1 /* bnx2x_main.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h> /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION \
73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
76 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77
78 #define FW_FILE_VERSION_V15 \
79 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
80 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
81 __stringify(BCM_5710_FW_REVISION_VERSION_V15) "." \
82 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
83
84 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
85 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
86 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
87 #define FW_FILE_NAME_E1_V15 "bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
88 #define FW_FILE_NAME_E1H_V15 "bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
89 #define FW_FILE_NAME_E2_V15 "bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
90
91 /* Time in jiffies before concluding the transmitter is hung */
92 #define TX_TIMEOUT (5*HZ)
93
94 MODULE_AUTHOR("Eliezer Tamir");
95 MODULE_DESCRIPTION("QLogic "
96 "BCM57710/57711/57711E/"
97 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
98 "57840/57840_MF Driver");
99 MODULE_LICENSE("GPL");
100 MODULE_FIRMWARE(FW_FILE_NAME_E1);
101 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
102 MODULE_FIRMWARE(FW_FILE_NAME_E2);
103 MODULE_FIRMWARE(FW_FILE_NAME_E1_V15);
104 MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15);
105 MODULE_FIRMWARE(FW_FILE_NAME_E2_V15);
106
107 int bnx2x_num_queues;
108 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
109 MODULE_PARM_DESC(num_queues,
110 " Set number of queues (default is as a number of CPUs)");
111
112 static int disable_tpa;
113 module_param(disable_tpa, int, 0444);
114 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
115
116 static int int_mode;
117 module_param(int_mode, int, 0444);
118 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
119 "(1 INT#x; 2 MSI)");
120
121 static int dropless_fc;
122 module_param(dropless_fc, int, 0444);
123 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
124
125 static int mrrs = -1;
126 module_param(mrrs, int, 0444);
127 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
128
129 static int debug;
130 module_param(debug, int, 0444);
131 MODULE_PARM_DESC(debug, " Default debug msglevel");
132
133 static struct workqueue_struct *bnx2x_wq;
134 struct workqueue_struct *bnx2x_iov_wq;
135
136 struct bnx2x_mac_vals {
137 u32 xmac_addr;
138 u32 xmac_val;
139 u32 emac_addr;
140 u32 emac_val;
141 u32 umac_addr[2];
142 u32 umac_val[2];
143 u32 bmac_addr;
144 u32 bmac_val[2];
145 };
146
147 enum bnx2x_board_type {
148 BCM57710 = 0,
149 BCM57711,
150 BCM57711E,
151 BCM57712,
152 BCM57712_MF,
153 BCM57712_VF,
154 BCM57800,
155 BCM57800_MF,
156 BCM57800_VF,
157 BCM57810,
158 BCM57810_MF,
159 BCM57810_VF,
160 BCM57840_4_10,
161 BCM57840_2_20,
162 BCM57840_MF,
163 BCM57840_VF,
164 BCM57811,
165 BCM57811_MF,
166 BCM57840_O,
167 BCM57840_MFO,
168 BCM57811_VF
169 };
170
171 /* indexed by board_type, above */
172 static struct {
173 char *name;
174 } board_info[] = {
175 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
176 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" },
177 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" },
178 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" },
179 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
180 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
181 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" },
182 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
183 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
184 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" },
185 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
186 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
187 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
188 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
189 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
190 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
191 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" },
192 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
193 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
194 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
195 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
196 };
197
198 #ifndef PCI_DEVICE_ID_NX2_57710
199 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57711
202 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57711E
205 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57712
208 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57712_MF
211 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57712_VF
214 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57800
217 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57800_MF
220 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57800_VF
223 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57810
226 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57810_MF
229 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_O
232 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57810_VF
235 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
238 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
241 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
244 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57840_MF
247 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
248 #endif
249 #ifndef PCI_DEVICE_ID_NX2_57840_VF
250 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
251 #endif
252 #ifndef PCI_DEVICE_ID_NX2_57811
253 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
254 #endif
255 #ifndef PCI_DEVICE_ID_NX2_57811_MF
256 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
257 #endif
258 #ifndef PCI_DEVICE_ID_NX2_57811_VF
259 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
260 #endif
261
262 static const struct pci_device_id bnx2x_pci_tbl[] = {
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
275 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
276 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
279 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
280 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
281 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
282 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
283 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
284 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
285 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
286 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
287 { 0 }
288 };
289
290 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
291
292 const u32 dmae_reg_go_c[] = {
293 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
294 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
295 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
296 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
297 };
298
299 /* Global resources for unloading a previously loaded device */
300 #define BNX2X_PREV_WAIT_NEEDED 1
301 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
302 static LIST_HEAD(bnx2x_prev_list);
303
304 /* Forward declaration */
305 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
306 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
307 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
308
309 /****************************************************************************
310 * General service functions
311 ****************************************************************************/
312
313 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
314
__storm_memset_dma_mapping(struct bnx2x * bp,u32 addr,dma_addr_t mapping)315 static void __storm_memset_dma_mapping(struct bnx2x *bp,
316 u32 addr, dma_addr_t mapping)
317 {
318 REG_WR(bp, addr, U64_LO(mapping));
319 REG_WR(bp, addr + 4, U64_HI(mapping));
320 }
321
storm_memset_spq_addr(struct bnx2x * bp,dma_addr_t mapping,u16 abs_fid)322 static void storm_memset_spq_addr(struct bnx2x *bp,
323 dma_addr_t mapping, u16 abs_fid)
324 {
325 u32 addr = XSEM_REG_FAST_MEMORY +
326 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
327
328 __storm_memset_dma_mapping(bp, addr, mapping);
329 }
330
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)331 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
332 u16 pf_id)
333 {
334 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
335 pf_id);
336 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
337 pf_id);
338 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
339 pf_id);
340 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
341 pf_id);
342 }
343
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)344 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
345 u8 enable)
346 {
347 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
348 enable);
349 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
350 enable);
351 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
352 enable);
353 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
354 enable);
355 }
356
storm_memset_eq_data(struct bnx2x * bp,struct event_ring_data * eq_data,u16 pfid)357 static void storm_memset_eq_data(struct bnx2x *bp,
358 struct event_ring_data *eq_data,
359 u16 pfid)
360 {
361 size_t size = sizeof(struct event_ring_data);
362
363 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
364
365 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
366 }
367
storm_memset_eq_prod(struct bnx2x * bp,u16 eq_prod,u16 pfid)368 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
369 u16 pfid)
370 {
371 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
372 REG_WR16(bp, addr, eq_prod);
373 }
374
375 /* used only at init
376 * locking is done by mcp
377 */
bnx2x_reg_wr_ind(struct bnx2x * bp,u32 addr,u32 val)378 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
379 {
380 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
381 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
382 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
383 PCICFG_VENDOR_ID_OFFSET);
384 }
385
bnx2x_reg_rd_ind(struct bnx2x * bp,u32 addr)386 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
387 {
388 u32 val;
389
390 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
391 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
392 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
393 PCICFG_VENDOR_ID_OFFSET);
394
395 return val;
396 }
397
398 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
399 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
400 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
401 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
402 #define DMAE_DP_DST_NONE "dst_addr [none]"
403
bnx2x_dp_dmae(struct bnx2x * bp,struct dmae_command * dmae,int msglvl)404 static void bnx2x_dp_dmae(struct bnx2x *bp,
405 struct dmae_command *dmae, int msglvl)
406 {
407 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
408 int i;
409
410 switch (dmae->opcode & DMAE_COMMAND_DST) {
411 case DMAE_CMD_DST_PCI:
412 if (src_type == DMAE_CMD_SRC_PCI)
413 DP(msglvl, "DMAE: opcode 0x%08x\n"
414 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
415 "comp_addr [%x:%08x], comp_val 0x%08x\n",
416 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
417 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
418 dmae->comp_addr_hi, dmae->comp_addr_lo,
419 dmae->comp_val);
420 else
421 DP(msglvl, "DMAE: opcode 0x%08x\n"
422 "src [%08x], len [%d*4], dst [%x:%08x]\n"
423 "comp_addr [%x:%08x], comp_val 0x%08x\n",
424 dmae->opcode, dmae->src_addr_lo >> 2,
425 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
426 dmae->comp_addr_hi, dmae->comp_addr_lo,
427 dmae->comp_val);
428 break;
429 case DMAE_CMD_DST_GRC:
430 if (src_type == DMAE_CMD_SRC_PCI)
431 DP(msglvl, "DMAE: opcode 0x%08x\n"
432 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
433 "comp_addr [%x:%08x], comp_val 0x%08x\n",
434 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
435 dmae->len, dmae->dst_addr_lo >> 2,
436 dmae->comp_addr_hi, dmae->comp_addr_lo,
437 dmae->comp_val);
438 else
439 DP(msglvl, "DMAE: opcode 0x%08x\n"
440 "src [%08x], len [%d*4], dst [%08x]\n"
441 "comp_addr [%x:%08x], comp_val 0x%08x\n",
442 dmae->opcode, dmae->src_addr_lo >> 2,
443 dmae->len, dmae->dst_addr_lo >> 2,
444 dmae->comp_addr_hi, dmae->comp_addr_lo,
445 dmae->comp_val);
446 break;
447 default:
448 if (src_type == DMAE_CMD_SRC_PCI)
449 DP(msglvl, "DMAE: opcode 0x%08x\n"
450 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
451 "comp_addr [%x:%08x] comp_val 0x%08x\n",
452 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
453 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
454 dmae->comp_val);
455 else
456 DP(msglvl, "DMAE: opcode 0x%08x\n"
457 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
458 "comp_addr [%x:%08x] comp_val 0x%08x\n",
459 dmae->opcode, dmae->src_addr_lo >> 2,
460 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
461 dmae->comp_val);
462 break;
463 }
464
465 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
466 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
467 i, *(((u32 *)dmae) + i));
468 }
469
470 /* copy command into DMAE command memory and set DMAE command go */
bnx2x_post_dmae(struct bnx2x * bp,struct dmae_command * dmae,int idx)471 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
472 {
473 u32 cmd_offset;
474 int i;
475
476 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
477 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
478 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
479 }
480 REG_WR(bp, dmae_reg_go_c[idx], 1);
481 }
482
bnx2x_dmae_opcode_add_comp(u32 opcode,u8 comp_type)483 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
484 {
485 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
486 DMAE_CMD_C_ENABLE);
487 }
488
bnx2x_dmae_opcode_clr_src_reset(u32 opcode)489 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
490 {
491 return opcode & ~DMAE_CMD_SRC_RESET;
492 }
493
bnx2x_dmae_opcode(struct bnx2x * bp,u8 src_type,u8 dst_type,bool with_comp,u8 comp_type)494 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
495 bool with_comp, u8 comp_type)
496 {
497 u32 opcode = 0;
498
499 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
500 (dst_type << DMAE_COMMAND_DST_SHIFT));
501
502 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
503
504 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
505 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
506 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
507 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
508
509 #ifdef __BIG_ENDIAN
510 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
511 #else
512 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
513 #endif
514 if (with_comp)
515 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
516 return opcode;
517 }
518
bnx2x_prep_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u8 src_type,u8 dst_type)519 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
520 struct dmae_command *dmae,
521 u8 src_type, u8 dst_type)
522 {
523 memset(dmae, 0, sizeof(struct dmae_command));
524
525 /* set the opcode */
526 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
527 true, DMAE_COMP_PCI);
528
529 /* fill in the completion parameters */
530 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
531 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
532 dmae->comp_val = DMAE_COMP_VAL;
533 }
534
535 /* issue a dmae command over the init-channel and wait for completion */
bnx2x_issue_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u32 * comp)536 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
537 u32 *comp)
538 {
539 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
540 int rc = 0;
541
542 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
543
544 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
545 * as long as this code is called both from syscall context and
546 * from ndo_set_rx_mode() flow that may be called from BH.
547 */
548
549 spin_lock_bh(&bp->dmae_lock);
550
551 /* reset completion */
552 *comp = 0;
553
554 /* post the command on the channel used for initializations */
555 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
556
557 /* wait for completion */
558 udelay(5);
559 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
560
561 if (!cnt ||
562 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
563 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
564 BNX2X_ERR("DMAE timeout!\n");
565 rc = DMAE_TIMEOUT;
566 goto unlock;
567 }
568 cnt--;
569 udelay(50);
570 }
571 if (*comp & DMAE_PCI_ERR_FLAG) {
572 BNX2X_ERR("DMAE PCI error!\n");
573 rc = DMAE_PCI_ERROR;
574 }
575
576 unlock:
577
578 spin_unlock_bh(&bp->dmae_lock);
579
580 return rc;
581 }
582
bnx2x_write_dmae(struct bnx2x * bp,dma_addr_t dma_addr,u32 dst_addr,u32 len32)583 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
584 u32 len32)
585 {
586 int rc;
587 struct dmae_command dmae;
588
589 if (!bp->dmae_ready) {
590 u32 *data = bnx2x_sp(bp, wb_data[0]);
591
592 if (CHIP_IS_E1(bp))
593 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
594 else
595 bnx2x_init_str_wr(bp, dst_addr, data, len32);
596 return;
597 }
598
599 /* set opcode and fixed command fields */
600 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
601
602 /* fill in addresses and len */
603 dmae.src_addr_lo = U64_LO(dma_addr);
604 dmae.src_addr_hi = U64_HI(dma_addr);
605 dmae.dst_addr_lo = dst_addr >> 2;
606 dmae.dst_addr_hi = 0;
607 dmae.len = len32;
608
609 /* issue the command and wait for completion */
610 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
611 if (rc) {
612 BNX2X_ERR("DMAE returned failure %d\n", rc);
613 #ifdef BNX2X_STOP_ON_ERROR
614 bnx2x_panic();
615 #endif
616 }
617 }
618
bnx2x_read_dmae(struct bnx2x * bp,u32 src_addr,u32 len32)619 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
620 {
621 int rc;
622 struct dmae_command dmae;
623
624 if (!bp->dmae_ready) {
625 u32 *data = bnx2x_sp(bp, wb_data[0]);
626 int i;
627
628 if (CHIP_IS_E1(bp))
629 for (i = 0; i < len32; i++)
630 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
631 else
632 for (i = 0; i < len32; i++)
633 data[i] = REG_RD(bp, src_addr + i*4);
634
635 return;
636 }
637
638 /* set opcode and fixed command fields */
639 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
640
641 /* fill in addresses and len */
642 dmae.src_addr_lo = src_addr >> 2;
643 dmae.src_addr_hi = 0;
644 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
645 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
646 dmae.len = len32;
647
648 /* issue the command and wait for completion */
649 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
650 if (rc) {
651 BNX2X_ERR("DMAE returned failure %d\n", rc);
652 #ifdef BNX2X_STOP_ON_ERROR
653 bnx2x_panic();
654 #endif
655 }
656 }
657
bnx2x_write_dmae_phys_len(struct bnx2x * bp,dma_addr_t phys_addr,u32 addr,u32 len)658 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
659 u32 addr, u32 len)
660 {
661 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
662 int offset = 0;
663
664 while (len > dmae_wr_max) {
665 bnx2x_write_dmae(bp, phys_addr + offset,
666 addr + offset, dmae_wr_max);
667 offset += dmae_wr_max * 4;
668 len -= dmae_wr_max;
669 }
670
671 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
672 }
673
674 enum storms {
675 XSTORM,
676 TSTORM,
677 CSTORM,
678 USTORM,
679 MAX_STORMS
680 };
681
682 #define STORMS_NUM 4
683 #define REGS_IN_ENTRY 4
684
bnx2x_get_assert_list_entry(struct bnx2x * bp,enum storms storm,int entry)685 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
686 enum storms storm,
687 int entry)
688 {
689 switch (storm) {
690 case XSTORM:
691 return XSTORM_ASSERT_LIST_OFFSET(entry);
692 case TSTORM:
693 return TSTORM_ASSERT_LIST_OFFSET(entry);
694 case CSTORM:
695 return CSTORM_ASSERT_LIST_OFFSET(entry);
696 case USTORM:
697 return USTORM_ASSERT_LIST_OFFSET(entry);
698 case MAX_STORMS:
699 default:
700 BNX2X_ERR("unknown storm\n");
701 }
702 return -EINVAL;
703 }
704
bnx2x_mc_assert(struct bnx2x * bp)705 static int bnx2x_mc_assert(struct bnx2x *bp)
706 {
707 char last_idx;
708 int i, j, rc = 0;
709 enum storms storm;
710 u32 regs[REGS_IN_ENTRY];
711 u32 bar_storm_intmem[STORMS_NUM] = {
712 BAR_XSTRORM_INTMEM,
713 BAR_TSTRORM_INTMEM,
714 BAR_CSTRORM_INTMEM,
715 BAR_USTRORM_INTMEM
716 };
717 u32 storm_assert_list_index[STORMS_NUM] = {
718 XSTORM_ASSERT_LIST_INDEX_OFFSET,
719 TSTORM_ASSERT_LIST_INDEX_OFFSET,
720 CSTORM_ASSERT_LIST_INDEX_OFFSET,
721 USTORM_ASSERT_LIST_INDEX_OFFSET
722 };
723 char *storms_string[STORMS_NUM] = {
724 "XSTORM",
725 "TSTORM",
726 "CSTORM",
727 "USTORM"
728 };
729
730 for (storm = XSTORM; storm < MAX_STORMS; storm++) {
731 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
732 storm_assert_list_index[storm]);
733 if (last_idx)
734 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
735 storms_string[storm], last_idx);
736
737 /* print the asserts */
738 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
739 /* read a single assert entry */
740 for (j = 0; j < REGS_IN_ENTRY; j++)
741 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
742 bnx2x_get_assert_list_entry(bp,
743 storm,
744 i) +
745 sizeof(u32) * j);
746
747 /* log entry if it contains a valid assert */
748 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
749 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
750 storms_string[storm], i, regs[3],
751 regs[2], regs[1], regs[0]);
752 rc++;
753 } else {
754 break;
755 }
756 }
757 }
758
759 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
760 CHIP_IS_E1(bp) ? "everest1" :
761 CHIP_IS_E1H(bp) ? "everest1h" :
762 CHIP_IS_E2(bp) ? "everest2" : "everest3",
763 bp->fw_major, bp->fw_minor, bp->fw_rev);
764
765 return rc;
766 }
767
768 #define MCPR_TRACE_BUFFER_SIZE (0x800)
769 #define SCRATCH_BUFFER_SIZE(bp) \
770 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
771
bnx2x_fw_dump_lvl(struct bnx2x * bp,const char * lvl)772 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
773 {
774 u32 addr, val;
775 u32 mark, offset;
776 __be32 data[9];
777 int word;
778 u32 trace_shmem_base;
779 if (BP_NOMCP(bp)) {
780 BNX2X_ERR("NO MCP - can not dump\n");
781 return;
782 }
783 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
784 (bp->common.bc_ver & 0xff0000) >> 16,
785 (bp->common.bc_ver & 0xff00) >> 8,
786 (bp->common.bc_ver & 0xff));
787
788 if (pci_channel_offline(bp->pdev)) {
789 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
790 return;
791 }
792
793 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
794 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
795 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
796
797 if (BP_PATH(bp) == 0)
798 trace_shmem_base = bp->common.shmem_base;
799 else
800 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
801
802 /* sanity */
803 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
804 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
805 SCRATCH_BUFFER_SIZE(bp)) {
806 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
807 trace_shmem_base);
808 return;
809 }
810
811 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
812
813 /* validate TRCB signature */
814 mark = REG_RD(bp, addr);
815 if (mark != MFW_TRACE_SIGNATURE) {
816 BNX2X_ERR("Trace buffer signature is missing.");
817 return ;
818 }
819
820 /* read cyclic buffer pointer */
821 addr += 4;
822 mark = REG_RD(bp, addr);
823 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
824 if (mark >= trace_shmem_base || mark < addr + 4) {
825 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
826 return;
827 }
828 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
829
830 printk("%s", lvl);
831
832 /* dump buffer after the mark */
833 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
834 for (word = 0; word < 8; word++)
835 data[word] = htonl(REG_RD(bp, offset + 4*word));
836 data[8] = 0x0;
837 pr_cont("%s", (char *)data);
838 }
839
840 /* dump buffer before the mark */
841 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
842 for (word = 0; word < 8; word++)
843 data[word] = htonl(REG_RD(bp, offset + 4*word));
844 data[8] = 0x0;
845 pr_cont("%s", (char *)data);
846 }
847 printk("%s" "end of fw dump\n", lvl);
848 }
849
bnx2x_fw_dump(struct bnx2x * bp)850 static void bnx2x_fw_dump(struct bnx2x *bp)
851 {
852 bnx2x_fw_dump_lvl(bp, KERN_ERR);
853 }
854
bnx2x_hc_int_disable(struct bnx2x * bp)855 static void bnx2x_hc_int_disable(struct bnx2x *bp)
856 {
857 int port = BP_PORT(bp);
858 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
859 u32 val = REG_RD(bp, addr);
860
861 /* in E1 we must use only PCI configuration space to disable
862 * MSI/MSIX capability
863 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
864 */
865 if (CHIP_IS_E1(bp)) {
866 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
867 * Use mask register to prevent from HC sending interrupts
868 * after we exit the function
869 */
870 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
871
872 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
873 HC_CONFIG_0_REG_INT_LINE_EN_0 |
874 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
875 } else
876 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
877 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
878 HC_CONFIG_0_REG_INT_LINE_EN_0 |
879 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
880
881 DP(NETIF_MSG_IFDOWN,
882 "write %x to HC %d (addr 0x%x)\n",
883 val, port, addr);
884
885 REG_WR(bp, addr, val);
886 if (REG_RD(bp, addr) != val)
887 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
888 }
889
bnx2x_igu_int_disable(struct bnx2x * bp)890 static void bnx2x_igu_int_disable(struct bnx2x *bp)
891 {
892 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
893
894 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
895 IGU_PF_CONF_INT_LINE_EN |
896 IGU_PF_CONF_ATTN_BIT_EN);
897
898 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
899
900 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
901 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
902 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
903 }
904
bnx2x_int_disable(struct bnx2x * bp)905 static void bnx2x_int_disable(struct bnx2x *bp)
906 {
907 if (bp->common.int_block == INT_BLOCK_HC)
908 bnx2x_hc_int_disable(bp);
909 else
910 bnx2x_igu_int_disable(bp);
911 }
912
bnx2x_panic_dump(struct bnx2x * bp,bool disable_int)913 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
914 {
915 int i;
916 u16 j;
917 struct hc_sp_status_block_data sp_sb_data;
918 int func = BP_FUNC(bp);
919 #ifdef BNX2X_STOP_ON_ERROR
920 u16 start = 0, end = 0;
921 u8 cos;
922 #endif
923 if (IS_PF(bp) && disable_int)
924 bnx2x_int_disable(bp);
925
926 bp->stats_state = STATS_STATE_DISABLED;
927 bp->eth_stats.unrecoverable_error++;
928 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
929
930 BNX2X_ERR("begin crash dump -----------------\n");
931
932 /* Indices */
933 /* Common */
934 if (IS_PF(bp)) {
935 struct host_sp_status_block *def_sb = bp->def_status_blk;
936 int data_size, cstorm_offset;
937
938 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
939 bp->def_idx, bp->def_att_idx, bp->attn_state,
940 bp->spq_prod_idx, bp->stats_counter);
941 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
942 def_sb->atten_status_block.attn_bits,
943 def_sb->atten_status_block.attn_bits_ack,
944 def_sb->atten_status_block.status_block_id,
945 def_sb->atten_status_block.attn_bits_index);
946 BNX2X_ERR(" def (");
947 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
948 pr_cont("0x%x%s",
949 def_sb->sp_sb.index_values[i],
950 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
951
952 data_size = sizeof(struct hc_sp_status_block_data) /
953 sizeof(u32);
954 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
955 for (i = 0; i < data_size; i++)
956 *((u32 *)&sp_sb_data + i) =
957 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
958 i * sizeof(u32));
959
960 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
961 sp_sb_data.igu_sb_id,
962 sp_sb_data.igu_seg_id,
963 sp_sb_data.p_func.pf_id,
964 sp_sb_data.p_func.vnic_id,
965 sp_sb_data.p_func.vf_id,
966 sp_sb_data.p_func.vf_valid,
967 sp_sb_data.state);
968 }
969
970 for_each_eth_queue(bp, i) {
971 struct bnx2x_fastpath *fp = &bp->fp[i];
972 int loop;
973 struct hc_status_block_data_e2 sb_data_e2;
974 struct hc_status_block_data_e1x sb_data_e1x;
975 struct hc_status_block_sm *hc_sm_p =
976 CHIP_IS_E1x(bp) ?
977 sb_data_e1x.common.state_machine :
978 sb_data_e2.common.state_machine;
979 struct hc_index_data *hc_index_p =
980 CHIP_IS_E1x(bp) ?
981 sb_data_e1x.index_data :
982 sb_data_e2.index_data;
983 u8 data_size, cos;
984 u32 *sb_data_p;
985 struct bnx2x_fp_txdata txdata;
986
987 if (!bp->fp)
988 break;
989
990 if (!fp->rx_cons_sb)
991 continue;
992
993 /* Rx */
994 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
995 i, fp->rx_bd_prod, fp->rx_bd_cons,
996 fp->rx_comp_prod,
997 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
998 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
999 fp->rx_sge_prod, fp->last_max_sge,
1000 le16_to_cpu(fp->fp_hc_idx));
1001
1002 /* Tx */
1003 for_each_cos_in_tx_queue(fp, cos)
1004 {
1005 if (!fp->txdata_ptr[cos])
1006 break;
1007
1008 txdata = *fp->txdata_ptr[cos];
1009
1010 if (!txdata.tx_cons_sb)
1011 continue;
1012
1013 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
1014 i, txdata.tx_pkt_prod,
1015 txdata.tx_pkt_cons, txdata.tx_bd_prod,
1016 txdata.tx_bd_cons,
1017 le16_to_cpu(*txdata.tx_cons_sb));
1018 }
1019
1020 loop = CHIP_IS_E1x(bp) ?
1021 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1022
1023 /* host sb data */
1024
1025 if (IS_FCOE_FP(fp))
1026 continue;
1027
1028 BNX2X_ERR(" run indexes (");
1029 for (j = 0; j < HC_SB_MAX_SM; j++)
1030 pr_cont("0x%x%s",
1031 fp->sb_running_index[j],
1032 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1033
1034 BNX2X_ERR(" indexes (");
1035 for (j = 0; j < loop; j++)
1036 pr_cont("0x%x%s",
1037 fp->sb_index_values[j],
1038 (j == loop - 1) ? ")" : " ");
1039
1040 /* VF cannot access FW refelection for status block */
1041 if (IS_VF(bp))
1042 continue;
1043
1044 /* fw sb data */
1045 data_size = CHIP_IS_E1x(bp) ?
1046 sizeof(struct hc_status_block_data_e1x) :
1047 sizeof(struct hc_status_block_data_e2);
1048 data_size /= sizeof(u32);
1049 sb_data_p = CHIP_IS_E1x(bp) ?
1050 (u32 *)&sb_data_e1x :
1051 (u32 *)&sb_data_e2;
1052 /* copy sb data in here */
1053 for (j = 0; j < data_size; j++)
1054 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1055 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1056 j * sizeof(u32));
1057
1058 if (!CHIP_IS_E1x(bp)) {
1059 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1060 sb_data_e2.common.p_func.pf_id,
1061 sb_data_e2.common.p_func.vf_id,
1062 sb_data_e2.common.p_func.vf_valid,
1063 sb_data_e2.common.p_func.vnic_id,
1064 sb_data_e2.common.same_igu_sb_1b,
1065 sb_data_e2.common.state);
1066 } else {
1067 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1068 sb_data_e1x.common.p_func.pf_id,
1069 sb_data_e1x.common.p_func.vf_id,
1070 sb_data_e1x.common.p_func.vf_valid,
1071 sb_data_e1x.common.p_func.vnic_id,
1072 sb_data_e1x.common.same_igu_sb_1b,
1073 sb_data_e1x.common.state);
1074 }
1075
1076 /* SB_SMs data */
1077 for (j = 0; j < HC_SB_MAX_SM; j++) {
1078 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1079 j, hc_sm_p[j].__flags,
1080 hc_sm_p[j].igu_sb_id,
1081 hc_sm_p[j].igu_seg_id,
1082 hc_sm_p[j].time_to_expire,
1083 hc_sm_p[j].timer_value);
1084 }
1085
1086 /* Indices data */
1087 for (j = 0; j < loop; j++) {
1088 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1089 hc_index_p[j].flags,
1090 hc_index_p[j].timeout);
1091 }
1092 }
1093
1094 #ifdef BNX2X_STOP_ON_ERROR
1095 if (IS_PF(bp)) {
1096 /* event queue */
1097 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1098 for (i = 0; i < NUM_EQ_DESC; i++) {
1099 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1100
1101 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1102 i, bp->eq_ring[i].message.opcode,
1103 bp->eq_ring[i].message.error);
1104 BNX2X_ERR("data: %x %x %x\n",
1105 data[0], data[1], data[2]);
1106 }
1107 }
1108
1109 /* Rings */
1110 /* Rx */
1111 for_each_valid_rx_queue(bp, i) {
1112 struct bnx2x_fastpath *fp = &bp->fp[i];
1113
1114 if (!bp->fp)
1115 break;
1116
1117 if (!fp->rx_cons_sb)
1118 continue;
1119
1120 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1121 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1122 for (j = start; j != end; j = RX_BD(j + 1)) {
1123 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1124 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1125
1126 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1127 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1128 }
1129
1130 start = RX_SGE(fp->rx_sge_prod);
1131 end = RX_SGE(fp->last_max_sge);
1132 for (j = start; j != end; j = RX_SGE(j + 1)) {
1133 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1134 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1135
1136 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1137 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1138 }
1139
1140 start = RCQ_BD(fp->rx_comp_cons - 10);
1141 end = RCQ_BD(fp->rx_comp_cons + 503);
1142 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1143 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1144
1145 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1146 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1147 }
1148 }
1149
1150 /* Tx */
1151 for_each_valid_tx_queue(bp, i) {
1152 struct bnx2x_fastpath *fp = &bp->fp[i];
1153
1154 if (!bp->fp)
1155 break;
1156
1157 for_each_cos_in_tx_queue(fp, cos) {
1158 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1159
1160 if (!fp->txdata_ptr[cos])
1161 break;
1162
1163 if (!txdata->tx_cons_sb)
1164 continue;
1165
1166 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1167 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1168 for (j = start; j != end; j = TX_BD(j + 1)) {
1169 struct sw_tx_bd *sw_bd =
1170 &txdata->tx_buf_ring[j];
1171
1172 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1173 i, cos, j, sw_bd->skb,
1174 sw_bd->first_bd);
1175 }
1176
1177 start = TX_BD(txdata->tx_bd_cons - 10);
1178 end = TX_BD(txdata->tx_bd_cons + 254);
1179 for (j = start; j != end; j = TX_BD(j + 1)) {
1180 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1181
1182 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1183 i, cos, j, tx_bd[0], tx_bd[1],
1184 tx_bd[2], tx_bd[3]);
1185 }
1186 }
1187 }
1188 #endif
1189 if (IS_PF(bp)) {
1190 int tmp_msg_en = bp->msg_enable;
1191
1192 bnx2x_fw_dump(bp);
1193 bp->msg_enable |= NETIF_MSG_HW;
1194 BNX2X_ERR("Idle check (1st round) ----------\n");
1195 bnx2x_idle_chk(bp);
1196 BNX2X_ERR("Idle check (2nd round) ----------\n");
1197 bnx2x_idle_chk(bp);
1198 bp->msg_enable = tmp_msg_en;
1199 bnx2x_mc_assert(bp);
1200 }
1201
1202 BNX2X_ERR("end crash dump -----------------\n");
1203 }
1204
1205 /*
1206 * FLR Support for E2
1207 *
1208 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1209 * initialization.
1210 */
1211 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1212 #define FLR_WAIT_INTERVAL 50 /* usec */
1213 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1214
1215 struct pbf_pN_buf_regs {
1216 int pN;
1217 u32 init_crd;
1218 u32 crd;
1219 u32 crd_freed;
1220 };
1221
1222 struct pbf_pN_cmd_regs {
1223 int pN;
1224 u32 lines_occup;
1225 u32 lines_freed;
1226 };
1227
bnx2x_pbf_pN_buf_flushed(struct bnx2x * bp,struct pbf_pN_buf_regs * regs,u32 poll_count)1228 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1229 struct pbf_pN_buf_regs *regs,
1230 u32 poll_count)
1231 {
1232 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1233 u32 cur_cnt = poll_count;
1234
1235 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1236 crd = crd_start = REG_RD(bp, regs->crd);
1237 init_crd = REG_RD(bp, regs->init_crd);
1238
1239 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1240 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1241 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1242
1243 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1244 (init_crd - crd_start))) {
1245 if (cur_cnt--) {
1246 udelay(FLR_WAIT_INTERVAL);
1247 crd = REG_RD(bp, regs->crd);
1248 crd_freed = REG_RD(bp, regs->crd_freed);
1249 } else {
1250 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1251 regs->pN);
1252 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1253 regs->pN, crd);
1254 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1255 regs->pN, crd_freed);
1256 break;
1257 }
1258 }
1259 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1260 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1261 }
1262
bnx2x_pbf_pN_cmd_flushed(struct bnx2x * bp,struct pbf_pN_cmd_regs * regs,u32 poll_count)1263 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1264 struct pbf_pN_cmd_regs *regs,
1265 u32 poll_count)
1266 {
1267 u32 occup, to_free, freed, freed_start;
1268 u32 cur_cnt = poll_count;
1269
1270 occup = to_free = REG_RD(bp, regs->lines_occup);
1271 freed = freed_start = REG_RD(bp, regs->lines_freed);
1272
1273 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1274 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1275
1276 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1277 if (cur_cnt--) {
1278 udelay(FLR_WAIT_INTERVAL);
1279 occup = REG_RD(bp, regs->lines_occup);
1280 freed = REG_RD(bp, regs->lines_freed);
1281 } else {
1282 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1283 regs->pN);
1284 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1285 regs->pN, occup);
1286 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1287 regs->pN, freed);
1288 break;
1289 }
1290 }
1291 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1292 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1293 }
1294
bnx2x_flr_clnup_reg_poll(struct bnx2x * bp,u32 reg,u32 expected,u32 poll_count)1295 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1296 u32 expected, u32 poll_count)
1297 {
1298 u32 cur_cnt = poll_count;
1299 u32 val;
1300
1301 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1302 udelay(FLR_WAIT_INTERVAL);
1303
1304 return val;
1305 }
1306
bnx2x_flr_clnup_poll_hw_counter(struct bnx2x * bp,u32 reg,char * msg,u32 poll_cnt)1307 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1308 char *msg, u32 poll_cnt)
1309 {
1310 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1311 if (val != 0) {
1312 BNX2X_ERR("%s usage count=%d\n", msg, val);
1313 return 1;
1314 }
1315 return 0;
1316 }
1317
1318 /* Common routines with VF FLR cleanup */
bnx2x_flr_clnup_poll_count(struct bnx2x * bp)1319 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1320 {
1321 /* adjust polling timeout */
1322 if (CHIP_REV_IS_EMUL(bp))
1323 return FLR_POLL_CNT * 2000;
1324
1325 if (CHIP_REV_IS_FPGA(bp))
1326 return FLR_POLL_CNT * 120;
1327
1328 return FLR_POLL_CNT;
1329 }
1330
bnx2x_tx_hw_flushed(struct bnx2x * bp,u32 poll_count)1331 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1332 {
1333 struct pbf_pN_cmd_regs cmd_regs[] = {
1334 {0, (CHIP_IS_E3B0(bp)) ?
1335 PBF_REG_TQ_OCCUPANCY_Q0 :
1336 PBF_REG_P0_TQ_OCCUPANCY,
1337 (CHIP_IS_E3B0(bp)) ?
1338 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1339 PBF_REG_P0_TQ_LINES_FREED_CNT},
1340 {1, (CHIP_IS_E3B0(bp)) ?
1341 PBF_REG_TQ_OCCUPANCY_Q1 :
1342 PBF_REG_P1_TQ_OCCUPANCY,
1343 (CHIP_IS_E3B0(bp)) ?
1344 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1345 PBF_REG_P1_TQ_LINES_FREED_CNT},
1346 {4, (CHIP_IS_E3B0(bp)) ?
1347 PBF_REG_TQ_OCCUPANCY_LB_Q :
1348 PBF_REG_P4_TQ_OCCUPANCY,
1349 (CHIP_IS_E3B0(bp)) ?
1350 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1351 PBF_REG_P4_TQ_LINES_FREED_CNT}
1352 };
1353
1354 struct pbf_pN_buf_regs buf_regs[] = {
1355 {0, (CHIP_IS_E3B0(bp)) ?
1356 PBF_REG_INIT_CRD_Q0 :
1357 PBF_REG_P0_INIT_CRD ,
1358 (CHIP_IS_E3B0(bp)) ?
1359 PBF_REG_CREDIT_Q0 :
1360 PBF_REG_P0_CREDIT,
1361 (CHIP_IS_E3B0(bp)) ?
1362 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1363 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1364 {1, (CHIP_IS_E3B0(bp)) ?
1365 PBF_REG_INIT_CRD_Q1 :
1366 PBF_REG_P1_INIT_CRD,
1367 (CHIP_IS_E3B0(bp)) ?
1368 PBF_REG_CREDIT_Q1 :
1369 PBF_REG_P1_CREDIT,
1370 (CHIP_IS_E3B0(bp)) ?
1371 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1372 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1373 {4, (CHIP_IS_E3B0(bp)) ?
1374 PBF_REG_INIT_CRD_LB_Q :
1375 PBF_REG_P4_INIT_CRD,
1376 (CHIP_IS_E3B0(bp)) ?
1377 PBF_REG_CREDIT_LB_Q :
1378 PBF_REG_P4_CREDIT,
1379 (CHIP_IS_E3B0(bp)) ?
1380 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1381 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1382 };
1383
1384 int i;
1385
1386 /* Verify the command queues are flushed P0, P1, P4 */
1387 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1388 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1389
1390 /* Verify the transmission buffers are flushed P0, P1, P4 */
1391 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1392 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1393 }
1394
1395 #define OP_GEN_PARAM(param) \
1396 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1397
1398 #define OP_GEN_TYPE(type) \
1399 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1400
1401 #define OP_GEN_AGG_VECT(index) \
1402 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1403
bnx2x_send_final_clnup(struct bnx2x * bp,u8 clnup_func,u32 poll_cnt)1404 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1405 {
1406 u32 op_gen_command = 0;
1407 u32 comp_addr = BAR_CSTRORM_INTMEM +
1408 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1409
1410 if (REG_RD(bp, comp_addr)) {
1411 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1412 return 1;
1413 }
1414
1415 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1416 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1417 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1418 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1419
1420 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1421 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1422
1423 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1424 BNX2X_ERR("FW final cleanup did not succeed\n");
1425 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1426 (REG_RD(bp, comp_addr)));
1427 bnx2x_panic();
1428 return 1;
1429 }
1430 /* Zero completion for next FLR */
1431 REG_WR(bp, comp_addr, 0);
1432
1433 return 0;
1434 }
1435
bnx2x_is_pcie_pending(struct pci_dev * dev)1436 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1437 {
1438 u16 status;
1439
1440 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1441 return status & PCI_EXP_DEVSTA_TRPND;
1442 }
1443
1444 /* PF FLR specific routines
1445 */
bnx2x_poll_hw_usage_counters(struct bnx2x * bp,u32 poll_cnt)1446 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1447 {
1448 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1449 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1450 CFC_REG_NUM_LCIDS_INSIDE_PF,
1451 "CFC PF usage counter timed out",
1452 poll_cnt))
1453 return 1;
1454
1455 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1456 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1457 DORQ_REG_PF_USAGE_CNT,
1458 "DQ PF usage counter timed out",
1459 poll_cnt))
1460 return 1;
1461
1462 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1463 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1464 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1465 "QM PF usage counter timed out",
1466 poll_cnt))
1467 return 1;
1468
1469 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1470 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1471 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1472 "Timers VNIC usage counter timed out",
1473 poll_cnt))
1474 return 1;
1475 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1476 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1477 "Timers NUM_SCANS usage counter timed out",
1478 poll_cnt))
1479 return 1;
1480
1481 /* Wait DMAE PF usage counter to zero */
1482 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1483 dmae_reg_go_c[INIT_DMAE_C(bp)],
1484 "DMAE command register timed out",
1485 poll_cnt))
1486 return 1;
1487
1488 return 0;
1489 }
1490
bnx2x_hw_enable_status(struct bnx2x * bp)1491 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1492 {
1493 u32 val;
1494
1495 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1496 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1497
1498 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1499 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1500
1501 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1502 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1503
1504 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1505 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1506
1507 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1508 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1509
1510 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1511 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1512
1513 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1514 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1515
1516 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1517 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1518 val);
1519 }
1520
bnx2x_pf_flr_clnup(struct bnx2x * bp)1521 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1522 {
1523 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1524
1525 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1526
1527 /* Re-enable PF target read access */
1528 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1529
1530 /* Poll HW usage counters */
1531 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1532 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1533 return -EBUSY;
1534
1535 /* Zero the igu 'trailing edge' and 'leading edge' */
1536
1537 /* Send the FW cleanup command */
1538 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1539 return -EBUSY;
1540
1541 /* ATC cleanup */
1542
1543 /* Verify TX hw is flushed */
1544 bnx2x_tx_hw_flushed(bp, poll_cnt);
1545
1546 /* Wait 100ms (not adjusted according to platform) */
1547 msleep(100);
1548
1549 /* Verify no pending pci transactions */
1550 if (bnx2x_is_pcie_pending(bp->pdev))
1551 BNX2X_ERR("PCIE Transactions still pending\n");
1552
1553 /* Debug */
1554 bnx2x_hw_enable_status(bp);
1555
1556 /*
1557 * Master enable - Due to WB DMAE writes performed before this
1558 * register is re-initialized as part of the regular function init
1559 */
1560 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1561
1562 return 0;
1563 }
1564
bnx2x_hc_int_enable(struct bnx2x * bp)1565 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1566 {
1567 int port = BP_PORT(bp);
1568 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1569 u32 val = REG_RD(bp, addr);
1570 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1571 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1572 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1573
1574 if (msix) {
1575 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1576 HC_CONFIG_0_REG_INT_LINE_EN_0);
1577 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1578 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1579 if (single_msix)
1580 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1581 } else if (msi) {
1582 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1583 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1584 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1585 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1586 } else {
1587 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1588 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1589 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1590 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1591
1592 if (!CHIP_IS_E1(bp)) {
1593 DP(NETIF_MSG_IFUP,
1594 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1595
1596 REG_WR(bp, addr, val);
1597
1598 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1599 }
1600 }
1601
1602 if (CHIP_IS_E1(bp))
1603 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1604
1605 DP(NETIF_MSG_IFUP,
1606 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1607 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1608
1609 REG_WR(bp, addr, val);
1610 /*
1611 * Ensure that HC_CONFIG is written before leading/trailing edge config
1612 */
1613 barrier();
1614
1615 if (!CHIP_IS_E1(bp)) {
1616 /* init leading/trailing edge */
1617 if (IS_MF(bp)) {
1618 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1619 if (bp->port.pmf)
1620 /* enable nig and gpio3 attention */
1621 val |= 0x1100;
1622 } else
1623 val = 0xffff;
1624
1625 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1626 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1627 }
1628 }
1629
bnx2x_igu_int_enable(struct bnx2x * bp)1630 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1631 {
1632 u32 val;
1633 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1634 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1635 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1636
1637 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1638
1639 if (msix) {
1640 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1641 IGU_PF_CONF_SINGLE_ISR_EN);
1642 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1643 IGU_PF_CONF_ATTN_BIT_EN);
1644
1645 if (single_msix)
1646 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1647 } else if (msi) {
1648 val &= ~IGU_PF_CONF_INT_LINE_EN;
1649 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1650 IGU_PF_CONF_ATTN_BIT_EN |
1651 IGU_PF_CONF_SINGLE_ISR_EN);
1652 } else {
1653 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1654 val |= (IGU_PF_CONF_INT_LINE_EN |
1655 IGU_PF_CONF_ATTN_BIT_EN |
1656 IGU_PF_CONF_SINGLE_ISR_EN);
1657 }
1658
1659 /* Clean previous status - need to configure igu prior to ack*/
1660 if ((!msix) || single_msix) {
1661 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1662 bnx2x_ack_int(bp);
1663 }
1664
1665 val |= IGU_PF_CONF_FUNC_EN;
1666
1667 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1668 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1669
1670 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1671
1672 if (val & IGU_PF_CONF_INT_LINE_EN)
1673 pci_intx(bp->pdev, true);
1674
1675 barrier();
1676
1677 /* init leading/trailing edge */
1678 if (IS_MF(bp)) {
1679 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1680 if (bp->port.pmf)
1681 /* enable nig and gpio3 attention */
1682 val |= 0x1100;
1683 } else
1684 val = 0xffff;
1685
1686 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1687 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1688 }
1689
bnx2x_int_enable(struct bnx2x * bp)1690 void bnx2x_int_enable(struct bnx2x *bp)
1691 {
1692 if (bp->common.int_block == INT_BLOCK_HC)
1693 bnx2x_hc_int_enable(bp);
1694 else
1695 bnx2x_igu_int_enable(bp);
1696 }
1697
bnx2x_int_disable_sync(struct bnx2x * bp,int disable_hw)1698 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1699 {
1700 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1701 int i, offset;
1702
1703 if (disable_hw)
1704 /* prevent the HW from sending interrupts */
1705 bnx2x_int_disable(bp);
1706
1707 /* make sure all ISRs are done */
1708 if (msix) {
1709 synchronize_irq(bp->msix_table[0].vector);
1710 offset = 1;
1711 if (CNIC_SUPPORT(bp))
1712 offset++;
1713 for_each_eth_queue(bp, i)
1714 synchronize_irq(bp->msix_table[offset++].vector);
1715 } else
1716 synchronize_irq(bp->pdev->irq);
1717
1718 /* make sure sp_task is not running */
1719 cancel_delayed_work(&bp->sp_task);
1720 cancel_delayed_work(&bp->period_task);
1721 flush_workqueue(bnx2x_wq);
1722 }
1723
1724 /* fast path */
1725
1726 /*
1727 * General service functions
1728 */
1729
1730 /* Return true if succeeded to acquire the lock */
bnx2x_trylock_hw_lock(struct bnx2x * bp,u32 resource)1731 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1732 {
1733 u32 lock_status;
1734 u32 resource_bit = (1 << resource);
1735 int func = BP_FUNC(bp);
1736 u32 hw_lock_control_reg;
1737
1738 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1739 "Trying to take a lock on resource %d\n", resource);
1740
1741 /* Validating that the resource is within range */
1742 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1743 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1744 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1745 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1746 return false;
1747 }
1748
1749 if (func <= 5)
1750 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1751 else
1752 hw_lock_control_reg =
1753 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1754
1755 /* Try to acquire the lock */
1756 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1757 lock_status = REG_RD(bp, hw_lock_control_reg);
1758 if (lock_status & resource_bit)
1759 return true;
1760
1761 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1762 "Failed to get a lock on resource %d\n", resource);
1763 return false;
1764 }
1765
1766 /**
1767 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1768 *
1769 * @bp: driver handle
1770 *
1771 * Returns the recovery leader resource id according to the engine this function
1772 * belongs to. Currently only only 2 engines is supported.
1773 */
bnx2x_get_leader_lock_resource(struct bnx2x * bp)1774 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1775 {
1776 if (BP_PATH(bp))
1777 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1778 else
1779 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1780 }
1781
1782 /**
1783 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1784 *
1785 * @bp: driver handle
1786 *
1787 * Tries to acquire a leader lock for current engine.
1788 */
bnx2x_trylock_leader_lock(struct bnx2x * bp)1789 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1790 {
1791 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1792 }
1793
1794 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1795
1796 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
bnx2x_schedule_sp_task(struct bnx2x * bp)1797 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1798 {
1799 /* Set the interrupt occurred bit for the sp-task to recognize it
1800 * must ack the interrupt and transition according to the IGU
1801 * state machine.
1802 */
1803 atomic_set(&bp->interrupt_occurred, 1);
1804
1805 /* The sp_task must execute only after this bit
1806 * is set, otherwise we will get out of sync and miss all
1807 * further interrupts. Hence, the barrier.
