1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/gro.h>
29 #include <net/ipv6.h>
30 #include <net/ip6_checksum.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40
bnx2x_add_all_napi_cnic(struct bnx2x * bp)41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 int i;
44
45 /* Add NAPI objects */
46 for_each_rx_queue_cnic(bp, i) {
47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
48 bnx2x_poll, NAPI_POLL_WEIGHT);
49 }
50 }
51
bnx2x_add_all_napi(struct bnx2x * bp)52 static void bnx2x_add_all_napi(struct bnx2x *bp)
53 {
54 int i;
55
56 /* Add NAPI objects */
57 for_each_eth_queue(bp, i) {
58 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
59 bnx2x_poll, NAPI_POLL_WEIGHT);
60 }
61 }
62
bnx2x_calc_num_queues(struct bnx2x * bp)63 static int bnx2x_calc_num_queues(struct bnx2x *bp)
64 {
65 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
66
67 /* Reduce memory usage in kdump environment by using only one queue */
68 if (is_kdump_kernel())
69 nq = 1;
70
71 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
72 return nq;
73 }
74
75 /**
76 * bnx2x_move_fp - move content of the fastpath structure.
77 *
78 * @bp: driver handle
79 * @from: source FP index
80 * @to: destination FP index
81 *
82 * Makes sure the contents of the bp->fp[to].napi is kept
83 * intact. This is done by first copying the napi struct from
84 * the target to the source, and then mem copying the entire
85 * source onto the target. Update txdata pointers and related
86 * content.
87 */
bnx2x_move_fp(struct bnx2x * bp,int from,int to)88 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
89 {
90 struct bnx2x_fastpath *from_fp = &bp->fp[from];
91 struct bnx2x_fastpath *to_fp = &bp->fp[to];
92 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
93 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
94 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
95 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
96 int old_max_eth_txqs, new_max_eth_txqs;
97 int old_txdata_index = 0, new_txdata_index = 0;
98 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
99
100 /* Copy the NAPI object as it has been already initialized */
101 from_fp->napi = to_fp->napi;
102
103 /* Move bnx2x_fastpath contents */
104 memcpy(to_fp, from_fp, sizeof(*to_fp));
105 to_fp->index = to;
106
107 /* Retain the tpa_info of the original `to' version as we don't want
108 * 2 FPs to contain the same tpa_info pointer.
109 */
110 to_fp->tpa_info = old_tpa_info;
111
112 /* move sp_objs contents as well, as their indices match fp ones */
113 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
114
115 /* move fp_stats contents as well, as their indices match fp ones */
116 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
117
118 /* Update txdata pointers in fp and move txdata content accordingly:
119 * Each fp consumes 'max_cos' txdata structures, so the index should be
120 * decremented by max_cos x delta.
121 */
122
123 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
124 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
125 (bp)->max_cos;
126 if (from == FCOE_IDX(bp)) {
127 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
129 }
130
131 memcpy(&bp->bnx2x_txq[new_txdata_index],
132 &bp->bnx2x_txq[old_txdata_index],
133 sizeof(struct bnx2x_fp_txdata));
134 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
135 }
136
137 /**
138 * bnx2x_fill_fw_str - Fill buffer with FW version string.
139 *
140 * @bp: driver handle
141 * @buf: character buffer to fill with the fw name
142 * @buf_len: length of the above buffer
143 *
144 */
bnx2x_fill_fw_str(struct bnx2x * bp,char * buf,size_t buf_len)145 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
146 {
147 if (IS_PF(bp)) {
148 u8 phy_fw_ver[PHY_FW_VER_LEN];
149
150 phy_fw_ver[0] = '\0';
151 bnx2x_get_ext_phy_fw_version(&bp->link_params,
152 phy_fw_ver, PHY_FW_VER_LEN);
153 strlcpy(buf, bp->fw_ver, buf_len);
154 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
155 "bc %d.%d.%d%s%s",
156 (bp->common.bc_ver & 0xff0000) >> 16,
157 (bp->common.bc_ver & 0xff00) >> 8,
158 (bp->common.bc_ver & 0xff),
159 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
160 } else {
161 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
162 }
163 }
164
165 /**
166 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
167 *
168 * @bp: driver handle
169 * @delta: number of eth queues which were not allocated
170 */
bnx2x_shrink_eth_fp(struct bnx2x * bp,int delta)171 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
172 {
173 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
174
175 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
176 * backward along the array could cause memory to be overridden
177 */
178 for (cos = 1; cos < bp->max_cos; cos++) {
179 for (i = 0; i < old_eth_num - delta; i++) {
180 struct bnx2x_fastpath *fp = &bp->fp[i];
181 int new_idx = cos * (old_eth_num - delta) + i;
182
183 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
184 sizeof(struct bnx2x_fp_txdata));
185 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
186 }
187 }
188 }
189
190 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
191
192 /* free skb in the packet ring at pos idx
193 * return idx of last bd freed
194 */
bnx2x_free_tx_pkt(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,u16 idx,unsigned int * pkts_compl,unsigned int * bytes_compl)195 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
196 u16 idx, unsigned int *pkts_compl,
197 unsigned int *bytes_compl)
198 {
199 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
200 struct eth_tx_start_bd *tx_start_bd;
201 struct eth_tx_bd *tx_data_bd;
202 struct sk_buff *skb = tx_buf->skb;
203 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
204 int nbd;
205 u16 split_bd_len = 0;
206
207 /* prefetch skb end pointer to speedup dev_kfree_skb() */
208 prefetch(&skb->end);
209
210 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
211 txdata->txq_index, idx, tx_buf, skb);
212
213 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
214
215 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
216 #ifdef BNX2X_STOP_ON_ERROR
217 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
218 BNX2X_ERR("BAD nbd!\n");
219 bnx2x_panic();
220 }
221 #endif
222 new_cons = nbd + tx_buf->first_bd;
223
224 /* Get the next bd */
225 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
226
227 /* Skip a parse bd... */
228 --nbd;
229 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
230
231 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
232 /* Skip second parse bd... */
233 --nbd;
234 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
235 }
236
237 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
238 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
239 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
240 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
241 --nbd;
242 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
243 }
244
245 /* unmap first bd */
246 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
247 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
248 DMA_TO_DEVICE);
249
250 /* now free frags */
251 while (nbd > 0) {
252
253 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
254 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
255 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
256 if (--nbd)
257 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
258 }
259
260 /* release skb */
261 WARN_ON(!skb);
262 if (likely(skb)) {
263 (*pkts_compl)++;
264 (*bytes_compl) += skb->len;
265 dev_kfree_skb_any(skb);
266 }
267
268 tx_buf->first_bd = 0;
269 tx_buf->skb = NULL;
270
271 return new_cons;
272 }
273
bnx2x_tx_int(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata)274 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
275 {
276 struct netdev_queue *txq;
277 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
278 unsigned int pkts_compl = 0, bytes_compl = 0;
279
280 #ifdef BNX2X_STOP_ON_ERROR
281 if (unlikely(bp->panic))
282 return -1;
283 #endif
284
285 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
286 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
287 sw_cons = txdata->tx_pkt_cons;
288
289 /* Ensure subsequent loads occur after hw_cons */
290 smp_rmb();
291
292 while (sw_cons != hw_cons) {
293 u16 pkt_cons;
294
295 pkt_cons = TX_BD(sw_cons);
296
297 DP(NETIF_MSG_TX_DONE,
298 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
299 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
300
301 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
302 &pkts_compl, &bytes_compl);
303
304 sw_cons++;
305 }
306
307 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
308
309 txdata->tx_pkt_cons = sw_cons;
310 txdata->tx_bd_cons = bd_cons;
311
312 /* Need to make the tx_bd_cons update visible to start_xmit()
313 * before checking for netif_tx_queue_stopped(). Without the
314 * memory barrier, there is a small possibility that
315 * start_xmit() will miss it and cause the queue to be stopped
316 * forever.
317 * On the other hand we need an rmb() here to ensure the proper
318 * ordering of bit testing in the following
319 * netif_tx_queue_stopped(txq) call.
320 */
321 smp_mb();
322
323 if (unlikely(netif_tx_queue_stopped(txq))) {
324 /* Taking tx_lock() is needed to prevent re-enabling the queue
325 * while it's empty. This could have happen if rx_action() gets
326 * suspended in bnx2x_tx_int() after the condition before
327 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
328 *
329 * stops the queue->sees fresh tx_bd_cons->releases the queue->
330 * sends some packets consuming the whole queue again->
331 * stops the queue
332 */
333
334 __netif_tx_lock(txq, smp_processor_id());
335
336 if ((netif_tx_queue_stopped(txq)) &&
337 (bp->state == BNX2X_STATE_OPEN) &&
338 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
339 netif_tx_wake_queue(txq);
340
341 __netif_tx_unlock(txq);
342 }
343 return 0;
344 }
345
bnx2x_update_last_max_sge(struct bnx2x_fastpath * fp,u16 idx)346 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
347 u16 idx)
348 {
349 u16 last_max = fp->last_max_sge;
350
351 if (SUB_S16(idx, last_max) > 0)
352 fp->last_max_sge = idx;
353 }
354
bnx2x_update_sge_prod(struct bnx2x_fastpath * fp,u16 sge_len,struct eth_end_agg_rx_cqe * cqe)355 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
356 u16 sge_len,
357 struct eth_end_agg_rx_cqe *cqe)
358 {
359 struct bnx2x *bp = fp->bp;
360 u16 last_max, last_elem, first_elem;
361 u16 delta = 0;
362 u16 i;
363
364 if (!sge_len)
365 return;
366
367 /* First mark all used pages */
368 for (i = 0; i < sge_len; i++)
369 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
370 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
371
372 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
373 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
374
375 /* Here we assume that the last SGE index is the biggest */
376 prefetch((void *)(fp->sge_mask));
377 bnx2x_update_last_max_sge(fp,
378 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
379
380 last_max = RX_SGE(fp->last_max_sge);
381 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
382 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
383
384 /* If ring is not full */
385 if (last_elem + 1 != first_elem)
386 last_elem++;
387
388 /* Now update the prod */
389 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
390 if (likely(fp->sge_mask[i]))
391 break;
392
393 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
394 delta += BIT_VEC64_ELEM_SZ;
395 }
396
397 if (delta > 0) {
398 fp->rx_sge_prod += delta;
399 /* clear page-end entries */
400 bnx2x_clear_sge_mask_next_elems(fp);
401 }
402
403 DP(NETIF_MSG_RX_STATUS,
404 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
405 fp->last_max_sge, fp->rx_sge_prod);
406 }
407
408 /* Get Toeplitz hash value in the skb using the value from the
409 * CQE (calculated by HW).
410 */
bnx2x_get_rxhash(const struct bnx2x * bp,const struct eth_fast_path_rx_cqe * cqe,enum pkt_hash_types * rxhash_type)411 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
412 const struct eth_fast_path_rx_cqe *cqe,
413 enum pkt_hash_types *rxhash_type)
414 {
415 /* Get Toeplitz hash from CQE */
416 if ((bp->dev->features & NETIF_F_RXHASH) &&
417 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
418 enum eth_rss_hash_type htype;
419
420 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
421 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
422 (htype == TCP_IPV6_HASH_TYPE)) ?
423 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
424
425 return le32_to_cpu(cqe->rss_hash_result);
426 }
427 *rxhash_type = PKT_HASH_TYPE_NONE;
428 return 0;
429 }
430
bnx2x_tpa_start(struct bnx2x_fastpath * fp,u16 queue,u16 cons,u16 prod,struct eth_fast_path_rx_cqe * cqe)431 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
432 u16 cons, u16 prod,
433 struct eth_fast_path_rx_cqe *cqe)
434 {
435 struct bnx2x *bp = fp->bp;
436 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
437 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
438 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
439 dma_addr_t mapping;
440 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
441 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
442
443 /* print error if current state != stop */
444 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
445 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
446
447 /* Try to map an empty data buffer from the aggregation info */
448 mapping = dma_map_single(&bp->pdev->dev,
449 first_buf->data + NET_SKB_PAD,
450 fp->rx_buf_size, DMA_FROM_DEVICE);
451 /*
452 * ...if it fails - move the skb from the consumer to the producer
453 * and set the current aggregation state as ERROR to drop it
454 * when TPA_STOP arrives.
455 */
456
457 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
458 /* Move the BD from the consumer to the producer */
459 bnx2x_reuse_rx_data(fp, cons, prod);
460 tpa_info->tpa_state = BNX2X_TPA_ERROR;
461 return;
462 }
463
464 /* move empty data from pool to prod */
465 prod_rx_buf->data = first_buf->data;
466 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
467 /* point prod_bd to new data */
468 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
469 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
470
471 /* move partial skb from cons to pool (don't unmap yet) */
472 *first_buf = *cons_rx_buf;
473
474 /* mark bin state as START */
475 tpa_info->parsing_flags =
476 le16_to_cpu(cqe->pars_flags.flags);
477 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
478 tpa_info->tpa_state = BNX2X_TPA_START;
479 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
480 tpa_info->placement_offset = cqe->placement_offset;
481 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
482 if (fp->mode == TPA_MODE_GRO) {
483 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
484 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
485 tpa_info->gro_size = gro_size;
486 }
487
488 #ifdef BNX2X_STOP_ON_ERROR
489 fp->tpa_queue_used |= (1 << queue);
490 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
491 fp->tpa_queue_used);
492 #endif
493 }
494
495 /* Timestamp option length allowed for TPA aggregation:
496 *
497 * nop nop kind length echo val
498 */
499 #define TPA_TSTAMP_OPT_LEN 12
500 /**
501 * bnx2x_set_gro_params - compute GRO values
502 *
503 * @skb: packet skb
504 * @parsing_flags: parsing flags from the START CQE
505 * @len_on_bd: total length of the first packet for the
506 * aggregation.
507 * @pkt_len: length of all segments
508 * @num_of_coalesced_segs: count of segments
509 *
510 * Approximate value of the MSS for this aggregation calculated using
511 * the first packet of it.
512 * Compute number of aggregated segments, and gso_type.
513 */
bnx2x_set_gro_params(struct sk_buff * skb,u16 parsing_flags,u16 len_on_bd,unsigned int pkt_len,u16 num_of_coalesced_segs)514 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
515 u16 len_on_bd, unsigned int pkt_len,
516 u16 num_of_coalesced_segs)
517 {
518 /* TPA aggregation won't have either IP options or TCP options
519 * other than timestamp or IPv6 extension headers.
520 */
521 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
522
523 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
524 PRS_FLAG_OVERETH_IPV6) {
525 hdrs_len += sizeof(struct ipv6hdr);
526 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
527 } else {
528 hdrs_len += sizeof(struct iphdr);
529 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
530 }
531
532 /* Check if there was a TCP timestamp, if there is it's will
533 * always be 12 bytes length: nop nop kind length echo val.
534 *
535 * Otherwise FW would close the aggregation.
536 */
537 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
538 hdrs_len += TPA_TSTAMP_OPT_LEN;
539
540 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
541
542 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
543 * to skb_shinfo(skb)->gso_segs
544 */
545 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
546 }
547
bnx2x_alloc_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)548 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
549 u16 index, gfp_t gfp_mask)
550 {
551 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
552 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
553 struct bnx2x_alloc_pool *pool = &fp->page_pool;
554 dma_addr_t mapping;
555
556 if (!pool->page) {
557 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
558 if (unlikely(!pool->page))
559 return -ENOMEM;
560
561 pool->offset = 0;
562 }
563
564 mapping = dma_map_page(&bp->pdev->dev, pool->page,
565 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
566 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
567 BNX2X_ERR("Can't map sge\n");
568 return -ENOMEM;
569 }
570
571 sw_buf->page = pool->page;
572 sw_buf->offset = pool->offset;
573
574 dma_unmap_addr_set(sw_buf, mapping, mapping);
575
576 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
577 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
578
579 pool->offset += SGE_PAGE_SIZE;
580 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
581 get_page(pool->page);
582 else
583 pool->page = NULL;
584 return 0;
585 }
586
bnx2x_fill_frag_skb(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct sk_buff * skb,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)587 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
588 struct bnx2x_agg_info *tpa_info,
589 u16 pages,
590 struct sk_buff *skb,
591 struct eth_end_agg_rx_cqe *cqe,
592 u16 cqe_idx)
593 {
594 struct sw_rx_page *rx_pg, old_rx_pg;
595 u32 i, frag_len, frag_size;
596 int err, j, frag_id = 0;
597 u16 len_on_bd = tpa_info->len_on_bd;
598 u16 full_page = 0, gro_size = 0;
599
600 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
601
602 if (fp->mode == TPA_MODE_GRO) {
603 gro_size = tpa_info->gro_size;
604 full_page = tpa_info->full_page;
605 }
606
607 /* This is needed in order to enable forwarding support */
608 if (frag_size)
609 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
610 le16_to_cpu(cqe->pkt_len),
611 le16_to_cpu(cqe->num_of_coalesced_segs));
612
613 #ifdef BNX2X_STOP_ON_ERROR
614 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
615 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
616 pages, cqe_idx);
617 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
618 bnx2x_panic();
619 return -EINVAL;
620 }
621 #endif
622
623 /* Run through the SGL and compose the fragmented skb */
624 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
625 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
626
627 /* FW gives the indices of the SGE as if the ring is an array
628 (meaning that "next" element will consume 2 indices) */
629 if (fp->mode == TPA_MODE_GRO)
630 frag_len = min_t(u32, frag_size, (u32)full_page);
631 else /* LRO */
632 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
633
634 rx_pg = &fp->rx_page_ring[sge_idx];
635 old_rx_pg = *rx_pg;
636
637 /* If we fail to allocate a substitute page, we simply stop
638 where we are and drop the whole packet */
639 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
640 if (unlikely(err)) {
641 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
642 return err;
643 }
644
645 dma_unmap_page(&bp->pdev->dev,
646 dma_unmap_addr(&old_rx_pg, mapping),
647 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
648 /* Add one frag and update the appropriate fields in the skb */
649 if (fp->mode == TPA_MODE_LRO)
650 skb_fill_page_desc(skb, j, old_rx_pg.page,
651 old_rx_pg.offset, frag_len);
652 else { /* GRO */
653 int rem;
654 int offset = 0;
655 for (rem = frag_len; rem > 0; rem -= gro_size) {
656 int len = rem > gro_size ? gro_size : rem;
657 skb_fill_page_desc(skb, frag_id++,
658 old_rx_pg.page,
659 old_rx_pg.offset + offset,
660 len);
661 if (offset)
662 get_page(old_rx_pg.page);
663 offset += len;
664 }
665 }
666
667 skb->data_len += frag_len;
668 skb->truesize += SGE_PAGES;
669 skb->len += frag_len;
670
671 frag_size -= frag_len;
672 }
673
674 return 0;
675 }
676
bnx2x_frag_free(const struct bnx2x_fastpath * fp,void * data)677 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
678 {
679 if (fp->rx_frag_size)
680 skb_free_frag(data);
681 else
682 kfree(data);
683 }
684
bnx2x_frag_alloc(const struct bnx2x_fastpath * fp,gfp_t gfp_mask)685 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
686 {
687 if (fp->rx_frag_size) {
688 /* GFP_KERNEL allocations are used only during initialization */
689 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
690 return (void *)__get_free_page(gfp_mask);
691
692 return napi_alloc_frag(fp->rx_frag_size);
693 }
694
695 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
696 }
697
698 #ifdef CONFIG_INET
bnx2x_gro_ip_csum(struct bnx2x * bp,struct sk_buff * skb)699 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
700 {
701 const struct iphdr *iph = ip_hdr(skb);
702 struct tcphdr *th;
703
704 skb_set_transport_header(skb, sizeof(struct iphdr));
705 th = tcp_hdr(skb);
706
707 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
708 iph->saddr, iph->daddr, 0);
709 }
710
bnx2x_gro_ipv6_csum(struct bnx2x * bp,struct sk_buff * skb)711 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
712 {
713 struct ipv6hdr *iph = ipv6_hdr(skb);
714 struct tcphdr *th;
715
716 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
717 th = tcp_hdr(skb);
718
719 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
720 &iph->saddr, &iph->daddr, 0);
721 }
722
bnx2x_gro_csum(struct bnx2x * bp,struct sk_buff * skb,void (* gro_func)(struct bnx2x *,struct sk_buff *))723 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
724 void (*gro_func)(struct bnx2x*, struct sk_buff*))
725 {
726 skb_reset_network_header(skb);
727 gro_func(bp, skb);
728 tcp_gro_complete(skb);
729 }
730 #endif
731
bnx2x_gro_receive(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct sk_buff * skb)732 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
733 struct sk_buff *skb)
734 {
735 #ifdef CONFIG_INET
736 if (skb_shinfo(skb)->gso_size) {
737 switch (be16_to_cpu(skb->protocol)) {
738 case ETH_P_IP:
739 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
740 break;
741 case ETH_P_IPV6:
742 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
743 break;
744 default:
745 netdev_WARN_ONCE(bp->dev,
746 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
747 be16_to_cpu(skb->protocol));
748 }
749 }
750 #endif
751 skb_record_rx_queue(skb, fp->rx_queue);
752 napi_gro_receive(&fp->napi, skb);
753 }
754
bnx2x_tpa_stop(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)755 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
756 struct bnx2x_agg_info *tpa_info,
757 u16 pages,
758 struct eth_end_agg_rx_cqe *cqe,
759 u16 cqe_idx)
760 {
761 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
762 u8 pad = tpa_info->placement_offset;
763 u16 len = tpa_info->len_on_bd;
764 struct sk_buff *skb = NULL;
765 u8 *new_data, *data = rx_buf->data;
766 u8 old_tpa_state = tpa_info->tpa_state;
767
768 tpa_info->tpa_state = BNX2X_TPA_STOP;
769
770 /* If we there was an error during the handling of the TPA_START -
771 * drop this aggregation.
