par_num++, "CFC");
4073 break;
4074 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4075 if (print)
4076 _print_next_block(par_num++, "CDU");
4077 break;
4078 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4079 if (print)
4080 _print_next_block(par_num++, "DMAE");
4081 break;
4082 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4083 if (print)
4084 _print_next_block(par_num++, "IGU");
4085 break;
4086 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4087 if (print)
4088 _print_next_block(par_num++, "MISC");
4089 break;
4090 }
4091
4092 /* Clear the bit */
4093 sig &= ~cur_bit;
4094 }
4095 }
4096
4097 return par_num;
4098 }
4099
bnx2x_check_blocks_with_parity3(u32 sig,int par_num,bool * global,bool print)4100 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4101 bool *global, bool print)
4102 {
4103 int i = 0;
4104 u32 cur_bit = 0;
4105 for (i = 0; sig; i++) {
4106 cur_bit = ((u32)0x1 << i);
4107 if (sig & cur_bit) {
4108 switch (cur_bit) {
4109 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4110 if (print)
4111 _print_next_block(par_num++, "MCP ROM");
4112 *global = true;
4113 break;
4114 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4115 if (print)
4116 _print_next_block(par_num++,
4117 "MCP UMP RX");
4118 *global = true;
4119 break;
4120 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4121 if (print)
4122 _print_next_block(par_num++,
4123 "MCP UMP TX");
4124 *global = true;
4125 break;
4126 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4127 if (print)
4128 _print_next_block(par_num++,
4129 "MCP SCPAD");
4130 *global = true;
4131 break;
4132 }
4133
4134 /* Clear the bit */
4135 sig &= ~cur_bit;
4136 }
4137 }
4138
4139 return par_num;
4140 }
4141
bnx2x_check_blocks_with_parity4(u32 sig,int par_num,bool print)4142 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4143 bool print)
4144 {
4145 int i = 0;
4146 u32 cur_bit = 0;
4147 for (i = 0; sig; i++) {
4148 cur_bit = ((u32)0x1 << i);
4149 if (sig & cur_bit) {
4150 switch (cur_bit) {
4151 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4152 if (print)
4153 _print_next_block(par_num++, "PGLUE_B");
4154 break;
4155 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4156 if (print)
4157 _print_next_block(par_num++, "ATC");
4158 break;
4159 }
4160
4161 /* Clear the bit */
4162 sig &= ~cur_bit;
4163 }
4164 }
4165
4166 return par_num;
4167 }
4168
bnx2x_parity_attn(struct bnx2x * bp,bool * global,bool print,u32 * sig)4169 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4170 u32 *sig)
4171 {
4172 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4173 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4174 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4175 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4176 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4177 int par_num = 0;
4178 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4179 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4180 sig[0] & HW_PRTY_ASSERT_SET_0,
4181 sig[1] & HW_PRTY_ASSERT_SET_1,
4182 sig[2] & HW_PRTY_ASSERT_SET_2,
4183 sig[3] & HW_PRTY_ASSERT_SET_3,
4184 sig[4] & HW_PRTY_ASSERT_SET_4);
4185 if (print)
4186 netdev_err(bp->dev,
4187 "Parity errors detected in blocks: ");
4188 par_num = bnx2x_check_blocks_with_parity0(
4189 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4190 par_num = bnx2x_check_blocks_with_parity1(
4191 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4192 par_num = bnx2x_check_blocks_with_parity2(
4193 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4194 par_num = bnx2x_check_blocks_with_parity3(
4195 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4196 par_num = bnx2x_check_blocks_with_parity4(
4197 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4198
4199 if (print)
4200 pr_cont("\n");
4201
4202 return true;
4203 } else
4204 return false;
4205 }
4206
4207 /**
4208 * bnx2x_chk_parity_attn - checks for parity attentions.
4209 *
4210 * @bp: driver handle
4211 * @global: true if there was a global attention
4212 * @print: show parity attention in syslog
4213 */
bnx2x_chk_parity_attn(struct bnx2x * bp,bool * global,bool print)4214 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4215 {
4216 struct attn_route attn = { {0} };
4217 int port = BP_PORT(bp);
4218
4219 attn.sig[0] = REG_RD(bp,
4220 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4221 port*4);
4222 attn.sig[1] = REG_RD(bp,
4223 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4224 port*4);
4225 attn.sig[2] = REG_RD(bp,
4226 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4227 port*4);
4228 attn.sig[3] = REG_RD(bp,
4229 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4230 port*4);
4231
4232 if (!CHIP_IS_E1x(bp))
4233 attn.sig[4] = REG_RD(bp,
4234 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4235 port*4);
4236
4237 return bnx2x_parity_attn(bp, global, print, attn.sig);
4238 }
4239
4240
bnx2x_attn_int_deasserted4(struct bnx2x * bp,u32 attn)4241 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4242 {
4243 u32 val;
4244 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4245
4246 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4247 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4248 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4249 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4250 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4251 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4252 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4253 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4254 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4255 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4256 if (val &
4257 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4258 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4259 if (val &
4260 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4261 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4262 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4263 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4264 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4265 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4266 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4267 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4268 }
4269 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4270 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4271 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4272 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4273 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4274 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4275 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4276 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4277 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4278 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4279 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4280 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4281 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4282 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4283 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4284 }
4285
4286 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4287 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4288 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4289 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4290 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4291 }
4292
4293 }
4294
bnx2x_attn_int_deasserted(struct bnx2x * bp,u32 deasserted)4295 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4296 {
4297 struct attn_route attn, *group_mask;
4298 int port = BP_PORT(bp);
4299 int index;
4300 u32 reg_addr;
4301 u32 val;
4302 u32 aeu_mask;
4303 bool global = false;
4304
4305 /* need to take HW lock because MCP or other port might also
4306 try to handle this event */
4307 bnx2x_acquire_alr(bp);
4308
4309 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4310 #ifndef BNX2X_STOP_ON_ERROR
4311 bp->recovery_state = BNX2X_RECOVERY_INIT;
4312 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4313 /* Disable HW interrupts */
4314 bnx2x_int_disable(bp);
4315 /* In case of parity errors don't handle attentions so that
4316 * other function would "see" parity errors.
4317 */
4318 #else
4319 bnx2x_panic();
4320 #endif
4321 bnx2x_release_alr(bp);
4322 return;
4323 }
4324
4325 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4326 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4327 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4328 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4329 if (!CHIP_IS_E1x(bp))
4330 attn.sig[4] =
4331 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4332 else
4333 attn.sig[4] = 0;
4334
4335 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4336 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4337
4338 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4339 if (deasserted & (1 << index)) {
4340 group_mask = &bp->attn_group[index];
4341
4342 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4343 index,
4344 group_mask->sig[0], group_mask->sig[1],
4345 group_mask->sig[2], group_mask->sig[3],
4346 group_mask->sig[4]);
4347
4348 bnx2x_attn_int_deasserted4(bp,
4349 attn.sig[4] & group_mask->sig[4]);
4350 bnx2x_attn_int_deasserted3(bp,
4351 attn.sig[3] & group_mask->sig[3]);
4352 bnx2x_attn_int_deasserted1(bp,
4353 attn.sig[1] & group_mask->sig[1]);
4354 bnx2x_attn_int_deasserted2(bp,
4355 attn.sig[2] & group_mask->sig[2]);
4356 bnx2x_attn_int_deasserted0(bp,
4357 attn.sig[0] & group_mask->sig[0]);
4358 }
4359 }
4360
4361 bnx2x_release_alr(bp);
4362
4363 if (bp->common.int_block == INT_BLOCK_HC)
4364 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4365 COMMAND_REG_ATTN_BITS_CLR);
4366 else
4367 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4368
4369 val = ~deasserted;
4370 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4371 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4372 REG_WR(bp, reg_addr, val);
4373
4374 if (~bp->attn_state & deasserted)
4375 BNX2X_ERR("IGU ERROR\n");
4376
4377 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4378 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4379
4380 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4381 aeu_mask = REG_RD(bp, reg_addr);
4382
4383 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4384 aeu_mask, deasserted);
4385 aeu_mask |= (deasserted & 0x3ff);
4386 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4387
4388 REG_WR(bp, reg_addr, aeu_mask);
4389 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4390
4391 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4392 bp->attn_state &= ~deasserted;
4393 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4394 }
4395
bnx2x_attn_int(struct bnx2x * bp)4396 static void bnx2x_attn_int(struct bnx2x *bp)
4397 {
4398 /* read local copy of bits */
4399 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4400 attn_bits);
4401 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4402 attn_bits_ack);
4403 u32 attn_state = bp->attn_state;
4404
4405 /* look for changed bits */
4406 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4407 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4408
4409 DP(NETIF_MSG_HW,
4410 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4411 attn_bits, attn_ack, asserted, deasserted);
4412
4413 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4414 BNX2X_ERR("BAD attention state\n");
4415
4416 /* handle bits that were raised */
4417 if (asserted)
4418 bnx2x_attn_int_asserted(bp, asserted);
4419
4420 if (deasserted)
4421 bnx2x_attn_int_deasserted(bp, deasserted);
4422 }
4423
bnx2x_igu_ack_sb(struct bnx2x * bp,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)4424 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4425 u16 index, u8 op, u8 update)
4426 {
4427 u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4428
4429 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4430 igu_addr);
4431 }
4432
bnx2x_update_eq_prod(struct bnx2x * bp,u16 prod)4433 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4434 {
4435 /* No memory barriers */
4436 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4437 mmiowb(); /* keep prod updates ordered */
4438 }
4439
4440 #ifdef BCM_CNIC
bnx2x_cnic_handle_cfc_del(struct bnx2x * bp,u32 cid,union event_ring_elem * elem)4441 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4442 union event_ring_elem *elem)
4443 {
4444 u8 err = elem->message.error;
4445
4446 if (!bp->cnic_eth_dev.starting_cid ||
4447 (cid < bp->cnic_eth_dev.starting_cid &&
4448 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4449 return 1;
4450
4451 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4452
4453 if (unlikely(err)) {
4454
4455 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4456 cid);
4457 bnx2x_panic_dump(bp);
4458 }
4459 bnx2x_cnic_cfc_comp(bp, cid, err);
4460 return 0;
4461 }
4462 #endif
4463
bnx2x_handle_mcast_eqe(struct bnx2x * bp)4464 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4465 {
4466 struct bnx2x_mcast_ramrod_params rparam;
4467 int rc;
4468
4469 memset(&rparam, 0, sizeof(rparam));
4470
4471 rparam.mcast_obj = &bp->mcast_obj;
4472
4473 netif_addr_lock_bh(bp->dev);
4474
4475 /* Clear pending state for the last command */
4476 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4477
4478 /* If there are pending mcast commands - send them */
4479 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4480 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4481 if (rc < 0)
4482 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4483 rc);
4484 }
4485
4486 netif_addr_unlock_bh(bp->dev);
4487 }
4488
bnx2x_handle_classification_eqe(struct bnx2x * bp,union event_ring_elem * elem)4489 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4490 union event_ring_elem *elem)
4491 {
4492 unsigned long ramrod_flags = 0;
4493 int rc = 0;
4494 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4495 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4496
4497 /* Always push next commands out, don't wait here */
4498 __set_bit(RAMROD_CONT, &ramrod_flags);
4499
4500 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4501 case BNX2X_FILTER_MAC_PENDING:
4502 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4503 #ifdef BCM_CNIC
4504 if (cid == BNX2X_ISCSI_ETH_CID)
4505 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4506 else
4507 #endif
4508 vlan_mac_obj = &bp->fp[cid].mac_obj;
4509
4510 break;
4511 case BNX2X_FILTER_MCAST_PENDING:
4512 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4513 /* This is only relevant for 57710 where multicast MACs are
4514 * configured as unicast MACs using the same ramrod.
4515 */
4516 bnx2x_handle_mcast_eqe(bp);
4517 return;
4518 default:
4519 BNX2X_ERR("Unsupported classification command: %d\n",
4520 elem->message.data.eth_event.echo);
4521 return;
4522 }
4523
4524 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4525
4526 if (rc < 0)
4527 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4528 else if (rc > 0)
4529 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4530
4531 }
4532
4533 #ifdef BCM_CNIC
4534 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4535 #endif
4536
bnx2x_handle_rx_mode_eqe(struct bnx2x * bp)4537 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4538 {
4539 netif_addr_lock_bh(bp->dev);
4540
4541 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4542
4543 /* Send rx_mode command again if was requested */
4544 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4545 bnx2x_set_storm_rx_mode(bp);
4546 #ifdef BCM_CNIC
4547 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4548 &bp->sp_state))
4549 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4550 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4551 &bp->sp_state))
4552 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4553 #endif
4554
4555 netif_addr_unlock_bh(bp->dev);
4556 }
4557
bnx2x_cid_to_q_obj(struct bnx2x * bp,u32 cid)4558 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4559 struct bnx2x *bp, u32 cid)
4560 {
4561 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4562 #ifdef BCM_CNIC
4563 if (cid == BNX2X_FCOE_ETH_CID)
4564 return &bnx2x_fcoe(bp, q_obj);
4565 else
4566 #endif
4567 return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4568 }
4569
bnx2x_eq_int(struct bnx2x * bp)4570 static void bnx2x_eq_int(struct bnx2x *bp)
4571 {
4572 u16 hw_cons, sw_cons, sw_prod;
4573 union event_ring_elem *elem;
4574 u32 cid;
4575 u8 opcode;
4576 int spqe_cnt = 0;
4577 struct bnx2x_queue_sp_obj *q_obj;
4578 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4579 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4580
4581 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4582
4583 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4584 * when we get the the next-page we nned to adjust so the loop
4585 * condition below will be met. The next element is the size of a
4586 * regular element and hence incrementing by 1
4587 */
4588 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4589 hw_cons++;
4590
4591 /* This function may never run in parallel with itself for a
4592 * specific bp, thus there is no need in "paired" read memory
4593 * barrier here.
4594 */
4595 sw_cons = bp->eq_cons;
4596 sw_prod = bp->eq_prod;
4597
4598 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
4599 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4600
4601 for (; sw_cons != hw_cons;
4602 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4603
4604
4605 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4606
4607 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4608 opcode = elem->message.opcode;
4609
4610
4611 /* handle eq element */
4612 switch (opcode) {
4613 case EVENT_RING_OPCODE_STAT_QUERY:
4614 DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4615 "got statistics comp event %d\n",
4616 bp->stats_comp++);
4617 /* nothing to do with stats comp */
4618 goto next_spqe;
4619
4620 case EVENT_RING_OPCODE_CFC_DEL:
4621 /* handle according to cid range */
4622 /*
4623 * we may want to verify here that the bp state is
4624 * HALTING
4625 */
4626 DP(BNX2X_MSG_SP,
4627 "got delete ramrod for MULTI[%d]\n", cid);
4628 #ifdef BCM_CNIC
4629 if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4630 goto next_spqe;
4631 #endif
4632 q_obj = bnx2x_cid_to_q_obj(bp, cid);
4633
4634 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4635 break;
4636
4637
4638
4639 goto next_spqe;
4640
4641 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4642 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4643 if (f_obj->complete_cmd(bp, f_obj,
4644 BNX2X_F_CMD_TX_STOP))
4645 break;
4646 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4647 goto next_spqe;
4648
4649 case EVENT_RING_OPCODE_START_TRAFFIC:
4650 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4651 if (f_obj->complete_cmd(bp, f_obj,
4652 BNX2X_F_CMD_TX_START))
4653 break;
4654 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4655 goto next_spqe;
4656 case EVENT_RING_OPCODE_FUNCTION_START:
4657 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4658 "got FUNC_START ramrod\n");
4659 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4660 break;
4661
4662 goto next_spqe;
4663
4664 case EVENT_RING_OPCODE_FUNCTION_STOP:
4665 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4666 "got FUNC_STOP ramrod\n");
4667 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4668 break;
4669
4670 goto next_spqe;
4671 }
4672
4673 switch (opcode | bp->state) {
4674 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4675 BNX2X_STATE_OPEN):
4676 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4677 BNX2X_STATE_OPENING_WAIT4_PORT):
4678 cid = elem->message.data.eth_event.echo &
4679 BNX2X_SWCID_MASK;
4680 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4681 cid);
4682 rss_raw->clear_pending(rss_raw);
4683 break;
4684
4685 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4686 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4687 case (EVENT_RING_OPCODE_SET_MAC |
4688 BNX2X_STATE_CLOSING_WAIT4_HALT):
4689 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4690 BNX2X_STATE_OPEN):
4691 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4692 BNX2X_STATE_DIAG):
4693 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4694 BNX2X_STATE_CLOSING_WAIT4_HALT):
4695 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4696 bnx2x_handle_classification_eqe(bp, elem);
4697 break;
4698
4699 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4700 BNX2X_STATE_OPEN):
4701 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4702 BNX2X_STATE_DIAG):
4703 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4704 BNX2X_STATE_CLOSING_WAIT4_HALT):
4705 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4706 bnx2x_handle_mcast_eqe(bp);
4707 break;
4708
4709 case (EVENT_RING_OPCODE_FILTERS_RULES |
4710 BNX2X_STATE_OPEN):
4711 case (EVENT_RING_OPCODE_FILTERS_RULES |
4712 BNX2X_STATE_DIAG):
4713 case (EVENT_RING_OPCODE_FILTERS_RULES |
4714 BNX2X_STATE_CLOSING_WAIT4_HALT):
4715 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4716 bnx2x_handle_rx_mode_eqe(bp);
4717 break;
4718 default:
4719 /* unknown event log error and continue */
4720 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4721 elem->message.opcode, bp->state);
4722 }
4723 next_spqe:
4724 spqe_cnt++;
4725 } /* for */
4726
4727 smp_mb__before_atomic_inc();
4728 atomic_add(spqe_cnt, &bp->eq_spq_left);
4729
4730 bp->eq_cons = sw_cons;
4731 bp->eq_prod = sw_prod;
4732 /* Make sure that above mem writes were issued towards the memory */
4733 smp_wmb();
4734
4735 /* update producer */
4736 bnx2x_update_eq_prod(bp, bp->eq_prod);
4737 }
4738
bnx2x_sp_task(struct work_struct * work)4739 static void bnx2x_sp_task(struct work_struct *work)
4740 {
4741 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4742 u16 status;
4743
4744 status = bnx2x_update_dsb_idx(bp);
4745 /* if (status == 0) */
4746 /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
4747
4748 DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
4749
4750 /* HW attentions */
4751 if (status & BNX2X_DEF_SB_ATT_IDX) {
4752 bnx2x_attn_int(bp);
4753 status &= ~BNX2X_DEF_SB_ATT_IDX;
4754 }
4755
4756 /* SP events: STAT_QUERY and others */
4757 if (status & BNX2X_DEF_SB_IDX) {
4758 #ifdef BCM_CNIC
4759 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4760
4761 if ((!NO_FCOE(bp)) &&
4762 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4763 /*
4764 * Prevent local bottom-halves from running as
4765 * we are going to change the local NAPI list.
4766 */
4767 local_bh_disable();
4768 napi_schedule(&bnx2x_fcoe(bp, napi));
4769 local_bh_enable();
4770 }
4771 #endif
4772 /* Handle EQ completions */
4773 bnx2x_eq_int(bp);
4774
4775 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4776 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4777
4778 status &= ~BNX2X_DEF_SB_IDX;
4779 }
4780
4781 if (unlikely(status))
4782 DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
4783 status);
4784
4785 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4786 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4787 }
4788
bnx2x_msix_sp_int(int irq,void * dev_instance)4789 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4790 {
4791 struct net_device *dev = dev_instance;
4792 struct bnx2x *bp = netdev_priv(dev);
4793
4794 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4795 IGU_INT_DISABLE, 0);
4796
4797 #ifdef BNX2X_STOP_ON_ERROR
4798 if (unlikely(bp->panic))
4799 return IRQ_HANDLED;
4800 #endif
4801
4802 #ifdef BCM_CNIC
4803 {
4804 struct cnic_ops *c_ops;
4805
4806 rcu_read_lock();
4807 c_ops = rcu_dereference(bp->cnic_ops);
4808 if (c_ops)
4809 c_ops->cnic_handler(bp->cnic_data, NULL);
4810 rcu_read_unlock();
4811 }
4812 #endif
4813 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4814
4815 return IRQ_HANDLED;
4816 }
4817
4818 /* end of slow path */
4819
4820
bnx2x_drv_pulse(struct bnx2x * bp)4821 void bnx2x_drv_pulse(struct bnx2x *bp)
4822 {
4823 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4824 bp->fw_drv_pulse_wr_seq);
4825 }
4826
4827
bnx2x_timer(unsigned long data)4828 static void bnx2x_timer(unsigned long data)
4829 {
4830 struct bnx2x *bp = (struct bnx2x *) data;
4831
4832 if (!netif_running(bp->dev))
4833 return;
4834
4835 if (!BP_NOMCP(bp)) {
4836 int mb_idx = BP_FW_MB_IDX(bp);
4837 u32 drv_pulse;
4838 u32 mcp_pulse;
4839
4840 ++bp->fw_drv_pulse_wr_seq;
4841 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4842 /* TBD - add SYSTEM_TIME */
4843 drv_pulse = bp->fw_drv_pulse_wr_seq;
4844 bnx2x_drv_pulse(bp);
4845
4846 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4847 MCP_PULSE_SEQ_MASK);
4848 /* The delta between driver pulse and mcp response
4849 * should be 1 (before mcp response) or 0 (after mcp response)
4850 */
4851 if ((drv_pulse != mcp_pulse) &&
4852 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4853 /* someone lost a heartbeat... */
4854 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4855 drv_pulse, mcp_pulse);
4856 }
4857 }
4858
4859 if (bp->state == BNX2X_STATE_OPEN)
4860 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4861
4862 mod_timer(&bp->timer, jiffies + bp->current_interval);
4863 }
4864
4865 /* end of Statistics */
4866
4867 /* nic init */
4868
4869 /*
4870 * nic init service functions
4871 */
4872
bnx2x_fill(struct bnx2x * bp,u32 addr,int fill,u32 len)4873 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4874 {
4875 u32 i;
4876 if (!(len%4) && !(addr%4))
4877 for (i = 0; i < len; i += 4)
4878 REG_WR(bp, addr + i, fill);
4879 else
4880 for (i = 0; i < len; i++)
4881 REG_WR8(bp, addr + i, fill);
4882
4883 }
4884
4885 /* helper: writes FP SP data to FW - data_size in dwords */
bnx2x_wr_fp_sb_data(struct bnx2x * bp,int fw_sb_id,u32 * sb_data_p,u32 data_size)4886 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4887 int fw_sb_id,
4888 u32 *sb_data_p,
4889 u32 data_size)
4890 {
4891 int index;
4892 for (index = 0; index < data_size; index++)
4893 REG_WR(bp, BAR_CSTRORM_INTMEM +
4894 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4895 sizeof(u32)*index,
4896 *(sb_data_p + index));
4897 }
4898
bnx2x_zero_fp_sb(struct bnx2x * bp,int fw_sb_id)4899 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4900 {
4901 u32 *sb_data_p;
4902 u32 data_size = 0;
4903 struct hc_status_block_data_e2 sb_data_e2;
4904 struct hc_status_block_data_e1x sb_data_e1x;
4905
4906 /* disable the function first */
4907 if (!CHIP_IS_E1x(bp)) {
4908 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4909 sb_data_e2.common.state = SB_DISABLED;
4910 sb_data_e2.common.p_func.vf_valid = false;
4911 sb_data_p = (u32 *)&sb_data_e2;
4912 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4913 } else {
4914 memset(&sb_data_e1x, 0,
4915 sizeof(struct hc_status_block_data_e1x));
4916 sb_data_e1x.common.state = SB_DISABLED;
4917 sb_data_e1x.common.p_func.vf_valid = false;
4918 sb_data_p = (u32 *)&sb_data_e1x;
4919 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4920 }
4921 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4922
4923 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4924 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4925 CSTORM_STATUS_BLOCK_SIZE);
4926 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4927 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4928 CSTORM_SYNC_BLOCK_SIZE);
4929 }
4930
4931 /* helper: writes SP SB data to FW */
bnx2x_wr_sp_sb_data(struct bnx2x * bp,struct hc_sp_status_block_data * sp_sb_data)4932 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4933 struct hc_sp_status_block_data *sp_sb_data)
4934 {
4935 int func = BP_FUNC(bp);
4936 int i;
4937 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4938 REG_WR(bp, BAR_CSTRORM_INTMEM +
4939 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4940 i*sizeof(u32),
4941 *((u32 *)sp_sb_data + i));
4942 }
4943
bnx2x_zero_sp_sb(struct bnx2x * bp)4944 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4945 {
4946 int func = BP_FUNC(bp);
4947 struct hc_sp_status_block_data sp_sb_data;
4948 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4949
4950 sp_sb_data.state = SB_DISABLED;
4951 sp_sb_data.p_func.vf_valid = false;
4952
4953 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4954
4955 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4956 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4957 CSTORM_SP_STATUS_BLOCK_SIZE);
4958 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4959 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4960 CSTORM_SP_SYNC_BLOCK_SIZE);
4961
4962 }
4963
4964
4965 static inline
bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm * hc_sm,int igu_sb_id,int igu_seg_id)4966 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4967 int igu_sb_id, int igu_seg_id)
4968 {
4969 hc_sm->igu_sb_id = igu_sb_id;
4970 hc_sm->igu_seg_id = igu_seg_id;
4971 hc_sm->timer_value = 0xFF;
4972 hc_sm->time_to_expire = 0xFFFFFFFF;
4973 }
4974
4975
4976 /* allocates state machine ids. */
4977 static inline
bnx2x_map_sb_state_machines(struct hc_index_data * index_data)4978 void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4979 {
4980 /* zero out state machine indices */
4981 /* rx indices */
4982 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4983
4984 /* tx indices */
4985 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4986 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4987 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4988 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4989
4990 /* map indices */
4991 /* rx indices */
4992 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4993 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4994
4995 /* tx indices */
4996 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4997 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4998 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4999 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5000 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5001 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5002 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5003 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5004 }
5005
bnx2x_init_sb(struct bnx2x * bp,dma_addr_t mapping,int vfid,u8 vf_valid,int fw_sb_id,int igu_sb_id)5006 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5007 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5008 {
5009 int igu_seg_id;
5010
5011 struct hc_status_block_data_e2 sb_data_e2;
5012 struct hc_status_block_data_e1x sb_data_e1x;
5013 struct hc_status_block_sm *hc_sm_p;
5014 int data_size;
5015 u32 *sb_data_p;
5016
5017 if (CHIP_INT_MODE_IS_BC(bp))
5018 igu_seg_id = HC_SEG_ACCESS_NORM;
5019 else
5020 igu_seg_id = IGU_SEG_ACCESS_NORM;
5021
5022 bnx2x_zero_fp_sb(bp, fw_sb_id);
5023
5024 if (!CHIP_IS_E1x(bp)) {
5025 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5026 sb_data_e2.common.state = SB_ENABLED;
5027 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5028 sb_data_e2.common.p_func.vf_id = vfid;
5029 sb_data_e2.common.p_func.vf_valid = vf_valid;
5030 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5031 sb_data_e2.common.same_igu_sb_1b = true;
5032 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5033 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5034 hc_sm_p = sb_data_e2.common.state_machine;
5035 sb_data_p = (u32 *)&sb_data_e2;
5036 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5037 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5038 } else {
5039 memset(&sb_data_e1x, 0,
5040 sizeof(struct hc_status_block_data_e1x));
5041 sb_data_e1x.common.state = SB_ENABLED;
5042 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5043 sb_data_e1x.common.p_func.vf_id = 0xff;
5044 sb_data_e1x.common.p_func.vf_valid = false;
5045 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5046 sb_data_e1x.common.same_igu_sb_1b = true;
5047 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5048 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5049 hc_sm_p = sb_data_e1x.common.state_machine;
5050 sb_data_p = (u32 *)&sb_data_e1x;
5051 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5052 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5053 }
5054
5055 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5056 igu_sb_id, igu_seg_id);
5057 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5058 igu_sb_id, igu_seg_id);
5059
5060 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5061
5062 /* write indecies to HW */
5063 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5064 }
5065
bnx2x_update_coalesce_sb(struct bnx2x * bp,u8 fw_sb_id,u16 tx_usec,u16 rx_usec)5066 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5067 u16 tx_usec, u16 rx_usec)
5068 {
5069 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5070 false, rx_usec);
5071 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5072 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5073 tx_usec);
5074 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5075 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5076 tx_usec);
5077 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5078 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5079 tx_usec);
5080 }
5081
bnx2x_init_def_sb(struct bnx2x * bp)5082 static void bnx2x_init_def_sb(struct bnx2x *bp)
5083 {
5084 struct host_sp_status_block *def_sb = bp->def_status_blk;
5085 dma_addr_t mapping = bp->def_status_blk_mapping;
5086 int igu_sp_sb_index;
5087 int igu_seg_id;
5088 int port = BP_PORT(bp);
5089 int func = BP_FUNC(bp);
5090 int reg_offset, reg_offset_en5;
5091 u64 section;
5092 int index;
5093 struct hc_sp_status_block_data sp_sb_data;
5094 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5095
5096 if (CHIP_INT_MODE_IS_BC(bp)) {
5097 igu_sp_sb_index = DEF_SB_IGU_ID;
5098 igu_seg_id = HC_SEG_ACCESS_DEF;
5099 } else {
5100 igu_sp_sb_index = bp->igu_dsb_id;
5101 igu_seg_id = IGU_SEG_ACCESS_DEF;
5102 }
5103
5104 /* ATTN */
5105 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5106 atten_status_block);
5107 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5108
5109 bp->attn_state = 0;
5110
5111 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5112 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5113 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5114 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5115 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5116 int sindex;
5117 /* take care of sig[0]..sig[4] */
5118 for (sindex = 0; sindex < 4; sindex++)
5119 bp->attn_group[index].sig[sindex] =
5120 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5121
5122 if (!CHIP_IS_E1x(bp))
5123 /*
5124 * enable5 is separate from the rest of the registers,
5125 * and therefore the address skip is 4
5126 * and not 16 between the different groups
5127 */
5128 bp->attn_group[index].sig[4] = REG_RD(bp,
5129 reg_offset_en5 + 0x4*index);
5130 else
5131 bp->attn_group[index].sig[4] = 0;
5132 }
5133
5134 if (bp->common.int_block == INT_BLOCK_HC) {
5135 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5136 HC_REG_ATTN_MSG0_ADDR_L);
5137
5138 REG_WR(bp, reg_offset, U64_LO(section));
5139 REG_WR(bp, reg_offset + 4, U64_HI(section));
5140 } else if (!CHIP_IS_E1x(bp)) {
5141 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5142 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5143 }
5144
5145 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5146 sp_sb);
5147
5148 bnx2x_zero_sp_sb(bp);
5149
5150 sp_sb_data.state = SB_ENABLED;
5151 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5152 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5153 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5154 sp_sb_data.igu_seg_id = igu_seg_id;
5155 sp_sb_data.p_func.pf_id = func;
5156 sp_sb_data.p_func.vnic_id = BP_VN(bp);
5157 sp_sb_data.p_func.vf_id = 0xff;
5158
5159 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5160
5161 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5162 }
5163
bnx2x_update_coalesce(struct bnx2x * bp)5164 void bnx2x_update_coalesce(struct bnx2x *bp)
5165 {
5166 int i;
5167
5168 for_each_eth_queue(bp, i)
5169 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5170 bp->tx_ticks, bp->rx_ticks);
5171 }
5172
bnx2x_init_sp_ring(struct bnx2x * bp)5173 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5174 {
5175 spin_lock_init(&bp->spq_lock);
5176 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5177
5178 bp->spq_prod_idx = 0;
5179 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5180 bp->spq_prod_bd = bp->spq;
5181 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5182 }
5183
bnx2x_init_eq_ring(struct bnx2x * bp)5184 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5185 {
5186 int i;
5187 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5188 union event_ring_elem *elem =
5189 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5190
5191 elem->next_page.addr.hi =
5192 cpu_to_le32(U64_HI(bp->eq_mapping +
5193 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5194 elem->next_page.addr.lo =
5195 cpu_to_le32(U64_LO(bp->eq_mapping +
5196 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5197 }
5198 bp->eq_cons = 0;
5199 bp->eq_prod = NUM_EQ_DESC;
5200 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5201 /* we want a warning message before it gets rought... */
5202 atomic_set(&bp->eq_spq_left,
5203 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5204 }
5205
5206
5207 /* called with netif_addr_lock_bh() */
bnx2x_set_q_rx_mode(struct bnx2x * bp,u8 cl_id,unsigned long rx_mode_flags,unsigned long rx_accept_flags,unsigned long tx_accept_flags,unsigned long ramrod_flags)5208 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5209 unsigned long rx_mode_flags,
5210 unsigned long rx_accept_flags,
5211 unsigned long tx_accept_flags,
5212 unsigned long ramrod_flags)
5213 {
5214 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5215 int rc;
5216
5217 memset(&ramrod_param, 0, sizeof(ramrod_param));
5218
5219 /* Prepare ramrod parameters */
5220 ramrod_param.cid = 0;
5221 ramrod_param.cl_id = cl_id;
5222 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5223 ramrod_param.func_id = BP_FUNC(bp);
5224
5225 ramrod_param.pstate = &bp->sp_state;
5226 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5227
5228 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5229 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5230
5231 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5232
5233 ramrod_param.ramrod_flags = ramrod_flags;
5234 ramrod_param.rx_mode_flags = rx_mode_flags;
5235
5236 ramrod_param.rx_accept_flags = rx_accept_flags;
5237 ramrod_param.tx_accept_flags = tx_accept_flags;
5238
5239 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5240 if (rc < 0) {
5241 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5242 return;
5243 }
5244 }
5245
5246 /* called with netif_addr_lock_bh() */
bnx2x_set_storm_rx_mode(struct bnx2x * bp)5247 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5248 {
5249 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5250 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5251
5252 #ifdef BCM_CNIC
5253 if (!NO_FCOE(bp))
5254
5255 /* Configure rx_mode of FCoE Queue */
5256 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5257 #endif
5258
5259 switch (bp->rx_mode) {
5260 case BNX2X_RX_MODE_NONE:
5261 /*
5262 * 'drop all' supersedes any accept flags that may have been
5263 * passed to the function.