1808 */
1809 smp_wmb();
1810
1811 /* schedule sp_task to workqueue */
1812 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1813 }
1814
bnx2x_sp_event(struct bnx2x_fastpath * fp,union eth_rx_cqe * rr_cqe)1815 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1816 {
1817 struct bnx2x *bp = fp->bp;
1818 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1819 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1820 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1821 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1822
1823 DP(BNX2X_MSG_SP,
1824 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1825 fp->index, cid, command, bp->state,
1826 rr_cqe->ramrod_cqe.ramrod_type);
1827
1828 /* If cid is within VF range, replace the slowpath object with the
1829 * one corresponding to this VF
1830 */
1831 if (cid >= BNX2X_FIRST_VF_CID &&
1832 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1833 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1834
1835 switch (command) {
1836 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1837 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1838 drv_cmd = BNX2X_Q_CMD_UPDATE;
1839 break;
1840
1841 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1842 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1843 drv_cmd = BNX2X_Q_CMD_SETUP;
1844 break;
1845
1846 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1847 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1848 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1849 break;
1850
1851 case (RAMROD_CMD_ID_ETH_HALT):
1852 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1853 drv_cmd = BNX2X_Q_CMD_HALT;
1854 break;
1855
1856 case (RAMROD_CMD_ID_ETH_TERMINATE):
1857 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1858 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1859 break;
1860
1861 case (RAMROD_CMD_ID_ETH_EMPTY):
1862 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1863 drv_cmd = BNX2X_Q_CMD_EMPTY;
1864 break;
1865
1866 case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1867 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1868 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1869 break;
1870
1871 default:
1872 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1873 command, fp->index);
1874 return;
1875 }
1876
1877 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1878 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1879 /* q_obj->complete_cmd() failure means that this was
1880 * an unexpected completion.
1881 *
1882 * In this case we don't want to increase the bp->spq_left
1883 * because apparently we haven't sent this command the first
1884 * place.
1885 */
1886 #ifdef BNX2X_STOP_ON_ERROR
1887 bnx2x_panic();
1888 #else
1889 return;
1890 #endif
1891
1892 smp_mb__before_atomic();
1893 atomic_inc(&bp->cq_spq_left);
1894 /* push the change in bp->spq_left and towards the memory */
1895 smp_mb__after_atomic();
1896
1897 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1898
1899 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1900 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1901 /* if Q update ramrod is completed for last Q in AFEX vif set
1902 * flow, then ACK MCP at the end
1903 *
1904 * mark pending ACK to MCP bit.
1905 * prevent case that both bits are cleared.
1906 * At the end of load/unload driver checks that
1907 * sp_state is cleared, and this order prevents
1908 * races
1909 */
1910 smp_mb__before_atomic();
1911 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1912 wmb();
1913 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1914 smp_mb__after_atomic();
1915
1916 /* schedule the sp task as mcp ack is required */
1917 bnx2x_schedule_sp_task(bp);
1918 }
1919
1920 return;
1921 }
1922
bnx2x_interrupt(int irq,void * dev_instance)1923 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1924 {
1925 struct bnx2x *bp = netdev_priv(dev_instance);
1926 u16 status = bnx2x_ack_int(bp);
1927 u16 mask;
1928 int i;
1929 u8 cos;
1930
1931 /* Return here if interrupt is shared and it's not for us */
1932 if (unlikely(status == 0)) {
1933 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1934 return IRQ_NONE;
1935 }
1936 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1937
1938 #ifdef BNX2X_STOP_ON_ERROR
1939 if (unlikely(bp->panic))
1940 return IRQ_HANDLED;
1941 #endif
1942
1943 for_each_eth_queue(bp, i) {
1944 struct bnx2x_fastpath *fp = &bp->fp[i];
1945
1946 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1947 if (status & mask) {
1948 /* Handle Rx or Tx according to SB id */
1949 for_each_cos_in_tx_queue(fp, cos)
1950 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1951 prefetch(&fp->sb_running_index[SM_RX_ID]);
1952 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1953 status &= ~mask;
1954 }
1955 }
1956
1957 if (CNIC_SUPPORT(bp)) {
1958 mask = 0x2;
1959 if (status & (mask | 0x1)) {
1960 struct cnic_ops *c_ops = NULL;
1961
1962 rcu_read_lock();
1963 c_ops = rcu_dereference(bp->cnic_ops);
1964 if (c_ops && (bp->cnic_eth_dev.drv_state &
1965 CNIC_DRV_STATE_HANDLES_IRQ))
1966 c_ops->cnic_handler(bp->cnic_data, NULL);
1967 rcu_read_unlock();
1968
1969 status &= ~mask;
1970 }
1971 }
1972
1973 if (unlikely(status & 0x1)) {
1974
1975 /* schedule sp task to perform default status block work, ack
1976 * attentions and enable interrupts.
1977 */
1978 bnx2x_schedule_sp_task(bp);
1979
1980 status &= ~0x1;
1981 if (!status)
1982 return IRQ_HANDLED;
1983 }
1984
1985 if (unlikely(status))
1986 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1987 status);
1988
1989 return IRQ_HANDLED;
1990 }
1991
1992 /* Link */
1993
1994 /*
1995 * General service functions
1996 */
1997
bnx2x_acquire_hw_lock(struct bnx2x * bp,u32 resource)1998 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1999 {
2000 u32 lock_status;
2001 u32 resource_bit = (1 << resource);
2002 int func = BP_FUNC(bp);
2003 u32 hw_lock_control_reg;
2004 int cnt;
2005
2006 /* Validating that the resource is within range */
2007 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2008 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2009 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2010 return -EINVAL;
2011 }
2012
2013 if (func <= 5) {
2014 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2015 } else {
2016 hw_lock_control_reg =
2017 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2018 }
2019
2020 /* Validating that the resource is not already taken */
2021 lock_status = REG_RD(bp, hw_lock_control_reg);
2022 if (lock_status & resource_bit) {
2023 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
2024 lock_status, resource_bit);
2025 return -EEXIST;
2026 }
2027
2028 /* Try for 5 second every 5ms */
2029 for (cnt = 0; cnt < 1000; cnt++) {
2030 /* Try to acquire the lock */
2031 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2032 lock_status = REG_RD(bp, hw_lock_control_reg);
2033 if (lock_status & resource_bit)
2034 return 0;
2035
2036 usleep_range(5000, 10000);
2037 }
2038 BNX2X_ERR("Timeout\n");
2039 return -EAGAIN;
2040 }
2041
bnx2x_release_leader_lock(struct bnx2x * bp)2042 int bnx2x_release_leader_lock(struct bnx2x *bp)
2043 {
2044 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2045 }
2046
bnx2x_release_hw_lock(struct bnx2x * bp,u32 resource)2047 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2048 {
2049 u32 lock_status;
2050 u32 resource_bit = (1 << resource);
2051 int func = BP_FUNC(bp);
2052 u32 hw_lock_control_reg;
2053
2054 /* Validating that the resource is within range */
2055 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2056 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2057 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2058 return -EINVAL;
2059 }
2060
2061 if (func <= 5) {
2062 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2063 } else {
2064 hw_lock_control_reg =
2065 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2066 }
2067
2068 /* Validating that the resource is currently taken */
2069 lock_status = REG_RD(bp, hw_lock_control_reg);
2070 if (!(lock_status & resource_bit)) {
2071 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2072 lock_status, resource_bit);
2073 return -EFAULT;
2074 }
2075
2076 REG_WR(bp, hw_lock_control_reg, resource_bit);
2077 return 0;
2078 }
2079
bnx2x_get_gpio(struct bnx2x * bp,int gpio_num,u8 port)2080 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2081 {
2082 /* The GPIO should be swapped if swap register is set and active */
2083 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2084 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2085 int gpio_shift = gpio_num +
2086 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2087 u32 gpio_mask = (1 << gpio_shift);
2088 u32 gpio_reg;
2089 int value;
2090
2091 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2092 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2093 return -EINVAL;
2094 }
2095
2096 /* read GPIO value */
2097 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2098
2099 /* get the requested pin value */
2100 if ((gpio_reg & gpio_mask) == gpio_mask)
2101 value = 1;
2102 else
2103 value = 0;
2104
2105 return value;
2106 }
2107
bnx2x_set_gpio(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2108 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2109 {
2110 /* The GPIO should be swapped if swap register is set and active */
2111 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2112 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2113 int gpio_shift = gpio_num +
2114 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2115 u32 gpio_mask = (1 << gpio_shift);
2116 u32 gpio_reg;
2117
2118 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2119 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2120 return -EINVAL;
2121 }
2122
2123 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2124 /* read GPIO and mask except the float bits */
2125 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2126
2127 switch (mode) {
2128 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2129 DP(NETIF_MSG_LINK,
2130 "Set GPIO %d (shift %d) -> output low\n",
2131 gpio_num, gpio_shift);
2132 /* clear FLOAT and set CLR */
2133 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2134 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2135 break;
2136
2137 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2138 DP(NETIF_MSG_LINK,
2139 "Set GPIO %d (shift %d) -> output high\n",
2140 gpio_num, gpio_shift);
2141 /* clear FLOAT and set SET */
2142 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2143 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2144 break;
2145
2146 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2147 DP(NETIF_MSG_LINK,
2148 "Set GPIO %d (shift %d) -> input\n",
2149 gpio_num, gpio_shift);
2150 /* set FLOAT */
2151 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2152 break;
2153
2154 default:
2155 break;
2156 }
2157
2158 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2159 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2160
2161 return 0;
2162 }
2163
bnx2x_set_mult_gpio(struct bnx2x * bp,u8 pins,u32 mode)2164 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2165 {
2166 u32 gpio_reg = 0;
2167 int rc = 0;
2168
2169 /* Any port swapping should be handled by caller. */
2170
2171 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2172 /* read GPIO and mask except the float bits */
2173 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2174 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2175 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2176 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2177
2178 switch (mode) {
2179 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2180 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2181 /* set CLR */
2182 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2183 break;
2184
2185 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2186 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2187 /* set SET */
2188 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2189 break;
2190
2191 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2192 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2193 /* set FLOAT */
2194 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2195 break;
2196
2197 default:
2198 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2199 rc = -EINVAL;
2200 break;
2201 }
2202
2203 if (rc == 0)
2204 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2205
2206 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2207
2208 return rc;
2209 }
2210
bnx2x_set_gpio_int(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2211 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2212 {
2213 /* The GPIO should be swapped if swap register is set and active */
2214 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2215 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2216 int gpio_shift = gpio_num +
2217 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2218 u32 gpio_mask = (1 << gpio_shift);
2219 u32 gpio_reg;
2220
2221 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2222 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2223 return -EINVAL;
2224 }
2225
2226 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2227 /* read GPIO int */
2228 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2229
2230 switch (mode) {
2231 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2232 DP(NETIF_MSG_LINK,
2233 "Clear GPIO INT %d (shift %d) -> output low\n",
2234 gpio_num, gpio_shift);
2235 /* clear SET and set CLR */
2236 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2237 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2238 break;
2239
2240 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2241 DP(NETIF_MSG_LINK,
2242 "Set GPIO INT %d (shift %d) -> output high\n",
2243 gpio_num, gpio_shift);
2244 /* clear CLR and set SET */
2245 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2246 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2247 break;
2248
2249 default:
2250 break;
2251 }
2252
2253 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2254 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2255
2256 return 0;
2257 }
2258
bnx2x_set_spio(struct bnx2x * bp,int spio,u32 mode)2259 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2260 {
2261 u32 spio_reg;
2262
2263 /* Only 2 SPIOs are configurable */
2264 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2265 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2266 return -EINVAL;
2267 }
2268
2269 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2270 /* read SPIO and mask except the float bits */
2271 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2272
2273 switch (mode) {
2274 case MISC_SPIO_OUTPUT_LOW:
2275 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2276 /* clear FLOAT and set CLR */
2277 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2278 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2279 break;
2280
2281 case MISC_SPIO_OUTPUT_HIGH:
2282 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2283 /* clear FLOAT and set SET */
2284 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2285 spio_reg |= (spio << MISC_SPIO_SET_POS);
2286 break;
2287
2288 case MISC_SPIO_INPUT_HI_Z:
2289 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2290 /* set FLOAT */
2291 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2292 break;
2293
2294 default:
2295 break;
2296 }
2297
2298 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2299 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2300
2301 return 0;
2302 }
2303
bnx2x_calc_fc_adv(struct bnx2x * bp)2304 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2305 {
2306 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2307
2308 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2309 ADVERTISED_Pause);
2310 switch (bp->link_vars.ieee_fc &
2311 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2312 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2313 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2314 ADVERTISED_Pause);
2315 break;
2316
2317 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2318 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2319 break;
2320
2321 default:
2322 break;
2323 }
2324 }
2325
bnx2x_set_requested_fc(struct bnx2x * bp)2326 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2327 {
2328 /* Initialize link parameters structure variables
2329 * It is recommended to turn off RX FC for jumbo frames
2330 * for better performance
2331 */
2332 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2333 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2334 else
2335 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2336 }
2337
bnx2x_init_dropless_fc(struct bnx2x * bp)2338 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2339 {
2340 u32 pause_enabled = 0;
2341
2342 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2343 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2344 pause_enabled = 1;
2345
2346 REG_WR(bp, BAR_USTRORM_INTMEM +
2347 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2348 pause_enabled);
2349 }
2350
2351 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2352 pause_enabled ? "enabled" : "disabled");
2353 }
2354
bnx2x_initial_phy_init(struct bnx2x * bp,int load_mode)2355 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2356 {
2357 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2358 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2359
2360 if (!BP_NOMCP(bp)) {
2361 bnx2x_set_requested_fc(bp);
2362 bnx2x_acquire_phy_lock(bp);
2363
2364 if (load_mode == LOAD_DIAG) {
2365 struct link_params *lp = &bp->link_params;
2366 lp->loopback_mode = LOOPBACK_XGXS;
2367 /* Prefer doing PHY loopback at highest speed */
2368 if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2369 if (lp->speed_cap_mask[cfx_idx] &
2370 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2371 lp->req_line_speed[cfx_idx] =
2372 SPEED_20000;
2373 else if (lp->speed_cap_mask[cfx_idx] &
2374 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2375 lp->req_line_speed[cfx_idx] =
2376 SPEED_10000;
2377 else
2378 lp->req_line_speed[cfx_idx] =
2379 SPEED_1000;
2380 }
2381 }
2382
2383 if (load_mode == LOAD_LOOPBACK_EXT) {
2384 struct link_params *lp = &bp->link_params;
2385 lp->loopback_mode = LOOPBACK_EXT;
2386 }
2387
2388 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2389
2390 bnx2x_release_phy_lock(bp);
2391
2392 bnx2x_init_dropless_fc(bp);
2393
2394 bnx2x_calc_fc_adv(bp);
2395
2396 if (bp->link_vars.link_up) {
2397 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2398 bnx2x_link_report(bp);
2399 }
2400 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2401 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2402 return rc;
2403 }
2404 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2405 return -EINVAL;
2406 }
2407
bnx2x_link_set(struct bnx2x * bp)2408 void bnx2x_link_set(struct bnx2x *bp)
2409 {
2410 if (!BP_NOMCP(bp)) {
2411 bnx2x_acquire_phy_lock(bp);
2412 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2413 bnx2x_release_phy_lock(bp);
2414
2415 bnx2x_init_dropless_fc(bp);
2416
2417 bnx2x_calc_fc_adv(bp);
2418 } else
2419 BNX2X_ERR("Bootcode is missing - can not set link\n");
2420 }
2421
bnx2x__link_reset(struct bnx2x * bp)2422 static void bnx2x__link_reset(struct bnx2x *bp)
2423 {
2424 if (!BP_NOMCP(bp)) {
2425 bnx2x_acquire_phy_lock(bp);
2426 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2427 bnx2x_release_phy_lock(bp);
2428 } else
2429 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2430 }
2431
bnx2x_force_link_reset(struct bnx2x * bp)2432 void bnx2x_force_link_reset(struct bnx2x *bp)
2433 {
2434 bnx2x_acquire_phy_lock(bp);
2435 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2436 bnx2x_release_phy_lock(bp);
2437 }
2438
bnx2x_link_test(struct bnx2x * bp,u8 is_serdes)2439 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2440 {
2441 u8 rc = 0;
2442
2443 if (!BP_NOMCP(bp)) {
2444 bnx2x_acquire_phy_lock(bp);
2445 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2446 is_serdes);
2447 bnx2x_release_phy_lock(bp);
2448 } else
2449 BNX2X_ERR("Bootcode is missing - can not test link\n");
2450
2451 return rc;
2452 }
2453
2454 /* Calculates the sum of vn_min_rates.
2455 It's needed for further normalizing of the min_rates.
2456 Returns:
2457 sum of vn_min_rates.
2458 or
2459 0 - if all the min_rates are 0.
2460 In the later case fairness algorithm should be deactivated.
2461 If not all min_rates are zero then those that are zeroes will be set to 1.
2462 */
bnx2x_calc_vn_min(struct bnx2x * bp,struct cmng_init_input * input)2463 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2464 struct cmng_init_input *input)
2465 {
2466 int all_zero = 1;
2467 int vn;
2468
2469 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2470 u32 vn_cfg = bp->mf_config[vn];
2471 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2472 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2473
2474 /* Skip hidden vns */
2475 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2476 vn_min_rate = 0;
2477 /* If min rate is zero - set it to 1 */
2478 else if (!vn_min_rate)
2479 vn_min_rate = DEF_MIN_RATE;
2480 else
2481 all_zero = 0;
2482
2483 input->vnic_min_rate[vn] = vn_min_rate;
2484 }
2485
2486 /* if ETS or all min rates are zeros - disable fairness */
2487 if (BNX2X_IS_ETS_ENABLED(bp)) {
2488 input->flags.cmng_enables &=
2489 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2490 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2491 } else if (all_zero) {
2492 input->flags.cmng_enables &=
2493 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2494 DP(NETIF_MSG_IFUP,
2495 "All MIN values are zeroes fairness will be disabled\n");
2496 } else
2497 input->flags.cmng_enables |=
2498 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2499 }
2500
bnx2x_calc_vn_max(struct bnx2x * bp,int vn,struct cmng_init_input * input)2501 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2502 struct cmng_init_input *input)
2503 {
2504 u16 vn_max_rate;
2505 u32 vn_cfg = bp->mf_config[vn];
2506
2507 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2508 vn_max_rate = 0;
2509 else {
2510 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2511
2512 if (IS_MF_PERCENT_BW(bp)) {
2513 /* maxCfg in percents of linkspeed */
2514 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2515 } else /* SD modes */
2516 /* maxCfg is absolute in 100Mb units */
2517 vn_max_rate = maxCfg * 100;
2518 }
2519
2520 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2521
2522 input->vnic_max_rate[vn] = vn_max_rate;
2523 }
2524
bnx2x_get_cmng_fns_mode(struct bnx2x * bp)2525 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2526 {
2527 if (CHIP_REV_IS_SLOW(bp))
2528 return CMNG_FNS_NONE;
2529 if (IS_MF(bp))
2530 return CMNG_FNS_MINMAX;
2531
2532 return CMNG_FNS_NONE;
2533 }
2534
bnx2x_read_mf_cfg(struct bnx2x * bp)2535 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2536 {
2537 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2538
2539 if (BP_NOMCP(bp))
2540 return; /* what should be the default value in this case */
2541
2542 /* For 2 port configuration the absolute function number formula
2543 * is:
2544 * abs_func = 2 * vn + BP_PORT + BP_PATH
2545 *
2546 * and there are 4 functions per port
2547 *
2548 * For 4 port configuration it is
2549 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2550 *
2551 * and there are 2 functions per port
2552 */
2553 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2554 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2555
2556 if (func >= E1H_FUNC_MAX)
2557 break;
2558
2559 bp->mf_config[vn] =
2560 MF_CFG_RD(bp, func_mf_config[func].config);
2561 }
2562 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2563 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2564 bp->flags |= MF_FUNC_DIS;
2565 } else {
2566 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2567 bp->flags &= ~MF_FUNC_DIS;
2568 }
2569 }
2570
bnx2x_cmng_fns_init(struct bnx2x * bp,u8 read_cfg,u8 cmng_type)2571 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2572 {
2573 struct cmng_init_input input;
2574 memset(&input, 0, sizeof(struct cmng_init_input));
2575
2576 input.port_rate = bp->link_vars.line_speed;
2577
2578 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2579 int vn;
2580
2581 /* read mf conf from shmem */
2582 if (read_cfg)
2583 bnx2x_read_mf_cfg(bp);
2584
2585 /* vn_weight_sum and enable fairness if not 0 */
2586 bnx2x_calc_vn_min(bp, &input);
2587
2588 /* calculate and set min-max rate for each vn */
2589 if (bp->port.pmf)
2590 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2591 bnx2x_calc_vn_max(bp, vn, &input);
2592
2593 /* always enable rate shaping and fairness */
2594 input.flags.cmng_enables |=
2595 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2596
2597 bnx2x_init_cmng(&input, &bp->cmng);
2598 return;
2599 }
2600
2601 /* rate shaping and fairness are disabled */
2602 DP(NETIF_MSG_IFUP,
2603 "rate shaping and fairness are disabled\n");
2604 }
2605
storm_memset_cmng(struct bnx2x * bp,struct cmng_init * cmng,u8 port)2606 static void storm_memset_cmng(struct bnx2x *bp,
2607 struct cmng_init *cmng,
2608 u8 port)
2609 {
2610 int vn;
2611 size_t size = sizeof(struct cmng_struct_per_port);
2612
2613 u32 addr = BAR_XSTRORM_INTMEM +
2614 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2615
2616 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2617
2618 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2619 int func = func_by_vn(bp, vn);
2620
2621 addr = BAR_XSTRORM_INTMEM +
2622 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2623 size = sizeof(struct rate_shaping_vars_per_vn);
2624 __storm_memset_struct(bp, addr, size,
2625 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2626
2627 addr = BAR_XSTRORM_INTMEM +
2628 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2629 size = sizeof(struct fairness_vars_per_vn);
2630 __storm_memset_struct(bp, addr, size,
2631 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2632 }
2633 }
2634
2635 /* init cmng mode in HW according to local configuration */
bnx2x_set_local_cmng(struct bnx2x * bp)2636 void bnx2x_set_local_cmng(struct bnx2x *bp)
2637 {
2638 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2639
2640 if (cmng_fns != CMNG_FNS_NONE) {
2641 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2642 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2643 } else {
2644 /* rate shaping and fairness are disabled */
2645 DP(NETIF_MSG_IFUP,
2646 "single function mode without fairness\n");
2647 }
2648 }
2649
2650 /* This function is called upon link interrupt */
bnx2x_link_attn(struct bnx2x * bp)2651 static void bnx2x_link_attn(struct bnx2x *bp)
2652 {
2653 /* Make sure that we are synced with the current statistics */
2654 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2655
2656 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2657
2658 bnx2x_init_dropless_fc(bp);
2659
2660 if (bp->link_vars.link_up) {
2661
2662 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2663 struct host_port_stats *pstats;
2664
2665 pstats = bnx2x_sp(bp, port_stats);
2666 /* reset old mac stats */
2667 memset(&(pstats->mac_stx[0]), 0,
2668 sizeof(struct mac_stx));
2669 }
2670 if (bp->state == BNX2X_STATE_OPEN)
2671 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2672 }
2673
2674 if (bp->link_vars.link_up && bp->link_vars.line_speed)
2675 bnx2x_set_local_cmng(bp);
2676
2677 __bnx2x_link_report(bp);
2678
2679 if (IS_MF(bp))
2680 bnx2x_link_sync_notify(bp);
2681 }
2682
bnx2x__link_status_update(struct bnx2x * bp)2683 void bnx2x__link_status_update(struct bnx2x *bp)
2684 {
2685 if (bp->state != BNX2X_STATE_OPEN)
2686 return;
2687
2688 /* read updated dcb configuration */
2689 if (IS_PF(bp)) {
2690 bnx2x_dcbx_pmf_update(bp);
2691 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2692 if (bp->link_vars.link_up)
2693 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2694 else
2695 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2696 /* indicate link status */
2697 bnx2x_link_report(bp);
2698
2699 } else { /* VF */
2700 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2701 SUPPORTED_10baseT_Full |
2702 SUPPORTED_100baseT_Half |
2703 SUPPORTED_100baseT_Full |
2704 SUPPORTED_1000baseT_Full |
2705 SUPPORTED_2500baseX_Full |
2706 SUPPORTED_10000baseT_Full |
2707 SUPPORTED_TP |
2708 SUPPORTED_FIBRE |
2709 SUPPORTED_Autoneg |
2710 SUPPORTED_Pause |
2711 SUPPORTED_Asym_Pause);
2712 bp->port.advertising[0] = bp->port.supported[0];
2713
2714 bp->link_params.bp = bp;
2715 bp->link_params.port = BP_PORT(bp);
2716 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2717 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2718 bp->link_params.req_line_speed[0] = SPEED_10000;
2719 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2720 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2721 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2722 bp->link_vars.line_speed = SPEED_10000;
2723 bp->link_vars.link_status =
2724 (LINK_STATUS_LINK_UP |
2725 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2726 bp->link_vars.link_up = 1;
2727 bp->link_vars.duplex = DUPLEX_FULL;
2728 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2729 __bnx2x_link_report(bp);
2730
2731 bnx2x_sample_bulletin(bp);
2732
2733 /* if bulletin board did not have an update for link status
2734 * __bnx2x_link_report will report current status
2735 * but it will NOT duplicate report in case of already reported
2736 * during sampling bulletin board.
2737 */
2738 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2739 }
2740 }
2741
bnx2x_afex_func_update(struct bnx2x * bp,u16 vifid,u16 vlan_val,u8 allowed_prio)2742 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2743 u16 vlan_val, u8 allowed_prio)
2744 {
2745 struct bnx2x_func_state_params func_params = {NULL};
2746 struct bnx2x_func_afex_update_params *f_update_params =
2747 &func_params.params.afex_update;
2748
2749 func_params.f_obj = &bp->func_obj;
2750 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2751
2752 /* no need to wait for RAMROD completion, so don't
2753 * set RAMROD_COMP_WAIT flag
2754 */
2755
2756 f_update_params->vif_id = vifid;
2757 f_update_params->afex_default_vlan = vlan_val;
2758 f_update_params->allowed_priorities = allowed_prio;
2759
2760 /* if ramrod can not be sent, response to MCP immediately */
2761 if (bnx2x_func_state_change(bp, &func_params) < 0)
2762 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2763
2764 return 0;
2765 }
2766
bnx2x_afex_handle_vif_list_cmd(struct bnx2x * bp,u8 cmd_type,u16 vif_index,u8 func_bit_map)2767 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2768 u16 vif_index, u8 func_bit_map)
2769 {
2770 struct bnx2x_func_state_params func_params = {NULL};
2771 struct bnx2x_func_afex_viflists_params *update_params =
2772 &func_params.params.afex_viflists;
2773 int rc;
2774 u32 drv_msg_code;
2775
2776 /* validate only LIST_SET and LIST_GET are received from switch */
2777 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2778 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2779 cmd_type);
2780
2781 func_params.f_obj = &bp->func_obj;
2782 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2783
2784 /* set parameters according to cmd_type */
2785 update_params->afex_vif_list_command = cmd_type;
2786 update_params->vif_list_index = vif_index;
2787 update_params->func_bit_map =
2788 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2789 update_params->func_to_clear = 0;
2790 drv_msg_code =
2791 (cmd_type == VIF_LIST_RULE_GET) ?
2792 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2793 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2794
2795 /* if ramrod can not be sent, respond to MCP immediately for
2796 * SET and GET requests (other are not triggered from MCP)
2797 */
2798 rc = bnx2x_func_state_change(bp, &func_params);
2799 if (rc < 0)
2800 bnx2x_fw_command(bp, drv_msg_code, 0);
2801
2802 return 0;
2803 }
2804
bnx2x_handle_afex_cmd(struct bnx2x * bp,u32 cmd)2805 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2806 {
2807 struct afex_stats afex_stats;
2808 u32 func = BP_ABS_FUNC(bp);
2809 u32 mf_config;
2810 u16 vlan_val;
2811 u32 vlan_prio;
2812 u16 vif_id;
2813 u8 allowed_prio;
2814 u8 vlan_mode;
2815 u32 addr_to_write, vifid, addrs, stats_type, i;
2816
2817 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2818 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2819 DP(BNX2X_MSG_MCP,
2820 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2821 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2822 }
2823
2824 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2825 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2826 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2827 DP(BNX2X_MSG_MCP,
2828 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2829 vifid, addrs);
2830 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2831 addrs);
2832 }
2833
2834 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2835 addr_to_write = SHMEM2_RD(bp,
2836 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2837 stats_type = SHMEM2_RD(bp,
2838 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2839
2840 DP(BNX2X_MSG_MCP,
2841 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2842 addr_to_write);
2843
2844 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2845
2846 /* write response to scratchpad, for MCP */
2847 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2848 REG_WR(bp, addr_to_write + i*sizeof(u32),
2849 *(((u32 *)(&afex_stats))+i));
2850
2851 /* send ack message to MCP */
2852 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2853 }
2854
2855 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2856 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2857 bp->mf_config[BP_VN(bp)] = mf_config;
2858 DP(BNX2X_MSG_MCP,
2859 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2860 mf_config);
2861
2862 /* if VIF_SET is "enabled" */
2863 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2864 /* set rate limit directly to internal RAM */
2865 struct cmng_init_input cmng_input;
2866 struct rate_shaping_vars_per_vn m_rs_vn;
2867 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2868 u32 addr = BAR_XSTRORM_INTMEM +
2869 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2870
2871 bp->mf_config[BP_VN(bp)] = mf_config;
2872
2873 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2874 m_rs_vn.vn_counter.rate =
2875 cmng_input.vnic_max_rate[BP_VN(bp)];
2876 m_rs_vn.vn_counter.quota =
2877 (m_rs_vn.vn_counter.rate *
2878 RS_PERIODIC_TIMEOUT_USEC) / 8;
2879
2880 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2881
2882 /* read relevant values from mf_cfg struct in shmem */
2883 vif_id =
2884 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2885 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2886 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2887 vlan_val =
2888 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2889 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2890 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2891 vlan_prio = (mf_config &
2892 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2893 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2894 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2895 vlan_mode =
2896 (MF_CFG_RD(bp,
2897 func_mf_config[func].afex_config) &
2898 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2899 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2900 allowed_prio =
2901 (MF_CFG_RD(bp,
2902 func_mf_config[func].afex_config) &
2903 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2904 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2905
2906 /* send ramrod to FW, return in case of failure */
2907 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2908 allowed_prio))
2909 return;
2910
2911 bp->afex_def_vlan_tag = vlan_val;
2912 bp->afex_vlan_mode = vlan_mode;
2913 } else {
2914 /* notify link down because BP->flags is disabled */
2915 bnx2x_link_report(bp);
2916
2917 /* send INVALID VIF ramrod to FW */
2918 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2919
2920 /* Reset the default afex VLAN */
2921 bp->afex_def_vlan_tag = -1;
2922 }
2923 }
2924 }
2925
bnx2x_handle_update_svid_cmd(struct bnx2x * bp)2926 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2927 {
2928 struct bnx2x_func_switch_update_params *switch_update_params;
2929 struct bnx2x_func_state_params func_params;
2930
2931 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2932 switch_update_params = &func_params.params.switch_update;
2933 func_params.f_obj = &bp->func_obj;
2934 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2935
2936 /* Prepare parameters for function state transitions */
2937 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2938 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2939
2940 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2941 int func = BP_ABS_FUNC(bp);
2942 u32 val;
2943
2944 /* Re-learn the S-tag from shmem */
2945 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2946 FUNC_MF_CFG_E1HOV_TAG_MASK;
2947 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2948 bp->mf_ov = val;
2949 } else {
2950 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2951 goto fail;
2952 }
2953
2954 /* Configure new S-tag in LLH */
2955 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2956 bp->mf_ov);
2957
2958 /* Send Ramrod to update FW of change */
2959 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2960 &switch_update_params->changes);
2961 switch_update_params->vlan = bp->mf_ov;
2962
2963 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2964 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2965 bp->mf_ov);
2966 goto fail;
2967 } else {
2968 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2969 bp->mf_ov);
2970 }
2971 } else {
2972 goto fail;
2973 }
2974
2975 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2976 return;
2977 fail:
2978 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2979 }
2980
bnx2x_pmf_update(struct bnx2x * bp)2981 static void bnx2x_pmf_update(struct bnx2x *bp)
2982 {
2983 int port = BP_PORT(bp);
2984 u32 val;
2985
2986 bp->port.pmf = 1;
2987 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2988
2989 /*
2990 * We need the mb() to ensure the ordering between the writing to
2991 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2992 */
2993 smp_mb();
2994
2995 /* queue a periodic task */
2996 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2997
2998 bnx2x_dcbx_pmf_update(bp);
2999
3000 /* enable nig attention */
3001 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3002 if (bp->common.int_block == INT_BLOCK_HC) {
3003 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3004 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3005 } else if (!CHIP_IS_E1x(bp)) {
3006 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3007 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3008 }
3009
3010 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3011 }
3012
3013 /* end of Link */
3014
3015 /* slow path */
3016
3017 /*
3018 * General service functions
3019 */
3020
3021 /* send the MCP a request, block until there is a reply */
bnx2x_fw_command(struct bnx2x * bp,u32 command,u32 param)3022 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3023 {
3024 int mb_idx = BP_FW_MB_IDX(bp);
3025 u32 seq;
3026 u32 rc = 0;
3027 u32 cnt = 1;
3028 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3029
3030 mutex_lock(&bp->fw_mb_mutex);
3031 seq = ++bp->fw_seq;
3032 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3033 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3034
3035 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3036 (command | seq), param);
3037
3038 do {
3039 /* let the FW do it's magic ... */
3040 msleep(delay);
3041
3042 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3043
3044 /* Give the FW up to 5 second (500*10ms) */
3045 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3046
3047 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3048 cnt*delay, rc, seq);
3049
3050 /* is this a reply to our command? */
3051 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3052 rc &= FW_MSG_CODE_MASK;
3053 else {
3054 /* FW BUG! */
3055 BNX2X_ERR("FW failed to respond!\n");
3056 bnx2x_fw_dump(bp);
3057 rc = 0;
3058 }
3059 mutex_unlock(&bp->fw_mb_mutex);
3060
3061 return rc;
3062 }
3063
storm_memset_func_cfg(struct bnx2x * bp,struct tstorm_eth_function_common_config * tcfg,u16 abs_fid)3064 static void storm_memset_func_cfg(struct bnx2x *bp,
3065 struct tstorm_eth_function_common_config *tcfg,
3066 u16 abs_fid)
3067 {
3068 size_t size = sizeof(struct tstorm_eth_function_common_config);
3069
3070 u32 addr = BAR_TSTRORM_INTMEM +
3071 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3072
3073 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3074 }
3075
bnx2x_func_init(struct bnx2x * bp,struct bnx2x_func_init_params * p)3076 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3077 {
3078 if (CHIP_IS_E1x(bp)) {
3079 struct tstorm_eth_function_common_config tcfg = {0};
3080
3081 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3082 }
3083
3084 /* Enable the function in the FW */
3085 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3086 storm_memset_func_en(bp, p->func_id, 1);
3087
3088 /* spq */
3089 if (p->spq_active) {
3090 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3091 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3092 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3093 }
3094 }
3095
3096 /**
3097 * bnx2x_get_common_flags - Return common flags
3098 *
3099 * @bp: device handle
3100 * @fp: queue handle
3101 * @zero_stats: TRUE if statistics zeroing is needed
3102 *
3103 * Return the flags that are common for the Tx-only and not normal connections.
3104 */
bnx2x_get_common_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool zero_stats)3105 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3106 struct bnx2x_fastpath *fp,
3107 bool zero_stats)
3108 {
3109 unsigned long flags = 0;
3110
3111 /* PF driver will always initialize the Queue to an ACTIVE state */
3112 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3113
3114 /* tx only connections collect statistics (on the same index as the
3115 * parent connection). The statistics are zeroed when the parent
3116 * connection is initialized.
3117 */
3118
3119 __set_bit(BNX2X_Q_FLG_STATS, &flags);
3120 if (zero_stats)
3121 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3122
3123 if (bp->flags & TX_SWITCHING)
3124 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3125
3126 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3127 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3128
3129 #ifdef BNX2X_STOP_ON_ERROR
3130 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3131 #endif
3132
3133 return flags;
3134 }
3135
bnx2x_get_q_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)3136 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3137 struct bnx2x_fastpath *fp,
3138 bool leading)
3139 {
3140 unsigned long flags = 0;
3141
3142 /* calculate other queue flags */
3143 if (IS_MF_SD(bp))
3144 __set_bit(BNX2X_Q_FLG_OV, &flags);
3145
3146 if (IS_FCOE_FP(fp)) {
3147 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3148 /* For FCoE - force usage of default priority (for afex) */
3149 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3150 }
3151
3152 if (fp->mode != TPA_MODE_DISABLED) {
3153 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3154 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3155 if (fp->mode == TPA_MODE_GRO)
3156 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3157 }
3158
3159 if (leading) {
3160 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3161 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3162 }
3163
3164 /* Always set HW VLAN stripping */
3165 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3166
3167 /* configure silent vlan removal */
3168 if (IS_MF_AFEX(bp))
3169 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3170
3171 return flags | bnx2x_get_common_flags(bp, fp, true);
3172 }
3173
bnx2x_pf_q_prep_general(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_general_setup_params * gen_init,u8 cos)3174 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3175 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3176 u8 cos)
3177 {
3178 gen_init->stat_id = bnx2x_stats_id(fp);
3179 gen_init->spcl_id = fp->cl_id;
3180
3181 /* Always use mini-jumbo MTU for FCoE L2 ring */
3182 if (IS_FCOE_FP(fp))
3183 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3184 else
3185 gen_init->mtu = bp->dev->mtu;
3186
3187 gen_init->cos = cos;
3188
3189 gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3190 }
3191
bnx2x_pf_rx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct rxq_pause_params * pause,struct bnx2x_rxq_setup_params * rxq_init)3192 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3193 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3194 struct bnx2x_rxq_setup_params *rxq_init)
3195 {
3196 u8 max_sge = 0;
3197 u16 sge_sz = 0;
3198 u16 tpa_agg_size = 0;
3199
3200 if (fp->mode != TPA_MODE_DISABLED) {
3201 pause->sge_th_lo = SGE_TH_LO(bp);
3202 pause->sge_th_hi = SGE_TH_HI(bp);
3203
3204 /* validate SGE ring has enough to cross high threshold */
3205 WARN_ON(bp->dropless_fc &&
3206 pause->sge_th_hi + FW_PREFETCH_CNT >
3207 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3208
3209 tpa_agg_size = TPA_AGG_SIZE;
3210 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3211 SGE_PAGE_SHIFT;
3212 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3213 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3214 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3215 }
3216
3217 /* pause - not for e1 */
3218 if (!CHIP_IS_E1(bp)) {
3219 pause->bd_th_lo = BD_TH_LO(bp);
3220 pause->bd_th_hi = BD_TH_HI(bp);
3221
3222 pause->rcq_th_lo = RCQ_TH_LO(bp);
3223 pause->rcq_th_hi = RCQ_TH_HI(bp);
3224 /*
3225 * validate that rings have enough entries to cross
3226 * high thresholds
3227 */
3228 WARN_ON(bp->dropless_fc &&
3229 pause->bd_th_hi + FW_PREFETCH_CNT >
3230 bp->rx_ring_size);
3231 WARN_ON(bp->dropless_fc &&
3232 pause->rcq_th_hi + FW_PREFETCH_CNT >
3233 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3234
3235 pause->pri_map = 1;
3236 }
3237
3238 /* rxq setup */
3239 rxq_init->dscr_map = fp->rx_desc_mapping;
3240 rxq_init->sge_map = fp->rx_sge_mapping;
3241 rxq_init->rcq_map = fp->rx_comp_mapping;
3242 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3243
3244 /* This should be a maximum number of data bytes that may be
3245 * placed on the BD (not including paddings).
3246 */
3247 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3248 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3249
3250 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3251 rxq_init->tpa_agg_sz = tpa_agg_size;
3252 rxq_init->sge_buf_sz = sge_sz;
3253 rxq_init->max_sges_pkt = max_sge;
3254 rxq_init->rss_engine_id = BP_FUNC(bp);
3255 rxq_init->mcast_engine_id = BP_FUNC(bp);
3256
3257 /* Maximum number or simultaneous TPA aggregation for this Queue.
3258 *
3259 * For PF Clients it should be the maximum available number.
3260 * VF driver(s) may want to define it to a smaller value.
3261 */
3262 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3263
3264 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3265 rxq_init->fw_sb_id = fp->fw_sb_id;
3266
3267 if (IS_FCOE_FP(fp))
3268 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3269 else
3270 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3271 /* configure silent vlan removal
3272 * if multi function mode is afex, then mask default vlan
3273 */
3274 if (IS_MF_AFEX(bp)) {
3275 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3276 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3277 }
3278 }
3279
bnx2x_pf_tx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_txq_setup_params * txq_init,u8 cos)3280 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3281 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3282 u8 cos)
3283 {
3284 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3285 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3286 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3287 txq_init->fw_sb_id = fp->fw_sb_id;
3288
3289 /*
3290 * set the tss leading client id for TX classification ==
3291 * leading RSS client id
3292 */
3293 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3294
3295 if (IS_FCOE_FP(fp)) {
3296 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3297 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3298 }
3299 }
3300
bnx2x_pf_init(struct bnx2x * bp)3301 static void bnx2x_pf_init(struct bnx2x *bp)
3302 {
3303 struct bnx2x_func_init_params func_init = {0};
3304 struct event_ring_data eq_data = { {0} };
3305
3306 if (!CHIP_IS_E1x(bp)) {
3307 /* reset IGU PF statistics: MSIX + ATTN */
3308 /* PF */
3309 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3310 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3311 (CHIP_MODE_IS_4_PORT(bp) ?
3312 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3313 /* ATTN */
3314 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3315 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3316 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3317 (CHIP_MODE_IS_4_PORT(bp) ?
3318 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3319 }
3320
3321 func_init.spq_active = true;
3322 func_init.pf_id = BP_FUNC(bp);
3323 func_init.func_id = BP_FUNC(bp);
3324 func_init.spq_map = bp->spq_mapping;
3325 func_init.spq_prod = bp->spq_prod_idx;
3326
3327 bnx2x_func_init(bp, &func_init);
3328
3329 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3330
3331 /*
3332 * Congestion management values depend on the link rate
3333 * There is no active link so initial link rate is set to 10 Gbps.
3334 * When the link comes up The congestion management values are
3335 * re-calculated according to the actual link rate.
3336 */
3337 bp->link_vars.line_speed = SPEED_10000;
3338 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3339
3340 /* Only the PMF sets the HW */
3341 if (bp->port.pmf)
3342 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3343
3344 /* init Event Queue - PCI bus guarantees correct endianity*/
3345 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3346 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3347 eq_data.producer = bp->eq_prod;
3348 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3349 eq_data.sb_id = DEF_SB_ID;
3350 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3351 }
3352
bnx2x_e1h_disable(struct bnx2x * bp)3353 static void bnx2x_e1h_disable(struct bnx2x *bp)
3354 {
3355 int port = BP_PORT(bp);
3356
3357 bnx2x_tx_disable(bp);
3358
3359 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3360 }
3361
bnx2x_e1h_enable(struct bnx2x * bp)3362 static void bnx2x_e1h_enable(struct bnx2x *bp)
3363 {
3364 int port = BP_PORT(bp);
3365
3366 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3367 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3368
3369 /* Tx queue should be only re-enabled */
3370 netif_tx_wake_all_queues(bp->dev);
3371
3372 /*
3373 * Should not call netif_carrier_on since it will be called if the link
3374 * is up when checking for link state
3375 */
3376 }
3377
3378 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3379
bnx2x_drv_info_ether_stat(struct bnx2x * bp)3380 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3381 {
3382 struct eth_stats_info *ether_stat =
3383 &bp->slowpath->drv_info_to_mcp.ether_stat;
3384 struct bnx2x_vlan_mac_obj *mac_obj =
3385 &bp->sp_objs->mac_obj;
3386 int i;
3387
3388 strscpy(ether_stat->version, DRV_MODULE_VERSION,
3389 ETH_STAT_INFO_VERSION_LEN);
3390
3391 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3392 * mac_local field in ether_stat struct. The base address is offset by 2
3393 * bytes to account for the field being 8 bytes but a mac address is
3394 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3395 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3396 * allocated by the ether_stat struct, so the macs will land in their
3397 * proper positions.
3398 */
3399 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3400 memset(ether_stat->mac_local + i, 0,
3401 sizeof(ether_stat->mac_local[0]));
3402 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3403 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3404 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3405 ETH_ALEN);
3406 ether_stat->mtu_size = bp->dev->mtu;
3407 if (bp->dev->features & NETIF_F_RXCSUM)
3408 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3409 if (bp->dev->features & NETIF_F_TSO)
3410 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3411 ether_stat->feature_flags |= bp->common.boot_mode;
3412
3413 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3414
3415 ether_stat->txq_size = bp->tx_ring_size;
3416 ether_stat->rxq_size = bp->rx_ring_size;
3417
3418 #ifdef CONFIG_BNX2X_SRIOV
3419 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3420 #endif
3421 }
3422
bnx2x_drv_info_fcoe_stat(struct bnx2x * bp)3423 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3424 {
3425 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3426 struct fcoe_stats_info *fcoe_stat =
3427 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3428
3429 if (!CNIC_LOADED(bp))
3430 return;
3431
3432 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3433
3434 fcoe_stat->qos_priority =
3435 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3436
3437 /* insert FCoE stats from ramrod response */
3438 if (!NO_FCOE(bp)) {
3439 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3440 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3441 tstorm_queue_statistics;
3442
3443 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3444 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3445 xstorm_queue_statistics;
3446
3447 struct fcoe_statistics_params *fw_fcoe_stat =
3448 &bp->fw_stats_data->fcoe;
3449
3450 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3451 fcoe_stat->rx_bytes_lo,
3452 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3453
3454 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3455 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3456 fcoe_stat->rx_bytes_lo,
3457 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3458
3459 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3460 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3461 fcoe_stat->rx_bytes_lo,
3462 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3463
3464 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3465 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3466 fcoe_stat->rx_bytes_lo,
3467 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3468
3469 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470 fcoe_stat->rx_frames_lo,
3471 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3472
3473 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3474 fcoe_stat->rx_frames_lo,
3475 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3476
3477 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3478 fcoe_stat->rx_frames_lo,
3479 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3480
3481 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3482 fcoe_stat->rx_frames_lo,
3483 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3484
3485 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3486 fcoe_stat->tx_bytes_lo,
3487 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3488
3489 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3490 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3491 fcoe_stat->tx_bytes_lo,
3492 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3493
3494 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3495 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3496 fcoe_stat->tx_bytes_lo,
3497 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3498
3499 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3500 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3501 fcoe_stat->tx_bytes_lo,
3502 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3503
3504 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505 fcoe_stat->tx_frames_lo,
3506 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3507
3508 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3509 fcoe_stat->tx_frames_lo,
3510 fcoe_q_xstorm_stats->ucast_pkts_sent);
3511
3512 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3513 fcoe_stat->tx_frames_lo,
3514 fcoe_q_xstorm_stats->bcast_pkts_sent);
3515
3516 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3517 fcoe_stat->tx_frames_lo,
3518 fcoe_q_xstorm_stats->mcast_pkts_sent);
3519 }
3520
3521 /* ask L5 driver to add data to the struct */
3522 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3523 }
3524
bnx2x_drv_info_iscsi_stat(struct bnx2x * bp)3525 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3526 {
3527 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3528 struct iscsi_stats_info *iscsi_stat =
3529 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3530
3531 if (!CNIC_LOADED(bp))
3532 return;
3533
3534 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3535 ETH_ALEN);
3536
3537 iscsi_stat->qos_priority =
3538 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3539
3540 /* ask L5 driver to add data to the struct */
3541 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3542 }
3543
3544 /* called due to MCP event (on pmf):
3545 * reread new bandwidth configuration
3546 * configure FW
3547 * notify others function about the change
3548 */
bnx2x_config_mf_bw(struct bnx2x * bp)3549 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3550 {
3551 /* Workaround for MFW bug.
3552 * MFW is not supposed to generate BW attention in
3553 * single function mode.