772 */
773 if (old_tpa_state == BNX2X_TPA_ERROR)
774 goto drop;
775
776 /* Try to allocate the new data */
777 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
778 /* Unmap skb in the pool anyway, as we are going to change
779 pool entry status to BNX2X_TPA_STOP even if new skb allocation
780 fails. */
781 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
782 fp->rx_buf_size, DMA_FROM_DEVICE);
783 if (likely(new_data))
784 skb = build_skb(data, fp->rx_frag_size);
785
786 if (likely(skb)) {
787 #ifdef BNX2X_STOP_ON_ERROR
788 if (pad + len > fp->rx_buf_size) {
789 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
790 pad, len, fp->rx_buf_size);
791 bnx2x_panic();
792 return;
793 }
794 #endif
795
796 skb_reserve(skb, pad + NET_SKB_PAD);
797 skb_put(skb, len);
798 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
799
800 skb->protocol = eth_type_trans(skb, bp->dev);
801 skb->ip_summed = CHECKSUM_UNNECESSARY;
802
803 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
804 skb, cqe, cqe_idx)) {
805 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
806 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
807 bnx2x_gro_receive(bp, fp, skb);
808 } else {
809 DP(NETIF_MSG_RX_STATUS,
810 "Failed to allocate new pages - dropping packet!\n");
811 dev_kfree_skb_any(skb);
812 }
813
814 /* put new data in bin */
815 rx_buf->data = new_data;
816
817 return;
818 }
819 if (new_data)
820 bnx2x_frag_free(fp, new_data);
821 drop:
822 /* drop the packet and keep the buffer in the bin */
823 DP(NETIF_MSG_RX_STATUS,
824 "Failed to allocate or map a new skb - dropping packet!\n");
825 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
826 }
827
bnx2x_alloc_rx_data(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)828 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
829 u16 index, gfp_t gfp_mask)
830 {
831 u8 *data;
832 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
833 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
834 dma_addr_t mapping;
835
836 data = bnx2x_frag_alloc(fp, gfp_mask);
837 if (unlikely(data == NULL))
838 return -ENOMEM;
839
840 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
841 fp->rx_buf_size,
842 DMA_FROM_DEVICE);
843 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
844 bnx2x_frag_free(fp, data);
845 BNX2X_ERR("Can't map rx data\n");
846 return -ENOMEM;
847 }
848
849 rx_buf->data = data;
850 dma_unmap_addr_set(rx_buf, mapping, mapping);
851
852 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
853 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
854
855 return 0;
856 }
857
858 static
bnx2x_csum_validate(struct sk_buff * skb,union eth_rx_cqe * cqe,struct bnx2x_fastpath * fp,struct bnx2x_eth_q_stats * qstats)859 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
860 struct bnx2x_fastpath *fp,
861 struct bnx2x_eth_q_stats *qstats)
862 {
863 /* Do nothing if no L4 csum validation was done.
864 * We do not check whether IP csum was validated. For IPv4 we assume
865 * that if the card got as far as validating the L4 csum, it also
866 * validated the IP csum. IPv6 has no IP csum.
867 */
868 if (cqe->fast_path_cqe.status_flags &
869 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
870 return;
871
872 /* If L4 validation was done, check if an error was found. */
873
874 if (cqe->fast_path_cqe.type_error_flags &
875 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
876 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
877 qstats->hw_csum_err++;
878 else
879 skb->ip_summed = CHECKSUM_UNNECESSARY;
880 }
881
bnx2x_rx_int(struct bnx2x_fastpath * fp,int budget)882 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
883 {
884 struct bnx2x *bp = fp->bp;
885 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
886 u16 sw_comp_cons, sw_comp_prod;
887 int rx_pkt = 0;
888 union eth_rx_cqe *cqe;
889 struct eth_fast_path_rx_cqe *cqe_fp;
890
891 #ifdef BNX2X_STOP_ON_ERROR
892 if (unlikely(bp->panic))
893 return 0;
894 #endif
895 if (budget <= 0)
896 return rx_pkt;
897
898 bd_cons = fp->rx_bd_cons;
899 bd_prod = fp->rx_bd_prod;
900 bd_prod_fw = bd_prod;
901 sw_comp_cons = fp->rx_comp_cons;
902 sw_comp_prod = fp->rx_comp_prod;
903
904 comp_ring_cons = RCQ_BD(sw_comp_cons);
905 cqe = &fp->rx_comp_ring[comp_ring_cons];
906 cqe_fp = &cqe->fast_path_cqe;
907
908 DP(NETIF_MSG_RX_STATUS,
909 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
910
911 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
912 struct sw_rx_bd *rx_buf = NULL;
913 struct sk_buff *skb;
914 u8 cqe_fp_flags;
915 enum eth_rx_cqe_type cqe_fp_type;
916 u16 len, pad, queue;
917 u8 *data;
918 u32 rxhash;
919 enum pkt_hash_types rxhash_type;
920
921 #ifdef BNX2X_STOP_ON_ERROR
922 if (unlikely(bp->panic))
923 return 0;
924 #endif
925
926 bd_prod = RX_BD(bd_prod);
927 bd_cons = RX_BD(bd_cons);
928
929 /* A rmb() is required to ensure that the CQE is not read
930 * before it is written by the adapter DMA. PCI ordering
931 * rules will make sure the other fields are written before
932 * the marker at the end of struct eth_fast_path_rx_cqe
933 * but without rmb() a weakly ordered processor can process
934 * stale data. Without the barrier TPA state-machine might
935 * enter inconsistent state and kernel stack might be
936 * provided with incorrect packet description - these lead
937 * to various kernel crashed.
938 */
939 rmb();
940
941 cqe_fp_flags = cqe_fp->type_error_flags;
942 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
943
944 DP(NETIF_MSG_RX_STATUS,
945 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
946 CQE_TYPE(cqe_fp_flags),
947 cqe_fp_flags, cqe_fp->status_flags,
948 le32_to_cpu(cqe_fp->rss_hash_result),
949 le16_to_cpu(cqe_fp->vlan_tag),
950 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
951
952 /* is this a slowpath msg? */
953 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
954 bnx2x_sp_event(fp, cqe);
955 goto next_cqe;
956 }
957
958 rx_buf = &fp->rx_buf_ring[bd_cons];
959 data = rx_buf->data;
960
961 if (!CQE_TYPE_FAST(cqe_fp_type)) {
962 struct bnx2x_agg_info *tpa_info;
963 u16 frag_size, pages;
964 #ifdef BNX2X_STOP_ON_ERROR
965 /* sanity check */
966 if (fp->mode == TPA_MODE_DISABLED &&
967 (CQE_TYPE_START(cqe_fp_type) ||
968 CQE_TYPE_STOP(cqe_fp_type)))
969 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
970 CQE_TYPE(cqe_fp_type));
971 #endif
972
973 if (CQE_TYPE_START(cqe_fp_type)) {
974 u16 queue = cqe_fp->queue_index;
975 DP(NETIF_MSG_RX_STATUS,
976 "calling tpa_start on queue %d\n",
977 queue);
978
979 bnx2x_tpa_start(fp, queue,
980 bd_cons, bd_prod,
981 cqe_fp);
982
983 goto next_rx;
984 }
985 queue = cqe->end_agg_cqe.queue_index;
986 tpa_info = &fp->tpa_info[queue];
987 DP(NETIF_MSG_RX_STATUS,
988 "calling tpa_stop on queue %d\n",
989 queue);
990
991 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
992 tpa_info->len_on_bd;
993
994 if (fp->mode == TPA_MODE_GRO)
995 pages = (frag_size + tpa_info->full_page - 1) /
996 tpa_info->full_page;
997 else
998 pages = SGE_PAGE_ALIGN(frag_size) >>
999 SGE_PAGE_SHIFT;
1000
1001 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1002 &cqe->end_agg_cqe, comp_ring_cons);
1003 #ifdef BNX2X_STOP_ON_ERROR
1004 if (bp->panic)
1005 return 0;
1006 #endif
1007
1008 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1009 goto next_cqe;
1010 }
1011 /* non TPA */
1012 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1013 pad = cqe_fp->placement_offset;
1014 dma_sync_single_for_cpu(&bp->pdev->dev,
1015 dma_unmap_addr(rx_buf, mapping),
1016 pad + RX_COPY_THRESH,
1017 DMA_FROM_DEVICE);
1018 pad += NET_SKB_PAD;
1019 prefetch(data + pad); /* speedup eth_type_trans() */
1020 /* is this an error packet? */
1021 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1022 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1023 "ERROR flags %x rx packet %u\n",
1024 cqe_fp_flags, sw_comp_cons);
1025 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1026 goto reuse_rx;
1027 }
1028
1029 /* Since we don't have a jumbo ring
1030 * copy small packets if mtu > 1500
1031 */
1032 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1033 (len <= RX_COPY_THRESH)) {
1034 skb = napi_alloc_skb(&fp->napi, len);
1035 if (skb == NULL) {
1036 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1037 "ERROR packet dropped because of alloc failure\n");
1038 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1039 goto reuse_rx;
1040 }
1041 memcpy(skb->data, data + pad, len);
1042 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1043 } else {
1044 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1045 GFP_ATOMIC) == 0)) {
1046 dma_unmap_single(&bp->pdev->dev,
1047 dma_unmap_addr(rx_buf, mapping),
1048 fp->rx_buf_size,
1049 DMA_FROM_DEVICE);
1050 skb = build_skb(data, fp->rx_frag_size);
1051 if (unlikely(!skb)) {
1052 bnx2x_frag_free(fp, data);
1053 bnx2x_fp_qstats(bp, fp)->
1054 rx_skb_alloc_failed++;
1055 goto next_rx;
1056 }
1057 skb_reserve(skb, pad);
1058 } else {
1059 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1060 "ERROR packet dropped because of alloc failure\n");
1061 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1062 reuse_rx:
1063 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1064 goto next_rx;
1065 }
1066 }
1067
1068 skb_put(skb, len);
1069 skb->protocol = eth_type_trans(skb, bp->dev);
1070
1071 /* Set Toeplitz hash for a none-LRO skb */
1072 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1073 skb_set_hash(skb, rxhash, rxhash_type);
1074
1075 skb_checksum_none_assert(skb);
1076
1077 if (bp->dev->features & NETIF_F_RXCSUM)
1078 bnx2x_csum_validate(skb, cqe, fp,
1079 bnx2x_fp_qstats(bp, fp));
1080
1081 skb_record_rx_queue(skb, fp->rx_queue);
1082
1083 /* Check if this packet was timestamped */
1084 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1085 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1086 bnx2x_set_rx_ts(bp, skb);
1087
1088 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1089 PARSING_FLAGS_VLAN)
1090 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1091 le16_to_cpu(cqe_fp->vlan_tag));
1092
1093 napi_gro_receive(&fp->napi, skb);
1094 next_rx:
1095 rx_buf->data = NULL;
1096
1097 bd_cons = NEXT_RX_IDX(bd_cons);
1098 bd_prod = NEXT_RX_IDX(bd_prod);
1099 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1100 rx_pkt++;
1101 next_cqe:
1102 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1103 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1104
1105 /* mark CQE as free */
1106 BNX2X_SEED_CQE(cqe_fp);
1107
1108 if (rx_pkt == budget)
1109 break;
1110
1111 comp_ring_cons = RCQ_BD(sw_comp_cons);
1112 cqe = &fp->rx_comp_ring[comp_ring_cons];
1113 cqe_fp = &cqe->fast_path_cqe;
1114 } /* while */
1115
1116 fp->rx_bd_cons = bd_cons;
1117 fp->rx_bd_prod = bd_prod_fw;
1118 fp->rx_comp_cons = sw_comp_cons;
1119 fp->rx_comp_prod = sw_comp_prod;
1120
1121 /* Update producers */
1122 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1123 fp->rx_sge_prod);
1124
1125 return rx_pkt;
1126 }
1127
bnx2x_msix_fp_int(int irq,void * fp_cookie)1128 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1129 {
1130 struct bnx2x_fastpath *fp = fp_cookie;
1131 struct bnx2x *bp = fp->bp;
1132 u8 cos;
1133
1134 DP(NETIF_MSG_INTR,
1135 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1136 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1137
1138 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1139
1140 #ifdef BNX2X_STOP_ON_ERROR
1141 if (unlikely(bp->panic))
1142 return IRQ_HANDLED;
1143 #endif
1144
1145 /* Handle Rx and Tx according to MSI-X vector */
1146 for_each_cos_in_tx_queue(fp, cos)
1147 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1148
1149 prefetch(&fp->sb_running_index[SM_RX_ID]);
1150 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1151
1152 return IRQ_HANDLED;
1153 }
1154
1155 /* HW Lock for shared dual port PHYs */
bnx2x_acquire_phy_lock(struct bnx2x * bp)1156 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1157 {
1158 mutex_lock(&bp->port.phy_mutex);
1159
1160 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1161 }
1162
bnx2x_release_phy_lock(struct bnx2x * bp)1163 void bnx2x_release_phy_lock(struct bnx2x *bp)
1164 {
1165 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1166
1167 mutex_unlock(&bp->port.phy_mutex);
1168 }
1169
1170 /* calculates MF speed according to current linespeed and MF configuration */
bnx2x_get_mf_speed(struct bnx2x * bp)1171 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1172 {
1173 u16 line_speed = bp->link_vars.line_speed;
1174 if (IS_MF(bp)) {
1175 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1176 bp->mf_config[BP_VN(bp)]);
1177
1178 /* Calculate the current MAX line speed limit for the MF
1179 * devices
1180 */
1181 if (IS_MF_PERCENT_BW(bp))
1182 line_speed = (line_speed * maxCfg) / 100;
1183 else { /* SD mode */
1184 u16 vn_max_rate = maxCfg * 100;
1185
1186 if (vn_max_rate < line_speed)
1187 line_speed = vn_max_rate;
1188 }
1189 }
1190
1191 return line_speed;
1192 }
1193
1194 /**
1195 * bnx2x_fill_report_data - fill link report data to report
1196 *
1197 * @bp: driver handle
1198 * @data: link state to update
1199 *
1200 * It uses a none-atomic bit operations because is called under the mutex.
1201 */
bnx2x_fill_report_data(struct bnx2x * bp,struct bnx2x_link_report_data * data)1202 static void bnx2x_fill_report_data(struct bnx2x *bp,
1203 struct bnx2x_link_report_data *data)
1204 {
1205 memset(data, 0, sizeof(*data));
1206
1207 if (IS_PF(bp)) {
1208 /* Fill the report data: effective line speed */
1209 data->line_speed = bnx2x_get_mf_speed(bp);
1210
1211 /* Link is down */
1212 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1213 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1214 &data->link_report_flags);
1215
1216 if (!BNX2X_NUM_ETH_QUEUES(bp))
1217 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1218 &data->link_report_flags);
1219
1220 /* Full DUPLEX */
1221 if (bp->link_vars.duplex == DUPLEX_FULL)
1222 __set_bit(BNX2X_LINK_REPORT_FD,
1223 &data->link_report_flags);
1224
1225 /* Rx Flow Control is ON */
1226 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1227 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1228 &data->link_report_flags);
1229
1230 /* Tx Flow Control is ON */
1231 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1232 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1233 &data->link_report_flags);
1234 } else { /* VF */
1235 *data = bp->vf_link_vars;
1236 }
1237 }
1238
1239 /**
1240 * bnx2x_link_report - report link status to OS.
1241 *
1242 * @bp: driver handle
1243 *
1244 * Calls the __bnx2x_link_report() under the same locking scheme
1245 * as a link/PHY state managing code to ensure a consistent link
1246 * reporting.
1247 */
1248
bnx2x_link_report(struct bnx2x * bp)1249 void bnx2x_link_report(struct bnx2x *bp)
1250 {
1251 bnx2x_acquire_phy_lock(bp);
1252 __bnx2x_link_report(bp);
1253 bnx2x_release_phy_lock(bp);
1254 }
1255
1256 /**
1257 * __bnx2x_link_report - report link status to OS.
1258 *
1259 * @bp: driver handle
1260 *
1261 * None atomic implementation.
1262 * Should be called under the phy_lock.
1263 */
__bnx2x_link_report(struct bnx2x * bp)1264 void __bnx2x_link_report(struct bnx2x *bp)
1265 {
1266 struct bnx2x_link_report_data cur_data;
1267
1268 if (bp->force_link_down) {
1269 bp->link_vars.link_up = 0;
1270 return;
1271 }
1272
1273 /* reread mf_cfg */
1274 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1275 bnx2x_read_mf_cfg(bp);
1276
1277 /* Read the current link report info */
1278 bnx2x_fill_report_data(bp, &cur_data);
1279
1280 /* Don't report link down or exactly the same link status twice */
1281 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1282 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1283 &bp->last_reported_link.link_report_flags) &&
1284 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1285 &cur_data.link_report_flags)))
1286 return;
1287
1288 bp->link_cnt++;
1289
1290 /* We are going to report a new link parameters now -
1291 * remember the current data for the next time.
1292 */
1293 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1294
1295 /* propagate status to VFs */
1296 if (IS_PF(bp))
1297 bnx2x_iov_link_update(bp);
1298
1299 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1300 &cur_data.link_report_flags)) {
1301 netif_carrier_off(bp->dev);
1302 netdev_err(bp->dev, "NIC Link is Down\n");
1303 return;
1304 } else {
1305 const char *duplex;
1306 const char *flow;
1307
1308 netif_carrier_on(bp->dev);
1309
1310 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1311 &cur_data.link_report_flags))
1312 duplex = "full";
1313 else
1314 duplex = "half";
1315
1316 /* Handle the FC at the end so that only these flags would be
1317 * possibly set. This way we may easily check if there is no FC
1318 * enabled.