5264 */
5265 break;
5266 case BNX2X_RX_MODE_NORMAL:
5267 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5268 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5269 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5270
5271 /* internal switching mode */
5272 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5273 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5274 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5275
5276 break;
5277 case BNX2X_RX_MODE_ALLMULTI:
5278 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5279 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5280 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5281
5282 /* internal switching mode */
5283 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5284 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5285 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5286
5287 break;
5288 case BNX2X_RX_MODE_PROMISC:
5289 /* According to deffinition of SI mode, iface in promisc mode
5290 * should receive matched and unmatched (in resolution of port)
5291 * unicast packets.
5292 */
5293 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5294 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5295 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5296 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5297
5298 /* internal switching mode */
5299 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5300 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5301
5302 if (IS_MF_SI(bp))
5303 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5304 else
5305 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5306
5307 break;
5308 default:
5309 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5310 return;
5311 }
5312
5313 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5314 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5315 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5316 }
5317
5318 __set_bit(RAMROD_RX, &ramrod_flags);
5319 __set_bit(RAMROD_TX, &ramrod_flags);
5320
5321 bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5322 tx_accept_flags, ramrod_flags);
5323 }
5324
bnx2x_init_internal_common(struct bnx2x * bp)5325 static void bnx2x_init_internal_common(struct bnx2x *bp)
5326 {
5327 int i;
5328
5329 if (IS_MF_SI(bp))
5330 /*
5331 * In switch independent mode, the TSTORM needs to accept
5332 * packets that failed classification, since approximate match
5333 * mac addresses aren't written to NIG LLH
5334 */
5335 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5336 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5337 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5338 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5339 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5340
5341 /* Zero this manually as its initialization is
5342 currently missing in the initTool */
5343 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5344 REG_WR(bp, BAR_USTRORM_INTMEM +
5345 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5346 if (!CHIP_IS_E1x(bp)) {
5347 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5348 CHIP_INT_MODE_IS_BC(bp) ?
5349 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5350 }
5351 }
5352
bnx2x_init_internal(struct bnx2x * bp,u32 load_code)5353 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5354 {
5355 switch (load_code) {
5356 case FW_MSG_CODE_DRV_LOAD_COMMON:
5357 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5358 bnx2x_init_internal_common(bp);
5359 /* no break */
5360
5361 case FW_MSG_CODE_DRV_LOAD_PORT:
5362 /* nothing to do */
5363 /* no break */
5364
5365 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5366 /* internal memory per function is
5367 initialized inside bnx2x_pf_init */
5368 break;
5369
5370 default:
5371 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5372 break;
5373 }
5374 }
5375
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath * fp)5376 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5377 {
5378 return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5379 }
5380
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath * fp)5381 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5382 {
5383 return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5384 }
5385
bnx2x_fp_cl_id(struct bnx2x_fastpath * fp)5386 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5387 {
5388 if (CHIP_IS_E1x(fp->bp))
5389 return BP_L_ID(fp->bp) + fp->index;
5390 else /* We want Client ID to be the same as IGU SB ID for 57712 */
5391 return bnx2x_fp_igu_sb_id(fp);
5392 }
5393
bnx2x_init_eth_fp(struct bnx2x * bp,int fp_idx)5394 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5395 {
5396 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5397 u8 cos;
5398 unsigned long q_type = 0;
5399 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5400 fp->rx_queue = fp_idx;
5401 fp->cid = fp_idx;
5402 fp->cl_id = bnx2x_fp_cl_id(fp);
5403 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5404 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5405 /* qZone id equals to FW (per path) client id */
5406 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
5407
5408 /* init shortcut */
5409 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5410
5411 /* Setup SB indicies */
5412 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5413
5414 /* Configure Queue State object */
5415 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5416 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5417
5418 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5419
5420 /* init tx data */
5421 for_each_cos_in_tx_queue(fp, cos) {
5422 bnx2x_init_txdata(bp, &fp->txdata[cos],
5423 CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5424 FP_COS_TO_TXQ(fp, cos),
5425 BNX2X_TX_SB_INDEX_BASE + cos);
5426 cids[cos] = fp->txdata[cos].cid;
5427 }
5428
5429 bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5430 BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5431 bnx2x_sp_mapping(bp, q_rdata), q_type);
5432
5433 /**
5434 * Configure classification DBs: Always enable Tx switching
5435 */
5436 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5437
5438 DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
5439 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5440 fp->igu_sb_id);
5441 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5442 fp->fw_sb_id, fp->igu_sb_id);
5443
5444 bnx2x_update_fpsb_idx(fp);
5445 }
5446
bnx2x_nic_init(struct bnx2x * bp,u32 load_code)5447 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5448 {
5449 int i;
5450
5451 for_each_eth_queue(bp, i)
5452 bnx2x_init_eth_fp(bp, i);
5453 #ifdef BCM_CNIC
5454 if (!NO_FCOE(bp))
5455 bnx2x_init_fcoe_fp(bp);
5456
5457 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5458 BNX2X_VF_ID_INVALID, false,
5459 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5460
5461 #endif
5462
5463 /* Initialize MOD_ABS interrupts */
5464 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5465 bp->common.shmem_base, bp->common.shmem2_base,
5466 BP_PORT(bp));
5467 /* ensure status block indices were read */
5468 rmb();
5469
5470 bnx2x_init_def_sb(bp);
5471 bnx2x_update_dsb_idx(bp);
5472 bnx2x_init_rx_rings(bp);
5473 bnx2x_init_tx_rings(bp);
5474 bnx2x_init_sp_ring(bp);
5475 bnx2x_init_eq_ring(bp);
5476 bnx2x_init_internal(bp, load_code);
5477 bnx2x_pf_init(bp);
5478 bnx2x_stats_init(bp);
5479
5480 /* flush all before enabling interrupts */
5481 mb();
5482 mmiowb();
5483
5484 bnx2x_int_enable(bp);
5485
5486 /* Check for SPIO5 */
5487 bnx2x_attn_int_deasserted0(bp,
5488 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5489 AEU_INPUTS_ATTN_BITS_SPIO5);
5490 }
5491
5492 /* end of nic init */
5493
5494 /*
5495 * gzip service functions
5496 */
5497
bnx2x_gunzip_init(struct bnx2x * bp)5498 static int bnx2x_gunzip_init(struct bnx2x *bp)
5499 {
5500 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5501 &bp->gunzip_mapping, GFP_KERNEL);
5502 if (bp->gunzip_buf == NULL)
5503 goto gunzip_nomem1;
5504
5505 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5506 if (bp->strm == NULL)
5507 goto gunzip_nomem2;
5508
5509 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5510 if (bp->strm->workspace == NULL)
5511 goto gunzip_nomem3;
5512
5513 return 0;
5514
5515 gunzip_nomem3:
5516 kfree(bp->strm);
5517 bp->strm = NULL;
5518
5519 gunzip_nomem2:
5520 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5521 bp->gunzip_mapping);
5522 bp->gunzip_buf = NULL;
5523
5524 gunzip_nomem1:
5525 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5526 return -ENOMEM;
5527 }
5528
bnx2x_gunzip_end(struct bnx2x * bp)5529 static void bnx2x_gunzip_end(struct bnx2x *bp)
5530 {
5531 if (bp->strm) {
5532 vfree(bp->strm->workspace);
5533 kfree(bp->strm);
5534 bp->strm = NULL;
5535 }
5536
5537 if (bp->gunzip_buf) {
5538 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5539 bp->gunzip_mapping);
5540 bp->gunzip_buf = NULL;
5541 }
5542 }
5543
bnx2x_gunzip(struct bnx2x * bp,const u8 * zbuf,int len)5544 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5545 {
5546 int n, rc;
5547
5548 /* check gzip header */
5549 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5550 BNX2X_ERR("Bad gzip header\n");
5551 return -EINVAL;
5552 }
5553
5554 n = 10;
5555
5556 #define FNAME 0x8
5557
5558 if (zbuf[3] & FNAME)
5559 while ((zbuf[n++] != 0) && (n < len));
5560
5561 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5562 bp->strm->avail_in = len - n;
5563 bp->strm->next_out = bp->gunzip_buf;
5564 bp->strm->avail_out = FW_BUF_SIZE;
5565
5566 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5567 if (rc != Z_OK)
5568 return rc;
5569
5570 rc = zlib_inflate(bp->strm, Z_FINISH);
5571 if ((rc != Z_OK) && (rc != Z_STREAM_END))
5572 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5573 bp->strm->msg);
5574
5575 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5576 if (bp->gunzip_outlen & 0x3)
5577 netdev_err(bp->dev,
5578 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5579 bp->gunzip_outlen);
5580 bp->gunzip_outlen >>= 2;
5581
5582 zlib_inflateEnd(bp->strm);
5583
5584 if (rc == Z_STREAM_END)
5585 return 0;
5586
5587 return rc;
5588 }
5589
5590 /* nic load/unload */
5591
5592 /*
5593 * General service functions
5594 */
5595
5596 /* send a NIG loopback debug packet */
bnx2x_lb_pckt(struct bnx2x * bp)5597 static void bnx2x_lb_pckt(struct bnx2x *bp)
5598 {
5599 u32 wb_write[3];
5600
5601 /* Ethernet source and destination addresses */
5602 wb_write[0] = 0x55555555;
5603 wb_write[1] = 0x55555555;
5604 wb_write[2] = 0x20; /* SOP */
5605 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5606
5607 /* NON-IP protocol */
5608 wb_write[0] = 0x09000000;
5609 wb_write[1] = 0x55555555;
5610 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
5611 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5612 }
5613
5614 /* some of the internal memories
5615 * are not directly readable from the driver
5616 * to test them we send debug packets
5617 */
bnx2x_int_mem_test(struct bnx2x * bp)5618 static int bnx2x_int_mem_test(struct bnx2x *bp)
5619 {
5620 int factor;
5621 int count, i;
5622 u32 val = 0;
5623
5624 if (CHIP_REV_IS_FPGA(bp))
5625 factor = 120;
5626 else if (CHIP_REV_IS_EMUL(bp))
5627 factor = 200;
5628 else
5629 factor = 1;
5630
5631 /* Disable inputs of parser neighbor blocks */
5632 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5633 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5634 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5635 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5636
5637 /* Write 0 to parser credits for CFC search request */
5638 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5639
5640 /* send Ethernet packet */
5641 bnx2x_lb_pckt(bp);
5642
5643 /* TODO do i reset NIG statistic? */
5644 /* Wait until NIG register shows 1 packet of size 0x10 */
5645 count = 1000 * factor;
5646 while (count) {
5647
5648 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5649 val = *bnx2x_sp(bp, wb_data[0]);
5650 if (val == 0x10)
5651 break;
5652
5653 msleep(10);
5654 count--;
5655 }
5656 if (val != 0x10) {
5657 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5658 return -1;
5659 }
5660
5661 /* Wait until PRS register shows 1 packet */
5662 count = 1000 * factor;
5663 while (count) {
5664 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5665 if (val == 1)
5666 break;
5667
5668 msleep(10);
5669 count--;
5670 }
5671 if (val != 0x1) {
5672 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5673 return -2;
5674 }
5675
5676 /* Reset and init BRB, PRS */
5677 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5678 msleep(50);
5679 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5680 msleep(50);
5681 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5682 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5683
5684 DP(NETIF_MSG_HW, "part2\n");
5685
5686 /* Disable inputs of parser neighbor blocks */
5687 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5688 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5689 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5690 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5691
5692 /* Write 0 to parser credits for CFC search request */
5693 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5694
5695 /* send 10 Ethernet packets */
5696 for (i = 0; i < 10; i++)
5697 bnx2x_lb_pckt(bp);
5698
5699 /* Wait until NIG register shows 10 + 1
5700 packets of size 11*0x10 = 0xb0 */
5701 count = 1000 * factor;
5702 while (count) {
5703
5704 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5705 val = *bnx2x_sp(bp, wb_data[0]);
5706 if (val == 0xb0)
5707 break;
5708
5709 msleep(10);
5710 count--;
5711 }
5712 if (val != 0xb0) {
5713 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5714 return -3;
5715 }
5716
5717 /* Wait until PRS register shows 2 packets */
5718 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5719 if (val != 2)
5720 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5721
5722 /* Write 1 to parser credits for CFC search request */
5723 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5724
5725 /* Wait until PRS register shows 3 packets */
5726 msleep(10 * factor);
5727 /* Wait until NIG register shows 1 packet of size 0x10 */
5728 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5729 if (val != 3)
5730 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5731
5732 /* clear NIG EOP FIFO */
5733 for (i = 0; i < 11; i++)
5734 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5735 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5736 if (val != 1) {
5737 BNX2X_ERR("clear of NIG failed\n");
5738 return -4;
5739 }
5740
5741 /* Reset and init BRB, PRS, NIG */
5742 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5743 msleep(50);
5744 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5745 msleep(50);
5746 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5747 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5748 #ifndef BCM_CNIC
5749 /* set NIC mode */
5750 REG_WR(bp, PRS_REG_NIC_MODE, 1);
5751 #endif
5752
5753 /* Enable inputs of parser neighbor blocks */
5754 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5755 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5756 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5757 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5758
5759 DP(NETIF_MSG_HW, "done\n");
5760
5761 return 0; /* OK */
5762 }
5763
bnx2x_enable_blocks_attention(struct bnx2x * bp)5764 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5765 {
5766 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5767 if (!CHIP_IS_E1x(bp))
5768 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5769 else
5770 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5771 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5772 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5773 /*
5774 * mask read length error interrupts in brb for parser
5775 * (parsing unit and 'checksum and crc' unit)
5776 * these errors are legal (PU reads fixed length and CAC can cause
5777 * read length error on truncated packets)
5778 */
5779 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5780 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5781 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5782 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5783 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5784 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5785 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5786 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5787 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5788 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5789 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5790 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5791 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5792 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5793 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5794 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5795 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5796 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5797 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5798
5799 if (CHIP_REV_IS_FPGA(bp))
5800 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5801 else if (!CHIP_IS_E1x(bp))
5802 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5803 (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5804 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5805 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5806 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5807 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5808 else
5809 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5810 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5811 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5812 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5813 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5814
5815 if (!CHIP_IS_E1x(bp))
5816 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5817 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5818
5819 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5820 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5821 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5822 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
5823 }
5824
bnx2x_reset_common(struct bnx2x * bp)5825 static void bnx2x_reset_common(struct bnx2x *bp)
5826 {
5827 u32 val = 0x1400;
5828
5829 /* reset_common */
5830 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5831 0xd3ffff7f);
5832
5833 if (CHIP_IS_E3(bp)) {
5834 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5835 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5836 }
5837
5838 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5839 }
5840
bnx2x_setup_dmae(struct bnx2x * bp)5841 static void bnx2x_setup_dmae(struct bnx2x *bp)
5842 {
5843 bp->dmae_ready = 0;
5844 spin_lock_init(&bp->dmae_lock);
5845 }
5846
bnx2x_init_pxp(struct bnx2x * bp)5847 static void bnx2x_init_pxp(struct bnx2x *bp)
5848 {
5849 u16 devctl;
5850 int r_order, w_order;
5851
5852 pci_read_config_word(bp->pdev,
5853 pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5854 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5855 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5856 if (bp->mrrs == -1)
5857 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5858 else {
5859 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5860 r_order = bp->mrrs;
5861 }
5862
5863 bnx2x_init_pxp_arb(bp, r_order, w_order);
5864 }
5865
bnx2x_setup_fan_failure_detection(struct bnx2x * bp)5866 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5867 {
5868 int is_required;
5869 u32 val;
5870 int port;
5871
5872 if (BP_NOMCP(bp))
5873 return;
5874
5875 is_required = 0;
5876 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5877 SHARED_HW_CFG_FAN_FAILURE_MASK;
5878
5879 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5880 is_required = 1;
5881
5882 /*
5883 * The fan failure mechanism is usually related to the PHY type since
5884 * the power consumption of the board is affected by the PHY. Currently,
5885 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5886 */
5887 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5888 for (port = PORT_0; port < PORT_MAX; port++) {
5889 is_required |=
5890 bnx2x_fan_failure_det_req(
5891 bp,
5892 bp->common.shmem_base,
5893 bp->common.shmem2_base,
5894 port);
5895 }
5896
5897 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5898
5899 if (is_required == 0)
5900 return;
5901
5902 /* Fan failure is indicated by SPIO 5 */
5903 bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5904 MISC_REGISTERS_SPIO_INPUT_HI_Z);
5905
5906 /* set to active low mode */
5907 val = REG_RD(bp, MISC_REG_SPIO_INT);
5908 val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5909 MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5910 REG_WR(bp, MISC_REG_SPIO_INT, val);
5911
5912 /* enable interrupt to signal the IGU */
5913 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5914 val |= (1 << MISC_REGISTERS_SPIO_5);
5915 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5916 }
5917
bnx2x_pretend_func(struct bnx2x * bp,u8 pretend_func_num)5918 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5919 {
5920 u32 offset = 0;
5921
5922 if (CHIP_IS_E1(bp))
5923 return;
5924 if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5925 return;
5926
5927 switch (BP_ABS_FUNC(bp)) {
5928 case 0:
5929 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5930 break;
5931 case 1:
5932 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5933 break;
5934 case 2:
5935 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5936 break;
5937 case 3:
5938 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5939 break;
5940 case 4:
5941 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5942 break;
5943 case 5:
5944 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5945 break;
5946 case 6:
5947 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5948 break;
5949 case 7:
5950 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5951 break;
5952 default:
5953 return;
5954 }
5955
5956 REG_WR(bp, offset, pretend_func_num);
5957 REG_RD(bp, offset);
5958 DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5959 }
5960
bnx2x_pf_disable(struct bnx2x * bp)5961 void bnx2x_pf_disable(struct bnx2x *bp)
5962 {
5963 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5964 val &= ~IGU_PF_CONF_FUNC_EN;
5965
5966 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5967 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5968 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5969 }
5970
bnx2x__common_init_phy(struct bnx2x * bp)5971 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5972 {
5973 u32 shmem_base[2], shmem2_base[2];
5974 shmem_base[0] = bp->common.shmem_base;
5975 shmem2_base[0] = bp->common.shmem2_base;
5976 if (!CHIP_IS_E1x(bp)) {
5977 shmem_base[1] =
5978 SHMEM2_RD(bp, other_shmem_base_addr);
5979 shmem2_base[1] =
5980 SHMEM2_RD(bp, other_shmem2_base_addr);
5981 }
5982 bnx2x_acquire_phy_lock(bp);
5983 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5984 bp->common.chip_id);
5985 bnx2x_release_phy_lock(bp);
5986 }
5987
5988 /**
5989 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5990 *
5991 * @bp: driver handle
5992 */
bnx2x_init_hw_common(struct bnx2x * bp)5993 static int bnx2x_init_hw_common(struct bnx2x *bp)
5994 {
5995 u32 val;
5996
5997 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
5998
5999 /*
6000 * take the UNDI lock to protect undi_unload flow from accessing
6001 * registers while we're resetting the chip
6002 */
6003 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6004
6005 bnx2x_reset_common(bp);
6006 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6007
6008 val = 0xfffc;
6009 if (CHIP_IS_E3(bp)) {
6010 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6011 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6012 }
6013 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6014
6015 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6016
6017 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6018
6019 if (!CHIP_IS_E1x(bp)) {
6020 u8 abs_func_id;
6021
6022 /**
6023 * 4-port mode or 2-port mode we need to turn of master-enable
6024 * for everyone, after that, turn it back on for self.
6025 * so, we disregard multi-function or not, and always disable
6026 * for all functions on the given path, this means 0,2,4,6 for
6027 * path 0 and 1,3,5,7 for path 1
6028 */
6029 for (abs_func_id = BP_PATH(bp);
6030 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6031 if (abs_func_id == BP_ABS_FUNC(bp)) {
6032 REG_WR(bp,
6033 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6034 1);
6035 continue;
6036 }
6037
6038 bnx2x_pretend_func(bp, abs_func_id);
6039 /* clear pf enable */
6040 bnx2x_pf_disable(bp);
6041 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6042 }
6043 }
6044
6045 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6046 if (CHIP_IS_E1(bp)) {
6047 /* enable HW interrupt from PXP on USDM overflow
6048 bit 16 on INT_MASK_0 */
6049 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6050 }
6051
6052 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6053 bnx2x_init_pxp(bp);
6054
6055 #ifdef __BIG_ENDIAN
6056 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6057 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6058 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6059 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6060 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6061 /* make sure this value is 0 */
6062 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6063
6064 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6065 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6066 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6067 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6068 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6069 #endif
6070
6071 bnx2x_ilt_init_page_size(bp, INITOP_SET);
6072
6073 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6074 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6075
6076 /* let the HW do it's magic ... */
6077 msleep(100);
6078 /* finish PXP init */
6079 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6080 if (val != 1) {
6081 BNX2X_ERR("PXP2 CFG failed\n");
6082 return -EBUSY;
6083 }
6084 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6085 if (val != 1) {
6086 BNX2X_ERR("PXP2 RD_INIT failed\n");
6087 return -EBUSY;
6088 }
6089
6090 /* Timers bug workaround E2 only. We need to set the entire ILT to
6091 * have entries with value "0" and valid bit on.
6092 * This needs to be done by the first PF that is loaded in a path
6093 * (i.e. common phase)
6094 */
6095 if (!CHIP_IS_E1x(bp)) {
6096 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6097 * (i.e. vnic3) to start even if it is marked as "scan-off".
6098 * This occurs when a different function (func2,3) is being marked
6099 * as "scan-off". Real-life scenario for example: if a driver is being
6100 * load-unloaded while func6,7 are down. This will cause the timer to access
6101 * the ilt, translate to a logical address and send a request to read/write.
6102 * Since the ilt for the function that is down is not valid, this will cause
6103 * a translation error which is unrecoverable.
6104 * The Workaround is intended to make sure that when this happens nothing fatal
6105 * will occur. The workaround:
6106 * 1. First PF driver which loads on a path will:
6107 * a. After taking the chip out of reset, by using pretend,
6108 * it will write "0" to the following registers of
6109 * the other vnics.
6110 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6111 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6112 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6113 * And for itself it will write '1' to
6114 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6115 * dmae-operations (writing to pram for example.)
6116 * note: can be done for only function 6,7 but cleaner this
6117 * way.
6118 * b. Write zero+valid to the entire ILT.
6119 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6120 * VNIC3 (of that port). The range allocated will be the
6121 * entire ILT. This is needed to prevent ILT range error.
6122 * 2. Any PF driver load flow:
6123 * a. ILT update with the physical addresses of the allocated
6124 * logical pages.
6125 * b. Wait 20msec. - note that this timeout is needed to make
6126 * sure there are no requests in one of the PXP internal
6127 * queues with "old" ILT addresses.
6128 * c. PF enable in the PGLC.
6129 * d. Clear the was_error of the PF in the PGLC. (could have
6130 * occured while driver was down)
6131 * e. PF enable in the CFC (WEAK + STRONG)
6132 * f. Timers scan enable
6133 * 3. PF driver unload flow:
6134 * a. Clear the Timers scan_en.
6135 * b. Polling for scan_on=0 for that PF.
6136 * c. Clear the PF enable bit in the PXP.
6137 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6138 * e. Write zero+valid to all ILT entries (The valid bit must
6139 * stay set)
6140 * f. If this is VNIC 3 of a port then also init
6141 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6142 * to the last enrty in the ILT.
6143 *
6144 * Notes:
6145 * Currently the PF error in the PGLC is non recoverable.
6146 * In the future the there will be a recovery routine for this error.
6147 * Currently attention is masked.
6148 * Having an MCP lock on the load/unload process does not guarantee that
6149 * there is no Timer disable during Func6/7 enable. This is because the
6150 * Timers scan is currently being cleared by the MCP on FLR.
6151 * Step 2.d can be done only for PF6/7 and the driver can also check if
6152 * there is error before clearing it. But the flow above is simpler and
6153 * more general.
6154 * All ILT entries are written by zero+valid and not just PF6/7
6155 * ILT entries since in the future the ILT entries allocation for
6156 * PF-s might be dynamic.