3554 */
3555 if (!IS_MF(bp)) {
3556 DP(BNX2X_MSG_MCP,
3557 "Ignoring MF BW config in single function mode\n");
3558 return;
3559 }
3560
3561 if (bp->link_vars.link_up) {
3562 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3563 bnx2x_link_sync_notify(bp);
3564 }
3565 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3566 }
3567
bnx2x_set_mf_bw(struct bnx2x * bp)3568 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3569 {
3570 bnx2x_config_mf_bw(bp);
3571 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3572 }
3573
bnx2x_handle_eee_event(struct bnx2x * bp)3574 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3575 {
3576 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3577 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3578 }
3579
3580 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
3581 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
3582
bnx2x_handle_drv_info_req(struct bnx2x * bp)3583 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3584 {
3585 enum drv_info_opcode op_code;
3586 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3587 bool release = false;
3588 int wait;
3589
3590 /* if drv_info version supported by MFW doesn't match - send NACK */
3591 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3592 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3593 return;
3594 }
3595
3596 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3597 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3598
3599 /* Must prevent other flows from accessing drv_info_to_mcp */
3600 mutex_lock(&bp->drv_info_mutex);
3601
3602 memset(&bp->slowpath->drv_info_to_mcp, 0,
3603 sizeof(union drv_info_to_mcp));
3604
3605 switch (op_code) {
3606 case ETH_STATS_OPCODE:
3607 bnx2x_drv_info_ether_stat(bp);
3608 break;
3609 case FCOE_STATS_OPCODE:
3610 bnx2x_drv_info_fcoe_stat(bp);
3611 break;
3612 case ISCSI_STATS_OPCODE:
3613 bnx2x_drv_info_iscsi_stat(bp);
3614 break;
3615 default:
3616 /* if op code isn't supported - send NACK */
3617 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3618 goto out;
3619 }
3620
3621 /* if we got drv_info attn from MFW then these fields are defined in
3622 * shmem2 for sure
3623 */
3624 SHMEM2_WR(bp, drv_info_host_addr_lo,
3625 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3626 SHMEM2_WR(bp, drv_info_host_addr_hi,
3627 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3628
3629 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3630
3631 /* Since possible management wants both this and get_driver_version
3632 * need to wait until management notifies us it finished utilizing
3633 * the buffer.
3634 */
3635 if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3636 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3637 } else if (!bp->drv_info_mng_owner) {
3638 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3639
3640 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3641 u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3642
3643 /* Management is done; need to clear indication */
3644 if (indication & bit) {
3645 SHMEM2_WR(bp, mfw_drv_indication,
3646 indication & ~bit);
3647 release = true;
3648 break;
3649 }
3650
3651 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3652 }
3653 }
3654 if (!release) {
3655 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3656 bp->drv_info_mng_owner = true;
3657 }
3658
3659 out:
3660 mutex_unlock(&bp->drv_info_mutex);
3661 }
3662
bnx2x_update_mng_version_utility(u8 * version,bool bnx2x_format)3663 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3664 {
3665 u8 vals[4];
3666 int i = 0;
3667
3668 if (bnx2x_format) {
3669 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3670 &vals[0], &vals[1], &vals[2], &vals[3]);
3671 if (i > 0)
3672 vals[0] -= '0';
3673 } else {
3674 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3675 &vals[0], &vals[1], &vals[2], &vals[3]);
3676 }
3677
3678 while (i < 4)
3679 vals[i++] = 0;
3680
3681 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3682 }
3683
bnx2x_update_mng_version(struct bnx2x * bp)3684 void bnx2x_update_mng_version(struct bnx2x *bp)
3685 {
3686 u32 iscsiver = DRV_VER_NOT_LOADED;
3687 u32 fcoever = DRV_VER_NOT_LOADED;
3688 u32 ethver = DRV_VER_NOT_LOADED;
3689 int idx = BP_FW_MB_IDX(bp);
3690 u8 *version;
3691
3692 if (!SHMEM2_HAS(bp, func_os_drv_ver))
3693 return;
3694
3695 mutex_lock(&bp->drv_info_mutex);
3696 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3697 if (bp->drv_info_mng_owner)
3698 goto out;
3699
3700 if (bp->state != BNX2X_STATE_OPEN)
3701 goto out;
3702
3703 /* Parse ethernet driver version */
3704 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3705 if (!CNIC_LOADED(bp))
3706 goto out;
3707
3708 /* Try getting storage driver version via cnic */
3709 memset(&bp->slowpath->drv_info_to_mcp, 0,
3710 sizeof(union drv_info_to_mcp));
3711 bnx2x_drv_info_iscsi_stat(bp);
3712 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3713 iscsiver = bnx2x_update_mng_version_utility(version, false);
3714
3715 memset(&bp->slowpath->drv_info_to_mcp, 0,
3716 sizeof(union drv_info_to_mcp));
3717 bnx2x_drv_info_fcoe_stat(bp);
3718 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3719 fcoever = bnx2x_update_mng_version_utility(version, false);
3720
3721 out:
3722 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3723 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3724 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3725
3726 mutex_unlock(&bp->drv_info_mutex);
3727
3728 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3729 ethver, iscsiver, fcoever);
3730 }
3731
bnx2x_update_mfw_dump(struct bnx2x * bp)3732 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3733 {
3734 u32 drv_ver;
3735 u32 valid_dump;
3736
3737 if (!SHMEM2_HAS(bp, drv_info))
3738 return;
3739
3740 /* Update Driver load time, possibly broken in y2038 */
3741 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3742
3743 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3744 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3745
3746 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3747
3748 /* Check & notify On-Chip dump. */
3749 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3750
3751 if (valid_dump & FIRST_DUMP_VALID)
3752 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3753
3754 if (valid_dump & SECOND_DUMP_VALID)
3755 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3756 }
3757
bnx2x_oem_event(struct bnx2x * bp,u32 event)3758 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3759 {
3760 u32 cmd_ok, cmd_fail;
3761
3762 /* sanity */
3763 if (event & DRV_STATUS_DCC_EVENT_MASK &&
3764 event & DRV_STATUS_OEM_EVENT_MASK) {
3765 BNX2X_ERR("Received simultaneous events %08x\n", event);
3766 return;
3767 }
3768
3769 if (event & DRV_STATUS_DCC_EVENT_MASK) {
3770 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3771 cmd_ok = DRV_MSG_CODE_DCC_OK;
3772 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3773 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3774 cmd_ok = DRV_MSG_CODE_OEM_OK;
3775 }
3776
3777 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3778
3779 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3780 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3781 /* This is the only place besides the function initialization
3782 * where the bp->flags can change so it is done without any
3783 * locks
3784 */
3785 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3786 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3787 bp->flags |= MF_FUNC_DIS;
3788
3789 bnx2x_e1h_disable(bp);
3790 } else {
3791 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3792 bp->flags &= ~MF_FUNC_DIS;
3793
3794 bnx2x_e1h_enable(bp);
3795 }
3796 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3797 DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3798 }
3799
3800 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3801 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3802 bnx2x_config_mf_bw(bp);
3803 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3804 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3805 }
3806
3807 /* Report results to MCP */
3808 if (event)
3809 bnx2x_fw_command(bp, cmd_fail, 0);
3810 else
3811 bnx2x_fw_command(bp, cmd_ok, 0);
3812 }
3813
3814 /* must be called under the spq lock */
bnx2x_sp_get_next(struct bnx2x * bp)3815 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3816 {
3817 struct eth_spe *next_spe = bp->spq_prod_bd;
3818
3819 if (bp->spq_prod_bd == bp->spq_last_bd) {
3820 bp->spq_prod_bd = bp->spq;
3821 bp->spq_prod_idx = 0;
3822 DP(BNX2X_MSG_SP, "end of spq\n");
3823 } else {
3824 bp->spq_prod_bd++;
3825 bp->spq_prod_idx++;
3826 }
3827 return next_spe;
3828 }
3829
3830 /* must be called under the spq lock */
bnx2x_sp_prod_update(struct bnx2x * bp)3831 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3832 {
3833 int func = BP_FUNC(bp);
3834
3835 /*
3836 * Make sure that BD data is updated before writing the producer:
3837 * BD data is written to the memory, the producer is read from the
3838 * memory, thus we need a full memory barrier to ensure the ordering.
3839 */
3840 mb();
3841
3842 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3843 bp->spq_prod_idx);
3844 }
3845
3846 /**
3847 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3848 *
3849 * @cmd: command to check
3850 * @cmd_type: command type
3851 */
bnx2x_is_contextless_ramrod(int cmd,int cmd_type)3852 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3853 {
3854 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3855 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3856 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3857 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3858 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3859 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3860 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3861 return true;
3862 else
3863 return false;
3864 }
3865
3866 /**
3867 * bnx2x_sp_post - place a single command on an SP ring
3868 *
3869 * @bp: driver handle
3870 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3871 * @cid: SW CID the command is related to
3872 * @data_hi: command private data address (high 32 bits)
3873 * @data_lo: command private data address (low 32 bits)
3874 * @cmd_type: command type (e.g. NONE, ETH)
3875 *
3876 * SP data is handled as if it's always an address pair, thus data fields are
3877 * not swapped to little endian in upper functions. Instead this function swaps
3878 * data as if it's two u32 fields.
3879 */
bnx2x_sp_post(struct bnx2x * bp,int command,int cid,u32 data_hi,u32 data_lo,int cmd_type)3880 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3881 u32 data_hi, u32 data_lo, int cmd_type)
3882 {
3883 struct eth_spe *spe;
3884 u16 type;
3885 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3886
3887 #ifdef BNX2X_STOP_ON_ERROR
3888 if (unlikely(bp->panic)) {
3889 BNX2X_ERR("Can't post SP when there is panic\n");
3890 return -EIO;
3891 }
3892 #endif
3893
3894 spin_lock_bh(&bp->spq_lock);
3895
3896 if (common) {
3897 if (!atomic_read(&bp->eq_spq_left)) {
3898 BNX2X_ERR("BUG! EQ ring full!\n");
3899 spin_unlock_bh(&bp->spq_lock);
3900 bnx2x_panic();
3901 return -EBUSY;
3902 }
3903 } else if (!atomic_read(&bp->cq_spq_left)) {
3904 BNX2X_ERR("BUG! SPQ ring full!\n");
3905 spin_unlock_bh(&bp->spq_lock);
3906 bnx2x_panic();
3907 return -EBUSY;
3908 }
3909
3910 spe = bnx2x_sp_get_next(bp);
3911
3912 /* CID needs port number to be encoded int it */
3913 spe->hdr.conn_and_cmd_data =
3914 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3915 HW_CID(bp, cid));
3916
3917 /* In some cases, type may already contain the func-id
3918 * mainly in SRIOV related use cases, so we add it here only
3919 * if it's not already set.
3920 */
3921 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3922 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3923 SPE_HDR_CONN_TYPE;
3924 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3925 SPE_HDR_FUNCTION_ID);
3926 } else {
3927 type = cmd_type;
3928 }
3929
3930 spe->hdr.type = cpu_to_le16(type);
3931
3932 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3933 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3934
3935 /*
3936 * It's ok if the actual decrement is issued towards the memory
3937 * somewhere between the spin_lock and spin_unlock. Thus no
3938 * more explicit memory barrier is needed.
3939 */
3940 if (common)
3941 atomic_dec(&bp->eq_spq_left);
3942 else
3943 atomic_dec(&bp->cq_spq_left);
3944
3945 DP(BNX2X_MSG_SP,
3946 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3947 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3948 (u32)(U64_LO(bp->spq_mapping) +
3949 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3950 HW_CID(bp, cid), data_hi, data_lo, type,
3951 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3952
3953 bnx2x_sp_prod_update(bp);
3954 spin_unlock_bh(&bp->spq_lock);
3955 return 0;
3956 }
3957
3958 /* acquire split MCP access lock register */
bnx2x_acquire_alr(struct bnx2x * bp)3959 static int bnx2x_acquire_alr(struct bnx2x *bp)
3960 {
3961 u32 j, val;
3962 int rc = 0;
3963
3964 might_sleep();
3965 for (j = 0; j < 1000; j++) {
3966 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3967 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3968 if (val & MCPR_ACCESS_LOCK_LOCK)
3969 break;
3970
3971 usleep_range(5000, 10000);
3972 }
3973 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3974 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3975 rc = -EBUSY;
3976 }
3977
3978 return rc;
3979 }
3980
3981 /* release split MCP access lock register */
bnx2x_release_alr(struct bnx2x * bp)3982 static void bnx2x_release_alr(struct bnx2x *bp)
3983 {
3984 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3985 }
3986
3987 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3988 #define BNX2X_DEF_SB_IDX 0x0002
3989
bnx2x_update_dsb_idx(struct bnx2x * bp)3990 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3991 {
3992 struct host_sp_status_block *def_sb = bp->def_status_blk;
3993 u16 rc = 0;
3994
3995 barrier(); /* status block is written to by the chip */
3996 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3997 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3998 rc |= BNX2X_DEF_SB_ATT_IDX;
3999 }
4000
4001 if (bp->def_idx != def_sb->sp_sb.running_index) {
4002 bp->def_idx = def_sb->sp_sb.running_index;
4003 rc |= BNX2X_DEF_SB_IDX;
4004 }
4005
4006 /* Do not reorder: indices reading should complete before handling */
4007 barrier();
4008 return rc;
4009 }
4010
4011 /*
4012 * slow path service functions
4013 */
4014
bnx2x_attn_int_asserted(struct bnx2x * bp,u32 asserted)4015 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4016 {
4017 int port = BP_PORT(bp);
4018 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4019 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4020 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4021 NIG_REG_MASK_INTERRUPT_PORT0;
4022 u32 aeu_mask;
4023 u32 nig_mask = 0;
4024 u32 reg_addr;
4025
4026 if (bp->attn_state & asserted)
4027 BNX2X_ERR("IGU ERROR\n");
4028
4029 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4030 aeu_mask = REG_RD(bp, aeu_addr);
4031
4032 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
4033 aeu_mask, asserted);
4034 aeu_mask &= ~(asserted & 0x3ff);
4035 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4036
4037 REG_WR(bp, aeu_addr, aeu_mask);
4038 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4039
4040 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4041 bp->attn_state |= asserted;
4042 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4043
4044 if (asserted & ATTN_HARD_WIRED_MASK) {
4045 if (asserted & ATTN_NIG_FOR_FUNC) {
4046
4047 bnx2x_acquire_phy_lock(bp);
4048
4049 /* save nig interrupt mask */
4050 nig_mask = REG_RD(bp, nig_int_mask_addr);
4051
4052 /* If nig_mask is not set, no need to call the update
4053 * function.
4054 */
4055 if (nig_mask) {
4056 REG_WR(bp, nig_int_mask_addr, 0);
4057
4058 bnx2x_link_attn(bp);
4059 }
4060
4061 /* handle unicore attn? */
4062 }
4063 if (asserted & ATTN_SW_TIMER_4_FUNC)
4064 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4065
4066 if (asserted & GPIO_2_FUNC)
4067 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4068
4069 if (asserted & GPIO_3_FUNC)
4070 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4071
4072 if (asserted & GPIO_4_FUNC)
4073 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4074
4075 if (port == 0) {
4076 if (asserted & ATTN_GENERAL_ATTN_1) {
4077 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4078 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4079 }
4080 if (asserted & ATTN_GENERAL_ATTN_2) {
4081 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4082 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4083 }
4084 if (asserted & ATTN_GENERAL_ATTN_3) {
4085 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4086 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4087 }
4088 } else {
4089 if (asserted & ATTN_GENERAL_ATTN_4) {
4090 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4091 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4092 }
4093 if (asserted & ATTN_GENERAL_ATTN_5) {
4094 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4095 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4096 }
4097 if (asserted & ATTN_GENERAL_ATTN_6) {
4098 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4099 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4100 }
4101 }
4102
4103 } /* if hardwired */
4104
4105 if (bp->common.int_block == INT_BLOCK_HC)
4106 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4107 COMMAND_REG_ATTN_BITS_SET);
4108 else
4109 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4110
4111 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4112 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4113 REG_WR(bp, reg_addr, asserted);
4114
4115 /* now set back the mask */
4116 if (asserted & ATTN_NIG_FOR_FUNC) {
4117 /* Verify that IGU ack through BAR was written before restoring
4118 * NIG mask. This loop should exit after 2-3 iterations max.
4119 */
4120 if (bp->common.int_block != INT_BLOCK_HC) {
4121 u32 cnt = 0, igu_acked;
4122 do {
4123 igu_acked = REG_RD(bp,
4124 IGU_REG_ATTENTION_ACK_BITS);
4125 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4126 (++cnt < MAX_IGU_ATTN_ACK_TO));
4127 if (!igu_acked)
4128 DP(NETIF_MSG_HW,
4129 "Failed to verify IGU ack on time\n");
4130 barrier();
4131 }
4132 REG_WR(bp, nig_int_mask_addr, nig_mask);
4133 bnx2x_release_phy_lock(bp);
4134 }
4135 }
4136
bnx2x_fan_failure(struct bnx2x * bp)4137 static void bnx2x_fan_failure(struct bnx2x *bp)
4138 {
4139 int port = BP_PORT(bp);
4140 u32 ext_phy_config;
4141 /* mark the failure */
4142 ext_phy_config =
4143 SHMEM_RD(bp,
4144 dev_info.port_hw_config[port].external_phy_config);
4145
4146 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4147 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4148 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4149 ext_phy_config);
4150
4151 /* log the failure */
4152 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4153 "Please contact OEM Support for assistance\n");
4154
4155 /* Schedule device reset (unload)
4156 * This is due to some boards consuming sufficient power when driver is
4157 * up to overheat if fan fails.
4158 */
4159 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4160 }
4161
bnx2x_attn_int_deasserted0(struct bnx2x * bp,u32 attn)4162 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4163 {
4164 int port = BP_PORT(bp);
4165 int reg_offset;
4166 u32 val;
4167
4168 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4169 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4170
4171 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4172
4173 val = REG_RD(bp, reg_offset);
4174 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4175 REG_WR(bp, reg_offset, val);
4176
4177 BNX2X_ERR("SPIO5 hw attention\n");
4178
4179 /* Fan failure attention */
4180 bnx2x_hw_reset_phy(&bp->link_params);
4181 bnx2x_fan_failure(bp);
4182 }
4183
4184 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4185 bnx2x_acquire_phy_lock(bp);
4186 bnx2x_handle_module_detect_int(&bp->link_params);
4187 bnx2x_release_phy_lock(bp);
4188 }
4189
4190 if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4191
4192 val = REG_RD(bp, reg_offset);
4193 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4194 REG_WR(bp, reg_offset, val);
4195
4196 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4197 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4198 bnx2x_panic();
4199 }
4200 }
4201
bnx2x_attn_int_deasserted1(struct bnx2x * bp,u32 attn)4202 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4203 {
4204 u32 val;
4205
4206 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4207
4208 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4209 BNX2X_ERR("DB hw attention 0x%x\n", val);
4210 /* DORQ discard attention */
4211 if (val & 0x2)
4212 BNX2X_ERR("FATAL error from DORQ\n");
4213 }
4214
4215 if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4216
4217 int port = BP_PORT(bp);
4218 int reg_offset;
4219
4220 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4221 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4222
4223 val = REG_RD(bp, reg_offset);
4224 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4225 REG_WR(bp, reg_offset, val);
4226
4227 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4228 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4229 bnx2x_panic();
4230 }
4231 }
4232
bnx2x_attn_int_deasserted2(struct bnx2x * bp,u32 attn)4233 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4234 {
4235 u32 val;
4236
4237 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4238
4239 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4240 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4241 /* CFC error attention */
4242 if (val & 0x2)
4243 BNX2X_ERR("FATAL error from CFC\n");
4244 }
4245
4246 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4247 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4248 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4249 /* RQ_USDMDP_FIFO_OVERFLOW */
4250 if (val & 0x18000)
4251 BNX2X_ERR("FATAL error from PXP\n");
4252
4253 if (!CHIP_IS_E1x(bp)) {
4254 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4255 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4256 }
4257 }
4258
4259 if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4260
4261 int port = BP_PORT(bp);
4262 int reg_offset;
4263
4264 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4265 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4266
4267 val = REG_RD(bp, reg_offset);
4268 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4269 REG_WR(bp, reg_offset, val);
4270
4271 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4272 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4273 bnx2x_panic();
4274 }
4275 }
4276
bnx2x_attn_int_deasserted3(struct bnx2x * bp,u32 attn)4277 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4278 {
4279 u32 val;
4280
4281 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4282
4283 if (attn & BNX2X_PMF_LINK_ASSERT) {
4284 int func = BP_FUNC(bp);
4285
4286 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4287 bnx2x_read_mf_cfg(bp);
4288 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4289 func_mf_config[BP_ABS_FUNC(bp)].config);
4290 val = SHMEM_RD(bp,
4291 func_mb[BP_FW_MB_IDX(bp)].drv_status);
4292
4293 if (val & (DRV_STATUS_DCC_EVENT_MASK |
4294 DRV_STATUS_OEM_EVENT_MASK))
4295 bnx2x_oem_event(bp,
4296 (val & (DRV_STATUS_DCC_EVENT_MASK |
4297 DRV_STATUS_OEM_EVENT_MASK)));
4298
4299 if (val & DRV_STATUS_SET_MF_BW)
4300 bnx2x_set_mf_bw(bp);
4301
4302 if (val & DRV_STATUS_DRV_INFO_REQ)
4303 bnx2x_handle_drv_info_req(bp);
4304
4305 if (val & DRV_STATUS_VF_DISABLED)
4306 bnx2x_schedule_iov_task(bp,
4307 BNX2X_IOV_HANDLE_FLR);
4308
4309 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4310 bnx2x_pmf_update(bp);
4311
4312 if (bp->port.pmf &&
4313 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4314 bp->dcbx_enabled > 0)
4315 /* start dcbx state machine */
4316 bnx2x_dcbx_set_params(bp,
4317 BNX2X_DCBX_STATE_NEG_RECEIVED);
4318 if (val & DRV_STATUS_AFEX_EVENT_MASK)
4319 bnx2x_handle_afex_cmd(bp,
4320 val & DRV_STATUS_AFEX_EVENT_MASK);
4321 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4322 bnx2x_handle_eee_event(bp);
4323
4324 if (val & DRV_STATUS_OEM_UPDATE_SVID)
4325 bnx2x_schedule_sp_rtnl(bp,
4326 BNX2X_SP_RTNL_UPDATE_SVID, 0);
4327
4328 if (bp->link_vars.periodic_flags &
4329 PERIODIC_FLAGS_LINK_EVENT) {
4330 /* sync with link */
4331 bnx2x_acquire_phy_lock(bp);
4332 bp->link_vars.periodic_flags &=
4333 ~PERIODIC_FLAGS_LINK_EVENT;
4334 bnx2x_release_phy_lock(bp);
4335 if (IS_MF(bp))
4336 bnx2x_link_sync_notify(bp);
4337 bnx2x_link_report(bp);
4338 }
4339 /* Always call it here: bnx2x_link_report() will
4340 * prevent the link indication duplication.
4341 */
4342 bnx2x__link_status_update(bp);
4343 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4344
4345 BNX2X_ERR("MC assert!\n");
4346 bnx2x_mc_assert(bp);
4347 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4348 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4349 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4350 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4351 bnx2x_panic();
4352
4353 } else if (attn & BNX2X_MCP_ASSERT) {
4354
4355 BNX2X_ERR("MCP assert!\n");
4356 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4357 bnx2x_fw_dump(bp);
4358
4359 } else
4360 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4361 }
4362
4363 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4364 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4365 if (attn & BNX2X_GRC_TIMEOUT) {
4366 val = CHIP_IS_E1(bp) ? 0 :
4367 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4368 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4369 }
4370 if (attn & BNX2X_GRC_RSV) {
4371 val = CHIP_IS_E1(bp) ? 0 :
4372 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4373 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4374 }
4375 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4376 }
4377 }
4378
4379 /*
4380 * Bits map:
4381 * 0-7 - Engine0 load counter.
4382 * 8-15 - Engine1 load counter.
4383 * 16 - Engine0 RESET_IN_PROGRESS bit.
4384 * 17 - Engine1 RESET_IN_PROGRESS bit.
4385 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4386 * on the engine
4387 * 19 - Engine1 ONE_IS_LOADED.
4388 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4389 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4390 * just the one belonging to its engine).
4391 *
4392 */
4393 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4394
4395 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4396 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4397 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4398 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4399 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4400 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4401 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4402
4403 /*
4404 * Set the GLOBAL_RESET bit.
4405 *
4406 * Should be run under rtnl lock
4407 */
bnx2x_set_reset_global(struct bnx2x * bp)4408 void bnx2x_set_reset_global(struct bnx2x *bp)
4409 {
4410 u32 val;
4411 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4412 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4413 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4414 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4415 }
4416
4417 /*
4418 * Clear the GLOBAL_RESET bit.
4419 *
4420 * Should be run under rtnl lock
4421 */
bnx2x_clear_reset_global(struct bnx2x * bp)4422 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4423 {
4424 u32 val;
4425 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4426 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4427 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4428 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4429 }
4430
4431 /*
4432 * Checks the GLOBAL_RESET bit.
4433 *
4434 * should be run under rtnl lock
4435 */
bnx2x_reset_is_global(struct bnx2x * bp)4436 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4437 {
4438 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4439
4440 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4441 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4442 }
4443
4444 /*
4445 * Clear RESET_IN_PROGRESS bit for the current engine.
4446 *
4447 * Should be run under rtnl lock
4448 */
bnx2x_set_reset_done(struct bnx2x * bp)4449 static void bnx2x_set_reset_done(struct bnx2x *bp)
4450 {
4451 u32 val;
4452 u32 bit = BP_PATH(bp) ?
4453 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4454 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4455 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4456
4457 /* Clear the bit */
4458 val &= ~bit;
4459 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4460
4461 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4462 }
4463
4464 /*
4465 * Set RESET_IN_PROGRESS for the current engine.
4466 *
4467 * should be run under rtnl lock
4468 */
bnx2x_set_reset_in_progress(struct bnx2x * bp)4469 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4470 {
4471 u32 val;
4472 u32 bit = BP_PATH(bp) ?
4473 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4474 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4475 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4476
4477 /* Set the bit */
4478 val |= bit;
4479 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4480 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4481 }
4482
4483 /*
4484 * Checks the RESET_IN_PROGRESS bit for the given engine.
4485 * should be run under rtnl lock
4486 */
bnx2x_reset_is_done(struct bnx2x * bp,int engine)4487 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4488 {
4489 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4490 u32 bit = engine ?
4491 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4492
4493 /* return false if bit is set */
4494 return (val & bit) ? false : true;
4495 }
4496
4497 /*
4498 * set pf load for the current pf.
4499 *
4500 * should be run under rtnl lock
4501 */
bnx2x_set_pf_load(struct bnx2x * bp)4502 void bnx2x_set_pf_load(struct bnx2x *bp)
4503 {
4504 u32 val1, val;
4505 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4506 BNX2X_PATH0_LOAD_CNT_MASK;
4507 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4508 BNX2X_PATH0_LOAD_CNT_SHIFT;
4509
4510 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4511 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4512
4513 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4514
4515 /* get the current counter value */
4516 val1 = (val & mask) >> shift;
4517
4518 /* set bit of that PF */
4519 val1 |= (1 << bp->pf_num);
4520
4521 /* clear the old value */
4522 val &= ~mask;
4523
4524 /* set the new one */
4525 val |= ((val1 << shift) & mask);
4526
4527 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4528 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4529 }
4530
4531 /**
4532 * bnx2x_clear_pf_load - clear pf load mark
4533 *
4534 * @bp: driver handle
4535 *
4536 * Should be run under rtnl lock.
4537 * Decrements the load counter for the current engine. Returns
4538 * whether other functions are still loaded
4539 */
bnx2x_clear_pf_load(struct bnx2x * bp)4540 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4541 {
4542 u32 val1, val;
4543 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4544 BNX2X_PATH0_LOAD_CNT_MASK;
4545 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4546 BNX2X_PATH0_LOAD_CNT_SHIFT;
4547
4548 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4549 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4550 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4551
4552 /* get the current counter value */
4553 val1 = (val & mask) >> shift;
4554
4555 /* clear bit of that PF */
4556 val1 &= ~(1 << bp->pf_num);
4557
4558 /* clear the old value */
4559 val &= ~mask;
4560
4561 /* set the new one */
4562 val |= ((val1 << shift) & mask);
4563
4564 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4565 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4566 return val1 != 0;
4567 }
4568
4569 /*
4570 * Read the load status for the current engine.
4571 *
4572 * should be run under rtnl lock
4573 */
bnx2x_get_load_status(struct bnx2x * bp,int engine)4574 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4575 {
4576 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4577 BNX2X_PATH0_LOAD_CNT_MASK);
4578 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4579 BNX2X_PATH0_LOAD_CNT_SHIFT);
4580 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4581
4582 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4583
4584 val = (val & mask) >> shift;
4585
4586 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4587 engine, val);
4588
4589 return val != 0;
4590 }
4591
_print_parity(struct bnx2x * bp,u32 reg)4592 static void _print_parity(struct bnx2x *bp, u32 reg)
4593 {
4594 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4595 }
4596
_print_next_block(int idx,const char * blk)4597 static void _print_next_block(int idx, const char *blk)
4598 {
4599 pr_cont("%s%s", idx ? ", " : "", blk);
4600 }
4601
bnx2x_check_blocks_with_parity0(struct bnx2x * bp,u32 sig,int * par_num,bool print)4602 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4603 int *par_num, bool print)
4604 {
4605 u32 cur_bit;
4606 bool res;
4607 int i;
4608
4609 res = false;
4610
4611 for (i = 0; sig; i++) {
4612 cur_bit = (0x1UL << i);
4613 if (sig & cur_bit) {
4614 res |= true; /* Each bit is real error! */
4615
4616 if (print) {
4617 switch (cur_bit) {
4618 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4619 _print_next_block((*par_num)++, "BRB");
4620 _print_parity(bp,
4621 BRB1_REG_BRB1_PRTY_STS);
4622 break;
4623 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4624 _print_next_block((*par_num)++,
4625 "PARSER");
4626 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4627 break;
4628 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4629 _print_next_block((*par_num)++, "TSDM");
4630 _print_parity(bp,
4631 TSDM_REG_TSDM_PRTY_STS);
4632 break;
4633 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4634 _print_next_block((*par_num)++,
4635 "SEARCHER");
4636 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4637 break;
4638 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4639 _print_next_block((*par_num)++, "TCM");
4640 _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4641 break;
4642 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4643 _print_next_block((*par_num)++,
4644 "TSEMI");
4645 _print_parity(bp,
4646 TSEM_REG_TSEM_PRTY_STS_0);
4647 _print_parity(bp,
4648 TSEM_REG_TSEM_PRTY_STS_1);
4649 break;
4650 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4651 _print_next_block((*par_num)++, "XPB");
4652 _print_parity(bp, GRCBASE_XPB +
4653 PB_REG_PB_PRTY_STS);
4654 break;
4655 }
4656 }
4657
4658 /* Clear the bit */
4659 sig &= ~cur_bit;
4660 }
4661 }
4662
4663 return res;
4664 }
4665
bnx2x_check_blocks_with_parity1(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4666 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4667 int *par_num, bool *global,
4668 bool print)
4669 {
4670 u32 cur_bit;
4671 bool res;
4672 int i;
4673
4674 res = false;
4675
4676 for (i = 0; sig; i++) {
4677 cur_bit = (0x1UL << i);
4678 if (sig & cur_bit) {
4679 res |= true; /* Each bit is real error! */
4680 switch (cur_bit) {
4681 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4682 if (print) {
4683 _print_next_block((*par_num)++, "PBF");
4684 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4685 }
4686 break;
4687 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4688 if (print) {
4689 _print_next_block((*par_num)++, "QM");
4690 _print_parity(bp, QM_REG_QM_PRTY_STS);
4691 }
4692 break;
4693 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4694 if (print) {
4695 _print_next_block((*par_num)++, "TM");
4696 _print_parity(bp, TM_REG_TM_PRTY_STS);
4697 }
4698 break;
4699 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4700 if (print) {
4701 _print_next_block((*par_num)++, "XSDM");
4702 _print_parity(bp,
4703 XSDM_REG_XSDM_PRTY_STS);
4704 }
4705 break;
4706 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4707 if (print) {
4708 _print_next_block((*par_num)++, "XCM");
4709 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4710 }
4711 break;
4712 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4713 if (print) {
4714 _print_next_block((*par_num)++,
4715 "XSEMI");
4716 _print_parity(bp,
4717 XSEM_REG_XSEM_PRTY_STS_0);
4718 _print_parity(bp,
4719 XSEM_REG_XSEM_PRTY_STS_1);
4720 }
4721 break;
4722 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4723 if (print) {
4724 _print_next_block((*par_num)++,
4725 "DOORBELLQ");
4726 _print_parity(bp,
4727 DORQ_REG_DORQ_PRTY_STS);
4728 }
4729 break;
4730 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4731 if (print) {
4732 _print_next_block((*par_num)++, "NIG");
4733 if (CHIP_IS_E1x(bp)) {
4734 _print_parity(bp,
4735 NIG_REG_NIG_PRTY_STS);
4736 } else {
4737 _print_parity(bp,
4738 NIG_REG_NIG_PRTY_STS_0);
4739 _print_parity(bp,
4740 NIG_REG_NIG_PRTY_STS_1);
4741 }
4742 }
4743 break;
4744 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4745 if (print)
4746 _print_next_block((*par_num)++,
4747 "VAUX PCI CORE");
4748 *global = true;
4749 break;
4750 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4751 if (print) {
4752 _print_next_block((*par_num)++,
4753 "DEBUG");
4754 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4755 }
4756 break;
4757 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4758 if (print) {
4759 _print_next_block((*par_num)++, "USDM");
4760 _print_parity(bp,
4761 USDM_REG_USDM_PRTY_STS);
4762 }
4763 break;
4764 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4765 if (print) {
4766 _print_next_block((*par_num)++, "UCM");
4767 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4768 }
4769 break;
4770 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4771 if (print) {
4772 _print_next_block((*par_num)++,
4773 "USEMI");
4774 _print_parity(bp,
4775 USEM_REG_USEM_PRTY_STS_0);
4776 _print_parity(bp,
4777 USEM_REG_USEM_PRTY_STS_1);
4778 }
4779 break;
4780 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4781 if (print) {
4782 _print_next_block((*par_num)++, "UPB");
4783 _print_parity(bp, GRCBASE_UPB +
4784 PB_REG_PB_PRTY_STS);
4785 }
4786 break;
4787 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4788 if (print) {
4789 _print_next_block((*par_num)++, "CSDM");
4790 _print_parity(bp,
4791 CSDM_REG_CSDM_PRTY_STS);
4792 }
4793 break;
4794 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4795 if (print) {
4796 _print_next_block((*par_num)++, "CCM");
4797 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4798 }
4799 break;
4800 }
4801
4802 /* Clear the bit */
4803 sig &= ~cur_bit;
4804 }
4805 }
4806
4807 return res;
4808 }
4809
bnx2x_check_blocks_with_parity2(struct bnx2x * bp,u32 sig,int * par_num,bool print)4810 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4811 int *par_num, bool print)
4812 {
4813 u32 cur_bit;
4814 bool res;
4815 int i;
4816
4817 res = false;
4818
4819 for (i = 0; sig; i++) {
4820 cur_bit = (0x1UL << i);
4821 if (sig & cur_bit) {
4822 res = true; /* Each bit is real error! */
4823 if (print) {
4824 switch (cur_bit) {
4825 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4826 _print_next_block((*par_num)++,
4827 "CSEMI");
4828 _print_parity(bp,
4829 CSEM_REG_CSEM_PRTY_STS_0);
4830 _print_parity(bp,
4831 CSEM_REG_CSEM_PRTY_STS_1);
4832 break;
4833 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4834 _print_next_block((*par_num)++, "PXP");
4835 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4836 _print_parity(bp,
4837 PXP2_REG_PXP2_PRTY_STS_0);
4838 _print_parity(bp,
4839 PXP2_REG_PXP2_PRTY_STS_1);
4840 break;
4841 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4842 _print_next_block((*par_num)++,
4843 "PXPPCICLOCKCLIENT");
4844 break;
4845 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4846 _print_next_block((*par_num)++, "CFC");
4847 _print_parity(bp,
4848 CFC_REG_CFC_PRTY_STS);
4849 break;
4850 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4851 _print_next_block((*par_num)++, "CDU");
4852 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4853 break;
4854 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4855 _print_next_block((*par_num)++, "DMAE");
4856 _print_parity(bp,
4857 DMAE_REG_DMAE_PRTY_STS);
4858 break;
4859 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4860 _print_next_block((*par_num)++, "IGU");
4861 if (CHIP_IS_E1x(bp))
4862 _print_parity(bp,
4863 HC_REG_HC_PRTY_STS);
4864 else
4865 _print_parity(bp,
4866 IGU_REG_IGU_PRTY_STS);
4867 break;
4868 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4869 _print_next_block((*par_num)++, "MISC");
4870 _print_parity(bp,
4871 MISC_REG_MISC_PRTY_STS);
4872 break;
4873 }
4874 }
4875
4876 /* Clear the bit */
4877 sig &= ~cur_bit;
4878 }
4879 }
4880
4881 return res;
4882 }
4883
bnx2x_check_blocks_with_parity3(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4884 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4885 int *par_num, bool *global,
4886 bool print)
4887 {
4888 bool res = false;
4889 u32 cur_bit;
4890 int i;
4891
4892 for (i = 0; sig; i++) {
4893 cur_bit = (0x1UL << i);
4894 if (sig & cur_bit) {
4895 switch (cur_bit) {
4896 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4897 if (print)
4898 _print_next_block((*par_num)++,
4899 "MCP ROM");
4900 *global = true;
4901 res = true;
4902 break;
4903 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4904 if (print)
4905 _print_next_block((*par_num)++,
4906 "MCP UMP RX");
4907 *global = true;
4908 res = true;
4909 break;
4910 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4911 if (print)
4912 _print_next_block((*par_num)++,
4913 "MCP UMP TX");
4914 *global = true;
4915 res = true;
4916 break;
4917 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4918 (*par_num)++;
4919 /* clear latched SCPAD PATIRY from MCP */
4920 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4921 1UL << 10);
4922 break;
4923 }
4924
4925 /* Clear the bit */
4926 sig &= ~cur_bit;
4927 }
4928 }
4929
4930 return res;
4931 }
4932
bnx2x_check_blocks_with_parity4(struct bnx2x * bp,u32 sig,int * par_num,bool print)4933 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4934 int *par_num, bool print)
4935 {
4936 u32 cur_bit;
4937 bool res;
4938 int i;
4939
4940 res = false;
4941
4942 for (i = 0; sig; i++) {
4943 cur_bit = (0x1UL << i);
4944 if (sig & cur_bit) {
4945 res = true; /* Each bit is real error! */
4946 if (print) {
4947 switch (cur_bit) {
4948 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4949 _print_next_block((*par_num)++,
4950 "PGLUE_B");
4951 _print_parity(bp,
4952 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4953 break;
4954 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4955 _print_next_block((*par_num)++, "ATC");
4956 _print_parity(bp,
4957 ATC_REG_ATC_PRTY_STS);
4958 break;
4959 }
4960 }
4961 /* Clear the bit */
4962 sig &= ~cur_bit;
4963 }
4964 }
4965
4966 return res;
4967 }
4968
bnx2x_parity_attn(struct bnx2x * bp,bool * global,bool print,u32 * sig)4969 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4970 u32 *sig)
4971 {
4972 bool res = false;
4973
4974 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4975 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4976 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4977 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4978 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4979 int par_num = 0;
4980
4981 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4982 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4983 sig[0] & HW_PRTY_ASSERT_SET_0,
4984 sig[1] & HW_PRTY_ASSERT_SET_1,
4985 sig[2] & HW_PRTY_ASSERT_SET_2,
4986 sig[3] & HW_PRTY_ASSERT_SET_3,
4987 sig[4] & HW_PRTY_ASSERT_SET_4);
4988 if (print) {
4989 if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4990 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4991 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4992 (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4993 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4994 netdev_err(bp->dev,
4995 "Parity errors detected in blocks: ");
4996 } else {
4997 print = false;
4998 }
4999 }
5000 res |= bnx2x_check_blocks_with_parity0(bp,
5001 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5002 res |= bnx2x_check_blocks_with_parity1(bp,
5003 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5004 res |= bnx2x_check_blocks_with_parity2(bp,
5005 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5006 res |= bnx2x_check_blocks_with_parity3(bp,
5007 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5008 res |= bnx2x_check_blocks_with_parity4(bp,
5009 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5010
5011 if (print)
5012 pr_cont("\n");
5013 }
5014
5015 return res;
5016 }
5017
5018 /**
5019 * bnx2x_chk_parity_attn - checks for parity attentions.
5020 *
5021 * @bp: driver handle
5022 * @global: true if there was a global attention
5023 * @print: show parity attention in syslog
5024 */
bnx2x_chk_parity_attn(struct bnx2x * bp,bool * global,bool print)5025 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5026 {
5027 struct attn_route attn = { {0} };
5028 int port = BP_PORT(bp);
5029
5030 attn.sig[0] = REG_RD(bp,
5031 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5032 port*4);
5033 attn.sig[1] = REG_RD(bp,
5034 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5035 port*4);
5036 attn.sig[2] = REG_RD(bp,
5037 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5038 port*4);
5039 attn.sig[3] = REG_RD(bp,
5040 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5041 port*4);
5042 /* Since MCP attentions can't be disabled inside the block, we need to
5043 * read AEU registers to see whether they're currently disabled
5044 */
5045 attn.sig[3] &= ((REG_RD(bp,
5046 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5047 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5048 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5049 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5050
5051 if (!CHIP_IS_E1x(bp))
5052 attn.sig[4] = REG_RD(bp,
5053 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5054 port*4);
5055
5056 return bnx2x_parity_attn(bp, global, print, attn.sig);
5057 }
5058
bnx2x_attn_int_deasserted4(struct bnx2x * bp,u32 attn)5059 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5060 {
5061 u32 val;
5062 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5063
5064 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5065 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5066 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5067 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5068 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5069 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5070 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5071 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5072 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5073 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5074 if (val &
5075 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5076 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5077 if (val &
5078 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5079 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5080 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5081 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5082 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5083 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5084 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5085 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5086 }
5087 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5088 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5089 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5090 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5091 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5092 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5093 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5094 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5095 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5096 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5097 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5098 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5099 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5100 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5101 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5102 }
5103
5104 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5105 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5106 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5107 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5108 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5109 }
5110 }
5111
bnx2x_attn_int_deasserted(struct bnx2x * bp,u32 deasserted)5112 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5113 {
5114 struct attn_route attn, *group_mask;
5115 int port = BP_PORT(bp);
5116 int index;
5117 u32 reg_addr;
5118 u32 val;
5119 u32 aeu_mask;
5120 bool global = false;
5121
5122 /* need to take HW lock because MCP or other port might also
5123 try to handle this event */
5124 bnx2x_acquire_alr(bp);
5125
5126 if (bnx2x_chk_parity_attn(bp, &global, true)) {
5127 #ifndef BNX2X_STOP_ON_ERROR
5128 bp->recovery_state = BNX2X_RECOVERY_INIT;
5129 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5130 /* Disable HW interrupts */
5131 bnx2x_int_disable(bp);
5132 /* In case of parity errors don't handle attentions so that
5133 * other function would "see" parity errors.
5134 */
5135 #else
5136 bnx2x_panic();
5137 #endif
5138 bnx2x_release_alr(bp);
5139 return;
5140 }
5141
5142 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5143 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5144 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5145 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5146 if (!CHIP_IS_E1x(bp))
5147 attn.sig[4] =
5148 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5149 else
5150 attn.sig[4] = 0;
5151
5152 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5153 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5154
5155 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5156 if (deasserted & (1 << index)) {
5157 group_mask = &bp->attn_group[index];
5158
5159 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5160 index,
5161 group_mask->sig[0], group_mask->sig[1],
5162 group_mask->sig[2], group_mask->sig[3],
5163 group_mask->sig[4]);
5164
5165 bnx2x_attn_int_deasserted4(bp,
5166 attn.sig[4] & group_mask->sig[4]);
5167 bnx2x_attn_int_deasserted3(bp,
5168 attn.sig[3] & group_mask->sig[3]);
5169 bnx2x_attn_int_deasserted1(bp,
5170 attn.sig[1] & group_mask->sig[1]);
5171 bnx2x_attn_int_deasserted2(bp,
5172 attn.sig[2] & group_mask->sig[2]);
5173 bnx2x_attn_int_deasserted0(bp,
5174 attn.sig[0] & group_mask->sig[0]);
5175 }
5176 }
5177
5178 bnx2x_release_alr(bp);
5179
5180 if (bp->common.int_block == INT_BLOCK_HC)
5181 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5182 COMMAND_REG_ATTN_BITS_CLR);
5183 else
5184 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5185
5186 val = ~deasserted;
5187 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5188 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5189 REG_WR(bp, reg_addr, val);
5190
5191 if (~bp->attn_state & deasserted)
5192 BNX2X_ERR("IGU ERROR\n");
5193
5194 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5195 MISC_REG_AEU_MASK_ATTN_FUNC_0;
5196
5197 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5198 aeu_mask = REG_RD(bp, reg_addr);
5199
5200 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
5201 aeu_mask, deasserted);
5202 aeu_mask |= (deasserted & 0x3ff);
5203 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5204
5205 REG_WR(bp, reg_addr, aeu_mask);
5206 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5207
5208 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5209 bp->attn_state &= ~deasserted;
5210 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5211 }
5212
bnx2x_attn_int(struct bnx2x * bp)5213 static void bnx2x_attn_int(struct bnx2x *bp)
5214 {
5215 /* read local copy of bits */
5216 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5217 attn_bits);
5218 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5219 attn_bits_ack);
5220 u32 attn_state = bp->attn_state;
5221
5222 /* look for changed bits */
5223 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
5224 u32 deasserted = ~attn_bits & attn_ack & attn_state;
5225
5226 DP(NETIF_MSG_HW,
5227 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
5228 attn_bits, attn_ack, asserted, deasserted);
5229
5230 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5231 BNX2X_ERR("BAD attention state\n");
5232
5233 /* handle bits that were raised */
5234 if (asserted)
5235 bnx2x_attn_int_asserted(bp, asserted);
5236
5237 if (deasserted)
5238 bnx2x_attn_int_deasserted(bp, deasserted);
5239 }
5240
bnx2x_igu_ack_sb(struct bnx2x * bp,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)5241 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5242 u16 index, u8 op, u8 update)
5243 {
5244 u32 igu_addr = bp->igu_base_addr;
5245 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5246 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5247 igu_addr);
5248 }
5249
bnx2x_update_eq_prod(struct bnx2x * bp,u16 prod)5250 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5251 {
5252 /* No memory barriers */
5253 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5254 }
5255
bnx2x_cnic_handle_cfc_del(struct bnx2x * bp,u32 cid,union event_ring_elem * elem)5256 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5257 union event_ring_elem *elem)
5258 {
5259 u8 err = elem->message.error;
5260
5261 if (!bp->cnic_eth_dev.starting_cid ||
5262 (cid < bp->cnic_eth_dev.starting_cid &&
5263 cid != bp->cnic_eth_dev.iscsi_l2_cid))
5264 return 1;
5265
5266 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5267
5268 if (unlikely(err)) {
5269
5270 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5271 cid);
5272 bnx2x_panic_dump(bp, false);
5273 }
5274 bnx2x_cnic_cfc_comp(bp, cid, err);
5275 return 0;
5276 }
5277
bnx2x_handle_mcast_eqe(struct bnx2x * bp)5278 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5279 {
5280 struct bnx2x_mcast_ramrod_params rparam;
5281 int rc;
5282
5283 memset(&rparam, 0, sizeof(rparam));
5284
5285 rparam.mcast_obj = &bp->mcast_obj;
5286
5287 netif_addr_lock_bh(bp->dev);
5288
5289 /* Clear pending state for the last command */
5290 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5291
5292 /* If there are pending mcast commands - send them */
5293 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5294 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5295 if (rc < 0)
5296 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5297 rc);
5298 }
5299
5300 netif_addr_unlock_bh(bp->dev);
5301 }
5302
bnx2x_handle_classification_eqe(struct bnx2x * bp,union event_ring_elem * elem)5303 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5304 union event_ring_elem *elem)
5305 {
5306 unsigned long ramrod_flags = 0;
5307 int rc = 0;
5308 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5309 u32 cid = echo & BNX2X_SWCID_MASK;
5310 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5311
5312 /* Always push next commands out, don't wait here */
5313 __set_bit(RAMROD_CONT, &ramrod_flags);
5314
5315 switch (echo >> BNX2X_SWCID_SHIFT) {
5316 case BNX2X_FILTER_MAC_PENDING:
5317 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5318 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5319 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5320 else
5321 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5322
5323 break;
5324 case BNX2X_FILTER_VLAN_PENDING:
5325 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5326 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5327 break;
5328 case BNX2X_FILTER_MCAST_PENDING:
5329 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5330 /* This is only relevant for 57710 where multicast MACs are
5331 * configured as unicast MACs using the same ramrod.