1319 */
1320 if (cur_data.link_report_flags) {
1321 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1322 &cur_data.link_report_flags)) {
1323 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1324 &cur_data.link_report_flags))
1325 flow = "ON - receive & transmit";
1326 else
1327 flow = "ON - receive";
1328 } else {
1329 flow = "ON - transmit";
1330 }
1331 } else {
1332 flow = "none";
1333 }
1334 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1335 cur_data.line_speed, duplex, flow);
1336 }
1337 }
1338
bnx2x_set_next_page_sgl(struct bnx2x_fastpath * fp)1339 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1340 {
1341 int i;
1342
1343 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1344 struct eth_rx_sge *sge;
1345
1346 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1347 sge->addr_hi =
1348 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1349 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1350
1351 sge->addr_lo =
1352 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1353 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1354 }
1355 }
1356
bnx2x_free_tpa_pool(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)1357 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1358 struct bnx2x_fastpath *fp, int last)
1359 {
1360 int i;
1361
1362 for (i = 0; i < last; i++) {
1363 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1364 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1365 u8 *data = first_buf->data;
1366
1367 if (data == NULL) {
1368 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1369 continue;
1370 }
1371 if (tpa_info->tpa_state == BNX2X_TPA_START)
1372 dma_unmap_single(&bp->pdev->dev,
1373 dma_unmap_addr(first_buf, mapping),
1374 fp->rx_buf_size, DMA_FROM_DEVICE);
1375 bnx2x_frag_free(fp, data);
1376 first_buf->data = NULL;
1377 }
1378 }
1379
bnx2x_init_rx_rings_cnic(struct bnx2x * bp)1380 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1381 {
1382 int j;
1383
1384 for_each_rx_queue_cnic(bp, j) {
1385 struct bnx2x_fastpath *fp = &bp->fp[j];
1386
1387 fp->rx_bd_cons = 0;
1388
1389 /* Activate BD ring */
1390 /* Warning!
1391 * this will generate an interrupt (to the TSTORM)
1392 * must only be done after chip is initialized
1393 */
1394 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1395 fp->rx_sge_prod);
1396 }
1397 }
1398
bnx2x_init_rx_rings(struct bnx2x * bp)1399 void bnx2x_init_rx_rings(struct bnx2x *bp)
1400 {
1401 int func = BP_FUNC(bp);
1402 u16 ring_prod;
1403 int i, j;
1404
1405 /* Allocate TPA resources */
1406 for_each_eth_queue(bp, j) {
1407 struct bnx2x_fastpath *fp = &bp->fp[j];
1408
1409 DP(NETIF_MSG_IFUP,
1410 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1411
1412 if (fp->mode != TPA_MODE_DISABLED) {
1413 /* Fill the per-aggregation pool */
1414 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1415 struct bnx2x_agg_info *tpa_info =
1416 &fp->tpa_info[i];
1417 struct sw_rx_bd *first_buf =
1418 &tpa_info->first_buf;
1419
1420 first_buf->data =
1421 bnx2x_frag_alloc(fp, GFP_KERNEL);
1422 if (!first_buf->data) {
1423 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1424 j);
1425 bnx2x_free_tpa_pool(bp, fp, i);
1426 fp->mode = TPA_MODE_DISABLED;
1427 break;
1428 }
1429 dma_unmap_addr_set(first_buf, mapping, 0);
1430 tpa_info->tpa_state = BNX2X_TPA_STOP;
1431 }
1432
1433 /* "next page" elements initialization */
1434 bnx2x_set_next_page_sgl(fp);
1435
1436 /* set SGEs bit mask */
1437 bnx2x_init_sge_ring_bit_mask(fp);
1438
1439 /* Allocate SGEs and initialize the ring elements */
1440 for (i = 0, ring_prod = 0;
1441 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1442
1443 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1444 GFP_KERNEL) < 0) {
1445 BNX2X_ERR("was only able to allocate %d rx sges\n",
1446 i);
1447 BNX2X_ERR("disabling TPA for queue[%d]\n",
1448 j);
1449 /* Cleanup already allocated elements */
1450 bnx2x_free_rx_sge_range(bp, fp,
1451 ring_prod);
1452 bnx2x_free_tpa_pool(bp, fp,
1453 MAX_AGG_QS(bp));
1454 fp->mode = TPA_MODE_DISABLED;
1455 ring_prod = 0;
1456 break;
1457 }
1458 ring_prod = NEXT_SGE_IDX(ring_prod);
1459 }
1460
1461 fp->rx_sge_prod = ring_prod;
1462 }
1463 }
1464
1465 for_each_eth_queue(bp, j) {
1466 struct bnx2x_fastpath *fp = &bp->fp[j];
1467
1468 fp->rx_bd_cons = 0;
1469
1470 /* Activate BD ring */
1471 /* Warning!
1472 * this will generate an interrupt (to the TSTORM)
1473 * must only be done after chip is initialized
1474 */
1475 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1476 fp->rx_sge_prod);
1477
1478 if (j != 0)
1479 continue;
1480
1481 if (CHIP_IS_E1(bp)) {
1482 REG_WR(bp, BAR_USTRORM_INTMEM +
1483 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1484 U64_LO(fp->rx_comp_mapping));
1485 REG_WR(bp, BAR_USTRORM_INTMEM +
1486 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1487 U64_HI(fp->rx_comp_mapping));
1488 }
1489 }
1490 }
1491
bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath * fp)1492 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1493 {
1494 u8 cos;
1495 struct bnx2x *bp = fp->bp;
1496
1497 for_each_cos_in_tx_queue(fp, cos) {
1498 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1499 unsigned pkts_compl = 0, bytes_compl = 0;
1500
1501 u16 sw_prod = txdata->tx_pkt_prod;
1502 u16 sw_cons = txdata->tx_pkt_cons;
1503
1504 while (sw_cons != sw_prod) {
1505 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1506 &pkts_compl, &bytes_compl);
1507 sw_cons++;
1508 }
1509
1510 netdev_tx_reset_queue(
1511 netdev_get_tx_queue(bp->dev,
1512 txdata->txq_index));
1513 }
1514 }
1515
bnx2x_free_tx_skbs_cnic(struct bnx2x * bp)1516 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1517 {
1518 int i;
1519
1520 for_each_tx_queue_cnic(bp, i) {
1521 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1522 }
1523 }
1524
bnx2x_free_tx_skbs(struct bnx2x * bp)1525 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1526 {
1527 int i;
1528
1529 for_each_eth_queue(bp, i) {
1530 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1531 }
1532 }
1533
bnx2x_free_rx_bds(struct bnx2x_fastpath * fp)1534 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1535 {
1536 struct bnx2x *bp = fp->bp;
1537 int i;
1538
1539 /* ring wasn't allocated */
1540 if (fp->rx_buf_ring == NULL)
1541 return;
1542
1543 for (i = 0; i < NUM_RX_BD; i++) {
1544 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1545 u8 *data = rx_buf->data;
1546
1547 if (data == NULL)
1548 continue;
1549 dma_unmap_single(&bp->pdev->dev,
1550 dma_unmap_addr(rx_buf, mapping),
1551 fp->rx_buf_size, DMA_FROM_DEVICE);
1552
1553 rx_buf->data = NULL;
1554 bnx2x_frag_free(fp, data);
1555 }
1556 }
1557
bnx2x_free_rx_skbs_cnic(struct bnx2x * bp)1558 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1559 {
1560 int j;
1561
1562 for_each_rx_queue_cnic(bp, j) {
1563 bnx2x_free_rx_bds(&bp->fp[j]);
1564 }
1565 }
1566
bnx2x_free_rx_skbs(struct bnx2x * bp)1567 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1568 {
1569 int j;
1570
1571 for_each_eth_queue(bp, j) {
1572 struct bnx2x_fastpath *fp = &bp->fp[j];
1573
1574 bnx2x_free_rx_bds(fp);
1575
1576 if (fp->mode != TPA_MODE_DISABLED)
1577 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1578 }
1579 }
1580
bnx2x_free_skbs_cnic(struct bnx2x * bp)1581 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1582 {
1583 bnx2x_free_tx_skbs_cnic(bp);
1584 bnx2x_free_rx_skbs_cnic(bp);
1585 }
1586
bnx2x_free_skbs(struct bnx2x * bp)1587 void bnx2x_free_skbs(struct bnx2x *bp)
1588 {
1589 bnx2x_free_tx_skbs(bp);
1590 bnx2x_free_rx_skbs(bp);
1591 }
1592
bnx2x_update_max_mf_config(struct bnx2x * bp,u32 value)1593 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1594 {
1595 /* load old values */
1596 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1597
1598 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1599 /* leave all but MAX value */
1600 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1601
1602 /* set new MAX value */
1603 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1604 & FUNC_MF_CFG_MAX_BW_MASK;
1605
1606 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1607 }
1608 }
1609
1610 /**
1611 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1612 *
1613 * @bp: driver handle
1614 * @nvecs: number of vectors to be released
1615 */
bnx2x_free_msix_irqs(struct bnx2x * bp,int nvecs)1616 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1617 {
1618 int i, offset = 0;
1619
1620 if (nvecs == offset)
1621 return;
1622
1623 /* VFs don't have a default SB */
1624 if (IS_PF(bp)) {
1625 free_irq(bp->msix_table[offset].vector, bp->dev);
1626 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1627 bp->msix_table[offset].vector);
1628 offset++;
1629 }
1630
1631 if (CNIC_SUPPORT(bp)) {
1632 if (nvecs == offset)
1633 return;
1634 offset++;
1635 }
1636
1637 for_each_eth_queue(bp, i) {
1638 if (nvecs == offset)
1639 return;
1640 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1641 i, bp->msix_table[offset].vector);
1642
1643 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1644 }
1645 }
1646
bnx2x_free_irq(struct bnx2x * bp)1647 void bnx2x_free_irq(struct bnx2x *bp)
1648 {
1649 if (bp->flags & USING_MSIX_FLAG &&
1650 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1651 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1652
1653 /* vfs don't have a default status block */
1654 if (IS_PF(bp))
1655 nvecs++;
1656
1657 bnx2x_free_msix_irqs(bp, nvecs);
1658 } else {
1659 free_irq(bp->dev->irq, bp->dev);
1660 }
1661 }
1662
bnx2x_enable_msix(struct bnx2x * bp)1663 int bnx2x_enable_msix(struct bnx2x *bp)
1664 {
1665 int msix_vec = 0, i, rc;
1666
1667 /* VFs don't have a default status block */
1668 if (IS_PF(bp)) {
1669 bp->msix_table[msix_vec].entry = msix_vec;
1670 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1671 bp->msix_table[0].entry);
1672 msix_vec++;
1673 }
1674
1675 /* Cnic requires an msix vector for itself */
1676 if (CNIC_SUPPORT(bp)) {
1677 bp->msix_table[msix_vec].entry = msix_vec;
1678 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1679 msix_vec, bp->msix_table[msix_vec].entry);
1680 msix_vec++;
1681 }
1682
1683 /* We need separate vectors for ETH queues only (not FCoE) */
1684 for_each_eth_queue(bp, i) {
1685 bp->msix_table[msix_vec].entry = msix_vec;
1686 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1687 msix_vec, msix_vec, i);
1688 msix_vec++;
1689 }
1690
1691 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1692 msix_vec);
1693
1694 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1695 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1696 /*
1697 * reconfigure number of tx/rx queues according to available
1698 * MSI-X vectors
1699 */
1700 if (rc == -ENOSPC) {
1701 /* Get by with single vector */
1702 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1703 if (rc < 0) {
1704 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1705 rc);
1706 goto no_msix;
1707 }
1708
1709 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1710 bp->flags |= USING_SINGLE_MSIX_FLAG;
1711
1712 BNX2X_DEV_INFO("set number of queues to 1\n");
1713 bp->num_ethernet_queues = 1;
1714 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1715 } else if (rc < 0) {
1716 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1717 goto no_msix;
1718 } else if (rc < msix_vec) {
1719 /* how less vectors we will have? */
1720 int diff = msix_vec - rc;
1721
1722 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1723
1724 /*
1725 * decrease number of queues by number of unallocated entries
1726 */
1727 bp->num_ethernet_queues -= diff;
1728 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1729
1730 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1731 bp->num_queues);
1732 }
1733
1734 bp->flags |= USING_MSIX_FLAG;
1735
1736 return 0;
1737
1738 no_msix:
1739 /* fall to INTx if not enough memory */
1740 if (rc == -ENOMEM)
1741 bp->flags |= DISABLE_MSI_FLAG;
1742
1743 return rc;
1744 }
1745
bnx2x_req_msix_irqs(struct bnx2x * bp)1746 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1747 {
1748 int i, rc, offset = 0;
1749
1750 /* no default status block for vf */
1751 if (IS_PF(bp)) {
1752 rc = request_irq(bp->msix_table[offset++].vector,
1753 bnx2x_msix_sp_int, 0,
1754 bp->dev->name, bp->dev);
1755 if (rc) {
1756 BNX2X_ERR("request sp irq failed\n");
1757 return -EBUSY;
1758 }
1759 }
1760
1761 if (CNIC_SUPPORT(bp))
1762 offset++;
1763
1764 for_each_eth_queue(bp, i) {
1765 struct bnx2x_fastpath *fp = &bp->fp[i];
1766 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1767 bp->dev->name, i);
1768
1769 rc = request_irq(bp->msix_table[offset].vector,
1770 bnx2x_msix_fp_int, 0, fp->name, fp);
1771 if (rc) {
1772 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1773 bp->msix_table[offset].vector, rc);
1774 bnx2x_free_msix_irqs(bp, offset);
1775 return -EBUSY;
1776 }
1777
1778 offset++;
1779 }
1780
1781 i = BNX2X_NUM_ETH_QUEUES(bp);
1782 if (IS_PF(bp)) {
1783 offset = 1 + CNIC_SUPPORT(bp);
1784 netdev_info(bp->dev,
1785 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1786 bp->msix_table[0].vector,
1787 0, bp->msix_table[offset].vector,
1788 i - 1, bp->msix_table[offset + i - 1].vector);
1789 } else {
1790 offset = CNIC_SUPPORT(bp);
1791 netdev_info(bp->dev,
1792 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1793 0, bp->msix_table[offset].vector,
1794 i - 1, bp->msix_table[offset + i - 1].vector);
1795 }
1796 return 0;
1797 }
1798
bnx2x_enable_msi(struct bnx2x * bp)1799 int bnx2x_enable_msi(struct bnx2x *bp)
1800 {
1801 int rc;
1802
1803 rc = pci_enable_msi(bp->pdev);
1804 if (rc) {
1805 BNX2X_DEV_INFO("MSI is not attainable\n");
1806 return -1;
1807 }
1808 bp->flags |= USING_MSI_FLAG;
1809
1810 return 0;
1811 }
1812
bnx2x_req_irq(struct bnx2x * bp)1813 static int bnx2x_req_irq(struct bnx2x *bp)
1814 {
1815 unsigned long flags;
1816 unsigned int irq;
1817
1818 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1819 flags = 0;
1820 else
1821 flags = IRQF_SHARED;
1822
1823 if (bp->flags & USING_MSIX_FLAG)
1824 irq = bp->msix_table[0].vector;
1825 else
1826 irq = bp->pdev->irq;
1827
1828 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1829 }
1830
bnx2x_setup_irqs(struct bnx2x * bp)1831 static int bnx2x_setup_irqs(struct bnx2x *bp)
1832 {
1833 int rc = 0;
1834 if (bp->flags & USING_MSIX_FLAG &&
1835 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1836 rc = bnx2x_req_msix_irqs(bp);
1837 if (rc)
1838 return rc;
1839 } else {
1840 rc = bnx2x_req_irq(bp);
1841 if (rc) {
1842 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1843 return rc;
1844 }
1845 if (bp->flags & USING_MSI_FLAG) {
1846 bp->dev->irq = bp->pdev->irq;
1847 netdev_info(bp->dev, "using MSI IRQ %d\n",
1848 bp->dev->irq);
1849 }
1850 if (bp->flags & USING_MSIX_FLAG) {
1851 bp->dev->irq = bp->msix_table[0].vector;
1852 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1853 bp->dev->irq);
1854 }
1855 }
1856
1857 return 0;
1858 }
1859
bnx2x_napi_enable_cnic(struct bnx2x * bp)1860 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1861 {
1862 int i;
1863
1864 for_each_rx_queue_cnic(bp, i) {
1865 napi_enable(&bnx2x_fp(bp, i, napi));
1866 }
1867 }
1868
bnx2x_napi_enable(struct bnx2x * bp)1869 static void bnx2x_napi_enable(struct bnx2x *bp)
1870 {
1871 int i;
1872
1873 for_each_eth_queue(bp, i) {
1874 napi_enable(&bnx2x_fp(bp, i, napi));
1875 }
1876 }
1877
bnx2x_napi_disable_cnic(struct bnx2x * bp)1878 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1879 {
1880 int i;
1881
1882 for_each_rx_queue_cnic(bp, i) {
1883 napi_disable(&bnx2x_fp(bp, i, napi));
1884 }
1885 }
1886
bnx2x_napi_disable(struct bnx2x * bp)1887 static void bnx2x_napi_disable(struct bnx2x *bp)
1888 {
1889 int i;
1890
1891 for_each_eth_queue(bp, i) {
1892 napi_disable(&bnx2x_fp(bp, i, napi));
1893 }
1894 }
1895
bnx2x_netif_start(struct bnx2x * bp)1896 void bnx2x_netif_start(struct bnx2x *bp)
1897 {
1898 if (netif_running(bp->dev)) {
1899 bnx2x_napi_enable(bp);
1900 if (CNIC_LOADED(bp))
1901 bnx2x_napi_enable_cnic(bp);
1902 bnx2x_int_enable(bp);
1903 if (bp->state == BNX2X_STATE_OPEN)
1904 netif_tx_wake_all_queues(bp->dev);
1905 }
1906 }
1907
bnx2x_netif_stop(struct bnx2x * bp,int disable_hw)1908 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1909 {
1910 bnx2x_int_disable_sync(bp, disable_hw);
1911 bnx2x_napi_disable(bp);
1912 if (CNIC_LOADED(bp))
1913 bnx2x_napi_disable_cnic(bp);
1914 }
1915
bnx2x_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1916 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1917 struct net_device *sb_dev)
1918 {
1919 struct bnx2x *bp = netdev_priv(dev);
1920
1921 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1922 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1923 u16 ether_type = ntohs(hdr->h_proto);
1924
1925 /* Skip VLAN tag if present */
1926 if (ether_type == ETH_P_8021Q) {
1927 struct vlan_ethhdr *vhdr =
1928 (struct vlan_ethhdr *)skb->data;
1929
1930 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1931 }
1932
1933 /* If ethertype is FCoE or FIP - use FCoE ring */
1934 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1935 return bnx2x_fcoe_tx(bp, txq_index);
1936 }
1937
1938 /* select a non-FCoE queue */
1939 return netdev_pick_tx(dev, skb, NULL) %
1940 (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1941 }
1942
bnx2x_set_num_queues(struct bnx2x * bp)1943 void bnx2x_set_num_queues(struct bnx2x *bp)
1944 {
1945 /* RSS queues */
1946 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1947
1948 /* override in STORAGE SD modes */
1949 if (IS_MF_STORAGE_ONLY(bp))
1950 bp->num_ethernet_queues = 1;
1951
1952 /* Add special queues */
1953 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1954 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1955
1956 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1957 }
1958
1959 /**
1960 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1961 *
1962 * @bp: Driver handle
1963 * @include_cnic: handle cnic case
1964 *
1965 * We currently support for at most 16 Tx queues for each CoS thus we will
1966 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1967 * bp->max_cos.