6157 */
6158 struct ilt_client_info ilt_cli;
6159 struct bnx2x_ilt ilt;
6160 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6161 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6162
6163 /* initialize dummy TM client */
6164 ilt_cli.start = 0;
6165 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6166 ilt_cli.client_num = ILT_CLIENT_TM;
6167
6168 /* Step 1: set zeroes to all ilt page entries with valid bit on
6169 * Step 2: set the timers first/last ilt entry to point
6170 * to the entire range to prevent ILT range error for 3rd/4th
6171 * vnic (this code assumes existance of the vnic)
6172 *
6173 * both steps performed by call to bnx2x_ilt_client_init_op()
6174 * with dummy TM client
6175 *
6176 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6177 * and his brother are split registers
6178 */
6179 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6180 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6181 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6182
6183 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6184 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6185 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6186 }
6187
6188
6189 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6190 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6191
6192 if (!CHIP_IS_E1x(bp)) {
6193 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6194 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6195 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6196
6197 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6198
6199 /* let the HW do it's magic ... */
6200 do {
6201 msleep(200);
6202 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6203 } while (factor-- && (val != 1));
6204
6205 if (val != 1) {
6206 BNX2X_ERR("ATC_INIT failed\n");
6207 return -EBUSY;
6208 }
6209 }
6210
6211 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6212
6213 /* clean the DMAE memory */
6214 bp->dmae_ready = 1;
6215 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6216
6217 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6218
6219 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6220
6221 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6222
6223 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6224
6225 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6226 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6227 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6228 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6229
6230 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6231
6232
6233 /* QM queues pointers table */
6234 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6235
6236 /* soft reset pulse */
6237 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6238 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6239
6240 #ifdef BCM_CNIC
6241 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6242 #endif
6243
6244 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6245 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6246 if (!CHIP_REV_IS_SLOW(bp))
6247 /* enable hw interrupt from doorbell Q */
6248 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6249
6250 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6251
6252 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6253 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6254
6255 if (!CHIP_IS_E1(bp))
6256 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6257
6258 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6259 /* Bit-map indicating which L2 hdrs may appear
6260 * after the basic Ethernet header
6261 */
6262 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6263 bp->path_has_ovlan ? 7 : 6);
6264
6265 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6266 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6267 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6268 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6269
6270 if (!CHIP_IS_E1x(bp)) {
6271 /* reset VFC memories */
6272 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6273 VFC_MEMORIES_RST_REG_CAM_RST |
6274 VFC_MEMORIES_RST_REG_RAM_RST);
6275 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6276 VFC_MEMORIES_RST_REG_CAM_RST |
6277 VFC_MEMORIES_RST_REG_RAM_RST);
6278
6279 msleep(20);
6280 }
6281
6282 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6283 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6284 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6285 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6286
6287 /* sync semi rtc */
6288 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6289 0x80000000);
6290 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6291 0x80000000);
6292
6293 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6294 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6295 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6296
6297 if (!CHIP_IS_E1x(bp))
6298 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6299 bp->path_has_ovlan ? 7 : 6);
6300
6301 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6302
6303 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6304
6305 #ifdef BCM_CNIC
6306 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6307 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6308 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6309 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6310 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6311 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6312 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6313 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6314 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6315 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6316 #endif
6317 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6318
6319 if (sizeof(union cdu_context) != 1024)
6320 /* we currently assume that a context is 1024 bytes */
6321 dev_alert(&bp->pdev->dev,
6322 "please adjust the size of cdu_context(%ld)\n",
6323 (long)sizeof(union cdu_context));
6324
6325 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6326 val = (4 << 24) + (0 << 12) + 1024;
6327 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6328
6329 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6330 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6331 /* enable context validation interrupt from CFC */
6332 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6333
6334 /* set the thresholds to prevent CFC/CDU race */
6335 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6336
6337 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6338
6339 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6340 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6341
6342 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6343 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6344
6345 /* Reset PCIE errors for debug */
6346 REG_WR(bp, 0x2814, 0xffffffff);
6347 REG_WR(bp, 0x3820, 0xffffffff);
6348
6349 if (!CHIP_IS_E1x(bp)) {
6350 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6351 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6352 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6353 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6354 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6355 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6356 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6357 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6358 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6359 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6360 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6361 }
6362
6363 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6364 if (!CHIP_IS_E1(bp)) {
6365 /* in E3 this done in per-port section */
6366 if (!CHIP_IS_E3(bp))
6367 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6368 }
6369 if (CHIP_IS_E1H(bp))
6370 /* not applicable for E2 (and above ...) */
6371 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6372
6373 if (CHIP_REV_IS_SLOW(bp))
6374 msleep(200);
6375
6376 /* finish CFC init */
6377 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6378 if (val != 1) {
6379 BNX2X_ERR("CFC LL_INIT failed\n");
6380 return -EBUSY;
6381 }
6382 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6383 if (val != 1) {
6384 BNX2X_ERR("CFC AC_INIT failed\n");
6385 return -EBUSY;
6386 }
6387 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6388 if (val != 1) {
6389 BNX2X_ERR("CFC CAM_INIT failed\n");
6390 return -EBUSY;
6391 }
6392 REG_WR(bp, CFC_REG_DEBUG0, 0);
6393
6394 if (CHIP_IS_E1(bp)) {
6395 /* read NIG statistic
6396 to see if this is our first up since powerup */
6397 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6398 val = *bnx2x_sp(bp, wb_data[0]);
6399
6400 /* do internal memory self test */
6401 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6402 BNX2X_ERR("internal mem self test failed\n");
6403 return -EBUSY;
6404 }
6405 }
6406
6407 bnx2x_setup_fan_failure_detection(bp);
6408
6409 /* clear PXP2 attentions */
6410 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6411
6412 bnx2x_enable_blocks_attention(bp);
6413 bnx2x_enable_blocks_parity(bp);
6414
6415 if (!BP_NOMCP(bp)) {
6416 if (CHIP_IS_E1x(bp))
6417 bnx2x__common_init_phy(bp);
6418 } else
6419 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6420
6421 return 0;
6422 }
6423
6424 /**
6425 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6426 *
6427 * @bp: driver handle
6428 */
bnx2x_init_hw_common_chip(struct bnx2x * bp)6429 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6430 {
6431 int rc = bnx2x_init_hw_common(bp);
6432
6433 if (rc)
6434 return rc;
6435
6436 /* In E2 2-PORT mode, same ext phy is used for the two paths */
6437 if (!BP_NOMCP(bp))
6438 bnx2x__common_init_phy(bp);
6439
6440 return 0;
6441 }
6442
bnx2x_init_hw_port(struct bnx2x * bp)6443 static int bnx2x_init_hw_port(struct bnx2x *bp)
6444 {
6445 int port = BP_PORT(bp);
6446 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6447 u32 low, high;
6448 u32 val;
6449
6450 bnx2x__link_reset(bp);
6451
6452 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
6453
6454 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6455
6456 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6457 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6458 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6459
6460 /* Timers bug workaround: disables the pf_master bit in pglue at
6461 * common phase, we need to enable it here before any dmae access are
6462 * attempted. Therefore we manually added the enable-master to the
6463 * port phase (it also happens in the function phase)
6464 */
6465 if (!CHIP_IS_E1x(bp))
6466 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6467
6468 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6469 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6470 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6471 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6472
6473 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6474 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6475 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6476 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6477
6478 /* QM cid (connection) count */
6479 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6480
6481 #ifdef BCM_CNIC
6482 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6483 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6484 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6485 #endif
6486
6487 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6488
6489 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6490 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6491
6492 if (IS_MF(bp))
6493 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6494 else if (bp->dev->mtu > 4096) {
6495 if (bp->flags & ONE_PORT_FLAG)
6496 low = 160;
6497 else {
6498 val = bp->dev->mtu;
6499 /* (24*1024 + val*4)/256 */
6500 low = 96 + (val/64) +
6501 ((val % 64) ? 1 : 0);
6502 }
6503 } else
6504 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6505 high = low + 56; /* 14*1024/256 */
6506 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6507 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6508 }
6509
6510 if (CHIP_MODE_IS_4_PORT(bp))
6511 REG_WR(bp, (BP_PORT(bp) ?
6512 BRB1_REG_MAC_GUARANTIED_1 :
6513 BRB1_REG_MAC_GUARANTIED_0), 40);
6514
6515
6516 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6517 if (CHIP_IS_E3B0(bp))
6518 /* Ovlan exists only if we are in multi-function +
6519 * switch-dependent mode, in switch-independent there
6520 * is no ovlan headers
6521 */
6522 REG_WR(bp, BP_PORT(bp) ?
6523 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6524 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6525 (bp->path_has_ovlan ? 7 : 6));
6526
6527 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6528 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6529 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6530 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6531
6532 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6533 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6534 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6535 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6536
6537 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6538 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6539
6540 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6541
6542 if (CHIP_IS_E1x(bp)) {
6543 /* configure PBF to work without PAUSE mtu 9000 */
6544 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6545
6546 /* update threshold */
6547 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6548 /* update init credit */
6549 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6550
6551 /* probe changes */
6552 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6553 udelay(50);
6554 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6555 }
6556
6557 #ifdef BCM_CNIC
6558 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6559 #endif
6560 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6561 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6562
6563 if (CHIP_IS_E1(bp)) {
6564 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6565 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6566 }
6567 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6568
6569 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6570
6571 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6572 /* init aeu_mask_attn_func_0/1:
6573 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6574 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6575 * bits 4-7 are used for "per vn group attention" */
6576 val = IS_MF(bp) ? 0xF7 : 0x7;
6577 /* Enable DCBX attention for all but E1 */
6578 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6579 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6580
6581 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6582
6583 if (!CHIP_IS_E1x(bp)) {
6584 /* Bit-map indicating which L2 hdrs may appear after the
6585 * basic Ethernet header
6586 */
6587 REG_WR(bp, BP_PORT(bp) ?
6588 NIG_REG_P1_HDRS_AFTER_BASIC :
6589 NIG_REG_P0_HDRS_AFTER_BASIC,
6590 IS_MF_SD(bp) ? 7 : 6);
6591
6592 if (CHIP_IS_E3(bp))
6593 REG_WR(bp, BP_PORT(bp) ?
6594 NIG_REG_LLH1_MF_MODE :
6595 NIG_REG_LLH_MF_MODE, IS_MF(bp));
6596 }
6597 if (!CHIP_IS_E3(bp))
6598 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6599
6600 if (!CHIP_IS_E1(bp)) {
6601 /* 0x2 disable mf_ov, 0x1 enable */
6602 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6603 (IS_MF_SD(bp) ? 0x1 : 0x2));
6604
6605 if (!CHIP_IS_E1x(bp)) {
6606 val = 0;
6607 switch (bp->mf_mode) {
6608 case MULTI_FUNCTION_SD:
6609 val = 1;
6610 break;
6611 case MULTI_FUNCTION_SI:
6612 val = 2;
6613 break;
6614 }
6615
6616 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6617 NIG_REG_LLH0_CLS_TYPE), val);
6618 }
6619 {
6620 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6621 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6622 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6623 }
6624 }
6625
6626
6627 /* If SPIO5 is set to generate interrupts, enable it for this port */
6628 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6629 if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6630 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6631 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6632 val = REG_RD(bp, reg_addr);
6633 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6634 REG_WR(bp, reg_addr, val);
6635 }
6636
6637 return 0;
6638 }
6639
bnx2x_ilt_wr(struct bnx2x * bp,u32 index,dma_addr_t addr)6640 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6641 {
6642 int reg;
6643
6644 if (CHIP_IS_E1(bp))
6645 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6646 else
6647 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6648
6649 bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6650 }
6651
bnx2x_igu_clear_sb(struct bnx2x * bp,u8 idu_sb_id)6652 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6653 {
6654 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6655 }
6656
bnx2x_clear_func_ilt(struct bnx2x * bp,u32 func)6657 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6658 {
6659 u32 i, base = FUNC_ILT_BASE(func);
6660 for (i = base; i < base + ILT_PER_FUNC; i++)
6661 bnx2x_ilt_wr(bp, i, 0);
6662 }
6663
bnx2x_init_hw_func(struct bnx2x * bp)6664 static int bnx2x_init_hw_func(struct bnx2x *bp)
6665 {
6666 int port = BP_PORT(bp);
6667 int func = BP_FUNC(bp);
6668 int init_phase = PHASE_PF0 + func;
6669 struct bnx2x_ilt *ilt = BP_ILT(bp);
6670 u16 cdu_ilt_start;
6671 u32 addr, val;
6672 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6673 int i, main_mem_width, rc;
6674
6675 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
6676
6677 /* FLR cleanup - hmmm */
6678 if (!CHIP_IS_E1x(bp)) {
6679 rc = bnx2x_pf_flr_clnup(bp);
6680 if (rc)
6681 return rc;
6682 }
6683
6684 /* set MSI reconfigure capability */
6685 if (bp->common.int_block == INT_BLOCK_HC) {
6686 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6687 val = REG_RD(bp, addr);
6688 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6689 REG_WR(bp, addr, val);
6690 }
6691
6692 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6693 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6694
6695 ilt = BP_ILT(bp);
6696 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6697
6698 for (i = 0; i < L2_ILT_LINES(bp); i++) {
6699 ilt->lines[cdu_ilt_start + i].page =
6700 bp->context.vcxt + (ILT_PAGE_CIDS * i);
6701 ilt->lines[cdu_ilt_start + i].page_mapping =
6702 bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6703 /* cdu ilt pages are allocated manually so there's no need to
6704 set the size */
6705 }
6706 bnx2x_ilt_init_op(bp, INITOP_SET);
6707
6708 #ifdef BCM_CNIC
6709 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6710
6711 /* T1 hash bits value determines the T1 number of entries */
6712 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6713 #endif
6714
6715 #ifndef BCM_CNIC
6716 /* set NIC mode */
6717 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6718 #endif /* BCM_CNIC */
6719
6720 if (!CHIP_IS_E1x(bp)) {
6721 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6722
6723 /* Turn on a single ISR mode in IGU if driver is going to use
6724 * INT#x or MSI
6725 */
6726 if (!(bp->flags & USING_MSIX_FLAG))
6727 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6728 /*
6729 * Timers workaround bug: function init part.
6730 * Need to wait 20msec after initializing ILT,
6731 * needed to make sure there are no requests in
6732 * one of the PXP internal queues with "old" ILT addresses
6733 */
6734 msleep(20);
6735 /*
6736 * Master enable - Due to WB DMAE writes performed before this
6737 * register is re-initialized as part of the regular function
6738 * init
6739 */
6740 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6741 /* Enable the function in IGU */
6742 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6743 }
6744
6745 bp->dmae_ready = 1;
6746
6747 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6748
6749 if (!CHIP_IS_E1x(bp))
6750 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6751
6752 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6753 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6754 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6755 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6756 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6757 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6758 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6759 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6760 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6761 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6762 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6763 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6764 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6765
6766 if (!CHIP_IS_E1x(bp))
6767 REG_WR(bp, QM_REG_PF_EN, 1);
6768
6769 if (!CHIP_IS_E1x(bp)) {
6770 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6771 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6772 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6773 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6774 }
6775 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6776
6777 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6778 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6779 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6780 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6781 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6782 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6783 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6784 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6785 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6786 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6787 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6788 if (!CHIP_IS_E1x(bp))
6789 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6790
6791 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6792
6793 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6794
6795 if (!CHIP_IS_E1x(bp))
6796 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6797
6798 if (IS_MF(bp)) {
6799 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6800 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6801 }
6802
6803 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6804
6805 /* HC init per function */
6806 if (bp->common.int_block == INT_BLOCK_HC) {
6807 if (CHIP_IS_E1H(bp)) {
6808 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6809
6810 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6811 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6812 }
6813 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6814
6815 } else {
6816 int num_segs, sb_idx, prod_offset;
6817
6818 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6819
6820 if (!CHIP_IS_E1x(bp)) {
6821 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6822 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6823 }
6824
6825 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6826
6827 if (!CHIP_IS_E1x(bp)) {
6828 int dsb_idx = 0;
6829 /**
6830 * Producer memory:
6831 * E2 mode: address 0-135 match to the mapping memory;
6832 * 136 - PF0 default prod; 137 - PF1 default prod;
6833 * 138 - PF2 default prod; 139 - PF3 default prod;
6834 * 140 - PF0 attn prod; 141 - PF1 attn prod;
6835 * 142 - PF2 attn prod; 143 - PF3 attn prod;
6836 * 144-147 reserved.
6837 *
6838 * E1.5 mode - In backward compatible mode;
6839 * for non default SB; each even line in the memory
6840 * holds the U producer and each odd line hold
6841 * the C producer. The first 128 producers are for
6842 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6843 * producers are for the DSB for each PF.
6844 * Each PF has five segments: (the order inside each
6845 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6846 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6847 * 144-147 attn prods;
6848 */
6849 /* non-default-status-blocks */
6850 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6851 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6852 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6853 prod_offset = (bp->igu_base_sb + sb_idx) *
6854 num_segs;
6855
6856 for (i = 0; i < num_segs; i++) {
6857 addr = IGU_REG_PROD_CONS_MEMORY +
6858 (prod_offset + i) * 4;
6859 REG_WR(bp, addr, 0);
6860 }
6861 /* send consumer update with value 0 */
6862 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6863 USTORM_ID, 0, IGU_INT_NOP, 1);
6864 bnx2x_igu_clear_sb(bp,
6865 bp->igu_base_sb + sb_idx);
6866 }
6867
6868 /* default-status-blocks */
6869 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6870 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6871
6872 if (CHIP_MODE_IS_4_PORT(bp))
6873 dsb_idx = BP_FUNC(bp);
6874 else
6875 dsb_idx = BP_VN(bp);
6876
6877 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6878 IGU_BC_BASE_DSB_PROD + dsb_idx :
6879 IGU_NORM_BASE_DSB_PROD + dsb_idx);
6880
6881 /*
6882 * igu prods come in chunks of E1HVN_MAX (4) -
6883 * does not matters what is the current chip mode
6884 */
6885 for (i = 0; i < (num_segs * E1HVN_MAX);
6886 i += E1HVN_MAX) {
6887 addr = IGU_REG_PROD_CONS_MEMORY +
6888 (prod_offset + i)*4;
6889 REG_WR(bp, addr, 0);
6890 }
6891 /* send consumer update with 0 */
6892 if (CHIP_INT_MODE_IS_BC(bp)) {
6893 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6894 USTORM_ID, 0, IGU_INT_NOP, 1);
6895 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6896 CSTORM_ID, 0, IGU_INT_NOP, 1);
6897 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6898 XSTORM_ID, 0, IGU_INT_NOP, 1);
6899 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6900 TSTORM_ID, 0, IGU_INT_NOP, 1);
6901 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6902 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6903 } else {
6904 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6905 USTORM_ID, 0, IGU_INT_NOP, 1);
6906 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6907 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6908 }
6909 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6910
6911 /* !!! these should become driver const once
6912 rf-tool supports split-68 const */
6913 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6914 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6915 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6916 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6917 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6918 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6919 }
6920 }
6921
6922 /* Reset PCIE errors for debug */
6923 REG_WR(bp, 0x2114, 0xffffffff);
6924 REG_WR(bp, 0x2120, 0xffffffff);
6925
6926 if (CHIP_IS_E1x(bp)) {
6927 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6928 main_mem_base = HC_REG_MAIN_MEMORY +
6929 BP_PORT(bp) * (main_mem_size * 4);
6930 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6931 main_mem_width = 8;
6932
6933 val = REG_RD(bp, main_mem_prty_clr);
6934 if (val)
6935 DP(NETIF_MSG_HW,
6936 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
6937 val);
6938
6939 /* Clear "false" parity errors in MSI-X table */
6940 for (i = main_mem_base;
6941 i < main_mem_base + main_mem_size * 4;
6942 i += main_mem_width) {
6943 bnx2x_read_dmae(bp, i, main_mem_width / 4);
6944 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6945 i, main_mem_width / 4);
6946 }
6947 /* Clear HC parity attention */
6948 REG_RD(bp, main_mem_prty_clr);
6949 }
6950
6951 #ifdef BNX2X_STOP_ON_ERROR
6952 /* Enable STORMs SP logging */
6953 REG_WR8(bp, BAR_USTRORM_INTMEM +
6954 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6955 REG_WR8(bp, BAR_TSTRORM_INTMEM +
6956 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6957 REG_WR8(bp, BAR_CSTRORM_INTMEM +
6958 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6959 REG_WR8(bp, BAR_XSTRORM_INTMEM +
6960 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6961 #endif
6962
6963 bnx2x_phy_probe(&bp->link_params);
6964
6965 return 0;
6966 }
6967
6968
bnx2x_free_mem(struct bnx2x * bp)6969 void bnx2x_free_mem(struct bnx2x *bp)
6970 {
6971 /* fastpath */
6972 bnx2x_free_fp_mem(bp);
6973 /* end of fastpath */
6974
6975 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6976 sizeof(struct host_sp_status_block));
6977
6978 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6979 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6980
6981 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6982 sizeof(struct bnx2x_slowpath));
6983
6984 BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6985 bp->context.size);
6986
6987 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6988
6989 BNX2X_FREE(bp->ilt->lines);
6990
6991 #ifdef BCM_CNIC
6992 if (!CHIP_IS_E1x(bp))
6993 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6994 sizeof(struct host_hc_status_block_e2));
6995 else
6996 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6997 sizeof(struct host_hc_status_block_e1x));
6998
6999 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7000 #endif
7001
7002 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7003
7004 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7005 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7006 }
7007
bnx2x_alloc_fw_stats_mem(struct bnx2x * bp)7008 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7009 {
7010 int num_groups;
7011 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7012
7013 /* number of queues for statistics is number of eth queues + FCoE */
7014 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7015
7016 /* Total number of FW statistics requests =
7017 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7018 * num of queues
7019 */
7020 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7021
7022
7023 /* Request is built from stats_query_header and an array of
7024 * stats_query_cmd_group each of which contains
7025 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7026 * configured in the stats_query_header.
7027 */
7028 num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7029 (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7030
7031 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7032 num_groups * sizeof(struct stats_query_cmd_group);
7033
7034 /* Data for statistics requests + stats_conter
7035 *
7036 * stats_counter holds per-STORM counters that are incremented
7037 * when STORM has finished with the current request.
7038 *
7039 * memory for FCoE offloaded statistics are counted anyway,
7040 * even if they will not be sent.
7041 */
7042 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7043 sizeof(struct per_pf_stats) +
7044 sizeof(struct fcoe_statistics_params) +
7045 sizeof(struct per_queue_stats) * num_queue_stats +
7046 sizeof(struct stats_counter);
7047
7048 BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7049 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7050
7051 /* Set shortcuts */
7052 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7053 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7054
7055 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7056 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7057
7058 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7059 bp->fw_stats_req_sz;
7060 return 0;
7061
7062 alloc_mem_err:
7063 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7064 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7065 BNX2X_ERR("Can't allocate memory\n");
7066 return -ENOMEM;
7067 }
7068
7069
bnx2x_alloc_mem(struct bnx2x * bp)7070 int bnx2x_alloc_mem(struct bnx2x *bp)
7071 {
7072 #ifdef BCM_CNIC
7073 if (!CHIP_IS_E1x(bp))
7074 /* size = the status block + ramrod buffers */
7075 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7076 sizeof(struct host_hc_status_block_e2));
7077 else
7078 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7079 sizeof(struct host_hc_status_block_e1x));
7080
7081 /* allocate searcher T2 table */
7082 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7083 #endif
7084
7085
7086 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7087 sizeof(struct host_sp_status_block));
7088
7089 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7090 sizeof(struct bnx2x_slowpath));
7091
7092 #ifdef BCM_CNIC
7093 /* write address to which L5 should insert its values */
7094 bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp;
7095 #endif
7096
7097 /* Allocated memory for FW statistics */
7098 if (bnx2x_alloc_fw_stats_mem(bp))
7099 goto alloc_mem_err;
7100
7101 bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7102
7103 BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7104 bp->context.size);
7105
7106 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7107
7108 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7109 goto alloc_mem_err;
7110
7111 /* Slow path ring */
7112 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7113
7114 /* EQ */
7115 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7116 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7117
7118
7119 /* fastpath */
7120 /* need to be done at the end, since it's self adjusting to amount
7121 * of memory available for RSS queues
7122 */
7123 if (bnx2x_alloc_fp_mem(bp))
7124 goto alloc_mem_err;
7125 return 0;
7126
7127 alloc_mem_err:
7128 bnx2x_free_mem(bp);
7129 BNX2X_ERR("Can't allocate memory\n");
7130 return -ENOMEM;
7131 }
7132
7133 /*
7134 * Init service functions
7135 */
7136
bnx2x_set_mac_one(struct bnx2x * bp,u8 * mac,struct bnx2x_vlan_mac_obj * obj,bool set,int mac_type,unsigned long * ramrod_flags)7137 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7138 struct bnx2x_vlan_mac_obj *obj, bool set,
7139 int mac_type, unsigned long *ramrod_flags)
7140 {
7141 int rc;
7142 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7143
7144 memset(&ramrod_param, 0, sizeof(ramrod_param));
7145
7146 /* Fill general parameters */
7147 ramrod_param.vlan_mac_obj = obj;
7148 ramrod_param.ramrod_flags = *ramrod_flags;
7149
7150 /* Fill a user request section if needed */
7151 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7152 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7153
7154 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7155
7156 /* Set the command: ADD or DEL */
7157 if (set)
7158 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7159 else
7160 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7161 }
7162
7163 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7164 if (rc < 0)
7165 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7166 return rc;
7167 }
7168
bnx2x_del_all_macs(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * mac_obj,int mac_type,bool wait_for_comp)7169 int bnx2x_del_all_macs(struct bnx2x *bp,
7170 struct bnx2x_vlan_mac_obj *mac_obj,
7171 int mac_type, bool wait_for_comp)
7172 {
7173 int rc;
7174 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7175
7176 /* Wait for completion of requested */
7177 if (wait_for_comp)
7178 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7179
7180 /* Set the mac type of addresses we want to clear */
7181 __set_bit(mac_type, &vlan_mac_flags);
7182
7183 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7184 if (rc < 0)
7185 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7186
7187 return rc;
7188 }
7189
bnx2x_set_eth_mac(struct bnx2x * bp,bool set)7190 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7191 {
7192 unsigned long ramrod_flags = 0;
7193
7194 #ifdef BCM_CNIC
7195 if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_STORAGE_SD(bp)) {
7196 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7197 "Ignoring Zero MAC for STORAGE SD mode\n");
7198 return 0;
7199 }
7200 #endif
7201
7202 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7203
7204 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7205 /* Eth MAC is set on RSS leading client (fp[0]) */
7206 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7207 BNX2X_ETH_MAC, &ramrod_flags);
7208 }
7209
bnx2x_setup_leading(struct bnx2x * bp)7210 int bnx2x_setup_leading(struct bnx2x *bp)
7211 {
7212 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7213 }
7214
7215 /**
7216 * bnx2x_set_int_mode - configure interrupt mode
7217 *
7218 * @bp: driver handle
7219 *
7220 * In case of MSI-X it will also try to enable MSI-X.
7221 */
bnx2x_set_int_mode(struct bnx2x * bp)7222 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7223 {
7224 switch (int_mode) {
7225 case INT_MODE_MSI:
7226 bnx2x_enable_msi(bp);
7227 /* falling through... */
7228 case INT_MODE_INTx:
7229 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7230 BNX2X_DEV_INFO("set number of queues to 1\n");
7231 break;
7232 default:
7233 /* Set number of queues according to bp->multi_mode value */
7234 bnx2x_set_num_queues(bp);
7235
7236 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
7237
7238 /* if we can't use MSI-X we only need one fp,
7239 * so try to enable MSI-X with the requested number of fp's
7240 * and fallback to MSI or legacy INTx with one fp
7241 */
7242 if (bnx2x_enable_msix(bp)) {
7243 /* failed to enable MSI-X */
7244 BNX2X_DEV_INFO("Failed to enable MSI-X (%d), set number of queues to %d\n",
7245 bp->num_queues, 1 + NON_ETH_CONTEXT_USE);
7246
7247 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7248
7249 /* Try to enable MSI */
7250 if (!(bp->flags & DISABLE_MSI_FLAG))
7251 bnx2x_enable_msi(bp);
7252 }
7253 break;
7254 }
7255 }
7256
7257 /* must be called prioir to any HW initializations */
bnx2x_cid_ilt_lines(struct bnx2x * bp)7258 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7259 {
7260 return L2_ILT_LINES(bp);
7261 }
7262
bnx2x_ilt_set_info(struct bnx2x * bp)7263 void bnx2x_ilt_set_info(struct bnx2x *bp)
7264 {
7265 struct ilt_client_info *ilt_client;
7266 struct bnx2x_ilt *ilt = BP_ILT(bp);
7267 u16 line = 0;
7268
7269 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7270 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7271
7272 /* CDU */
7273 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7274 ilt_client->client_num = ILT_CLIENT_CDU;
7275 ilt_client->page_size = CDU_ILT_PAGE_SZ;
7276 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7277 ilt_client->start = line;
7278 line += bnx2x_cid_ilt_lines(bp);
7279 #ifdef BCM_CNIC
7280 line += CNIC_ILT_LINES;
7281 #endif
7282 ilt_client->end = line - 1;
7283
7284 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7285 ilt_client->start,
7286 ilt_client->end,
7287 ilt_client->page_size,
7288 ilt_client->flags,
7289 ilog2(ilt_client->page_size >> 12));
7290
7291 /* QM */
7292 if (QM_INIT(bp->qm_cid_count)) {
7293 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7294 ilt_client->client_num = ILT_CLIENT_QM;
7295 ilt_client->page_size = QM_ILT_PAGE_SZ;
7296 ilt_client->flags = 0;
7297 ilt_client->start = line;
7298
7299 /* 4 bytes for each cid */
7300 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7301 QM_ILT_PAGE_SZ);
7302
7303 ilt_client->end = line - 1;
7304
7305 DP(NETIF_MSG_IFUP,
7306 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7307 ilt_client->start,
7308 ilt_client->end,
7309 ilt_client->page_size,
7310 ilt_client->flags,
7311 ilog2(ilt_client->page_size >> 12));
7312
7313 }
7314 /* SRC */
7315 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7316 #ifdef BCM_CNIC
7317 ilt_client->client_num = ILT_CLIENT_SRC;
7318 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7319 ilt_client->flags = 0;
7320 ilt_client->start = line;
7321 line += SRC_ILT_LINES;
7322 ilt_client->end = line - 1;
7323
7324 DP(NETIF_MSG_IFUP,
7325 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7326 ilt_client->start,
7327 ilt_client->end,
7328 ilt_client->page_size,
7329 ilt_client->flags,
7330 ilog2(ilt_client->page_size >> 12));
7331
7332 #else
7333 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7334 #endif
7335
7336 /* TM */
7337 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7338 #ifdef BCM_CNIC
7339 ilt_client->client_num = ILT_CLIENT_TM;
7340 ilt_client->page_size = TM_ILT_PAGE_SZ;
7341 ilt_client->flags = 0;
7342 ilt_client->start = line;
7343 line += TM_ILT_LINES;
7344 ilt_client->end = line - 1;
7345
7346 DP(NETIF_MSG_IFUP,
7347 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7348 ilt_client->start,
7349 ilt_client->end,
7350 ilt_client->page_size,
7351 ilt_client->flags,
7352 ilog2(ilt_client->page_size >> 12));
7353
7354 #else
7355 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7356 #endif
7357 BUG_ON(line > ILT_MAX_LINES);
7358 }
7359
7360 /**
7361 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7362 *
7363 * @bp: driver handle
7364 * @fp: pointer to fastpath
7365 * @init_params: pointer to parameters structure
7366 *
7367 * parameters configured:
7368 * - HC configuration
7369 * - Queue's CDU context
7370 */
bnx2x_pf_q_prep_init(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_init_params * init_params)7371 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7372 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7373 {
7374
7375 u8 cos;
7376 /* FCoE Queue uses Default SB, thus has no HC capabilities */
7377 if (!IS_FCOE_FP(fp)) {
7378 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7379 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7380
7381 /* If HC is supporterd, enable host coalescing in the transition
7382 * to INIT state.