5332 */
5333 bnx2x_handle_mcast_eqe(bp);
5334 return;
5335 default:
5336 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5337 return;
5338 }
5339
5340 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5341
5342 if (rc < 0)
5343 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5344 else if (rc > 0)
5345 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5346 }
5347
5348 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5349
bnx2x_handle_rx_mode_eqe(struct bnx2x * bp)5350 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5351 {
5352 netif_addr_lock_bh(bp->dev);
5353
5354 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5355
5356 /* Send rx_mode command again if was requested */
5357 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5358 bnx2x_set_storm_rx_mode(bp);
5359 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5360 &bp->sp_state))
5361 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5362 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5363 &bp->sp_state))
5364 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5365
5366 netif_addr_unlock_bh(bp->dev);
5367 }
5368
bnx2x_after_afex_vif_lists(struct bnx2x * bp,union event_ring_elem * elem)5369 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5370 union event_ring_elem *elem)
5371 {
5372 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5373 DP(BNX2X_MSG_SP,
5374 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5375 elem->message.data.vif_list_event.func_bit_map);
5376 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5377 elem->message.data.vif_list_event.func_bit_map);
5378 } else if (elem->message.data.vif_list_event.echo ==
5379 VIF_LIST_RULE_SET) {
5380 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5381 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5382 }
5383 }
5384
5385 /* called with rtnl_lock */
bnx2x_after_function_update(struct bnx2x * bp)5386 static void bnx2x_after_function_update(struct bnx2x *bp)
5387 {
5388 int q, rc;
5389 struct bnx2x_fastpath *fp;
5390 struct bnx2x_queue_state_params queue_params = {NULL};
5391 struct bnx2x_queue_update_params *q_update_params =
5392 &queue_params.params.update;
5393
5394 /* Send Q update command with afex vlan removal values for all Qs */
5395 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5396
5397 /* set silent vlan removal values according to vlan mode */
5398 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5399 &q_update_params->update_flags);
5400 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5401 &q_update_params->update_flags);
5402 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5403
5404 /* in access mode mark mask and value are 0 to strip all vlans */
5405 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5406 q_update_params->silent_removal_value = 0;
5407 q_update_params->silent_removal_mask = 0;
5408 } else {
5409 q_update_params->silent_removal_value =
5410 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5411 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5412 }
5413
5414 for_each_eth_queue(bp, q) {
5415 /* Set the appropriate Queue object */
5416 fp = &bp->fp[q];
5417 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5418
5419 /* send the ramrod */
5420 rc = bnx2x_queue_state_change(bp, &queue_params);
5421 if (rc < 0)
5422 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5423 q);
5424 }
5425
5426 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5427 fp = &bp->fp[FCOE_IDX(bp)];
5428 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5429
5430 /* clear pending completion bit */
5431 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5432
5433 /* mark latest Q bit */
5434 smp_mb__before_atomic();
5435 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5436 smp_mb__after_atomic();
5437
5438 /* send Q update ramrod for FCoE Q */
5439 rc = bnx2x_queue_state_change(bp, &queue_params);
5440 if (rc < 0)
5441 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5442 q);
5443 } else {
5444 /* If no FCoE ring - ACK MCP now */
5445 bnx2x_link_report(bp);
5446 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5447 }
5448 }
5449
bnx2x_cid_to_q_obj(struct bnx2x * bp,u32 cid)5450 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5451 struct bnx2x *bp, u32 cid)
5452 {
5453 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5454
5455 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5456 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5457 else
5458 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5459 }
5460
bnx2x_eq_int(struct bnx2x * bp)5461 static void bnx2x_eq_int(struct bnx2x *bp)
5462 {
5463 u16 hw_cons, sw_cons, sw_prod;
5464 union event_ring_elem *elem;
5465 u8 echo;
5466 u32 cid;
5467 u8 opcode;
5468 int rc, spqe_cnt = 0;
5469 struct bnx2x_queue_sp_obj *q_obj;
5470 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5471 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5472
5473 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5474
5475 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5476 * when we get the next-page we need to adjust so the loop
5477 * condition below will be met. The next element is the size of a
5478 * regular element and hence incrementing by 1
5479 */
5480 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5481 hw_cons++;
5482
5483 /* This function may never run in parallel with itself for a
5484 * specific bp, thus there is no need in "paired" read memory
5485 * barrier here.
5486 */
5487 sw_cons = bp->eq_cons;
5488 sw_prod = bp->eq_prod;
5489
5490 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5491 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5492
5493 for (; sw_cons != hw_cons;
5494 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5495
5496 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5497
5498 rc = bnx2x_iov_eq_sp_event(bp, elem);
5499 if (!rc) {
5500 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5501 rc);
5502 goto next_spqe;
5503 }
5504
5505 opcode = elem->message.opcode;
5506
5507 /* handle eq element */
5508 switch (opcode) {
5509 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5510 bnx2x_vf_mbx_schedule(bp,
5511 &elem->message.data.vf_pf_event);
5512 continue;
5513
5514 case EVENT_RING_OPCODE_STAT_QUERY:
5515 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5516 "got statistics comp event %d\n",
5517 bp->stats_comp++);
5518 /* nothing to do with stats comp */
5519 goto next_spqe;
5520
5521 case EVENT_RING_OPCODE_CFC_DEL:
5522 /* handle according to cid range */
5523 /*
5524 * we may want to verify here that the bp state is
5525 * HALTING
5526 */
5527
5528 /* elem CID originates from FW; actually LE */
5529 cid = SW_CID(elem->message.data.cfc_del_event.cid);
5530
5531 DP(BNX2X_MSG_SP,
5532 "got delete ramrod for MULTI[%d]\n", cid);
5533
5534 if (CNIC_LOADED(bp) &&
5535 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5536 goto next_spqe;
5537
5538 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5539
5540 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5541 break;
5542
5543 goto next_spqe;
5544
5545 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5546 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5547 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5548 if (f_obj->complete_cmd(bp, f_obj,
5549 BNX2X_F_CMD_TX_STOP))
5550 break;
5551 goto next_spqe;
5552
5553 case EVENT_RING_OPCODE_START_TRAFFIC:
5554 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5555 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5556 if (f_obj->complete_cmd(bp, f_obj,
5557 BNX2X_F_CMD_TX_START))
5558 break;
5559 goto next_spqe;
5560
5561 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5562 echo = elem->message.data.function_update_event.echo;
5563 if (echo == SWITCH_UPDATE) {
5564 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5565 "got FUNC_SWITCH_UPDATE ramrod\n");
5566 if (f_obj->complete_cmd(
5567 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5568 break;
5569
5570 } else {
5571 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5572
5573 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5574 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5575 f_obj->complete_cmd(bp, f_obj,
5576 BNX2X_F_CMD_AFEX_UPDATE);
5577
5578 /* We will perform the Queues update from
5579 * sp_rtnl task as all Queue SP operations
5580 * should run under rtnl_lock.
5581 */
5582 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5583 }
5584
5585 goto next_spqe;
5586
5587 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5588 f_obj->complete_cmd(bp, f_obj,
5589 BNX2X_F_CMD_AFEX_VIFLISTS);
5590 bnx2x_after_afex_vif_lists(bp, elem);
5591 goto next_spqe;
5592 case EVENT_RING_OPCODE_FUNCTION_START:
5593 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5594 "got FUNC_START ramrod\n");
5595 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5596 break;
5597
5598 goto next_spqe;
5599
5600 case EVENT_RING_OPCODE_FUNCTION_STOP:
5601 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5602 "got FUNC_STOP ramrod\n");
5603 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5604 break;
5605
5606 goto next_spqe;
5607
5608 case EVENT_RING_OPCODE_SET_TIMESYNC:
5609 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5610 "got set_timesync ramrod completion\n");
5611 if (f_obj->complete_cmd(bp, f_obj,
5612 BNX2X_F_CMD_SET_TIMESYNC))
5613 break;
5614 goto next_spqe;
5615 }
5616
5617 switch (opcode | bp->state) {
5618 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5619 BNX2X_STATE_OPEN):
5620 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5621 BNX2X_STATE_OPENING_WAIT4_PORT):
5622 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5623 BNX2X_STATE_CLOSING_WAIT4_HALT):
5624 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5625 SW_CID(elem->message.data.eth_event.echo));
5626 rss_raw->clear_pending(rss_raw);
5627 break;
5628
5629 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5630 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5631 case (EVENT_RING_OPCODE_SET_MAC |
5632 BNX2X_STATE_CLOSING_WAIT4_HALT):
5633 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5634 BNX2X_STATE_OPEN):
5635 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5636 BNX2X_STATE_DIAG):
5637 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5638 BNX2X_STATE_CLOSING_WAIT4_HALT):
5639 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5640 bnx2x_handle_classification_eqe(bp, elem);
5641 break;
5642
5643 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5644 BNX2X_STATE_OPEN):
5645 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5646 BNX2X_STATE_DIAG):
5647 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5648 BNX2X_STATE_CLOSING_WAIT4_HALT):
5649 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5650 bnx2x_handle_mcast_eqe(bp);
5651 break;
5652
5653 case (EVENT_RING_OPCODE_FILTERS_RULES |
5654 BNX2X_STATE_OPEN):
5655 case (EVENT_RING_OPCODE_FILTERS_RULES |
5656 BNX2X_STATE_DIAG):
5657 case (EVENT_RING_OPCODE_FILTERS_RULES |
5658 BNX2X_STATE_CLOSING_WAIT4_HALT):
5659 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5660 bnx2x_handle_rx_mode_eqe(bp);
5661 break;
5662 default:
5663 /* unknown event log error and continue */
5664 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5665 elem->message.opcode, bp->state);
5666 }
5667 next_spqe:
5668 spqe_cnt++;
5669 } /* for */
5670
5671 smp_mb__before_atomic();
5672 atomic_add(spqe_cnt, &bp->eq_spq_left);
5673
5674 bp->eq_cons = sw_cons;
5675 bp->eq_prod = sw_prod;
5676 /* Make sure that above mem writes were issued towards the memory */
5677 smp_wmb();
5678
5679 /* update producer */
5680 bnx2x_update_eq_prod(bp, bp->eq_prod);
5681 }
5682
bnx2x_sp_task(struct work_struct * work)5683 static void bnx2x_sp_task(struct work_struct *work)
5684 {
5685 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5686
5687 DP(BNX2X_MSG_SP, "sp task invoked\n");
5688
5689 /* make sure the atomic interrupt_occurred has been written */
5690 smp_rmb();
5691 if (atomic_read(&bp->interrupt_occurred)) {
5692
5693 /* what work needs to be performed? */
5694 u16 status = bnx2x_update_dsb_idx(bp);
5695
5696 DP(BNX2X_MSG_SP, "status %x\n", status);
5697 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5698 atomic_set(&bp->interrupt_occurred, 0);
5699
5700 /* HW attentions */
5701 if (status & BNX2X_DEF_SB_ATT_IDX) {
5702 bnx2x_attn_int(bp);
5703 status &= ~BNX2X_DEF_SB_ATT_IDX;
5704 }
5705
5706 /* SP events: STAT_QUERY and others */
5707 if (status & BNX2X_DEF_SB_IDX) {
5708 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5709
5710 if (FCOE_INIT(bp) &&
5711 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5712 /* Prevent local bottom-halves from running as
5713 * we are going to change the local NAPI list.
5714 */
5715 local_bh_disable();
5716 napi_schedule(&bnx2x_fcoe(bp, napi));
5717 local_bh_enable();
5718 }
5719
5720 /* Handle EQ completions */
5721 bnx2x_eq_int(bp);
5722 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5723 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5724
5725 status &= ~BNX2X_DEF_SB_IDX;
5726 }
5727
5728 /* if status is non zero then perhaps something went wrong */
5729 if (unlikely(status))
5730 DP(BNX2X_MSG_SP,
5731 "got an unknown interrupt! (status 0x%x)\n", status);
5732
5733 /* ack status block only if something was actually handled */
5734 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5735 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5736 }
5737
5738 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5739 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5740 &bp->sp_state)) {
5741 bnx2x_link_report(bp);
5742 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5743 }
5744 }
5745
bnx2x_msix_sp_int(int irq,void * dev_instance)5746 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5747 {
5748 struct net_device *dev = dev_instance;
5749 struct bnx2x *bp = netdev_priv(dev);
5750
5751 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5752 IGU_INT_DISABLE, 0);
5753
5754 #ifdef BNX2X_STOP_ON_ERROR
5755 if (unlikely(bp->panic))
5756 return IRQ_HANDLED;
5757 #endif
5758
5759 if (CNIC_LOADED(bp)) {
5760 struct cnic_ops *c_ops;
5761
5762 rcu_read_lock();
5763 c_ops = rcu_dereference(bp->cnic_ops);
5764 if (c_ops)
5765 c_ops->cnic_handler(bp->cnic_data, NULL);
5766 rcu_read_unlock();
5767 }
5768
5769 /* schedule sp task to perform default status block work, ack
5770 * attentions and enable interrupts.
5771 */
5772 bnx2x_schedule_sp_task(bp);
5773
5774 return IRQ_HANDLED;
5775 }
5776
5777 /* end of slow path */
5778
bnx2x_drv_pulse(struct bnx2x * bp)5779 void bnx2x_drv_pulse(struct bnx2x *bp)
5780 {
5781 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5782 bp->fw_drv_pulse_wr_seq);
5783 }
5784
bnx2x_timer(struct timer_list * t)5785 static void bnx2x_timer(struct timer_list *t)
5786 {
5787 struct bnx2x *bp = from_timer(bp, t, timer);
5788
5789 if (!netif_running(bp->dev))
5790 return;
5791
5792 if (IS_PF(bp) &&
5793 !BP_NOMCP(bp)) {
5794 int mb_idx = BP_FW_MB_IDX(bp);
5795 u16 drv_pulse;
5796 u16 mcp_pulse;
5797
5798 ++bp->fw_drv_pulse_wr_seq;
5799 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5800 drv_pulse = bp->fw_drv_pulse_wr_seq;
5801 bnx2x_drv_pulse(bp);
5802
5803 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5804 MCP_PULSE_SEQ_MASK);
5805 /* The delta between driver pulse and mcp response
5806 * should not get too big. If the MFW is more than 5 pulses
5807 * behind, we should worry about it enough to generate an error
5808 * log.
5809 */
5810 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5811 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5812 drv_pulse, mcp_pulse);
5813 }
5814
5815 if (bp->state == BNX2X_STATE_OPEN)
5816 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5817
5818 /* sample pf vf bulletin board for new posts from pf */
5819 if (IS_VF(bp))
5820 bnx2x_timer_sriov(bp);
5821
5822 mod_timer(&bp->timer, jiffies + bp->current_interval);
5823 }
5824
5825 /* end of Statistics */
5826
5827 /* nic init */
5828
5829 /*
5830 * nic init service functions
5831 */
5832
bnx2x_fill(struct bnx2x * bp,u32 addr,int fill,u32 len)5833 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5834 {
5835 u32 i;
5836 if (!(len%4) && !(addr%4))
5837 for (i = 0; i < len; i += 4)
5838 REG_WR(bp, addr + i, fill);
5839 else
5840 for (i = 0; i < len; i++)
5841 REG_WR8(bp, addr + i, fill);
5842 }
5843
5844 /* helper: writes FP SP data to FW - data_size in dwords */
bnx2x_wr_fp_sb_data(struct bnx2x * bp,int fw_sb_id,u32 * sb_data_p,u32 data_size)5845 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5846 int fw_sb_id,
5847 u32 *sb_data_p,
5848 u32 data_size)
5849 {
5850 int index;
5851 for (index = 0; index < data_size; index++)
5852 REG_WR(bp, BAR_CSTRORM_INTMEM +
5853 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5854 sizeof(u32)*index,
5855 *(sb_data_p + index));
5856 }
5857
bnx2x_zero_fp_sb(struct bnx2x * bp,int fw_sb_id)5858 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5859 {
5860 u32 *sb_data_p;
5861 u32 data_size = 0;
5862 struct hc_status_block_data_e2 sb_data_e2;
5863 struct hc_status_block_data_e1x sb_data_e1x;
5864
5865 /* disable the function first */
5866 if (!CHIP_IS_E1x(bp)) {
5867 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5868 sb_data_e2.common.state = SB_DISABLED;
5869 sb_data_e2.common.p_func.vf_valid = false;
5870 sb_data_p = (u32 *)&sb_data_e2;
5871 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5872 } else {
5873 memset(&sb_data_e1x, 0,
5874 sizeof(struct hc_status_block_data_e1x));
5875 sb_data_e1x.common.state = SB_DISABLED;
5876 sb_data_e1x.common.p_func.vf_valid = false;
5877 sb_data_p = (u32 *)&sb_data_e1x;
5878 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5879 }
5880 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5881
5882 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5883 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5884 CSTORM_STATUS_BLOCK_SIZE);
5885 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5886 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5887 CSTORM_SYNC_BLOCK_SIZE);
5888 }
5889
5890 /* helper: writes SP SB data to FW */
bnx2x_wr_sp_sb_data(struct bnx2x * bp,struct hc_sp_status_block_data * sp_sb_data)5891 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5892 struct hc_sp_status_block_data *sp_sb_data)
5893 {
5894 int func = BP_FUNC(bp);
5895 int i;
5896 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5897 REG_WR(bp, BAR_CSTRORM_INTMEM +
5898 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5899 i*sizeof(u32),
5900 *((u32 *)sp_sb_data + i));
5901 }
5902
bnx2x_zero_sp_sb(struct bnx2x * bp)5903 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5904 {
5905 int func = BP_FUNC(bp);
5906 struct hc_sp_status_block_data sp_sb_data;
5907 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5908
5909 sp_sb_data.state = SB_DISABLED;
5910 sp_sb_data.p_func.vf_valid = false;
5911
5912 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5913
5914 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5915 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5916 CSTORM_SP_STATUS_BLOCK_SIZE);
5917 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5918 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5919 CSTORM_SP_SYNC_BLOCK_SIZE);
5920 }
5921
bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm * hc_sm,int igu_sb_id,int igu_seg_id)5922 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5923 int igu_sb_id, int igu_seg_id)
5924 {
5925 hc_sm->igu_sb_id = igu_sb_id;
5926 hc_sm->igu_seg_id = igu_seg_id;
5927 hc_sm->timer_value = 0xFF;
5928 hc_sm->time_to_expire = 0xFFFFFFFF;
5929 }
5930
5931 /* allocates state machine ids. */
bnx2x_map_sb_state_machines(struct hc_index_data * index_data)5932 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5933 {
5934 /* zero out state machine indices */
5935 /* rx indices */
5936 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5937
5938 /* tx indices */
5939 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5940 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5941 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5942 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5943
5944 /* map indices */
5945 /* rx indices */
5946 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5947 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5948
5949 /* tx indices */
5950 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5951 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5952 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5953 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5954 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5955 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5956 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5957 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5958 }
5959
bnx2x_init_sb(struct bnx2x * bp,dma_addr_t mapping,int vfid,u8 vf_valid,int fw_sb_id,int igu_sb_id)5960 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5961 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5962 {
5963 int igu_seg_id;
5964
5965 struct hc_status_block_data_e2 sb_data_e2;
5966 struct hc_status_block_data_e1x sb_data_e1x;
5967 struct hc_status_block_sm *hc_sm_p;
5968 int data_size;
5969 u32 *sb_data_p;
5970
5971 if (CHIP_INT_MODE_IS_BC(bp))
5972 igu_seg_id = HC_SEG_ACCESS_NORM;
5973 else
5974 igu_seg_id = IGU_SEG_ACCESS_NORM;
5975
5976 bnx2x_zero_fp_sb(bp, fw_sb_id);
5977
5978 if (!CHIP_IS_E1x(bp)) {
5979 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5980 sb_data_e2.common.state = SB_ENABLED;
5981 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5982 sb_data_e2.common.p_func.vf_id = vfid;
5983 sb_data_e2.common.p_func.vf_valid = vf_valid;
5984 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5985 sb_data_e2.common.same_igu_sb_1b = true;
5986 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5987 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5988 hc_sm_p = sb_data_e2.common.state_machine;
5989 sb_data_p = (u32 *)&sb_data_e2;
5990 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5991 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5992 } else {
5993 memset(&sb_data_e1x, 0,
5994 sizeof(struct hc_status_block_data_e1x));
5995 sb_data_e1x.common.state = SB_ENABLED;
5996 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5997 sb_data_e1x.common.p_func.vf_id = 0xff;
5998 sb_data_e1x.common.p_func.vf_valid = false;
5999 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
6000 sb_data_e1x.common.same_igu_sb_1b = true;
6001 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6002 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6003 hc_sm_p = sb_data_e1x.common.state_machine;
6004 sb_data_p = (u32 *)&sb_data_e1x;
6005 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6006 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6007 }
6008
6009 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6010 igu_sb_id, igu_seg_id);
6011 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6012 igu_sb_id, igu_seg_id);
6013
6014 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6015
6016 /* write indices to HW - PCI guarantees endianity of regpairs */
6017 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6018 }
6019
bnx2x_update_coalesce_sb(struct bnx2x * bp,u8 fw_sb_id,u16 tx_usec,u16 rx_usec)6020 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6021 u16 tx_usec, u16 rx_usec)
6022 {
6023 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6024 false, rx_usec);
6025 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6026 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6027 tx_usec);
6028 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6029 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6030 tx_usec);
6031 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6032 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6033 tx_usec);
6034 }
6035
bnx2x_init_def_sb(struct bnx2x * bp)6036 static void bnx2x_init_def_sb(struct bnx2x *bp)
6037 {
6038 struct host_sp_status_block *def_sb = bp->def_status_blk;
6039 dma_addr_t mapping = bp->def_status_blk_mapping;
6040 int igu_sp_sb_index;
6041 int igu_seg_id;
6042 int port = BP_PORT(bp);
6043 int func = BP_FUNC(bp);
6044 int reg_offset, reg_offset_en5;
6045 u64 section;
6046 int index;
6047 struct hc_sp_status_block_data sp_sb_data;
6048 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6049
6050 if (CHIP_INT_MODE_IS_BC(bp)) {
6051 igu_sp_sb_index = DEF_SB_IGU_ID;
6052 igu_seg_id = HC_SEG_ACCESS_DEF;
6053 } else {
6054 igu_sp_sb_index = bp->igu_dsb_id;
6055 igu_seg_id = IGU_SEG_ACCESS_DEF;
6056 }
6057
6058 /* ATTN */
6059 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6060 atten_status_block);
6061 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6062
6063 bp->attn_state = 0;
6064
6065 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6066 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6067 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6068 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6069 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6070 int sindex;
6071 /* take care of sig[0]..sig[4] */
6072 for (sindex = 0; sindex < 4; sindex++)
6073 bp->attn_group[index].sig[sindex] =
6074 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6075
6076 if (!CHIP_IS_E1x(bp))
6077 /*
6078 * enable5 is separate from the rest of the registers,
6079 * and therefore the address skip is 4
6080 * and not 16 between the different groups
6081 */
6082 bp->attn_group[index].sig[4] = REG_RD(bp,
6083 reg_offset_en5 + 0x4*index);
6084 else
6085 bp->attn_group[index].sig[4] = 0;
6086 }
6087
6088 if (bp->common.int_block == INT_BLOCK_HC) {
6089 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6090 HC_REG_ATTN_MSG0_ADDR_L);
6091
6092 REG_WR(bp, reg_offset, U64_LO(section));
6093 REG_WR(bp, reg_offset + 4, U64_HI(section));
6094 } else if (!CHIP_IS_E1x(bp)) {
6095 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6096 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6097 }
6098
6099 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6100 sp_sb);
6101
6102 bnx2x_zero_sp_sb(bp);
6103
6104 /* PCI guarantees endianity of regpairs */
6105 sp_sb_data.state = SB_ENABLED;
6106 sp_sb_data.host_sb_addr.lo = U64_LO(section);
6107 sp_sb_data.host_sb_addr.hi = U64_HI(section);
6108 sp_sb_data.igu_sb_id = igu_sp_sb_index;
6109 sp_sb_data.igu_seg_id = igu_seg_id;
6110 sp_sb_data.p_func.pf_id = func;
6111 sp_sb_data.p_func.vnic_id = BP_VN(bp);
6112 sp_sb_data.p_func.vf_id = 0xff;
6113
6114 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6115
6116 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6117 }
6118
bnx2x_update_coalesce(struct bnx2x * bp)6119 void bnx2x_update_coalesce(struct bnx2x *bp)
6120 {
6121 int i;
6122
6123 for_each_eth_queue(bp, i)
6124 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6125 bp->tx_ticks, bp->rx_ticks);
6126 }
6127
bnx2x_init_sp_ring(struct bnx2x * bp)6128 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6129 {
6130 spin_lock_init(&bp->spq_lock);
6131 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6132
6133 bp->spq_prod_idx = 0;
6134 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6135 bp->spq_prod_bd = bp->spq;
6136 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6137 }
6138
bnx2x_init_eq_ring(struct bnx2x * bp)6139 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6140 {
6141 int i;
6142 for (i = 1; i <= NUM_EQ_PAGES; i++) {
6143 union event_ring_elem *elem =
6144 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6145
6146 elem->next_page.addr.hi =
6147 cpu_to_le32(U64_HI(bp->eq_mapping +
6148 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6149 elem->next_page.addr.lo =
6150 cpu_to_le32(U64_LO(bp->eq_mapping +
6151 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6152 }
6153 bp->eq_cons = 0;
6154 bp->eq_prod = NUM_EQ_DESC;
6155 bp->eq_cons_sb = BNX2X_EQ_INDEX;
6156 /* we want a warning message before it gets wrought... */
6157 atomic_set(&bp->eq_spq_left,
6158 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6159 }
6160
6161 /* called with netif_addr_lock_bh() */
bnx2x_set_q_rx_mode(struct bnx2x * bp,u8 cl_id,unsigned long rx_mode_flags,unsigned long rx_accept_flags,unsigned long tx_accept_flags,unsigned long ramrod_flags)6162 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6163 unsigned long rx_mode_flags,
6164 unsigned long rx_accept_flags,
6165 unsigned long tx_accept_flags,
6166 unsigned long ramrod_flags)
6167 {
6168 struct bnx2x_rx_mode_ramrod_params ramrod_param;
6169 int rc;
6170
6171 memset(&ramrod_param, 0, sizeof(ramrod_param));
6172
6173 /* Prepare ramrod parameters */
6174 ramrod_param.cid = 0;
6175 ramrod_param.cl_id = cl_id;
6176 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6177 ramrod_param.func_id = BP_FUNC(bp);
6178
6179 ramrod_param.pstate = &bp->sp_state;
6180 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6181
6182 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6183 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6184
6185 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6186
6187 ramrod_param.ramrod_flags = ramrod_flags;
6188 ramrod_param.rx_mode_flags = rx_mode_flags;
6189
6190 ramrod_param.rx_accept_flags = rx_accept_flags;
6191 ramrod_param.tx_accept_flags = tx_accept_flags;
6192
6193 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6194 if (rc < 0) {
6195 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6196 return rc;
6197 }
6198
6199 return 0;
6200 }
6201
bnx2x_fill_accept_flags(struct bnx2x * bp,u32 rx_mode,unsigned long * rx_accept_flags,unsigned long * tx_accept_flags)6202 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6203 unsigned long *rx_accept_flags,
6204 unsigned long *tx_accept_flags)
6205 {
6206 /* Clear the flags first */
6207 *rx_accept_flags = 0;
6208 *tx_accept_flags = 0;
6209
6210 switch (rx_mode) {
6211 case BNX2X_RX_MODE_NONE:
6212 /*
6213 * 'drop all' supersedes any accept flags that may have been
6214 * passed to the function.
6215 */
6216 break;
6217 case BNX2X_RX_MODE_NORMAL:
6218 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6219 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6220 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6221
6222 /* internal switching mode */
6223 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6224 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6225 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6226
6227 if (bp->accept_any_vlan) {
6228 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6229 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6230 }
6231
6232 break;
6233 case BNX2X_RX_MODE_ALLMULTI:
6234 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6235 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6236 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6237
6238 /* internal switching mode */
6239 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6240 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6241 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6242
6243 if (bp->accept_any_vlan) {
6244 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6245 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6246 }
6247
6248 break;
6249 case BNX2X_RX_MODE_PROMISC:
6250 /* According to definition of SI mode, iface in promisc mode
6251 * should receive matched and unmatched (in resolution of port)
6252 * unicast packets.
6253 */
6254 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6255 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6256 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6257 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6258
6259 /* internal switching mode */
6260 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6261 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6262
6263 if (IS_MF_SI(bp))
6264 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6265 else
6266 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6267
6268 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6269 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6270
6271 break;
6272 default:
6273 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6274 return -EINVAL;
6275 }
6276
6277 return 0;
6278 }
6279
6280 /* called with netif_addr_lock_bh() */
bnx2x_set_storm_rx_mode(struct bnx2x * bp)6281 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6282 {
6283 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6284 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6285 int rc;
6286
6287 if (!NO_FCOE(bp))
6288 /* Configure rx_mode of FCoE Queue */
6289 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6290
6291 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6292 &tx_accept_flags);
6293 if (rc)
6294 return rc;
6295
6296 __set_bit(RAMROD_RX, &ramrod_flags);
6297 __set_bit(RAMROD_TX, &ramrod_flags);
6298
6299 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6300 rx_accept_flags, tx_accept_flags,
6301 ramrod_flags);
6302 }
6303
bnx2x_init_internal_common(struct bnx2x * bp)6304 static void bnx2x_init_internal_common(struct bnx2x *bp)
6305 {
6306 int i;
6307
6308 /* Zero this manually as its initialization is
6309 currently missing in the initTool */
6310 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6311 REG_WR(bp, BAR_USTRORM_INTMEM +
6312 USTORM_AGG_DATA_OFFSET + i * 4, 0);
6313 if (!CHIP_IS_E1x(bp)) {
6314 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6315 CHIP_INT_MODE_IS_BC(bp) ?
6316 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6317 }
6318 }
6319
bnx2x_init_internal(struct bnx2x * bp,u32 load_code)6320 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6321 {
6322 switch (load_code) {
6323 case FW_MSG_CODE_DRV_LOAD_COMMON:
6324 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6325 bnx2x_init_internal_common(bp);
6326 fallthrough;
6327
6328 case FW_MSG_CODE_DRV_LOAD_PORT:
6329 /* nothing to do */
6330 fallthrough;
6331
6332 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6333 /* internal memory per function is
6334 initialized inside bnx2x_pf_init */
6335 break;
6336
6337 default:
6338 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6339 break;
6340 }
6341 }
6342
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath * fp)6343 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6344 {
6345 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6346 }
6347
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath * fp)6348 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6349 {
6350 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6351 }
6352
bnx2x_fp_cl_id(struct bnx2x_fastpath * fp)6353 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6354 {
6355 if (CHIP_IS_E1x(fp->bp))
6356 return BP_L_ID(fp->bp) + fp->index;
6357 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6358 return bnx2x_fp_igu_sb_id(fp);
6359 }
6360
bnx2x_init_eth_fp(struct bnx2x * bp,int fp_idx)6361 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6362 {
6363 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6364 u8 cos;
6365 unsigned long q_type = 0;
6366 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6367 fp->rx_queue = fp_idx;
6368 fp->cid = fp_idx;
6369 fp->cl_id = bnx2x_fp_cl_id(fp);
6370 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6371 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6372 /* qZone id equals to FW (per path) client id */
6373 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6374
6375 /* init shortcut */
6376 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6377
6378 /* Setup SB indices */
6379 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6380
6381 /* Configure Queue State object */
6382 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6383 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6384
6385 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6386
6387 /* init tx data */
6388 for_each_cos_in_tx_queue(fp, cos) {
6389 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6390 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6391 FP_COS_TO_TXQ(fp, cos, bp),
6392 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6393 cids[cos] = fp->txdata_ptr[cos]->cid;
6394 }
6395
6396 /* nothing more for vf to do here */
6397 if (IS_VF(bp))
6398 return;
6399
6400 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6401 fp->fw_sb_id, fp->igu_sb_id);
6402 bnx2x_update_fpsb_idx(fp);
6403 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6404 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6405 bnx2x_sp_mapping(bp, q_rdata), q_type);
6406
6407 /**
6408 * Configure classification DBs: Always enable Tx switching
6409 */
6410 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6411
6412 DP(NETIF_MSG_IFUP,
6413 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6414 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6415 fp->igu_sb_id);
6416 }
6417
bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata * txdata)6418 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6419 {
6420 int i;
6421
6422 for (i = 1; i <= NUM_TX_RINGS; i++) {
6423 struct eth_tx_next_bd *tx_next_bd =
6424 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6425
6426 tx_next_bd->addr_hi =
6427 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6428 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6429 tx_next_bd->addr_lo =
6430 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6431 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6432 }
6433
6434 *txdata->tx_cons_sb = cpu_to_le16(0);
6435
6436 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6437 txdata->tx_db.data.zero_fill1 = 0;
6438 txdata->tx_db.data.prod = 0;
6439
6440 txdata->tx_pkt_prod = 0;
6441 txdata->tx_pkt_cons = 0;
6442 txdata->tx_bd_prod = 0;
6443 txdata->tx_bd_cons = 0;
6444 txdata->tx_pkt = 0;
6445 }
6446
bnx2x_init_tx_rings_cnic(struct bnx2x * bp)6447 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6448 {
6449 int i;
6450
6451 for_each_tx_queue_cnic(bp, i)
6452 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6453 }
6454
bnx2x_init_tx_rings(struct bnx2x * bp)6455 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6456 {
6457 int i;
6458 u8 cos;
6459
6460 for_each_eth_queue(bp, i)
6461 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6462 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6463 }
6464
bnx2x_init_fcoe_fp(struct bnx2x * bp)6465 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6466 {
6467 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6468 unsigned long q_type = 0;
6469
6470 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6471 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6472 BNX2X_FCOE_ETH_CL_ID_IDX);
6473 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6474 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6475 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6476 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6477 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6478 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6479 fp);
6480
6481 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6482
6483 /* qZone id equals to FW (per path) client id */
6484 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6485 /* init shortcut */
6486 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6487 bnx2x_rx_ustorm_prods_offset(fp);
6488
6489 /* Configure Queue State object */
6490 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6491 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6492
6493 /* No multi-CoS for FCoE L2 client */
6494 BUG_ON(fp->max_cos != 1);
6495
6496 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6497 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6498 bnx2x_sp_mapping(bp, q_rdata), q_type);
6499
6500 DP(NETIF_MSG_IFUP,
6501 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6502 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6503 fp->igu_sb_id);
6504 }
6505
bnx2x_nic_init_cnic(struct bnx2x * bp)6506 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6507 {
6508 if (!NO_FCOE(bp))
6509 bnx2x_init_fcoe_fp(bp);
6510
6511 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6512 BNX2X_VF_ID_INVALID, false,
6513 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6514
6515 /* ensure status block indices were read */
6516 rmb();
6517 bnx2x_init_rx_rings_cnic(bp);
6518 bnx2x_init_tx_rings_cnic(bp);
6519
6520 /* flush all */
6521 mb();
6522 }
6523
bnx2x_pre_irq_nic_init(struct bnx2x * bp)6524 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6525 {
6526 int i;
6527
6528 /* Setup NIC internals and enable interrupts */
6529 for_each_eth_queue(bp, i)
6530 bnx2x_init_eth_fp(bp, i);
6531
6532 /* ensure status block indices were read */
6533 rmb();
6534 bnx2x_init_rx_rings(bp);
6535 bnx2x_init_tx_rings(bp);
6536
6537 if (IS_PF(bp)) {
6538 /* Initialize MOD_ABS interrupts */
6539 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6540 bp->common.shmem_base,
6541 bp->common.shmem2_base, BP_PORT(bp));
6542
6543 /* initialize the default status block and sp ring */
6544 bnx2x_init_def_sb(bp);
6545 bnx2x_update_dsb_idx(bp);
6546 bnx2x_init_sp_ring(bp);
6547 } else {
6548 bnx2x_memset_stats(bp);
6549 }
6550 }
6551
bnx2x_post_irq_nic_init(struct bnx2x * bp,u32 load_code)6552 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6553 {
6554 bnx2x_init_eq_ring(bp);
6555 bnx2x_init_internal(bp, load_code);
6556 bnx2x_pf_init(bp);
6557 bnx2x_stats_init(bp);
6558
6559 /* flush all before enabling interrupts */
6560 mb();
6561
6562 bnx2x_int_enable(bp);
6563
6564 /* Check for SPIO5 */
6565 bnx2x_attn_int_deasserted0(bp,
6566 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6567 AEU_INPUTS_ATTN_BITS_SPIO5);
6568 }
6569
6570 /* gzip service functions */
bnx2x_gunzip_init(struct bnx2x * bp)6571 static int bnx2x_gunzip_init(struct bnx2x *bp)
6572 {
6573 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6574 &bp->gunzip_mapping, GFP_KERNEL);
6575 if (bp->gunzip_buf == NULL)
6576 goto gunzip_nomem1;
6577
6578 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6579 if (bp->strm == NULL)
6580 goto gunzip_nomem2;
6581
6582 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6583 if (bp->strm->workspace == NULL)
6584 goto gunzip_nomem3;
6585
6586 return 0;
6587
6588 gunzip_nomem3:
6589 kfree(bp->strm);
6590 bp->strm = NULL;
6591
6592 gunzip_nomem2:
6593 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6594 bp->gunzip_mapping);
6595 bp->gunzip_buf = NULL;
6596
6597 gunzip_nomem1:
6598 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6599 return -ENOMEM;
6600 }
6601
bnx2x_gunzip_end(struct bnx2x * bp)6602 static void bnx2x_gunzip_end(struct bnx2x *bp)
6603 {
6604 if (bp->strm) {
6605 vfree(bp->strm->workspace);
6606 kfree(bp->strm);
6607 bp->strm = NULL;
6608 }
6609
6610 if (bp->gunzip_buf) {
6611 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6612 bp->gunzip_mapping);
6613 bp->gunzip_buf = NULL;
6614 }
6615 }
6616
bnx2x_gunzip(struct bnx2x * bp,const u8 * zbuf,int len)6617 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6618 {
6619 int n, rc;
6620
6621 /* check gzip header */
6622 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6623 BNX2X_ERR("Bad gzip header\n");
6624 return -EINVAL;
6625 }
6626
6627 n = 10;
6628
6629 #define FNAME 0x8
6630
6631 if (zbuf[3] & FNAME)
6632 while ((zbuf[n++] != 0) && (n < len));
6633
6634 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6635 bp->strm->avail_in = len - n;
6636 bp->strm->next_out = bp->gunzip_buf;
6637 bp->strm->avail_out = FW_BUF_SIZE;
6638
6639 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6640 if (rc != Z_OK)
6641 return rc;
6642
6643 rc = zlib_inflate(bp->strm, Z_FINISH);
6644 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6645 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6646 bp->strm->msg);
6647
6648 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6649 if (bp->gunzip_outlen & 0x3)
6650 netdev_err(bp->dev,
6651 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6652 bp->gunzip_outlen);
6653 bp->gunzip_outlen >>= 2;
6654
6655 zlib_inflateEnd(bp->strm);
6656
6657 if (rc == Z_STREAM_END)
6658 return 0;
6659
6660 return rc;
6661 }
6662
6663 /* nic load/unload */
6664
6665 /*
6666 * General service functions
6667 */
6668
6669 /* send a NIG loopback debug packet */
bnx2x_lb_pckt(struct bnx2x * bp)6670 static void bnx2x_lb_pckt(struct bnx2x *bp)
6671 {
6672 u32 wb_write[3];
6673
6674 /* Ethernet source and destination addresses */
6675 wb_write[0] = 0x55555555;
6676 wb_write[1] = 0x55555555;
6677 wb_write[2] = 0x20; /* SOP */
6678 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6679
6680 /* NON-IP protocol */
6681 wb_write[0] = 0x09000000;
6682 wb_write[1] = 0x55555555;
6683 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6684 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6685 }
6686
6687 /* some of the internal memories
6688 * are not directly readable from the driver
6689 * to test them we send debug packets
6690 */
bnx2x_int_mem_test(struct bnx2x * bp)6691 static int bnx2x_int_mem_test(struct bnx2x *bp)
6692 {
6693 int factor;
6694 int count, i;
6695 u32 val = 0;
6696
6697 if (CHIP_REV_IS_FPGA(bp))
6698 factor = 120;
6699 else if (CHIP_REV_IS_EMUL(bp))
6700 factor = 200;
6701 else
6702 factor = 1;
6703
6704 /* Disable inputs of parser neighbor blocks */
6705 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6706 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6707 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6708 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6709
6710 /* Write 0 to parser credits for CFC search request */
6711 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6712
6713 /* send Ethernet packet */
6714 bnx2x_lb_pckt(bp);
6715
6716 /* TODO do i reset NIG statistic? */
6717 /* Wait until NIG register shows 1 packet of size 0x10 */
6718 count = 1000 * factor;
6719 while (count) {
6720
6721 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6722 val = *bnx2x_sp(bp, wb_data[0]);
6723 if (val == 0x10)
6724 break;
6725
6726 usleep_range(10000, 20000);
6727 count--;
6728 }
6729 if (val != 0x10) {
6730 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6731 return -1;
6732 }
6733
6734 /* Wait until PRS register shows 1 packet */
6735 count = 1000 * factor;
6736 while (count) {
6737 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6738 if (val == 1)
6739 break;
6740
6741 usleep_range(10000, 20000);
6742 count--;
6743 }
6744 if (val != 0x1) {
6745 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6746 return -2;
6747 }
6748
6749 /* Reset and init BRB, PRS */
6750 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6751 msleep(50);
6752 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6753 msleep(50);
6754 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6755 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6756
6757 DP(NETIF_MSG_HW, "part2\n");
6758
6759 /* Disable inputs of parser neighbor blocks */
6760 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6761 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6762 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6763 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6764
6765 /* Write 0 to parser credits for CFC search request */
6766 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6767
6768 /* send 10 Ethernet packets */
6769 for (i = 0; i < 10; i++)
6770 bnx2x_lb_pckt(bp);
6771
6772 /* Wait until NIG register shows 10 + 1
6773 packets of size 11*0x10 = 0xb0 */
6774 count = 1000 * factor;
6775 while (count) {
6776
6777 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6778 val = *bnx2x_sp(bp, wb_data[0]);
6779 if (val == 0xb0)
6780 break;
6781
6782 usleep_range(10000, 20000);
6783 count--;
6784 }
6785 if (val != 0xb0) {
6786 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6787 return -3;
6788 }
6789
6790 /* Wait until PRS register shows 2 packets */
6791 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6792 if (val != 2)
6793 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6794
6795 /* Write 1 to parser credits for CFC search request */
6796 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6797
6798 /* Wait until PRS register shows 3 packets */
6799 msleep(10 * factor);
6800 /* Wait until NIG register shows 1 packet of size 0x10 */
6801 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6802 if (val != 3)
6803 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6804
6805 /* clear NIG EOP FIFO */
6806 for (i = 0; i < 11; i++)
6807 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6808 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6809 if (val != 1) {
6810 BNX2X_ERR("clear of NIG failed\n");
6811 return -4;
6812 }
6813
6814 /* Reset and init BRB, PRS, NIG */
6815 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6816 msleep(50);
6817 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6818 msleep(50);
6819 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6820 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6821 if (!CNIC_SUPPORT(bp))
6822 /* set NIC mode */
6823 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6824
6825 /* Enable inputs of parser neighbor blocks */
6826 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6827 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6828 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6829 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6830
6831 DP(NETIF_MSG_HW, "done\n");
6832
6833 return 0; /* OK */
6834 }
6835
bnx2x_enable_blocks_attention(struct bnx2x * bp)6836 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6837 {
6838 u32 val;
6839
6840 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6841 if (!CHIP_IS_E1x(bp))
6842 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6843 else
6844 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6845 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6846 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6847 /*
6848 * mask read length error interrupts in brb for parser
6849 * (parsing unit and 'checksum and crc' unit)
6850 * these errors are legal (PU reads fixed length and CAC can cause
6851 * read length error on truncated packets)
6852 */
6853 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6854 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6855 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6856 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6857 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6858 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6859 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6860 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6861 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6862 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6863 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6864 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6865 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6866 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6867 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6868 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6869 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6870 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6871 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6872
6873 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6874 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6875 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6876 if (!CHIP_IS_E1x(bp))
6877 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6878 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6879 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6880
6881 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6882 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6883 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6884 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6885
6886 if (!CHIP_IS_E1x(bp))
6887 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6888 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6889
6890 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6891 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6892 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6893 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6894 }
6895
bnx2x_reset_common(struct bnx2x * bp)6896 static void bnx2x_reset_common(struct bnx2x *bp)
6897 {
6898 u32 val = 0x1400;
6899
6900 /* reset_common */
6901 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6902 0xd3ffff7f);
6903
6904 if (CHIP_IS_E3(bp)) {
6905 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6906 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6907 }
6908
6909 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6910 }
6911
bnx2x_setup_dmae(struct bnx2x * bp)6912 static void bnx2x_setup_dmae(struct bnx2x *bp)
6913 {
6914 bp->dmae_ready = 0;
6915 spin_lock_init(&bp->dmae_lock);
6916 }
6917
bnx2x_init_pxp(struct bnx2x * bp)6918 static void bnx2x_init_pxp(struct bnx2x *bp)
6919 {
6920 u16 devctl;
6921 int r_order, w_order;
6922
6923 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6924 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6925 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6926 if (bp->mrrs == -1)
6927 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6928 else {
6929 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6930 r_order = bp->mrrs;
6931 }
6932
6933 bnx2x_init_pxp_arb(bp, r_order, w_order);
6934 }
6935
bnx2x_setup_fan_failure_detection(struct bnx2x * bp)6936 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6937 {
6938 int is_required;
6939 u32 val;
6940 int port;
6941
6942 if (BP_NOMCP(bp))
6943 return;
6944
6945 is_required = 0;
6946 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6947 SHARED_HW_CFG_FAN_FAILURE_MASK;
6948
6949 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6950 is_required = 1;
6951
6952 /*
6953 * The fan failure mechanism is usually related to the PHY type since
6954 * the power consumption of the board is affected by the PHY. Currently,
6955 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6956 */
6957 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6958 for (port = PORT_0; port < PORT_MAX; port++) {
6959 is_required |=
6960 bnx2x_fan_failure_det_req(
6961 bp,
6962 bp->common.shmem_base,
6963 bp->common.shmem2_base,
6964 port);
6965 }
6966
6967 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6968
6969 if (is_required == 0)
6970 return;
6971
6972 /* Fan failure is indicated by SPIO 5 */
6973 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6974
6975 /* set to active low mode */
6976 val = REG_RD(bp, MISC_REG_SPIO_INT);
6977 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6978 REG_WR(bp, MISC_REG_SPIO_INT, val);
6979
6980 /* enable interrupt to signal the IGU */
6981 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6982 val |= MISC_SPIO_SPIO5;
6983 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6984 }
6985
bnx2x_pf_disable(struct bnx2x * bp)6986 void bnx2x_pf_disable(struct bnx2x *bp)
6987 {
6988 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6989 val &= ~IGU_PF_CONF_FUNC_EN;
6990
6991 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6992 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6993 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6994 }
6995
bnx2x__common_init_phy(struct bnx2x * bp)6996 static void bnx2x__common_init_phy(struct bnx2x *bp)
6997 {
6998 u32 shmem_base[2], shmem2_base[2];
6999 /* Avoid common init in case MFW supports LFA */
7000 if (SHMEM2_RD(bp, size) >
7001 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7002 return;
7003 shmem_base[0] = bp->common.shmem_base;
7004 shmem2_base[0] = bp->common.shmem2_base;
7005 if (!CHIP_IS_E1x(bp)) {
7006 shmem_base[1] =
7007 SHMEM2_RD(bp, other_shmem_base_addr);
7008 shmem2_base[1] =
7009 SHMEM2_RD(bp, other_shmem2_base_addr);
7010 }
7011 bnx2x_acquire_phy_lock(bp);
7012 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7013 bp->common.chip_id);
7014 bnx2x_release_phy_lock(bp);
7015 }
7016
bnx2x_config_endianity(struct bnx2x * bp,u32 val)7017 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7018 {
7019 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7020 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7021 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7022 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7023 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7024
7025 /* make sure this value is 0 */
7026 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7027
7028 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7029 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7030 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7031 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7032 }
7033
bnx2x_set_endianity(struct bnx2x * bp)7034 static void bnx2x_set_endianity(struct bnx2x *bp)
7035 {
7036 #ifdef __BIG_ENDIAN
7037 bnx2x_config_endianity(bp, 1);
7038 #else
7039 bnx2x_config_endianity(bp, 0);
7040 #endif
7041 }
7042
bnx2x_reset_endianity(struct bnx2x * bp)7043 static void bnx2x_reset_endianity(struct bnx2x *bp)
7044 {
7045 bnx2x_config_endianity(bp, 0);
7046 }
7047
7048 /**
7049 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7050 *
7051 * @bp: driver handle
7052 */
bnx2x_init_hw_common(struct bnx2x * bp)7053 static int bnx2x_init_hw_common(struct bnx2x *bp)
7054 {
7055 u32 val;
7056
7057 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
7058
7059 /*
7060 * take the RESET lock to protect undi_unload flow from accessing
7061 * registers while we're resetting the chip
7062 */
7063 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7064
7065 bnx2x_reset_common(bp);
7066 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7067
7068 val = 0xfffc;
7069 if (CHIP_IS_E3(bp)) {
7070 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7071 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7072 }
7073 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7074
7075 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7076
7077 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7078
7079 if (!CHIP_IS_E1x(bp)) {
7080 u8 abs_func_id;
7081
7082 /**
7083 * 4-port mode or 2-port mode we need to turn of master-enable
7084 * for everyone, after that, turn it back on for self.