1968 *
1969 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1970 * index after all ETH L2 indices.
1971 *
1972 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1973 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1974 * 16..31,...) with indices that are not coupled with any real Tx queue.
1975 *
1976 * The proper configuration of skb->queue_mapping is handled by
1977 * bnx2x_select_queue() and __skb_tx_hash().
1978 *
1979 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1980 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1981 */
bnx2x_set_real_num_queues(struct bnx2x * bp,int include_cnic)1982 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1983 {
1984 int rc, tx, rx;
1985
1986 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1987 rx = BNX2X_NUM_ETH_QUEUES(bp);
1988
1989 /* account for fcoe queue */
1990 if (include_cnic && !NO_FCOE(bp)) {
1991 rx++;
1992 tx++;
1993 }
1994
1995 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1996 if (rc) {
1997 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1998 return rc;
1999 }
2000 rc = netif_set_real_num_rx_queues(bp->dev, rx);
2001 if (rc) {
2002 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2003 return rc;
2004 }
2005
2006 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2007 tx, rx);
2008
2009 return rc;
2010 }
2011
bnx2x_set_rx_buf_size(struct bnx2x * bp)2012 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2013 {
2014 int i;
2015
2016 for_each_queue(bp, i) {
2017 struct bnx2x_fastpath *fp = &bp->fp[i];
2018 u32 mtu;
2019
2020 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2021 if (IS_FCOE_IDX(i))
2022 /*
2023 * Although there are no IP frames expected to arrive to
2024 * this ring we still want to add an
2025 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2026 * overrun attack.
2027 */
2028 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2029 else
2030 mtu = bp->dev->mtu;
2031 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2032 IP_HEADER_ALIGNMENT_PADDING +
2033 ETH_OVERHEAD +
2034 mtu +
2035 BNX2X_FW_RX_ALIGN_END;
2036 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2037 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2038 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2039 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2040 else
2041 fp->rx_frag_size = 0;
2042 }
2043 }
2044
bnx2x_init_rss(struct bnx2x * bp)2045 static int bnx2x_init_rss(struct bnx2x *bp)
2046 {
2047 int i;
2048 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2049
2050 /* Prepare the initial contents for the indirection table if RSS is
2051 * enabled
2052 */
2053 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2054 bp->rss_conf_obj.ind_table[i] =
2055 bp->fp->cl_id +
2056 ethtool_rxfh_indir_default(i, num_eth_queues);
2057
2058 /*
2059 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2060 * per-port, so if explicit configuration is needed , do it only
2061 * for a PMF.
2062 *
2063 * For 57712 and newer on the other hand it's a per-function
2064 * configuration.
2065 */
2066 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2067 }
2068
bnx2x_rss(struct bnx2x * bp,struct bnx2x_rss_config_obj * rss_obj,bool config_hash,bool enable)2069 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2070 bool config_hash, bool enable)
2071 {
2072 struct bnx2x_config_rss_params params = {NULL};
2073
2074 /* Although RSS is meaningless when there is a single HW queue we
2075 * still need it enabled in order to have HW Rx hash generated.
2076 *
2077 * if (!is_eth_multi(bp))
2078 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2079 */
2080
2081 params.rss_obj = rss_obj;
2082
2083 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags);
2084
2085 if (enable) {
2086 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags);
2087
2088 /* RSS configuration */
2089 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags);
2090 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags);
2091 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags);
2092 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags);
2093 if (rss_obj->udp_rss_v4)
2094 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags);
2095 if (rss_obj->udp_rss_v6)
2096 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags);
2097
2098 if (!CHIP_IS_E1x(bp)) {
2099 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2100 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags);
2101 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags);
2102
2103 /* valid only for TUNN_MODE_GRE tunnel mode */
2104 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags);
2105 }
2106 } else {
2107 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags);
2108 }
2109
2110 /* Hash bits */
2111 params.rss_result_mask = MULTI_MASK;
2112
2113 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2114
2115 if (config_hash) {
2116 /* RSS keys */
2117 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2118 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags);
2119 }
2120
2121 if (IS_PF(bp))
2122 return bnx2x_config_rss(bp, ¶ms);
2123 else
2124 return bnx2x_vfpf_config_rss(bp, ¶ms);
2125 }
2126
bnx2x_init_hw(struct bnx2x * bp,u32 load_code)2127 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2128 {
2129 struct bnx2x_func_state_params func_params = {NULL};
2130
2131 /* Prepare parameters for function state transitions */
2132 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2133
2134 func_params.f_obj = &bp->func_obj;
2135 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2136
2137 func_params.params.hw_init.load_phase = load_code;
2138
2139 return bnx2x_func_state_change(bp, &func_params);
2140 }
2141
2142 /*
2143 * Cleans the object that have internal lists without sending
2144 * ramrods. Should be run when interrupts are disabled.
2145 */
bnx2x_squeeze_objects(struct bnx2x * bp)2146 void bnx2x_squeeze_objects(struct bnx2x *bp)
2147 {
2148 int rc;
2149 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2150 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2151 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2152
2153 /***************** Cleanup MACs' object first *************************/
2154
2155 /* Wait for completion of requested */
2156 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2157 /* Perform a dry cleanup */
2158 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2159
2160 /* Clean ETH primary MAC */
2161 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2162 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2163 &ramrod_flags);
2164 if (rc != 0)
2165 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2166
2167 /* Cleanup UC list */
2168 vlan_mac_flags = 0;
2169 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2170 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2171 &ramrod_flags);
2172 if (rc != 0)
2173 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2174
2175 /***************** Now clean mcast object *****************************/
2176 rparam.mcast_obj = &bp->mcast_obj;
2177 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2178
2179 /* Add a DEL command... - Since we're doing a driver cleanup only,
2180 * we take a lock surrounding both the initial send and the CONTs,
2181 * as we don't want a true completion to disrupt us in the middle.
2182 */
2183 netif_addr_lock_bh(bp->dev);
2184 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2185 if (rc < 0)
2186 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2187 rc);
2188
2189 /* ...and wait until all pending commands are cleared */
2190 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2191 while (rc != 0) {
2192 if (rc < 0) {
2193 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2194 rc);
2195 netif_addr_unlock_bh(bp->dev);
2196 return;
2197 }
2198
2199 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2200 }
2201 netif_addr_unlock_bh(bp->dev);
2202 }
2203
2204 #ifndef BNX2X_STOP_ON_ERROR
2205 #define LOAD_ERROR_EXIT(bp, label) \
2206 do { \
2207 (bp)->state = BNX2X_STATE_ERROR; \
2208 goto label; \
2209 } while (0)
2210
2211 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2212 do { \
2213 bp->cnic_loaded = false; \
2214 goto label; \
2215 } while (0)
2216 #else /*BNX2X_STOP_ON_ERROR*/
2217 #define LOAD_ERROR_EXIT(bp, label) \
2218 do { \
2219 (bp)->state = BNX2X_STATE_ERROR; \
2220 (bp)->panic = 1; \
2221 return -EBUSY; \
2222 } while (0)
2223 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2224 do { \
2225 bp->cnic_loaded = false; \
2226 (bp)->panic = 1; \
2227 return -EBUSY; \
2228 } while (0)
2229 #endif /*BNX2X_STOP_ON_ERROR*/
2230
bnx2x_free_fw_stats_mem(struct bnx2x * bp)2231 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2232 {
2233 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2234 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2235 return;
2236 }
2237
bnx2x_alloc_fw_stats_mem(struct bnx2x * bp)2238 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2239 {
2240 int num_groups, vf_headroom = 0;
2241 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2242
2243 /* number of queues for statistics is number of eth queues + FCoE */
2244 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2245
2246 /* Total number of FW statistics requests =
2247 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2248 * and fcoe l2 queue) stats + num of queues (which includes another 1
2249 * for fcoe l2 queue if applicable)
2250 */
2251 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2252
2253 /* vf stats appear in the request list, but their data is allocated by
2254 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2255 * it is used to determine where to place the vf stats queries in the
2256 * request struct
2257 */
2258 if (IS_SRIOV(bp))
2259 vf_headroom = bnx2x_vf_headroom(bp);
2260
2261 /* Request is built from stats_query_header and an array of
2262 * stats_query_cmd_group each of which contains
2263 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2264 * configured in the stats_query_header.
2265 */
2266 num_groups =
2267 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2268 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2269 1 : 0));
2270
2271 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2272 bp->fw_stats_num, vf_headroom, num_groups);
2273 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2274 num_groups * sizeof(struct stats_query_cmd_group);
2275
2276 /* Data for statistics requests + stats_counter
2277 * stats_counter holds per-STORM counters that are incremented
2278 * when STORM has finished with the current request.
2279 * memory for FCoE offloaded statistics are counted anyway,
2280 * even if they will not be sent.
2281 * VF stats are not accounted for here as the data of VF stats is stored
2282 * in memory allocated by the VF, not here.
2283 */
2284 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2285 sizeof(struct per_pf_stats) +
2286 sizeof(struct fcoe_statistics_params) +
2287 sizeof(struct per_queue_stats) * num_queue_stats +
2288 sizeof(struct stats_counter);
2289
2290 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2291 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2292 if (!bp->fw_stats)
2293 goto alloc_mem_err;
2294
2295 /* Set shortcuts */
2296 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2297 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2298 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2299 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2300 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2301 bp->fw_stats_req_sz;
2302
2303 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2304 U64_HI(bp->fw_stats_req_mapping),
2305 U64_LO(bp->fw_stats_req_mapping));
2306 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2307 U64_HI(bp->fw_stats_data_mapping),
2308 U64_LO(bp->fw_stats_data_mapping));
2309 return 0;
2310
2311 alloc_mem_err:
2312 bnx2x_free_fw_stats_mem(bp);
2313 BNX2X_ERR("Can't allocate FW stats memory\n");
2314 return -ENOMEM;
2315 }
2316
2317 /* send load request to mcp and analyze response */
bnx2x_nic_load_request(struct bnx2x * bp,u32 * load_code)2318 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2319 {
2320 u32 param;
2321
2322 /* init fw_seq */
2323 bp->fw_seq =
2324 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2325 DRV_MSG_SEQ_NUMBER_MASK);
2326 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2327
2328 /* Get current FW pulse sequence */
2329 bp->fw_drv_pulse_wr_seq =
2330 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2331 DRV_PULSE_SEQ_MASK);
2332 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2333
2334 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2335
2336 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2337 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2338
2339 /* load request */
2340 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2341
2342 /* if mcp fails to respond we must abort */
2343 if (!(*load_code)) {
2344 BNX2X_ERR("MCP response failure, aborting\n");
2345 return -EBUSY;
2346 }
2347
2348 /* If mcp refused (e.g. other port is in diagnostic mode) we
2349 * must abort
2350 */
2351 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2352 BNX2X_ERR("MCP refused load request, aborting\n");
2353 return -EBUSY;
2354 }
2355 return 0;
2356 }
2357
2358 /* check whether another PF has already loaded FW to chip. In
2359 * virtualized environments a pf from another VM may have already
2360 * initialized the device including loading FW
2361 */
bnx2x_compare_fw_ver(struct bnx2x * bp,u32 load_code,bool print_err)2362 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2363 {
2364 /* is another pf loaded on this engine? */
2365 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2366 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2367 u8 loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng;
2368 u32 loaded_fw;
2369
2370 /* read loaded FW from chip */
2371 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2372
2373 loaded_fw_major = loaded_fw & 0xff;
2374 loaded_fw_minor = (loaded_fw >> 8) & 0xff;
2375 loaded_fw_rev = (loaded_fw >> 16) & 0xff;
2376 loaded_fw_eng = (loaded_fw >> 24) & 0xff;
2377
2378 DP(BNX2X_MSG_SP, "loaded fw 0x%x major 0x%x minor 0x%x rev 0x%x eng 0x%x\n",
2379 loaded_fw, loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng);
2380
2381 /* abort nic load if version mismatch */
2382 if (loaded_fw_major != BCM_5710_FW_MAJOR_VERSION ||
2383 loaded_fw_minor != BCM_5710_FW_MINOR_VERSION ||
2384 loaded_fw_eng != BCM_5710_FW_ENGINEERING_VERSION ||
2385 loaded_fw_rev < BCM_5710_FW_REVISION_VERSION_V15) {
2386 if (print_err)
2387 BNX2X_ERR("loaded FW incompatible. Aborting\n");
2388 else
2389 BNX2X_DEV_INFO("loaded FW incompatible, possibly due to MF UNDI\n");
2390
2391 return -EBUSY;
2392 }
2393 }
2394 return 0;
2395 }
2396
2397 /* returns the "mcp load_code" according to global load_count array */
bnx2x_nic_load_no_mcp(struct bnx2x * bp,int port)2398 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2399 {
2400 int path = BP_PATH(bp);
2401
2402 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2403 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2404 bnx2x_load_count[path][2]);
2405 bnx2x_load_count[path][0]++;
2406 bnx2x_load_count[path][1 + port]++;
2407 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2408 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2409 bnx2x_load_count[path][2]);
2410 if (bnx2x_load_count[path][0] == 1)
2411 return FW_MSG_CODE_DRV_LOAD_COMMON;
2412 else if (bnx2x_load_count[path][1 + port] == 1)
2413 return FW_MSG_CODE_DRV_LOAD_PORT;
2414 else
2415 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2416 }
2417
2418 /* mark PMF if applicable */
bnx2x_nic_load_pmf(struct bnx2x * bp,u32 load_code)2419 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2420 {
2421 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2422 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2423 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2424 bp->port.pmf = 1;
2425 /* We need the barrier to ensure the ordering between the
2426 * writing to bp->port.pmf here and reading it from the
2427 * bnx2x_periodic_task().
2428 */
2429 smp_mb();
2430 } else {
2431 bp->port.pmf = 0;
2432 }
2433
2434 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2435 }
2436
bnx2x_nic_load_afex_dcc(struct bnx2x * bp,int load_code)2437 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2438 {
2439 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2440 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2441 (bp->common.shmem2_base)) {
2442 if (SHMEM2_HAS(bp, dcc_support))
2443 SHMEM2_WR(bp, dcc_support,
2444 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2445 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2446 if (SHMEM2_HAS(bp, afex_driver_support))
2447 SHMEM2_WR(bp, afex_driver_support,
2448 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2449 }
2450
2451 /* Set AFEX default VLAN tag to an invalid value */
2452 bp->afex_def_vlan_tag = -1;
2453 }
2454
2455 /**
2456 * bnx2x_bz_fp - zero content of the fastpath structure.
2457 *
2458 * @bp: driver handle
2459 * @index: fastpath index to be zeroed
2460 *
2461 * Makes sure the contents of the bp->fp[index].napi is kept
2462 * intact.
2463 */
bnx2x_bz_fp(struct bnx2x * bp,int index)2464 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2465 {
2466 struct bnx2x_fastpath *fp = &bp->fp[index];
2467 int cos;
2468 struct napi_struct orig_napi = fp->napi;
2469 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2470
2471 /* bzero bnx2x_fastpath contents */
2472 if (fp->tpa_info)
2473 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2474 sizeof(struct bnx2x_agg_info));
2475 memset(fp, 0, sizeof(*fp));
2476
2477 /* Restore the NAPI object as it has been already initialized */
2478 fp->napi = orig_napi;
2479 fp->tpa_info = orig_tpa_info;
2480 fp->bp = bp;
2481 fp->index = index;
2482 if (IS_ETH_FP(fp))
2483 fp->max_cos = bp->max_cos;
2484 else
2485 /* Special queues support only one CoS */
2486 fp->max_cos = 1;
2487
2488 /* Init txdata pointers */
2489 if (IS_FCOE_FP(fp))
2490 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2491 if (IS_ETH_FP(fp))
2492 for_each_cos_in_tx_queue(fp, cos)
2493 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2494 BNX2X_NUM_ETH_QUEUES(bp) + index];
2495
2496 /* set the tpa flag for each queue. The tpa flag determines the queue
2497 * minimal size so it must be set prior to queue memory allocation
2498 */
2499 if (bp->dev->features & NETIF_F_LRO)
2500 fp->mode = TPA_MODE_LRO;
2501 else if (bp->dev->features & NETIF_F_GRO_HW)
2502 fp->mode = TPA_MODE_GRO;
2503 else
2504 fp->mode = TPA_MODE_DISABLED;
2505
2506 /* We don't want TPA if it's disabled in bp
2507 * or if this is an FCoE L2 ring.
2508 */
2509 if (bp->disable_tpa || IS_FCOE_FP(fp))
2510 fp->mode = TPA_MODE_DISABLED;
2511 }
2512
bnx2x_set_os_driver_state(struct bnx2x * bp,u32 state)2513 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2514 {
2515 u32 cur;
2516
2517 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2518 return;
2519
2520 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2521 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2522 cur, state);
2523
2524 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2525 }
2526
bnx2x_load_cnic(struct bnx2x * bp)2527 int bnx2x_load_cnic(struct bnx2x *bp)
2528 {
2529 int i, rc, port = BP_PORT(bp);
2530
2531 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2532
2533 mutex_init(&bp->cnic_mutex);
2534
2535 if (IS_PF(bp)) {
2536 rc = bnx2x_alloc_mem_cnic(bp);
2537 if (rc) {
2538 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2539 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2540 }
2541 }
2542
2543 rc = bnx2x_alloc_fp_mem_cnic(bp);
2544 if (rc) {
2545 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2546 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2547 }
2548
2549 /* Update the number of queues with the cnic queues */
2550 rc = bnx2x_set_real_num_queues(bp, 1);
2551 if (rc) {
2552 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2553 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2554 }
2555
2556 /* Add all CNIC NAPI objects */
2557 bnx2x_add_all_napi_cnic(bp);
2558 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2559 bnx2x_napi_enable_cnic(bp);
2560
2561 rc = bnx2x_init_hw_func_cnic(bp);
2562 if (rc)
2563 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2564
2565 bnx2x_nic_init_cnic(bp);
2566
2567 if (IS_PF(bp)) {
2568 /* Enable Timer scan */
2569 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2570
2571 /* setup cnic queues */
2572 for_each_cnic_queue(bp, i) {
2573 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2574 if (rc) {
2575 BNX2X_ERR("Queue setup failed\n");
2576 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2577 }
2578 }
2579 }
2580
2581 /* Initialize Rx filter. */
2582 bnx2x_set_rx_mode_inner(bp);
2583
2584 /* re-read iscsi info */
2585 bnx2x_get_iscsi_info(bp);
2586 bnx2x_setup_cnic_irq_info(bp);
2587 bnx2x_setup_cnic_info(bp);
2588 bp->cnic_loaded = true;
2589 if (bp->state == BNX2X_STATE_OPEN)
2590 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2591
2592 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2593
2594 return 0;
2595
2596 #ifndef BNX2X_STOP_ON_ERROR
2597 load_error_cnic2:
2598 /* Disable Timer scan */
2599 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2600
2601 load_error_cnic1:
2602 bnx2x_napi_disable_cnic(bp);
2603 /* Update the number of queues without the cnic queues */
2604 if (bnx2x_set_real_num_queues(bp, 0))
2605 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2606 load_error_cnic0:
2607 BNX2X_ERR("CNIC-related load failed\n");
2608 bnx2x_free_fp_mem_cnic(bp);
2609 bnx2x_free_mem_cnic(bp);
2610 return rc;
2611 #endif /* ! BNX2X_STOP_ON_ERROR */
2612 }
2613
2614 /* must be called with rtnl_lock */
bnx2x_nic_load(struct bnx2x * bp,int load_mode)2615 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2616 {
2617 int port = BP_PORT(bp);
2618 int i, rc = 0, load_code = 0;
2619
2620 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2621 DP(NETIF_MSG_IFUP,
2622 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2623
2624 #ifdef BNX2X_STOP_ON_ERROR
2625 if (unlikely(bp->panic)) {
2626 BNX2X_ERR("Can't load NIC when there is panic\n");
2627 return -EPERM;
2628 }
2629 #endif
2630
2631 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2632
2633 /* zero the structure w/o any lock, before SP handler is initialized */
2634 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2635 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2636 &bp->last_reported_link.link_report_flags);
2637
2638 if (IS_PF(bp))
2639 /* must be called before memory allocation and HW init */
2640 bnx2x_ilt_set_info(bp);
2641
2642 /*
2643 * Zero fastpath structures preserving invariants like napi, which are
2644 * allocated only once, fp index, max_cos, bp pointer.