7383 */
7384 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7385 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7386
7387 /* HC rate */
7388 init_params->rx.hc_rate = bp->rx_ticks ?
7389 (1000000 / bp->rx_ticks) : 0;
7390 init_params->tx.hc_rate = bp->tx_ticks ?
7391 (1000000 / bp->tx_ticks) : 0;
7392
7393 /* FW SB ID */
7394 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7395 fp->fw_sb_id;
7396
7397 /*
7398 * CQ index among the SB indices: FCoE clients uses the default
7399 * SB, therefore it's different.
7400 */
7401 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7402 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7403 }
7404
7405 /* set maximum number of COSs supported by this queue */
7406 init_params->max_cos = fp->max_cos;
7407
7408 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7409 fp->index, init_params->max_cos);
7410
7411 /* set the context pointers queue object */
7412 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7413 init_params->cxts[cos] =
7414 &bp->context.vcxt[fp->txdata[cos].cid].eth;
7415 }
7416
bnx2x_setup_tx_only(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_state_params * q_params,struct bnx2x_queue_setup_tx_only_params * tx_only_params,int tx_index,bool leading)7417 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7418 struct bnx2x_queue_state_params *q_params,
7419 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7420 int tx_index, bool leading)
7421 {
7422 memset(tx_only_params, 0, sizeof(*tx_only_params));
7423
7424 /* Set the command */
7425 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7426
7427 /* Set tx-only QUEUE flags: don't zero statistics */
7428 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7429
7430 /* choose the index of the cid to send the slow path on */
7431 tx_only_params->cid_index = tx_index;
7432
7433 /* Set general TX_ONLY_SETUP parameters */
7434 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7435
7436 /* Set Tx TX_ONLY_SETUP parameters */
7437 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7438
7439 DP(NETIF_MSG_IFUP,
7440 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
7441 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7442 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7443 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7444
7445 /* send the ramrod */
7446 return bnx2x_queue_state_change(bp, q_params);
7447 }
7448
7449
7450 /**
7451 * bnx2x_setup_queue - setup queue
7452 *
7453 * @bp: driver handle
7454 * @fp: pointer to fastpath
7455 * @leading: is leading
7456 *
7457 * This function performs 2 steps in a Queue state machine
7458 * actually: 1) RESET->INIT 2) INIT->SETUP
7459 */
7460
bnx2x_setup_queue(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)7461 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7462 bool leading)
7463 {
7464 struct bnx2x_queue_state_params q_params = {NULL};
7465 struct bnx2x_queue_setup_params *setup_params =
7466 &q_params.params.setup;
7467 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7468 &q_params.params.tx_only;
7469 int rc;
7470 u8 tx_index;
7471
7472 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
7473
7474 /* reset IGU state skip FCoE L2 queue */
7475 if (!IS_FCOE_FP(fp))
7476 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7477 IGU_INT_ENABLE, 0);
7478
7479 q_params.q_obj = &fp->q_obj;
7480 /* We want to wait for completion in this context */
7481 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7482
7483 /* Prepare the INIT parameters */
7484 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7485
7486 /* Set the command */
7487 q_params.cmd = BNX2X_Q_CMD_INIT;
7488
7489 /* Change the state to INIT */
7490 rc = bnx2x_queue_state_change(bp, &q_params);
7491 if (rc) {
7492 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7493 return rc;
7494 }
7495
7496 DP(NETIF_MSG_IFUP, "init complete\n");
7497
7498
7499 /* Now move the Queue to the SETUP state... */
7500 memset(setup_params, 0, sizeof(*setup_params));
7501
7502 /* Set QUEUE flags */
7503 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7504
7505 /* Set general SETUP parameters */
7506 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7507 FIRST_TX_COS_INDEX);
7508
7509 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7510 &setup_params->rxq_params);
7511
7512 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7513 FIRST_TX_COS_INDEX);
7514
7515 /* Set the command */
7516 q_params.cmd = BNX2X_Q_CMD_SETUP;
7517
7518 /* Change the state to SETUP */
7519 rc = bnx2x_queue_state_change(bp, &q_params);
7520 if (rc) {
7521 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7522 return rc;
7523 }
7524
7525 /* loop through the relevant tx-only indices */
7526 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7527 tx_index < fp->max_cos;
7528 tx_index++) {
7529
7530 /* prepare and send tx-only ramrod*/
7531 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7532 tx_only_params, tx_index, leading);
7533 if (rc) {
7534 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7535 fp->index, tx_index);
7536 return rc;
7537 }
7538 }
7539
7540 return rc;
7541 }
7542
bnx2x_stop_queue(struct bnx2x * bp,int index)7543 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7544 {
7545 struct bnx2x_fastpath *fp = &bp->fp[index];
7546 struct bnx2x_fp_txdata *txdata;
7547 struct bnx2x_queue_state_params q_params = {NULL};
7548 int rc, tx_index;
7549
7550 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
7551
7552 q_params.q_obj = &fp->q_obj;
7553 /* We want to wait for completion in this context */
7554 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7555
7556
7557 /* close tx-only connections */
7558 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7559 tx_index < fp->max_cos;
7560 tx_index++){
7561
7562 /* ascertain this is a normal queue*/
7563 txdata = &fp->txdata[tx_index];
7564
7565 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
7566 txdata->txq_index);
7567
7568 /* send halt terminate on tx-only connection */
7569 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7570 memset(&q_params.params.terminate, 0,
7571 sizeof(q_params.params.terminate));
7572 q_params.params.terminate.cid_index = tx_index;
7573
7574 rc = bnx2x_queue_state_change(bp, &q_params);
7575 if (rc)
7576 return rc;
7577
7578 /* send halt terminate on tx-only connection */
7579 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7580 memset(&q_params.params.cfc_del, 0,
7581 sizeof(q_params.params.cfc_del));
7582 q_params.params.cfc_del.cid_index = tx_index;
7583 rc = bnx2x_queue_state_change(bp, &q_params);
7584 if (rc)
7585 return rc;
7586 }
7587 /* Stop the primary connection: */
7588 /* ...halt the connection */
7589 q_params.cmd = BNX2X_Q_CMD_HALT;
7590 rc = bnx2x_queue_state_change(bp, &q_params);
7591 if (rc)
7592 return rc;
7593
7594 /* ...terminate the connection */
7595 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7596 memset(&q_params.params.terminate, 0,
7597 sizeof(q_params.params.terminate));
7598 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7599 rc = bnx2x_queue_state_change(bp, &q_params);
7600 if (rc)
7601 return rc;
7602 /* ...delete cfc entry */
7603 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7604 memset(&q_params.params.cfc_del, 0,
7605 sizeof(q_params.params.cfc_del));
7606 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7607 return bnx2x_queue_state_change(bp, &q_params);
7608 }
7609
7610
bnx2x_reset_func(struct bnx2x * bp)7611 static void bnx2x_reset_func(struct bnx2x *bp)
7612 {
7613 int port = BP_PORT(bp);
7614 int func = BP_FUNC(bp);
7615 int i;
7616
7617 /* Disable the function in the FW */
7618 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7619 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7620 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7621 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7622
7623 /* FP SBs */
7624 for_each_eth_queue(bp, i) {
7625 struct bnx2x_fastpath *fp = &bp->fp[i];
7626 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7627 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7628 SB_DISABLED);
7629 }
7630
7631 #ifdef BCM_CNIC
7632 /* CNIC SB */
7633 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7634 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7635 SB_DISABLED);
7636 #endif
7637 /* SP SB */
7638 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7639 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7640 SB_DISABLED);
7641
7642 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7643 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7644 0);
7645
7646 /* Configure IGU */
7647 if (bp->common.int_block == INT_BLOCK_HC) {
7648 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7649 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7650 } else {
7651 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7652 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7653 }
7654
7655 #ifdef BCM_CNIC
7656 /* Disable Timer scan */
7657 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7658 /*
7659 * Wait for at least 10ms and up to 2 second for the timers scan to
7660 * complete
7661 */
7662 for (i = 0; i < 200; i++) {
7663 msleep(10);
7664 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7665 break;
7666 }
7667 #endif
7668 /* Clear ILT */
7669 bnx2x_clear_func_ilt(bp, func);
7670
7671 /* Timers workaround bug for E2: if this is vnic-3,
7672 * we need to set the entire ilt range for this timers.
7673 */
7674 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7675 struct ilt_client_info ilt_cli;
7676 /* use dummy TM client */
7677 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7678 ilt_cli.start = 0;
7679 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7680 ilt_cli.client_num = ILT_CLIENT_TM;
7681
7682 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7683 }
7684
7685 /* this assumes that reset_port() called before reset_func()*/
7686 if (!CHIP_IS_E1x(bp))
7687 bnx2x_pf_disable(bp);
7688
7689 bp->dmae_ready = 0;
7690 }
7691
bnx2x_reset_port(struct bnx2x * bp)7692 static void bnx2x_reset_port(struct bnx2x *bp)
7693 {
7694 int port = BP_PORT(bp);
7695 u32 val;
7696
7697 /* Reset physical Link */
7698 bnx2x__link_reset(bp);
7699
7700 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7701
7702 /* Do not rcv packets to BRB */
7703 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7704 /* Do not direct rcv packets that are not for MCP to the BRB */
7705 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7706 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7707
7708 /* Configure AEU */
7709 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7710
7711 msleep(100);
7712 /* Check for BRB port occupancy */
7713 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7714 if (val)
7715 DP(NETIF_MSG_IFDOWN,
7716 "BRB1 is not empty %d blocks are occupied\n", val);
7717
7718 /* TODO: Close Doorbell port? */
7719 }
7720
bnx2x_reset_hw(struct bnx2x * bp,u32 load_code)7721 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7722 {
7723 struct bnx2x_func_state_params func_params = {NULL};
7724
7725 /* Prepare parameters for function state transitions */
7726 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7727
7728 func_params.f_obj = &bp->func_obj;
7729 func_params.cmd = BNX2X_F_CMD_HW_RESET;
7730
7731 func_params.params.hw_init.load_phase = load_code;
7732
7733 return bnx2x_func_state_change(bp, &func_params);
7734 }
7735
bnx2x_func_stop(struct bnx2x * bp)7736 static inline int bnx2x_func_stop(struct bnx2x *bp)
7737 {
7738 struct bnx2x_func_state_params func_params = {NULL};
7739 int rc;
7740
7741 /* Prepare parameters for function state transitions */
7742 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7743 func_params.f_obj = &bp->func_obj;
7744 func_params.cmd = BNX2X_F_CMD_STOP;
7745
7746 /*
7747 * Try to stop the function the 'good way'. If fails (in case
7748 * of a parity error during bnx2x_chip_cleanup()) and we are
7749 * not in a debug mode, perform a state transaction in order to
7750 * enable further HW_RESET transaction.
7751 */
7752 rc = bnx2x_func_state_change(bp, &func_params);
7753 if (rc) {
7754 #ifdef BNX2X_STOP_ON_ERROR
7755 return rc;
7756 #else
7757 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
7758 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7759 return bnx2x_func_state_change(bp, &func_params);
7760 #endif
7761 }
7762
7763 return 0;
7764 }
7765
7766 /**
7767 * bnx2x_send_unload_req - request unload mode from the MCP.
7768 *
7769 * @bp: driver handle
7770 * @unload_mode: requested function's unload mode
7771 *
7772 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7773 */
bnx2x_send_unload_req(struct bnx2x * bp,int unload_mode)7774 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7775 {
7776 u32 reset_code = 0;
7777 int port = BP_PORT(bp);
7778
7779 /* Select the UNLOAD request mode */
7780 if (unload_mode == UNLOAD_NORMAL)
7781 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7782
7783 else if (bp->flags & NO_WOL_FLAG)
7784 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7785
7786 else if (bp->wol) {
7787 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7788 u8 *mac_addr = bp->dev->dev_addr;
7789 u32 val;
7790 u16 pmc;
7791
7792 /* The mac address is written to entries 1-4 to
7793 * preserve entry 0 which is used by the PMF
7794 */
7795 u8 entry = (BP_VN(bp) + 1)*8;
7796
7797 val = (mac_addr[0] << 8) | mac_addr[1];
7798 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7799
7800 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7801 (mac_addr[4] << 8) | mac_addr[5];
7802 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7803
7804 /* Enable the PME and clear the status */
7805 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7806 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7807 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7808
7809 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7810
7811 } else
7812 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7813
7814 /* Send the request to the MCP */
7815 if (!BP_NOMCP(bp))
7816 reset_code = bnx2x_fw_command(bp, reset_code, 0);
7817 else {
7818 int path = BP_PATH(bp);
7819
7820 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
7821 path, load_count[path][0], load_count[path][1],
7822 load_count[path][2]);
7823 load_count[path][0]--;
7824 load_count[path][1 + port]--;
7825 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
7826 path, load_count[path][0], load_count[path][1],
7827 load_count[path][2]);
7828 if (load_count[path][0] == 0)
7829 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7830 else if (load_count[path][1 + port] == 0)
7831 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7832 else
7833 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7834 }
7835
7836 return reset_code;
7837 }
7838
7839 /**
7840 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7841 *
7842 * @bp: driver handle
7843 */
bnx2x_send_unload_done(struct bnx2x * bp)7844 void bnx2x_send_unload_done(struct bnx2x *bp)
7845 {
7846 /* Report UNLOAD_DONE to MCP */
7847 if (!BP_NOMCP(bp))
7848 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7849 }
7850
bnx2x_func_wait_started(struct bnx2x * bp)7851 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7852 {
7853 int tout = 50;
7854 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7855
7856 if (!bp->port.pmf)
7857 return 0;
7858
7859 /*
7860 * (assumption: No Attention from MCP at this stage)
7861 * PMF probably in the middle of TXdisable/enable transaction
7862 * 1. Sync IRS for default SB
7863 * 2. Sync SP queue - this guarantes us that attention handling started
7864 * 3. Wait, that TXdisable/enable transaction completes
7865 *
7866 * 1+2 guranty that if DCBx attention was scheduled it already changed
7867 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7868 * received complettion for the transaction the state is TX_STOPPED.
7869 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7870 * transaction.
7871 */
7872
7873 /* make sure default SB ISR is done */
7874 if (msix)
7875 synchronize_irq(bp->msix_table[0].vector);
7876 else
7877 synchronize_irq(bp->pdev->irq);
7878
7879 flush_workqueue(bnx2x_wq);
7880
7881 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7882 BNX2X_F_STATE_STARTED && tout--)
7883 msleep(20);
7884
7885 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7886 BNX2X_F_STATE_STARTED) {
7887 #ifdef BNX2X_STOP_ON_ERROR
7888 BNX2X_ERR("Wrong function state\n");
7889 return -EBUSY;
7890 #else
7891 /*
7892 * Failed to complete the transaction in a "good way"
7893 * Force both transactions with CLR bit
7894 */
7895 struct bnx2x_func_state_params func_params = {NULL};
7896
7897 DP(NETIF_MSG_IFDOWN,
7898 "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7899
7900 func_params.f_obj = &bp->func_obj;
7901 __set_bit(RAMROD_DRV_CLR_ONLY,
7902 &func_params.ramrod_flags);
7903
7904 /* STARTED-->TX_ST0PPED */
7905 func_params.cmd = BNX2X_F_CMD_TX_STOP;
7906 bnx2x_func_state_change(bp, &func_params);
7907
7908 /* TX_ST0PPED-->STARTED */
7909 func_params.cmd = BNX2X_F_CMD_TX_START;
7910 return bnx2x_func_state_change(bp, &func_params);
7911 #endif
7912 }
7913
7914 return 0;
7915 }
7916
bnx2x_chip_cleanup(struct bnx2x * bp,int unload_mode)7917 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7918 {
7919 int port = BP_PORT(bp);
7920 int i, rc = 0;
7921 u8 cos;
7922 struct bnx2x_mcast_ramrod_params rparam = {NULL};
7923 u32 reset_code;
7924
7925 /* Wait until tx fastpath tasks complete */
7926 for_each_tx_queue(bp, i) {
7927 struct bnx2x_fastpath *fp = &bp->fp[i];
7928
7929 for_each_cos_in_tx_queue(fp, cos)
7930 rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7931 #ifdef BNX2X_STOP_ON_ERROR
7932 if (rc)
7933 return;
7934 #endif
7935 }
7936
7937 /* Give HW time to discard old tx messages */
7938 usleep_range(1000, 1000);
7939
7940 /* Clean all ETH MACs */
7941 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7942 if (rc < 0)
7943 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7944
7945 /* Clean up UC list */
7946 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7947 true);
7948 if (rc < 0)
7949 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
7950 rc);
7951
7952 /* Disable LLH */
7953 if (!CHIP_IS_E1(bp))
7954 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7955
7956 /* Set "drop all" (stop Rx).
7957 * We need to take a netif_addr_lock() here in order to prevent
7958 * a race between the completion code and this code.
7959 */
7960 netif_addr_lock_bh(bp->dev);
7961 /* Schedule the rx_mode command */
7962 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7963 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7964 else
7965 bnx2x_set_storm_rx_mode(bp);
7966
7967 /* Cleanup multicast configuration */
7968 rparam.mcast_obj = &bp->mcast_obj;
7969 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7970 if (rc < 0)
7971 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7972
7973 netif_addr_unlock_bh(bp->dev);
7974
7975
7976
7977 /*
7978 * Send the UNLOAD_REQUEST to the MCP. This will return if
7979 * this function should perform FUNC, PORT or COMMON HW
7980 * reset.
7981 */
7982 reset_code = bnx2x_send_unload_req(bp, unload_mode);
7983
7984 /*
7985 * (assumption: No Attention from MCP at this stage)
7986 * PMF probably in the middle of TXdisable/enable transaction
7987 */
7988 rc = bnx2x_func_wait_started(bp);
7989 if (rc) {
7990 BNX2X_ERR("bnx2x_func_wait_started failed\n");
7991 #ifdef BNX2X_STOP_ON_ERROR
7992 return;
7993 #endif
7994 }
7995
7996 /* Close multi and leading connections
7997 * Completions for ramrods are collected in a synchronous way
7998 */
7999 for_each_queue(bp, i)
8000 if (bnx2x_stop_queue(bp, i))
8001 #ifdef BNX2X_STOP_ON_ERROR
8002 return;
8003 #else
8004 goto unload_error;
8005 #endif
8006 /* If SP settings didn't get completed so far - something
8007 * very wrong has happen.
8008 */
8009 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8010 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8011
8012 #ifndef BNX2X_STOP_ON_ERROR
8013 unload_error:
8014 #endif
8015 rc = bnx2x_func_stop(bp);
8016 if (rc) {
8017 BNX2X_ERR("Function stop failed!\n");
8018 #ifdef BNX2X_STOP_ON_ERROR
8019 return;
8020 #endif
8021 }
8022
8023 /* Disable HW interrupts, NAPI */
8024 bnx2x_netif_stop(bp, 1);
8025
8026 /* Release IRQs */
8027 bnx2x_free_irq(bp);
8028
8029 /* Reset the chip */
8030 rc = bnx2x_reset_hw(bp, reset_code);
8031 if (rc)
8032 BNX2X_ERR("HW_RESET failed\n");
8033
8034
8035 /* Report UNLOAD_DONE to MCP */
8036 bnx2x_send_unload_done(bp);
8037 }
8038
bnx2x_disable_close_the_gate(struct bnx2x * bp)8039 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8040 {
8041 u32 val;
8042
8043 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8044
8045 if (CHIP_IS_E1(bp)) {
8046 int port = BP_PORT(bp);
8047 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8048 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8049
8050 val = REG_RD(bp, addr);
8051 val &= ~(0x300);
8052 REG_WR(bp, addr, val);
8053 } else {
8054 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8055 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8056 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8057 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8058 }
8059 }
8060
8061 /* Close gates #2, #3 and #4: */
bnx2x_set_234_gates(struct bnx2x * bp,bool close)8062 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8063 {
8064 u32 val;
8065
8066 /* Gates #2 and #4a are closed/opened for "not E1" only */
8067 if (!CHIP_IS_E1(bp)) {
8068 /* #4 */
8069 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8070 /* #2 */
8071 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8072 }
8073
8074 /* #3 */
8075 if (CHIP_IS_E1x(bp)) {
8076 /* Prevent interrupts from HC on both ports */
8077 val = REG_RD(bp, HC_REG_CONFIG_1);
8078 REG_WR(bp, HC_REG_CONFIG_1,
8079 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8080 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8081
8082 val = REG_RD(bp, HC_REG_CONFIG_0);
8083 REG_WR(bp, HC_REG_CONFIG_0,
8084 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8085 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8086 } else {
8087 /* Prevent incomming interrupts in IGU */
8088 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8089
8090 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8091 (!close) ?
8092 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8093 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8094 }
8095
8096 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8097 close ? "closing" : "opening");
8098 mmiowb();
8099 }
8100
8101 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
8102
bnx2x_clp_reset_prep(struct bnx2x * bp,u32 * magic_val)8103 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8104 {
8105 /* Do some magic... */
8106 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8107 *magic_val = val & SHARED_MF_CLP_MAGIC;
8108 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8109 }
8110
8111 /**
8112 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8113 *
8114 * @bp: driver handle
8115 * @magic_val: old value of the `magic' bit.
8116 */
bnx2x_clp_reset_done(struct bnx2x * bp,u32 magic_val)8117 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8118 {
8119 /* Restore the `magic' bit value... */
8120 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8121 MF_CFG_WR(bp, shared_mf_config.clp_mb,
8122 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8123 }
8124
8125 /**
8126 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8127 *
8128 * @bp: driver handle
8129 * @magic_val: old value of 'magic' bit.
8130 *
8131 * Takes care of CLP configurations.
8132 */
bnx2x_reset_mcp_prep(struct bnx2x * bp,u32 * magic_val)8133 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8134 {
8135 u32 shmem;
8136 u32 validity_offset;
8137
8138 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8139
8140 /* Set `magic' bit in order to save MF config */
8141 if (!CHIP_IS_E1(bp))
8142 bnx2x_clp_reset_prep(bp, magic_val);
8143
8144 /* Get shmem offset */
8145 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8146 validity_offset = offsetof(struct shmem_region, validity_map[0]);
8147
8148 /* Clear validity map flags */
8149 if (shmem > 0)
8150 REG_WR(bp, shmem + validity_offset, 0);
8151 }
8152
8153 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
8154 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
8155
8156 /**
8157 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8158 *
8159 * @bp: driver handle
8160 */
bnx2x_mcp_wait_one(struct bnx2x * bp)8161 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8162 {
8163 /* special handling for emulation and FPGA,
8164 wait 10 times longer */
8165 if (CHIP_REV_IS_SLOW(bp))
8166 msleep(MCP_ONE_TIMEOUT*10);
8167 else
8168 msleep(MCP_ONE_TIMEOUT);
8169 }
8170
8171 /*
8172 * initializes bp->common.shmem_base and waits for validity signature to appear
8173 */
bnx2x_init_shmem(struct bnx2x * bp)8174 static int bnx2x_init_shmem(struct bnx2x *bp)
8175 {
8176 int cnt = 0;
8177 u32 val = 0;
8178
8179 do {
8180 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8181 if (bp->common.shmem_base) {
8182 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8183 if (val & SHR_MEM_VALIDITY_MB)
8184 return 0;
8185 }
8186
8187 bnx2x_mcp_wait_one(bp);
8188
8189 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8190
8191 BNX2X_ERR("BAD MCP validity signature\n");
8192
8193 return -ENODEV;
8194 }
8195
bnx2x_reset_mcp_comp(struct bnx2x * bp,u32 magic_val)8196 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8197 {
8198 int rc = bnx2x_init_shmem(bp);
8199
8200 /* Restore the `magic' bit value */
8201 if (!CHIP_IS_E1(bp))
8202 bnx2x_clp_reset_done(bp, magic_val);
8203
8204 return rc;
8205 }
8206
bnx2x_pxp_prep(struct bnx2x * bp)8207 static void bnx2x_pxp_prep(struct bnx2x *bp)
8208 {
8209 if (!CHIP_IS_E1(bp)) {
8210 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8211 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8212 mmiowb();
8213 }
8214 }
8215
8216 /*
8217 * Reset the whole chip except for:
8218 * - PCIE core
8219 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8220 * one reset bit)
8221 * - IGU
8222 * - MISC (including AEU)
8223 * - GRC
8224 * - RBCN, RBCP
8225 */
bnx2x_process_kill_chip_reset(struct bnx2x * bp,bool global)8226 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8227 {
8228 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8229 u32 global_bits2, stay_reset2;
8230
8231 /*
8232 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8233 * (per chip) blocks.
8234 */
8235 global_bits2 =
8236 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8237 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8238
8239 /* Don't reset the following blocks */
8240 not_reset_mask1 =
8241 MISC_REGISTERS_RESET_REG_1_RST_HC |
8242 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8243 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8244
8245 not_reset_mask2 =
8246 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8247 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8248 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8249 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8250 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8251 MISC_REGISTERS_RESET_REG_2_RST_GRC |
8252 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8253 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8254 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8255 MISC_REGISTERS_RESET_REG_2_PGLC;
8256
8257 /*
8258 * Keep the following blocks in reset:
8259 * - all xxMACs are handled by the bnx2x_link code.
8260 */
8261 stay_reset2 =
8262 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8263 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8264 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8265 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8266 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8267 MISC_REGISTERS_RESET_REG_2_UMAC1 |
8268 MISC_REGISTERS_RESET_REG_2_XMAC |
8269 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8270
8271 /* Full reset masks according to the chip */
8272 reset_mask1 = 0xffffffff;
8273
8274 if (CHIP_IS_E1(bp))
8275 reset_mask2 = 0xffff;
8276 else if (CHIP_IS_E1H(bp))
8277 reset_mask2 = 0x1ffff;
8278 else if (CHIP_IS_E2(bp))
8279 reset_mask2 = 0xfffff;
8280 else /* CHIP_IS_E3 */
8281 reset_mask2 = 0x3ffffff;
8282
8283 /* Don't reset global blocks unless we need to */
8284 if (!global)
8285 reset_mask2 &= ~global_bits2;
8286
8287 /*
8288 * In case of attention in the QM, we need to reset PXP
8289 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8290 * because otherwise QM reset would release 'close the gates' shortly
8291 * before resetting the PXP, then the PSWRQ would send a write
8292 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8293 * read the payload data from PSWWR, but PSWWR would not
8294 * respond. The write queue in PGLUE would stuck, dmae commands
8295 * would not return. Therefore it's important to reset the second
8296 * reset register (containing the
8297 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8298 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8299 * bit).
8300 */
8301 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8302 reset_mask2 & (~not_reset_mask2));
8303
8304 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8305 reset_mask1 & (~not_reset_mask1));
8306
8307 barrier();
8308 mmiowb();
8309
8310 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8311 reset_mask2 & (~stay_reset2));
8312
8313 barrier();
8314 mmiowb();
8315
8316 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8317 mmiowb();
8318 }
8319
8320 /**
8321 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8322 * It should get cleared in no more than 1s.
8323 *
8324 * @bp: driver handle
8325 *
8326 * It should get cleared in no more than 1s. Returns 0 if
8327 * pending writes bit gets cleared.
8328 */
bnx2x_er_poll_igu_vq(struct bnx2x * bp)8329 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8330 {
8331 u32 cnt = 1000;
8332 u32 pend_bits = 0;
8333
8334 do {
8335 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8336
8337 if (pend_bits == 0)
8338 break;
8339
8340 usleep_range(1000, 1000);
8341 } while (cnt-- > 0);
8342
8343 if (cnt <= 0) {
8344 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8345 pend_bits);
8346 return -EBUSY;
8347 }
8348
8349 return 0;
8350 }
8351
bnx2x_process_kill(struct bnx2x * bp,bool global)8352 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8353 {
8354 int cnt = 1000;
8355 u32 val = 0;
8356 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8357
8358
8359 /* Empty the Tetris buffer, wait for 1s */
8360 do {
8361 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8362 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8363 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8364 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8365 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8366 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8367 ((port_is_idle_0 & 0x1) == 0x1) &&
8368 ((port_is_idle_1 & 0x1) == 0x1) &&
8369 (pgl_exp_rom2 == 0xffffffff))
8370 break;
8371 usleep_range(1000, 1000);
8372 } while (cnt-- > 0);
8373
8374 if (cnt <= 0) {
8375 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8376 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8377 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8378 pgl_exp_rom2);
8379 return -EAGAIN;
8380 }
8381
8382 barrier();
8383
8384 /* Close gates #2, #3 and #4 */
8385 bnx2x_set_234_gates(bp, true);
8386
8387 /* Poll for IGU VQs for 57712 and newer chips */
8388 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8389 return -EAGAIN;
8390
8391
8392 /* TBD: Indicate that "process kill" is in progress to MCP */
8393
8394 /* Clear "unprepared" bit */
8395 REG_WR(bp, MISC_REG_UNPREPARED, 0);
8396 barrier();
8397
8398 /* Make sure all is written to the chip before the reset */
8399 mmiowb();
8400
8401 /* Wait for 1ms to empty GLUE and PCI-E core queues,
8402 * PSWHST, GRC and PSWRD Tetris buffer.