7085 * so, we disregard multi-function or not, and always disable
7086 * for all functions on the given path, this means 0,2,4,6 for
7087 * path 0 and 1,3,5,7 for path 1
7088 */
7089 for (abs_func_id = BP_PATH(bp);
7090 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7091 if (abs_func_id == BP_ABS_FUNC(bp)) {
7092 REG_WR(bp,
7093 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7094 1);
7095 continue;
7096 }
7097
7098 bnx2x_pretend_func(bp, abs_func_id);
7099 /* clear pf enable */
7100 bnx2x_pf_disable(bp);
7101 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7102 }
7103 }
7104
7105 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7106 if (CHIP_IS_E1(bp)) {
7107 /* enable HW interrupt from PXP on USDM overflow
7108 bit 16 on INT_MASK_0 */
7109 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7110 }
7111
7112 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7113 bnx2x_init_pxp(bp);
7114 bnx2x_set_endianity(bp);
7115 bnx2x_ilt_init_page_size(bp, INITOP_SET);
7116
7117 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7118 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7119
7120 /* let the HW do it's magic ... */
7121 msleep(100);
7122 /* finish PXP init */
7123 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7124 if (val != 1) {
7125 BNX2X_ERR("PXP2 CFG failed\n");
7126 return -EBUSY;
7127 }
7128 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7129 if (val != 1) {
7130 BNX2X_ERR("PXP2 RD_INIT failed\n");
7131 return -EBUSY;
7132 }
7133
7134 /* Timers bug workaround E2 only. We need to set the entire ILT to
7135 * have entries with value "0" and valid bit on.
7136 * This needs to be done by the first PF that is loaded in a path
7137 * (i.e. common phase)
7138 */
7139 if (!CHIP_IS_E1x(bp)) {
7140 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7141 * (i.e. vnic3) to start even if it is marked as "scan-off".
7142 * This occurs when a different function (func2,3) is being marked
7143 * as "scan-off". Real-life scenario for example: if a driver is being
7144 * load-unloaded while func6,7 are down. This will cause the timer to access
7145 * the ilt, translate to a logical address and send a request to read/write.
7146 * Since the ilt for the function that is down is not valid, this will cause
7147 * a translation error which is unrecoverable.
7148 * The Workaround is intended to make sure that when this happens nothing fatal
7149 * will occur. The workaround:
7150 * 1. First PF driver which loads on a path will:
7151 * a. After taking the chip out of reset, by using pretend,
7152 * it will write "0" to the following registers of
7153 * the other vnics.
7154 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7155 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7156 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7157 * And for itself it will write '1' to
7158 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7159 * dmae-operations (writing to pram for example.)
7160 * note: can be done for only function 6,7 but cleaner this
7161 * way.
7162 * b. Write zero+valid to the entire ILT.
7163 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
7164 * VNIC3 (of that port). The range allocated will be the
7165 * entire ILT. This is needed to prevent ILT range error.
7166 * 2. Any PF driver load flow:
7167 * a. ILT update with the physical addresses of the allocated
7168 * logical pages.
7169 * b. Wait 20msec. - note that this timeout is needed to make
7170 * sure there are no requests in one of the PXP internal
7171 * queues with "old" ILT addresses.
7172 * c. PF enable in the PGLC.
7173 * d. Clear the was_error of the PF in the PGLC. (could have
7174 * occurred while driver was down)
7175 * e. PF enable in the CFC (WEAK + STRONG)
7176 * f. Timers scan enable
7177 * 3. PF driver unload flow:
7178 * a. Clear the Timers scan_en.
7179 * b. Polling for scan_on=0 for that PF.
7180 * c. Clear the PF enable bit in the PXP.
7181 * d. Clear the PF enable in the CFC (WEAK + STRONG)
7182 * e. Write zero+valid to all ILT entries (The valid bit must
7183 * stay set)
7184 * f. If this is VNIC 3 of a port then also init
7185 * first_timers_ilt_entry to zero and last_timers_ilt_entry
7186 * to the last entry in the ILT.
7187 *
7188 * Notes:
7189 * Currently the PF error in the PGLC is non recoverable.
7190 * In the future the there will be a recovery routine for this error.
7191 * Currently attention is masked.
7192 * Having an MCP lock on the load/unload process does not guarantee that
7193 * there is no Timer disable during Func6/7 enable. This is because the
7194 * Timers scan is currently being cleared by the MCP on FLR.
7195 * Step 2.d can be done only for PF6/7 and the driver can also check if
7196 * there is error before clearing it. But the flow above is simpler and
7197 * more general.
7198 * All ILT entries are written by zero+valid and not just PF6/7
7199 * ILT entries since in the future the ILT entries allocation for
7200 * PF-s might be dynamic.
7201 */
7202 struct ilt_client_info ilt_cli;
7203 struct bnx2x_ilt ilt;
7204 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7205 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7206
7207 /* initialize dummy TM client */
7208 ilt_cli.start = 0;
7209 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7210 ilt_cli.client_num = ILT_CLIENT_TM;
7211
7212 /* Step 1: set zeroes to all ilt page entries with valid bit on
7213 * Step 2: set the timers first/last ilt entry to point
7214 * to the entire range to prevent ILT range error for 3rd/4th
7215 * vnic (this code assumes existence of the vnic)
7216 *
7217 * both steps performed by call to bnx2x_ilt_client_init_op()
7218 * with dummy TM client
7219 *
7220 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7221 * and his brother are split registers
7222 */
7223 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7224 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7225 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7226
7227 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7228 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7229 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7230 }
7231
7232 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7233 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7234
7235 if (!CHIP_IS_E1x(bp)) {
7236 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7237 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7238 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7239
7240 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7241
7242 /* let the HW do it's magic ... */
7243 do {
7244 msleep(200);
7245 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7246 } while (factor-- && (val != 1));
7247
7248 if (val != 1) {
7249 BNX2X_ERR("ATC_INIT failed\n");
7250 return -EBUSY;
7251 }
7252 }
7253
7254 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7255
7256 bnx2x_iov_init_dmae(bp);
7257
7258 /* clean the DMAE memory */
7259 bp->dmae_ready = 1;
7260 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7261
7262 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7263
7264 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7265
7266 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7267
7268 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7269
7270 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7271 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7272 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7273 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7274
7275 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7276
7277 /* QM queues pointers table */
7278 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7279
7280 /* soft reset pulse */
7281 REG_WR(bp, QM_REG_SOFT_RESET, 1);
7282 REG_WR(bp, QM_REG_SOFT_RESET, 0);
7283
7284 if (CNIC_SUPPORT(bp))
7285 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7286
7287 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7288
7289 if (!CHIP_REV_IS_SLOW(bp))
7290 /* enable hw interrupt from doorbell Q */
7291 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7292
7293 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7294
7295 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7296 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7297
7298 if (!CHIP_IS_E1(bp))
7299 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7300
7301 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7302 if (IS_MF_AFEX(bp)) {
7303 /* configure that VNTag and VLAN headers must be
7304 * received in afex mode
7305 */
7306 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7307 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7308 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7309 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7310 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7311 } else {
7312 /* Bit-map indicating which L2 hdrs may appear
7313 * after the basic Ethernet header
7314 */
7315 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7316 bp->path_has_ovlan ? 7 : 6);
7317 }
7318 }
7319
7320 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7321 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7322 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7323 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7324
7325 if (!CHIP_IS_E1x(bp)) {
7326 /* reset VFC memories */
7327 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7328 VFC_MEMORIES_RST_REG_CAM_RST |
7329 VFC_MEMORIES_RST_REG_RAM_RST);
7330 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7331 VFC_MEMORIES_RST_REG_CAM_RST |
7332 VFC_MEMORIES_RST_REG_RAM_RST);
7333
7334 msleep(20);
7335 }
7336
7337 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7338 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7339 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7340 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7341
7342 /* sync semi rtc */
7343 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7344 0x80000000);
7345 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7346 0x80000000);
7347
7348 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7349 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7350 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7351
7352 if (!CHIP_IS_E1x(bp)) {
7353 if (IS_MF_AFEX(bp)) {
7354 /* configure that VNTag and VLAN headers must be
7355 * sent in afex mode
7356 */
7357 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7358 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7359 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7360 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7361 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7362 } else {
7363 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7364 bp->path_has_ovlan ? 7 : 6);
7365 }
7366 }
7367
7368 REG_WR(bp, SRC_REG_SOFT_RST, 1);
7369
7370 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7371
7372 if (CNIC_SUPPORT(bp)) {
7373 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7374 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7375 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7376 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7377 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7378 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7379 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7380 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7381 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7382 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7383 }
7384 REG_WR(bp, SRC_REG_SOFT_RST, 0);
7385
7386 if (sizeof(union cdu_context) != 1024)
7387 /* we currently assume that a context is 1024 bytes */
7388 dev_alert(&bp->pdev->dev,
7389 "please adjust the size of cdu_context(%ld)\n",
7390 (long)sizeof(union cdu_context));
7391
7392 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7393 val = (4 << 24) + (0 << 12) + 1024;
7394 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7395
7396 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7397 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7398 /* enable context validation interrupt from CFC */
7399 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7400
7401 /* set the thresholds to prevent CFC/CDU race */
7402 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7403
7404 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7405
7406 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7407 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7408
7409 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7410 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7411
7412 /* Reset PCIE errors for debug */
7413 REG_WR(bp, 0x2814, 0xffffffff);
7414 REG_WR(bp, 0x3820, 0xffffffff);
7415
7416 if (!CHIP_IS_E1x(bp)) {
7417 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7418 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7419 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7420 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7421 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7422 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7423 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7424 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7425 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7426 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7427 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7428 }
7429
7430 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7431 if (!CHIP_IS_E1(bp)) {
7432 /* in E3 this done in per-port section */
7433 if (!CHIP_IS_E3(bp))
7434 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7435 }
7436 if (CHIP_IS_E1H(bp))
7437 /* not applicable for E2 (and above ...) */
7438 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7439
7440 if (CHIP_REV_IS_SLOW(bp))
7441 msleep(200);
7442
7443 /* finish CFC init */
7444 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7445 if (val != 1) {
7446 BNX2X_ERR("CFC LL_INIT failed\n");
7447 return -EBUSY;
7448 }
7449 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7450 if (val != 1) {
7451 BNX2X_ERR("CFC AC_INIT failed\n");
7452 return -EBUSY;
7453 }
7454 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7455 if (val != 1) {
7456 BNX2X_ERR("CFC CAM_INIT failed\n");
7457 return -EBUSY;
7458 }
7459 REG_WR(bp, CFC_REG_DEBUG0, 0);
7460
7461 if (CHIP_IS_E1(bp)) {
7462 /* read NIG statistic
7463 to see if this is our first up since powerup */
7464 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7465 val = *bnx2x_sp(bp, wb_data[0]);
7466
7467 /* do internal memory self test */
7468 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7469 BNX2X_ERR("internal mem self test failed\n");
7470 return -EBUSY;
7471 }
7472 }
7473
7474 bnx2x_setup_fan_failure_detection(bp);
7475
7476 /* clear PXP2 attentions */
7477 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7478
7479 bnx2x_enable_blocks_attention(bp);
7480 bnx2x_enable_blocks_parity(bp);
7481
7482 if (!BP_NOMCP(bp)) {
7483 if (CHIP_IS_E1x(bp))
7484 bnx2x__common_init_phy(bp);
7485 } else
7486 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7487
7488 if (SHMEM2_HAS(bp, netproc_fw_ver))
7489 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7490
7491 return 0;
7492 }
7493
7494 /**
7495 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7496 *
7497 * @bp: driver handle
7498 */
bnx2x_init_hw_common_chip(struct bnx2x * bp)7499 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7500 {
7501 int rc = bnx2x_init_hw_common(bp);
7502
7503 if (rc)
7504 return rc;
7505
7506 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7507 if (!BP_NOMCP(bp))
7508 bnx2x__common_init_phy(bp);
7509
7510 return 0;
7511 }
7512
bnx2x_init_hw_port(struct bnx2x * bp)7513 static int bnx2x_init_hw_port(struct bnx2x *bp)
7514 {
7515 int port = BP_PORT(bp);
7516 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7517 u32 low, high;
7518 u32 val, reg;
7519
7520 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7521
7522 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7523
7524 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7525 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7526 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7527
7528 /* Timers bug workaround: disables the pf_master bit in pglue at
7529 * common phase, we need to enable it here before any dmae access are
7530 * attempted. Therefore we manually added the enable-master to the
7531 * port phase (it also happens in the function phase)
7532 */
7533 if (!CHIP_IS_E1x(bp))
7534 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7535
7536 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7537 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7538 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7539 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7540
7541 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7542 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7543 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7544 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7545
7546 /* QM cid (connection) count */
7547 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7548
7549 if (CNIC_SUPPORT(bp)) {
7550 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7551 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7552 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7553 }
7554
7555 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7556
7557 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7558
7559 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7560
7561 if (IS_MF(bp))
7562 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7563 else if (bp->dev->mtu > 4096) {
7564 if (bp->flags & ONE_PORT_FLAG)
7565 low = 160;
7566 else {
7567 val = bp->dev->mtu;
7568 /* (24*1024 + val*4)/256 */
7569 low = 96 + (val/64) +
7570 ((val % 64) ? 1 : 0);
7571 }
7572 } else
7573 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7574 high = low + 56; /* 14*1024/256 */
7575 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7576 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7577 }
7578
7579 if (CHIP_MODE_IS_4_PORT(bp))
7580 REG_WR(bp, (BP_PORT(bp) ?
7581 BRB1_REG_MAC_GUARANTIED_1 :
7582 BRB1_REG_MAC_GUARANTIED_0), 40);
7583
7584 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7585 if (CHIP_IS_E3B0(bp)) {
7586 if (IS_MF_AFEX(bp)) {
7587 /* configure headers for AFEX mode */
7588 REG_WR(bp, BP_PORT(bp) ?
7589 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7590 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7591 REG_WR(bp, BP_PORT(bp) ?
7592 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7593 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7594 REG_WR(bp, BP_PORT(bp) ?
7595 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7596 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7597 } else {
7598 /* Ovlan exists only if we are in multi-function +
7599 * switch-dependent mode, in switch-independent there
7600 * is no ovlan headers
7601 */
7602 REG_WR(bp, BP_PORT(bp) ?
7603 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7604 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7605 (bp->path_has_ovlan ? 7 : 6));
7606 }
7607 }
7608
7609 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7610 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7611 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7612 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7613
7614 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7615 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7616 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7617 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7618
7619 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7620 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7621
7622 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7623
7624 if (CHIP_IS_E1x(bp)) {
7625 /* configure PBF to work without PAUSE mtu 9000 */
7626 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7627
7628 /* update threshold */
7629 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7630 /* update init credit */
7631 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7632
7633 /* probe changes */
7634 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7635 udelay(50);
7636 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7637 }
7638
7639 if (CNIC_SUPPORT(bp))
7640 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7641
7642 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7643 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7644
7645 if (CHIP_IS_E1(bp)) {
7646 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7647 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7648 }
7649 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7650
7651 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7652
7653 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7654 /* init aeu_mask_attn_func_0/1:
7655 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7656 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7657 * bits 4-7 are used for "per vn group attention" */
7658 val = IS_MF(bp) ? 0xF7 : 0x7;
7659 /* Enable DCBX attention for all but E1 */
7660 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7661 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7662
7663 /* SCPAD_PARITY should NOT trigger close the gates */
7664 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7665 REG_WR(bp, reg,
7666 REG_RD(bp, reg) &
7667 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7668
7669 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7670 REG_WR(bp, reg,
7671 REG_RD(bp, reg) &
7672 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7673
7674 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7675
7676 if (!CHIP_IS_E1x(bp)) {
7677 /* Bit-map indicating which L2 hdrs may appear after the
7678 * basic Ethernet header
7679 */
7680 if (IS_MF_AFEX(bp))
7681 REG_WR(bp, BP_PORT(bp) ?
7682 NIG_REG_P1_HDRS_AFTER_BASIC :
7683 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7684 else
7685 REG_WR(bp, BP_PORT(bp) ?
7686 NIG_REG_P1_HDRS_AFTER_BASIC :
7687 NIG_REG_P0_HDRS_AFTER_BASIC,
7688 IS_MF_SD(bp) ? 7 : 6);
7689
7690 if (CHIP_IS_E3(bp))
7691 REG_WR(bp, BP_PORT(bp) ?
7692 NIG_REG_LLH1_MF_MODE :
7693 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7694 }
7695 if (!CHIP_IS_E3(bp))
7696 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7697
7698 if (!CHIP_IS_E1(bp)) {
7699 /* 0x2 disable mf_ov, 0x1 enable */
7700 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7701 (IS_MF_SD(bp) ? 0x1 : 0x2));
7702
7703 if (!CHIP_IS_E1x(bp)) {
7704 val = 0;
7705 switch (bp->mf_mode) {
7706 case MULTI_FUNCTION_SD:
7707 val = 1;
7708 break;
7709 case MULTI_FUNCTION_SI:
7710 case MULTI_FUNCTION_AFEX:
7711 val = 2;
7712 break;
7713 }
7714
7715 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7716 NIG_REG_LLH0_CLS_TYPE), val);
7717 }
7718 {
7719 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7720 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7721 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7722 }
7723 }
7724
7725 /* If SPIO5 is set to generate interrupts, enable it for this port */
7726 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7727 if (val & MISC_SPIO_SPIO5) {
7728 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7729 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7730 val = REG_RD(bp, reg_addr);
7731 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7732 REG_WR(bp, reg_addr, val);
7733 }
7734
7735 if (CHIP_IS_E3B0(bp))
7736 bp->flags |= PTP_SUPPORTED;
7737
7738 return 0;
7739 }
7740
bnx2x_ilt_wr(struct bnx2x * bp,u32 index,dma_addr_t addr)7741 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7742 {
7743 int reg;
7744 u32 wb_write[2];
7745
7746 if (CHIP_IS_E1(bp))
7747 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7748 else
7749 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7750
7751 wb_write[0] = ONCHIP_ADDR1(addr);
7752 wb_write[1] = ONCHIP_ADDR2(addr);
7753 REG_WR_DMAE(bp, reg, wb_write, 2);
7754 }
7755
bnx2x_igu_clear_sb_gen(struct bnx2x * bp,u8 func,u8 idu_sb_id,bool is_pf)7756 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7757 {
7758 u32 data, ctl, cnt = 100;
7759 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7760 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7761 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7762 u32 sb_bit = 1 << (idu_sb_id%32);
7763 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7764 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7765
7766 /* Not supported in BC mode */
7767 if (CHIP_INT_MODE_IS_BC(bp))
7768 return;
7769
7770 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7771 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7772 IGU_REGULAR_CLEANUP_SET |
7773 IGU_REGULAR_BCLEANUP;
7774
7775 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7776 func_encode << IGU_CTRL_REG_FID_SHIFT |
7777 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7778
7779 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7780 data, igu_addr_data);
7781 REG_WR(bp, igu_addr_data, data);
7782 barrier();
7783 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7784 ctl, igu_addr_ctl);
7785 REG_WR(bp, igu_addr_ctl, ctl);
7786 barrier();
7787
7788 /* wait for clean up to finish */
7789 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7790 msleep(20);
7791
7792 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7793 DP(NETIF_MSG_HW,
7794 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7795 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7796 }
7797 }
7798
bnx2x_igu_clear_sb(struct bnx2x * bp,u8 idu_sb_id)7799 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7800 {
7801 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7802 }
7803
bnx2x_clear_func_ilt(struct bnx2x * bp,u32 func)7804 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7805 {
7806 u32 i, base = FUNC_ILT_BASE(func);
7807 for (i = base; i < base + ILT_PER_FUNC; i++)
7808 bnx2x_ilt_wr(bp, i, 0);
7809 }
7810
bnx2x_init_searcher(struct bnx2x * bp)7811 static void bnx2x_init_searcher(struct bnx2x *bp)
7812 {
7813 int port = BP_PORT(bp);
7814 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7815 /* T1 hash bits value determines the T1 number of entries */
7816 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7817 }
7818
bnx2x_func_switch_update(struct bnx2x * bp,int suspend)7819 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7820 {
7821 int rc;
7822 struct bnx2x_func_state_params func_params = {NULL};
7823 struct bnx2x_func_switch_update_params *switch_update_params =
7824 &func_params.params.switch_update;
7825
7826 /* Prepare parameters for function state transitions */
7827 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7828 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7829
7830 func_params.f_obj = &bp->func_obj;
7831 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7832
7833 /* Function parameters */
7834 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7835 &switch_update_params->changes);
7836 if (suspend)
7837 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7838 &switch_update_params->changes);
7839
7840 rc = bnx2x_func_state_change(bp, &func_params);
7841
7842 return rc;
7843 }
7844
bnx2x_reset_nic_mode(struct bnx2x * bp)7845 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7846 {
7847 int rc, i, port = BP_PORT(bp);
7848 int vlan_en = 0, mac_en[NUM_MACS];
7849
7850 /* Close input from network */
7851 if (bp->mf_mode == SINGLE_FUNCTION) {
7852 bnx2x_set_rx_filter(&bp->link_params, 0);
7853 } else {
7854 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7855 NIG_REG_LLH0_FUNC_EN);
7856 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7857 NIG_REG_LLH0_FUNC_EN, 0);
7858 for (i = 0; i < NUM_MACS; i++) {
7859 mac_en[i] = REG_RD(bp, port ?
7860 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7861 4 * i) :
7862 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7863 4 * i));
7864 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7865 4 * i) :
7866 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7867 }
7868 }
7869
7870 /* Close BMC to host */
7871 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7872 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7873
7874 /* Suspend Tx switching to the PF. Completion of this ramrod
7875 * further guarantees that all the packets of that PF / child
7876 * VFs in BRB were processed by the Parser, so it is safe to
7877 * change the NIC_MODE register.
7878 */
7879 rc = bnx2x_func_switch_update(bp, 1);
7880 if (rc) {
7881 BNX2X_ERR("Can't suspend tx-switching!\n");
7882 return rc;
7883 }
7884
7885 /* Change NIC_MODE register */
7886 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7887
7888 /* Open input from network */
7889 if (bp->mf_mode == SINGLE_FUNCTION) {
7890 bnx2x_set_rx_filter(&bp->link_params, 1);
7891 } else {
7892 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7893 NIG_REG_LLH0_FUNC_EN, vlan_en);
7894 for (i = 0; i < NUM_MACS; i++) {
7895 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7896 4 * i) :
7897 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7898 mac_en[i]);
7899 }
7900 }
7901
7902 /* Enable BMC to host */
7903 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7904 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7905
7906 /* Resume Tx switching to the PF */
7907 rc = bnx2x_func_switch_update(bp, 0);
7908 if (rc) {
7909 BNX2X_ERR("Can't resume tx-switching!\n");
7910 return rc;
7911 }
7912
7913 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7914 return 0;
7915 }
7916
bnx2x_init_hw_func_cnic(struct bnx2x * bp)7917 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7918 {
7919 int rc;
7920
7921 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7922
7923 if (CONFIGURE_NIC_MODE(bp)) {
7924 /* Configure searcher as part of function hw init */
7925 bnx2x_init_searcher(bp);
7926
7927 /* Reset NIC mode */
7928 rc = bnx2x_reset_nic_mode(bp);
7929 if (rc)
7930 BNX2X_ERR("Can't change NIC mode!\n");
7931 return rc;
7932 }
7933
7934 return 0;
7935 }
7936
7937 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7938 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7939 * the addresses of the transaction, resulting in was-error bit set in the pci
7940 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7941 * to clear the interrupt which detected this from the pglueb and the was done
7942 * bit
7943 */
bnx2x_clean_pglue_errors(struct bnx2x * bp)7944 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7945 {
7946 if (!CHIP_IS_E1x(bp))
7947 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7948 1 << BP_ABS_FUNC(bp));
7949 }
7950
bnx2x_init_hw_func(struct bnx2x * bp)7951 static int bnx2x_init_hw_func(struct bnx2x *bp)
7952 {
7953 int port = BP_PORT(bp);
7954 int func = BP_FUNC(bp);
7955 int init_phase = PHASE_PF0 + func;
7956 struct bnx2x_ilt *ilt = BP_ILT(bp);
7957 u16 cdu_ilt_start;
7958 u32 addr, val;
7959 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7960 int i, main_mem_width, rc;
7961
7962 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7963
7964 /* FLR cleanup - hmmm */
7965 if (!CHIP_IS_E1x(bp)) {
7966 rc = bnx2x_pf_flr_clnup(bp);
7967 if (rc) {
7968 bnx2x_fw_dump(bp);
7969 return rc;
7970 }
7971 }
7972
7973 /* set MSI reconfigure capability */
7974 if (bp->common.int_block == INT_BLOCK_HC) {
7975 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7976 val = REG_RD(bp, addr);
7977 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7978 REG_WR(bp, addr, val);
7979 }
7980
7981 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7982 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7983
7984 ilt = BP_ILT(bp);
7985 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7986
7987 if (IS_SRIOV(bp))
7988 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7989 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7990
7991 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7992 * those of the VFs, so start line should be reset
7993 */
7994 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7995 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7996 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7997 ilt->lines[cdu_ilt_start + i].page_mapping =
7998 bp->context[i].cxt_mapping;
7999 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
8000 }
8001
8002 bnx2x_ilt_init_op(bp, INITOP_SET);
8003
8004 if (!CONFIGURE_NIC_MODE(bp)) {
8005 bnx2x_init_searcher(bp);
8006 REG_WR(bp, PRS_REG_NIC_MODE, 0);
8007 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8008 } else {
8009 /* Set NIC mode */
8010 REG_WR(bp, PRS_REG_NIC_MODE, 1);
8011 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8012 }
8013
8014 if (!CHIP_IS_E1x(bp)) {
8015 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8016
8017 /* Turn on a single ISR mode in IGU if driver is going to use
8018 * INT#x or MSI
8019 */
8020 if (!(bp->flags & USING_MSIX_FLAG))
8021 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8022 /*
8023 * Timers workaround bug: function init part.
8024 * Need to wait 20msec after initializing ILT,
8025 * needed to make sure there are no requests in
8026 * one of the PXP internal queues with "old" ILT addresses
8027 */
8028 msleep(20);
8029 /*
8030 * Master enable - Due to WB DMAE writes performed before this
8031 * register is re-initialized as part of the regular function
8032 * init
8033 */
8034 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8035 /* Enable the function in IGU */
8036 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8037 }
8038
8039 bp->dmae_ready = 1;
8040
8041 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8042
8043 bnx2x_clean_pglue_errors(bp);
8044
8045 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8046 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8047 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8048 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8049 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8050 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8051 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8052 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8053 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8054 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8055 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8056 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8057 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8058
8059 if (!CHIP_IS_E1x(bp))
8060 REG_WR(bp, QM_REG_PF_EN, 1);
8061
8062 if (!CHIP_IS_E1x(bp)) {
8063 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8064 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8066 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8067 }
8068 bnx2x_init_block(bp, BLOCK_QM, init_phase);
8069
8070 bnx2x_init_block(bp, BLOCK_TM, init_phase);
8071 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8072 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8073
8074 bnx2x_iov_init_dq(bp);
8075
8076 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8077 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8078 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8079 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8080 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8081 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8082 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8083 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8084 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8085 if (!CHIP_IS_E1x(bp))
8086 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8087
8088 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8089
8090 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8091
8092 if (!CHIP_IS_E1x(bp))
8093 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8094
8095 if (IS_MF(bp)) {
8096 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8097 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8098 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8099 bp->mf_ov);
8100 }
8101 }
8102
8103 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8104
8105 /* HC init per function */
8106 if (bp->common.int_block == INT_BLOCK_HC) {
8107 if (CHIP_IS_E1H(bp)) {
8108 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8109
8110 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8111 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8112 }
8113 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8114
8115 } else {
8116 int num_segs, sb_idx, prod_offset;
8117
8118 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8119
8120 if (!CHIP_IS_E1x(bp)) {
8121 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8122 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8123 }
8124
8125 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8126
8127 if (!CHIP_IS_E1x(bp)) {
8128 int dsb_idx = 0;
8129 /**
8130 * Producer memory:
8131 * E2 mode: address 0-135 match to the mapping memory;
8132 * 136 - PF0 default prod; 137 - PF1 default prod;
8133 * 138 - PF2 default prod; 139 - PF3 default prod;
8134 * 140 - PF0 attn prod; 141 - PF1 attn prod;
8135 * 142 - PF2 attn prod; 143 - PF3 attn prod;
8136 * 144-147 reserved.
8137 *
8138 * E1.5 mode - In backward compatible mode;
8139 * for non default SB; each even line in the memory
8140 * holds the U producer and each odd line hold
8141 * the C producer. The first 128 producers are for
8142 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8143 * producers are for the DSB for each PF.
8144 * Each PF has five segments: (the order inside each
8145 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8146 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8147 * 144-147 attn prods;
8148 */
8149 /* non-default-status-blocks */
8150 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8151 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8152 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8153 prod_offset = (bp->igu_base_sb + sb_idx) *
8154 num_segs;
8155
8156 for (i = 0; i < num_segs; i++) {
8157 addr = IGU_REG_PROD_CONS_MEMORY +
8158 (prod_offset + i) * 4;
8159 REG_WR(bp, addr, 0);
8160 }
8161 /* send consumer update with value 0 */
8162 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8163 USTORM_ID, 0, IGU_INT_NOP, 1);
8164 bnx2x_igu_clear_sb(bp,
8165 bp->igu_base_sb + sb_idx);
8166 }
8167
8168 /* default-status-blocks */
8169 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8170 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8171
8172 if (CHIP_MODE_IS_4_PORT(bp))
8173 dsb_idx = BP_FUNC(bp);
8174 else
8175 dsb_idx = BP_VN(bp);
8176
8177 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8178 IGU_BC_BASE_DSB_PROD + dsb_idx :
8179 IGU_NORM_BASE_DSB_PROD + dsb_idx);
8180
8181 /*
8182 * igu prods come in chunks of E1HVN_MAX (4) -
8183 * does not matters what is the current chip mode
8184 */
8185 for (i = 0; i < (num_segs * E1HVN_MAX);
8186 i += E1HVN_MAX) {
8187 addr = IGU_REG_PROD_CONS_MEMORY +
8188 (prod_offset + i)*4;
8189 REG_WR(bp, addr, 0);
8190 }
8191 /* send consumer update with 0 */
8192 if (CHIP_INT_MODE_IS_BC(bp)) {
8193 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8194 USTORM_ID, 0, IGU_INT_NOP, 1);
8195 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8196 CSTORM_ID, 0, IGU_INT_NOP, 1);
8197 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8198 XSTORM_ID, 0, IGU_INT_NOP, 1);
8199 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8200 TSTORM_ID, 0, IGU_INT_NOP, 1);
8201 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8202 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8203 } else {
8204 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8205 USTORM_ID, 0, IGU_INT_NOP, 1);
8206 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8207 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8208 }
8209 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8210
8211 /* !!! These should become driver const once
8212 rf-tool supports split-68 const */
8213 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8214 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8215 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8216 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8217 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8218 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8219 }
8220 }
8221
8222 /* Reset PCIE errors for debug */
8223 REG_WR(bp, 0x2114, 0xffffffff);
8224 REG_WR(bp, 0x2120, 0xffffffff);
8225
8226 if (CHIP_IS_E1x(bp)) {
8227 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8228 main_mem_base = HC_REG_MAIN_MEMORY +
8229 BP_PORT(bp) * (main_mem_size * 4);
8230 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8231 main_mem_width = 8;
8232
8233 val = REG_RD(bp, main_mem_prty_clr);
8234 if (val)
8235 DP(NETIF_MSG_HW,
8236 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8237 val);
8238
8239 /* Clear "false" parity errors in MSI-X table */
8240 for (i = main_mem_base;
8241 i < main_mem_base + main_mem_size * 4;
8242 i += main_mem_width) {
8243 bnx2x_read_dmae(bp, i, main_mem_width / 4);
8244 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8245 i, main_mem_width / 4);
8246 }
8247 /* Clear HC parity attention */
8248 REG_RD(bp, main_mem_prty_clr);
8249 }
8250
8251 #ifdef BNX2X_STOP_ON_ERROR
8252 /* Enable STORMs SP logging */
8253 REG_WR8(bp, BAR_USTRORM_INTMEM +
8254 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8255 REG_WR8(bp, BAR_TSTRORM_INTMEM +
8256 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8257 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8258 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8259 REG_WR8(bp, BAR_XSTRORM_INTMEM +
8260 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8261 #endif
8262
8263 bnx2x_phy_probe(&bp->link_params);
8264
8265 return 0;
8266 }
8267
bnx2x_free_mem_cnic(struct bnx2x * bp)8268 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8269 {
8270 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8271
8272 if (!CHIP_IS_E1x(bp))
8273 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8274 sizeof(struct host_hc_status_block_e2));
8275 else
8276 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8277 sizeof(struct host_hc_status_block_e1x));
8278
8279 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8280 }
8281
bnx2x_free_mem(struct bnx2x * bp)8282 void bnx2x_free_mem(struct bnx2x *bp)
8283 {
8284 int i;
8285
8286 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8287 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8288
8289 if (IS_VF(bp))
8290 return;
8291
8292 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8293 sizeof(struct host_sp_status_block));
8294
8295 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8296 sizeof(struct bnx2x_slowpath));
8297
8298 for (i = 0; i < L2_ILT_LINES(bp); i++)
8299 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8300 bp->context[i].size);
8301 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8302
8303 BNX2X_FREE(bp->ilt->lines);
8304
8305 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8306
8307 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8308 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8309
8310 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8311
8312 bnx2x_iov_free_mem(bp);
8313 }
8314
bnx2x_alloc_mem_cnic(struct bnx2x * bp)8315 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8316 {
8317 if (!CHIP_IS_E1x(bp)) {
8318 /* size = the status block + ramrod buffers */
8319 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8320 sizeof(struct host_hc_status_block_e2));
8321 if (!bp->cnic_sb.e2_sb)
8322 goto alloc_mem_err;
8323 } else {
8324 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8325 sizeof(struct host_hc_status_block_e1x));
8326 if (!bp->cnic_sb.e1x_sb)
8327 goto alloc_mem_err;
8328 }
8329
8330 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8331 /* allocate searcher T2 table, as it wasn't allocated before */
8332 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8333 if (!bp->t2)
8334 goto alloc_mem_err;
8335 }
8336
8337 /* write address to which L5 should insert its values */
8338 bp->cnic_eth_dev.addr_drv_info_to_mcp =
8339 &bp->slowpath->drv_info_to_mcp;
8340
8341 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8342 goto alloc_mem_err;
8343
8344 return 0;
8345
8346 alloc_mem_err:
8347 bnx2x_free_mem_cnic(bp);
8348 BNX2X_ERR("Can't allocate memory\n");
8349 return -ENOMEM;
8350 }
8351
bnx2x_alloc_mem(struct bnx2x * bp)8352 int bnx2x_alloc_mem(struct bnx2x *bp)
8353 {
8354 int i, allocated, context_size;
8355
8356 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8357 /* allocate searcher T2 table */
8358 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8359 if (!bp->t2)
8360 goto alloc_mem_err;
8361 }
8362
8363 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8364 sizeof(struct host_sp_status_block));
8365 if (!bp->def_status_blk)
8366 goto alloc_mem_err;
8367
8368 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8369 sizeof(struct bnx2x_slowpath));
8370 if (!bp->slowpath)
8371 goto alloc_mem_err;
8372
8373 /* Allocate memory for CDU context:
8374 * This memory is allocated separately and not in the generic ILT
8375 * functions because CDU differs in few aspects:
8376 * 1. There are multiple entities allocating memory for context -
8377 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8378 * its own ILT lines.
8379 * 2. Since CDU page-size is not a single 4KB page (which is the case
8380 * for the other ILT clients), to be efficient we want to support
8381 * allocation of sub-page-size in the last entry.
8382 * 3. Context pointers are used by the driver to pass to FW / update
8383 * the context (for the other ILT clients the pointers are used just to
8384 * free the memory during unload).
8385 */
8386 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8387
8388 for (i = 0, allocated = 0; allocated < context_size; i++) {
8389 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8390 (context_size - allocated));
8391 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8392 bp->context[i].size);
8393 if (!bp->context[i].vcxt)
8394 goto alloc_mem_err;
8395 allocated += bp->context[i].size;
8396 }
8397 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8398 GFP_KERNEL);
8399 if (!bp->ilt->lines)
8400 goto alloc_mem_err;
8401
8402 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8403 goto alloc_mem_err;
8404
8405 if (bnx2x_iov_alloc_mem(bp))
8406 goto alloc_mem_err;
8407
8408 /* Slow path ring */
8409 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8410 if (!bp->spq)
8411 goto alloc_mem_err;
8412
8413 /* EQ */
8414 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8415 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8416 if (!bp->eq_ring)
8417 goto alloc_mem_err;
8418
8419 return 0;
8420
8421 alloc_mem_err:
8422 bnx2x_free_mem(bp);
8423 BNX2X_ERR("Can't allocate memory\n");
8424 return -ENOMEM;
8425 }
8426
8427 /*
8428 * Init service functions
8429 */
8430
bnx2x_set_mac_one(struct bnx2x * bp,const u8 * mac,struct bnx2x_vlan_mac_obj * obj,bool set,int mac_type,unsigned long * ramrod_flags)8431 int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac,
8432 struct bnx2x_vlan_mac_obj *obj, bool set,
8433 int mac_type, unsigned long *ramrod_flags)
8434 {
8435 int rc;
8436 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8437
8438 memset(&ramrod_param, 0, sizeof(ramrod_param));
8439
8440 /* Fill general parameters */
8441 ramrod_param.vlan_mac_obj = obj;
8442 ramrod_param.ramrod_flags = *ramrod_flags;
8443
8444 /* Fill a user request section if needed */
8445 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8446 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8447
8448 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8449
8450 /* Set the command: ADD or DEL */
8451 if (set)
8452 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8453 else
8454 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8455 }
8456
8457 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8458
8459 if (rc == -EEXIST) {
8460 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8461 /* do not treat adding same MAC as error */
8462 rc = 0;
8463 } else if (rc < 0)
8464 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8465
8466 return rc;
8467 }
8468
bnx2x_set_vlan_one(struct bnx2x * bp,u16 vlan,struct bnx2x_vlan_mac_obj * obj,bool set,unsigned long * ramrod_flags)8469 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8470 struct bnx2x_vlan_mac_obj *obj, bool set,
8471 unsigned long *ramrod_flags)
8472 {
8473 int rc;
8474 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8475
8476 memset(&ramrod_param, 0, sizeof(ramrod_param));
8477
8478 /* Fill general parameters */
8479 ramrod_param.vlan_mac_obj = obj;
8480 ramrod_param.ramrod_flags = *ramrod_flags;
8481
8482 /* Fill a user request section if needed */
8483 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8484 ramrod_param.user_req.u.vlan.vlan = vlan;
8485 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8486 /* Set the command: ADD or DEL */
8487 if (set)
8488 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8489 else
8490 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8491 }
8492
8493 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8494
8495 if (rc == -EEXIST) {
8496 /* Do not treat adding same vlan as error. */
8497 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8498 rc = 0;
8499 } else if (rc < 0) {
8500 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8501 }
8502
8503 return rc;
8504 }
8505
bnx2x_clear_vlan_info(struct bnx2x * bp)8506 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8507 {
8508 struct bnx2x_vlan_entry *vlan;
8509
8510 /* Mark that hw forgot all entries */
8511 list_for_each_entry(vlan, &bp->vlan_reg, link)
8512 vlan->hw = false;
8513
8514 bp->vlan_cnt = 0;
8515 }
8516
bnx2x_del_all_vlans(struct bnx2x * bp)8517 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8518 {
8519 struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8520 unsigned long ramrod_flags = 0, vlan_flags = 0;
8521 int rc;
8522
8523 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8524 __set_bit(BNX2X_VLAN, &vlan_flags);
8525 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8526 if (rc)
8527 return rc;
8528
8529 bnx2x_clear_vlan_info(bp);
8530
8531 return 0;
8532 }
8533
bnx2x_del_all_macs(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * mac_obj,int mac_type,bool wait_for_comp)8534 int bnx2x_del_all_macs(struct bnx2x *bp,
8535 struct bnx2x_vlan_mac_obj *mac_obj,
8536 int mac_type, bool wait_for_comp)
8537 {
8538 int rc;
8539 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8540
8541 /* Wait for completion of requested */
8542 if (wait_for_comp)
8543 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8544
8545 /* Set the mac type of addresses we want to clear */
8546 __set_bit(mac_type, &vlan_mac_flags);
8547
8548 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8549 if (rc < 0)
8550 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8551
8552 return rc;
8553 }
8554
bnx2x_set_eth_mac(struct bnx2x * bp,bool set)8555 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8556 {
8557 if (IS_PF(bp)) {
8558 unsigned long ramrod_flags = 0;
8559
8560 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8561 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8562 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8563 &bp->sp_objs->mac_obj, set,
8564 BNX2X_ETH_MAC, &ramrod_flags);
8565 } else { /* vf */
8566 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8567 bp->fp->index, set);
8568 }
8569 }
8570
bnx2x_setup_leading(struct bnx2x * bp)8571 int bnx2x_setup_leading(struct bnx2x *bp)
8572 {
8573 if (IS_PF(bp))
8574 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8575 else /* VF */
8576 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8577 }
8578
8579 /**
8580 * bnx2x_set_int_mode - configure interrupt mode
8581 *
8582 * @bp: driver handle
8583 *
8584 * In case of MSI-X it will also try to enable MSI-X.
8585 */
bnx2x_set_int_mode(struct bnx2x * bp)8586 int bnx2x_set_int_mode(struct bnx2x *bp)
8587 {
8588 int rc = 0;
8589
8590 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8591 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8592 return -EINVAL;
8593 }
8594
8595 switch (int_mode) {
8596 case BNX2X_INT_MODE_MSIX:
8597 /* attempt to enable msix */
8598 rc = bnx2x_enable_msix(bp);
8599
8600 /* msix attained */
8601 if (!rc)
8602 return 0;
8603
8604 /* vfs use only msix */
8605 if (rc && IS_VF(bp))
8606 return rc;
8607
8608 /* failed to enable multiple MSI-X */
8609 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8610 bp->num_queues,
8611 1 + bp->num_cnic_queues);
8612
8613 fallthrough;
8614 case BNX2X_INT_MODE_MSI:
8615 bnx2x_enable_msi(bp);
8616
8617 fallthrough;
8618 case BNX2X_INT_MODE_INTX:
8619 bp->num_ethernet_queues = 1;
8620 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8621 BNX2X_DEV_INFO("set number of queues to 1\n");
8622 break;
8623 default:
8624 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8625 return -EINVAL;
8626 }
8627 return 0;
8628 }
8629
8630 /* must be called prior to any HW initializations */
bnx2x_cid_ilt_lines(struct bnx2x * bp)8631 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8632 {
8633 if (IS_SRIOV(bp))
8634 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8635 return L2_ILT_LINES(bp);
8636 }
8637
bnx2x_ilt_set_info(struct bnx2x * bp)8638 void bnx2x_ilt_set_info(struct bnx2x *bp)
8639 {
8640 struct ilt_client_info *ilt_client;
8641 struct bnx2x_ilt *ilt = BP_ILT(bp);
8642 u16 line = 0;
8643
8644 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8645 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8646
8647 /* CDU */
8648 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8649 ilt_client->client_num = ILT_CLIENT_CDU;
8650 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8651 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8652 ilt_client->start = line;
8653 line += bnx2x_cid_ilt_lines(bp);
8654
8655 if (CNIC_SUPPORT(bp))
8656 line += CNIC_ILT_LINES;
8657 ilt_client->end = line - 1;
8658
8659 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8660 ilt_client->start,
8661 ilt_client->end,
8662 ilt_client->page_size,
8663 ilt_client->flags,
8664 ilog2(ilt_client->page_size >> 12));
8665
8666 /* QM */
8667 if (QM_INIT(bp->qm_cid_count)) {
8668 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8669 ilt_client->client_num = ILT_CLIENT_QM;
8670 ilt_client->page_size = QM_ILT_PAGE_SZ;
8671 ilt_client->flags = 0;
8672 ilt_client->start = line;
8673
8674 /* 4 bytes for each cid */
8675 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8676 QM_ILT_PAGE_SZ);
8677
8678 ilt_client->end = line - 1;
8679
8680 DP(NETIF_MSG_IFUP,
8681 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8682 ilt_client->start,
8683 ilt_client->end,
8684 ilt_client->page_size,
8685 ilt_client->flags,
8686 ilog2(ilt_client->page_size >> 12));
8687 }
8688
8689 if (CNIC_SUPPORT(bp)) {
8690 /* SRC */
8691 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8692 ilt_client->client_num = ILT_CLIENT_SRC;
8693 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8694 ilt_client->flags = 0;
8695 ilt_client->start = line;
8696 line += SRC_ILT_LINES;
8697 ilt_client->end = line - 1;
8698
8699 DP(NETIF_MSG_IFUP,
8700 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8701 ilt_client->start,
8702 ilt_client->end,
8703 ilt_client->page_size,
8704 ilt_client->flags,
8705 ilog2(ilt_client->page_size >> 12));
8706
8707 /* TM */
8708 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8709 ilt_client->client_num = ILT_CLIENT_TM;
8710 ilt_client->page_size = TM_ILT_PAGE_SZ;
8711 ilt_client->flags = 0;
8712 ilt_client->start = line;
8713 line += TM_ILT_LINES;
8714 ilt_client->end = line - 1;
8715
8716 DP(NETIF_MSG_IFUP,
8717 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8718 ilt_client->start,
8719 ilt_client->end,
8720 ilt_client->page_size,
8721 ilt_client->flags,
8722 ilog2(ilt_client->page_size >> 12));
8723 }
8724
8725 BUG_ON(line > ILT_MAX_LINES);
8726 }
8727
8728 /**
8729 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8730 *
8731 * @bp: driver handle
8732 * @fp: pointer to fastpath
8733 * @init_params: pointer to parameters structure
8734 *
8735 * parameters configured:
8736 * - HC configuration
8737 * - Queue's CDU context
8738 */
bnx2x_pf_q_prep_init(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_init_params * init_params)8739 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8740 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8741 {
8742 u8 cos;
8743 int cxt_index, cxt_offset;
8744
8745 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8746 if (!IS_FCOE_FP(fp)) {
8747 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8748 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8749
8750 /* If HC is supported, enable host coalescing in the transition
8751 * to INIT state.
8752 */
8753 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8754 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8755
8756 /* HC rate */
8757 init_params->rx.hc_rate = bp->rx_ticks ?
8758 (1000000 / bp->rx_ticks) : 0;
8759 init_params->tx.hc_rate = bp->tx_ticks ?
8760 (1000000 / bp->tx_ticks) : 0;
8761
8762 /* FW SB ID */
8763 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8764 fp->fw_sb_id;
8765
8766 /*
8767 * CQ index among the SB indices: FCoE clients uses the default
8768 * SB, therefore it's different.