2645 * Also set fp->mode and txdata_ptr.
2646 */
2647 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2648 for_each_queue(bp, i)
2649 bnx2x_bz_fp(bp, i);
2650 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2651 bp->num_cnic_queues) *
2652 sizeof(struct bnx2x_fp_txdata));
2653
2654 bp->fcoe_init = false;
2655
2656 /* Set the receive queues buffer size */
2657 bnx2x_set_rx_buf_size(bp);
2658
2659 if (IS_PF(bp)) {
2660 rc = bnx2x_alloc_mem(bp);
2661 if (rc) {
2662 BNX2X_ERR("Unable to allocate bp memory\n");
2663 return rc;
2664 }
2665 }
2666
2667 /* need to be done after alloc mem, since it's self adjusting to amount
2668 * of memory available for RSS queues
2669 */
2670 rc = bnx2x_alloc_fp_mem(bp);
2671 if (rc) {
2672 BNX2X_ERR("Unable to allocate memory for fps\n");
2673 LOAD_ERROR_EXIT(bp, load_error0);
2674 }
2675
2676 /* Allocated memory for FW statistics */
2677 rc = bnx2x_alloc_fw_stats_mem(bp);
2678 if (rc)
2679 LOAD_ERROR_EXIT(bp, load_error0);
2680
2681 /* request pf to initialize status blocks */
2682 if (IS_VF(bp)) {
2683 rc = bnx2x_vfpf_init(bp);
2684 if (rc)
2685 LOAD_ERROR_EXIT(bp, load_error0);
2686 }
2687
2688 /* As long as bnx2x_alloc_mem() may possibly update
2689 * bp->num_queues, bnx2x_set_real_num_queues() should always
2690 * come after it. At this stage cnic queues are not counted.
2691 */
2692 rc = bnx2x_set_real_num_queues(bp, 0);
2693 if (rc) {
2694 BNX2X_ERR("Unable to set real_num_queues\n");
2695 LOAD_ERROR_EXIT(bp, load_error0);
2696 }
2697
2698 /* configure multi cos mappings in kernel.
2699 * this configuration may be overridden by a multi class queue
2700 * discipline or by a dcbx negotiation result.
2701 */
2702 bnx2x_setup_tc(bp->dev, bp->max_cos);
2703
2704 /* Add all NAPI objects */
2705 bnx2x_add_all_napi(bp);
2706 DP(NETIF_MSG_IFUP, "napi added\n");
2707 bnx2x_napi_enable(bp);
2708
2709 if (IS_PF(bp)) {
2710 /* set pf load just before approaching the MCP */
2711 bnx2x_set_pf_load(bp);
2712
2713 /* if mcp exists send load request and analyze response */
2714 if (!BP_NOMCP(bp)) {
2715 /* attempt to load pf */
2716 rc = bnx2x_nic_load_request(bp, &load_code);
2717 if (rc)
2718 LOAD_ERROR_EXIT(bp, load_error1);
2719
2720 /* what did mcp say? */
2721 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2722 if (rc) {
2723 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2724 LOAD_ERROR_EXIT(bp, load_error2);
2725 }
2726 } else {
2727 load_code = bnx2x_nic_load_no_mcp(bp, port);
2728 }
2729
2730 /* mark pmf if applicable */
2731 bnx2x_nic_load_pmf(bp, load_code);
2732
2733 /* Init Function state controlling object */
2734 bnx2x__init_func_obj(bp);
2735
2736 /* Initialize HW */
2737 rc = bnx2x_init_hw(bp, load_code);
2738 if (rc) {
2739 BNX2X_ERR("HW init failed, aborting\n");
2740 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2741 LOAD_ERROR_EXIT(bp, load_error2);
2742 }
2743 }
2744
2745 bnx2x_pre_irq_nic_init(bp);
2746
2747 /* Connect to IRQs */
2748 rc = bnx2x_setup_irqs(bp);
2749 if (rc) {
2750 BNX2X_ERR("setup irqs failed\n");
2751 if (IS_PF(bp))
2752 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2753 LOAD_ERROR_EXIT(bp, load_error2);
2754 }
2755
2756 /* Init per-function objects */
2757 if (IS_PF(bp)) {
2758 /* Setup NIC internals and enable interrupts */
2759 bnx2x_post_irq_nic_init(bp, load_code);
2760
2761 bnx2x_init_bp_objs(bp);
2762 bnx2x_iov_nic_init(bp);
2763
2764 /* Set AFEX default VLAN tag to an invalid value */
2765 bp->afex_def_vlan_tag = -1;
2766 bnx2x_nic_load_afex_dcc(bp, load_code);
2767 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2768 rc = bnx2x_func_start(bp);
2769 if (rc) {
2770 BNX2X_ERR("Function start failed!\n");
2771 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2772
2773 LOAD_ERROR_EXIT(bp, load_error3);
2774 }
2775
2776 /* Send LOAD_DONE command to MCP */
2777 if (!BP_NOMCP(bp)) {
2778 load_code = bnx2x_fw_command(bp,
2779 DRV_MSG_CODE_LOAD_DONE, 0);
2780 if (!load_code) {
2781 BNX2X_ERR("MCP response failure, aborting\n");
2782 rc = -EBUSY;
2783 LOAD_ERROR_EXIT(bp, load_error3);
2784 }
2785 }
2786
2787 /* initialize FW coalescing state machines in RAM */
2788 bnx2x_update_coalesce(bp);
2789 }
2790
2791 /* setup the leading queue */
2792 rc = bnx2x_setup_leading(bp);
2793 if (rc) {
2794 BNX2X_ERR("Setup leading failed!\n");
2795 LOAD_ERROR_EXIT(bp, load_error3);
2796 }
2797
2798 /* set up the rest of the queues */
2799 for_each_nondefault_eth_queue(bp, i) {
2800 if (IS_PF(bp))
2801 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2802 else /* VF */
2803 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2804 if (rc) {
2805 BNX2X_ERR("Queue %d setup failed\n", i);
2806 LOAD_ERROR_EXIT(bp, load_error3);
2807 }
2808 }
2809
2810 /* setup rss */
2811 rc = bnx2x_init_rss(bp);
2812 if (rc) {
2813 BNX2X_ERR("PF RSS init failed\n");
2814 LOAD_ERROR_EXIT(bp, load_error3);
2815 }
2816
2817 /* Now when Clients are configured we are ready to work */
2818 bp->state = BNX2X_STATE_OPEN;
2819
2820 /* Configure a ucast MAC */
2821 if (IS_PF(bp))
2822 rc = bnx2x_set_eth_mac(bp, true);
2823 else /* vf */
2824 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2825 true);
2826 if (rc) {
2827 BNX2X_ERR("Setting Ethernet MAC failed\n");
2828 LOAD_ERROR_EXIT(bp, load_error3);
2829 }
2830
2831 if (IS_PF(bp) && bp->pending_max) {
2832 bnx2x_update_max_mf_config(bp, bp->pending_max);
2833 bp->pending_max = 0;
2834 }
2835
2836 bp->force_link_down = false;
2837 if (bp->port.pmf) {
2838 rc = bnx2x_initial_phy_init(bp, load_mode);
2839 if (rc)
2840 LOAD_ERROR_EXIT(bp, load_error3);
2841 }
2842 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2843
2844 /* Start fast path */
2845
2846 /* Re-configure vlan filters */
2847 rc = bnx2x_vlan_reconfigure_vid(bp);
2848 if (rc)
2849 LOAD_ERROR_EXIT(bp, load_error3);
2850
2851 /* Initialize Rx filter. */
2852 bnx2x_set_rx_mode_inner(bp);
2853
2854 if (bp->flags & PTP_SUPPORTED) {
2855 bnx2x_register_phc(bp);
2856 bnx2x_init_ptp(bp);
2857 bnx2x_configure_ptp_filters(bp);
2858 }
2859 /* Start Tx */
2860 switch (load_mode) {
2861 case LOAD_NORMAL:
2862 /* Tx queue should be only re-enabled */
2863 netif_tx_wake_all_queues(bp->dev);
2864 break;
2865
2866 case LOAD_OPEN:
2867 netif_tx_start_all_queues(bp->dev);
2868 smp_mb__after_atomic();
2869 break;
2870
2871 case LOAD_DIAG:
2872 case LOAD_LOOPBACK_EXT:
2873 bp->state = BNX2X_STATE_DIAG;
2874 break;
2875
2876 default:
2877 break;
2878 }
2879
2880 if (bp->port.pmf)
2881 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2882 else
2883 bnx2x__link_status_update(bp);
2884
2885 /* start the timer */
2886 mod_timer(&bp->timer, jiffies + bp->current_interval);
2887
2888 if (CNIC_ENABLED(bp))
2889 bnx2x_load_cnic(bp);
2890
2891 if (IS_PF(bp))
2892 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2893
2894 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2895 /* mark driver is loaded in shmem2 */
2896 u32 val;
2897 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2898 val &= ~DRV_FLAGS_MTU_MASK;
2899 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2900 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2901 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2902 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2903 }
2904
2905 /* Wait for all pending SP commands to complete */
2906 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2907 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2908 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2909 return -EBUSY;
2910 }
2911
2912 /* Update driver data for On-Chip MFW dump. */
2913 if (IS_PF(bp))
2914 bnx2x_update_mfw_dump(bp);
2915
2916 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2917 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2918 bnx2x_dcbx_init(bp, false);
2919
2920 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2921 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2922
2923 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2924
2925 return 0;
2926
2927 #ifndef BNX2X_STOP_ON_ERROR
2928 load_error3:
2929 if (IS_PF(bp)) {
2930 bnx2x_int_disable_sync(bp, 1);
2931
2932 /* Clean queueable objects */
2933 bnx2x_squeeze_objects(bp);
2934 }
2935
2936 /* Free SKBs, SGEs, TPA pool and driver internals */
2937 bnx2x_free_skbs(bp);
2938 for_each_rx_queue(bp, i)
2939 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2940
2941 /* Release IRQs */
2942 bnx2x_free_irq(bp);
2943 load_error2:
2944 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2945 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2946 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2947 }
2948
2949 bp->port.pmf = 0;
2950 load_error1:
2951 bnx2x_napi_disable(bp);
2952 bnx2x_del_all_napi(bp);
2953
2954 /* clear pf_load status, as it was already set */
2955 if (IS_PF(bp))
2956 bnx2x_clear_pf_load(bp);
2957 load_error0:
2958 bnx2x_free_fw_stats_mem(bp);
2959 bnx2x_free_fp_mem(bp);
2960 bnx2x_free_mem(bp);
2961
2962 return rc;
2963 #endif /* ! BNX2X_STOP_ON_ERROR */
2964 }
2965
bnx2x_drain_tx_queues(struct bnx2x * bp)2966 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2967 {
2968 u8 rc = 0, cos, i;
2969
2970 /* Wait until tx fastpath tasks complete */
2971 for_each_tx_queue(bp, i) {
2972 struct bnx2x_fastpath *fp = &bp->fp[i];
2973
2974 for_each_cos_in_tx_queue(fp, cos)
2975 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2976 if (rc)
2977 return rc;
2978 }
2979 return 0;
2980 }
2981
2982 /* must be called with rtnl_lock */
bnx2x_nic_unload(struct bnx2x * bp,int unload_mode,bool keep_link)2983 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2984 {
2985 int i;
2986 bool global = false;
2987
2988 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2989
2990 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2991 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2992
2993 /* mark driver is unloaded in shmem2 */
2994 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2995 u32 val;
2996 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2997 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2998 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2999 }
3000
3001 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
3002 (bp->state == BNX2X_STATE_CLOSED ||
3003 bp->state == BNX2X_STATE_ERROR)) {
3004 /* We can get here if the driver has been unloaded
3005 * during parity error recovery and is either waiting for a
3006 * leader to complete or for other functions to unload and
3007 * then ifdown has been issued. In this case we want to
3008 * unload and let other functions to complete a recovery
3009 * process.
3010 */
3011 bp->recovery_state = BNX2X_RECOVERY_DONE;
3012 bp->is_leader = 0;
3013 bnx2x_release_leader_lock(bp);
3014 smp_mb();
3015
3016 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3017 BNX2X_ERR("Can't unload in closed or error state\n");
3018 return -EINVAL;
3019 }
3020
3021 /* Nothing to do during unload if previous bnx2x_nic_load()
3022 * have not completed successfully - all resources are released.
3023 *
3024 * we can get here only after unsuccessful ndo_* callback, during which
3025 * dev->IFF_UP flag is still on.
3026 */
3027 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3028 return 0;
3029
3030 /* It's important to set the bp->state to the value different from
3031 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3032 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3033 */
3034 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3035 smp_mb();
3036
3037 /* indicate to VFs that the PF is going down */
3038 bnx2x_iov_channel_down(bp);
3039
3040 if (CNIC_LOADED(bp))
3041 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3042
3043 /* Stop Tx */
3044 bnx2x_tx_disable(bp);
3045 netdev_reset_tc(bp->dev);
3046
3047 bp->rx_mode = BNX2X_RX_MODE_NONE;
3048
3049 del_timer_sync(&bp->timer);
3050
3051 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3052 /* Set ALWAYS_ALIVE bit in shmem */
3053 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3054 bnx2x_drv_pulse(bp);
3055 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3056 bnx2x_save_statistics(bp);
3057 }
3058
3059 /* wait till consumers catch up with producers in all queues.
3060 * If we're recovering, FW can't write to host so no reason
3061 * to wait for the queues to complete all Tx.
3062 */
3063 if (unload_mode != UNLOAD_RECOVERY)
3064 bnx2x_drain_tx_queues(bp);
3065
3066 /* if VF indicate to PF this function is going down (PF will delete sp
3067 * elements and clear initializations
3068 */
3069 if (IS_VF(bp)) {
3070 bnx2x_clear_vlan_info(bp);
3071 bnx2x_vfpf_close_vf(bp);
3072 } else if (unload_mode != UNLOAD_RECOVERY) {
3073 /* if this is a normal/close unload need to clean up chip*/
3074 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3075 } else {
3076 /* Send the UNLOAD_REQUEST to the MCP */
3077 bnx2x_send_unload_req(bp, unload_mode);
3078
3079 /* Prevent transactions to host from the functions on the
3080 * engine that doesn't reset global blocks in case of global
3081 * attention once global blocks are reset and gates are opened
3082 * (the engine which leader will perform the recovery
3083 * last).
3084 */
3085 if (!CHIP_IS_E1x(bp))
3086 bnx2x_pf_disable(bp);
3087
3088 /* Disable HW interrupts, NAPI */
3089 bnx2x_netif_stop(bp, 1);
3090 /* Delete all NAPI objects */
3091 bnx2x_del_all_napi(bp);
3092 if (CNIC_LOADED(bp))
3093 bnx2x_del_all_napi_cnic(bp);
3094 /* Release IRQs */
3095 bnx2x_free_irq(bp);
3096
3097 /* Report UNLOAD_DONE to MCP */
3098 bnx2x_send_unload_done(bp, false);
3099 }
3100
3101 /*
3102 * At this stage no more interrupts will arrive so we may safely clean
3103 * the queueable objects here in case they failed to get cleaned so far.
3104 */
3105 if (IS_PF(bp))
3106 bnx2x_squeeze_objects(bp);
3107
3108 /* There should be no more pending SP commands at this stage */
3109 bp->sp_state = 0;
3110
3111 bp->port.pmf = 0;
3112
3113 /* clear pending work in rtnl task */
3114 bp->sp_rtnl_state = 0;
3115 smp_mb();
3116
3117 /* Free SKBs, SGEs, TPA pool and driver internals */
3118 bnx2x_free_skbs(bp);
3119 if (CNIC_LOADED(bp))
3120 bnx2x_free_skbs_cnic(bp);
3121 for_each_rx_queue(bp, i)
3122 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3123
3124 bnx2x_free_fp_mem(bp);
3125 if (CNIC_LOADED(bp))
3126 bnx2x_free_fp_mem_cnic(bp);
3127
3128 if (IS_PF(bp)) {
3129 if (CNIC_LOADED(bp))
3130 bnx2x_free_mem_cnic(bp);
3131 }
3132 bnx2x_free_mem(bp);
3133
3134 bp->state = BNX2X_STATE_CLOSED;
3135 bp->cnic_loaded = false;
3136
3137 /* Clear driver version indication in shmem */
3138 if (IS_PF(bp) && !BP_NOMCP(bp))
3139 bnx2x_update_mng_version(bp);
3140
3141 /* Check if there are pending parity attentions. If there are - set
3142 * RECOVERY_IN_PROGRESS.
3143 */
3144 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3145 bnx2x_set_reset_in_progress(bp);
3146
3147 /* Set RESET_IS_GLOBAL if needed */
3148 if (global)
3149 bnx2x_set_reset_global(bp);
3150 }
3151
3152 /* The last driver must disable a "close the gate" if there is no
3153 * parity attention or "process kill" pending.
3154 */
3155 if (IS_PF(bp) &&
3156 !bnx2x_clear_pf_load(bp) &&
3157 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3158 bnx2x_disable_close_the_gate(bp);
3159
3160 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3161
3162 return 0;
3163 }
3164
bnx2x_set_power_state(struct bnx2x * bp,pci_power_t state)3165 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3166 {
3167 u16 pmcsr;
3168
3169 /* If there is no power capability, silently succeed */
3170 if (!bp->pdev->pm_cap) {
3171 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3172 return 0;
3173 }
3174
3175 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3176
3177 switch (state) {
3178 case PCI_D0:
3179 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3180 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3181 PCI_PM_CTRL_PME_STATUS));
3182
3183 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3184 /* delay required during transition out of D3hot */
3185 msleep(20);
3186 break;
3187
3188 case PCI_D3hot:
3189 /* If there are other clients above don't
3190 shut down the power */
3191 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3192 return 0;
3193 /* Don't shut down the power for emulation and FPGA */
3194 if (CHIP_REV_IS_SLOW(bp))
3195 return 0;
3196
3197 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3198 pmcsr |= 3;
3199
3200 if (bp->wol)
3201 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3202
3203 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3204 pmcsr);
3205
3206 /* No more memory access after this point until
3207 * device is brought back to D0.