8403 */
8404 usleep_range(1000, 1000);
8405
8406 /* Prepare to chip reset: */
8407 /* MCP */
8408 if (global)
8409 bnx2x_reset_mcp_prep(bp, &val);
8410
8411 /* PXP */
8412 bnx2x_pxp_prep(bp);
8413 barrier();
8414
8415 /* reset the chip */
8416 bnx2x_process_kill_chip_reset(bp, global);
8417 barrier();
8418
8419 /* Recover after reset: */
8420 /* MCP */
8421 if (global && bnx2x_reset_mcp_comp(bp, val))
8422 return -EAGAIN;
8423
8424 /* TBD: Add resetting the NO_MCP mode DB here */
8425
8426 /* PXP */
8427 bnx2x_pxp_prep(bp);
8428
8429 /* Open the gates #2, #3 and #4 */
8430 bnx2x_set_234_gates(bp, false);
8431
8432 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8433 * reset state, re-enable attentions. */
8434
8435 return 0;
8436 }
8437
bnx2x_leader_reset(struct bnx2x * bp)8438 int bnx2x_leader_reset(struct bnx2x *bp)
8439 {
8440 int rc = 0;
8441 bool global = bnx2x_reset_is_global(bp);
8442 u32 load_code;
8443
8444 /* if not going to reset MCP - load "fake" driver to reset HW while
8445 * driver is owner of the HW
8446 */
8447 if (!global && !BP_NOMCP(bp)) {
8448 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0);
8449 if (!load_code) {
8450 BNX2X_ERR("MCP response failure, aborting\n");
8451 rc = -EAGAIN;
8452 goto exit_leader_reset;
8453 }
8454 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
8455 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
8456 BNX2X_ERR("MCP unexpected resp, aborting\n");
8457 rc = -EAGAIN;
8458 goto exit_leader_reset2;
8459 }
8460 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
8461 if (!load_code) {
8462 BNX2X_ERR("MCP response failure, aborting\n");
8463 rc = -EAGAIN;
8464 goto exit_leader_reset2;
8465 }
8466 }
8467
8468 /* Try to recover after the failure */
8469 if (bnx2x_process_kill(bp, global)) {
8470 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
8471 BP_PATH(bp));
8472 rc = -EAGAIN;
8473 goto exit_leader_reset2;
8474 }
8475
8476 /*
8477 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8478 * state.
8479 */
8480 bnx2x_set_reset_done(bp);
8481 if (global)
8482 bnx2x_clear_reset_global(bp);
8483
8484 exit_leader_reset2:
8485 /* unload "fake driver" if it was loaded */
8486 if (!global && !BP_NOMCP(bp)) {
8487 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
8488 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8489 }
8490 exit_leader_reset:
8491 bp->is_leader = 0;
8492 bnx2x_release_leader_lock(bp);
8493 smp_mb();
8494 return rc;
8495 }
8496
bnx2x_recovery_failed(struct bnx2x * bp)8497 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8498 {
8499 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8500
8501 /* Disconnect this device */
8502 netif_device_detach(bp->dev);
8503
8504 /*
8505 * Block ifup for all function on this engine until "process kill"
8506 * or power cycle.
8507 */
8508 bnx2x_set_reset_in_progress(bp);
8509
8510 /* Shut down the power */
8511 bnx2x_set_power_state(bp, PCI_D3hot);
8512
8513 bp->recovery_state = BNX2X_RECOVERY_FAILED;
8514
8515 smp_mb();
8516 }
8517
8518 /*
8519 * Assumption: runs under rtnl lock. This together with the fact
8520 * that it's called only from bnx2x_sp_rtnl() ensure that it
8521 * will never be called when netif_running(bp->dev) is false.
8522 */
bnx2x_parity_recover(struct bnx2x * bp)8523 static void bnx2x_parity_recover(struct bnx2x *bp)
8524 {
8525 bool global = false;
8526 u32 error_recovered, error_unrecovered;
8527 bool is_parity;
8528
8529 DP(NETIF_MSG_HW, "Handling parity\n");
8530 while (1) {
8531 switch (bp->recovery_state) {
8532 case BNX2X_RECOVERY_INIT:
8533 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8534 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
8535 WARN_ON(!is_parity);
8536
8537 /* Try to get a LEADER_LOCK HW lock */
8538 if (bnx2x_trylock_leader_lock(bp)) {
8539 bnx2x_set_reset_in_progress(bp);
8540 /*
8541 * Check if there is a global attention and if
8542 * there was a global attention, set the global
8543 * reset bit.
8544 */
8545
8546 if (global)
8547 bnx2x_set_reset_global(bp);
8548
8549 bp->is_leader = 1;
8550 }
8551
8552 /* Stop the driver */
8553 /* If interface has been removed - break */
8554 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8555 return;
8556
8557 bp->recovery_state = BNX2X_RECOVERY_WAIT;
8558
8559 /* Ensure "is_leader", MCP command sequence and
8560 * "recovery_state" update values are seen on other
8561 * CPUs.
8562 */
8563 smp_mb();
8564 break;
8565
8566 case BNX2X_RECOVERY_WAIT:
8567 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8568 if (bp->is_leader) {
8569 int other_engine = BP_PATH(bp) ? 0 : 1;
8570 bool other_load_status =
8571 bnx2x_get_load_status(bp, other_engine);
8572 bool load_status =
8573 bnx2x_get_load_status(bp, BP_PATH(bp));
8574 global = bnx2x_reset_is_global(bp);
8575
8576 /*
8577 * In case of a parity in a global block, let
8578 * the first leader that performs a
8579 * leader_reset() reset the global blocks in
8580 * order to clear global attentions. Otherwise
8581 * the the gates will remain closed for that
8582 * engine.
8583 */
8584 if (load_status ||
8585 (global && other_load_status)) {
8586 /* Wait until all other functions get
8587 * down.
8588 */
8589 schedule_delayed_work(&bp->sp_rtnl_task,
8590 HZ/10);
8591 return;
8592 } else {
8593 /* If all other functions got down -
8594 * try to bring the chip back to
8595 * normal. In any case it's an exit
8596 * point for a leader.
8597 */
8598 if (bnx2x_leader_reset(bp)) {
8599 bnx2x_recovery_failed(bp);
8600 return;
8601 }
8602
8603 /* If we are here, means that the
8604 * leader has succeeded and doesn't
8605 * want to be a leader any more. Try
8606 * to continue as a none-leader.
8607 */
8608 break;
8609 }
8610 } else { /* non-leader */
8611 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8612 /* Try to get a LEADER_LOCK HW lock as
8613 * long as a former leader may have
8614 * been unloaded by the user or
8615 * released a leadership by another
8616 * reason.
8617 */
8618 if (bnx2x_trylock_leader_lock(bp)) {
8619 /* I'm a leader now! Restart a
8620 * switch case.
8621 */
8622 bp->is_leader = 1;
8623 break;
8624 }
8625
8626 schedule_delayed_work(&bp->sp_rtnl_task,
8627 HZ/10);
8628 return;
8629
8630 } else {
8631 /*
8632 * If there was a global attention, wait
8633 * for it to be cleared.
8634 */
8635 if (bnx2x_reset_is_global(bp)) {
8636 schedule_delayed_work(
8637 &bp->sp_rtnl_task,
8638 HZ/10);
8639 return;
8640 }
8641
8642 error_recovered =
8643 bp->eth_stats.recoverable_error;
8644 error_unrecovered =
8645 bp->eth_stats.unrecoverable_error;
8646 bp->recovery_state =
8647 BNX2X_RECOVERY_NIC_LOADING;
8648 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
8649 error_unrecovered++;
8650 netdev_err(bp->dev,
8651 "Recovery failed. Power cycle needed\n");
8652 /* Disconnect this device */
8653 netif_device_detach(bp->dev);
8654 /* Shut down the power */
8655 bnx2x_set_power_state(
8656 bp, PCI_D3hot);
8657 smp_mb();
8658 } else {
8659 bp->recovery_state =
8660 BNX2X_RECOVERY_DONE;
8661 error_recovered++;
8662 smp_mb();
8663 }
8664 bp->eth_stats.recoverable_error =
8665 error_recovered;
8666 bp->eth_stats.unrecoverable_error =
8667 error_unrecovered;
8668
8669 return;
8670 }
8671 }
8672 default:
8673 return;
8674 }
8675 }
8676 }
8677
8678 static int bnx2x_close(struct net_device *dev);
8679
8680 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8681 * scheduled on a general queue in order to prevent a dead lock.
8682 */
bnx2x_sp_rtnl_task(struct work_struct * work)8683 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8684 {
8685 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8686
8687 rtnl_lock();
8688
8689 if (!netif_running(bp->dev))
8690 goto sp_rtnl_exit;
8691
8692 /* if stop on error is defined no recovery flows should be executed */
8693 #ifdef BNX2X_STOP_ON_ERROR
8694 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
8695 "you will need to reboot when done\n");
8696 goto sp_rtnl_not_reset;
8697 #endif
8698
8699 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8700 /*
8701 * Clear all pending SP commands as we are going to reset the
8702 * function anyway.
8703 */
8704 bp->sp_rtnl_state = 0;
8705 smp_mb();
8706
8707 bnx2x_parity_recover(bp);
8708
8709 goto sp_rtnl_exit;
8710 }
8711
8712 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8713 /*
8714 * Clear all pending SP commands as we are going to reset the
8715 * function anyway.
8716 */
8717 bp->sp_rtnl_state = 0;
8718 smp_mb();
8719
8720 bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8721 bnx2x_nic_load(bp, LOAD_NORMAL);
8722
8723 goto sp_rtnl_exit;
8724 }
8725 #ifdef BNX2X_STOP_ON_ERROR
8726 sp_rtnl_not_reset:
8727 #endif
8728 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8729 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8730
8731 /*
8732 * in case of fan failure we need to reset id if the "stop on error"
8733 * debug flag is set, since we trying to prevent permanent overheating
8734 * damage
8735 */
8736 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8737 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
8738 netif_device_detach(bp->dev);
8739 bnx2x_close(bp->dev);
8740 }
8741
8742 sp_rtnl_exit:
8743 rtnl_unlock();
8744 }
8745
8746 /* end of nic load/unload */
8747
bnx2x_period_task(struct work_struct * work)8748 static void bnx2x_period_task(struct work_struct *work)
8749 {
8750 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8751
8752 if (!netif_running(bp->dev))
8753 goto period_task_exit;
8754
8755 if (CHIP_REV_IS_SLOW(bp)) {
8756 BNX2X_ERR("period task called on emulation, ignoring\n");
8757 goto period_task_exit;
8758 }
8759
8760 bnx2x_acquire_phy_lock(bp);
8761 /*
8762 * The barrier is needed to ensure the ordering between the writing to
8763 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8764 * the reading here.
8765 */
8766 smp_mb();
8767 if (bp->port.pmf) {
8768 bnx2x_period_func(&bp->link_params, &bp->link_vars);
8769
8770 /* Re-queue task in 1 sec */
8771 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8772 }
8773
8774 bnx2x_release_phy_lock(bp);
8775 period_task_exit:
8776 return;
8777 }
8778
8779 /*
8780 * Init service functions
8781 */
8782
bnx2x_get_pretend_reg(struct bnx2x * bp)8783 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8784 {
8785 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8786 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8787 return base + (BP_ABS_FUNC(bp)) * stride;
8788 }
8789
bnx2x_undi_int_disable_e1h(struct bnx2x * bp)8790 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8791 {
8792 u32 reg = bnx2x_get_pretend_reg(bp);
8793
8794 /* Flush all outstanding writes */
8795 mmiowb();
8796
8797 /* Pretend to be function 0 */
8798 REG_WR(bp, reg, 0);
8799 REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
8800
8801 /* From now we are in the "like-E1" mode */
8802 bnx2x_int_disable(bp);
8803
8804 /* Flush all outstanding writes */
8805 mmiowb();
8806
8807 /* Restore the original function */
8808 REG_WR(bp, reg, BP_ABS_FUNC(bp));
8809 REG_RD(bp, reg);
8810 }
8811
bnx2x_undi_int_disable(struct bnx2x * bp)8812 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8813 {
8814 if (CHIP_IS_E1(bp))
8815 bnx2x_int_disable(bp);
8816 else
8817 bnx2x_undi_int_disable_e1h(bp);
8818 }
8819
bnx2x_prev_unload_close_mac(struct bnx2x * bp)8820 static void __devinit bnx2x_prev_unload_close_mac(struct bnx2x *bp)
8821 {
8822 u32 val, base_addr, offset, mask, reset_reg;
8823 bool mac_stopped = false;
8824 u8 port = BP_PORT(bp);
8825
8826 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
8827
8828 if (!CHIP_IS_E3(bp)) {
8829 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
8830 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
8831 if ((mask & reset_reg) && val) {
8832 u32 wb_data[2];
8833 BNX2X_DEV_INFO("Disable bmac Rx\n");
8834 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
8835 : NIG_REG_INGRESS_BMAC0_MEM;
8836 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
8837 : BIGMAC_REGISTER_BMAC_CONTROL;
8838
8839 /*
8840 * use rd/wr since we cannot use dmae. This is safe
8841 * since MCP won't access the bus due to the request
8842 * to unload, and no function on the path can be
8843 * loaded at this time.
8844 */
8845 wb_data[0] = REG_RD(bp, base_addr + offset);
8846 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
8847 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
8848 REG_WR(bp, base_addr + offset, wb_data[0]);
8849 REG_WR(bp, base_addr + offset + 0x4, wb_data[1]);
8850
8851 }
8852 BNX2X_DEV_INFO("Disable emac Rx\n");
8853 REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0);
8854
8855 mac_stopped = true;
8856 } else {
8857 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
8858 BNX2X_DEV_INFO("Disable xmac Rx\n");
8859 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
8860 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
8861 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
8862 val & ~(1 << 1));
8863 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
8864 val | (1 << 1));
8865 REG_WR(bp, base_addr + XMAC_REG_CTRL, 0);
8866 mac_stopped = true;
8867 }
8868 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
8869 if (mask & reset_reg) {
8870 BNX2X_DEV_INFO("Disable umac Rx\n");
8871 base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
8872 REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0);
8873 mac_stopped = true;
8874 }
8875 }
8876
8877 if (mac_stopped)
8878 msleep(20);
8879
8880 }
8881
8882 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
8883 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
8884 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
8885 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
8886
bnx2x_prev_unload_undi_inc(struct bnx2x * bp,u8 port,u8 inc)8887 static void __devinit bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port,
8888 u8 inc)
8889 {
8890 u16 rcq, bd;
8891 u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
8892
8893 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
8894 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
8895
8896 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
8897 REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
8898
8899 BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
8900 port, bd, rcq);
8901 }
8902
bnx2x_prev_mcp_done(struct bnx2x * bp)8903 static int __devinit bnx2x_prev_mcp_done(struct bnx2x *bp)
8904 {
8905 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8906 if (!rc) {
8907 BNX2X_ERR("MCP response failure, aborting\n");
8908 return -EBUSY;
8909 }
8910
8911 return 0;
8912 }
8913
bnx2x_prev_is_path_marked(struct bnx2x * bp)8914 static bool __devinit bnx2x_prev_is_path_marked(struct bnx2x *bp)
8915 {
8916 struct bnx2x_prev_path_list *tmp_list;
8917 int rc = false;
8918
8919 if (down_trylock(&bnx2x_prev_sem))
8920 return false;
8921
8922 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
8923 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
8924 bp->pdev->bus->number == tmp_list->bus &&
8925 BP_PATH(bp) == tmp_list->path) {
8926 rc = true;
8927 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
8928 BP_PATH(bp));
8929 break;
8930 }
8931 }
8932
8933 up(&bnx2x_prev_sem);
8934
8935 return rc;
8936 }
8937
bnx2x_prev_mark_path(struct bnx2x * bp)8938 static int __devinit bnx2x_prev_mark_path(struct bnx2x *bp)
8939 {
8940 struct bnx2x_prev_path_list *tmp_list;
8941 int rc;
8942
8943 tmp_list = (struct bnx2x_prev_path_list *)
8944 kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
8945 if (!tmp_list) {
8946 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
8947 return -ENOMEM;
8948 }
8949
8950 tmp_list->bus = bp->pdev->bus->number;
8951 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
8952 tmp_list->path = BP_PATH(bp);
8953
8954 rc = down_interruptible(&bnx2x_prev_sem);
8955 if (rc) {
8956 BNX2X_ERR("Received %d when tried to take lock\n", rc);
8957 kfree(tmp_list);
8958 } else {
8959 BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
8960 BP_PATH(bp));
8961 list_add(&tmp_list->list, &bnx2x_prev_list);
8962 up(&bnx2x_prev_sem);
8963 }
8964
8965 return rc;
8966 }
8967
bnx2x_can_flr(struct bnx2x * bp)8968 static bool __devinit bnx2x_can_flr(struct bnx2x *bp)
8969 {
8970 int pos;
8971 u32 cap;
8972 struct pci_dev *dev = bp->pdev;
8973
8974 pos = pci_pcie_cap(dev);
8975 if (!pos)
8976 return false;
8977
8978 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
8979 if (!(cap & PCI_EXP_DEVCAP_FLR))
8980 return false;
8981
8982 return true;
8983 }
8984
bnx2x_do_flr(struct bnx2x * bp)8985 static int __devinit bnx2x_do_flr(struct bnx2x *bp)
8986 {
8987 int i, pos;
8988 u16 status;
8989 struct pci_dev *dev = bp->pdev;
8990
8991 /* probe the capability first */
8992 if (bnx2x_can_flr(bp))
8993 return -ENOTTY;
8994
8995 pos = pci_pcie_cap(dev);
8996 if (!pos)
8997 return -ENOTTY;
8998
8999 /* Wait for Transaction Pending bit clean */
9000 for (i = 0; i < 4; i++) {
9001 if (i)
9002 msleep((1 << (i - 1)) * 100);
9003
9004 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
9005 if (!(status & PCI_EXP_DEVSTA_TRPND))
9006 goto clear;
9007 }
9008
9009 dev_err(&dev->dev,
9010 "transaction is not cleared; proceeding with reset anyway\n");
9011
9012 clear:
9013 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9014 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9015 bp->common.bc_ver);
9016 return -EINVAL;
9017 }
9018
9019 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9020
9021 return 0;
9022 }
9023
bnx2x_prev_unload_uncommon(struct bnx2x * bp)9024 static int __devinit bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9025 {
9026 int rc;
9027
9028 BNX2X_DEV_INFO("Uncommon unload Flow\n");
9029
9030 /* Test if previous unload process was already finished for this path */
9031 if (bnx2x_prev_is_path_marked(bp))
9032 return bnx2x_prev_mcp_done(bp);
9033
9034 /* If function has FLR capabilities, and existing FW version matches
9035 * the one required, then FLR will be sufficient to clean any residue
9036 * left by previous driver
9037 */
9038 if (bnx2x_test_firmware_version(bp, false) && bnx2x_can_flr(bp))
9039 return bnx2x_do_flr(bp);
9040
9041 /* Close the MCP request, return failure*/
9042 rc = bnx2x_prev_mcp_done(bp);
9043 if (!rc)
9044 rc = BNX2X_PREV_WAIT_NEEDED;
9045
9046 return rc;
9047 }
9048
bnx2x_prev_unload_common(struct bnx2x * bp)9049 static int __devinit bnx2x_prev_unload_common(struct bnx2x *bp)
9050 {
9051 u32 reset_reg, tmp_reg = 0, rc;
9052 /* It is possible a previous function received 'common' answer,
9053 * but hasn't loaded yet, therefore creating a scenario of
9054 * multiple functions receiving 'common' on the same path.
9055 */
9056 BNX2X_DEV_INFO("Common unload Flow\n");
9057
9058 if (bnx2x_prev_is_path_marked(bp))
9059 return bnx2x_prev_mcp_done(bp);
9060
9061 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9062
9063 /* Reset should be performed after BRB is emptied */
9064 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9065 u32 timer_count = 1000;
9066 bool prev_undi = false;
9067
9068 /* Close the MAC Rx to prevent BRB from filling up */
9069 bnx2x_prev_unload_close_mac(bp);
9070
9071 /* Check if the UNDI driver was previously loaded
9072 * UNDI driver initializes CID offset for normal bell to 0x7
9073 */
9074 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9075 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9076 tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9077 if (tmp_reg == 0x7) {
9078 BNX2X_DEV_INFO("UNDI previously loaded\n");
9079 prev_undi = true;
9080 /* clear the UNDI indication */
9081 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9082 }
9083 }
9084 /* wait until BRB is empty */
9085 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9086 while (timer_count) {
9087 u32 prev_brb = tmp_reg;
9088
9089 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9090 if (!tmp_reg)
9091 break;
9092
9093 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9094
9095 /* reset timer as long as BRB actually gets emptied */
9096 if (prev_brb > tmp_reg)
9097 timer_count = 1000;
9098 else
9099 timer_count--;
9100
9101 /* If UNDI resides in memory, manually increment it */
9102 if (prev_undi)
9103 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9104
9105 udelay(10);
9106 }
9107
9108 if (!timer_count)
9109 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9110
9111 }
9112
9113 /* No packets are in the pipeline, path is ready for reset */
9114 bnx2x_reset_common(bp);
9115
9116 rc = bnx2x_prev_mark_path(bp);
9117 if (rc) {
9118 bnx2x_prev_mcp_done(bp);
9119 return rc;
9120 }
9121
9122 return bnx2x_prev_mcp_done(bp);
9123 }
9124
9125 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9126 * and boot began, or when kdump kernel was loaded. Either case would invalidate
9127 * the addresses of the transaction, resulting in was-error bit set in the pci
9128 * causing all hw-to-host pcie transactions to timeout. If this happened we want
9129 * to clear the interrupt which detected this from the pglueb and the was done
9130 * bit
9131 */
bnx2x_prev_interrupted_dmae(struct bnx2x * bp)9132 static void __devinit bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9133 {
9134 if (!CHIP_IS_E1x(bp)) {
9135 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9136 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9137 BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
9138 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9139 1 << BP_FUNC(bp));
9140 }
9141 }
9142 }
9143
bnx2x_prev_unload(struct bnx2x * bp)9144 static int __devinit bnx2x_prev_unload(struct bnx2x *bp)
9145 {
9146 int time_counter = 10;
9147 u32 rc, fw, hw_lock_reg, hw_lock_val;
9148 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9149
9150 /* clear hw from errors which may have resulted from an interrupted
9151 * dmae transaction.
9152 */
9153 bnx2x_prev_interrupted_dmae(bp);
9154
9155 /* Release previously held locks */
9156 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9157 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9158 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9159
9160 hw_lock_val = (REG_RD(bp, hw_lock_reg));
9161 if (hw_lock_val) {
9162 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9163 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9164 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9165 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9166 }
9167
9168 BNX2X_DEV_INFO("Release Previously held hw lock\n");
9169 REG_WR(bp, hw_lock_reg, 0xffffffff);
9170 } else
9171 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9172
9173 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9174 BNX2X_DEV_INFO("Release previously held alr\n");
9175 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9176 }
9177
9178
9179 do {
9180 /* Lock MCP using an unload request */
9181 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9182 if (!fw) {
9183 BNX2X_ERR("MCP response failure, aborting\n");
9184 rc = -EBUSY;
9185 break;
9186 }
9187
9188 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9189 rc = bnx2x_prev_unload_common(bp);
9190 break;
9191 }
9192
9193 /* non-common reply from MCP night require looping */
9194 rc = bnx2x_prev_unload_uncommon(bp);
9195 if (rc != BNX2X_PREV_WAIT_NEEDED)
9196 break;
9197
9198 msleep(20);
9199 } while (--time_counter);
9200
9201 if (!time_counter || rc) {
9202 BNX2X_ERR("Failed unloading previous driver, aborting\n");
9203 rc = -EBUSY;
9204 }
9205
9206 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9207
9208 return rc;
9209 }
9210
bnx2x_get_common_hwinfo(struct bnx2x * bp)9211 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
9212 {
9213 u32 val, val2, val3, val4, id, boot_mode;
9214 u16 pmc;
9215
9216 /* Get the chip revision id and number. */
9217 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9218 val = REG_RD(bp, MISC_REG_CHIP_NUM);
9219 id = ((val & 0xffff) << 16);
9220 val = REG_RD(bp, MISC_REG_CHIP_REV);
9221 id |= ((val & 0xf) << 12);
9222 val = REG_RD(bp, MISC_REG_CHIP_METAL);
9223 id |= ((val & 0xff) << 4);
9224 val = REG_RD(bp, MISC_REG_BOND_ID);
9225 id |= (val & 0xf);
9226 bp->common.chip_id = id;
9227
9228 /* Set doorbell size */
9229 bp->db_size = (1 << BNX2X_DB_SHIFT);
9230
9231 if (!CHIP_IS_E1x(bp)) {
9232 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9233 if ((val & 1) == 0)
9234 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9235 else
9236 val = (val >> 1) & 1;
9237 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9238 "2_PORT_MODE");
9239 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9240 CHIP_2_PORT_MODE;
9241
9242 if (CHIP_MODE_IS_4_PORT(bp))
9243 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
9244 else
9245 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
9246 } else {
9247 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9248 bp->pfid = bp->pf_num; /* 0..7 */
9249 }
9250
9251 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9252
9253 bp->link_params.chip_id = bp->common.chip_id;
9254 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9255
9256 val = (REG_RD(bp, 0x2874) & 0x55);
9257 if ((bp->common.chip_id & 0x1) ||
9258 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9259 bp->flags |= ONE_PORT_FLAG;
9260 BNX2X_DEV_INFO("single port device\n");
9261 }
9262
9263 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9264 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9265 (val & MCPR_NVM_CFG4_FLASH_SIZE));
9266 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9267 bp->common.flash_size, bp->common.flash_size);
9268
9269 bnx2x_init_shmem(bp);
9270
9271
9272
9273 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9274 MISC_REG_GENERIC_CR_1 :
9275 MISC_REG_GENERIC_CR_0));
9276
9277 bp->link_params.shmem_base = bp->common.shmem_base;
9278 bp->link_params.shmem2_base = bp->common.shmem2_base;
9279 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
9280 bp->common.shmem_base, bp->common.shmem2_base);
9281
9282 if (!bp->common.shmem_base) {
9283 BNX2X_DEV_INFO("MCP not active\n");
9284 bp->flags |= NO_MCP_FLAG;
9285 return;
9286 }
9287
9288 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9289 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9290
9291 bp->link_params.hw_led_mode = ((bp->common.hw_config &
9292 SHARED_HW_CFG_LED_MODE_MASK) >>
9293 SHARED_HW_CFG_LED_MODE_SHIFT);
9294
9295 bp->link_params.feature_config_flags = 0;
9296 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9297 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9298 bp->link_params.feature_config_flags |=
9299 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9300 else
9301 bp->link_params.feature_config_flags &=
9302 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9303
9304 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9305 bp->common.bc_ver = val;
9306 BNX2X_DEV_INFO("bc_ver %X\n", val);
9307 if (val < BNX2X_BC_VER) {
9308 /* for now only warn
9309 * later we might need to enforce this */
9310 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9311 BNX2X_BC_VER, val);
9312 }
9313 bp->link_params.feature_config_flags |=
9314 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9315 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9316
9317 bp->link_params.feature_config_flags |=
9318 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9319 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9320
9321 bp->link_params.feature_config_flags |=
9322 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9323 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9324 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9325 BC_SUPPORTS_PFC_STATS : 0;
9326
9327 boot_mode = SHMEM_RD(bp,
9328 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9329 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9330 switch (boot_mode) {
9331 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9332 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9333 break;
9334 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9335 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9336 break;
9337 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9338 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9339 break;
9340 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9341 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9342 break;
9343 }
9344
9345 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9346 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9347
9348 BNX2X_DEV_INFO("%sWoL capable\n",
9349 (bp->flags & NO_WOL_FLAG) ? "not " : "");
9350
9351 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9352 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9353 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9354 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9355
9356 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9357 val, val2, val3, val4);
9358 }
9359
9360 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9361 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9362
bnx2x_get_igu_cam_info(struct bnx2x * bp)9363 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9364 {
9365 int pfid = BP_FUNC(bp);
9366 int igu_sb_id;
9367 u32 val;
9368 u8 fid, igu_sb_cnt = 0;
9369
9370 bp->igu_base_sb = 0xff;
9371 if (CHIP_INT_MODE_IS_BC(bp)) {
9372 int vn = BP_VN(bp);
9373 igu_sb_cnt = bp->igu_sb_cnt;
9374 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9375 FP_SB_MAX_E1x;
9376
9377 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
9378 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9379
9380 return;
9381 }
9382
9383 /* IGU in normal mode - read CAM */
9384 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9385 igu_sb_id++) {
9386 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9387 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9388 continue;
9389 fid = IGU_FID(val);
9390 if ((fid & IGU_FID_ENCODE_IS_PF)) {
9391 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9392 continue;
9393 if (IGU_VEC(val) == 0)
9394 /* default status block */
9395 bp->igu_dsb_id = igu_sb_id;
9396 else {
9397 if (bp->igu_base_sb == 0xff)
9398 bp->igu_base_sb = igu_sb_id;
9399 igu_sb_cnt++;
9400 }
9401 }
9402 }
9403
9404 #ifdef CONFIG_PCI_MSI
9405 /*
9406 * It's expected that number of CAM entries for this functions is equal
9407 * to the number evaluated based on the MSI-X table size. We want a
9408 * harsh warning if these values are different!