8769 */
8770 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8771 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8772 }
8773
8774 /* set maximum number of COSs supported by this queue */
8775 init_params->max_cos = fp->max_cos;
8776
8777 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8778 fp->index, init_params->max_cos);
8779
8780 /* set the context pointers queue object */
8781 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8782 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8783 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8784 ILT_PAGE_CIDS);
8785 init_params->cxts[cos] =
8786 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8787 }
8788 }
8789
bnx2x_setup_tx_only(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_state_params * q_params,struct bnx2x_queue_setup_tx_only_params * tx_only_params,int tx_index,bool leading)8790 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8791 struct bnx2x_queue_state_params *q_params,
8792 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8793 int tx_index, bool leading)
8794 {
8795 memset(tx_only_params, 0, sizeof(*tx_only_params));
8796
8797 /* Set the command */
8798 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8799
8800 /* Set tx-only QUEUE flags: don't zero statistics */
8801 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8802
8803 /* choose the index of the cid to send the slow path on */
8804 tx_only_params->cid_index = tx_index;
8805
8806 /* Set general TX_ONLY_SETUP parameters */
8807 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8808
8809 /* Set Tx TX_ONLY_SETUP parameters */
8810 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8811
8812 DP(NETIF_MSG_IFUP,
8813 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8814 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8815 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8816 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8817
8818 /* send the ramrod */
8819 return bnx2x_queue_state_change(bp, q_params);
8820 }
8821
8822 /**
8823 * bnx2x_setup_queue - setup queue
8824 *
8825 * @bp: driver handle
8826 * @fp: pointer to fastpath
8827 * @leading: is leading
8828 *
8829 * This function performs 2 steps in a Queue state machine
8830 * actually: 1) RESET->INIT 2) INIT->SETUP
8831 */
8832
bnx2x_setup_queue(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)8833 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8834 bool leading)
8835 {
8836 struct bnx2x_queue_state_params q_params = {NULL};
8837 struct bnx2x_queue_setup_params *setup_params =
8838 &q_params.params.setup;
8839 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8840 &q_params.params.tx_only;
8841 int rc;
8842 u8 tx_index;
8843
8844 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8845
8846 /* reset IGU state skip FCoE L2 queue */
8847 if (!IS_FCOE_FP(fp))
8848 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8849 IGU_INT_ENABLE, 0);
8850
8851 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8852 /* We want to wait for completion in this context */
8853 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8854
8855 /* Prepare the INIT parameters */
8856 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8857
8858 /* Set the command */
8859 q_params.cmd = BNX2X_Q_CMD_INIT;
8860
8861 /* Change the state to INIT */
8862 rc = bnx2x_queue_state_change(bp, &q_params);
8863 if (rc) {
8864 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8865 return rc;
8866 }
8867
8868 DP(NETIF_MSG_IFUP, "init complete\n");
8869
8870 /* Now move the Queue to the SETUP state... */
8871 memset(setup_params, 0, sizeof(*setup_params));
8872
8873 /* Set QUEUE flags */
8874 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8875
8876 /* Set general SETUP parameters */
8877 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8878 FIRST_TX_COS_INDEX);
8879
8880 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8881 &setup_params->rxq_params);
8882
8883 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8884 FIRST_TX_COS_INDEX);
8885
8886 /* Set the command */
8887 q_params.cmd = BNX2X_Q_CMD_SETUP;
8888
8889 if (IS_FCOE_FP(fp))
8890 bp->fcoe_init = true;
8891
8892 /* Change the state to SETUP */
8893 rc = bnx2x_queue_state_change(bp, &q_params);
8894 if (rc) {
8895 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8896 return rc;
8897 }
8898
8899 /* loop through the relevant tx-only indices */
8900 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8901 tx_index < fp->max_cos;
8902 tx_index++) {
8903
8904 /* prepare and send tx-only ramrod*/
8905 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8906 tx_only_params, tx_index, leading);
8907 if (rc) {
8908 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8909 fp->index, tx_index);
8910 return rc;
8911 }
8912 }
8913
8914 return rc;
8915 }
8916
bnx2x_stop_queue(struct bnx2x * bp,int index)8917 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8918 {
8919 struct bnx2x_fastpath *fp = &bp->fp[index];
8920 struct bnx2x_fp_txdata *txdata;
8921 struct bnx2x_queue_state_params q_params = {NULL};
8922 int rc, tx_index;
8923
8924 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8925
8926 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8927 /* We want to wait for completion in this context */
8928 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8929
8930 /* close tx-only connections */
8931 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8932 tx_index < fp->max_cos;
8933 tx_index++){
8934
8935 /* ascertain this is a normal queue*/
8936 txdata = fp->txdata_ptr[tx_index];
8937
8938 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8939 txdata->txq_index);
8940
8941 /* send halt terminate on tx-only connection */
8942 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8943 memset(&q_params.params.terminate, 0,
8944 sizeof(q_params.params.terminate));
8945 q_params.params.terminate.cid_index = tx_index;
8946
8947 rc = bnx2x_queue_state_change(bp, &q_params);
8948 if (rc)
8949 return rc;
8950
8951 /* send halt terminate on tx-only connection */
8952 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8953 memset(&q_params.params.cfc_del, 0,
8954 sizeof(q_params.params.cfc_del));
8955 q_params.params.cfc_del.cid_index = tx_index;
8956 rc = bnx2x_queue_state_change(bp, &q_params);
8957 if (rc)
8958 return rc;
8959 }
8960 /* Stop the primary connection: */
8961 /* ...halt the connection */
8962 q_params.cmd = BNX2X_Q_CMD_HALT;
8963 rc = bnx2x_queue_state_change(bp, &q_params);
8964 if (rc)
8965 return rc;
8966
8967 /* ...terminate the connection */
8968 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8969 memset(&q_params.params.terminate, 0,
8970 sizeof(q_params.params.terminate));
8971 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8972 rc = bnx2x_queue_state_change(bp, &q_params);
8973 if (rc)
8974 return rc;
8975 /* ...delete cfc entry */
8976 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8977 memset(&q_params.params.cfc_del, 0,
8978 sizeof(q_params.params.cfc_del));
8979 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8980 return bnx2x_queue_state_change(bp, &q_params);
8981 }
8982
bnx2x_reset_func(struct bnx2x * bp)8983 static void bnx2x_reset_func(struct bnx2x *bp)
8984 {
8985 int port = BP_PORT(bp);
8986 int func = BP_FUNC(bp);
8987 int i;
8988
8989 /* Disable the function in the FW */
8990 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8991 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8992 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8993 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8994
8995 /* FP SBs */
8996 for_each_eth_queue(bp, i) {
8997 struct bnx2x_fastpath *fp = &bp->fp[i];
8998 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8999 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
9000 SB_DISABLED);
9001 }
9002
9003 if (CNIC_LOADED(bp))
9004 /* CNIC SB */
9005 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9006 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9007 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9008
9009 /* SP SB */
9010 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9011 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9012 SB_DISABLED);
9013
9014 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9015 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9016 0);
9017
9018 /* Configure IGU */
9019 if (bp->common.int_block == INT_BLOCK_HC) {
9020 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9021 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9022 } else {
9023 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9024 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9025 }
9026
9027 if (CNIC_LOADED(bp)) {
9028 /* Disable Timer scan */
9029 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9030 /*
9031 * Wait for at least 10ms and up to 2 second for the timers
9032 * scan to complete
9033 */
9034 for (i = 0; i < 200; i++) {
9035 usleep_range(10000, 20000);
9036 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9037 break;
9038 }
9039 }
9040 /* Clear ILT */
9041 bnx2x_clear_func_ilt(bp, func);
9042
9043 /* Timers workaround bug for E2: if this is vnic-3,
9044 * we need to set the entire ilt range for this timers.
9045 */
9046 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9047 struct ilt_client_info ilt_cli;
9048 /* use dummy TM client */
9049 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9050 ilt_cli.start = 0;
9051 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9052 ilt_cli.client_num = ILT_CLIENT_TM;
9053
9054 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9055 }
9056
9057 /* this assumes that reset_port() called before reset_func()*/
9058 if (!CHIP_IS_E1x(bp))
9059 bnx2x_pf_disable(bp);
9060
9061 bp->dmae_ready = 0;
9062 }
9063
bnx2x_reset_port(struct bnx2x * bp)9064 static void bnx2x_reset_port(struct bnx2x *bp)
9065 {
9066 int port = BP_PORT(bp);
9067 u32 val;
9068
9069 /* Reset physical Link */
9070 bnx2x__link_reset(bp);
9071
9072 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9073
9074 /* Do not rcv packets to BRB */
9075 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9076 /* Do not direct rcv packets that are not for MCP to the BRB */
9077 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9078 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9079
9080 /* Configure AEU */
9081 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9082
9083 msleep(100);
9084 /* Check for BRB port occupancy */
9085 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9086 if (val)
9087 DP(NETIF_MSG_IFDOWN,
9088 "BRB1 is not empty %d blocks are occupied\n", val);
9089
9090 /* TODO: Close Doorbell port? */
9091 }
9092
bnx2x_reset_hw(struct bnx2x * bp,u32 load_code)9093 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9094 {
9095 struct bnx2x_func_state_params func_params = {NULL};
9096
9097 /* Prepare parameters for function state transitions */
9098 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9099
9100 func_params.f_obj = &bp->func_obj;
9101 func_params.cmd = BNX2X_F_CMD_HW_RESET;
9102
9103 func_params.params.hw_init.load_phase = load_code;
9104
9105 return bnx2x_func_state_change(bp, &func_params);
9106 }
9107
bnx2x_func_stop(struct bnx2x * bp)9108 static int bnx2x_func_stop(struct bnx2x *bp)
9109 {
9110 struct bnx2x_func_state_params func_params = {NULL};
9111 int rc;
9112
9113 /* Prepare parameters for function state transitions */
9114 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9115 func_params.f_obj = &bp->func_obj;
9116 func_params.cmd = BNX2X_F_CMD_STOP;
9117
9118 /*
9119 * Try to stop the function the 'good way'. If fails (in case
9120 * of a parity error during bnx2x_chip_cleanup()) and we are
9121 * not in a debug mode, perform a state transaction in order to
9122 * enable further HW_RESET transaction.
9123 */
9124 rc = bnx2x_func_state_change(bp, &func_params);
9125 if (rc) {
9126 #ifdef BNX2X_STOP_ON_ERROR
9127 return rc;
9128 #else
9129 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9130 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9131 return bnx2x_func_state_change(bp, &func_params);
9132 #endif
9133 }
9134
9135 return 0;
9136 }
9137
9138 /**
9139 * bnx2x_send_unload_req - request unload mode from the MCP.
9140 *
9141 * @bp: driver handle
9142 * @unload_mode: requested function's unload mode
9143 *
9144 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9145 */
bnx2x_send_unload_req(struct bnx2x * bp,int unload_mode)9146 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9147 {
9148 u32 reset_code = 0;
9149 int port = BP_PORT(bp);
9150
9151 /* Select the UNLOAD request mode */
9152 if (unload_mode == UNLOAD_NORMAL)
9153 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9154
9155 else if (bp->flags & NO_WOL_FLAG)
9156 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9157
9158 else if (bp->wol) {
9159 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9160 const u8 *mac_addr = bp->dev->dev_addr;
9161 struct pci_dev *pdev = bp->pdev;
9162 u32 val;
9163 u16 pmc;
9164
9165 /* The mac address is written to entries 1-4 to
9166 * preserve entry 0 which is used by the PMF
9167 */
9168 u8 entry = (BP_VN(bp) + 1)*8;
9169
9170 val = (mac_addr[0] << 8) | mac_addr[1];
9171 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9172
9173 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9174 (mac_addr[4] << 8) | mac_addr[5];
9175 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9176
9177 /* Enable the PME and clear the status */
9178 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9179 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9180 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9181
9182 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9183
9184 } else
9185 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9186
9187 /* Send the request to the MCP */
9188 if (!BP_NOMCP(bp))
9189 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9190 else {
9191 int path = BP_PATH(bp);
9192
9193 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
9194 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9195 bnx2x_load_count[path][2]);
9196 bnx2x_load_count[path][0]--;
9197 bnx2x_load_count[path][1 + port]--;
9198 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
9199 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9200 bnx2x_load_count[path][2]);
9201 if (bnx2x_load_count[path][0] == 0)
9202 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9203 else if (bnx2x_load_count[path][1 + port] == 0)
9204 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9205 else
9206 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9207 }
9208
9209 return reset_code;
9210 }
9211
9212 /**
9213 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9214 *
9215 * @bp: driver handle
9216 * @keep_link: true iff link should be kept up
9217 */
bnx2x_send_unload_done(struct bnx2x * bp,bool keep_link)9218 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9219 {
9220 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9221
9222 /* Report UNLOAD_DONE to MCP */
9223 if (!BP_NOMCP(bp))
9224 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9225 }
9226
bnx2x_func_wait_started(struct bnx2x * bp)9227 static int bnx2x_func_wait_started(struct bnx2x *bp)
9228 {
9229 int tout = 50;
9230 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9231
9232 if (!bp->port.pmf)
9233 return 0;
9234
9235 /*
9236 * (assumption: No Attention from MCP at this stage)
9237 * PMF probably in the middle of TX disable/enable transaction
9238 * 1. Sync IRS for default SB
9239 * 2. Sync SP queue - this guarantees us that attention handling started
9240 * 3. Wait, that TX disable/enable transaction completes
9241 *
9242 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9243 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9244 * received completion for the transaction the state is TX_STOPPED.
9245 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9246 * transaction.
9247 */
9248
9249 /* make sure default SB ISR is done */
9250 if (msix)
9251 synchronize_irq(bp->msix_table[0].vector);
9252 else
9253 synchronize_irq(bp->pdev->irq);
9254
9255 flush_workqueue(bnx2x_wq);
9256 flush_workqueue(bnx2x_iov_wq);
9257
9258 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9259 BNX2X_F_STATE_STARTED && tout--)
9260 msleep(20);
9261
9262 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9263 BNX2X_F_STATE_STARTED) {
9264 #ifdef BNX2X_STOP_ON_ERROR
9265 BNX2X_ERR("Wrong function state\n");
9266 return -EBUSY;
9267 #else
9268 /*
9269 * Failed to complete the transaction in a "good way"
9270 * Force both transactions with CLR bit
9271 */
9272 struct bnx2x_func_state_params func_params = {NULL};
9273
9274 DP(NETIF_MSG_IFDOWN,
9275 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9276
9277 func_params.f_obj = &bp->func_obj;
9278 __set_bit(RAMROD_DRV_CLR_ONLY,
9279 &func_params.ramrod_flags);
9280
9281 /* STARTED-->TX_ST0PPED */
9282 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9283 bnx2x_func_state_change(bp, &func_params);
9284
9285 /* TX_ST0PPED-->STARTED */
9286 func_params.cmd = BNX2X_F_CMD_TX_START;
9287 return bnx2x_func_state_change(bp, &func_params);
9288 #endif
9289 }
9290
9291 return 0;
9292 }
9293
bnx2x_disable_ptp(struct bnx2x * bp)9294 static void bnx2x_disable_ptp(struct bnx2x *bp)
9295 {
9296 int port = BP_PORT(bp);
9297
9298 /* Disable sending PTP packets to host */
9299 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9300 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9301
9302 /* Reset PTP event detection rules */
9303 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9304 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9305 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9306 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9307 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9308 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9309 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9310 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9311
9312 /* Disable the PTP feature */
9313 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9314 NIG_REG_P0_PTP_EN, 0x0);
9315 }
9316
9317 /* Called during unload, to stop PTP-related stuff */
bnx2x_stop_ptp(struct bnx2x * bp)9318 static void bnx2x_stop_ptp(struct bnx2x *bp)
9319 {
9320 /* Cancel PTP work queue. Should be done after the Tx queues are
9321 * drained to prevent additional scheduling.
9322 */
9323 cancel_work_sync(&bp->ptp_task);
9324
9325 if (bp->ptp_tx_skb) {
9326 dev_kfree_skb_any(bp->ptp_tx_skb);
9327 bp->ptp_tx_skb = NULL;
9328 }
9329
9330 /* Disable PTP in HW */
9331 bnx2x_disable_ptp(bp);
9332
9333 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9334 }
9335
bnx2x_chip_cleanup(struct bnx2x * bp,int unload_mode,bool keep_link)9336 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9337 {
9338 int port = BP_PORT(bp);
9339 int i, rc = 0;
9340 u8 cos;
9341 struct bnx2x_mcast_ramrod_params rparam = {NULL};
9342 u32 reset_code;
9343
9344 /* Wait until tx fastpath tasks complete */
9345 for_each_tx_queue(bp, i) {
9346 struct bnx2x_fastpath *fp = &bp->fp[i];
9347
9348 for_each_cos_in_tx_queue(fp, cos)
9349 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9350 #ifdef BNX2X_STOP_ON_ERROR
9351 if (rc)
9352 return;
9353 #endif
9354 }
9355
9356 /* Give HW time to discard old tx messages */
9357 usleep_range(1000, 2000);
9358
9359 /* Clean all ETH MACs */
9360 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9361 false);
9362 if (rc < 0)
9363 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9364
9365 /* Clean up UC list */
9366 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9367 true);
9368 if (rc < 0)
9369 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9370 rc);
9371
9372 /* The whole *vlan_obj structure may be not initialized if VLAN
9373 * filtering offload is not supported by hardware. Currently this is
9374 * true for all hardware covered by CHIP_IS_E1x().
9375 */
9376 if (!CHIP_IS_E1x(bp)) {
9377 /* Remove all currently configured VLANs */
9378 rc = bnx2x_del_all_vlans(bp);
9379 if (rc < 0)
9380 BNX2X_ERR("Failed to delete all VLANs\n");
9381 }
9382
9383 /* Disable LLH */
9384 if (!CHIP_IS_E1(bp))
9385 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9386
9387 /* Set "drop all" (stop Rx).
9388 * We need to take a netif_addr_lock() here in order to prevent
9389 * a race between the completion code and this code.
9390 */
9391 netif_addr_lock_bh(bp->dev);
9392 /* Schedule the rx_mode command */
9393 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9394 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9395 else if (bp->slowpath)
9396 bnx2x_set_storm_rx_mode(bp);
9397
9398 /* Cleanup multicast configuration */
9399 rparam.mcast_obj = &bp->mcast_obj;
9400 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9401 if (rc < 0)
9402 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9403
9404 netif_addr_unlock_bh(bp->dev);
9405
9406 bnx2x_iov_chip_cleanup(bp);
9407
9408 /*
9409 * Send the UNLOAD_REQUEST to the MCP. This will return if
9410 * this function should perform FUNC, PORT or COMMON HW
9411 * reset.
9412 */
9413 reset_code = bnx2x_send_unload_req(bp, unload_mode);
9414
9415 /*
9416 * (assumption: No Attention from MCP at this stage)
9417 * PMF probably in the middle of TX disable/enable transaction
9418 */
9419 rc = bnx2x_func_wait_started(bp);
9420 if (rc) {
9421 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9422 #ifdef BNX2X_STOP_ON_ERROR
9423 return;
9424 #endif
9425 }
9426
9427 /* Close multi and leading connections
9428 * Completions for ramrods are collected in a synchronous way
9429 */
9430 for_each_eth_queue(bp, i)
9431 if (bnx2x_stop_queue(bp, i))
9432 #ifdef BNX2X_STOP_ON_ERROR
9433 return;
9434 #else
9435 goto unload_error;
9436 #endif
9437
9438 if (CNIC_LOADED(bp)) {
9439 for_each_cnic_queue(bp, i)
9440 if (bnx2x_stop_queue(bp, i))
9441 #ifdef BNX2X_STOP_ON_ERROR
9442 return;
9443 #else
9444 goto unload_error;
9445 #endif
9446 }
9447
9448 /* If SP settings didn't get completed so far - something
9449 * very wrong has happen.
9450 */
9451 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9452 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9453
9454 #ifndef BNX2X_STOP_ON_ERROR
9455 unload_error:
9456 #endif
9457 rc = bnx2x_func_stop(bp);
9458 if (rc) {
9459 BNX2X_ERR("Function stop failed!\n");
9460 #ifdef BNX2X_STOP_ON_ERROR
9461 return;
9462 #endif
9463 }
9464
9465 /* stop_ptp should be after the Tx queues are drained to prevent
9466 * scheduling to the cancelled PTP work queue. It should also be after
9467 * function stop ramrod is sent, since as part of this ramrod FW access
9468 * PTP registers.
9469 */
9470 if (bp->flags & PTP_SUPPORTED) {
9471 bnx2x_stop_ptp(bp);
9472 if (bp->ptp_clock) {
9473 ptp_clock_unregister(bp->ptp_clock);
9474 bp->ptp_clock = NULL;
9475 }
9476 }
9477
9478 /* Disable HW interrupts, NAPI */
9479 bnx2x_netif_stop(bp, 1);
9480 /* Delete all NAPI objects */
9481 bnx2x_del_all_napi(bp);
9482 if (CNIC_LOADED(bp))
9483 bnx2x_del_all_napi_cnic(bp);
9484
9485 /* Release IRQs */
9486 bnx2x_free_irq(bp);
9487
9488 /* Reset the chip, unless PCI function is offline. If we reach this
9489 * point following a PCI error handling, it means device is really
9490 * in a bad state and we're about to remove it, so reset the chip
9491 * is not a good idea.
9492 */
9493 if (!pci_channel_offline(bp->pdev)) {
9494 rc = bnx2x_reset_hw(bp, reset_code);
9495 if (rc)
9496 BNX2X_ERR("HW_RESET failed\n");
9497 }
9498
9499 /* Report UNLOAD_DONE to MCP */
9500 bnx2x_send_unload_done(bp, keep_link);
9501 }
9502
bnx2x_disable_close_the_gate(struct bnx2x * bp)9503 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9504 {
9505 u32 val;
9506
9507 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9508
9509 if (CHIP_IS_E1(bp)) {
9510 int port = BP_PORT(bp);
9511 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9512 MISC_REG_AEU_MASK_ATTN_FUNC_0;
9513
9514 val = REG_RD(bp, addr);
9515 val &= ~(0x300);
9516 REG_WR(bp, addr, val);
9517 } else {
9518 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9519 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9520 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9521 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9522 }
9523 }
9524
9525 /* Close gates #2, #3 and #4: */
bnx2x_set_234_gates(struct bnx2x * bp,bool close)9526 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9527 {
9528 u32 val;
9529
9530 /* Gates #2 and #4a are closed/opened for "not E1" only */
9531 if (!CHIP_IS_E1(bp)) {
9532 /* #4 */
9533 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9534 /* #2 */
9535 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9536 }
9537
9538 /* #3 */
9539 if (CHIP_IS_E1x(bp)) {
9540 /* Prevent interrupts from HC on both ports */
9541 val = REG_RD(bp, HC_REG_CONFIG_1);
9542 REG_WR(bp, HC_REG_CONFIG_1,
9543 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9544 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9545
9546 val = REG_RD(bp, HC_REG_CONFIG_0);
9547 REG_WR(bp, HC_REG_CONFIG_0,
9548 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9549 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9550 } else {
9551 /* Prevent incoming interrupts in IGU */
9552 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9553
9554 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9555 (!close) ?
9556 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9557 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9558 }
9559
9560 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9561 close ? "closing" : "opening");
9562 }
9563
9564 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9565
bnx2x_clp_reset_prep(struct bnx2x * bp,u32 * magic_val)9566 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9567 {
9568 /* Do some magic... */
9569 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9570 *magic_val = val & SHARED_MF_CLP_MAGIC;
9571 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9572 }
9573
9574 /**
9575 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9576 *
9577 * @bp: driver handle
9578 * @magic_val: old value of the `magic' bit.
9579 */
bnx2x_clp_reset_done(struct bnx2x * bp,u32 magic_val)9580 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9581 {
9582 /* Restore the `magic' bit value... */
9583 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9584 MF_CFG_WR(bp, shared_mf_config.clp_mb,
9585 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9586 }
9587
9588 /**
9589 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9590 *
9591 * @bp: driver handle
9592 * @magic_val: old value of 'magic' bit.
9593 *
9594 * Takes care of CLP configurations.
9595 */
bnx2x_reset_mcp_prep(struct bnx2x * bp,u32 * magic_val)9596 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9597 {
9598 u32 shmem;
9599 u32 validity_offset;
9600
9601 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9602
9603 /* Set `magic' bit in order to save MF config */
9604 if (!CHIP_IS_E1(bp))
9605 bnx2x_clp_reset_prep(bp, magic_val);
9606
9607 /* Get shmem offset */
9608 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9609 validity_offset =
9610 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9611
9612 /* Clear validity map flags */
9613 if (shmem > 0)
9614 REG_WR(bp, shmem + validity_offset, 0);
9615 }
9616
9617 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9618 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9619
9620 /**
9621 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9622 *
9623 * @bp: driver handle
9624 */
bnx2x_mcp_wait_one(struct bnx2x * bp)9625 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9626 {
9627 /* special handling for emulation and FPGA,
9628 wait 10 times longer */
9629 if (CHIP_REV_IS_SLOW(bp))
9630 msleep(MCP_ONE_TIMEOUT*10);
9631 else
9632 msleep(MCP_ONE_TIMEOUT);
9633 }
9634
9635 /*
9636 * initializes bp->common.shmem_base and waits for validity signature to appear
9637 */
bnx2x_init_shmem(struct bnx2x * bp)9638 static int bnx2x_init_shmem(struct bnx2x *bp)
9639 {
9640 int cnt = 0;
9641 u32 val = 0;
9642
9643 do {
9644 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9645
9646 /* If we read all 0xFFs, means we are in PCI error state and
9647 * should bail out to avoid crashes on adapter's FW reads.
9648 */
9649 if (bp->common.shmem_base == 0xFFFFFFFF) {
9650 bp->flags |= NO_MCP_FLAG;
9651 return -ENODEV;
9652 }
9653
9654 if (bp->common.shmem_base) {
9655 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9656 if (val & SHR_MEM_VALIDITY_MB)
9657 return 0;
9658 }
9659
9660 bnx2x_mcp_wait_one(bp);
9661
9662 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9663
9664 BNX2X_ERR("BAD MCP validity signature\n");
9665
9666 return -ENODEV;
9667 }
9668
bnx2x_reset_mcp_comp(struct bnx2x * bp,u32 magic_val)9669 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9670 {
9671 int rc = bnx2x_init_shmem(bp);
9672
9673 /* Restore the `magic' bit value */
9674 if (!CHIP_IS_E1(bp))
9675 bnx2x_clp_reset_done(bp, magic_val);
9676
9677 return rc;
9678 }
9679
bnx2x_pxp_prep(struct bnx2x * bp)9680 static void bnx2x_pxp_prep(struct bnx2x *bp)
9681 {
9682 if (!CHIP_IS_E1(bp)) {
9683 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9684 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9685 }
9686 }
9687
9688 /*
9689 * Reset the whole chip except for:
9690 * - PCIE core
9691 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9692 * one reset bit)
9693 * - IGU
9694 * - MISC (including AEU)
9695 * - GRC
9696 * - RBCN, RBCP
9697 */
bnx2x_process_kill_chip_reset(struct bnx2x * bp,bool global)9698 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9699 {
9700 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9701 u32 global_bits2, stay_reset2;
9702
9703 /*
9704 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9705 * (per chip) blocks.
9706 */
9707 global_bits2 =
9708 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9709 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9710
9711 /* Don't reset the following blocks.
9712 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9713 * reset, as in 4 port device they might still be owned
9714 * by the MCP (there is only one leader per path).
9715 */
9716 not_reset_mask1 =
9717 MISC_REGISTERS_RESET_REG_1_RST_HC |
9718 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9719 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9720
9721 not_reset_mask2 =
9722 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9723 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9724 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9725 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9726 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9727 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9728 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9729 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9730 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9731 MISC_REGISTERS_RESET_REG_2_PGLC |
9732 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9733 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9734 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9735 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9736 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9737 MISC_REGISTERS_RESET_REG_2_UMAC1;
9738
9739 /*
9740 * Keep the following blocks in reset:
9741 * - all xxMACs are handled by the bnx2x_link code.
9742 */
9743 stay_reset2 =
9744 MISC_REGISTERS_RESET_REG_2_XMAC |
9745 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9746
9747 /* Full reset masks according to the chip */
9748 reset_mask1 = 0xffffffff;
9749
9750 if (CHIP_IS_E1(bp))
9751 reset_mask2 = 0xffff;
9752 else if (CHIP_IS_E1H(bp))
9753 reset_mask2 = 0x1ffff;
9754 else if (CHIP_IS_E2(bp))
9755 reset_mask2 = 0xfffff;
9756 else /* CHIP_IS_E3 */
9757 reset_mask2 = 0x3ffffff;
9758
9759 /* Don't reset global blocks unless we need to */
9760 if (!global)
9761 reset_mask2 &= ~global_bits2;
9762
9763 /*
9764 * In case of attention in the QM, we need to reset PXP
9765 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9766 * because otherwise QM reset would release 'close the gates' shortly
9767 * before resetting the PXP, then the PSWRQ would send a write
9768 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9769 * read the payload data from PSWWR, but PSWWR would not
9770 * respond. The write queue in PGLUE would stuck, dmae commands
9771 * would not return. Therefore it's important to reset the second
9772 * reset register (containing the
9773 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9774 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9775 * bit).
9776 */
9777 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9778 reset_mask2 & (~not_reset_mask2));
9779
9780 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9781 reset_mask1 & (~not_reset_mask1));
9782
9783 barrier();
9784
9785 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9786 reset_mask2 & (~stay_reset2));
9787
9788 barrier();
9789
9790 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9791 }
9792
9793 /**
9794 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9795 * It should get cleared in no more than 1s.
9796 *
9797 * @bp: driver handle
9798 *
9799 * It should get cleared in no more than 1s. Returns 0 if
9800 * pending writes bit gets cleared.
9801 */
bnx2x_er_poll_igu_vq(struct bnx2x * bp)9802 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9803 {
9804 u32 cnt = 1000;
9805 u32 pend_bits = 0;
9806
9807 do {
9808 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9809
9810 if (pend_bits == 0)
9811 break;
9812
9813 usleep_range(1000, 2000);
9814 } while (cnt-- > 0);
9815
9816 if (cnt <= 0) {
9817 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9818 pend_bits);
9819 return -EBUSY;
9820 }
9821
9822 return 0;
9823 }
9824
bnx2x_process_kill(struct bnx2x * bp,bool global)9825 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9826 {
9827 int cnt = 1000;
9828 u32 val = 0;
9829 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9830 u32 tags_63_32 = 0;
9831
9832 /* Empty the Tetris buffer, wait for 1s */
9833 do {
9834 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9835 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9836 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9837 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9838 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9839 if (CHIP_IS_E3(bp))
9840 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9841
9842 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9843 ((port_is_idle_0 & 0x1) == 0x1) &&
9844 ((port_is_idle_1 & 0x1) == 0x1) &&
9845 (pgl_exp_rom2 == 0xffffffff) &&
9846 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9847 break;
9848 usleep_range(1000, 2000);
9849 } while (cnt-- > 0);
9850
9851 if (cnt <= 0) {
9852 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9853 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9854 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9855 pgl_exp_rom2);
9856 return -EAGAIN;
9857 }
9858
9859 barrier();
9860
9861 /* Close gates #2, #3 and #4 */
9862 bnx2x_set_234_gates(bp, true);
9863
9864 /* Poll for IGU VQs for 57712 and newer chips */
9865 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9866 return -EAGAIN;
9867
9868 /* TBD: Indicate that "process kill" is in progress to MCP */
9869
9870 /* Clear "unprepared" bit */
9871 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9872 barrier();
9873
9874 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9875 * PSWHST, GRC and PSWRD Tetris buffer.
9876 */
9877 usleep_range(1000, 2000);
9878
9879 /* Prepare to chip reset: */
9880 /* MCP */
9881 if (global)
9882 bnx2x_reset_mcp_prep(bp, &val);
9883
9884 /* PXP */
9885 bnx2x_pxp_prep(bp);
9886 barrier();
9887
9888 /* reset the chip */
9889 bnx2x_process_kill_chip_reset(bp, global);
9890 barrier();
9891
9892 /* clear errors in PGB */
9893 if (!CHIP_IS_E1x(bp))
9894 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9895
9896 /* Recover after reset: */
9897 /* MCP */
9898 if (global && bnx2x_reset_mcp_comp(bp, val))
9899 return -EAGAIN;
9900
9901 /* TBD: Add resetting the NO_MCP mode DB here */
9902
9903 /* Open the gates #2, #3 and #4 */
9904 bnx2x_set_234_gates(bp, false);
9905
9906 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9907 * reset state, re-enable attentions. */
9908
9909 return 0;
9910 }
9911
bnx2x_leader_reset(struct bnx2x * bp)9912 static int bnx2x_leader_reset(struct bnx2x *bp)
9913 {
9914 int rc = 0;
9915 bool global = bnx2x_reset_is_global(bp);
9916 u32 load_code;
9917
9918 /* if not going to reset MCP - load "fake" driver to reset HW while
9919 * driver is owner of the HW
9920 */
9921 if (!global && !BP_NOMCP(bp)) {
9922 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9923 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9924 if (!load_code) {
9925 BNX2X_ERR("MCP response failure, aborting\n");
9926 rc = -EAGAIN;
9927 goto exit_leader_reset;
9928 }
9929 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9930 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9931 BNX2X_ERR("MCP unexpected resp, aborting\n");
9932 rc = -EAGAIN;
9933 goto exit_leader_reset2;
9934 }
9935 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9936 if (!load_code) {
9937 BNX2X_ERR("MCP response failure, aborting\n");
9938 rc = -EAGAIN;
9939 goto exit_leader_reset2;
9940 }
9941 }
9942
9943 /* Try to recover after the failure */
9944 if (bnx2x_process_kill(bp, global)) {
9945 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9946 BP_PATH(bp));
9947 rc = -EAGAIN;
9948 goto exit_leader_reset2;
9949 }
9950
9951 /*
9952 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9953 * state.
9954 */
9955 bnx2x_set_reset_done(bp);
9956 if (global)
9957 bnx2x_clear_reset_global(bp);
9958
9959 exit_leader_reset2:
9960 /* unload "fake driver" if it was loaded */
9961 if (!global && !BP_NOMCP(bp)) {
9962 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9963 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9964 }
9965 exit_leader_reset:
9966 bp->is_leader = 0;
9967 bnx2x_release_leader_lock(bp);
9968 smp_mb();
9969 return rc;
9970 }
9971
bnx2x_recovery_failed(struct bnx2x * bp)9972 static void bnx2x_recovery_failed(struct bnx2x *bp)
9973 {
9974 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9975
9976 /* Disconnect this device */
9977 netif_device_detach(bp->dev);
9978
9979 /*
9980 * Block ifup for all function on this engine until "process kill"
9981 * or power cycle.
9982 */
9983 bnx2x_set_reset_in_progress(bp);
9984
9985 /* Shut down the power */
9986 bnx2x_set_power_state(bp, PCI_D3hot);
9987
9988 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9989
9990 smp_mb();
9991 }
9992
9993 /*
9994 * Assumption: runs under rtnl lock. This together with the fact
9995 * that it's called only from bnx2x_sp_rtnl() ensure that it
9996 * will never be called when netif_running(bp->dev) is false.
9997 */
bnx2x_parity_recover(struct bnx2x * bp)9998 static void bnx2x_parity_recover(struct bnx2x *bp)
9999 {
10000 u32 error_recovered, error_unrecovered;
10001 bool is_parity, global = false;
10002 #ifdef CONFIG_BNX2X_SRIOV
10003 int vf_idx;
10004
10005 for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10006 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10007
10008 if (vf)
10009 vf->state = VF_LOST;
10010 }
10011 #endif
10012 DP(NETIF_MSG_HW, "Handling parity\n");
10013 while (1) {
10014 switch (bp->recovery_state) {
10015 case BNX2X_RECOVERY_INIT:
10016 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10017 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10018 WARN_ON(!is_parity);
10019
10020 /* Try to get a LEADER_LOCK HW lock */
10021 if (bnx2x_trylock_leader_lock(bp)) {
10022 bnx2x_set_reset_in_progress(bp);
10023 /*
10024 * Check if there is a global attention and if
10025 * there was a global attention, set the global
10026 * reset bit.
10027 */
10028
10029 if (global)
10030 bnx2x_set_reset_global(bp);
10031
10032 bp->is_leader = 1;
10033 }
10034
10035 /* Stop the driver */
10036 /* If interface has been removed - break */
10037 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10038 return;
10039
10040 bp->recovery_state = BNX2X_RECOVERY_WAIT;
10041
10042 /* Ensure "is_leader", MCP command sequence and
10043 * "recovery_state" update values are seen on other
10044 * CPUs.
10045 */
10046 smp_mb();
10047 break;
10048
10049 case BNX2X_RECOVERY_WAIT:
10050 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10051 if (bp->is_leader) {
10052 int other_engine = BP_PATH(bp) ? 0 : 1;
10053 bool other_load_status =
10054 bnx2x_get_load_status(bp, other_engine);
10055 bool load_status =
10056 bnx2x_get_load_status(bp, BP_PATH(bp));
10057 global = bnx2x_reset_is_global(bp);
10058
10059 /*
10060 * In case of a parity in a global block, let
10061 * the first leader that performs a
10062 * leader_reset() reset the global blocks in
10063 * order to clear global attentions. Otherwise
10064 * the gates will remain closed for that
10065 * engine.
10066 */
10067 if (load_status ||
10068 (global && other_load_status)) {
10069 /* Wait until all other functions get
10070 * down.
10071 */
10072 schedule_delayed_work(&bp->sp_rtnl_task,
10073 HZ/10);
10074 return;
10075 } else {
10076 /* If all other functions got down -
10077 * try to bring the chip back to
10078 * normal. In any case it's an exit
10079 * point for a leader.
10080 */
10081 if (bnx2x_leader_reset(bp)) {
10082 bnx2x_recovery_failed(bp);
10083 return;
10084 }
10085
10086 /* If we are here, means that the
10087 * leader has succeeded and doesn't
10088 * want to be a leader any more. Try
10089 * to continue as a none-leader.
10090 */
10091 break;
10092 }
10093 } else { /* non-leader */
10094 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10095 /* Try to get a LEADER_LOCK HW lock as
10096 * long as a former leader may have
10097 * been unloaded by the user or
10098 * released a leadership by another
10099 * reason.
10100 */
10101 if (bnx2x_trylock_leader_lock(bp)) {
10102 /* I'm a leader now! Restart a
10103 * switch case.
10104 */
10105 bp->is_leader = 1;
10106 break;
10107 }
10108
10109 schedule_delayed_work(&bp->sp_rtnl_task,
10110 HZ/10);
10111 return;
10112
10113 } else {
10114 /*
10115 * If there was a global attention, wait
10116 * for it to be cleared.
10117 */
10118 if (bnx2x_reset_is_global(bp)) {
10119 schedule_delayed_work(
10120 &bp->sp_rtnl_task,
10121 HZ/10);
10122 return;
10123 }
10124
10125 error_recovered =
10126 bp->eth_stats.recoverable_error;
10127 error_unrecovered =
10128 bp->eth_stats.unrecoverable_error;
10129 bp->recovery_state =
10130 BNX2X_RECOVERY_NIC_LOADING;
10131 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10132 error_unrecovered++;
10133 netdev_err(bp->dev,
10134 "Recovery failed. Power cycle needed\n");
10135 /* Disconnect this device */
10136 netif_device_detach(bp->dev);
10137 /* Shut down the power */
10138 bnx2x_set_power_state(
10139 bp, PCI_D3hot);
10140 smp_mb();
10141 } else {
10142 bp->recovery_state =
10143 BNX2X_RECOVERY_DONE;
10144 error_recovered++;
10145 smp_mb();
10146 }
10147 bp->eth_stats.recoverable_error =
10148 error_recovered;
10149 bp->eth_stats.unrecoverable_error =
10150 error_unrecovered;
10151
10152 return;
10153 }
10154 }
10155 default:
10156 return;
10157 }
10158 }
10159 }
10160
bnx2x_udp_port_update(struct bnx2x * bp)10161 static int bnx2x_udp_port_update(struct bnx2x *bp)
10162 {
10163 struct bnx2x_func_switch_update_params *switch_update_params;
10164 struct bnx2x_func_state_params func_params = {NULL};
10165 u16 vxlan_port = 0, geneve_port = 0;
10166 int rc;
10167
10168 switch_update_params = &func_params.params.switch_update;
10169
10170 /* Prepare parameters for function state transitions */
10171 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10172 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10173
10174 func_params.f_obj = &bp->func_obj;
10175 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10176
10177 /* Function parameters */
10178 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10179 &switch_update_params->changes);
10180
10181 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10182 geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10183 switch_update_params->geneve_dst_port = geneve_port;
10184 }
10185
10186 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10187 vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10188 switch_update_params->vxlan_dst_port = vxlan_port;
10189 }
10190
10191 /* Re-enable inner-rss for the offloaded UDP tunnels */
10192 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10193 &switch_update_params->changes);
10194
10195 rc = bnx2x_func_state_change(bp, &func_params);
10196 if (rc)
10197 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10198 vxlan_port, geneve_port, rc);
10199 else
10200 DP(BNX2X_MSG_SP,
10201 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10202 vxlan_port, geneve_port);
10203
10204 return rc;
10205 }
10206
bnx2x_udp_tunnel_sync(struct net_device * netdev,unsigned int table)10207 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10208 {
10209 struct bnx2x *bp = netdev_priv(netdev);
10210 struct udp_tunnel_info ti;
10211
10212 udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10213 bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10214
10215 return bnx2x_udp_port_update(bp);
10216 }
10217
10218 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10219 .sync_table = bnx2x_udp_tunnel_sync,
10220 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10221 UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10222 .tables = {
10223 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
10224 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10225 },
10226 };
10227
10228 static int bnx2x_close(struct net_device *dev);
10229
10230 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10231 * scheduled on a general queue in order to prevent a dead lock.
10232 */
bnx2x_sp_rtnl_task(struct work_struct * work)10233 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10234 {
10235 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10236
10237 rtnl_lock();
10238
10239 if (!netif_running(bp->dev)) {
10240 rtnl_unlock();
10241 return;
10242 }
10243
10244 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10245 #ifdef BNX2X_STOP_ON_ERROR
10246 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10247 "you will need to reboot when done\n");
10248 goto sp_rtnl_not_reset;
10249 #endif
10250 /*
10251 * Clear all pending SP commands as we are going to reset the
10252 * function anyway.
10253 */
10254 bp->sp_rtnl_state = 0;
10255 smp_mb();
10256
10257 bnx2x_parity_recover(bp);
10258
10259 rtnl_unlock();
10260 return;
10261 }
10262
10263 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10264 #ifdef BNX2X_STOP_ON_ERROR
10265 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10266 "you will need to reboot when done\n");
10267 goto sp_rtnl_not_reset;
10268 #endif
10269
10270 /*
10271 * Clear all pending SP commands as we are going to reset the
10272 * function anyway.
10273 */
10274 bp->sp_rtnl_state = 0;
10275 smp_mb();
10276
10277 /* Immediately indicate link as down */
10278 bp->link_vars.link_up = 0;
10279 bp->force_link_down = true;
10280 netif_carrier_off(bp->dev);
10281 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10282
10283 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10284 /* When ret value shows failure of allocation failure,
10285 * the nic is rebooted again. If open still fails, a error
10286 * message to notify the user.
10287 */
10288 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10289 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10290 if (bnx2x_nic_load(bp, LOAD_NORMAL))
10291 BNX2X_ERR("Open the NIC fails again!\n");
10292 }
10293 rtnl_unlock();
10294 return;
10295 }
10296 #ifdef BNX2X_STOP_ON_ERROR
10297 sp_rtnl_not_reset:
10298 #endif
10299 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10300 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10301 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10302 bnx2x_after_function_update(bp);
10303 /*
10304 * in case of fan failure we need to reset id if the "stop on error"
10305 * debug flag is set, since we trying to prevent permanent overheating
10306 * damage
10307 */
10308 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10309 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10310 netif_device_detach(bp->dev);
10311 bnx2x_close(bp->dev);
10312 rtnl_unlock();
10313 return;
10314 }
10315
10316 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10317 DP(BNX2X_MSG_SP,
10318 "sending set mcast vf pf channel message from rtnl sp-task\n");
10319 bnx2x_vfpf_set_mcast(bp->dev);
10320 }
10321 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10322 &bp->sp_rtnl_state)){
10323 if (netif_carrier_ok(bp->dev)) {
10324 bnx2x_tx_disable(bp);
10325 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10326 }
10327 }
10328
10329 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10330 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10331 bnx2x_set_rx_mode_inner(bp);
10332 }
10333
10334 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10335 &bp->sp_rtnl_state))
10336 bnx2x_pf_set_vfs_vlan(bp);
10337
10338 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10339 bnx2x_dcbx_stop_hw_tx(bp);
10340 bnx2x_dcbx_resume_hw_tx(bp);
10341 }
10342
10343 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10344 &bp->sp_rtnl_state))
10345 bnx2x_update_mng_version(bp);
10346
10347 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10348 bnx2x_handle_update_svid_cmd(bp);
10349
10350 /* work which needs rtnl lock not-taken (as it takes the lock itself and
10351 * can be called from other contexts as well)
10352 */
10353 rtnl_unlock();
10354
10355 /* enable SR-IOV if applicable */
10356 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10357 &bp->sp_rtnl_state)) {
10358 bnx2x_disable_sriov(bp);
10359 bnx2x_enable_sriov(bp);
10360 }
10361 }
10362
bnx2x_period_task(struct work_struct * work)10363 static void bnx2x_period_task(struct work_struct *work)
10364 {
10365 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10366
10367 if (!netif_running(bp->dev))
10368 goto period_task_exit;
10369
10370 if (CHIP_REV_IS_SLOW(bp)) {
10371 BNX2X_ERR("period task called on emulation, ignoring\n");
10372 goto period_task_exit;
10373 }
10374
10375 bnx2x_acquire_phy_lock(bp);
10376 /*
10377 * The barrier is needed to ensure the ordering between the writing to
10378 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10379 * the reading here.
10380 */
10381 smp_mb();
10382 if (bp->port.pmf) {
10383 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10384
10385 /* Re-queue task in 1 sec */
10386 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10387 }
10388
10389 bnx2x_release_phy_lock(bp);
10390 period_task_exit:
10391 return;
10392 }
10393
10394 /*
10395 * Init service functions
10396 */
10397
bnx2x_get_pretend_reg(struct bnx2x * bp)10398 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10399 {
10400 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10401 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10402 return base + (BP_ABS_FUNC(bp)) * stride;
10403 }
10404
bnx2x_prev_unload_close_umac(struct bnx2x * bp,u8 port,u32 reset_reg,struct bnx2x_mac_vals * vals)10405 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10406 u8 port, u32 reset_reg,
10407 struct bnx2x_mac_vals *vals)
10408 {
10409 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10410 u32 base_addr;
10411
10412 if (!(mask & reset_reg))
10413 return false;
10414
10415 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10416 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10417 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10418 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10419 REG_WR(bp, vals->umac_addr[port], 0);
10420
10421 return true;
10422 }
10423
bnx2x_prev_unload_close_mac(struct bnx2x * bp,struct bnx2x_mac_vals * vals)10424 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10425 struct bnx2x_mac_vals *vals)
10426 {
10427 u32 val, base_addr, offset, mask, reset_reg;
10428 bool mac_stopped = false;
10429 u8 port = BP_PORT(bp);
10430
10431 /* reset addresses as they also mark which values were changed */
10432 memset(vals, 0, sizeof(*vals));
10433
10434 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10435
10436 if (!CHIP_IS_E3(bp)) {
10437 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10438 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10439 if ((mask & reset_reg) && val) {
10440 u32 wb_data[2];
10441 BNX2X_DEV_INFO("Disable bmac Rx\n");
10442 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10443 : NIG_REG_INGRESS_BMAC0_MEM;
10444 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10445 : BIGMAC_REGISTER_BMAC_CONTROL;
10446
10447 /*
10448 * use rd/wr since we cannot use dmae. This is safe
10449 * since MCP won't access the bus due to the request
10450 * to unload, and no function on the path can be
10451 * loaded at this time.