3208 */
3209 break;
3210
3211 default:
3212 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3213 return -EINVAL;
3214 }
3215 return 0;
3216 }
3217
3218 /*
3219 * net_device service functions
3220 */
bnx2x_poll(struct napi_struct * napi,int budget)3221 static int bnx2x_poll(struct napi_struct *napi, int budget)
3222 {
3223 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3224 napi);
3225 struct bnx2x *bp = fp->bp;
3226 int rx_work_done;
3227 u8 cos;
3228
3229 #ifdef BNX2X_STOP_ON_ERROR
3230 if (unlikely(bp->panic)) {
3231 napi_complete(napi);
3232 return 0;
3233 }
3234 #endif
3235 for_each_cos_in_tx_queue(fp, cos)
3236 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3237 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3238
3239 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3240
3241 if (rx_work_done < budget) {
3242 /* No need to update SB for FCoE L2 ring as long as
3243 * it's connected to the default SB and the SB
3244 * has been updated when NAPI was scheduled.
3245 */
3246 if (IS_FCOE_FP(fp)) {
3247 napi_complete_done(napi, rx_work_done);
3248 } else {
3249 bnx2x_update_fpsb_idx(fp);
3250 /* bnx2x_has_rx_work() reads the status block,
3251 * thus we need to ensure that status block indices
3252 * have been actually read (bnx2x_update_fpsb_idx)
3253 * prior to this check (bnx2x_has_rx_work) so that
3254 * we won't write the "newer" value of the status block
3255 * to IGU (if there was a DMA right after
3256 * bnx2x_has_rx_work and if there is no rmb, the memory
3257 * reading (bnx2x_update_fpsb_idx) may be postponed
3258 * to right before bnx2x_ack_sb). In this case there
3259 * will never be another interrupt until there is
3260 * another update of the status block, while there
3261 * is still unhandled work.
3262 */
3263 rmb();
3264
3265 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3266 if (napi_complete_done(napi, rx_work_done)) {
3267 /* Re-enable interrupts */
3268 DP(NETIF_MSG_RX_STATUS,
3269 "Update index to %d\n", fp->fp_hc_idx);
3270 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3271 le16_to_cpu(fp->fp_hc_idx),
3272 IGU_INT_ENABLE, 1);
3273 }
3274 } else {
3275 rx_work_done = budget;
3276 }
3277 }
3278 }
3279
3280 return rx_work_done;
3281 }
3282
3283 /* we split the first BD into headers and data BDs
3284 * to ease the pain of our fellow microcode engineers
3285 * we use one mapping for both BDs
3286 */
bnx2x_tx_split(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,struct sw_tx_bd * tx_buf,struct eth_tx_start_bd ** tx_bd,u16 hlen,u16 bd_prod)3287 static u16 bnx2x_tx_split(struct bnx2x *bp,
3288 struct bnx2x_fp_txdata *txdata,
3289 struct sw_tx_bd *tx_buf,
3290 struct eth_tx_start_bd **tx_bd, u16 hlen,
3291 u16 bd_prod)
3292 {
3293 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3294 struct eth_tx_bd *d_tx_bd;
3295 dma_addr_t mapping;
3296 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3297
3298 /* first fix first BD */
3299 h_tx_bd->nbytes = cpu_to_le16(hlen);
3300
3301 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3302 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3303
3304 /* now get a new data BD
3305 * (after the pbd) and fill it */
3306 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3307 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3308
3309 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3310 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3311
3312 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3313 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3314 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3315
3316 /* this marks the BD as one that has no individual mapping */
3317 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3318
3319 DP(NETIF_MSG_TX_QUEUED,
3320 "TSO split data size is %d (%x:%x)\n",
3321 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3322
3323 /* update tx_bd */
3324 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3325
3326 return bd_prod;
3327 }
3328
3329 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3330 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
bnx2x_csum_fix(unsigned char * t_header,u16 csum,s8 fix)3331 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3332 {
3333 __sum16 tsum = (__force __sum16) csum;
3334
3335 if (fix > 0)
3336 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3337 csum_partial(t_header - fix, fix, 0)));
3338
3339 else if (fix < 0)
3340 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3341 csum_partial(t_header, -fix, 0)));
3342
3343 return bswab16(tsum);
3344 }
3345
bnx2x_xmit_type(struct bnx2x * bp,struct sk_buff * skb)3346 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3347 {
3348 u32 rc;
3349 __u8 prot = 0;
3350 __be16 protocol;
3351
3352 if (skb->ip_summed != CHECKSUM_PARTIAL)
3353 return XMIT_PLAIN;
3354
3355 protocol = vlan_get_protocol(skb);
3356 if (protocol == htons(ETH_P_IPV6)) {
3357 rc = XMIT_CSUM_V6;
3358 prot = ipv6_hdr(skb)->nexthdr;
3359 } else {
3360 rc = XMIT_CSUM_V4;
3361 prot = ip_hdr(skb)->protocol;
3362 }
3363
3364 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3365 if (inner_ip_hdr(skb)->version == 6) {
3366 rc |= XMIT_CSUM_ENC_V6;
3367 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3368 rc |= XMIT_CSUM_TCP;
3369 } else {
3370 rc |= XMIT_CSUM_ENC_V4;
3371 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3372 rc |= XMIT_CSUM_TCP;
3373 }
3374 }
3375 if (prot == IPPROTO_TCP)
3376 rc |= XMIT_CSUM_TCP;
3377
3378 if (skb_is_gso(skb)) {
3379 if (skb_is_gso_v6(skb)) {
3380 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3381 if (rc & XMIT_CSUM_ENC)
3382 rc |= XMIT_GSO_ENC_V6;
3383 } else {
3384 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3385 if (rc & XMIT_CSUM_ENC)
3386 rc |= XMIT_GSO_ENC_V4;
3387 }
3388 }
3389
3390 return rc;
3391 }
3392
3393 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3394 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3395
3396 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3397 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3398
3399 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3400 /* check if packet requires linearization (packet is too fragmented)
3401 no need to check fragmentation if page size > 8K (there will be no
3402 violation to FW restrictions) */
bnx2x_pkt_req_lin(struct bnx2x * bp,struct sk_buff * skb,u32 xmit_type)3403 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3404 u32 xmit_type)
3405 {
3406 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3407 int to_copy = 0, hlen = 0;
3408
3409 if (xmit_type & XMIT_GSO_ENC)
3410 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3411
3412 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3413 if (xmit_type & XMIT_GSO) {
3414 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3415 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3416 /* Number of windows to check */
3417 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3418 int wnd_idx = 0;
3419 int frag_idx = 0;
3420 u32 wnd_sum = 0;
3421
3422 /* Headers length */
3423 if (xmit_type & XMIT_GSO_ENC)
3424 hlen = (int)(skb_inner_transport_header(skb) -
3425 skb->data) +
3426 inner_tcp_hdrlen(skb);
3427 else
3428 hlen = (int)(skb_transport_header(skb) -
3429 skb->data) + tcp_hdrlen(skb);
3430
3431 /* Amount of data (w/o headers) on linear part of SKB*/
3432 first_bd_sz = skb_headlen(skb) - hlen;
3433
3434 wnd_sum = first_bd_sz;
3435
3436 /* Calculate the first sum - it's special */
3437 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3438 wnd_sum +=
3439 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3440
3441 /* If there was data on linear skb data - check it */
3442 if (first_bd_sz > 0) {
3443 if (unlikely(wnd_sum < lso_mss)) {
3444 to_copy = 1;
3445 goto exit_lbl;
3446 }
3447
3448 wnd_sum -= first_bd_sz;
3449 }
3450
3451 /* Others are easier: run through the frag list and
3452 check all windows */
3453 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3454 wnd_sum +=
3455 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3456
3457 if (unlikely(wnd_sum < lso_mss)) {
3458 to_copy = 1;
3459 break;
3460 }
3461 wnd_sum -=
3462 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3463 }
3464 } else {
3465 /* in non-LSO too fragmented packet should always
3466 be linearized */
3467 to_copy = 1;
3468 }
3469 }
3470
3471 exit_lbl:
3472 if (unlikely(to_copy))
3473 DP(NETIF_MSG_TX_QUEUED,
3474 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3475 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3476 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3477
3478 return to_copy;
3479 }
3480 #endif
3481
3482 /**
3483 * bnx2x_set_pbd_gso - update PBD in GSO case.
3484 *
3485 * @skb: packet skb
3486 * @pbd: parse BD
3487 * @xmit_type: xmit flags
3488 */
bnx2x_set_pbd_gso(struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3489 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3490 struct eth_tx_parse_bd_e1x *pbd,
3491 u32 xmit_type)
3492 {
3493 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3494 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3495 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3496
3497 if (xmit_type & XMIT_GSO_V4) {
3498 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3499 pbd->tcp_pseudo_csum =
3500 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3501 ip_hdr(skb)->daddr,
3502 0, IPPROTO_TCP, 0));
3503 } else {
3504 pbd->tcp_pseudo_csum =
3505 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3506 &ipv6_hdr(skb)->daddr,
3507 0, IPPROTO_TCP, 0));
3508 }
3509
3510 pbd->global_data |=
3511 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3512 }
3513
3514 /**
3515 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3516 *
3517 * @bp: driver handle
3518 * @skb: packet skb
3519 * @parsing_data: data to be updated
3520 * @xmit_type: xmit flags
3521 *
3522 * 57712/578xx related, when skb has encapsulation
3523 */
bnx2x_set_pbd_csum_enc(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3524 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3525 u32 *parsing_data, u32 xmit_type)
3526 {
3527 *parsing_data |=
3528 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3529 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3530 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3531
3532 if (xmit_type & XMIT_CSUM_TCP) {
3533 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3534 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3535 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3536
3537 return skb_inner_transport_header(skb) +
3538 inner_tcp_hdrlen(skb) - skb->data;
3539 }
3540
3541 /* We support checksum offload for TCP and UDP only.
3542 * No need to pass the UDP header length - it's a constant.
3543 */
3544 return skb_inner_transport_header(skb) +
3545 sizeof(struct udphdr) - skb->data;
3546 }
3547
3548 /**
3549 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3550 *
3551 * @bp: driver handle
3552 * @skb: packet skb
3553 * @parsing_data: data to be updated
3554 * @xmit_type: xmit flags
3555 *
3556 * 57712/578xx related
3557 */
bnx2x_set_pbd_csum_e2(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3558 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3559 u32 *parsing_data, u32 xmit_type)
3560 {
3561 *parsing_data |=
3562 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3563 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3564 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3565
3566 if (xmit_type & XMIT_CSUM_TCP) {
3567 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3568 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3569 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3570
3571 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3572 }
3573 /* We support checksum offload for TCP and UDP only.
3574 * No need to pass the UDP header length - it's a constant.
3575 */
3576 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3577 }
3578
3579 /* set FW indication according to inner or outer protocols if tunneled */
bnx2x_set_sbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_start_bd * tx_start_bd,u32 xmit_type)3580 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3581 struct eth_tx_start_bd *tx_start_bd,
3582 u32 xmit_type)
3583 {
3584 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3585
3586 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3587 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3588
3589 if (!(xmit_type & XMIT_CSUM_TCP))
3590 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3591 }
3592
3593 /**
3594 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3595 *
3596 * @bp: driver handle
3597 * @skb: packet skb
3598 * @pbd: parse BD to be updated
3599 * @xmit_type: xmit flags
3600 */
bnx2x_set_pbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3601 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3602 struct eth_tx_parse_bd_e1x *pbd,
3603 u32 xmit_type)
3604 {
3605 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3606
3607 /* for now NS flag is not used in Linux */
3608 pbd->global_data =
3609 cpu_to_le16(hlen |
3610 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3611 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3612
3613 pbd->ip_hlen_w = (skb_transport_header(skb) -
3614 skb_network_header(skb)) >> 1;
3615
3616 hlen += pbd->ip_hlen_w;
3617
3618 /* We support checksum offload for TCP and UDP only */
3619 if (xmit_type & XMIT_CSUM_TCP)
3620 hlen += tcp_hdrlen(skb) / 2;
3621 else
3622 hlen += sizeof(struct udphdr) / 2;
3623
3624 pbd->total_hlen_w = cpu_to_le16(hlen);
3625 hlen = hlen*2;
3626
3627 if (xmit_type & XMIT_CSUM_TCP) {
3628 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3629
3630 } else {
3631 s8 fix = SKB_CS_OFF(skb); /* signed! */
3632
3633 DP(NETIF_MSG_TX_QUEUED,
3634 "hlen %d fix %d csum before fix %x\n",
3635 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3636
3637 /* HW bug: fixup the CSUM */
3638 pbd->tcp_pseudo_csum =
3639 bnx2x_csum_fix(skb_transport_header(skb),
3640 SKB_CS(skb), fix);
3641
3642 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3643 pbd->tcp_pseudo_csum);
3644 }
3645
3646 return hlen;
3647 }
3648
bnx2x_update_pbds_gso_enc(struct sk_buff * skb,struct eth_tx_parse_bd_e2 * pbd_e2,struct eth_tx_parse_2nd_bd * pbd2,u16 * global_data,u32 xmit_type)3649 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3650 struct eth_tx_parse_bd_e2 *pbd_e2,
3651 struct eth_tx_parse_2nd_bd *pbd2,
3652 u16 *global_data,
3653 u32 xmit_type)
3654 {
3655 u16 hlen_w = 0;
3656 u8 outerip_off, outerip_len = 0;
3657
3658 /* from outer IP to transport */
3659 hlen_w = (skb_inner_transport_header(skb) -
3660 skb_network_header(skb)) >> 1;
3661
3662 /* transport len */
3663 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3664
3665 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3666
3667 /* outer IP header info */
3668 if (xmit_type & XMIT_CSUM_V4) {
3669 struct iphdr *iph = ip_hdr(skb);
3670 u32 csum = (__force u32)(~iph->check) -
3671 (__force u32)iph->tot_len -
3672 (__force u32)iph->frag_off;
3673
3674 outerip_len = iph->ihl << 1;
3675
3676 pbd2->fw_ip_csum_wo_len_flags_frag =
3677 bswab16(csum_fold((__force __wsum)csum));
3678 } else {
3679 pbd2->fw_ip_hdr_to_payload_w =
3680 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3681 pbd_e2->data.tunnel_data.flags |=
3682 ETH_TUNNEL_DATA_IPV6_OUTER;
3683 }
3684
3685 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3686
3687 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3688
3689 /* inner IP header info */
3690 if (xmit_type & XMIT_CSUM_ENC_V4) {
3691 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3692
3693 pbd_e2->data.tunnel_data.pseudo_csum =
3694 bswab16(~csum_tcpudp_magic(
3695 inner_ip_hdr(skb)->saddr,
3696 inner_ip_hdr(skb)->daddr,
3697 0, IPPROTO_TCP, 0));
3698 } else {
3699 pbd_e2->data.tunnel_data.pseudo_csum =
3700 bswab16(~csum_ipv6_magic(
3701 &inner_ipv6_hdr(skb)->saddr,
3702 &inner_ipv6_hdr(skb)->daddr,
3703 0, IPPROTO_TCP, 0));
3704 }
3705
3706 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3707
3708 *global_data |=
3709 outerip_off |
3710 (outerip_len <<
3711 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3712 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3713 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3714
3715 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3716 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3717 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3718 }
3719 }
3720
bnx2x_set_ipv6_ext_e2(struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3721 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3722 u32 xmit_type)
3723 {
3724 struct ipv6hdr *ipv6;
3725
3726 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3727 return;
3728
3729 if (xmit_type & XMIT_GSO_ENC_V6)
3730 ipv6 = inner_ipv6_hdr(skb);
3731 else /* XMIT_GSO_V6 */
3732 ipv6 = ipv6_hdr(skb);
3733
3734 if (ipv6->nexthdr == NEXTHDR_IPV6)
3735 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3736 }
3737
3738 /* called with netif_tx_lock
3739 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3740 * netif_wake_queue()
3741 */
bnx2x_start_xmit(struct sk_buff * skb,struct net_device * dev)3742 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3743 {
3744 struct bnx2x *bp = netdev_priv(dev);
3745
3746 struct netdev_queue *txq;
3747 struct bnx2x_fp_txdata *txdata;
3748 struct sw_tx_bd *tx_buf;
3749 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3750 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3751 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3752 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3753 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3754 u32 pbd_e2_parsing_data = 0;
3755 u16 pkt_prod, bd_prod;
3756 int nbd, txq_index;
3757 dma_addr_t mapping;
3758 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3759 int i;
3760 u8 hlen = 0;
3761 __le16 pkt_size = 0;
3762 struct ethhdr *eth;
3763 u8 mac_type = UNICAST_ADDRESS;
3764
3765 #ifdef BNX2X_STOP_ON_ERROR
3766 if (unlikely(bp->panic))
3767 return NETDEV_TX_BUSY;
3768 #endif
3769
3770 txq_index = skb_get_queue_mapping(skb);
3771 txq = netdev_get_tx_queue(dev, txq_index);
3772
3773 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3774
3775 txdata = &bp->bnx2x_txq[txq_index];
3776
3777 /* enable this debug print to view the transmission queue being used
3778 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3779 txq_index, fp_index, txdata_index); */
3780
3781 /* enable this debug print to view the transmission details
3782 DP(NETIF_MSG_TX_QUEUED,
3783 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3784 txdata->cid, fp_index, txdata_index, txdata, fp); */
3785
3786 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3787 skb_shinfo(skb)->nr_frags +
3788 BDS_PER_TX_PKT +
3789 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3790 /* Handle special storage cases separately */
3791 if (txdata->tx_ring_size == 0) {
3792 struct bnx2x_eth_q_stats *q_stats =
3793 bnx2x_fp_qstats(bp, txdata->parent_fp);
3794 q_stats->driver_filtered_tx_pkt++;
3795 dev_kfree_skb(skb);
3796 return NETDEV_TX_OK;
3797 }
3798 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3799 netif_tx_stop_queue(txq);
3800 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3801
3802 return NETDEV_TX_BUSY;
3803 }
3804
3805 DP(NETIF_MSG_TX_QUEUED,
3806 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3807 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3808 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3809 skb->len);
3810
3811 eth = (struct ethhdr *)skb->data;
3812
3813 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3814 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3815 if (is_broadcast_ether_addr(eth->h_dest))
3816 mac_type = BROADCAST_ADDRESS;
3817 else
3818 mac_type = MULTICAST_ADDRESS;
3819 }
3820
3821 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3822 /* First, check if we need to linearize the skb (due to FW
3823 restrictions). No need to check fragmentation if page size > 8K
3824 (there will be no violation to FW restrictions) */
3825 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3826 /* Statistics of linearization */
3827 bp->lin_cnt++;
3828 if (skb_linearize(skb) != 0) {
3829 DP(NETIF_MSG_TX_QUEUED,
3830 "SKB linearization failed - silently dropping this SKB\n");
3831 dev_kfree_skb_any(skb);
3832 return NETDEV_TX_OK;
3833 }
3834 }
3835 #endif
3836 /* Map skb linear data for DMA */
3837 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3838 skb_headlen(skb), DMA_TO_DEVICE);
3839 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3840 DP(NETIF_MSG_TX_QUEUED,
3841 "SKB mapping failed - silently dropping this SKB\n");
3842 dev_kfree_skb_any(skb);
3843 return NETDEV_TX_OK;
3844 }
3845 /*
3846 Please read carefully. First we use one BD which we mark as start,
3847 then we have a parsing info BD (used for TSO or xsum),
3848 and only then we have the rest of the TSO BDs.
3849 (don't forget to mark the last one as last,
3850 and to unmap only AFTER you write to the BD ...)