9409 */
9410 WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9411 #endif
9412
9413 if (igu_sb_cnt == 0)
9414 BNX2X_ERR("CAM configuration error\n");
9415 }
9416
bnx2x_link_settings_supported(struct bnx2x * bp,u32 switch_cfg)9417 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9418 u32 switch_cfg)
9419 {
9420 int cfg_size = 0, idx, port = BP_PORT(bp);
9421
9422 /* Aggregation of supported attributes of all external phys */
9423 bp->port.supported[0] = 0;
9424 bp->port.supported[1] = 0;
9425 switch (bp->link_params.num_phys) {
9426 case 1:
9427 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9428 cfg_size = 1;
9429 break;
9430 case 2:
9431 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9432 cfg_size = 1;
9433 break;
9434 case 3:
9435 if (bp->link_params.multi_phy_config &
9436 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9437 bp->port.supported[1] =
9438 bp->link_params.phy[EXT_PHY1].supported;
9439 bp->port.supported[0] =
9440 bp->link_params.phy[EXT_PHY2].supported;
9441 } else {
9442 bp->port.supported[0] =
9443 bp->link_params.phy[EXT_PHY1].supported;
9444 bp->port.supported[1] =
9445 bp->link_params.phy[EXT_PHY2].supported;
9446 }
9447 cfg_size = 2;
9448 break;
9449 }
9450
9451 if (!(bp->port.supported[0] || bp->port.supported[1])) {
9452 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
9453 SHMEM_RD(bp,
9454 dev_info.port_hw_config[port].external_phy_config),
9455 SHMEM_RD(bp,
9456 dev_info.port_hw_config[port].external_phy_config2));
9457 return;
9458 }
9459
9460 if (CHIP_IS_E3(bp))
9461 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9462 else {
9463 switch (switch_cfg) {
9464 case SWITCH_CFG_1G:
9465 bp->port.phy_addr = REG_RD(
9466 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9467 break;
9468 case SWITCH_CFG_10G:
9469 bp->port.phy_addr = REG_RD(
9470 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9471 break;
9472 default:
9473 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9474 bp->port.link_config[0]);
9475 return;
9476 }
9477 }
9478 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9479 /* mask what we support according to speed_cap_mask per configuration */
9480 for (idx = 0; idx < cfg_size; idx++) {
9481 if (!(bp->link_params.speed_cap_mask[idx] &
9482 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9483 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9484
9485 if (!(bp->link_params.speed_cap_mask[idx] &
9486 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9487 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9488
9489 if (!(bp->link_params.speed_cap_mask[idx] &
9490 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9491 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9492
9493 if (!(bp->link_params.speed_cap_mask[idx] &
9494 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9495 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9496
9497 if (!(bp->link_params.speed_cap_mask[idx] &
9498 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9499 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9500 SUPPORTED_1000baseT_Full);
9501
9502 if (!(bp->link_params.speed_cap_mask[idx] &
9503 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9504 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9505
9506 if (!(bp->link_params.speed_cap_mask[idx] &
9507 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9508 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9509
9510 }
9511
9512 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9513 bp->port.supported[1]);
9514 }
9515
bnx2x_link_settings_requested(struct bnx2x * bp)9516 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9517 {
9518 u32 link_config, idx, cfg_size = 0;
9519 bp->port.advertising[0] = 0;
9520 bp->port.advertising[1] = 0;
9521 switch (bp->link_params.num_phys) {
9522 case 1:
9523 case 2:
9524 cfg_size = 1;
9525 break;
9526 case 3:
9527 cfg_size = 2;
9528 break;
9529 }
9530 for (idx = 0; idx < cfg_size; idx++) {
9531 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9532 link_config = bp->port.link_config[idx];
9533 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9534 case PORT_FEATURE_LINK_SPEED_AUTO:
9535 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9536 bp->link_params.req_line_speed[idx] =
9537 SPEED_AUTO_NEG;
9538 bp->port.advertising[idx] |=
9539 bp->port.supported[idx];
9540 if (bp->link_params.phy[EXT_PHY1].type ==
9541 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
9542 bp->port.advertising[idx] |=
9543 (SUPPORTED_100baseT_Half |
9544 SUPPORTED_100baseT_Full);
9545 } else {
9546 /* force 10G, no AN */
9547 bp->link_params.req_line_speed[idx] =
9548 SPEED_10000;
9549 bp->port.advertising[idx] |=
9550 (ADVERTISED_10000baseT_Full |
9551 ADVERTISED_FIBRE);
9552 continue;
9553 }
9554 break;
9555
9556 case PORT_FEATURE_LINK_SPEED_10M_FULL:
9557 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9558 bp->link_params.req_line_speed[idx] =
9559 SPEED_10;
9560 bp->port.advertising[idx] |=
9561 (ADVERTISED_10baseT_Full |
9562 ADVERTISED_TP);
9563 } else {
9564 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
9565 link_config,
9566 bp->link_params.speed_cap_mask[idx]);
9567 return;
9568 }
9569 break;
9570
9571 case PORT_FEATURE_LINK_SPEED_10M_HALF:
9572 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9573 bp->link_params.req_line_speed[idx] =
9574 SPEED_10;
9575 bp->link_params.req_duplex[idx] =
9576 DUPLEX_HALF;
9577 bp->port.advertising[idx] |=
9578 (ADVERTISED_10baseT_Half |
9579 ADVERTISED_TP);
9580 } else {
9581 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
9582 link_config,
9583 bp->link_params.speed_cap_mask[idx]);
9584 return;
9585 }
9586 break;
9587
9588 case PORT_FEATURE_LINK_SPEED_100M_FULL:
9589 if (bp->port.supported[idx] &
9590 SUPPORTED_100baseT_Full) {
9591 bp->link_params.req_line_speed[idx] =
9592 SPEED_100;
9593 bp->port.advertising[idx] |=
9594 (ADVERTISED_100baseT_Full |
9595 ADVERTISED_TP);
9596 } else {
9597 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
9598 link_config,
9599 bp->link_params.speed_cap_mask[idx]);
9600 return;
9601 }
9602 break;
9603
9604 case PORT_FEATURE_LINK_SPEED_100M_HALF:
9605 if (bp->port.supported[idx] &
9606 SUPPORTED_100baseT_Half) {
9607 bp->link_params.req_line_speed[idx] =
9608 SPEED_100;
9609 bp->link_params.req_duplex[idx] =
9610 DUPLEX_HALF;
9611 bp->port.advertising[idx] |=
9612 (ADVERTISED_100baseT_Half |
9613 ADVERTISED_TP);
9614 } else {
9615 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
9616 link_config,
9617 bp->link_params.speed_cap_mask[idx]);
9618 return;
9619 }
9620 break;
9621
9622 case PORT_FEATURE_LINK_SPEED_1G:
9623 if (bp->port.supported[idx] &
9624 SUPPORTED_1000baseT_Full) {
9625 bp->link_params.req_line_speed[idx] =
9626 SPEED_1000;
9627 bp->port.advertising[idx] |=
9628 (ADVERTISED_1000baseT_Full |
9629 ADVERTISED_TP);
9630 } else {
9631 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
9632 link_config,
9633 bp->link_params.speed_cap_mask[idx]);
9634 return;
9635 }
9636 break;
9637
9638 case PORT_FEATURE_LINK_SPEED_2_5G:
9639 if (bp->port.supported[idx] &
9640 SUPPORTED_2500baseX_Full) {
9641 bp->link_params.req_line_speed[idx] =
9642 SPEED_2500;
9643 bp->port.advertising[idx] |=
9644 (ADVERTISED_2500baseX_Full |
9645 ADVERTISED_TP);
9646 } else {
9647 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
9648 link_config,
9649 bp->link_params.speed_cap_mask[idx]);
9650 return;
9651 }
9652 break;
9653
9654 case PORT_FEATURE_LINK_SPEED_10G_CX4:
9655 if (bp->port.supported[idx] &
9656 SUPPORTED_10000baseT_Full) {
9657 bp->link_params.req_line_speed[idx] =
9658 SPEED_10000;
9659 bp->port.advertising[idx] |=
9660 (ADVERTISED_10000baseT_Full |
9661 ADVERTISED_FIBRE);
9662 } else {
9663 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
9664 link_config,
9665 bp->link_params.speed_cap_mask[idx]);
9666 return;
9667 }
9668 break;
9669 case PORT_FEATURE_LINK_SPEED_20G:
9670 bp->link_params.req_line_speed[idx] = SPEED_20000;
9671
9672 break;
9673 default:
9674 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
9675 link_config);
9676 bp->link_params.req_line_speed[idx] =
9677 SPEED_AUTO_NEG;
9678 bp->port.advertising[idx] =
9679 bp->port.supported[idx];
9680 break;
9681 }
9682
9683 bp->link_params.req_flow_ctrl[idx] = (link_config &
9684 PORT_FEATURE_FLOW_CONTROL_MASK);
9685 if ((bp->link_params.req_flow_ctrl[idx] ==
9686 BNX2X_FLOW_CTRL_AUTO) &&
9687 !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9688 bp->link_params.req_flow_ctrl[idx] =
9689 BNX2X_FLOW_CTRL_NONE;
9690 }
9691
9692 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
9693 bp->link_params.req_line_speed[idx],
9694 bp->link_params.req_duplex[idx],
9695 bp->link_params.req_flow_ctrl[idx],
9696 bp->port.advertising[idx]);
9697 }
9698 }
9699
bnx2x_set_mac_buf(u8 * mac_buf,u32 mac_lo,u16 mac_hi)9700 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9701 {
9702 mac_hi = cpu_to_be16(mac_hi);
9703 mac_lo = cpu_to_be32(mac_lo);
9704 memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9705 memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9706 }
9707
bnx2x_get_port_hwinfo(struct bnx2x * bp)9708 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9709 {
9710 int port = BP_PORT(bp);
9711 u32 config;
9712 u32 ext_phy_type, ext_phy_config;
9713
9714 bp->link_params.bp = bp;
9715 bp->link_params.port = port;
9716
9717 bp->link_params.lane_config =
9718 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9719
9720 bp->link_params.speed_cap_mask[0] =
9721 SHMEM_RD(bp,
9722 dev_info.port_hw_config[port].speed_capability_mask);
9723 bp->link_params.speed_cap_mask[1] =
9724 SHMEM_RD(bp,
9725 dev_info.port_hw_config[port].speed_capability_mask2);
9726 bp->port.link_config[0] =
9727 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9728
9729 bp->port.link_config[1] =
9730 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9731
9732 bp->link_params.multi_phy_config =
9733 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9734 /* If the device is capable of WoL, set the default state according
9735 * to the HW
9736 */
9737 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9738 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9739 (config & PORT_FEATURE_WOL_ENABLED));
9740
9741 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
9742 bp->link_params.lane_config,
9743 bp->link_params.speed_cap_mask[0],
9744 bp->port.link_config[0]);
9745
9746 bp->link_params.switch_cfg = (bp->port.link_config[0] &
9747 PORT_FEATURE_CONNECTED_SWITCH_MASK);
9748 bnx2x_phy_probe(&bp->link_params);
9749 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9750
9751 bnx2x_link_settings_requested(bp);
9752
9753 /*
9754 * If connected directly, work with the internal PHY, otherwise, work
9755 * with the external PHY
9756 */
9757 ext_phy_config =
9758 SHMEM_RD(bp,
9759 dev_info.port_hw_config[port].external_phy_config);
9760 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9761 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9762 bp->mdio.prtad = bp->port.phy_addr;
9763
9764 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9765 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9766 bp->mdio.prtad =
9767 XGXS_EXT_PHY_ADDR(ext_phy_config);
9768
9769 /*
9770 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9771 * In MF mode, it is set to cover self test cases
9772 */
9773 if (IS_MF(bp))
9774 bp->port.need_hw_lock = 1;
9775 else
9776 bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9777 bp->common.shmem_base,
9778 bp->common.shmem2_base);
9779 }
9780
bnx2x_get_iscsi_info(struct bnx2x * bp)9781 void bnx2x_get_iscsi_info(struct bnx2x *bp)
9782 {
9783 u32 no_flags = NO_ISCSI_FLAG;
9784 #ifdef BCM_CNIC
9785 int port = BP_PORT(bp);
9786
9787 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9788 drv_lic_key[port].max_iscsi_conn);
9789
9790 /* Get the number of maximum allowed iSCSI connections */
9791 bp->cnic_eth_dev.max_iscsi_conn =
9792 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9793 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9794
9795 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9796 bp->cnic_eth_dev.max_iscsi_conn);
9797
9798 /*
9799 * If maximum allowed number of connections is zero -
9800 * disable the feature.
9801 */
9802 if (!bp->cnic_eth_dev.max_iscsi_conn)
9803 bp->flags |= no_flags;
9804 #else
9805 bp->flags |= no_flags;
9806 #endif
9807 }
9808
9809 #ifdef BCM_CNIC
bnx2x_get_ext_wwn_info(struct bnx2x * bp,int func)9810 static void __devinit bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
9811 {
9812 /* Port info */
9813 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9814 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
9815 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9816 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
9817
9818 /* Node info */
9819 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9820 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
9821 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9822 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
9823 }
9824 #endif
bnx2x_get_fcoe_info(struct bnx2x * bp)9825 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9826 {
9827 #ifdef BCM_CNIC
9828 int port = BP_PORT(bp);
9829 int func = BP_ABS_FUNC(bp);
9830
9831 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9832 drv_lic_key[port].max_fcoe_conn);
9833
9834 /* Get the number of maximum allowed FCoE connections */
9835 bp->cnic_eth_dev.max_fcoe_conn =
9836 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9837 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9838
9839 /* Read the WWN: */
9840 if (!IS_MF(bp)) {
9841 /* Port info */
9842 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9843 SHMEM_RD(bp,
9844 dev_info.port_hw_config[port].
9845 fcoe_wwn_port_name_upper);
9846 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9847 SHMEM_RD(bp,
9848 dev_info.port_hw_config[port].
9849 fcoe_wwn_port_name_lower);
9850
9851 /* Node info */
9852 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9853 SHMEM_RD(bp,
9854 dev_info.port_hw_config[port].
9855 fcoe_wwn_node_name_upper);
9856 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9857 SHMEM_RD(bp,
9858 dev_info.port_hw_config[port].
9859 fcoe_wwn_node_name_lower);
9860 } else if (!IS_MF_SD(bp)) {
9861 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9862
9863 /*
9864 * Read the WWN info only if the FCoE feature is enabled for
9865 * this function.
9866 */
9867 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
9868 bnx2x_get_ext_wwn_info(bp, func);
9869
9870 } else if (IS_MF_FCOE_SD(bp))
9871 bnx2x_get_ext_wwn_info(bp, func);
9872
9873 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9874
9875 /*
9876 * If maximum allowed number of connections is zero -
9877 * disable the feature.
9878 */
9879 if (!bp->cnic_eth_dev.max_fcoe_conn)
9880 bp->flags |= NO_FCOE_FLAG;
9881 #else
9882 bp->flags |= NO_FCOE_FLAG;
9883 #endif
9884 }
9885
bnx2x_get_cnic_info(struct bnx2x * bp)9886 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9887 {
9888 /*
9889 * iSCSI may be dynamically disabled but reading
9890 * info here we will decrease memory usage by driver
9891 * if the feature is disabled for good
9892 */
9893 bnx2x_get_iscsi_info(bp);
9894 bnx2x_get_fcoe_info(bp);
9895 }
9896
bnx2x_get_mac_hwinfo(struct bnx2x * bp)9897 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9898 {
9899 u32 val, val2;
9900 int func = BP_ABS_FUNC(bp);
9901 int port = BP_PORT(bp);
9902 #ifdef BCM_CNIC
9903 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9904 u8 *fip_mac = bp->fip_mac;
9905 #endif
9906
9907 /* Zero primary MAC configuration */
9908 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9909
9910 if (BP_NOMCP(bp)) {
9911 BNX2X_ERROR("warning: random MAC workaround active\n");
9912 eth_hw_addr_random(bp->dev);
9913 } else if (IS_MF(bp)) {
9914 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9915 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9916 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9917 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9918 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9919
9920 #ifdef BCM_CNIC
9921 /*
9922 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9923 * FCoE MAC then the appropriate feature should be disabled.
9924 *
9925 * In non SD mode features configuration comes from
9926 * struct func_ext_config.
9927 */
9928 if (!IS_MF_SD(bp)) {
9929 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9930 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9931 val2 = MF_CFG_RD(bp, func_ext_config[func].
9932 iscsi_mac_addr_upper);
9933 val = MF_CFG_RD(bp, func_ext_config[func].
9934 iscsi_mac_addr_lower);
9935 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9936 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9937 iscsi_mac);
9938 } else
9939 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9940
9941 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9942 val2 = MF_CFG_RD(bp, func_ext_config[func].
9943 fcoe_mac_addr_upper);
9944 val = MF_CFG_RD(bp, func_ext_config[func].
9945 fcoe_mac_addr_lower);
9946 bnx2x_set_mac_buf(fip_mac, val, val2);
9947 BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9948 fip_mac);
9949
9950 } else
9951 bp->flags |= NO_FCOE_FLAG;
9952 } else { /* SD MODE */
9953 if (IS_MF_STORAGE_SD(bp)) {
9954 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
9955 /* use primary mac as iscsi mac */
9956 memcpy(iscsi_mac, bp->dev->dev_addr,
9957 ETH_ALEN);
9958
9959 BNX2X_DEV_INFO("SD ISCSI MODE\n");
9960 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9961 iscsi_mac);
9962 } else { /* FCoE */
9963 memcpy(fip_mac, bp->dev->dev_addr,
9964 ETH_ALEN);
9965 BNX2X_DEV_INFO("SD FCoE MODE\n");
9966 BNX2X_DEV_INFO("Read FIP MAC: %pM\n",
9967 fip_mac);
9968 }
9969 /* Zero primary MAC configuration */
9970 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9971 }
9972 }
9973 #endif
9974 } else {
9975 /* in SF read MACs from port configuration */
9976 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9977 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9978 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9979
9980 #ifdef BCM_CNIC
9981 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9982 iscsi_mac_upper);
9983 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9984 iscsi_mac_lower);
9985 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9986
9987 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9988 fcoe_fip_mac_upper);
9989 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9990 fcoe_fip_mac_lower);
9991 bnx2x_set_mac_buf(fip_mac, val, val2);
9992 #endif
9993 }
9994
9995 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9996 memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9997
9998 #ifdef BCM_CNIC
9999 /* Disable iSCSI if MAC configuration is
10000 * invalid.
10001 */
10002 if (!is_valid_ether_addr(iscsi_mac)) {
10003 bp->flags |= NO_ISCSI_FLAG;
10004 memset(iscsi_mac, 0, ETH_ALEN);
10005 }
10006
10007 /* Disable FCoE if MAC configuration is
10008 * invalid.
10009 */
10010 if (!is_valid_ether_addr(fip_mac)) {
10011 bp->flags |= NO_FCOE_FLAG;
10012 memset(bp->fip_mac, 0, ETH_ALEN);
10013 }
10014 #endif
10015
10016 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10017 dev_err(&bp->pdev->dev,
10018 "bad Ethernet MAC address configuration: %pM\n"
10019 "change it manually before bringing up the appropriate network interface\n",
10020 bp->dev->dev_addr);
10021
10022
10023 }
10024
bnx2x_get_hwinfo(struct bnx2x * bp)10025 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
10026 {
10027 int /*abs*/func = BP_ABS_FUNC(bp);
10028 int vn;
10029 u32 val = 0;
10030 int rc = 0;
10031
10032 bnx2x_get_common_hwinfo(bp);
10033
10034 /*
10035 * initialize IGU parameters
10036 */
10037 if (CHIP_IS_E1x(bp)) {
10038 bp->common.int_block = INT_BLOCK_HC;
10039
10040 bp->igu_dsb_id = DEF_SB_IGU_ID;
10041 bp->igu_base_sb = 0;
10042 } else {
10043 bp->common.int_block = INT_BLOCK_IGU;
10044
10045 /* do not allow device reset during IGU info preocessing */
10046 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10047
10048 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10049
10050 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10051 int tout = 5000;
10052
10053 BNX2X_DEV_INFO("FORCING Normal Mode\n");
10054
10055 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10056 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10057 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10058
10059 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10060 tout--;
10061 usleep_range(1000, 1000);
10062 }
10063
10064 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10065 dev_err(&bp->pdev->dev,
10066 "FORCING Normal Mode failed!!!\n");
10067 return -EPERM;
10068 }
10069 }
10070
10071 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10072 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10073 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10074 } else
10075 BNX2X_DEV_INFO("IGU Normal Mode\n");
10076
10077 bnx2x_get_igu_cam_info(bp);
10078
10079 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10080 }
10081
10082 /*
10083 * set base FW non-default (fast path) status block id, this value is
10084 * used to initialize the fw_sb_id saved on the fp/queue structure to
10085 * determine the id used by the FW.
10086 */
10087 if (CHIP_IS_E1x(bp))
10088 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10089 else /*
10090 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10091 * the same queue are indicated on the same IGU SB). So we prefer
10092 * FW and IGU SBs to be the same value.
10093 */
10094 bp->base_fw_ndsb = bp->igu_base_sb;
10095
10096 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
10097 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10098 bp->igu_sb_cnt, bp->base_fw_ndsb);
10099
10100 /*
10101 * Initialize MF configuration
10102 */
10103
10104 bp->mf_ov = 0;
10105 bp->mf_mode = 0;
10106 vn = BP_VN(bp);
10107
10108 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10109 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10110 bp->common.shmem2_base, SHMEM2_RD(bp, size),
10111 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10112
10113 if (SHMEM2_HAS(bp, mf_cfg_addr))
10114 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10115 else
10116 bp->common.mf_cfg_base = bp->common.shmem_base +
10117 offsetof(struct shmem_region, func_mb) +
10118 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10119 /*
10120 * get mf configuration:
10121 * 1. existence of MF configuration
10122 * 2. MAC address must be legal (check only upper bytes)
10123 * for Switch-Independent mode;
10124 * OVLAN must be legal for Switch-Dependent mode
10125 * 3. SF_MODE configures specific MF mode
10126 */
10127 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10128 /* get mf configuration */
10129 val = SHMEM_RD(bp,
10130 dev_info.shared_feature_config.config);
10131 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10132
10133 switch (val) {
10134 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10135 val = MF_CFG_RD(bp, func_mf_config[func].
10136 mac_upper);
10137 /* check for legal mac (upper bytes)*/
10138 if (val != 0xffff) {
10139 bp->mf_mode = MULTI_FUNCTION_SI;
10140 bp->mf_config[vn] = MF_CFG_RD(bp,
10141 func_mf_config[func].config);
10142 } else
10143 BNX2X_DEV_INFO("illegal MAC address for SI\n");
10144 break;
10145 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10146 /* get OV configuration */
10147 val = MF_CFG_RD(bp,
10148 func_mf_config[FUNC_0].e1hov_tag);
10149 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10150
10151 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10152 bp->mf_mode = MULTI_FUNCTION_SD;
10153 bp->mf_config[vn] = MF_CFG_RD(bp,
10154 func_mf_config[func].config);
10155 } else
10156 BNX2X_DEV_INFO("illegal OV for SD\n");
10157 break;
10158 default:
10159 /* Unknown configuration: reset mf_config */
10160 bp->mf_config[vn] = 0;
10161 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10162 }
10163 }
10164
10165 BNX2X_DEV_INFO("%s function mode\n",
10166 IS_MF(bp) ? "multi" : "single");
10167
10168 switch (bp->mf_mode) {
10169 case MULTI_FUNCTION_SD:
10170 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10171 FUNC_MF_CFG_E1HOV_TAG_MASK;
10172 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10173 bp->mf_ov = val;
10174 bp->path_has_ovlan = true;
10175
10176 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10177 func, bp->mf_ov, bp->mf_ov);
10178 } else {
10179 dev_err(&bp->pdev->dev,
10180 "No valid MF OV for func %d, aborting\n",
10181 func);
10182 return -EPERM;
10183 }
10184 break;
10185 case MULTI_FUNCTION_SI:
10186 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10187 func);
10188 break;
10189 default:
10190 if (vn) {
10191 dev_err(&bp->pdev->dev,
10192 "VN %d is in a single function mode, aborting\n",
10193 vn);
10194 return -EPERM;
10195 }
10196 break;
10197 }
10198
10199 /* check if other port on the path needs ovlan:
10200 * Since MF configuration is shared between ports
10201 * Possible mixed modes are only
10202 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10203 */
10204 if (CHIP_MODE_IS_4_PORT(bp) &&
10205 !bp->path_has_ovlan &&
10206 !IS_MF(bp) &&
10207 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10208 u8 other_port = !BP_PORT(bp);
10209 u8 other_func = BP_PATH(bp) + 2*other_port;
10210 val = MF_CFG_RD(bp,
10211 func_mf_config[other_func].e1hov_tag);
10212 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10213 bp->path_has_ovlan = true;
10214 }
10215 }
10216
10217 /* adjust igu_sb_cnt to MF for E1x */
10218 if (CHIP_IS_E1x(bp) && IS_MF(bp))
10219 bp->igu_sb_cnt /= E1HVN_MAX;
10220
10221 /* port info */
10222 bnx2x_get_port_hwinfo(bp);
10223
10224 /* Get MAC addresses */
10225 bnx2x_get_mac_hwinfo(bp);
10226
10227 bnx2x_get_cnic_info(bp);
10228
10229 return rc;
10230 }
10231
bnx2x_read_fwinfo(struct bnx2x * bp)10232 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
10233 {
10234 int cnt, i, block_end, rodi;
10235 char vpd_start[BNX2X_VPD_LEN+1];
10236 char str_id_reg[VENDOR_ID_LEN+1];
10237 char str_id_cap[VENDOR_ID_LEN+1];
10238 char *vpd_data;
10239 char *vpd_extended_data = NULL;
10240 u8 len;
10241
10242 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10243 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10244
10245 if (cnt < BNX2X_VPD_LEN)
10246 goto out_not_found;
10247
10248 /* VPD RO tag should be first tag after identifier string, hence
10249 * we should be able to find it in first BNX2X_VPD_LEN chars
10250 */
10251 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
10252 PCI_VPD_LRDT_RO_DATA);
10253 if (i < 0)
10254 goto out_not_found;
10255
10256 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
10257 pci_vpd_lrdt_size(&vpd_start[i]);
10258
10259 i += PCI_VPD_LRDT_TAG_SIZE;
10260
10261 if (block_end > BNX2X_VPD_LEN) {
10262 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
10263 if (vpd_extended_data == NULL)
10264 goto out_not_found;
10265
10266 /* read rest of vpd image into vpd_extended_data */
10267 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
10268 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
10269 block_end - BNX2X_VPD_LEN,
10270 vpd_extended_data + BNX2X_VPD_LEN);
10271 if (cnt < (block_end - BNX2X_VPD_LEN))
10272 goto out_not_found;
10273 vpd_data = vpd_extended_data;
10274 } else
10275 vpd_data = vpd_start;
10276
10277 /* now vpd_data holds full vpd content in both cases */
10278
10279 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10280 PCI_VPD_RO_KEYWORD_MFR_ID);
10281 if (rodi < 0)
10282 goto out_not_found;
10283
10284 len = pci_vpd_info_field_size(&vpd_data[rodi]);
10285
10286 if (len != VENDOR_ID_LEN)
10287 goto out_not_found;
10288
10289 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10290
10291 /* vendor specific info */
10292 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10293 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10294 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10295 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10296
10297 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10298 PCI_VPD_RO_KEYWORD_VENDOR0);
10299 if (rodi >= 0) {
10300 len = pci_vpd_info_field_size(&vpd_data[rodi]);
10301
10302 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10303
10304 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10305 memcpy(bp->fw_ver, &vpd_data[rodi], len);
10306 bp->fw_ver[len] = ' ';
10307 }
10308 }
10309 kfree(vpd_extended_data);
10310 return;
10311 }
10312 out_not_found:
10313 kfree(vpd_extended_data);
10314 return;
10315 }
10316
bnx2x_set_modes_bitmap(struct bnx2x * bp)10317 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10318 {
10319 u32 flags = 0;
10320
10321 if (CHIP_REV_IS_FPGA(bp))
10322 SET_FLAGS(flags, MODE_FPGA);
10323 else if (CHIP_REV_IS_EMUL(bp))
10324 SET_FLAGS(flags, MODE_EMUL);
10325 else
10326 SET_FLAGS(flags, MODE_ASIC);
10327
10328 if (CHIP_MODE_IS_4_PORT(bp))
10329 SET_FLAGS(flags, MODE_PORT4);
10330 else
10331 SET_FLAGS(flags, MODE_PORT2);
10332
10333 if (CHIP_IS_E2(bp))
10334 SET_FLAGS(flags, MODE_E2);
10335 else if (CHIP_IS_E3(bp)) {
10336 SET_FLAGS(flags, MODE_E3);
10337 if (CHIP_REV(bp) == CHIP_REV_Ax)
10338 SET_FLAGS(flags, MODE_E3_A0);
10339 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10340 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10341 }
10342
10343 if (IS_MF(bp)) {
10344 SET_FLAGS(flags, MODE_MF);
10345 switch (bp->mf_mode) {
10346 case MULTI_FUNCTION_SD:
10347 SET_FLAGS(flags, MODE_MF_SD);
10348 break;
10349 case MULTI_FUNCTION_SI:
10350 SET_FLAGS(flags, MODE_MF_SI);
10351 break;
10352 }
10353 } else
10354 SET_FLAGS(flags, MODE_SF);
10355
10356 #if defined(__LITTLE_ENDIAN)
10357 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10358 #else /*(__BIG_ENDIAN)*/
10359 SET_FLAGS(flags, MODE_BIG_ENDIAN);
10360 #endif
10361 INIT_MODE_FLAGS(bp) = flags;
10362 }
10363
bnx2x_init_bp(struct bnx2x * bp)10364 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10365 {
10366 int func;
10367 int rc;
10368
10369 mutex_init(&bp->port.phy_mutex);
10370 mutex_init(&bp->fw_mb_mutex);
10371 spin_lock_init(&bp->stats_lock);
10372 #ifdef BCM_CNIC
10373 mutex_init(&bp->cnic_mutex);
10374 #endif
10375
10376 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10377 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10378 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10379 rc = bnx2x_get_hwinfo(bp);
10380 if (rc)
10381 return rc;
10382
10383 bnx2x_set_modes_bitmap(bp);
10384
10385 rc = bnx2x_alloc_mem_bp(bp);
10386 if (rc)
10387 return rc;
10388
10389 bnx2x_read_fwinfo(bp);
10390
10391 func = BP_FUNC(bp);
10392
10393 /* need to reset chip if undi was active */
10394 if (!BP_NOMCP(bp)) {
10395 /* init fw_seq */
10396 bp->fw_seq =
10397 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10398 DRV_MSG_SEQ_NUMBER_MASK;
10399 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10400
10401 bnx2x_prev_unload(bp);
10402 }
10403
10404
10405 if (CHIP_REV_IS_FPGA(bp))
10406 dev_err(&bp->pdev->dev, "FPGA detected\n");
10407
10408 if (BP_NOMCP(bp) && (func == 0))
10409 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
10410
10411 bp->multi_mode = multi_mode;
10412
10413 bp->disable_tpa = disable_tpa;
10414
10415 #ifdef BCM_CNIC
10416 bp->disable_tpa |= IS_MF_STORAGE_SD(bp);
10417 #endif
10418
10419 /* Set TPA flags */
10420 if (bp->disable_tpa) {
10421 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10422 bp->dev->features &= ~NETIF_F_LRO;
10423 } else {
10424 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10425 bp->dev->features |= NETIF_F_LRO;
10426 }
10427
10428 if (CHIP_IS_E1(bp))
10429 bp->dropless_fc = 0;
10430 else
10431 bp->dropless_fc = dropless_fc;
10432
10433 bp->mrrs = mrrs;
10434
10435 bp->tx_ring_size = MAX_TX_AVAIL;
10436
10437 /* make sure that the numbers are in the right granularity */
10438 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10439 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10440
10441 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
10442
10443 init_timer(&bp->timer);
10444 bp->timer.expires = jiffies + bp->current_interval;
10445 bp->timer.data = (unsigned long) bp;
10446 bp->timer.function = bnx2x_timer;
10447
10448 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10449 bnx2x_dcbx_init_params(bp);
10450
10451 #ifdef BCM_CNIC
10452 if (CHIP_IS_E1x(bp))
10453 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10454 else
10455 bp->cnic_base_cl_id = FP_SB_MAX_E2;
10456 #endif
10457
10458 /* multiple tx priority */
10459 if (CHIP_IS_E1x(bp))
10460 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10461 if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10462 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10463 if (CHIP_IS_E3B0(bp))
10464 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10465
10466 bp->gro_check = bnx2x_need_gro_check(bp->dev->mtu);
10467
10468 return rc;
10469 }
10470
10471
10472 /****************************************************************************
10473 * General service functions
10474 ****************************************************************************/
10475
10476 /*
10477 * net_device service functions
10478 */
10479
10480 /* called with rtnl_lock */
bnx2x_open(struct net_device * dev)10481 static int bnx2x_open(struct net_device *dev)
10482 {
10483 struct bnx2x *bp = netdev_priv(dev);
10484 bool global = false;
10485 int other_engine = BP_PATH(bp) ? 0 : 1;
10486 bool other_load_status, load_status;
10487
10488 bp->stats_init = true;
10489
10490 netif_carrier_off(dev);
10491
10492 bnx2x_set_power_state(bp, PCI_D0);
10493
10494 other_load_status = bnx2x_get_load_status(bp, other_engine);
10495 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
10496
10497 /*
10498 * If parity had happen during the unload, then attentions
10499 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10500 * want the first function loaded on the current engine to
10501 * complete the recovery.