10452 */
10453 wb_data[0] = REG_RD(bp, base_addr + offset);
10454 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10455 vals->bmac_addr = base_addr + offset;
10456 vals->bmac_val[0] = wb_data[0];
10457 vals->bmac_val[1] = wb_data[1];
10458 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10459 REG_WR(bp, vals->bmac_addr, wb_data[0]);
10460 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10461 }
10462 BNX2X_DEV_INFO("Disable emac Rx\n");
10463 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10464 vals->emac_val = REG_RD(bp, vals->emac_addr);
10465 REG_WR(bp, vals->emac_addr, 0);
10466 mac_stopped = true;
10467 } else {
10468 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10469 BNX2X_DEV_INFO("Disable xmac Rx\n");
10470 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10471 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10472 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10473 val & ~(1 << 1));
10474 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10475 val | (1 << 1));
10476 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10477 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10478 REG_WR(bp, vals->xmac_addr, 0);
10479 mac_stopped = true;
10480 }
10481
10482 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10483 reset_reg, vals);
10484 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10485 reset_reg, vals);
10486 }
10487
10488 if (mac_stopped)
10489 msleep(20);
10490 }
10491
10492 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10493 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10494 0x1848 + ((f) << 4))
10495 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
10496 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
10497 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
10498
10499 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
10500 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
10501 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
10502
bnx2x_prev_is_after_undi(struct bnx2x * bp)10503 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10504 {
10505 /* UNDI marks its presence in DORQ -
10506 * it initializes CID offset for normal bell to 0x7
10507 */
10508 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10509 MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10510 return false;
10511
10512 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10513 BNX2X_DEV_INFO("UNDI previously loaded\n");
10514 return true;
10515 }
10516
10517 return false;
10518 }
10519
bnx2x_prev_unload_undi_inc(struct bnx2x * bp,u8 inc)10520 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10521 {
10522 u16 rcq, bd;
10523 u32 addr, tmp_reg;
10524
10525 if (BP_FUNC(bp) < 2)
10526 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10527 else
10528 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10529
10530 tmp_reg = REG_RD(bp, addr);
10531 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10532 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10533
10534 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10535 REG_WR(bp, addr, tmp_reg);
10536
10537 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10538 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10539 }
10540
bnx2x_prev_mcp_done(struct bnx2x * bp)10541 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10542 {
10543 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10544 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10545 if (!rc) {
10546 BNX2X_ERR("MCP response failure, aborting\n");
10547 return -EBUSY;
10548 }
10549
10550 return 0;
10551 }
10552
10553 static struct bnx2x_prev_path_list *
bnx2x_prev_path_get_entry(struct bnx2x * bp)10554 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10555 {
10556 struct bnx2x_prev_path_list *tmp_list;
10557
10558 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10559 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10560 bp->pdev->bus->number == tmp_list->bus &&
10561 BP_PATH(bp) == tmp_list->path)
10562 return tmp_list;
10563
10564 return NULL;
10565 }
10566
bnx2x_prev_path_mark_eeh(struct bnx2x * bp)10567 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10568 {
10569 struct bnx2x_prev_path_list *tmp_list;
10570 int rc;
10571
10572 rc = down_interruptible(&bnx2x_prev_sem);
10573 if (rc) {
10574 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10575 return rc;
10576 }
10577
10578 tmp_list = bnx2x_prev_path_get_entry(bp);
10579 if (tmp_list) {
10580 tmp_list->aer = 1;
10581 rc = 0;
10582 } else {
10583 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10584 BP_PATH(bp));
10585 }
10586
10587 up(&bnx2x_prev_sem);
10588
10589 return rc;
10590 }
10591
bnx2x_prev_is_path_marked(struct bnx2x * bp)10592 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10593 {
10594 struct bnx2x_prev_path_list *tmp_list;
10595 bool rc = false;
10596
10597 if (down_trylock(&bnx2x_prev_sem))
10598 return false;
10599
10600 tmp_list = bnx2x_prev_path_get_entry(bp);
10601 if (tmp_list) {
10602 if (tmp_list->aer) {
10603 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10604 BP_PATH(bp));
10605 } else {
10606 rc = true;
10607 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10608 BP_PATH(bp));
10609 }
10610 }
10611
10612 up(&bnx2x_prev_sem);
10613
10614 return rc;
10615 }
10616
bnx2x_port_after_undi(struct bnx2x * bp)10617 bool bnx2x_port_after_undi(struct bnx2x *bp)
10618 {
10619 struct bnx2x_prev_path_list *entry;
10620 bool val;
10621
10622 down(&bnx2x_prev_sem);
10623
10624 entry = bnx2x_prev_path_get_entry(bp);
10625 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10626
10627 up(&bnx2x_prev_sem);
10628
10629 return val;
10630 }
10631
bnx2x_prev_mark_path(struct bnx2x * bp,bool after_undi)10632 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10633 {
10634 struct bnx2x_prev_path_list *tmp_list;
10635 int rc;
10636
10637 rc = down_interruptible(&bnx2x_prev_sem);
10638 if (rc) {
10639 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10640 return rc;
10641 }
10642
10643 /* Check whether the entry for this path already exists */
10644 tmp_list = bnx2x_prev_path_get_entry(bp);
10645 if (tmp_list) {
10646 if (!tmp_list->aer) {
10647 BNX2X_ERR("Re-Marking the path.\n");
10648 } else {
10649 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10650 BP_PATH(bp));
10651 tmp_list->aer = 0;
10652 }
10653 up(&bnx2x_prev_sem);
10654 return 0;
10655 }
10656 up(&bnx2x_prev_sem);
10657
10658 /* Create an entry for this path and add it */
10659 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10660 if (!tmp_list) {
10661 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10662 return -ENOMEM;
10663 }
10664
10665 tmp_list->bus = bp->pdev->bus->number;
10666 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10667 tmp_list->path = BP_PATH(bp);
10668 tmp_list->aer = 0;
10669 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10670
10671 rc = down_interruptible(&bnx2x_prev_sem);
10672 if (rc) {
10673 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10674 kfree(tmp_list);
10675 } else {
10676 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10677 BP_PATH(bp));
10678 list_add(&tmp_list->list, &bnx2x_prev_list);
10679 up(&bnx2x_prev_sem);
10680 }
10681
10682 return rc;
10683 }
10684
bnx2x_do_flr(struct bnx2x * bp)10685 static int bnx2x_do_flr(struct bnx2x *bp)
10686 {
10687 struct pci_dev *dev = bp->pdev;
10688
10689 if (CHIP_IS_E1x(bp)) {
10690 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10691 return -EINVAL;
10692 }
10693
10694 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10695 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10696 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10697 bp->common.bc_ver);
10698 return -EINVAL;
10699 }
10700
10701 if (!pci_wait_for_pending_transaction(dev))
10702 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10703
10704 BNX2X_DEV_INFO("Initiating FLR\n");
10705 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10706
10707 return 0;
10708 }
10709
bnx2x_prev_unload_uncommon(struct bnx2x * bp)10710 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10711 {
10712 int rc;
10713
10714 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10715
10716 /* Test if previous unload process was already finished for this path */
10717 if (bnx2x_prev_is_path_marked(bp))
10718 return bnx2x_prev_mcp_done(bp);
10719
10720 BNX2X_DEV_INFO("Path is unmarked\n");
10721
10722 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10723 if (bnx2x_prev_is_after_undi(bp))
10724 goto out;
10725
10726 /* If function has FLR capabilities, and existing FW version matches
10727 * the one required, then FLR will be sufficient to clean any residue
10728 * left by previous driver
10729 */
10730 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10731
10732 if (!rc) {
10733 /* fw version is good */
10734 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10735 rc = bnx2x_do_flr(bp);
10736 }
10737
10738 if (!rc) {
10739 /* FLR was performed */
10740 BNX2X_DEV_INFO("FLR successful\n");
10741 return 0;
10742 }
10743
10744 BNX2X_DEV_INFO("Could not FLR\n");
10745
10746 out:
10747 /* Close the MCP request, return failure*/
10748 rc = bnx2x_prev_mcp_done(bp);
10749 if (!rc)
10750 rc = BNX2X_PREV_WAIT_NEEDED;
10751
10752 return rc;
10753 }
10754
bnx2x_prev_unload_common(struct bnx2x * bp)10755 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10756 {
10757 u32 reset_reg, tmp_reg = 0, rc;
10758 bool prev_undi = false;
10759 struct bnx2x_mac_vals mac_vals;
10760
10761 /* It is possible a previous function received 'common' answer,
10762 * but hasn't loaded yet, therefore creating a scenario of
10763 * multiple functions receiving 'common' on the same path.
10764 */
10765 BNX2X_DEV_INFO("Common unload Flow\n");
10766
10767 memset(&mac_vals, 0, sizeof(mac_vals));
10768
10769 if (bnx2x_prev_is_path_marked(bp))
10770 return bnx2x_prev_mcp_done(bp);
10771
10772 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10773
10774 /* Reset should be performed after BRB is emptied */
10775 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10776 u32 timer_count = 1000;
10777
10778 /* Close the MAC Rx to prevent BRB from filling up */
10779 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10780
10781 /* close LLH filters for both ports towards the BRB */
10782 bnx2x_set_rx_filter(&bp->link_params, 0);
10783 bp->link_params.port ^= 1;
10784 bnx2x_set_rx_filter(&bp->link_params, 0);
10785 bp->link_params.port ^= 1;
10786
10787 /* Check if the UNDI driver was previously loaded */
10788 if (bnx2x_prev_is_after_undi(bp)) {
10789 prev_undi = true;
10790 /* clear the UNDI indication */
10791 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10792 /* clear possible idle check errors */
10793 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10794 }
10795 if (!CHIP_IS_E1x(bp))
10796 /* block FW from writing to host */
10797 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10798
10799 /* wait until BRB is empty */
10800 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10801 while (timer_count) {
10802 u32 prev_brb = tmp_reg;
10803
10804 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10805 if (!tmp_reg)
10806 break;
10807
10808 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10809
10810 /* reset timer as long as BRB actually gets emptied */
10811 if (prev_brb > tmp_reg)
10812 timer_count = 1000;
10813 else
10814 timer_count--;
10815
10816 /* If UNDI resides in memory, manually increment it */
10817 if (prev_undi)
10818 bnx2x_prev_unload_undi_inc(bp, 1);
10819
10820 udelay(10);
10821 }
10822
10823 if (!timer_count)
10824 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10825 }
10826
10827 /* No packets are in the pipeline, path is ready for reset */
10828 bnx2x_reset_common(bp);
10829
10830 if (mac_vals.xmac_addr)
10831 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10832 if (mac_vals.umac_addr[0])
10833 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10834 if (mac_vals.umac_addr[1])
10835 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10836 if (mac_vals.emac_addr)
10837 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10838 if (mac_vals.bmac_addr) {
10839 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10840 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10841 }
10842
10843 rc = bnx2x_prev_mark_path(bp, prev_undi);
10844 if (rc) {
10845 bnx2x_prev_mcp_done(bp);
10846 return rc;
10847 }
10848
10849 return bnx2x_prev_mcp_done(bp);
10850 }
10851
bnx2x_prev_unload(struct bnx2x * bp)10852 static int bnx2x_prev_unload(struct bnx2x *bp)
10853 {
10854 int time_counter = 10;
10855 u32 rc, fw, hw_lock_reg, hw_lock_val;
10856 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10857
10858 /* clear hw from errors which may have resulted from an interrupted
10859 * dmae transaction.
10860 */
10861 bnx2x_clean_pglue_errors(bp);
10862
10863 /* Release previously held locks */
10864 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10865 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10866 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10867
10868 hw_lock_val = REG_RD(bp, hw_lock_reg);
10869 if (hw_lock_val) {
10870 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10871 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10872 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10873 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10874 }
10875
10876 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10877 REG_WR(bp, hw_lock_reg, 0xffffffff);
10878 } else
10879 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10880
10881 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10882 BNX2X_DEV_INFO("Release previously held alr\n");
10883 bnx2x_release_alr(bp);
10884 }
10885
10886 do {
10887 int aer = 0;
10888 /* Lock MCP using an unload request */
10889 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10890 if (!fw) {
10891 BNX2X_ERR("MCP response failure, aborting\n");
10892 rc = -EBUSY;
10893 break;
10894 }
10895
10896 rc = down_interruptible(&bnx2x_prev_sem);
10897 if (rc) {
10898 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10899 rc);
10900 } else {
10901 /* If Path is marked by EEH, ignore unload status */
10902 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10903 bnx2x_prev_path_get_entry(bp)->aer);
10904 up(&bnx2x_prev_sem);
10905 }
10906
10907 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10908 rc = bnx2x_prev_unload_common(bp);
10909 break;
10910 }
10911
10912 /* non-common reply from MCP might require looping */
10913 rc = bnx2x_prev_unload_uncommon(bp);
10914 if (rc != BNX2X_PREV_WAIT_NEEDED)
10915 break;
10916
10917 msleep(20);
10918 } while (--time_counter);
10919
10920 if (!time_counter || rc) {
10921 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10922 rc = -EPROBE_DEFER;
10923 }
10924
10925 /* Mark function if its port was used to boot from SAN */
10926 if (bnx2x_port_after_undi(bp))
10927 bp->link_params.feature_config_flags |=
10928 FEATURE_CONFIG_BOOT_FROM_SAN;
10929
10930 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10931
10932 return rc;
10933 }
10934
bnx2x_get_common_hwinfo(struct bnx2x * bp)10935 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10936 {
10937 u32 val, val2, val3, val4, id, boot_mode;
10938 u16 pmc;
10939
10940 /* Get the chip revision id and number. */
10941 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10942 val = REG_RD(bp, MISC_REG_CHIP_NUM);
10943 id = ((val & 0xffff) << 16);
10944 val = REG_RD(bp, MISC_REG_CHIP_REV);
10945 id |= ((val & 0xf) << 12);
10946
10947 /* Metal is read from PCI regs, but we can't access >=0x400 from
10948 * the configuration space (so we need to reg_rd)
10949 */
10950 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10951 id |= (((val >> 24) & 0xf) << 4);
10952 val = REG_RD(bp, MISC_REG_BOND_ID);
10953 id |= (val & 0xf);
10954 bp->common.chip_id = id;
10955
10956 /* force 57811 according to MISC register */
10957 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10958 if (CHIP_IS_57810(bp))
10959 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10960 (bp->common.chip_id & 0x0000FFFF);
10961 else if (CHIP_IS_57810_MF(bp))
10962 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10963 (bp->common.chip_id & 0x0000FFFF);
10964 bp->common.chip_id |= 0x1;
10965 }
10966
10967 /* Set doorbell size */
10968 bp->db_size = (1 << BNX2X_DB_SHIFT);
10969
10970 if (!CHIP_IS_E1x(bp)) {
10971 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10972 if ((val & 1) == 0)
10973 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10974 else
10975 val = (val >> 1) & 1;
10976 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10977 "2_PORT_MODE");
10978 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10979 CHIP_2_PORT_MODE;
10980
10981 if (CHIP_MODE_IS_4_PORT(bp))
10982 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
10983 else
10984 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
10985 } else {
10986 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10987 bp->pfid = bp->pf_num; /* 0..7 */
10988 }
10989
10990 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10991
10992 bp->link_params.chip_id = bp->common.chip_id;
10993 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10994
10995 val = (REG_RD(bp, 0x2874) & 0x55);
10996 if ((bp->common.chip_id & 0x1) ||
10997 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10998 bp->flags |= ONE_PORT_FLAG;
10999 BNX2X_DEV_INFO("single port device\n");
11000 }
11001
11002 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11003 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11004 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11005 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11006 bp->common.flash_size, bp->common.flash_size);
11007
11008 bnx2x_init_shmem(bp);
11009
11010 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11011 MISC_REG_GENERIC_CR_1 :
11012 MISC_REG_GENERIC_CR_0));
11013
11014 bp->link_params.shmem_base = bp->common.shmem_base;
11015 bp->link_params.shmem2_base = bp->common.shmem2_base;
11016 if (SHMEM2_RD(bp, size) >
11017 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11018 bp->link_params.lfa_base =
11019 REG_RD(bp, bp->common.shmem2_base +
11020 (u32)offsetof(struct shmem2_region,
11021 lfa_host_addr[BP_PORT(bp)]));
11022 else
11023 bp->link_params.lfa_base = 0;
11024 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
11025 bp->common.shmem_base, bp->common.shmem2_base);
11026
11027 if (!bp->common.shmem_base) {
11028 BNX2X_DEV_INFO("MCP not active\n");
11029 bp->flags |= NO_MCP_FLAG;
11030 return;
11031 }
11032
11033 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11034 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11035
11036 bp->link_params.hw_led_mode = ((bp->common.hw_config &
11037 SHARED_HW_CFG_LED_MODE_MASK) >>
11038 SHARED_HW_CFG_LED_MODE_SHIFT);
11039
11040 bp->link_params.feature_config_flags = 0;
11041 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11042 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11043 bp->link_params.feature_config_flags |=
11044 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11045 else
11046 bp->link_params.feature_config_flags &=
11047 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11048
11049 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11050 bp->common.bc_ver = val;
11051 BNX2X_DEV_INFO("bc_ver %X\n", val);
11052 if (val < BNX2X_BC_VER) {
11053 /* for now only warn
11054 * later we might need to enforce this */
11055 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11056 BNX2X_BC_VER, val);
11057 }
11058 bp->link_params.feature_config_flags |=
11059 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11060 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11061
11062 bp->link_params.feature_config_flags |=
11063 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11064 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11065 bp->link_params.feature_config_flags |=
11066 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11067 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11068 bp->link_params.feature_config_flags |=
11069 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11070 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11071
11072 bp->link_params.feature_config_flags |=
11073 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11074 FEATURE_CONFIG_MT_SUPPORT : 0;
11075
11076 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11077 BC_SUPPORTS_PFC_STATS : 0;
11078
11079 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11080 BC_SUPPORTS_FCOE_FEATURES : 0;
11081
11082 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11083 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11084
11085 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11086 BC_SUPPORTS_RMMOD_CMD : 0;
11087
11088 boot_mode = SHMEM_RD(bp,
11089 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11090 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11091 switch (boot_mode) {
11092 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11093 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11094 break;
11095 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11096 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11097 break;
11098 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11099 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11100 break;
11101 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11102 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11103 break;
11104 }
11105
11106 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11107 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11108
11109 BNX2X_DEV_INFO("%sWoL capable\n",
11110 (bp->flags & NO_WOL_FLAG) ? "not " : "");
11111
11112 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11113 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11114 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11115 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11116
11117 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11118 val, val2, val3, val4);
11119 }
11120
11121 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11122 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11123
bnx2x_get_igu_cam_info(struct bnx2x * bp)11124 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11125 {
11126 int pfid = BP_FUNC(bp);
11127 int igu_sb_id;
11128 u32 val;
11129 u8 fid, igu_sb_cnt = 0;
11130
11131 bp->igu_base_sb = 0xff;
11132 if (CHIP_INT_MODE_IS_BC(bp)) {
11133 int vn = BP_VN(bp);
11134 igu_sb_cnt = bp->igu_sb_cnt;
11135 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11136 FP_SB_MAX_E1x;
11137
11138 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
11139 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11140
11141 return 0;
11142 }
11143
11144 /* IGU in normal mode - read CAM */
11145 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11146 igu_sb_id++) {
11147 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11148 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11149 continue;
11150 fid = IGU_FID(val);
11151 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11152 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11153 continue;
11154 if (IGU_VEC(val) == 0)
11155 /* default status block */
11156 bp->igu_dsb_id = igu_sb_id;
11157 else {
11158 if (bp->igu_base_sb == 0xff)
11159 bp->igu_base_sb = igu_sb_id;
11160 igu_sb_cnt++;
11161 }
11162 }
11163 }
11164
11165 #ifdef CONFIG_PCI_MSI
11166 /* Due to new PF resource allocation by MFW T7.4 and above, it's
11167 * optional that number of CAM entries will not be equal to the value
11168 * advertised in PCI.
11169 * Driver should use the minimal value of both as the actual status
11170 * block count
11171 */
11172 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11173 #endif
11174
11175 if (igu_sb_cnt == 0) {
11176 BNX2X_ERR("CAM configuration error\n");
11177 return -EINVAL;
11178 }
11179
11180 return 0;
11181 }
11182
bnx2x_link_settings_supported(struct bnx2x * bp,u32 switch_cfg)11183 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11184 {
11185 int cfg_size = 0, idx, port = BP_PORT(bp);
11186
11187 /* Aggregation of supported attributes of all external phys */
11188 bp->port.supported[0] = 0;
11189 bp->port.supported[1] = 0;
11190 switch (bp->link_params.num_phys) {
11191 case 1:
11192 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11193 cfg_size = 1;
11194 break;
11195 case 2:
11196 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11197 cfg_size = 1;
11198 break;
11199 case 3:
11200 if (bp->link_params.multi_phy_config &
11201 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11202 bp->port.supported[1] =
11203 bp->link_params.phy[EXT_PHY1].supported;
11204 bp->port.supported[0] =
11205 bp->link_params.phy[EXT_PHY2].supported;
11206 } else {
11207 bp->port.supported[0] =
11208 bp->link_params.phy[EXT_PHY1].supported;
11209 bp->port.supported[1] =
11210 bp->link_params.phy[EXT_PHY2].supported;
11211 }
11212 cfg_size = 2;
11213 break;
11214 }
11215
11216 if (!(bp->port.supported[0] || bp->port.supported[1])) {
11217 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11218 SHMEM_RD(bp,
11219 dev_info.port_hw_config[port].external_phy_config),
11220 SHMEM_RD(bp,
11221 dev_info.port_hw_config[port].external_phy_config2));
11222 return;
11223 }
11224
11225 if (CHIP_IS_E3(bp))
11226 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11227 else {
11228 switch (switch_cfg) {
11229 case SWITCH_CFG_1G:
11230 bp->port.phy_addr = REG_RD(
11231 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11232 break;
11233 case SWITCH_CFG_10G:
11234 bp->port.phy_addr = REG_RD(
11235 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11236 break;
11237 default:
11238 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11239 bp->port.link_config[0]);
11240 return;
11241 }
11242 }
11243 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11244 /* mask what we support according to speed_cap_mask per configuration */
11245 for (idx = 0; idx < cfg_size; idx++) {
11246 if (!(bp->link_params.speed_cap_mask[idx] &
11247 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11248 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11249
11250 if (!(bp->link_params.speed_cap_mask[idx] &
11251 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11252 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11253
11254 if (!(bp->link_params.speed_cap_mask[idx] &
11255 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11256 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11257
11258 if (!(bp->link_params.speed_cap_mask[idx] &
11259 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11260 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11261
11262 if (!(bp->link_params.speed_cap_mask[idx] &
11263 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11264 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11265 SUPPORTED_1000baseT_Full);
11266
11267 if (!(bp->link_params.speed_cap_mask[idx] &
11268 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11269 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11270
11271 if (!(bp->link_params.speed_cap_mask[idx] &
11272 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11273 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11274
11275 if (!(bp->link_params.speed_cap_mask[idx] &
11276 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11277 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11278 }
11279
11280 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11281 bp->port.supported[1]);
11282 }
11283
bnx2x_link_settings_requested(struct bnx2x * bp)11284 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11285 {
11286 u32 link_config, idx, cfg_size = 0;
11287 bp->port.advertising[0] = 0;
11288 bp->port.advertising[1] = 0;
11289 switch (bp->link_params.num_phys) {
11290 case 1:
11291 case 2:
11292 cfg_size = 1;
11293 break;
11294 case 3:
11295 cfg_size = 2;
11296 break;
11297 }
11298 for (idx = 0; idx < cfg_size; idx++) {
11299 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11300 link_config = bp->port.link_config[idx];
11301 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11302 case PORT_FEATURE_LINK_SPEED_AUTO:
11303 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11304 bp->link_params.req_line_speed[idx] =
11305 SPEED_AUTO_NEG;
11306 bp->port.advertising[idx] |=
11307 bp->port.supported[idx];
11308 if (bp->link_params.phy[EXT_PHY1].type ==
11309 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11310 bp->port.advertising[idx] |=
11311 (SUPPORTED_100baseT_Half |
11312 SUPPORTED_100baseT_Full);
11313 } else {
11314 /* force 10G, no AN */
11315 bp->link_params.req_line_speed[idx] =
11316 SPEED_10000;
11317 bp->port.advertising[idx] |=
11318 (ADVERTISED_10000baseT_Full |
11319 ADVERTISED_FIBRE);
11320 continue;
11321 }
11322 break;
11323
11324 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11325 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11326 bp->link_params.req_line_speed[idx] =
11327 SPEED_10;
11328 bp->port.advertising[idx] |=
11329 (ADVERTISED_10baseT_Full |
11330 ADVERTISED_TP);
11331 } else {
11332 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11333 link_config,
11334 bp->link_params.speed_cap_mask[idx]);
11335 return;
11336 }
11337 break;
11338
11339 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11340 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11341 bp->link_params.req_line_speed[idx] =
11342 SPEED_10;
11343 bp->link_params.req_duplex[idx] =
11344 DUPLEX_HALF;
11345 bp->port.advertising[idx] |=
11346 (ADVERTISED_10baseT_Half |
11347 ADVERTISED_TP);
11348 } else {
11349 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11350 link_config,
11351 bp->link_params.speed_cap_mask[idx]);
11352 return;
11353 }
11354 break;
11355
11356 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11357 if (bp->port.supported[idx] &
11358 SUPPORTED_100baseT_Full) {
11359 bp->link_params.req_line_speed[idx] =
11360 SPEED_100;
11361 bp->port.advertising[idx] |=
11362 (ADVERTISED_100baseT_Full |
11363 ADVERTISED_TP);
11364 } else {
11365 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11366 link_config,
11367 bp->link_params.speed_cap_mask[idx]);
11368 return;
11369 }
11370 break;
11371
11372 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11373 if (bp->port.supported[idx] &
11374 SUPPORTED_100baseT_Half) {
11375 bp->link_params.req_line_speed[idx] =
11376 SPEED_100;
11377 bp->link_params.req_duplex[idx] =
11378 DUPLEX_HALF;
11379 bp->port.advertising[idx] |=
11380 (ADVERTISED_100baseT_Half |
11381 ADVERTISED_TP);
11382 } else {
11383 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11384 link_config,
11385 bp->link_params.speed_cap_mask[idx]);
11386 return;
11387 }
11388 break;
11389
11390 case PORT_FEATURE_LINK_SPEED_1G:
11391 if (bp->port.supported[idx] &
11392 SUPPORTED_1000baseT_Full) {
11393 bp->link_params.req_line_speed[idx] =
11394 SPEED_1000;
11395 bp->port.advertising[idx] |=
11396 (ADVERTISED_1000baseT_Full |
11397 ADVERTISED_TP);
11398 } else if (bp->port.supported[idx] &
11399 SUPPORTED_1000baseKX_Full) {
11400 bp->link_params.req_line_speed[idx] =
11401 SPEED_1000;
11402 bp->port.advertising[idx] |=
11403 ADVERTISED_1000baseKX_Full;
11404 } else {
11405 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11406 link_config,
11407 bp->link_params.speed_cap_mask[idx]);
11408 return;
11409 }
11410 break;
11411
11412 case PORT_FEATURE_LINK_SPEED_2_5G:
11413 if (bp->port.supported[idx] &
11414 SUPPORTED_2500baseX_Full) {
11415 bp->link_params.req_line_speed[idx] =
11416 SPEED_2500;
11417 bp->port.advertising[idx] |=
11418 (ADVERTISED_2500baseX_Full |
11419 ADVERTISED_TP);
11420 } else {
11421 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11422 link_config,
11423 bp->link_params.speed_cap_mask[idx]);
11424 return;
11425 }
11426 break;
11427
11428 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11429 if (bp->port.supported[idx] &
11430 SUPPORTED_10000baseT_Full) {
11431 bp->link_params.req_line_speed[idx] =
11432 SPEED_10000;
11433 bp->port.advertising[idx] |=
11434 (ADVERTISED_10000baseT_Full |
11435 ADVERTISED_FIBRE);
11436 } else if (bp->port.supported[idx] &
11437 SUPPORTED_10000baseKR_Full) {
11438 bp->link_params.req_line_speed[idx] =
11439 SPEED_10000;
11440 bp->port.advertising[idx] |=
11441 (ADVERTISED_10000baseKR_Full |
11442 ADVERTISED_FIBRE);
11443 } else {
11444 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11445 link_config,
11446 bp->link_params.speed_cap_mask[idx]);
11447 return;
11448 }
11449 break;
11450 case PORT_FEATURE_LINK_SPEED_20G:
11451 bp->link_params.req_line_speed[idx] = SPEED_20000;
11452
11453 break;
11454 default:
11455 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11456 link_config);
11457 bp->link_params.req_line_speed[idx] =
11458 SPEED_AUTO_NEG;
11459 bp->port.advertising[idx] =
11460 bp->port.supported[idx];
11461 break;
11462 }
11463
11464 bp->link_params.req_flow_ctrl[idx] = (link_config &
11465 PORT_FEATURE_FLOW_CONTROL_MASK);
11466 if (bp->link_params.req_flow_ctrl[idx] ==
11467 BNX2X_FLOW_CTRL_AUTO) {
11468 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11469 bp->link_params.req_flow_ctrl[idx] =
11470 BNX2X_FLOW_CTRL_NONE;
11471 else
11472 bnx2x_set_requested_fc(bp);
11473 }
11474
11475 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11476 bp->link_params.req_line_speed[idx],
11477 bp->link_params.req_duplex[idx],
11478 bp->link_params.req_flow_ctrl[idx],
11479 bp->port.advertising[idx]);
11480 }
11481 }
11482
bnx2x_set_mac_buf(u8 * mac_buf,u32 mac_lo,u16 mac_hi)11483 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11484 {
11485 __be16 mac_hi_be = cpu_to_be16(mac_hi);
11486 __be32 mac_lo_be = cpu_to_be32(mac_lo);
11487 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11488 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11489 }
11490
bnx2x_get_port_hwinfo(struct bnx2x * bp)11491 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11492 {
11493 int port = BP_PORT(bp);
11494 u32 config;
11495 u32 ext_phy_type, ext_phy_config, eee_mode;
11496
11497 bp->link_params.bp = bp;
11498 bp->link_params.port = port;
11499
11500 bp->link_params.lane_config =
11501 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11502
11503 bp->link_params.speed_cap_mask[0] =
11504 SHMEM_RD(bp,
11505 dev_info.port_hw_config[port].speed_capability_mask) &
11506 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11507 bp->link_params.speed_cap_mask[1] =
11508 SHMEM_RD(bp,
11509 dev_info.port_hw_config[port].speed_capability_mask2) &
11510 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11511 bp->port.link_config[0] =
11512 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11513
11514 bp->port.link_config[1] =
11515 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11516
11517 bp->link_params.multi_phy_config =
11518 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11519 /* If the device is capable of WoL, set the default state according
11520 * to the HW
11521 */
11522 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11523 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11524 (config & PORT_FEATURE_WOL_ENABLED));
11525
11526 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11527 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11528 bp->flags |= NO_ISCSI_FLAG;
11529 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11530 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11531 bp->flags |= NO_FCOE_FLAG;
11532
11533 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
11534 bp->link_params.lane_config,
11535 bp->link_params.speed_cap_mask[0],
11536 bp->port.link_config[0]);
11537
11538 bp->link_params.switch_cfg = (bp->port.link_config[0] &
11539 PORT_FEATURE_CONNECTED_SWITCH_MASK);
11540 bnx2x_phy_probe(&bp->link_params);
11541 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11542
11543 bnx2x_link_settings_requested(bp);
11544
11545 /*
11546 * If connected directly, work with the internal PHY, otherwise, work
11547 * with the external PHY
11548 */
11549 ext_phy_config =
11550 SHMEM_RD(bp,
11551 dev_info.port_hw_config[port].external_phy_config);
11552 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11553 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11554 bp->mdio.prtad = bp->port.phy_addr;
11555
11556 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11557 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11558 bp->mdio.prtad =
11559 XGXS_EXT_PHY_ADDR(ext_phy_config);
11560
11561 /* Configure link feature according to nvram value */
11562 eee_mode = (((SHMEM_RD(bp, dev_info.
11563 port_feature_config[port].eee_power_mode)) &
11564 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11565 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11566 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11567 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11568 EEE_MODE_ENABLE_LPI |
11569 EEE_MODE_OUTPUT_TIME;
11570 } else {
11571 bp->link_params.eee_mode = 0;
11572 }
11573 }
11574
bnx2x_get_iscsi_info(struct bnx2x * bp)11575 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11576 {
11577 u32 no_flags = NO_ISCSI_FLAG;
11578 int port = BP_PORT(bp);
11579 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11580 drv_lic_key[port].max_iscsi_conn);
11581
11582 if (!CNIC_SUPPORT(bp)) {
11583 bp->flags |= no_flags;
11584 return;
11585 }
11586
11587 /* Get the number of maximum allowed iSCSI connections */
11588 bp->cnic_eth_dev.max_iscsi_conn =
11589 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11590 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11591
11592 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11593 bp->cnic_eth_dev.max_iscsi_conn);
11594
11595 /*
11596 * If maximum allowed number of connections is zero -
11597 * disable the feature.
11598 */
11599 if (!bp->cnic_eth_dev.max_iscsi_conn)
11600 bp->flags |= no_flags;
11601 }
11602
bnx2x_get_ext_wwn_info(struct bnx2x * bp,int func)11603 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11604 {
11605 /* Port info */
11606 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11607 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11608 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11609 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11610
11611 /* Node info */
11612 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11613 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11614 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11615 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11616 }
11617
bnx2x_shared_fcoe_funcs(struct bnx2x * bp)11618 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11619 {
11620 u8 count = 0;
11621
11622 if (IS_MF(bp)) {
11623 u8 fid;
11624
11625 /* iterate over absolute function ids for this path: */
11626 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11627 if (IS_MF_SD(bp)) {
11628 u32 cfg = MF_CFG_RD(bp,
11629 func_mf_config[fid].config);
11630
11631 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11632 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11633 FUNC_MF_CFG_PROTOCOL_FCOE))
11634 count++;
11635 } else {
11636 u32 cfg = MF_CFG_RD(bp,
11637 func_ext_config[fid].
11638 func_cfg);
11639
11640 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11641 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11642 count++;
11643 }
11644 }
11645 } else { /* SF */
11646 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11647
11648 for (port = 0; port < port_cnt; port++) {
11649 u32 lic = SHMEM_RD(bp,
11650 drv_lic_key[port].max_fcoe_conn) ^
11651 FW_ENCODE_32BIT_PATTERN;
11652 if (lic)
11653 count++;
11654 }
11655 }
11656
11657 return count;
11658 }
11659
bnx2x_get_fcoe_info(struct bnx2x * bp)11660 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11661 {
11662 int port = BP_PORT(bp);
11663 int func = BP_ABS_FUNC(bp);
11664 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11665 drv_lic_key[port].max_fcoe_conn);
11666 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11667
11668 if (!CNIC_SUPPORT(bp)) {
11669 bp->flags |= NO_FCOE_FLAG;
11670 return;
11671 }
11672
11673 /* Get the number of maximum allowed FCoE connections */
11674 bp->cnic_eth_dev.max_fcoe_conn =
11675 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11676 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11677
11678 /* Calculate the number of maximum allowed FCoE tasks */
11679 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11680
11681 /* check if FCoE resources must be shared between different functions */
11682 if (num_fcoe_func)
11683 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11684
11685 /* Read the WWN: */
11686 if (!IS_MF(bp)) {
11687 /* Port info */
11688 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11689 SHMEM_RD(bp,
11690 dev_info.port_hw_config[port].
11691 fcoe_wwn_port_name_upper);
11692 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11693 SHMEM_RD(bp,
11694 dev_info.port_hw_config[port].
11695 fcoe_wwn_port_name_lower);
11696
11697 /* Node info */
11698 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11699 SHMEM_RD(bp,
11700 dev_info.port_hw_config[port].
11701 fcoe_wwn_node_name_upper);
11702 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11703 SHMEM_RD(bp,
11704 dev_info.port_hw_config[port].
11705 fcoe_wwn_node_name_lower);
11706 } else if (!IS_MF_SD(bp)) {
11707 /* Read the WWN info only if the FCoE feature is enabled for
11708 * this function.
11709 */
11710 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11711 bnx2x_get_ext_wwn_info(bp, func);
11712 } else {
11713 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11714 bnx2x_get_ext_wwn_info(bp, func);
11715 }
11716
11717 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11718
11719 /*
11720 * If maximum allowed number of connections is zero -
11721 * disable the feature.
11722 */
11723 if (!bp->cnic_eth_dev.max_fcoe_conn) {
11724 bp->flags |= NO_FCOE_FLAG;
11725 eth_zero_addr(bp->fip_mac);
11726 }
11727 }
11728
bnx2x_get_cnic_info(struct bnx2x * bp)11729 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11730 {
11731 /*
11732 * iSCSI may be dynamically disabled but reading
11733 * info here we will decrease memory usage by driver
11734 * if the feature is disabled for good
11735 */
11736 bnx2x_get_iscsi_info(bp);
11737 bnx2x_get_fcoe_info(bp);
11738 }
11739
bnx2x_get_cnic_mac_hwinfo(struct bnx2x * bp)11740 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11741 {
11742 u32 val, val2;
11743 int func = BP_ABS_FUNC(bp);
11744 int port = BP_PORT(bp);
11745 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11746 u8 *fip_mac = bp->fip_mac;
11747
11748 if (IS_MF(bp)) {
11749 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11750 * FCoE MAC then the appropriate feature should be disabled.
11751 * In non SD mode features configuration comes from struct
11752 * func_ext_config.
11753 */
11754 if (!IS_MF_SD(bp)) {
11755 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11756 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11757 val2 = MF_CFG_RD(bp, func_ext_config[func].
11758 iscsi_mac_addr_upper);
11759 val = MF_CFG_RD(bp, func_ext_config[func].
11760 iscsi_mac_addr_lower);
11761 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11762 BNX2X_DEV_INFO
11763 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11764 } else {
11765 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11766 }
11767
11768 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11769 val2 = MF_CFG_RD(bp, func_ext_config[func].
11770 fcoe_mac_addr_upper);
11771 val = MF_CFG_RD(bp, func_ext_config[func].
11772 fcoe_mac_addr_lower);
11773 bnx2x_set_mac_buf(fip_mac, val, val2);
11774 BNX2X_DEV_INFO
11775 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11776 } else {
11777 bp->flags |= NO_FCOE_FLAG;
11778 }
11779
11780 bp->mf_ext_config = cfg;
11781
11782 } else { /* SD MODE */
11783 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11784 /* use primary mac as iscsi mac */
11785 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11786
11787 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11788 BNX2X_DEV_INFO
11789 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11790 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11791 /* use primary mac as fip mac */
11792 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11793 BNX2X_DEV_INFO("SD FCoE MODE\n");
11794 BNX2X_DEV_INFO
11795 ("Read FIP MAC: %pM\n", fip_mac);
11796 }
11797 }
11798
11799 /* If this is a storage-only interface, use SAN mac as
11800 * primary MAC. Notice that for SD this is already the case,
11801 * as the SAN mac was copied from the primary MAC.
11802 */
11803 if (IS_MF_FCOE_AFEX(bp))
11804 eth_hw_addr_set(bp->dev, fip_mac);
11805 } else {
11806 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11807 iscsi_mac_upper);
11808 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11809 iscsi_mac_lower);
11810 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11811
11812 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11813 fcoe_fip_mac_upper);
11814 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11815 fcoe_fip_mac_lower);
11816 bnx2x_set_mac_buf(fip_mac, val, val2);
11817 }
11818
11819 /* Disable iSCSI OOO if MAC configuration is invalid. */
11820 if (!is_valid_ether_addr(iscsi_mac)) {
11821 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11822 eth_zero_addr(iscsi_mac);
11823 }
11824
11825 /* Disable FCoE if MAC configuration is invalid. */
11826 if (!is_valid_ether_addr(fip_mac)) {
11827 bp->flags |= NO_FCOE_FLAG;
11828 eth_zero_addr(bp->fip_mac);
11829 }
11830 }
11831
bnx2x_get_mac_hwinfo(struct bnx2x * bp)11832 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11833 {
11834 u32 val, val2;
11835 int func = BP_ABS_FUNC(bp);
11836 int port = BP_PORT(bp);
11837 u8 addr[ETH_ALEN] = {};
11838
11839 /* Zero primary MAC configuration */
11840 eth_hw_addr_set(bp->dev, addr);
11841
11842 if (BP_NOMCP(bp)) {
11843 BNX2X_ERROR("warning: random MAC workaround active\n");
11844 eth_hw_addr_random(bp->dev);
11845 } else if (IS_MF(bp)) {
11846 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11847 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11848 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11849 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) {
11850 bnx2x_set_mac_buf(addr, val, val2);
11851 eth_hw_addr_set(bp->dev, addr);
11852 }
11853
11854 if (CNIC_SUPPORT(bp))
11855 bnx2x_get_cnic_mac_hwinfo(bp);
11856 } else {
11857 /* in SF read MACs from port configuration */
11858 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11859 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11860 bnx2x_set_mac_buf(addr, val, val2);
11861 eth_hw_addr_set(bp->dev, addr);
11862
11863 if (CNIC_SUPPORT(bp))
11864 bnx2x_get_cnic_mac_hwinfo(bp);
11865 }
11866
11867 if (!BP_NOMCP(bp)) {
11868 /* Read physical port identifier from shmem */
11869 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11870 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11871 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11872 bp->flags |= HAS_PHYS_PORT_ID;
11873 }
11874
11875 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11876
11877 if (!is_valid_ether_addr(bp->dev->dev_addr))
11878 dev_err(&bp->pdev->dev,
11879 "bad Ethernet MAC address configuration: %pM\n"
11880 "change it manually before bringing up the appropriate network interface\n",
11881 bp->dev->dev_addr);
11882 }
11883
bnx2x_get_dropless_info(struct bnx2x * bp)11884 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11885 {
11886 int tmp;
11887 u32 cfg;
11888
11889 if (IS_VF(bp))
11890 return false;
11891
11892 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11893 /* Take function: tmp = func */
11894 tmp = BP_ABS_FUNC(bp);
11895 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11896 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11897 } else {
11898 /* Take port: tmp = port */
11899 tmp = BP_PORT(bp);
11900 cfg = SHMEM_RD(bp,
11901 dev_info.port_hw_config[tmp].generic_features);
11902 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11903 }
11904 return cfg;
11905 }
11906
validate_set_si_mode(struct bnx2x * bp)11907 static void validate_set_si_mode(struct bnx2x *bp)
11908 {
11909 u8 func = BP_ABS_FUNC(bp);
11910 u32 val;
11911
11912 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11913
11914 /* check for legal mac (upper bytes) */
11915 if (val != 0xffff) {
11916 bp->mf_mode = MULTI_FUNCTION_SI;
11917 bp->mf_config[BP_VN(bp)] =
11918 MF_CFG_RD(bp, func_mf_config[func].config);
11919 } else
11920 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11921 }
11922
bnx2x_get_hwinfo(struct bnx2x * bp)11923 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11924 {
11925 int /*abs*/func = BP_ABS_FUNC(bp);
11926 int vn;
11927 u32 val = 0, val2 = 0;
11928 int rc = 0;
11929
11930 /* Validate that chip access is feasible */
11931 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11932 dev_err(&bp->pdev->dev,
11933 "Chip read returns all Fs. Preventing probe from continuing\n");
11934 return -EINVAL;
11935 }
11936
11937 bnx2x_get_common_hwinfo(bp);
11938
11939 /*
11940 * initialize IGU parameters
11941 */
11942 if (CHIP_IS_E1x(bp)) {
11943 bp->common.int_block = INT_BLOCK_HC;
11944
11945 bp->igu_dsb_id = DEF_SB_IGU_ID;
11946 bp->igu_base_sb = 0;
11947 } else {
11948 bp->common.int_block = INT_BLOCK_IGU;
11949
11950 /* do not allow device reset during IGU info processing */
11951 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11952
11953 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11954
11955 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11956 int tout = 5000;
11957
11958 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11959
11960 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11961 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11962 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11963
11964 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11965 tout--;
11966 usleep_range(1000, 2000);
11967 }
11968
11969 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11970 dev_err(&bp->pdev->dev,
11971 "FORCING Normal Mode failed!!!\n");
11972 bnx2x_release_hw_lock(bp,
11973 HW_LOCK_RESOURCE_RESET);
11974 return -EPERM;
11975 }
11976 }
11977
11978 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11979 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11980 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11981 } else
11982 BNX2X_DEV_INFO("IGU Normal Mode\n");
11983
11984 rc = bnx2x_get_igu_cam_info(bp);
11985 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11986 if (rc)
11987 return rc;
11988 }
11989
11990 /*
11991 * set base FW non-default (fast path) status block id, this value is
11992 * used to initialize the fw_sb_id saved on the fp/queue structure to
11993 * determine the id used by the FW.
11994 */
11995 if (CHIP_IS_E1x(bp))
11996 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11997 else /*
11998 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11999 * the same queue are indicated on the same IGU SB). So we prefer
12000 * FW and IGU SBs to be the same value.
12001 */
12002 bp->base_fw_ndsb = bp->igu_base_sb;
12003
12004 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
12005 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12006 bp->igu_sb_cnt, bp->base_fw_ndsb);
12007
12008 /*
12009 * Initialize MF configuration
12010 */
12011 bp->mf_ov = 0;
12012 bp->mf_mode = 0;
12013 bp->mf_sub_mode = 0;
12014 vn = BP_VN(bp);
12015
12016 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12017 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12018 bp->common.shmem2_base, SHMEM2_RD(bp, size),
12019 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12020
12021 if (SHMEM2_HAS(bp, mf_cfg_addr))
12022 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12023 else
12024 bp->common.mf_cfg_base = bp->common.shmem_base +
12025 offsetof(struct shmem_region, func_mb) +
12026 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12027 /*
12028 * get mf configuration:
12029 * 1. Existence of MF configuration
12030 * 2. MAC address must be legal (check only upper bytes)
12031 * for Switch-Independent mode;
12032 * OVLAN must be legal for Switch-Dependent mode
12033 * 3. SF_MODE configures specific MF mode
12034 */
12035 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12036 /* get mf configuration */
12037 val = SHMEM_RD(bp,
12038 dev_info.shared_feature_config.config);
12039 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12040
12041 switch (val) {
12042 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12043 validate_set_si_mode(bp);
12044 break;
12045 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12046 if ((!CHIP_IS_E1x(bp)) &&
12047 (MF_CFG_RD(bp, func_mf_config[func].