3851 And above all, all pdb sizes are in words - NOT DWORDS!
3852 */
3853
3854 /* get current pkt produced now - advance it just before sending packet
3855 * since mapping of pages may fail and cause packet to be dropped
3856 */
3857 pkt_prod = txdata->tx_pkt_prod;
3858 bd_prod = TX_BD(txdata->tx_bd_prod);
3859
3860 /* get a tx_buf and first BD
3861 * tx_start_bd may be changed during SPLIT,
3862 * but first_bd will always stay first
3863 */
3864 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3865 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3866 first_bd = tx_start_bd;
3867
3868 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3869
3870 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3871 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3872 bp->eth_stats.ptp_skip_tx_ts++;
3873 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3874 } else if (bp->ptp_tx_skb) {
3875 bp->eth_stats.ptp_skip_tx_ts++;
3876 netdev_err_once(bp->dev,
3877 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3878 } else {
3879 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3880 /* schedule check for Tx timestamp */
3881 bp->ptp_tx_skb = skb_get(skb);
3882 bp->ptp_tx_start = jiffies;
3883 schedule_work(&bp->ptp_task);
3884 }
3885 }
3886
3887 /* header nbd: indirectly zero other flags! */
3888 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3889
3890 /* remember the first BD of the packet */
3891 tx_buf->first_bd = txdata->tx_bd_prod;
3892 tx_buf->skb = skb;
3893 tx_buf->flags = 0;
3894
3895 DP(NETIF_MSG_TX_QUEUED,
3896 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3897 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3898
3899 if (skb_vlan_tag_present(skb)) {
3900 tx_start_bd->vlan_or_ethertype =
3901 cpu_to_le16(skb_vlan_tag_get(skb));
3902 tx_start_bd->bd_flags.as_bitfield |=
3903 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3904 } else {
3905 /* when transmitting in a vf, start bd must hold the ethertype
3906 * for fw to enforce it
3907 */
3908 u16 vlan_tci = 0;
3909 #ifndef BNX2X_STOP_ON_ERROR
3910 if (IS_VF(bp)) {
3911 #endif
3912 /* Still need to consider inband vlan for enforced */
3913 if (__vlan_get_tag(skb, &vlan_tci)) {
3914 tx_start_bd->vlan_or_ethertype =
3915 cpu_to_le16(ntohs(eth->h_proto));
3916 } else {
3917 tx_start_bd->bd_flags.as_bitfield |=
3918 (X_ETH_INBAND_VLAN <<
3919 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3920 tx_start_bd->vlan_or_ethertype =
3921 cpu_to_le16(vlan_tci);
3922 }
3923 #ifndef BNX2X_STOP_ON_ERROR
3924 } else {
3925 /* used by FW for packet accounting */
3926 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3927 }
3928 #endif
3929 }
3930
3931 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3932
3933 /* turn on parsing and get a BD */
3934 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3935
3936 if (xmit_type & XMIT_CSUM)
3937 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3938
3939 if (!CHIP_IS_E1x(bp)) {
3940 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3941 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3942
3943 if (xmit_type & XMIT_CSUM_ENC) {
3944 u16 global_data = 0;
3945
3946 /* Set PBD in enc checksum offload case */
3947 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3948 &pbd_e2_parsing_data,
3949 xmit_type);
3950
3951 /* turn on 2nd parsing and get a BD */
3952 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3953
3954 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3955
3956 memset(pbd2, 0, sizeof(*pbd2));
3957
3958 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3959 (skb_inner_network_header(skb) -
3960 skb->data) >> 1;
3961
3962 if (xmit_type & XMIT_GSO_ENC)
3963 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3964 &global_data,
3965 xmit_type);
3966
3967 pbd2->global_data = cpu_to_le16(global_data);
3968
3969 /* add addition parse BD indication to start BD */
3970 SET_FLAG(tx_start_bd->general_data,
3971 ETH_TX_START_BD_PARSE_NBDS, 1);
3972 /* set encapsulation flag in start BD */
3973 SET_FLAG(tx_start_bd->general_data,
3974 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3975
3976 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3977
3978 nbd++;
3979 } else if (xmit_type & XMIT_CSUM) {
3980 /* Set PBD in checksum offload case w/o encapsulation */
3981 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3982 &pbd_e2_parsing_data,
3983 xmit_type);
3984 }
3985
3986 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3987 /* Add the macs to the parsing BD if this is a vf or if
3988 * Tx Switching is enabled.
3989 */
3990 if (IS_VF(bp)) {
3991 /* override GRE parameters in BD */
3992 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3993 &pbd_e2->data.mac_addr.src_mid,
3994 &pbd_e2->data.mac_addr.src_lo,
3995 eth->h_source);
3996
3997 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3998 &pbd_e2->data.mac_addr.dst_mid,
3999 &pbd_e2->data.mac_addr.dst_lo,
4000 eth->h_dest);
4001 } else {
4002 if (bp->flags & TX_SWITCHING)
4003 bnx2x_set_fw_mac_addr(
4004 &pbd_e2->data.mac_addr.dst_hi,
4005 &pbd_e2->data.mac_addr.dst_mid,
4006 &pbd_e2->data.mac_addr.dst_lo,
4007 eth->h_dest);
4008 #ifdef BNX2X_STOP_ON_ERROR
4009 /* Enforce security is always set in Stop on Error -
4010 * source mac should be present in the parsing BD
4011 */
4012 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4013 &pbd_e2->data.mac_addr.src_mid,
4014 &pbd_e2->data.mac_addr.src_lo,
4015 eth->h_source);
4016 #endif
4017 }
4018
4019 SET_FLAG(pbd_e2_parsing_data,
4020 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4021 } else {
4022 u16 global_data = 0;
4023 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4024 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4025 /* Set PBD in checksum offload case */
4026 if (xmit_type & XMIT_CSUM)
4027 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4028
4029 SET_FLAG(global_data,
4030 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4031 pbd_e1x->global_data |= cpu_to_le16(global_data);
4032 }
4033
4034 /* Setup the data pointer of the first BD of the packet */
4035 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4036 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4037 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4038 pkt_size = tx_start_bd->nbytes;
4039
4040 DP(NETIF_MSG_TX_QUEUED,
4041 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4042 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4043 le16_to_cpu(tx_start_bd->nbytes),
4044 tx_start_bd->bd_flags.as_bitfield,
4045 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4046
4047 if (xmit_type & XMIT_GSO) {
4048
4049 DP(NETIF_MSG_TX_QUEUED,
4050 "TSO packet len %d hlen %d total len %d tso size %d\n",
4051 skb->len, hlen, skb_headlen(skb),
4052 skb_shinfo(skb)->gso_size);
4053
4054 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4055
4056 if (unlikely(skb_headlen(skb) > hlen)) {
4057 nbd++;
4058 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4059 &tx_start_bd, hlen,
4060 bd_prod);
4061 }
4062 if (!CHIP_IS_E1x(bp))
4063 pbd_e2_parsing_data |=
4064 (skb_shinfo(skb)->gso_size <<
4065 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4066 ETH_TX_PARSE_BD_E2_LSO_MSS;
4067 else
4068 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4069 }
4070
4071 /* Set the PBD's parsing_data field if not zero
4072 * (for the chips newer than 57711).
4073 */
4074 if (pbd_e2_parsing_data)
4075 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4076
4077 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4078
4079 /* Handle fragmented skb */
4080 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4081 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4082
4083 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4084 skb_frag_size(frag), DMA_TO_DEVICE);
4085 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4086 unsigned int pkts_compl = 0, bytes_compl = 0;
4087
4088 DP(NETIF_MSG_TX_QUEUED,
4089 "Unable to map page - dropping packet...\n");
4090
4091 /* we need unmap all buffers already mapped
4092 * for this SKB;
4093 * first_bd->nbd need to be properly updated
4094 * before call to bnx2x_free_tx_pkt
4095 */
4096 first_bd->nbd = cpu_to_le16(nbd);
4097 bnx2x_free_tx_pkt(bp, txdata,
4098 TX_BD(txdata->tx_pkt_prod),
4099 &pkts_compl, &bytes_compl);
4100 return NETDEV_TX_OK;
4101 }
4102
4103 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4104 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4105 if (total_pkt_bd == NULL)
4106 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4107
4108 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4109 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4110 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4111 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4112 nbd++;
4113
4114 DP(NETIF_MSG_TX_QUEUED,
4115 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4116 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4117 le16_to_cpu(tx_data_bd->nbytes));
4118 }
4119
4120 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4121
4122 /* update with actual num BDs */
4123 first_bd->nbd = cpu_to_le16(nbd);
4124
4125 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4126
4127 /* now send a tx doorbell, counting the next BD
4128 * if the packet contains or ends with it
4129 */
4130 if (TX_BD_POFF(bd_prod) < nbd)
4131 nbd++;
4132
4133 /* total_pkt_bytes should be set on the first data BD if
4134 * it's not an LSO packet and there is more than one
4135 * data BD. In this case pkt_size is limited by an MTU value.
4136 * However we prefer to set it for an LSO packet (while we don't
4137 * have to) in order to save some CPU cycles in a none-LSO
4138 * case, when we much more care about them.
4139 */
4140 if (total_pkt_bd != NULL)
4141 total_pkt_bd->total_pkt_bytes = pkt_size;
4142
4143 if (pbd_e1x)
4144 DP(NETIF_MSG_TX_QUEUED,
4145 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4146 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4147 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4148 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4149 le16_to_cpu(pbd_e1x->total_hlen_w));
4150 if (pbd_e2)
4151 DP(NETIF_MSG_TX_QUEUED,
4152 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4153 pbd_e2,
4154 pbd_e2->data.mac_addr.dst_hi,
4155 pbd_e2->data.mac_addr.dst_mid,
4156 pbd_e2->data.mac_addr.dst_lo,
4157 pbd_e2->data.mac_addr.src_hi,
4158 pbd_e2->data.mac_addr.src_mid,
4159 pbd_e2->data.mac_addr.src_lo,
4160 pbd_e2->parsing_data);
4161 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4162
4163 netdev_tx_sent_queue(txq, skb->len);
4164
4165 skb_tx_timestamp(skb);
4166
4167 txdata->tx_pkt_prod++;
4168 /*
4169 * Make sure that the BD data is updated before updating the producer
4170 * since FW might read the BD right after the producer is updated.
4171 * This is only applicable for weak-ordered memory model archs such
4172 * as IA-64. The following barrier is also mandatory since FW will
4173 * assumes packets must have BDs.
4174 */
4175 wmb();
4176
4177 txdata->tx_db.data.prod += nbd;
4178 /* make sure descriptor update is observed by HW */
4179 wmb();
4180
4181 DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4182
4183 txdata->tx_bd_prod += nbd;
4184
4185 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4186 netif_tx_stop_queue(txq);
4187
4188 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4189 * ordering of set_bit() in netif_tx_stop_queue() and read of
4190 * fp->bd_tx_cons */
4191 smp_mb();
4192
4193 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4194 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4195 netif_tx_wake_queue(txq);
4196 }
4197 txdata->tx_pkt++;
4198
4199 return NETDEV_TX_OK;
4200 }
4201
bnx2x_get_c2s_mapping(struct bnx2x * bp,u8 * c2s_map,u8 * c2s_default)4202 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4203 {
4204 int mfw_vn = BP_FW_MB_IDX(bp);
4205 u32 tmp;
4206
4207 /* If the shmem shouldn't affect configuration, reflect */
4208 if (!IS_MF_BD(bp)) {
4209 int i;
4210
4211 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4212 c2s_map[i] = i;
4213 *c2s_default = 0;
4214
4215 return;
4216 }
4217
4218 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4219 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4220 c2s_map[0] = tmp & 0xff;
4221 c2s_map[1] = (tmp >> 8) & 0xff;
4222 c2s_map[2] = (tmp >> 16) & 0xff;
4223 c2s_map[3] = (tmp >> 24) & 0xff;
4224
4225 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4226 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4227 c2s_map[4] = tmp & 0xff;
4228 c2s_map[5] = (tmp >> 8) & 0xff;
4229 c2s_map[6] = (tmp >> 16) & 0xff;
4230 c2s_map[7] = (tmp >> 24) & 0xff;
4231
4232 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4233 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4234 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4235 }
4236
4237 /**
4238 * bnx2x_setup_tc - routine to configure net_device for multi tc
4239 *
4240 * @dev: net device to configure
4241 * @num_tc: number of traffic classes to enable
4242 *
4243 * callback connected to the ndo_setup_tc function pointer
4244 */
bnx2x_setup_tc(struct net_device * dev,u8 num_tc)4245 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4246 {
4247 struct bnx2x *bp = netdev_priv(dev);
4248 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4249 int cos, prio, count, offset;
4250
4251 /* setup tc must be called under rtnl lock */
4252 ASSERT_RTNL();
4253
4254 /* no traffic classes requested. Aborting */
4255 if (!num_tc) {
4256 netdev_reset_tc(dev);
4257 return 0;
4258 }
4259
4260 /* requested to support too many traffic classes */
4261 if (num_tc > bp->max_cos) {
4262 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4263 num_tc, bp->max_cos);
4264 return -EINVAL;
4265 }
4266
4267 /* declare amount of supported traffic classes */
4268 if (netdev_set_num_tc(dev, num_tc)) {
4269 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4270 return -EINVAL;
4271 }
4272
4273 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4274
4275 /* configure priority to traffic class mapping */
4276 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4277 int outer_prio = c2s_map[prio];
4278
4279 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4280 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4281 "mapping priority %d to tc %d\n",
4282 outer_prio, bp->prio_to_cos[outer_prio]);
4283 }
4284
4285 /* Use this configuration to differentiate tc0 from other COSes
4286 This can be used for ets or pfc, and save the effort of setting
4287 up a multio class queue disc or negotiating DCBX with a switch
4288 netdev_set_prio_tc_map(dev, 0, 0);
4289 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4290 for (prio = 1; prio < 16; prio++) {
4291 netdev_set_prio_tc_map(dev, prio, 1);
4292 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4293 } */
4294
4295 /* configure traffic class to transmission queue mapping */
4296 for (cos = 0; cos < bp->max_cos; cos++) {
4297 count = BNX2X_NUM_ETH_QUEUES(bp);
4298 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4299 netdev_set_tc_queue(dev, cos, count, offset);
4300 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4301 "mapping tc %d to offset %d count %d\n",
4302 cos, offset, count);
4303 }
4304
4305 return 0;
4306 }
4307
__bnx2x_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)4308 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4309 void *type_data)
4310 {
4311 struct tc_mqprio_qopt *mqprio = type_data;
4312
4313 if (type != TC_SETUP_QDISC_MQPRIO)
4314 return -EOPNOTSUPP;
4315
4316 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4317
4318 return bnx2x_setup_tc(dev, mqprio->num_tc);
4319 }
4320
4321 /* called with rtnl_lock */
bnx2x_change_mac_addr(struct net_device * dev,void * p)4322 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4323 {
4324 struct sockaddr *addr = p;
4325 struct bnx2x *bp = netdev_priv(dev);
4326 int rc = 0;
4327
4328 if (!is_valid_ether_addr(addr->sa_data)) {
4329 BNX2X_ERR("Requested MAC address is not valid\n");
4330 return -EINVAL;
4331 }
4332
4333 if (IS_MF_STORAGE_ONLY(bp)) {
4334 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4335 return -EINVAL;
4336 }
4337
4338 if (netif_running(dev)) {
4339 rc = bnx2x_set_eth_mac(bp, false);
4340 if (rc)
4341 return rc;
4342 }
4343
4344 eth_hw_addr_set(dev, addr->sa_data);
4345
4346 if (netif_running(dev))
4347 rc = bnx2x_set_eth_mac(bp, true);
4348
4349 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4350 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4351
4352 return rc;
4353 }
4354
bnx2x_free_fp_mem_at(struct bnx2x * bp,int fp_index)4355 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4356 {
4357 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4358 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4359 u8 cos;
4360
4361 /* Common */
4362
4363 if (IS_FCOE_IDX(fp_index)) {
4364 memset(sb, 0, sizeof(union host_hc_status_block));
4365 fp->status_blk_mapping = 0;
4366 } else {
4367 /* status blocks */
4368 if (!CHIP_IS_E1x(bp))
4369 BNX2X_PCI_FREE(sb->e2_sb,
4370 bnx2x_fp(bp, fp_index,
4371 status_blk_mapping),
4372 sizeof(struct host_hc_status_block_e2));
4373 else
4374 BNX2X_PCI_FREE(sb->e1x_sb,
4375 bnx2x_fp(bp, fp_index,
4376 status_blk_mapping),
4377 sizeof(struct host_hc_status_block_e1x));
4378 }
4379
4380 /* Rx */
4381 if (!skip_rx_queue(bp, fp_index)) {
4382 bnx2x_free_rx_bds(fp);
4383
4384 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4385 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4386 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4387 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4388 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4389
4390 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4391 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4392 sizeof(struct eth_fast_path_rx_cqe) *
4393 NUM_RCQ_BD);
4394
4395 /* SGE ring */
4396 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4397 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4398 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4399 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4400 }
4401
4402 /* Tx */
4403 if (!skip_tx_queue(bp, fp_index)) {
4404 /* fastpath tx rings: tx_buf tx_desc */
4405 for_each_cos_in_tx_queue(fp, cos) {
4406 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4407
4408 DP(NETIF_MSG_IFDOWN,
4409 "freeing tx memory of fp %d cos %d cid %d\n",
4410 fp_index, cos, txdata->cid);
4411
4412 BNX2X_FREE(txdata->tx_buf_ring);
4413 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4414 txdata->tx_desc_mapping,
4415 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4416 }
4417 }
4418 /* end of fastpath */
4419 }
4420
bnx2x_free_fp_mem_cnic(struct bnx2x * bp)4421 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4422 {
4423 int i;
4424 for_each_cnic_queue(bp, i)
4425 bnx2x_free_fp_mem_at(bp, i);
4426 }
4427
bnx2x_free_fp_mem(struct bnx2x * bp)4428 void bnx2x_free_fp_mem(struct bnx2x *bp)
4429 {
4430 int i;
4431 for_each_eth_queue(bp, i)
4432 bnx2x_free_fp_mem_at(bp, i);
4433 }
4434
set_sb_shortcuts(struct bnx2x * bp,int index)4435 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4436 {
4437 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4438 if (!CHIP_IS_E1x(bp)) {
4439 bnx2x_fp(bp, index, sb_index_values) =
4440 (__le16 *)status_blk.e2_sb->sb.index_values;
4441 bnx2x_fp(bp, index, sb_running_index) =
4442 (__le16 *)status_blk.e2_sb->sb.running_index;
4443 } else {
4444 bnx2x_fp(bp, index, sb_index_values) =
4445 (__le16 *)status_blk.e1x_sb->sb.index_values;
4446 bnx2x_fp(bp, index, sb_running_index) =
4447 (__le16 *)status_blk.e1x_sb->sb.running_index;
4448 }
4449 }
4450
4451 /* Returns the number of actually allocated BDs */
bnx2x_alloc_rx_bds(struct bnx2x_fastpath * fp,int rx_ring_size)4452 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4453 int rx_ring_size)
4454 {
4455 struct bnx2x *bp = fp->bp;
4456 u16 ring_prod, cqe_ring_prod;
4457 int i, failure_cnt = 0;
4458
4459 fp->rx_comp_cons = 0;
4460 cqe_ring_prod = ring_prod = 0;
4461
4462 /* This routine is called only during fo init so
4463 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4464 */
4465 for (i = 0; i < rx_ring_size; i++) {
4466 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4467 failure_cnt++;
4468 continue;
4469 }
4470 ring_prod = NEXT_RX_IDX(ring_prod);
4471 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4472 WARN_ON(ring_prod <= (i - failure_cnt));
4473 }
4474
4475 if (failure_cnt)
4476 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4477 i - failure_cnt, fp->index);
4478
4479 fp->rx_bd_prod = ring_prod;
4480 /* Limit the CQE producer by the CQE ring size */
4481 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4482 cqe_ring_prod);
4483
4484 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4485
4486 return i - failure_cnt;
4487 }
4488
bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath * fp)4489 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4490 {
4491 int i;
4492
4493 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4494 struct eth_rx_cqe_next_page *nextpg;
4495
4496 nextpg = (struct eth_rx_cqe_next_page *)
4497 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4498 nextpg->addr_hi =
4499 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4500 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4501 nextpg->addr_lo =
4502 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4503 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4504 }
4505 }
4506
bnx2x_alloc_fp_mem_at(struct bnx2x * bp,int index)4507 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4508 {
4509 union host_hc_status_block *sb;
4510 struct bnx2x_fastpath *fp = &bp->fp[index];
4511 int ring_size = 0;
4512 u8 cos;
4513 int rx_ring_size = 0;
4514
4515 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4516 rx_ring_size = MIN_RX_SIZE_NONTPA;
4517 bp->rx_ring_size = rx_ring_size;
4518 } else if (!bp->rx_ring_size) {
4519 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4520
4521 if (CHIP_IS_E3(bp)) {
4522 u32 cfg = SHMEM_RD(bp,
4523 dev_info.port_hw_config[BP_PORT(bp)].