10502 */
10503 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10504 bnx2x_chk_parity_attn(bp, &global, true))
10505 do {
10506 /*
10507 * If there are attentions and they are in a global
10508 * blocks, set the GLOBAL_RESET bit regardless whether
10509 * it will be this function that will complete the
10510 * recovery or not.
10511 */
10512 if (global)
10513 bnx2x_set_reset_global(bp);
10514
10515 /*
10516 * Only the first function on the current engine should
10517 * try to recover in open. In case of attentions in
10518 * global blocks only the first in the chip should try
10519 * to recover.
10520 */
10521 if ((!load_status &&
10522 (!global || !other_load_status)) &&
10523 bnx2x_trylock_leader_lock(bp) &&
10524 !bnx2x_leader_reset(bp)) {
10525 netdev_info(bp->dev, "Recovered in open\n");
10526 break;
10527 }
10528
10529 /* recovery has failed... */
10530 bnx2x_set_power_state(bp, PCI_D3hot);
10531 bp->recovery_state = BNX2X_RECOVERY_FAILED;
10532
10533 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
10534 "If you still see this message after a few retries then power cycle is required.\n");
10535
10536 return -EAGAIN;
10537 } while (0);
10538
10539 bp->recovery_state = BNX2X_RECOVERY_DONE;
10540 return bnx2x_nic_load(bp, LOAD_OPEN);
10541 }
10542
10543 /* called with rtnl_lock */
bnx2x_close(struct net_device * dev)10544 static int bnx2x_close(struct net_device *dev)
10545 {
10546 struct bnx2x *bp = netdev_priv(dev);
10547
10548 /* Unload the driver, release IRQs */
10549 bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10550
10551 /* Power off */
10552 bnx2x_set_power_state(bp, PCI_D3hot);
10553
10554 return 0;
10555 }
10556
bnx2x_init_mcast_macs_list(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p)10557 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10558 struct bnx2x_mcast_ramrod_params *p)
10559 {
10560 int mc_count = netdev_mc_count(bp->dev);
10561 struct bnx2x_mcast_list_elem *mc_mac =
10562 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10563 struct netdev_hw_addr *ha;
10564
10565 if (!mc_mac)
10566 return -ENOMEM;
10567
10568 INIT_LIST_HEAD(&p->mcast_list);
10569
10570 netdev_for_each_mc_addr(ha, bp->dev) {
10571 mc_mac->mac = bnx2x_mc_addr(ha);
10572 list_add_tail(&mc_mac->link, &p->mcast_list);
10573 mc_mac++;
10574 }
10575
10576 p->mcast_list_len = mc_count;
10577
10578 return 0;
10579 }
10580
bnx2x_free_mcast_macs_list(struct bnx2x_mcast_ramrod_params * p)10581 static inline void bnx2x_free_mcast_macs_list(
10582 struct bnx2x_mcast_ramrod_params *p)
10583 {
10584 struct bnx2x_mcast_list_elem *mc_mac =
10585 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10586 link);
10587
10588 WARN_ON(!mc_mac);
10589 kfree(mc_mac);
10590 }
10591
10592 /**
10593 * bnx2x_set_uc_list - configure a new unicast MACs list.
10594 *
10595 * @bp: driver handle
10596 *
10597 * We will use zero (0) as a MAC type for these MACs.
10598 */
bnx2x_set_uc_list(struct bnx2x * bp)10599 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10600 {
10601 int rc;
10602 struct net_device *dev = bp->dev;
10603 struct netdev_hw_addr *ha;
10604 struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10605 unsigned long ramrod_flags = 0;
10606
10607 /* First schedule a cleanup up of old configuration */
10608 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10609 if (rc < 0) {
10610 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10611 return rc;
10612 }
10613
10614 netdev_for_each_uc_addr(ha, dev) {
10615 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10616 BNX2X_UC_LIST_MAC, &ramrod_flags);
10617 if (rc < 0) {
10618 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10619 rc);
10620 return rc;
10621 }
10622 }
10623
10624 /* Execute the pending commands */
10625 __set_bit(RAMROD_CONT, &ramrod_flags);
10626 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10627 BNX2X_UC_LIST_MAC, &ramrod_flags);
10628 }
10629
bnx2x_set_mc_list(struct bnx2x * bp)10630 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10631 {
10632 struct net_device *dev = bp->dev;
10633 struct bnx2x_mcast_ramrod_params rparam = {NULL};
10634 int rc = 0;
10635
10636 rparam.mcast_obj = &bp->mcast_obj;
10637
10638 /* first, clear all configured multicast MACs */
10639 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10640 if (rc < 0) {
10641 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
10642 return rc;
10643 }
10644
10645 /* then, configure a new MACs list */
10646 if (netdev_mc_count(dev)) {
10647 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10648 if (rc) {
10649 BNX2X_ERR("Failed to create multicast MACs list: %d\n",
10650 rc);
10651 return rc;
10652 }
10653
10654 /* Now add the new MACs */
10655 rc = bnx2x_config_mcast(bp, &rparam,
10656 BNX2X_MCAST_CMD_ADD);
10657 if (rc < 0)
10658 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
10659 rc);
10660
10661 bnx2x_free_mcast_macs_list(&rparam);
10662 }
10663
10664 return rc;
10665 }
10666
10667
10668 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
bnx2x_set_rx_mode(struct net_device * dev)10669 void bnx2x_set_rx_mode(struct net_device *dev)
10670 {
10671 struct bnx2x *bp = netdev_priv(dev);
10672 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10673
10674 if (bp->state != BNX2X_STATE_OPEN) {
10675 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10676 return;
10677 }
10678
10679 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10680
10681 if (dev->flags & IFF_PROMISC)
10682 rx_mode = BNX2X_RX_MODE_PROMISC;
10683 else if ((dev->flags & IFF_ALLMULTI) ||
10684 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10685 CHIP_IS_E1(bp)))
10686 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10687 else {
10688 /* some multicasts */
10689 if (bnx2x_set_mc_list(bp) < 0)
10690 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10691
10692 if (bnx2x_set_uc_list(bp) < 0)
10693 rx_mode = BNX2X_RX_MODE_PROMISC;
10694 }
10695
10696 bp->rx_mode = rx_mode;
10697 #ifdef BCM_CNIC
10698 /* handle ISCSI SD mode */
10699 if (IS_MF_ISCSI_SD(bp))
10700 bp->rx_mode = BNX2X_RX_MODE_NONE;
10701 #endif
10702
10703 /* Schedule the rx_mode command */
10704 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10705 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10706 return;
10707 }
10708
10709 bnx2x_set_storm_rx_mode(bp);
10710 }
10711
10712 /* called with rtnl_lock */
bnx2x_mdio_read(struct net_device * netdev,int prtad,int devad,u16 addr)10713 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10714 int devad, u16 addr)
10715 {
10716 struct bnx2x *bp = netdev_priv(netdev);
10717 u16 value;
10718 int rc;
10719
10720 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10721 prtad, devad, addr);
10722
10723 /* The HW expects different devad if CL22 is used */
10724 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10725
10726 bnx2x_acquire_phy_lock(bp);
10727 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10728 bnx2x_release_phy_lock(bp);
10729 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10730
10731 if (!rc)
10732 rc = value;
10733 return rc;
10734 }
10735
10736 /* called with rtnl_lock */
bnx2x_mdio_write(struct net_device * netdev,int prtad,int devad,u16 addr,u16 value)10737 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10738 u16 addr, u16 value)
10739 {
10740 struct bnx2x *bp = netdev_priv(netdev);
10741 int rc;
10742
10743 DP(NETIF_MSG_LINK,
10744 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
10745 prtad, devad, addr, value);
10746
10747 /* The HW expects different devad if CL22 is used */
10748 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10749
10750 bnx2x_acquire_phy_lock(bp);
10751 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10752 bnx2x_release_phy_lock(bp);
10753 return rc;
10754 }
10755
10756 /* called with rtnl_lock */
bnx2x_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)10757 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10758 {
10759 struct bnx2x *bp = netdev_priv(dev);
10760 struct mii_ioctl_data *mdio = if_mii(ifr);
10761
10762 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10763 mdio->phy_id, mdio->reg_num, mdio->val_in);
10764
10765 if (!netif_running(dev))
10766 return -EAGAIN;
10767
10768 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10769 }
10770
10771 #ifdef CONFIG_NET_POLL_CONTROLLER
poll_bnx2x(struct net_device * dev)10772 static void poll_bnx2x(struct net_device *dev)
10773 {
10774 struct bnx2x *bp = netdev_priv(dev);
10775
10776 disable_irq(bp->pdev->irq);
10777 bnx2x_interrupt(bp->pdev->irq, dev);
10778 enable_irq(bp->pdev->irq);
10779 }
10780 #endif
10781
bnx2x_validate_addr(struct net_device * dev)10782 static int bnx2x_validate_addr(struct net_device *dev)
10783 {
10784 struct bnx2x *bp = netdev_priv(dev);
10785
10786 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
10787 BNX2X_ERR("Non-valid Ethernet address\n");
10788 return -EADDRNOTAVAIL;
10789 }
10790 return 0;
10791 }
10792
10793 static const struct net_device_ops bnx2x_netdev_ops = {
10794 .ndo_open = bnx2x_open,
10795 .ndo_stop = bnx2x_close,
10796 .ndo_start_xmit = bnx2x_start_xmit,
10797 .ndo_select_queue = bnx2x_select_queue,
10798 .ndo_set_rx_mode = bnx2x_set_rx_mode,
10799 .ndo_set_mac_address = bnx2x_change_mac_addr,
10800 .ndo_validate_addr = bnx2x_validate_addr,
10801 .ndo_do_ioctl = bnx2x_ioctl,
10802 .ndo_change_mtu = bnx2x_change_mtu,
10803 .ndo_fix_features = bnx2x_fix_features,
10804 .ndo_set_features = bnx2x_set_features,
10805 .ndo_tx_timeout = bnx2x_tx_timeout,
10806 #ifdef CONFIG_NET_POLL_CONTROLLER
10807 .ndo_poll_controller = poll_bnx2x,
10808 #endif
10809 .ndo_setup_tc = bnx2x_setup_tc,
10810
10811 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10812 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
10813 #endif
10814 };
10815
bnx2x_set_coherency_mask(struct bnx2x * bp)10816 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10817 {
10818 struct device *dev = &bp->pdev->dev;
10819
10820 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10821 bp->flags |= USING_DAC_FLAG;
10822 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10823 dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
10824 return -EIO;
10825 }
10826 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10827 dev_err(dev, "System does not support DMA, aborting\n");
10828 return -EIO;
10829 }
10830
10831 return 0;
10832 }
10833
bnx2x_init_dev(struct pci_dev * pdev,struct net_device * dev,unsigned long board_type)10834 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10835 struct net_device *dev,
10836 unsigned long board_type)
10837 {
10838 struct bnx2x *bp;
10839 int rc;
10840 u32 pci_cfg_dword;
10841 bool chip_is_e1x = (board_type == BCM57710 ||
10842 board_type == BCM57711 ||
10843 board_type == BCM57711E);
10844
10845 SET_NETDEV_DEV(dev, &pdev->dev);
10846 bp = netdev_priv(dev);
10847
10848 bp->dev = dev;
10849 bp->pdev = pdev;
10850 bp->flags = 0;
10851
10852 rc = pci_enable_device(pdev);
10853 if (rc) {
10854 dev_err(&bp->pdev->dev,
10855 "Cannot enable PCI device, aborting\n");
10856 goto err_out;
10857 }
10858
10859 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10860 dev_err(&bp->pdev->dev,
10861 "Cannot find PCI device base address, aborting\n");
10862 rc = -ENODEV;
10863 goto err_out_disable;
10864 }
10865
10866 if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10867 dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10868 " base address, aborting\n");
10869 rc = -ENODEV;
10870 goto err_out_disable;
10871 }
10872
10873 if (atomic_read(&pdev->enable_cnt) == 1) {
10874 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10875 if (rc) {
10876 dev_err(&bp->pdev->dev,
10877 "Cannot obtain PCI resources, aborting\n");
10878 goto err_out_disable;
10879 }
10880
10881 pci_set_master(pdev);
10882 pci_save_state(pdev);
10883 }
10884
10885 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10886 if (bp->pm_cap == 0) {
10887 dev_err(&bp->pdev->dev,
10888 "Cannot find power management capability, aborting\n");
10889 rc = -EIO;
10890 goto err_out_release;
10891 }
10892
10893 if (!pci_is_pcie(pdev)) {
10894 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
10895 rc = -EIO;
10896 goto err_out_release;
10897 }
10898
10899 rc = bnx2x_set_coherency_mask(bp);
10900 if (rc)
10901 goto err_out_release;
10902
10903 dev->mem_start = pci_resource_start(pdev, 0);
10904 dev->base_addr = dev->mem_start;
10905 dev->mem_end = pci_resource_end(pdev, 0);
10906
10907 dev->irq = pdev->irq;
10908
10909 bp->regview = pci_ioremap_bar(pdev, 0);
10910 if (!bp->regview) {
10911 dev_err(&bp->pdev->dev,
10912 "Cannot map register space, aborting\n");
10913 rc = -ENOMEM;
10914 goto err_out_release;
10915 }
10916
10917 /* In E1/E1H use pci device function given by kernel.
10918 * In E2/E3 read physical function from ME register since these chips
10919 * support Physical Device Assignment where kernel BDF maybe arbitrary
10920 * (depending on hypervisor).
10921 */
10922 if (chip_is_e1x)
10923 bp->pf_num = PCI_FUNC(pdev->devfn);
10924 else {/* chip is E2/3*/
10925 pci_read_config_dword(bp->pdev,
10926 PCICFG_ME_REGISTER, &pci_cfg_dword);
10927 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
10928 ME_REG_ABS_PF_NUM_SHIFT);
10929 }
10930 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
10931
10932 bnx2x_set_power_state(bp, PCI_D0);
10933
10934 /* clean indirect addresses */
10935 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10936 PCICFG_VENDOR_ID_OFFSET);
10937 /*
10938 * Clean the following indirect addresses for all functions since it
10939 * is not used by the driver.
10940 */
10941 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10942 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10943 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10944 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10945
10946 if (chip_is_e1x) {
10947 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10948 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10949 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10950 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10951 }
10952
10953 /*
10954 * Enable internal target-read (in case we are probed after PF FLR).
10955 * Must be done prior to any BAR read access. Only for 57712 and up
10956 */
10957 if (!chip_is_e1x)
10958 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10959
10960 /* Reset the load counter */
10961 bnx2x_clear_load_status(bp);
10962
10963 dev->watchdog_timeo = TX_TIMEOUT;
10964
10965 dev->netdev_ops = &bnx2x_netdev_ops;
10966 bnx2x_set_ethtool_ops(dev);
10967
10968 dev->priv_flags |= IFF_UNICAST_FLT;
10969
10970 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10971 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
10972 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
10973 NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10974
10975 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10976 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10977
10978 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10979 if (bp->flags & USING_DAC_FLAG)
10980 dev->features |= NETIF_F_HIGHDMA;
10981
10982 /* Add Loopback capability to the device */
10983 dev->hw_features |= NETIF_F_LOOPBACK;
10984
10985 #ifdef BCM_DCBNL
10986 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10987 #endif
10988
10989 /* get_port_hwinfo() will set prtad and mmds properly */
10990 bp->mdio.prtad = MDIO_PRTAD_NONE;
10991 bp->mdio.mmds = 0;
10992 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10993 bp->mdio.dev = dev;
10994 bp->mdio.mdio_read = bnx2x_mdio_read;
10995 bp->mdio.mdio_write = bnx2x_mdio_write;
10996
10997 return 0;
10998
10999 err_out_release:
11000 if (atomic_read(&pdev->enable_cnt) == 1)
11001 pci_release_regions(pdev);
11002
11003 err_out_disable:
11004 pci_disable_device(pdev);
11005 pci_set_drvdata(pdev, NULL);
11006
11007 err_out:
11008 return rc;
11009 }
11010
bnx2x_get_pcie_width_speed(struct bnx2x * bp,int * width,int * speed)11011 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
11012 int *width, int *speed)
11013 {
11014 u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
11015
11016 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
11017
11018 /* return value of 1=2.5GHz 2=5GHz */
11019 *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
11020 }
11021
bnx2x_check_firmware(struct bnx2x * bp)11022 static int bnx2x_check_firmware(struct bnx2x *bp)
11023 {
11024 const struct firmware *firmware = bp->firmware;
11025 struct bnx2x_fw_file_hdr *fw_hdr;
11026 struct bnx2x_fw_file_section *sections;
11027 u32 offset, len, num_ops;
11028 u16 *ops_offsets;
11029 int i;
11030 const u8 *fw_ver;
11031
11032 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11033 BNX2X_ERR("Wrong FW size\n");
11034 return -EINVAL;
11035 }
11036
11037 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11038 sections = (struct bnx2x_fw_file_section *)fw_hdr;
11039
11040 /* Make sure none of the offsets and sizes make us read beyond
11041 * the end of the firmware data */
11042 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11043 offset = be32_to_cpu(sections[i].offset);
11044 len = be32_to_cpu(sections[i].len);
11045 if (offset + len > firmware->size) {
11046 BNX2X_ERR("Section %d length is out of bounds\n", i);
11047 return -EINVAL;
11048 }
11049 }
11050
11051 /* Likewise for the init_ops offsets */
11052 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11053 ops_offsets = (u16 *)(firmware->data + offset);
11054 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11055
11056 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11057 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11058 BNX2X_ERR("Section offset %d is out of bounds\n", i);
11059 return -EINVAL;
11060 }
11061 }
11062
11063 /* Check FW version */
11064 offset = be32_to_cpu(fw_hdr->fw_version.offset);
11065 fw_ver = firmware->data + offset;
11066 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11067 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11068 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11069 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11070 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11071 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11072 BCM_5710_FW_MAJOR_VERSION,
11073 BCM_5710_FW_MINOR_VERSION,
11074 BCM_5710_FW_REVISION_VERSION,
11075 BCM_5710_FW_ENGINEERING_VERSION);
11076 return -EINVAL;
11077 }
11078
11079 return 0;
11080 }
11081
be32_to_cpu_n(const u8 * _source,u8 * _target,u32 n)11082 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11083 {
11084 const __be32 *source = (const __be32 *)_source;
11085 u32 *target = (u32 *)_target;
11086 u32 i;
11087
11088 for (i = 0; i < n/4; i++)
11089 target[i] = be32_to_cpu(source[i]);
11090 }
11091
11092 /*
11093 Ops array is stored in the following format:
11094 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11095 */
bnx2x_prep_ops(const u8 * _source,u8 * _target,u32 n)11096 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11097 {
11098 const __be32 *source = (const __be32 *)_source;
11099 struct raw_op *target = (struct raw_op *)_target;
11100 u32 i, j, tmp;
11101
11102 for (i = 0, j = 0; i < n/8; i++, j += 2) {
11103 tmp = be32_to_cpu(source[j]);
11104 target[i].op = (tmp >> 24) & 0xff;
11105 target[i].offset = tmp & 0xffffff;
11106 target[i].raw_data = be32_to_cpu(source[j + 1]);
11107 }
11108 }
11109
11110 /**
11111 * IRO array is stored in the following format:
11112 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11113 */
bnx2x_prep_iro(const u8 * _source,u8 * _target,u32 n)11114 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11115 {
11116 const __be32 *source = (const __be32 *)_source;
11117 struct iro *target = (struct iro *)_target;
11118 u32 i, j, tmp;
11119
11120 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11121 target[i].base = be32_to_cpu(source[j]);
11122 j++;
11123 tmp = be32_to_cpu(source[j]);
11124 target[i].m1 = (tmp >> 16) & 0xffff;
11125 target[i].m2 = tmp & 0xffff;
11126 j++;
11127 tmp = be32_to_cpu(source[j]);
11128 target[i].m3 = (tmp >> 16) & 0xffff;
11129 target[i].size = tmp & 0xffff;
11130 j++;
11131 }
11132 }
11133
be16_to_cpu_n(const u8 * _source,u8 * _target,u32 n)11134 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11135 {
11136 const __be16 *source = (const __be16 *)_source;
11137 u16 *target = (u16 *)_target;
11138 u32 i;
11139
11140 for (i = 0; i < n/2; i++)
11141 target[i] = be16_to_cpu(source[i]);
11142 }
11143
11144 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
11145 do { \
11146 u32 len = be32_to_cpu(fw_hdr->arr.len); \
11147 bp->arr = kmalloc(len, GFP_KERNEL); \
11148 if (!bp->arr) \
11149 goto lbl; \
11150 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
11151 (u8 *)bp->arr, len); \
11152 } while (0)
11153
bnx2x_init_firmware(struct bnx2x * bp)11154 static int bnx2x_init_firmware(struct bnx2x *bp)
11155 {
11156 const char *fw_file_name;
11157 struct bnx2x_fw_file_hdr *fw_hdr;
11158 int rc;
11159
11160 if (bp->firmware)
11161 return 0;
11162
11163 if (CHIP_IS_E1(bp))
11164 fw_file_name = FW_FILE_NAME_E1;
11165 else if (CHIP_IS_E1H(bp))
11166 fw_file_name = FW_FILE_NAME_E1H;
11167 else if (!CHIP_IS_E1x(bp))
11168 fw_file_name = FW_FILE_NAME_E2;
11169 else {
11170 BNX2X_ERR("Unsupported chip revision\n");
11171 return -EINVAL;
11172 }
11173 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
11174
11175 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
11176 if (rc) {
11177 BNX2X_ERR("Can't load firmware file %s\n",
11178 fw_file_name);
11179 goto request_firmware_exit;
11180 }
11181
11182 rc = bnx2x_check_firmware(bp);
11183 if (rc) {
11184 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
11185 goto request_firmware_exit;
11186 }
11187
11188 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
11189
11190 /* Initialize the pointers to the init arrays */
11191 /* Blob */
11192 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
11193
11194 /* Opcodes */
11195 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
11196
11197 /* Offsets */
11198 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
11199 be16_to_cpu_n);
11200
11201 /* STORMs firmware */
11202 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11203 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
11204 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
11205 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
11206 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11207 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
11208 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
11209 be32_to_cpu(fw_hdr->usem_pram_data.offset);
11210 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11211 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
11212 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
11213 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
11214 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11215 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
11216 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
11217 be32_to_cpu(fw_hdr->csem_pram_data.offset);
11218 /* IRO */
11219 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
11220
11221 return 0;
11222
11223 iro_alloc_err:
11224 kfree(bp->init_ops_offsets);
11225 init_offsets_alloc_err:
11226 kfree(bp->init_ops);
11227 init_ops_alloc_err:
11228 kfree(bp->init_data);
11229 request_firmware_exit:
11230 release_firmware(bp->firmware);
11231 bp->firmware = NULL;
11232
11233 return rc;
11234 }
11235
bnx2x_release_firmware(struct bnx2x * bp)11236 static void bnx2x_release_firmware(struct bnx2x *bp)
11237 {
11238 kfree(bp->init_ops_offsets);
11239 kfree(bp->init_ops);
11240 kfree(bp->init_data);
11241 release_firmware(bp->firmware);
11242 bp->firmware = NULL;
11243 }
11244
11245
11246 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
11247 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
11248 .init_hw_cmn = bnx2x_init_hw_common,
11249 .init_hw_port = bnx2x_init_hw_port,
11250 .init_hw_func = bnx2x_init_hw_func,
11251
11252 .reset_hw_cmn = bnx2x_reset_common,
11253 .reset_hw_port = bnx2x_reset_port,
11254 .reset_hw_func = bnx2x_reset_func,
11255
11256 .gunzip_init = bnx2x_gunzip_init,
11257 .gunzip_end = bnx2x_gunzip_end,
11258
11259 .init_fw = bnx2x_init_firmware,
11260 .release_fw = bnx2x_release_firmware,
11261 };
11262
bnx2x__init_func_obj(struct bnx2x * bp)11263 void bnx2x__init_func_obj(struct bnx2x *bp)
11264 {
11265 /* Prepare DMAE related driver resources */
11266 bnx2x_setup_dmae(bp);
11267
11268 bnx2x_init_func_obj(bp, &bp->func_obj,
11269 bnx2x_sp(bp, func_rdata),
11270 bnx2x_sp_mapping(bp, func_rdata),
11271 &bnx2x_func_sp_drv);
11272 }
11273
11274 /* must be called after sriov-enable */
bnx2x_set_qm_cid_count(struct bnx2x * bp)11275 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
11276 {
11277 int cid_count = BNX2X_L2_CID_COUNT(bp);
11278
11279 #ifdef BCM_CNIC
11280 cid_count += CNIC_CID_MAX;
11281 #endif
11282 return roundup(cid_count, QM_CID_ROUND);
11283 }
11284
11285 /**
11286 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
11287 *
11288 * @dev: pci device
11289 *
11290 */
bnx2x_get_num_non_def_sbs(struct pci_dev * pdev)11291 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
11292 {
11293 int pos;
11294 u16 control;
11295
11296 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
11297
11298 /*
11299 * If MSI-X is not supported - return number of SBs needed to support
11300 * one fast path queue: one FP queue + SB for CNIC
11301 */
11302 if (!pos)
11303 return 1 + CNIC_PRESENT;
11304
11305 /*
11306 * The value in the PCI configuration space is the index of the last
11307 * entry, namely one less than the actual size of the table, which is
11308 * exactly what we want to return from this function: number of all SBs
11309 * without the default SB.