4524 default_cfg);
4525
4526 /* Decrease ring size for 1G functions */
4527 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4528 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4529 rx_ring_size /= 10;
4530 }
4531
4532 /* allocate at least number of buffers required by FW */
4533 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4534 MIN_RX_SIZE_TPA, rx_ring_size);
4535
4536 bp->rx_ring_size = rx_ring_size;
4537 } else /* if rx_ring_size specified - use it */
4538 rx_ring_size = bp->rx_ring_size;
4539
4540 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4541
4542 /* Common */
4543 sb = &bnx2x_fp(bp, index, status_blk);
4544
4545 if (!IS_FCOE_IDX(index)) {
4546 /* status blocks */
4547 if (!CHIP_IS_E1x(bp)) {
4548 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4549 sizeof(struct host_hc_status_block_e2));
4550 if (!sb->e2_sb)
4551 goto alloc_mem_err;
4552 } else {
4553 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4554 sizeof(struct host_hc_status_block_e1x));
4555 if (!sb->e1x_sb)
4556 goto alloc_mem_err;
4557 }
4558 }
4559
4560 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4561 * set shortcuts for it.
4562 */
4563 if (!IS_FCOE_IDX(index))
4564 set_sb_shortcuts(bp, index);
4565
4566 /* Tx */
4567 if (!skip_tx_queue(bp, index)) {
4568 /* fastpath tx rings: tx_buf tx_desc */
4569 for_each_cos_in_tx_queue(fp, cos) {
4570 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4571
4572 DP(NETIF_MSG_IFUP,
4573 "allocating tx memory of fp %d cos %d\n",
4574 index, cos);
4575
4576 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4577 sizeof(struct sw_tx_bd),
4578 GFP_KERNEL);
4579 if (!txdata->tx_buf_ring)
4580 goto alloc_mem_err;
4581 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4582 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4583 if (!txdata->tx_desc_ring)
4584 goto alloc_mem_err;
4585 }
4586 }
4587
4588 /* Rx */
4589 if (!skip_rx_queue(bp, index)) {
4590 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4591 bnx2x_fp(bp, index, rx_buf_ring) =
4592 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4593 if (!bnx2x_fp(bp, index, rx_buf_ring))
4594 goto alloc_mem_err;
4595 bnx2x_fp(bp, index, rx_desc_ring) =
4596 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4597 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4598 if (!bnx2x_fp(bp, index, rx_desc_ring))
4599 goto alloc_mem_err;
4600
4601 /* Seed all CQEs by 1s */
4602 bnx2x_fp(bp, index, rx_comp_ring) =
4603 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4604 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4605 if (!bnx2x_fp(bp, index, rx_comp_ring))
4606 goto alloc_mem_err;
4607
4608 /* SGE ring */
4609 bnx2x_fp(bp, index, rx_page_ring) =
4610 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4611 GFP_KERNEL);
4612 if (!bnx2x_fp(bp, index, rx_page_ring))
4613 goto alloc_mem_err;
4614 bnx2x_fp(bp, index, rx_sge_ring) =
4615 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4616 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4617 if (!bnx2x_fp(bp, index, rx_sge_ring))
4618 goto alloc_mem_err;
4619 /* RX BD ring */
4620 bnx2x_set_next_page_rx_bd(fp);
4621
4622 /* CQ ring */
4623 bnx2x_set_next_page_rx_cq(fp);
4624
4625 /* BDs */
4626 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4627 if (ring_size < rx_ring_size)
4628 goto alloc_mem_err;
4629 }
4630
4631 return 0;
4632
4633 /* handles low memory cases */
4634 alloc_mem_err:
4635 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4636 index, ring_size);
4637 /* FW will drop all packets if queue is not big enough,
4638 * In these cases we disable the queue
4639 * Min size is different for OOO, TPA and non-TPA queues
4640 */
4641 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4642 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4643 /* release memory allocated for this queue */
4644 bnx2x_free_fp_mem_at(bp, index);
4645 return -ENOMEM;
4646 }
4647 return 0;
4648 }
4649
bnx2x_alloc_fp_mem_cnic(struct bnx2x * bp)4650 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4651 {
4652 if (!NO_FCOE(bp))
4653 /* FCoE */
4654 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4655 /* we will fail load process instead of mark
4656 * NO_FCOE_FLAG
4657 */
4658 return -ENOMEM;
4659
4660 return 0;
4661 }
4662
bnx2x_alloc_fp_mem(struct bnx2x * bp)4663 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4664 {
4665 int i;
4666
4667 /* 1. Allocate FP for leading - fatal if error
4668 * 2. Allocate RSS - fix number of queues if error
4669 */
4670
4671 /* leading */
4672 if (bnx2x_alloc_fp_mem_at(bp, 0))
4673 return -ENOMEM;
4674
4675 /* RSS */
4676 for_each_nondefault_eth_queue(bp, i)
4677 if (bnx2x_alloc_fp_mem_at(bp, i))
4678 break;
4679
4680 /* handle memory failures */
4681 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4682 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4683
4684 WARN_ON(delta < 0);
4685 bnx2x_shrink_eth_fp(bp, delta);
4686 if (CNIC_SUPPORT(bp))
4687 /* move non eth FPs next to last eth FP
4688 * must be done in that order
4689 * FCOE_IDX < FWD_IDX < OOO_IDX
4690 */
4691
4692 /* move FCoE fp even NO_FCOE_FLAG is on */
4693 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4694 bp->num_ethernet_queues -= delta;
4695 bp->num_queues = bp->num_ethernet_queues +
4696 bp->num_cnic_queues;
4697 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4698 bp->num_queues + delta, bp->num_queues);
4699 }
4700
4701 return 0;
4702 }
4703
bnx2x_free_mem_bp(struct bnx2x * bp)4704 void bnx2x_free_mem_bp(struct bnx2x *bp)
4705 {
4706 int i;
4707
4708 for (i = 0; i < bp->fp_array_size; i++)
4709 kfree(bp->fp[i].tpa_info);
4710 kfree(bp->fp);
4711 kfree(bp->sp_objs);
4712 kfree(bp->fp_stats);
4713 kfree(bp->bnx2x_txq);
4714 kfree(bp->msix_table);
4715 kfree(bp->ilt);
4716 }
4717
bnx2x_alloc_mem_bp(struct bnx2x * bp)4718 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4719 {
4720 struct bnx2x_fastpath *fp;
4721 struct msix_entry *tbl;
4722 struct bnx2x_ilt *ilt;
4723 int msix_table_size = 0;
4724 int fp_array_size, txq_array_size;
4725 int i;
4726
4727 /*
4728 * The biggest MSI-X table we might need is as a maximum number of fast
4729 * path IGU SBs plus default SB (for PF only).
4730 */
4731 msix_table_size = bp->igu_sb_cnt;
4732 if (IS_PF(bp))
4733 msix_table_size++;
4734 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4735
4736 /* fp array: RSS plus CNIC related L2 queues */
4737 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4738 bp->fp_array_size = fp_array_size;
4739 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4740
4741 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4742 if (!fp)
4743 goto alloc_err;
4744 for (i = 0; i < bp->fp_array_size; i++) {
4745 fp[i].tpa_info =
4746 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4747 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4748 if (!(fp[i].tpa_info))
4749 goto alloc_err;
4750 }
4751
4752 bp->fp = fp;
4753
4754 /* allocate sp objs */
4755 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4756 GFP_KERNEL);
4757 if (!bp->sp_objs)
4758 goto alloc_err;
4759
4760 /* allocate fp_stats */
4761 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4762 GFP_KERNEL);
4763 if (!bp->fp_stats)
4764 goto alloc_err;
4765
4766 /* Allocate memory for the transmission queues array */
4767 txq_array_size =
4768 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4769 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4770
4771 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4772 GFP_KERNEL);
4773 if (!bp->bnx2x_txq)
4774 goto alloc_err;
4775
4776 /* msix table */
4777 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4778 if (!tbl)
4779 goto alloc_err;
4780 bp->msix_table = tbl;
4781
4782 /* ilt */
4783 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4784 if (!ilt)
4785 goto alloc_err;
4786 bp->ilt = ilt;
4787
4788 return 0;
4789 alloc_err:
4790 bnx2x_free_mem_bp(bp);
4791 return -ENOMEM;
4792 }
4793
bnx2x_reload_if_running(struct net_device * dev)4794 int bnx2x_reload_if_running(struct net_device *dev)
4795 {
4796 struct bnx2x *bp = netdev_priv(dev);
4797
4798 if (unlikely(!netif_running(dev)))
4799 return 0;
4800
4801 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4802 return bnx2x_nic_load(bp, LOAD_NORMAL);
4803 }
4804
bnx2x_get_cur_phy_idx(struct bnx2x * bp)4805 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4806 {
4807 u32 sel_phy_idx = 0;
4808 if (bp->link_params.num_phys <= 1)
4809 return INT_PHY;
4810
4811 if (bp->link_vars.link_up) {
4812 sel_phy_idx = EXT_PHY1;
4813 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4814 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4815 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4816 sel_phy_idx = EXT_PHY2;
4817 } else {
4818
4819 switch (bnx2x_phy_selection(&bp->link_params)) {
4820 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4821 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4822 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4823 sel_phy_idx = EXT_PHY1;
4824 break;
4825 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4826 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4827 sel_phy_idx = EXT_PHY2;
4828 break;
4829 }
4830 }
4831
4832 return sel_phy_idx;
4833 }
bnx2x_get_link_cfg_idx(struct bnx2x * bp)4834 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4835 {
4836 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4837 /*
4838 * The selected activated PHY is always after swapping (in case PHY
4839 * swapping is enabled). So when swapping is enabled, we need to reverse
4840 * the configuration
4841 */
4842
4843 if (bp->link_params.multi_phy_config &
4844 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4845 if (sel_phy_idx == EXT_PHY1)
4846 sel_phy_idx = EXT_PHY2;
4847 else if (sel_phy_idx == EXT_PHY2)
4848 sel_phy_idx = EXT_PHY1;
4849 }
4850 return LINK_CONFIG_IDX(sel_phy_idx);
4851 }
4852
4853 #ifdef NETDEV_FCOE_WWNN
bnx2x_fcoe_get_wwn(struct net_device * dev,u64 * wwn,int type)4854 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4855 {
4856 struct bnx2x *bp = netdev_priv(dev);
4857 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4858
4859 switch (type) {
4860 case NETDEV_FCOE_WWNN:
4861 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4862 cp->fcoe_wwn_node_name_lo);
4863 break;
4864 case NETDEV_FCOE_WWPN:
4865 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4866 cp->fcoe_wwn_port_name_lo);
4867 break;
4868 default:
4869 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4870 return -EINVAL;
4871 }
4872
4873 return 0;
4874 }
4875 #endif
4876
4877 /* called with rtnl_lock */
bnx2x_change_mtu(struct net_device * dev,int new_mtu)4878 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4879 {
4880 struct bnx2x *bp = netdev_priv(dev);
4881
4882 if (pci_num_vf(bp->pdev)) {
4883 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4884 return -EPERM;
4885 }
4886
4887 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4888 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4889 return -EAGAIN;
4890 }
4891
4892 /* This does not race with packet allocation
4893 * because the actual alloc size is
4894 * only updated as part of load
4895 */
4896 dev->mtu = new_mtu;
4897
4898 if (!bnx2x_mtu_allows_gro(new_mtu))
4899 dev->features &= ~NETIF_F_GRO_HW;
4900
4901 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4902 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4903
4904 return bnx2x_reload_if_running(dev);
4905 }
4906
bnx2x_fix_features(struct net_device * dev,netdev_features_t features)4907 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4908 netdev_features_t features)
4909 {
4910 struct bnx2x *bp = netdev_priv(dev);
4911
4912 if (pci_num_vf(bp->pdev)) {
4913 netdev_features_t changed = dev->features ^ features;
4914
4915 /* Revert the requested changes in features if they
4916 * would require internal reload of PF in bnx2x_set_features().
4917 */
4918 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4919 features &= ~NETIF_F_RXCSUM;
4920 features |= dev->features & NETIF_F_RXCSUM;
4921 }
4922
4923 if (changed & NETIF_F_LOOPBACK) {
4924 features &= ~NETIF_F_LOOPBACK;
4925 features |= dev->features & NETIF_F_LOOPBACK;
4926 }
4927 }
4928
4929 /* TPA requires Rx CSUM offloading */
4930 if (!(features & NETIF_F_RXCSUM))
4931 features &= ~NETIF_F_LRO;
4932
4933 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4934 features &= ~NETIF_F_GRO_HW;
4935 if (features & NETIF_F_GRO_HW)
4936 features &= ~NETIF_F_LRO;
4937
4938 return features;
4939 }
4940
bnx2x_set_features(struct net_device * dev,netdev_features_t features)4941 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4942 {
4943 struct bnx2x *bp = netdev_priv(dev);
4944 netdev_features_t changes = features ^ dev->features;
4945 bool bnx2x_reload = false;
4946 int rc;
4947
4948 /* VFs or non SRIOV PFs should be able to change loopback feature */
4949 if (!pci_num_vf(bp->pdev)) {
4950 if (features & NETIF_F_LOOPBACK) {
4951 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4952 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4953 bnx2x_reload = true;
4954 }
4955 } else {
4956 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4957 bp->link_params.loopback_mode = LOOPBACK_NONE;
4958 bnx2x_reload = true;
4959 }
4960 }
4961 }
4962
4963 /* Don't care about GRO changes */
4964 changes &= ~NETIF_F_GRO;
4965
4966 if (changes)
4967 bnx2x_reload = true;
4968
4969 if (bnx2x_reload) {
4970 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4971 dev->features = features;
4972 rc = bnx2x_reload_if_running(dev);
4973 return rc ? rc : 1;
4974 }
4975 /* else: bnx2x_nic_load() will be called at end of recovery */
4976 }
4977
4978 return 0;
4979 }
4980
bnx2x_tx_timeout(struct net_device * dev,unsigned int txqueue)4981 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue)
4982 {
4983 struct bnx2x *bp = netdev_priv(dev);
4984
4985 /* We want the information of the dump logged,
4986 * but calling bnx2x_panic() would kill all chances of recovery.
4987 */
4988 if (!bp->panic)
4989 #ifndef BNX2X_STOP_ON_ERROR
4990 bnx2x_panic_dump(bp, false);
4991 #else
4992 bnx2x_panic();
4993 #endif
4994
4995 /* This allows the netif to be shutdown gracefully before resetting */
4996 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4997 }
4998
bnx2x_suspend(struct device * dev_d)4999 static int __maybe_unused bnx2x_suspend(struct device *dev_d)
5000 {
5001 struct pci_dev *pdev = to_pci_dev(dev_d);
5002 struct net_device *dev = pci_get_drvdata(pdev);
5003 struct bnx2x *bp;
5004
5005 if (!dev) {
5006 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5007 return -ENODEV;
5008 }
5009 bp = netdev_priv(dev);
5010
5011 rtnl_lock();
5012
5013 if (!netif_running(dev)) {
5014 rtnl_unlock();
5015 return 0;
5016 }
5017
5018 netif_device_detach(dev);
5019
5020 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5021
5022 rtnl_unlock();
5023
5024 return 0;
5025 }
5026
bnx2x_resume(struct device * dev_d)5027 static int __maybe_unused bnx2x_resume(struct device *dev_d)
5028 {
5029 struct pci_dev *pdev = to_pci_dev(dev_d);
5030 struct net_device *dev = pci_get_drvdata(pdev);
5031 struct bnx2x *bp;
5032 int rc;
5033
5034 if (!dev) {
5035 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5036 return -ENODEV;
5037 }
5038 bp = netdev_priv(dev);
5039
5040 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5041 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5042 return -EAGAIN;
5043 }
5044
5045 rtnl_lock();
5046
5047 if (!netif_running(dev)) {
5048 rtnl_unlock();
5049 return 0;
5050 }
5051
5052 netif_device_attach(dev);
5053
5054 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5055
5056 rtnl_unlock();
5057
5058 return rc;
5059 }
5060
5061 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume);
5062
bnx2x_set_ctx_validation(struct bnx2x * bp,struct eth_context * cxt,u32 cid)5063 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5064 u32 cid)
5065 {
5066 if (!cxt) {
5067 BNX2X_ERR("bad context pointer %p\n", cxt);
5068 return;
5069 }
5070
5071 /* ustorm cxt validation */
5072 cxt->ustorm_ag_context.cdu_usage =
5073 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5074 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5075 /* xcontext validation */
5076 cxt->xstorm_ag_context.cdu_reserved =
5077 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5078 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5079 }
5080
storm_memset_hc_timeout(struct bnx2x * bp,u8 port,u8 fw_sb_id,u8 sb_index,u8 ticks)5081 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5082 u8 fw_sb_id, u8 sb_index,
5083 u8 ticks)
5084 {
5085 u32 addr = BAR_CSTRORM_INTMEM +
5086 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5087 REG_WR8(bp, addr, ticks);
5088 DP(NETIF_MSG_IFUP,
5089 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5090 port, fw_sb_id, sb_index, ticks);
5091 }
5092
storm_memset_hc_disable(struct bnx2x * bp,u8 port,u16 fw_sb_id,u8 sb_index,u8 disable)5093 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5094 u16 fw_sb_id, u8 sb_index,
5095 u8 disable)
5096 {
5097 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5098 u32 addr = BAR_CSTRORM_INTMEM +
5099 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5100 u8 flags = REG_RD8(bp, addr);
5101 /* clear and set */
5102 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5103 flags |= enable_flag;
5104 REG_WR8(bp, addr, flags);
5105 DP(NETIF_MSG_IFUP,
5106 "port %x fw_sb_id %d sb_index %d disable %d\n",
5107 port, fw_sb_id, sb_index, disable);
5108 }
5109
bnx2x_update_coalesce_sb_index(struct bnx2x * bp,u8 fw_sb_id,u8 sb_index,u8 disable,u16 usec)5110 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5111 u8 sb_index, u8 disable, u16 usec)
5112 {
5113 int port = BP_PORT(bp);
5114 u8 ticks = usec / BNX2X_BTR;
5115
5116 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5117
5118 disable = disable ? 1 : (usec ? 0 : 1);
5119 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5120 }
5121
bnx2x_schedule_sp_rtnl(struct bnx2x * bp,enum sp_rtnl_flag flag,u32 verbose)5122 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5123 u32 verbose)
5124 {
5125 smp_mb__before_atomic();
5126 set_bit(flag, &bp->sp_rtnl_state);
5127 smp_mb__after_atomic();
5128 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5129 flag);
5130 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5131 }
5132