11310 */
11311 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
11312 return control & PCI_MSIX_FLAGS_QSIZE;
11313 }
11314
bnx2x_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)11315 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11316 const struct pci_device_id *ent)
11317 {
11318 struct net_device *dev = NULL;
11319 struct bnx2x *bp;
11320 int pcie_width, pcie_speed;
11321 int rc, max_non_def_sbs;
11322 int rx_count, tx_count, rss_count;
11323 /*
11324 * An estimated maximum supported CoS number according to the chip
11325 * version.
11326 * We will try to roughly estimate the maximum number of CoSes this chip
11327 * may support in order to minimize the memory allocated for Tx
11328 * netdev_queue's. This number will be accurately calculated during the
11329 * initialization of bp->max_cos based on the chip versions AND chip
11330 * revision in the bnx2x_init_bp().
11331 */
11332 u8 max_cos_est = 0;
11333
11334 switch (ent->driver_data) {
11335 case BCM57710:
11336 case BCM57711:
11337 case BCM57711E:
11338 max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11339 break;
11340
11341 case BCM57712:
11342 case BCM57712_MF:
11343 max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11344 break;
11345
11346 case BCM57800:
11347 case BCM57800_MF:
11348 case BCM57810:
11349 case BCM57810_MF:
11350 case BCM57840:
11351 case BCM57840_MF:
11352 max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11353 break;
11354
11355 default:
11356 pr_err("Unknown board_type (%ld), aborting\n",
11357 ent->driver_data);
11358 return -ENODEV;
11359 }
11360
11361 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11362
11363 /* !!! FIXME !!!
11364 * Do not allow the maximum SB count to grow above 16
11365 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11366 * We will use the FP_SB_MAX_E1x macro for this matter.
11367 */
11368 max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11369
11370 WARN_ON(!max_non_def_sbs);
11371
11372 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
11373 rss_count = max_non_def_sbs - CNIC_PRESENT;
11374
11375 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11376 rx_count = rss_count + FCOE_PRESENT;
11377
11378 /*
11379 * Maximum number of netdev Tx queues:
11380 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
11381 */
11382 tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11383
11384 /* dev zeroed in init_etherdev */
11385 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11386 if (!dev)
11387 return -ENOMEM;
11388
11389 bp = netdev_priv(dev);
11390
11391 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
11392 tx_count, rx_count);
11393
11394 bp->igu_sb_cnt = max_non_def_sbs;
11395 bp->msg_enable = debug;
11396 pci_set_drvdata(pdev, dev);
11397
11398 rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11399 if (rc < 0) {
11400 free_netdev(dev);
11401 return rc;
11402 }
11403
11404 BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
11405
11406 rc = bnx2x_init_bp(bp);
11407 if (rc)
11408 goto init_one_exit;
11409
11410 /*
11411 * Map doorbels here as we need the real value of bp->max_cos which
11412 * is initialized in bnx2x_init_bp().
11413 */
11414 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11415 min_t(u64, BNX2X_DB_SIZE(bp),
11416 pci_resource_len(pdev, 2)));
11417 if (!bp->doorbells) {
11418 dev_err(&bp->pdev->dev,
11419 "Cannot map doorbell space, aborting\n");
11420 rc = -ENOMEM;
11421 goto init_one_exit;
11422 }
11423
11424 /* calc qm_cid_count */
11425 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11426
11427 #ifdef BCM_CNIC
11428 /* disable FCOE L2 queue for E1x */
11429 if (CHIP_IS_E1x(bp))
11430 bp->flags |= NO_FCOE_FLAG;
11431
11432 #endif
11433
11434 /* Configure interrupt mode: try to enable MSI-X/MSI if
11435 * needed, set bp->num_queues appropriately.
11436 */
11437 bnx2x_set_int_mode(bp);
11438
11439 /* Add all NAPI objects */
11440 bnx2x_add_all_napi(bp);
11441
11442 rc = register_netdev(dev);
11443 if (rc) {
11444 dev_err(&pdev->dev, "Cannot register net device\n");
11445 goto init_one_exit;
11446 }
11447
11448 #ifdef BCM_CNIC
11449 if (!NO_FCOE(bp)) {
11450 /* Add storage MAC address */
11451 rtnl_lock();
11452 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11453 rtnl_unlock();
11454 }
11455 #endif
11456
11457 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11458
11459 BNX2X_DEV_INFO(
11460 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11461 board_info[ent->driver_data].name,
11462 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11463 pcie_width,
11464 ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11465 (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11466 "5GHz (Gen2)" : "2.5GHz",
11467 dev->base_addr, bp->pdev->irq, dev->dev_addr);
11468
11469 return 0;
11470
11471 init_one_exit:
11472 if (bp->regview)
11473 iounmap(bp->regview);
11474
11475 if (bp->doorbells)
11476 iounmap(bp->doorbells);
11477
11478 free_netdev(dev);
11479
11480 if (atomic_read(&pdev->enable_cnt) == 1)
11481 pci_release_regions(pdev);
11482
11483 pci_disable_device(pdev);
11484 pci_set_drvdata(pdev, NULL);
11485
11486 return rc;
11487 }
11488
bnx2x_remove_one(struct pci_dev * pdev)11489 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11490 {
11491 struct net_device *dev = pci_get_drvdata(pdev);
11492 struct bnx2x *bp;
11493
11494 if (!dev) {
11495 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11496 return;
11497 }
11498 bp = netdev_priv(dev);
11499
11500 #ifdef BCM_CNIC
11501 /* Delete storage MAC address */
11502 if (!NO_FCOE(bp)) {
11503 rtnl_lock();
11504 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11505 rtnl_unlock();
11506 }
11507 #endif
11508
11509 #ifdef BCM_DCBNL
11510 /* Delete app tlvs from dcbnl */
11511 bnx2x_dcbnl_update_applist(bp, true);
11512 #endif
11513
11514 unregister_netdev(dev);
11515
11516 /* Delete all NAPI objects */
11517 bnx2x_del_all_napi(bp);
11518
11519 /* Power on: we can't let PCI layer write to us while we are in D3 */
11520 bnx2x_set_power_state(bp, PCI_D0);
11521
11522 /* Disable MSI/MSI-X */
11523 bnx2x_disable_msi(bp);
11524
11525 /* Power off */
11526 bnx2x_set_power_state(bp, PCI_D3hot);
11527
11528 /* Make sure RESET task is not scheduled before continuing */
11529 cancel_delayed_work_sync(&bp->sp_rtnl_task);
11530
11531 if (bp->regview)
11532 iounmap(bp->regview);
11533
11534 if (bp->doorbells)
11535 iounmap(bp->doorbells);
11536
11537 bnx2x_release_firmware(bp);
11538
11539 bnx2x_free_mem_bp(bp);
11540
11541 free_netdev(dev);
11542
11543 if (atomic_read(&pdev->enable_cnt) == 1)
11544 pci_release_regions(pdev);
11545
11546 pci_disable_device(pdev);
11547 pci_set_drvdata(pdev, NULL);
11548 }
11549
bnx2x_eeh_nic_unload(struct bnx2x * bp)11550 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11551 {
11552 int i;
11553
11554 bp->state = BNX2X_STATE_ERROR;
11555
11556 bp->rx_mode = BNX2X_RX_MODE_NONE;
11557
11558 #ifdef BCM_CNIC
11559 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11560 #endif
11561 /* Stop Tx */
11562 bnx2x_tx_disable(bp);
11563
11564 bnx2x_netif_stop(bp, 0);
11565
11566 del_timer_sync(&bp->timer);
11567
11568 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11569
11570 /* Release IRQs */
11571 bnx2x_free_irq(bp);
11572
11573 /* Free SKBs, SGEs, TPA pool and driver internals */
11574 bnx2x_free_skbs(bp);
11575
11576 for_each_rx_queue(bp, i)
11577 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11578
11579 bnx2x_free_mem(bp);
11580
11581 bp->state = BNX2X_STATE_CLOSED;
11582
11583 netif_carrier_off(bp->dev);
11584
11585 return 0;
11586 }
11587
bnx2x_eeh_recover(struct bnx2x * bp)11588 static void bnx2x_eeh_recover(struct bnx2x *bp)
11589 {
11590 u32 val;
11591
11592 mutex_init(&bp->port.phy_mutex);
11593
11594
11595 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11596 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11597 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11598 BNX2X_ERR("BAD MCP validity signature\n");
11599 }
11600
11601 /**
11602 * bnx2x_io_error_detected - called when PCI error is detected
11603 * @pdev: Pointer to PCI device
11604 * @state: The current pci connection state
11605 *
11606 * This function is called after a PCI bus error affecting
11607 * this device has been detected.
11608 */
bnx2x_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)11609 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11610 pci_channel_state_t state)
11611 {
11612 struct net_device *dev = pci_get_drvdata(pdev);
11613 struct bnx2x *bp = netdev_priv(dev);
11614
11615 rtnl_lock();
11616
11617 netif_device_detach(dev);
11618
11619 if (state == pci_channel_io_perm_failure) {
11620 rtnl_unlock();
11621 return PCI_ERS_RESULT_DISCONNECT;
11622 }
11623
11624 if (netif_running(dev))
11625 bnx2x_eeh_nic_unload(bp);
11626
11627 pci_disable_device(pdev);
11628
11629 rtnl_unlock();
11630
11631 /* Request a slot reset */
11632 return PCI_ERS_RESULT_NEED_RESET;
11633 }
11634
11635 /**
11636 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11637 * @pdev: Pointer to PCI device
11638 *
11639 * Restart the card from scratch, as if from a cold-boot.
11640 */
bnx2x_io_slot_reset(struct pci_dev * pdev)11641 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11642 {
11643 struct net_device *dev = pci_get_drvdata(pdev);
11644 struct bnx2x *bp = netdev_priv(dev);
11645
11646 rtnl_lock();
11647
11648 if (pci_enable_device(pdev)) {
11649 dev_err(&pdev->dev,
11650 "Cannot re-enable PCI device after reset\n");
11651 rtnl_unlock();
11652 return PCI_ERS_RESULT_DISCONNECT;
11653 }
11654
11655 pci_set_master(pdev);
11656 pci_restore_state(pdev);
11657
11658 if (netif_running(dev))
11659 bnx2x_set_power_state(bp, PCI_D0);
11660
11661 rtnl_unlock();
11662
11663 return PCI_ERS_RESULT_RECOVERED;
11664 }
11665
11666 /**
11667 * bnx2x_io_resume - called when traffic can start flowing again
11668 * @pdev: Pointer to PCI device
11669 *
11670 * This callback is called when the error recovery driver tells us that
11671 * its OK to resume normal operation.
11672 */
bnx2x_io_resume(struct pci_dev * pdev)11673 static void bnx2x_io_resume(struct pci_dev *pdev)
11674 {
11675 struct net_device *dev = pci_get_drvdata(pdev);
11676 struct bnx2x *bp = netdev_priv(dev);
11677
11678 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11679 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
11680 return;
11681 }
11682
11683 rtnl_lock();
11684
11685 bnx2x_eeh_recover(bp);
11686
11687 if (netif_running(dev))
11688 bnx2x_nic_load(bp, LOAD_NORMAL);
11689
11690 netif_device_attach(dev);
11691
11692 rtnl_unlock();
11693 }
11694
11695 static struct pci_error_handlers bnx2x_err_handler = {
11696 .error_detected = bnx2x_io_error_detected,
11697 .slot_reset = bnx2x_io_slot_reset,
11698 .resume = bnx2x_io_resume,
11699 };
11700
11701 static struct pci_driver bnx2x_pci_driver = {
11702 .name = DRV_MODULE_NAME,
11703 .id_table = bnx2x_pci_tbl,
11704 .probe = bnx2x_init_one,
11705 .remove = __devexit_p(bnx2x_remove_one),
11706 .suspend = bnx2x_suspend,
11707 .resume = bnx2x_resume,
11708 .err_handler = &bnx2x_err_handler,
11709 };
11710
bnx2x_init(void)11711 static int __init bnx2x_init(void)
11712 {
11713 int ret;
11714
11715 pr_info("%s", version);
11716
11717 bnx2x_wq = create_singlethread_workqueue("bnx2x");
11718 if (bnx2x_wq == NULL) {
11719 pr_err("Cannot create workqueue\n");
11720 return -ENOMEM;
11721 }
11722
11723 ret = pci_register_driver(&bnx2x_pci_driver);
11724 if (ret) {
11725 pr_err("Cannot register driver\n");
11726 destroy_workqueue(bnx2x_wq);
11727 }
11728 return ret;
11729 }
11730
bnx2x_cleanup(void)11731 static void __exit bnx2x_cleanup(void)
11732 {
11733 struct list_head *pos, *q;
11734 pci_unregister_driver(&bnx2x_pci_driver);
11735
11736 destroy_workqueue(bnx2x_wq);
11737
11738 /* Free globablly allocated resources */
11739 list_for_each_safe(pos, q, &bnx2x_prev_list) {
11740 struct bnx2x_prev_path_list *tmp =
11741 list_entry(pos, struct bnx2x_prev_path_list, list);
11742 list_del(pos);
11743 kfree(tmp);
11744 }
11745 }
11746
bnx2x_notify_link_changed(struct bnx2x * bp)11747 void bnx2x_notify_link_changed(struct bnx2x *bp)
11748 {
11749 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11750 }
11751
11752 module_init(bnx2x_init);
11753 module_exit(bnx2x_cleanup);
11754
11755 #ifdef BCM_CNIC
11756 /**
11757 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11758 *
11759 * @bp: driver handle
11760 * @set: set or clear the CAM entry
11761 *
11762 * This function will wait until the ramdord completion returns.
11763 * Return 0 if success, -ENODEV if ramrod doesn't return.
11764 */
bnx2x_set_iscsi_eth_mac_addr(struct bnx2x * bp)11765 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11766 {
11767 unsigned long ramrod_flags = 0;
11768
11769 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11770 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11771 &bp->iscsi_l2_mac_obj, true,
11772 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11773 }
11774
11775 /* count denotes the number of new completions we have seen */
bnx2x_cnic_sp_post(struct bnx2x * bp,int count)11776 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11777 {
11778 struct eth_spe *spe;
11779
11780 #ifdef BNX2X_STOP_ON_ERROR
11781 if (unlikely(bp->panic))
11782 return;
11783 #endif
11784
11785 spin_lock_bh(&bp->spq_lock);
11786 BUG_ON(bp->cnic_spq_pending < count);
11787 bp->cnic_spq_pending -= count;
11788
11789
11790 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11791 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11792 & SPE_HDR_CONN_TYPE) >>
11793 SPE_HDR_CONN_TYPE_SHIFT;
11794 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11795 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11796
11797 /* Set validation for iSCSI L2 client before sending SETUP
11798 * ramrod
11799 */
11800 if (type == ETH_CONNECTION_TYPE) {
11801 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11802 bnx2x_set_ctx_validation(bp, &bp->context.
11803 vcxt[BNX2X_ISCSI_ETH_CID].eth,
11804 BNX2X_ISCSI_ETH_CID);
11805 }
11806
11807 /*
11808 * There may be not more than 8 L2, not more than 8 L5 SPEs
11809 * and in the air. We also check that number of outstanding
11810 * COMMON ramrods is not more than the EQ and SPQ can
11811 * accommodate.
11812 */
11813 if (type == ETH_CONNECTION_TYPE) {
11814 if (!atomic_read(&bp->cq_spq_left))
11815 break;
11816 else
11817 atomic_dec(&bp->cq_spq_left);
11818 } else if (type == NONE_CONNECTION_TYPE) {
11819 if (!atomic_read(&bp->eq_spq_left))
11820 break;
11821 else
11822 atomic_dec(&bp->eq_spq_left);
11823 } else if ((type == ISCSI_CONNECTION_TYPE) ||
11824 (type == FCOE_CONNECTION_TYPE)) {
11825 if (bp->cnic_spq_pending >=
11826 bp->cnic_eth_dev.max_kwqe_pending)
11827 break;
11828 else
11829 bp->cnic_spq_pending++;
11830 } else {
11831 BNX2X_ERR("Unknown SPE type: %d\n", type);
11832 bnx2x_panic();
11833 break;
11834 }
11835
11836 spe = bnx2x_sp_get_next(bp);
11837 *spe = *bp->cnic_kwq_cons;
11838
11839 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
11840 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11841
11842 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11843 bp->cnic_kwq_cons = bp->cnic_kwq;
11844 else
11845 bp->cnic_kwq_cons++;
11846 }
11847 bnx2x_sp_prod_update(bp);
11848 spin_unlock_bh(&bp->spq_lock);
11849 }
11850
bnx2x_cnic_sp_queue(struct net_device * dev,struct kwqe_16 * kwqes[],u32 count)11851 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11852 struct kwqe_16 *kwqes[], u32 count)
11853 {
11854 struct bnx2x *bp = netdev_priv(dev);
11855 int i;
11856
11857 #ifdef BNX2X_STOP_ON_ERROR
11858 if (unlikely(bp->panic)) {
11859 BNX2X_ERR("Can't post to SP queue while panic\n");
11860 return -EIO;
11861 }
11862 #endif
11863
11864 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
11865 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
11866 BNX2X_ERR("Handling parity error recovery. Try again later\n");
11867 return -EAGAIN;
11868 }
11869
11870 spin_lock_bh(&bp->spq_lock);
11871
11872 for (i = 0; i < count; i++) {
11873 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11874
11875 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11876 break;
11877
11878 *bp->cnic_kwq_prod = *spe;
11879
11880 bp->cnic_kwq_pending++;
11881
11882 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
11883 spe->hdr.conn_and_cmd_data, spe->hdr.type,
11884 spe->data.update_data_addr.hi,
11885 spe->data.update_data_addr.lo,
11886 bp->cnic_kwq_pending);
11887
11888 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11889 bp->cnic_kwq_prod = bp->cnic_kwq;
11890 else
11891 bp->cnic_kwq_prod++;
11892 }
11893
11894 spin_unlock_bh(&bp->spq_lock);
11895
11896 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11897 bnx2x_cnic_sp_post(bp, 0);
11898
11899 return i;
11900 }
11901
bnx2x_cnic_ctl_send(struct bnx2x * bp,struct cnic_ctl_info * ctl)11902 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11903 {
11904 struct cnic_ops *c_ops;
11905 int rc = 0;
11906
11907 mutex_lock(&bp->cnic_mutex);
11908 c_ops = rcu_dereference_protected(bp->cnic_ops,
11909 lockdep_is_held(&bp->cnic_mutex));
11910 if (c_ops)
11911 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11912 mutex_unlock(&bp->cnic_mutex);
11913
11914 return rc;
11915 }
11916
bnx2x_cnic_ctl_send_bh(struct bnx2x * bp,struct cnic_ctl_info * ctl)11917 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11918 {
11919 struct cnic_ops *c_ops;
11920 int rc = 0;
11921
11922 rcu_read_lock();
11923 c_ops = rcu_dereference(bp->cnic_ops);
11924 if (c_ops)
11925 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11926 rcu_read_unlock();
11927
11928 return rc;
11929 }
11930
11931 /*
11932 * for commands that have no data
11933 */
bnx2x_cnic_notify(struct bnx2x * bp,int cmd)11934 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11935 {
11936 struct cnic_ctl_info ctl = {0};
11937
11938 ctl.cmd = cmd;
11939
11940 return bnx2x_cnic_ctl_send(bp, &ctl);
11941 }
11942
bnx2x_cnic_cfc_comp(struct bnx2x * bp,int cid,u8 err)11943 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11944 {
11945 struct cnic_ctl_info ctl = {0};
11946
11947 /* first we tell CNIC and only then we count this as a completion */
11948 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11949 ctl.data.comp.cid = cid;
11950 ctl.data.comp.error = err;
11951
11952 bnx2x_cnic_ctl_send_bh(bp, &ctl);
11953 bnx2x_cnic_sp_post(bp, 0);
11954 }
11955
11956
11957 /* Called with netif_addr_lock_bh() taken.
11958 * Sets an rx_mode config for an iSCSI ETH client.
11959 * Doesn't block.
11960 * Completion should be checked outside.
11961 */
bnx2x_set_iscsi_eth_rx_mode(struct bnx2x * bp,bool start)11962 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11963 {
11964 unsigned long accept_flags = 0, ramrod_flags = 0;
11965 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11966 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11967
11968 if (start) {
11969 /* Start accepting on iSCSI L2 ring. Accept all multicasts
11970 * because it's the only way for UIO Queue to accept
11971 * multicasts (in non-promiscuous mode only one Queue per
11972 * function will receive multicast packets (leading in our
11973 * case).
11974 */
11975 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11976 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11977 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11978 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11979
11980 /* Clear STOP_PENDING bit if START is requested */
11981 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11982
11983 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11984 } else
11985 /* Clear START_PENDING bit if STOP is requested */
11986 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11987
11988 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11989 set_bit(sched_state, &bp->sp_state);
11990 else {
11991 __set_bit(RAMROD_RX, &ramrod_flags);
11992 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11993 ramrod_flags);
11994 }
11995 }
11996
11997
bnx2x_drv_ctl(struct net_device * dev,struct drv_ctl_info * ctl)11998 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11999 {
12000 struct bnx2x *bp = netdev_priv(dev);
12001 int rc = 0;
12002
12003 switch (ctl->cmd) {
12004 case DRV_CTL_CTXTBL_WR_CMD: {
12005 u32 index = ctl->data.io.offset;
12006 dma_addr_t addr = ctl->data.io.dma_addr;
12007
12008 bnx2x_ilt_wr(bp, index, addr);
12009 break;
12010 }
12011
12012 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
12013 int count = ctl->data.credit.credit_count;
12014
12015 bnx2x_cnic_sp_post(bp, count);
12016 break;
12017 }
12018
12019 /* rtnl_lock is held. */
12020 case DRV_CTL_START_L2_CMD: {
12021 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12022 unsigned long sp_bits = 0;
12023
12024 /* Configure the iSCSI classification object */
12025 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12026 cp->iscsi_l2_client_id,
12027 cp->iscsi_l2_cid, BP_FUNC(bp),
12028 bnx2x_sp(bp, mac_rdata),
12029 bnx2x_sp_mapping(bp, mac_rdata),
12030 BNX2X_FILTER_MAC_PENDING,
12031 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12032 &bp->macs_pool);
12033
12034 /* Set iSCSI MAC address */
12035 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12036 if (rc)
12037 break;
12038
12039 mmiowb();
12040 barrier();
12041
12042 /* Start accepting on iSCSI L2 ring */
12043
12044 netif_addr_lock_bh(dev);
12045 bnx2x_set_iscsi_eth_rx_mode(bp, true);
12046 netif_addr_unlock_bh(dev);
12047
12048 /* bits to wait on */
12049 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12050 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12051
12052 if (!bnx2x_wait_sp_comp(bp, sp_bits))
12053 BNX2X_ERR("rx_mode completion timed out!\n");
12054
12055 break;
12056 }
12057
12058 /* rtnl_lock is held. */
12059 case DRV_CTL_STOP_L2_CMD: {
12060 unsigned long sp_bits = 0;
12061
12062 /* Stop accepting on iSCSI L2 ring */
12063 netif_addr_lock_bh(dev);
12064 bnx2x_set_iscsi_eth_rx_mode(bp, false);
12065 netif_addr_unlock_bh(dev);
12066
12067 /* bits to wait on */
12068 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12069 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
12070
12071 if (!bnx2x_wait_sp_comp(bp, sp_bits))
12072 BNX2X_ERR("rx_mode completion timed out!\n");
12073
12074 mmiowb();
12075 barrier();
12076
12077 /* Unset iSCSI L2 MAC */
12078 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
12079 BNX2X_ISCSI_ETH_MAC, true);
12080 break;
12081 }
12082 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
12083 int count = ctl->data.credit.credit_count;
12084
12085 smp_mb__before_atomic_inc();
12086 atomic_add(count, &bp->cq_spq_left);
12087 smp_mb__after_atomic_inc();
12088 break;
12089 }
12090 case DRV_CTL_ULP_REGISTER_CMD: {
12091 int ulp_type = ctl->data.ulp_type;
12092
12093 if (CHIP_IS_E3(bp)) {
12094 int idx = BP_FW_MB_IDX(bp);
12095 u32 cap;
12096
12097 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12098 if (ulp_type == CNIC_ULP_ISCSI)
12099 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12100 else if (ulp_type == CNIC_ULP_FCOE)
12101 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12102 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12103 }
12104 break;
12105 }
12106 case DRV_CTL_ULP_UNREGISTER_CMD: {
12107 int ulp_type = ctl->data.ulp_type;
12108
12109 if (CHIP_IS_E3(bp)) {
12110 int idx = BP_FW_MB_IDX(bp);
12111 u32 cap;
12112
12113 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12114 if (ulp_type == CNIC_ULP_ISCSI)
12115 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12116 else if (ulp_type == CNIC_ULP_FCOE)
12117 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12118 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12119 }
12120 break;
12121 }
12122
12123 default:
12124 BNX2X_ERR("unknown command %x\n", ctl->cmd);
12125 rc = -EINVAL;
12126 }
12127
12128 return rc;
12129 }
12130
bnx2x_setup_cnic_irq_info(struct bnx2x * bp)12131 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
12132 {
12133 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12134
12135 if (bp->flags & USING_MSIX_FLAG) {
12136 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
12137 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
12138 cp->irq_arr[0].vector = bp->msix_table[1].vector;
12139 } else {
12140 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
12141 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
12142 }
12143 if (!CHIP_IS_E1x(bp))
12144 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
12145 else
12146 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
12147
12148 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
12149 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
12150 cp->irq_arr[1].status_blk = bp->def_status_blk;
12151 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
12152 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
12153
12154 cp->num_irq = 2;
12155 }
12156
bnx2x_register_cnic(struct net_device * dev,struct cnic_ops * ops,void * data)12157 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
12158 void *data)
12159 {
12160 struct bnx2x *bp = netdev_priv(dev);
12161 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12162
12163 if (ops == NULL) {
12164 BNX2X_ERR("NULL ops received\n");
12165 return -EINVAL;
12166 }
12167
12168 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
12169 if (!bp->cnic_kwq)
12170 return -ENOMEM;
12171
12172 bp->cnic_kwq_cons = bp->cnic_kwq;
12173 bp->cnic_kwq_prod = bp->cnic_kwq;
12174 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
12175
12176 bp->cnic_spq_pending = 0;
12177 bp->cnic_kwq_pending = 0;
12178
12179 bp->cnic_data = data;
12180
12181 cp->num_irq = 0;
12182 cp->drv_state |= CNIC_DRV_STATE_REGD;
12183 cp->iro_arr = bp->iro_arr;
12184
12185 bnx2x_setup_cnic_irq_info(bp);
12186
12187 rcu_assign_pointer(bp->cnic_ops, ops);
12188
12189 return 0;
12190 }
12191
bnx2x_unregister_cnic(struct net_device * dev)12192 static int bnx2x_unregister_cnic(struct net_device *dev)
12193 {
12194 struct bnx2x *bp = netdev_priv(dev);
12195 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12196
12197 mutex_lock(&bp->cnic_mutex);
12198 cp->drv_state = 0;
12199 RCU_INIT_POINTER(bp->cnic_ops, NULL);
12200 mutex_unlock(&bp->cnic_mutex);
12201 synchronize_rcu();
12202 kfree(bp->cnic_kwq);
12203 bp->cnic_kwq = NULL;
12204
12205 return 0;
12206 }
12207
bnx2x_cnic_probe(struct net_device * dev)12208 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
12209 {
12210 struct bnx2x *bp = netdev_priv(dev);
12211 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12212
12213 /* If both iSCSI and FCoE are disabled - return NULL in
12214 * order to indicate CNIC that it should not try to work
12215 * with this device.
12216 */
12217 if (NO_ISCSI(bp) && NO_FCOE(bp))
12218 return NULL;
12219
12220 cp->drv_owner = THIS_MODULE;
12221 cp->chip_id = CHIP_ID(bp);
12222 cp->pdev = bp->pdev;
12223 cp->io_base = bp->regview;
12224 cp->io_base2 = bp->doorbells;
12225 cp->max_kwqe_pending = 8;
12226 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
12227 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12228 bnx2x_cid_ilt_lines(bp);
12229 cp->ctx_tbl_len = CNIC_ILT_LINES;
12230 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12231 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
12232 cp->drv_ctl = bnx2x_drv_ctl;
12233 cp->drv_register_cnic = bnx2x_register_cnic;
12234 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
12235 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
12236 cp->iscsi_l2_client_id =
12237 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12238 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
12239
12240 if (NO_ISCSI_OOO(bp))
12241 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12242
12243 if (NO_ISCSI(bp))
12244 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
12245
12246 if (NO_FCOE(bp))
12247 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
12248
12249 BNX2X_DEV_INFO(
12250 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
12251 cp->ctx_blk_size,
12252 cp->ctx_tbl_offset,
12253 cp->ctx_tbl_len,
12254 cp->starting_cid);
12255 return cp;
12256 }
12257 EXPORT_SYMBOL(bnx2x_cnic_probe);
12258
12259 #endif /* BCM_CNIC */
12260
12261