12048 mac_upper) != 0xffff) &&
12049 (SHMEM2_HAS(bp,
12050 afex_driver_support))) {
12051 bp->mf_mode = MULTI_FUNCTION_AFEX;
12052 bp->mf_config[vn] = MF_CFG_RD(bp,
12053 func_mf_config[func].config);
12054 } else {
12055 BNX2X_DEV_INFO("can not configure afex mode\n");
12056 }
12057 break;
12058 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12059 /* get OV configuration */
12060 val = MF_CFG_RD(bp,
12061 func_mf_config[FUNC_0].e1hov_tag);
12062 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12063
12064 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12065 bp->mf_mode = MULTI_FUNCTION_SD;
12066 bp->mf_config[vn] = MF_CFG_RD(bp,
12067 func_mf_config[func].config);
12068 } else
12069 BNX2X_DEV_INFO("illegal OV for SD\n");
12070 break;
12071 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12072 bp->mf_mode = MULTI_FUNCTION_SD;
12073 bp->mf_sub_mode = SUB_MF_MODE_BD;
12074 bp->mf_config[vn] =
12075 MF_CFG_RD(bp,
12076 func_mf_config[func].config);
12077
12078 if (SHMEM2_HAS(bp, mtu_size)) {
12079 int mtu_idx = BP_FW_MB_IDX(bp);
12080 u16 mtu_size;
12081 u32 mtu;
12082
12083 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12084 mtu_size = (u16)mtu;
12085 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12086 mtu_size, mtu);
12087
12088 /* if valid: update device mtu */
12089 if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12090 (mtu_size <=
12091 ETH_MAX_JUMBO_PACKET_SIZE))
12092 bp->dev->mtu = mtu_size;
12093 }
12094 break;
12095 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12096 bp->mf_mode = MULTI_FUNCTION_SD;
12097 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12098 bp->mf_config[vn] =
12099 MF_CFG_RD(bp,
12100 func_mf_config[func].config);
12101 break;
12102 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12103 bp->mf_config[vn] = 0;
12104 break;
12105 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12106 val2 = SHMEM_RD(bp,
12107 dev_info.shared_hw_config.config_3);
12108 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12109 switch (val2) {
12110 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12111 validate_set_si_mode(bp);
12112 bp->mf_sub_mode =
12113 SUB_MF_MODE_NPAR1_DOT_5;
12114 break;
12115 default:
12116 /* Unknown configuration */
12117 bp->mf_config[vn] = 0;
12118 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12119 val);
12120 }
12121 break;
12122 default:
12123 /* Unknown configuration: reset mf_config */
12124 bp->mf_config[vn] = 0;
12125 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12126 }
12127 }
12128
12129 BNX2X_DEV_INFO("%s function mode\n",
12130 IS_MF(bp) ? "multi" : "single");
12131
12132 switch (bp->mf_mode) {
12133 case MULTI_FUNCTION_SD:
12134 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12135 FUNC_MF_CFG_E1HOV_TAG_MASK;
12136 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12137 bp->mf_ov = val;
12138 bp->path_has_ovlan = true;
12139
12140 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12141 func, bp->mf_ov, bp->mf_ov);
12142 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12143 (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12144 dev_err(&bp->pdev->dev,
12145 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12146 func);
12147 bp->path_has_ovlan = true;
12148 } else {
12149 dev_err(&bp->pdev->dev,
12150 "No valid MF OV for func %d, aborting\n",
12151 func);
12152 return -EPERM;
12153 }
12154 break;
12155 case MULTI_FUNCTION_AFEX:
12156 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12157 break;
12158 case MULTI_FUNCTION_SI:
12159 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12160 func);
12161 break;
12162 default:
12163 if (vn) {
12164 dev_err(&bp->pdev->dev,
12165 "VN %d is in a single function mode, aborting\n",
12166 vn);
12167 return -EPERM;
12168 }
12169 break;
12170 }
12171
12172 /* check if other port on the path needs ovlan:
12173 * Since MF configuration is shared between ports
12174 * Possible mixed modes are only
12175 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12176 */
12177 if (CHIP_MODE_IS_4_PORT(bp) &&
12178 !bp->path_has_ovlan &&
12179 !IS_MF(bp) &&
12180 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12181 u8 other_port = !BP_PORT(bp);
12182 u8 other_func = BP_PATH(bp) + 2*other_port;
12183 val = MF_CFG_RD(bp,
12184 func_mf_config[other_func].e1hov_tag);
12185 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12186 bp->path_has_ovlan = true;
12187 }
12188 }
12189
12190 /* adjust igu_sb_cnt to MF for E1H */
12191 if (CHIP_IS_E1H(bp) && IS_MF(bp))
12192 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12193
12194 /* port info */
12195 bnx2x_get_port_hwinfo(bp);
12196
12197 /* Get MAC addresses */
12198 bnx2x_get_mac_hwinfo(bp);
12199
12200 bnx2x_get_cnic_info(bp);
12201
12202 return rc;
12203 }
12204
bnx2x_read_fwinfo(struct bnx2x * bp)12205 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12206 {
12207 char str_id[VENDOR_ID_LEN + 1];
12208 unsigned int vpd_len, kw_len;
12209 u8 *vpd_data;
12210 int rodi;
12211
12212 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12213
12214 vpd_data = pci_vpd_alloc(bp->pdev, &vpd_len);
12215 if (IS_ERR(vpd_data))
12216 return;
12217
12218 rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12219 PCI_VPD_RO_KEYWORD_MFR_ID, &kw_len);
12220 if (rodi < 0 || kw_len != VENDOR_ID_LEN)
12221 goto out_not_found;
12222
12223 /* vendor specific info */
12224 snprintf(str_id, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12225 if (!strncasecmp(str_id, &vpd_data[rodi], VENDOR_ID_LEN)) {
12226 rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12227 PCI_VPD_RO_KEYWORD_VENDOR0,
12228 &kw_len);
12229 if (rodi >= 0 && kw_len < sizeof(bp->fw_ver)) {
12230 memcpy(bp->fw_ver, &vpd_data[rodi], kw_len);
12231 bp->fw_ver[kw_len] = ' ';
12232 }
12233 }
12234 out_not_found:
12235 kfree(vpd_data);
12236 }
12237
bnx2x_set_modes_bitmap(struct bnx2x * bp)12238 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12239 {
12240 u32 flags = 0;
12241
12242 if (CHIP_REV_IS_FPGA(bp))
12243 SET_FLAGS(flags, MODE_FPGA);
12244 else if (CHIP_REV_IS_EMUL(bp))
12245 SET_FLAGS(flags, MODE_EMUL);
12246 else
12247 SET_FLAGS(flags, MODE_ASIC);
12248
12249 if (CHIP_MODE_IS_4_PORT(bp))
12250 SET_FLAGS(flags, MODE_PORT4);
12251 else
12252 SET_FLAGS(flags, MODE_PORT2);
12253
12254 if (CHIP_IS_E2(bp))
12255 SET_FLAGS(flags, MODE_E2);
12256 else if (CHIP_IS_E3(bp)) {
12257 SET_FLAGS(flags, MODE_E3);
12258 if (CHIP_REV(bp) == CHIP_REV_Ax)
12259 SET_FLAGS(flags, MODE_E3_A0);
12260 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12261 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12262 }
12263
12264 if (IS_MF(bp)) {
12265 SET_FLAGS(flags, MODE_MF);
12266 switch (bp->mf_mode) {
12267 case MULTI_FUNCTION_SD:
12268 SET_FLAGS(flags, MODE_MF_SD);
12269 break;
12270 case MULTI_FUNCTION_SI:
12271 SET_FLAGS(flags, MODE_MF_SI);
12272 break;
12273 case MULTI_FUNCTION_AFEX:
12274 SET_FLAGS(flags, MODE_MF_AFEX);
12275 break;
12276 }
12277 } else
12278 SET_FLAGS(flags, MODE_SF);
12279
12280 #if defined(__LITTLE_ENDIAN)
12281 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12282 #else /*(__BIG_ENDIAN)*/
12283 SET_FLAGS(flags, MODE_BIG_ENDIAN);
12284 #endif
12285 INIT_MODE_FLAGS(bp) = flags;
12286 }
12287
bnx2x_init_bp(struct bnx2x * bp)12288 static int bnx2x_init_bp(struct bnx2x *bp)
12289 {
12290 int func;
12291 int rc;
12292
12293 mutex_init(&bp->port.phy_mutex);
12294 mutex_init(&bp->fw_mb_mutex);
12295 mutex_init(&bp->drv_info_mutex);
12296 sema_init(&bp->stats_lock, 1);
12297 bp->drv_info_mng_owner = false;
12298 INIT_LIST_HEAD(&bp->vlan_reg);
12299
12300 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12301 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12302 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12303 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12304 if (IS_PF(bp)) {
12305 rc = bnx2x_get_hwinfo(bp);
12306 if (rc)
12307 return rc;
12308 } else {
12309 static const u8 zero_addr[ETH_ALEN] = {};
12310
12311 eth_hw_addr_set(bp->dev, zero_addr);
12312 }
12313
12314 bnx2x_set_modes_bitmap(bp);
12315
12316 rc = bnx2x_alloc_mem_bp(bp);
12317 if (rc)
12318 return rc;
12319
12320 bnx2x_read_fwinfo(bp);
12321
12322 func = BP_FUNC(bp);
12323
12324 /* need to reset chip if undi was active */
12325 if (IS_PF(bp) && !BP_NOMCP(bp)) {
12326 /* init fw_seq */
12327 bp->fw_seq =
12328 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12329 DRV_MSG_SEQ_NUMBER_MASK;
12330 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12331
12332 rc = bnx2x_prev_unload(bp);
12333 if (rc) {
12334 bnx2x_free_mem_bp(bp);
12335 return rc;
12336 }
12337 }
12338
12339 if (CHIP_REV_IS_FPGA(bp))
12340 dev_err(&bp->pdev->dev, "FPGA detected\n");
12341
12342 if (BP_NOMCP(bp) && (func == 0))
12343 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12344
12345 bp->disable_tpa = disable_tpa;
12346 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12347 /* Reduce memory usage in kdump environment by disabling TPA */
12348 bp->disable_tpa |= is_kdump_kernel();
12349
12350 /* Set TPA flags */
12351 if (bp->disable_tpa) {
12352 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12353 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12354 }
12355
12356 if (CHIP_IS_E1(bp))
12357 bp->dropless_fc = false;
12358 else
12359 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12360
12361 bp->mrrs = mrrs;
12362
12363 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12364 if (IS_VF(bp))
12365 bp->rx_ring_size = MAX_RX_AVAIL;
12366
12367 /* make sure that the numbers are in the right granularity */
12368 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12369 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12370
12371 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12372
12373 timer_setup(&bp->timer, bnx2x_timer, 0);
12374 bp->timer.expires = jiffies + bp->current_interval;
12375
12376 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12377 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12378 SHMEM2_HAS(bp, dcbx_en) &&
12379 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12380 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12381 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12382 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12383 bnx2x_dcbx_init_params(bp);
12384 } else {
12385 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12386 }
12387
12388 if (CHIP_IS_E1x(bp))
12389 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12390 else
12391 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12392
12393 /* multiple tx priority */
12394 if (IS_VF(bp))
12395 bp->max_cos = 1;
12396 else if (CHIP_IS_E1x(bp))
12397 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12398 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12399 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12400 else if (CHIP_IS_E3B0(bp))
12401 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12402 else
12403 BNX2X_ERR("unknown chip %x revision %x\n",
12404 CHIP_NUM(bp), CHIP_REV(bp));
12405 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12406
12407 /* We need at least one default status block for slow-path events,
12408 * second status block for the L2 queue, and a third status block for
12409 * CNIC if supported.
12410 */
12411 if (IS_VF(bp))
12412 bp->min_msix_vec_cnt = 1;
12413 else if (CNIC_SUPPORT(bp))
12414 bp->min_msix_vec_cnt = 3;
12415 else /* PF w/o cnic */
12416 bp->min_msix_vec_cnt = 2;
12417 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12418
12419 bp->dump_preset_idx = 1;
12420
12421 return rc;
12422 }
12423
12424 /****************************************************************************
12425 * General service functions
12426 ****************************************************************************/
12427
12428 /*
12429 * net_device service functions
12430 */
12431
12432 /* called with rtnl_lock */
bnx2x_open(struct net_device * dev)12433 static int bnx2x_open(struct net_device *dev)
12434 {
12435 struct bnx2x *bp = netdev_priv(dev);
12436 int rc;
12437
12438 bp->stats_init = true;
12439
12440 netif_carrier_off(dev);
12441
12442 bnx2x_set_power_state(bp, PCI_D0);
12443
12444 /* If parity had happen during the unload, then attentions
12445 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12446 * want the first function loaded on the current engine to
12447 * complete the recovery.
12448 * Parity recovery is only relevant for PF driver.
12449 */
12450 if (IS_PF(bp)) {
12451 int other_engine = BP_PATH(bp) ? 0 : 1;
12452 bool other_load_status, load_status;
12453 bool global = false;
12454
12455 other_load_status = bnx2x_get_load_status(bp, other_engine);
12456 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12457 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12458 bnx2x_chk_parity_attn(bp, &global, true)) {
12459 do {
12460 /* If there are attentions and they are in a
12461 * global blocks, set the GLOBAL_RESET bit
12462 * regardless whether it will be this function
12463 * that will complete the recovery or not.
12464 */
12465 if (global)
12466 bnx2x_set_reset_global(bp);
12467
12468 /* Only the first function on the current
12469 * engine should try to recover in open. In case
12470 * of attentions in global blocks only the first
12471 * in the chip should try to recover.
12472 */
12473 if ((!load_status &&
12474 (!global || !other_load_status)) &&
12475 bnx2x_trylock_leader_lock(bp) &&
12476 !bnx2x_leader_reset(bp)) {
12477 netdev_info(bp->dev,
12478 "Recovered in open\n");
12479 break;
12480 }
12481
12482 /* recovery has failed... */
12483 bnx2x_set_power_state(bp, PCI_D3hot);
12484 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12485
12486 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12487 "If you still see this message after a few retries then power cycle is required.\n");
12488
12489 return -EAGAIN;
12490 } while (0);
12491 }
12492 }
12493
12494 bp->recovery_state = BNX2X_RECOVERY_DONE;
12495 rc = bnx2x_nic_load(bp, LOAD_OPEN);
12496 if (rc)
12497 return rc;
12498
12499 return 0;
12500 }
12501
12502 /* called with rtnl_lock */
bnx2x_close(struct net_device * dev)12503 static int bnx2x_close(struct net_device *dev)
12504 {
12505 struct bnx2x *bp = netdev_priv(dev);
12506
12507 /* Unload the driver, release IRQs */
12508 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12509
12510 return 0;
12511 }
12512
12513 struct bnx2x_mcast_list_elem_group
12514 {
12515 struct list_head mcast_group_link;
12516 struct bnx2x_mcast_list_elem mcast_elems[];
12517 };
12518
12519 #define MCAST_ELEMS_PER_PG \
12520 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12521 sizeof(struct bnx2x_mcast_list_elem))
12522
bnx2x_free_mcast_macs_list(struct list_head * mcast_group_list)12523 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12524 {
12525 struct bnx2x_mcast_list_elem_group *current_mcast_group;
12526
12527 while (!list_empty(mcast_group_list)) {
12528 current_mcast_group = list_first_entry(mcast_group_list,
12529 struct bnx2x_mcast_list_elem_group,
12530 mcast_group_link);
12531 list_del(¤t_mcast_group->mcast_group_link);
12532 free_page((unsigned long)current_mcast_group);
12533 }
12534 }
12535
bnx2x_init_mcast_macs_list(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,struct list_head * mcast_group_list)12536 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12537 struct bnx2x_mcast_ramrod_params *p,
12538 struct list_head *mcast_group_list)
12539 {
12540 struct bnx2x_mcast_list_elem *mc_mac;
12541 struct netdev_hw_addr *ha;
12542 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12543 int mc_count = netdev_mc_count(bp->dev);
12544 int offset = 0;
12545
12546 INIT_LIST_HEAD(&p->mcast_list);
12547 netdev_for_each_mc_addr(ha, bp->dev) {
12548 if (!offset) {
12549 current_mcast_group =
12550 (struct bnx2x_mcast_list_elem_group *)
12551 __get_free_page(GFP_ATOMIC);
12552 if (!current_mcast_group) {
12553 bnx2x_free_mcast_macs_list(mcast_group_list);
12554 BNX2X_ERR("Failed to allocate mc MAC list\n");
12555 return -ENOMEM;
12556 }
12557 list_add(¤t_mcast_group->mcast_group_link,
12558 mcast_group_list);
12559 }
12560 mc_mac = ¤t_mcast_group->mcast_elems[offset];
12561 mc_mac->mac = bnx2x_mc_addr(ha);
12562 list_add_tail(&mc_mac->link, &p->mcast_list);
12563 offset++;
12564 if (offset == MCAST_ELEMS_PER_PG)
12565 offset = 0;
12566 }
12567 p->mcast_list_len = mc_count;
12568 return 0;
12569 }
12570
12571 /**
12572 * bnx2x_set_uc_list - configure a new unicast MACs list.
12573 *
12574 * @bp: driver handle
12575 *
12576 * We will use zero (0) as a MAC type for these MACs.
12577 */
bnx2x_set_uc_list(struct bnx2x * bp)12578 static int bnx2x_set_uc_list(struct bnx2x *bp)
12579 {
12580 int rc;
12581 struct net_device *dev = bp->dev;
12582 struct netdev_hw_addr *ha;
12583 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12584 unsigned long ramrod_flags = 0;
12585
12586 /* First schedule a cleanup up of old configuration */
12587 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12588 if (rc < 0) {
12589 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12590 return rc;
12591 }
12592
12593 netdev_for_each_uc_addr(ha, dev) {
12594 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12595 BNX2X_UC_LIST_MAC, &ramrod_flags);
12596 if (rc == -EEXIST) {
12597 DP(BNX2X_MSG_SP,
12598 "Failed to schedule ADD operations: %d\n", rc);
12599 /* do not treat adding same MAC as error */
12600 rc = 0;
12601
12602 } else if (rc < 0) {
12603
12604 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12605 rc);
12606 return rc;
12607 }
12608 }
12609
12610 /* Execute the pending commands */
12611 __set_bit(RAMROD_CONT, &ramrod_flags);
12612 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12613 BNX2X_UC_LIST_MAC, &ramrod_flags);
12614 }
12615
bnx2x_set_mc_list_e1x(struct bnx2x * bp)12616 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12617 {
12618 LIST_HEAD(mcast_group_list);
12619 struct net_device *dev = bp->dev;
12620 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12621 int rc = 0;
12622
12623 rparam.mcast_obj = &bp->mcast_obj;
12624
12625 /* first, clear all configured multicast MACs */
12626 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12627 if (rc < 0) {
12628 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12629 return rc;
12630 }
12631
12632 /* then, configure a new MACs list */
12633 if (netdev_mc_count(dev)) {
12634 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12635 if (rc)
12636 return rc;
12637
12638 /* Now add the new MACs */
12639 rc = bnx2x_config_mcast(bp, &rparam,
12640 BNX2X_MCAST_CMD_ADD);
12641 if (rc < 0)
12642 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12643 rc);
12644
12645 bnx2x_free_mcast_macs_list(&mcast_group_list);
12646 }
12647
12648 return rc;
12649 }
12650
bnx2x_set_mc_list(struct bnx2x * bp)12651 static int bnx2x_set_mc_list(struct bnx2x *bp)
12652 {
12653 LIST_HEAD(mcast_group_list);
12654 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12655 struct net_device *dev = bp->dev;
12656 int rc = 0;
12657
12658 /* On older adapters, we need to flush and re-add filters */
12659 if (CHIP_IS_E1x(bp))
12660 return bnx2x_set_mc_list_e1x(bp);
12661
12662 rparam.mcast_obj = &bp->mcast_obj;
12663
12664 if (netdev_mc_count(dev)) {
12665 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12666 if (rc)
12667 return rc;
12668
12669 /* Override the curently configured set of mc filters */
12670 rc = bnx2x_config_mcast(bp, &rparam,
12671 BNX2X_MCAST_CMD_SET);
12672 if (rc < 0)
12673 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12674 rc);
12675
12676 bnx2x_free_mcast_macs_list(&mcast_group_list);
12677 } else {
12678 /* If no mc addresses are required, flush the configuration */
12679 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12680 if (rc < 0)
12681 BNX2X_ERR("Failed to clear multicast configuration %d\n",
12682 rc);
12683 }
12684
12685 return rc;
12686 }
12687
12688 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
bnx2x_set_rx_mode(struct net_device * dev)12689 static void bnx2x_set_rx_mode(struct net_device *dev)
12690 {
12691 struct bnx2x *bp = netdev_priv(dev);
12692
12693 if (bp->state != BNX2X_STATE_OPEN) {
12694 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12695 return;
12696 } else {
12697 /* Schedule an SP task to handle rest of change */
12698 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12699 NETIF_MSG_IFUP);
12700 }
12701 }
12702
bnx2x_set_rx_mode_inner(struct bnx2x * bp)12703 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12704 {
12705 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12706
12707 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12708
12709 netif_addr_lock_bh(bp->dev);
12710
12711 if (bp->dev->flags & IFF_PROMISC) {
12712 rx_mode = BNX2X_RX_MODE_PROMISC;
12713 } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12714 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12715 CHIP_IS_E1(bp))) {
12716 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12717 } else {
12718 if (IS_PF(bp)) {
12719 /* some multicasts */
12720 if (bnx2x_set_mc_list(bp) < 0)
12721 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12722
12723 /* release bh lock, as bnx2x_set_uc_list might sleep */
12724 netif_addr_unlock_bh(bp->dev);
12725 if (bnx2x_set_uc_list(bp) < 0)
12726 rx_mode = BNX2X_RX_MODE_PROMISC;
12727 netif_addr_lock_bh(bp->dev);
12728 } else {
12729 /* configuring mcast to a vf involves sleeping (when we
12730 * wait for the pf's response).
12731 */
12732 bnx2x_schedule_sp_rtnl(bp,
12733 BNX2X_SP_RTNL_VFPF_MCAST, 0);
12734 }
12735 }
12736
12737 bp->rx_mode = rx_mode;
12738 /* handle ISCSI SD mode */
12739 if (IS_MF_ISCSI_ONLY(bp))
12740 bp->rx_mode = BNX2X_RX_MODE_NONE;
12741
12742 /* Schedule the rx_mode command */
12743 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12744 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12745 netif_addr_unlock_bh(bp->dev);
12746 return;
12747 }
12748
12749 if (IS_PF(bp)) {
12750 bnx2x_set_storm_rx_mode(bp);
12751 netif_addr_unlock_bh(bp->dev);
12752 } else {
12753 /* VF will need to request the PF to make this change, and so
12754 * the VF needs to release the bottom-half lock prior to the
12755 * request (as it will likely require sleep on the VF side)
12756 */
12757 netif_addr_unlock_bh(bp->dev);
12758 bnx2x_vfpf_storm_rx_mode(bp);
12759 }
12760 }
12761
12762 /* called with rtnl_lock */
bnx2x_mdio_read(struct net_device * netdev,int prtad,int devad,u16 addr)12763 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12764 int devad, u16 addr)
12765 {
12766 struct bnx2x *bp = netdev_priv(netdev);
12767 u16 value;
12768 int rc;
12769
12770 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12771 prtad, devad, addr);
12772
12773 /* The HW expects different devad if CL22 is used */
12774 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12775
12776 bnx2x_acquire_phy_lock(bp);
12777 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12778 bnx2x_release_phy_lock(bp);
12779 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12780
12781 if (!rc)
12782 rc = value;
12783 return rc;
12784 }
12785
12786 /* called with rtnl_lock */
bnx2x_mdio_write(struct net_device * netdev,int prtad,int devad,u16 addr,u16 value)12787 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12788 u16 addr, u16 value)
12789 {
12790 struct bnx2x *bp = netdev_priv(netdev);
12791 int rc;
12792
12793 DP(NETIF_MSG_LINK,
12794 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12795 prtad, devad, addr, value);
12796
12797 /* The HW expects different devad if CL22 is used */
12798 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12799
12800 bnx2x_acquire_phy_lock(bp);
12801 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12802 bnx2x_release_phy_lock(bp);
12803 return rc;
12804 }
12805
12806 /* called with rtnl_lock */
bnx2x_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)12807 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12808 {
12809 struct bnx2x *bp = netdev_priv(dev);
12810 struct mii_ioctl_data *mdio = if_mii(ifr);
12811
12812 if (!netif_running(dev))
12813 return -EAGAIN;
12814
12815 switch (cmd) {
12816 case SIOCSHWTSTAMP:
12817 return bnx2x_hwtstamp_ioctl(bp, ifr);
12818 default:
12819 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12820 mdio->phy_id, mdio->reg_num, mdio->val_in);
12821 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12822 }
12823 }
12824
bnx2x_validate_addr(struct net_device * dev)12825 static int bnx2x_validate_addr(struct net_device *dev)
12826 {
12827 struct bnx2x *bp = netdev_priv(dev);
12828
12829 /* query the bulletin board for mac address configured by the PF */
12830 if (IS_VF(bp))
12831 bnx2x_sample_bulletin(bp);
12832
12833 if (!is_valid_ether_addr(dev->dev_addr)) {
12834 BNX2X_ERR("Non-valid Ethernet address\n");
12835 return -EADDRNOTAVAIL;
12836 }
12837 return 0;
12838 }
12839
bnx2x_get_phys_port_id(struct net_device * netdev,struct netdev_phys_item_id * ppid)12840 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12841 struct netdev_phys_item_id *ppid)
12842 {
12843 struct bnx2x *bp = netdev_priv(netdev);
12844
12845 if (!(bp->flags & HAS_PHYS_PORT_ID))
12846 return -EOPNOTSUPP;
12847
12848 ppid->id_len = sizeof(bp->phys_port_id);
12849 memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12850
12851 return 0;
12852 }
12853
bnx2x_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)12854 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12855 struct net_device *dev,
12856 netdev_features_t features)
12857 {
12858 /*
12859 * A skb with gso_size + header length > 9700 will cause a
12860 * firmware panic. Drop GSO support.
12861 *
12862 * Eventually the upper layer should not pass these packets down.
12863 *
12864 * For speed, if the gso_size is <= 9000, assume there will
12865 * not be 700 bytes of headers and pass it through. Only do a
12866 * full (slow) validation if the gso_size is > 9000.
12867 *
12868 * (Due to the way SKB_BY_FRAGS works this will also do a full
12869 * validation in that case.)
12870 */
12871 if (unlikely(skb_is_gso(skb) &&
12872 (skb_shinfo(skb)->gso_size > 9000) &&
12873 !skb_gso_validate_mac_len(skb, 9700)))
12874 features &= ~NETIF_F_GSO_MASK;
12875
12876 features = vlan_features_check(skb, features);
12877 return vxlan_features_check(skb, features);
12878 }
12879
__bnx2x_vlan_configure_vid(struct bnx2x * bp,u16 vid,bool add)12880 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12881 {
12882 int rc;
12883
12884 if (IS_PF(bp)) {
12885 unsigned long ramrod_flags = 0;
12886
12887 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12888 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12889 add, &ramrod_flags);
12890 } else {
12891 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12892 }
12893
12894 return rc;
12895 }
12896
bnx2x_vlan_configure_vid_list(struct bnx2x * bp)12897 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12898 {
12899 struct bnx2x_vlan_entry *vlan;
12900 int rc = 0;
12901
12902 /* Configure all non-configured entries */
12903 list_for_each_entry(vlan, &bp->vlan_reg, link) {
12904 if (vlan->hw)
12905 continue;
12906
12907 if (bp->vlan_cnt >= bp->vlan_credit)
12908 return -ENOBUFS;
12909
12910 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12911 if (rc) {
12912 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12913 return rc;
12914 }
12915
12916 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12917 vlan->hw = true;
12918 bp->vlan_cnt++;
12919 }
12920
12921 return 0;
12922 }
12923
bnx2x_vlan_configure(struct bnx2x * bp,bool set_rx_mode)12924 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12925 {
12926 bool need_accept_any_vlan;
12927
12928 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12929
12930 if (bp->accept_any_vlan != need_accept_any_vlan) {
12931 bp->accept_any_vlan = need_accept_any_vlan;
12932 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12933 bp->accept_any_vlan ? "raised" : "cleared");
12934 if (set_rx_mode) {
12935 if (IS_PF(bp))
12936 bnx2x_set_rx_mode_inner(bp);
12937 else
12938 bnx2x_vfpf_storm_rx_mode(bp);
12939 }
12940 }
12941 }
12942
bnx2x_vlan_reconfigure_vid(struct bnx2x * bp)12943 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12944 {
12945 /* Don't set rx mode here. Our caller will do it. */
12946 bnx2x_vlan_configure(bp, false);
12947
12948 return 0;
12949 }
12950
bnx2x_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)12951 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12952 {
12953 struct bnx2x *bp = netdev_priv(dev);
12954 struct bnx2x_vlan_entry *vlan;
12955
12956 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12957
12958 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12959 if (!vlan)
12960 return -ENOMEM;
12961
12962 vlan->vid = vid;
12963 vlan->hw = false;
12964 list_add_tail(&vlan->link, &bp->vlan_reg);
12965
12966 if (netif_running(dev))
12967 bnx2x_vlan_configure(bp, true);
12968
12969 return 0;
12970 }
12971
bnx2x_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)12972 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12973 {
12974 struct bnx2x *bp = netdev_priv(dev);
12975 struct bnx2x_vlan_entry *vlan;
12976 bool found = false;
12977 int rc = 0;
12978
12979 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12980
12981 list_for_each_entry(vlan, &bp->vlan_reg, link)
12982 if (vlan->vid == vid) {
12983 found = true;
12984 break;
12985 }
12986
12987 if (!found) {
12988 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12989 return -EINVAL;
12990 }
12991
12992 if (netif_running(dev) && vlan->hw) {
12993 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12994 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12995 bp->vlan_cnt--;
12996 }
12997
12998 list_del(&vlan->link);
12999 kfree(vlan);
13000
13001 if (netif_running(dev))
13002 bnx2x_vlan_configure(bp, true);
13003
13004 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13005
13006 return rc;
13007 }
13008
13009 static const struct net_device_ops bnx2x_netdev_ops = {
13010 .ndo_open = bnx2x_open,
13011 .ndo_stop = bnx2x_close,
13012 .ndo_start_xmit = bnx2x_start_xmit,
13013 .ndo_select_queue = bnx2x_select_queue,
13014 .ndo_set_rx_mode = bnx2x_set_rx_mode,
13015 .ndo_set_mac_address = bnx2x_change_mac_addr,
13016 .ndo_validate_addr = bnx2x_validate_addr,
13017 .ndo_eth_ioctl = bnx2x_ioctl,
13018 .ndo_change_mtu = bnx2x_change_mtu,
13019 .ndo_fix_features = bnx2x_fix_features,
13020 .ndo_set_features = bnx2x_set_features,
13021 .ndo_tx_timeout = bnx2x_tx_timeout,
13022 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid,
13023 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid,
13024 .ndo_setup_tc = __bnx2x_setup_tc,
13025 #ifdef CONFIG_BNX2X_SRIOV
13026 .ndo_set_vf_mac = bnx2x_set_vf_mac,
13027 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
13028 .ndo_get_vf_config = bnx2x_get_vf_config,
13029 .ndo_set_vf_spoofchk = bnx2x_set_vf_spoofchk,
13030 #endif
13031 #ifdef NETDEV_FCOE_WWNN
13032 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
13033 #endif
13034
13035 .ndo_get_phys_port_id = bnx2x_get_phys_port_id,
13036 .ndo_set_vf_link_state = bnx2x_set_vf_link_state,
13037 .ndo_features_check = bnx2x_features_check,
13038 };
13039
bnx2x_disable_pcie_error_reporting(struct bnx2x * bp)13040 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13041 {
13042 if (bp->flags & AER_ENABLED) {
13043 pci_disable_pcie_error_reporting(bp->pdev);
13044 bp->flags &= ~AER_ENABLED;
13045 }
13046 }
13047
bnx2x_init_dev(struct bnx2x * bp,struct pci_dev * pdev,struct net_device * dev,unsigned long board_type)13048 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13049 struct net_device *dev, unsigned long board_type)
13050 {
13051 int rc;
13052 u32 pci_cfg_dword;
13053 bool chip_is_e1x = (board_type == BCM57710 ||
13054 board_type == BCM57711 ||
13055 board_type == BCM57711E);
13056
13057 SET_NETDEV_DEV(dev, &pdev->dev);
13058
13059 bp->dev = dev;
13060 bp->pdev = pdev;
13061
13062 rc = pci_enable_device(pdev);
13063 if (rc) {
13064 dev_err(&bp->pdev->dev,
13065 "Cannot enable PCI device, aborting\n");
13066 goto err_out;
13067 }
13068
13069 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13070 dev_err(&bp->pdev->dev,
13071 "Cannot find PCI device base address, aborting\n");
13072 rc = -ENODEV;
13073 goto err_out_disable;
13074 }
13075
13076 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13077 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13078 rc = -ENODEV;
13079 goto err_out_disable;
13080 }
13081
13082 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13083 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13084 PCICFG_REVESION_ID_ERROR_VAL) {
13085 pr_err("PCI device error, probably due to fan failure, aborting\n");
13086 rc = -ENODEV;
13087 goto err_out_disable;
13088 }
13089
13090 if (atomic_read(&pdev->enable_cnt) == 1) {
13091 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13092 if (rc) {
13093 dev_err(&bp->pdev->dev,
13094 "Cannot obtain PCI resources, aborting\n");
13095 goto err_out_disable;
13096 }
13097
13098 pci_set_master(pdev);
13099 pci_save_state(pdev);
13100 }
13101
13102 if (IS_PF(bp)) {
13103 if (!pdev->pm_cap) {
13104 dev_err(&bp->pdev->dev,
13105 "Cannot find power management capability, aborting\n");
13106 rc = -EIO;
13107 goto err_out_release;
13108 }
13109 }
13110
13111 if (!pci_is_pcie(pdev)) {
13112 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13113 rc = -EIO;
13114 goto err_out_release;
13115 }
13116
13117 rc = dma_set_mask_and_coherent(&bp->pdev->dev, DMA_BIT_MASK(64));
13118 if (rc) {
13119 dev_err(&bp->pdev->dev, "System does not support DMA, aborting\n");
13120 goto err_out_release;
13121 }
13122
13123 dev->mem_start = pci_resource_start(pdev, 0);
13124 dev->base_addr = dev->mem_start;
13125 dev->mem_end = pci_resource_end(pdev, 0);
13126
13127 dev->irq = pdev->irq;
13128
13129 bp->regview = pci_ioremap_bar(pdev, 0);
13130 if (!bp->regview) {
13131 dev_err(&bp->pdev->dev,
13132 "Cannot map register space, aborting\n");
13133 rc = -ENOMEM;
13134 goto err_out_release;
13135 }
13136
13137 /* In E1/E1H use pci device function given by kernel.
13138 * In E2/E3 read physical function from ME register since these chips
13139 * support Physical Device Assignment where kernel BDF maybe arbitrary
13140 * (depending on hypervisor).
13141 */
13142 if (chip_is_e1x) {
13143 bp->pf_num = PCI_FUNC(pdev->devfn);
13144 } else {
13145 /* chip is E2/3*/
13146 pci_read_config_dword(bp->pdev,
13147 PCICFG_ME_REGISTER, &pci_cfg_dword);
13148 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13149 ME_REG_ABS_PF_NUM_SHIFT);
13150 }
13151 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13152
13153 /* clean indirect addresses */
13154 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13155 PCICFG_VENDOR_ID_OFFSET);
13156
13157 /* Set PCIe reset type to fundamental for EEH recovery */
13158 pdev->needs_freset = 1;
13159
13160 /* AER (Advanced Error reporting) configuration */
13161 rc = pci_enable_pcie_error_reporting(pdev);
13162 if (!rc)
13163 bp->flags |= AER_ENABLED;
13164 else
13165 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13166
13167 /*
13168 * Clean the following indirect addresses for all functions since it
13169 * is not used by the driver.
13170 */
13171 if (IS_PF(bp)) {
13172 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13173 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13174 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13175 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13176
13177 if (chip_is_e1x) {
13178 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13179 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13180 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13181 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13182 }
13183
13184 /* Enable internal target-read (in case we are probed after PF
13185 * FLR). Must be done prior to any BAR read access. Only for
13186 * 57712 and up
13187 */
13188 if (!chip_is_e1x)
13189 REG_WR(bp,
13190 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13191 }
13192
13193 dev->watchdog_timeo = TX_TIMEOUT;
13194
13195 dev->netdev_ops = &bnx2x_netdev_ops;
13196 bnx2x_set_ethtool_ops(bp, dev);
13197
13198 dev->priv_flags |= IFF_UNICAST_FLT;
13199
13200 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13201 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13202 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13203 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13204 if (!chip_is_e1x) {
13205 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13206 NETIF_F_GSO_IPXIP4 |
13207 NETIF_F_GSO_UDP_TUNNEL |
13208 NETIF_F_GSO_UDP_TUNNEL_CSUM |
13209 NETIF_F_GSO_PARTIAL;
13210
13211 dev->hw_enc_features =
13212 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13213 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13214 NETIF_F_GSO_IPXIP4 |
13215 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13216 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13217 NETIF_F_GSO_PARTIAL;
13218
13219 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13220 NETIF_F_GSO_UDP_TUNNEL_CSUM;
13221
13222 if (IS_PF(bp))
13223 dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13224 }
13225
13226 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13227 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13228
13229 if (IS_PF(bp)) {
13230 if (chip_is_e1x)
13231 bp->accept_any_vlan = true;
13232 else
13233 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13234 }
13235 /* For VF we'll know whether to enable VLAN filtering after
13236 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13237 */
13238
13239 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13240 dev->features |= NETIF_F_HIGHDMA;
13241 if (dev->features & NETIF_F_LRO)
13242 dev->features &= ~NETIF_F_GRO_HW;
13243
13244 /* Add Loopback capability to the device */
13245 dev->hw_features |= NETIF_F_LOOPBACK;
13246
13247 #ifdef BCM_DCBNL
13248 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13249 #endif
13250
13251 /* MTU range, 46 - 9600 */
13252 dev->min_mtu = ETH_MIN_PACKET_SIZE;
13253 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13254
13255 /* get_port_hwinfo() will set prtad and mmds properly */
13256 bp->mdio.prtad = MDIO_PRTAD_NONE;
13257 bp->mdio.mmds = 0;
13258 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13259 bp->mdio.dev = dev;
13260 bp->mdio.mdio_read = bnx2x_mdio_read;
13261 bp->mdio.mdio_write = bnx2x_mdio_write;
13262
13263 return 0;
13264
13265 err_out_release:
13266 if (atomic_read(&pdev->enable_cnt) == 1)
13267 pci_release_regions(pdev);
13268
13269 err_out_disable:
13270 pci_disable_device(pdev);
13271
13272 err_out:
13273 return rc;
13274 }
13275
bnx2x_check_firmware(struct bnx2x * bp)13276 static int bnx2x_check_firmware(struct bnx2x *bp)
13277 {
13278 const struct firmware *firmware = bp->firmware;
13279 struct bnx2x_fw_file_hdr *fw_hdr;
13280 struct bnx2x_fw_file_section *sections;
13281 u32 offset, len, num_ops;
13282 __be16 *ops_offsets;
13283 int i;
13284 const u8 *fw_ver;
13285
13286 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13287 BNX2X_ERR("Wrong FW size\n");
13288 return -EINVAL;
13289 }
13290
13291 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13292 sections = (struct bnx2x_fw_file_section *)fw_hdr;
13293
13294 /* Make sure none of the offsets and sizes make us read beyond
13295 * the end of the firmware data */
13296 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13297 offset = be32_to_cpu(sections[i].offset);
13298 len = be32_to_cpu(sections[i].len);
13299 if (offset + len > firmware->size) {
13300 BNX2X_ERR("Section %d length is out of bounds\n", i);
13301 return -EINVAL;
13302 }
13303 }
13304
13305 /* Likewise for the init_ops offsets */
13306 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13307 ops_offsets = (__force __be16 *)(firmware->data + offset);
13308 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13309
13310 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13311 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13312 BNX2X_ERR("Section offset %d is out of bounds\n", i);
13313 return -EINVAL;
13314 }
13315 }
13316
13317 /* Check FW version */
13318 offset = be32_to_cpu(fw_hdr->fw_version.offset);
13319 fw_ver = firmware->data + offset;
13320 if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13321 fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13322 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13323 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13324 bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13325 return -EINVAL;
13326 }
13327
13328 return 0;
13329 }
13330
be32_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13331 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13332 {
13333 const __be32 *source = (const __be32 *)_source;
13334 u32 *target = (u32 *)_target;
13335 u32 i;
13336
13337 for (i = 0; i < n/4; i++)
13338 target[i] = be32_to_cpu(source[i]);
13339 }
13340
13341 /*
13342 Ops array is stored in the following format:
13343 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13344 */
bnx2x_prep_ops(const u8 * _source,u8 * _target,u32 n)13345 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13346 {
13347 const __be32 *source = (const __be32 *)_source;
13348 struct raw_op *target = (struct raw_op *)_target;
13349 u32 i, j, tmp;
13350
13351 for (i = 0, j = 0; i < n/8; i++, j += 2) {
13352 tmp = be32_to_cpu(source[j]);
13353 target[i].op = (tmp >> 24) & 0xff;
13354 target[i].offset = tmp & 0xffffff;
13355 target[i].raw_data = be32_to_cpu(source[j + 1]);
13356 }
13357 }
13358
13359 /* IRO array is stored in the following format:
13360 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13361 */
bnx2x_prep_iro(const u8 * _source,u8 * _target,u32 n)13362 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13363 {
13364 const __be32 *source = (const __be32 *)_source;
13365 struct iro *target = (struct iro *)_target;
13366 u32 i, j, tmp;
13367
13368 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13369 target[i].base = be32_to_cpu(source[j]);
13370 j++;
13371 tmp = be32_to_cpu(source[j]);
13372 target[i].m1 = (tmp >> 16) & 0xffff;
13373 target[i].m2 = tmp & 0xffff;
13374 j++;
13375 tmp = be32_to_cpu(source[j]);
13376 target[i].m3 = (tmp >> 16) & 0xffff;
13377 target[i].size = tmp & 0xffff;
13378 j++;
13379 }
13380 }
13381
be16_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13382 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13383 {
13384 const __be16 *source = (const __be16 *)_source;
13385 u16 *target = (u16 *)_target;
13386 u32 i;
13387
13388 for (i = 0; i < n/2; i++)
13389 target[i] = be16_to_cpu(source[i]);
13390 }
13391
13392 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
13393 do { \
13394 u32 len = be32_to_cpu(fw_hdr->arr.len); \
13395 bp->arr = kmalloc(len, GFP_KERNEL); \
13396 if (!bp->arr) \
13397 goto lbl; \
13398 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
13399 (u8 *)bp->arr, len); \
13400 } while (0)
13401
bnx2x_init_firmware(struct bnx2x * bp)13402 static int bnx2x_init_firmware(struct bnx2x *bp)
13403 {
13404 const char *fw_file_name, *fw_file_name_v15;
13405 struct bnx2x_fw_file_hdr *fw_hdr;
13406 int rc;
13407
13408 if (bp->firmware)
13409 return 0;
13410
13411 if (CHIP_IS_E1(bp)) {
13412 fw_file_name = FW_FILE_NAME_E1;
13413 fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13414 } else if (CHIP_IS_E1H(bp)) {
13415 fw_file_name = FW_FILE_NAME_E1H;
13416 fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13417 } else if (!CHIP_IS_E1x(bp)) {
13418 fw_file_name = FW_FILE_NAME_E2;
13419 fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13420 } else {
13421 BNX2X_ERR("Unsupported chip revision\n");
13422 return -EINVAL;
13423 }
13424
13425 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13426
13427 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13428 if (rc) {
13429 BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13430
13431 /* try to load prev version */
13432 rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13433
13434 if (rc)
13435 goto request_firmware_exit;
13436
13437 bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13438 } else {
13439 bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13440 bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13441 }
13442
13443 bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13444 bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13445 bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13446
13447 rc = bnx2x_check_firmware(bp);
13448 if (rc) {
13449 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13450 goto request_firmware_exit;
13451 }
13452
13453 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13454
13455 /* Initialize the pointers to the init arrays */
13456 /* Blob */
13457 rc = -ENOMEM;
13458 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13459
13460 /* Opcodes */
13461 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13462
13463 /* Offsets */
13464 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13465 be16_to_cpu_n);
13466
13467 /* STORMs firmware */
13468 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13469 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13470 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
13471 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13472 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13473 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13474 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
13475 be32_to_cpu(fw_hdr->usem_pram_data.offset);
13476 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13477 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13478 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
13479 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13480 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13481 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13482 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
13483 be32_to_cpu(fw_hdr->csem_pram_data.offset);
13484 /* IRO */
13485 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13486
13487 return 0;
13488
13489 iro_alloc_err:
13490 kfree(bp->init_ops_offsets);
13491 init_offsets_alloc_err:
13492 kfree(bp->init_ops);
13493 init_ops_alloc_err:
13494 kfree(bp->init_data);
13495 request_firmware_exit:
13496 release_firmware(bp->firmware);
13497 bp->firmware = NULL;
13498
13499 return rc;
13500 }
13501
bnx2x_release_firmware(struct bnx2x * bp)13502 static void bnx2x_release_firmware(struct bnx2x *bp)
13503 {
13504 kfree(bp->init_ops_offsets);
13505 kfree(bp->init_ops);
13506 kfree(bp->init_data);
13507 release_firmware(bp->firmware);
13508 bp->firmware = NULL;
13509 }
13510
13511 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13512 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13513 .init_hw_cmn = bnx2x_init_hw_common,
13514 .init_hw_port = bnx2x_init_hw_port,
13515 .init_hw_func = bnx2x_init_hw_func,
13516
13517 .reset_hw_cmn = bnx2x_reset_common,
13518 .reset_hw_port = bnx2x_reset_port,
13519 .reset_hw_func = bnx2x_reset_func,
13520
13521 .gunzip_init = bnx2x_gunzip_init,
13522 .gunzip_end = bnx2x_gunzip_end,
13523
13524 .init_fw = bnx2x_init_firmware,
13525 .release_fw = bnx2x_release_firmware,
13526 };
13527
bnx2x__init_func_obj(struct bnx2x * bp)13528 void bnx2x__init_func_obj(struct bnx2x *bp)
13529 {
13530 /* Prepare DMAE related driver resources */
13531 bnx2x_setup_dmae(bp);
13532
13533 bnx2x_init_func_obj(bp, &bp->func_obj,
13534 bnx2x_sp(bp, func_rdata),
13535 bnx2x_sp_mapping(bp, func_rdata),
13536 bnx2x_sp(bp, func_afex_rdata),
13537 bnx2x_sp_mapping(bp, func_afex_rdata),
13538 &bnx2x_func_sp_drv);
13539 }
13540
13541 /* must be called after sriov-enable */
bnx2x_set_qm_cid_count(struct bnx2x * bp)13542 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13543 {
13544 int cid_count = BNX2X_L2_MAX_CID(bp);
13545
13546 if (IS_SRIOV(bp))
13547 cid_count += BNX2X_VF_CIDS;
13548
13549 if (CNIC_SUPPORT(bp))
13550 cid_count += CNIC_CID_MAX;
13551
13552 return roundup(cid_count, QM_CID_ROUND);
13553 }
13554
13555 /**
13556 * bnx2x_get_num_non_def_sbs - return the number of none default SBs
13557 * @pdev: pci device
13558 * @cnic_cnt: count
13559 *
13560 */
bnx2x_get_num_non_def_sbs(struct pci_dev * pdev,int cnic_cnt)13561 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13562 {
13563 int index;
13564 u16 control = 0;
13565
13566 /*
13567 * If MSI-X is not supported - return number of SBs needed to support
13568 * one fast path queue: one FP queue + SB for CNIC
13569 */
13570 if (!pdev->msix_cap) {
13571 dev_info(&pdev->dev, "no msix capability found\n");
13572 return 1 + cnic_cnt;
13573 }
13574 dev_info(&pdev->dev, "msix capability found\n");
13575
13576 /*
13577 * The value in the PCI configuration space is the index of the last
13578 * entry, namely one less than the actual size of the table, which is
13579 * exactly what we want to return from this function: number of all SBs
13580 * without the default SB.
13581 * For VFs there is no default SB, then we return (index+1).
13582 */
13583 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13584
13585 index = control & PCI_MSIX_FLAGS_QSIZE;
13586
13587 return index;
13588 }
13589
set_max_cos_est(int chip_id)13590 static int set_max_cos_est(int chip_id)
13591 {
13592 switch (chip_id) {
13593 case BCM57710:
13594 case BCM57711:
13595 case BCM57711E:
13596 return BNX2X_MULTI_TX_COS_E1X;
13597 case BCM57712:
13598 case BCM57712_MF:
13599 return BNX2X_MULTI_TX_COS_E2_E3A0;
13600 case BCM57800:
13601 case BCM57800_MF:
13602 case BCM57810:
13603 case BCM57810_MF:
13604 case BCM57840_4_10:
13605 case BCM57840_2_20:
13606 case BCM57840_O:
13607 case BCM57840_MFO:
13608 case BCM57840_MF:
13609 case BCM57811:
13610 case BCM57811_MF:
13611 return BNX2X_MULTI_TX_COS_E3B0;
13612 case BCM57712_VF:
13613 case BCM57800_VF:
13614 case BCM57810_VF:
13615 case BCM57840_VF:
13616 case BCM57811_VF:
13617 return 1;
13618 default:
13619 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13620 return -ENODEV;
13621 }
13622 }
13623
set_is_vf(int chip_id)13624 static int set_is_vf(int chip_id)
13625 {
13626 switch (chip_id) {
13627 case BCM57712_VF:
13628 case BCM57800_VF:
13629 case BCM57810_VF:
13630 case BCM57840_VF:
13631 case BCM57811_VF:
13632 return true;
13633 default:
13634 return false;
13635 }
13636 }
13637
13638 /* nig_tsgen registers relative address */
13639 #define tsgen_ctrl 0x0
13640 #define tsgen_freecount 0x10
13641 #define tsgen_synctime_t0 0x20
13642 #define tsgen_offset_t0 0x28
13643 #define tsgen_drift_t0 0x30
13644 #define tsgen_synctime_t1 0x58
13645 #define tsgen_offset_t1 0x60
13646 #define tsgen_drift_t1 0x68
13647
13648 /* FW workaround for setting drift */
bnx2x_send_update_drift_ramrod(struct bnx2x * bp,int drift_dir,int best_val,int best_period)13649 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13650 int best_val, int best_period)
13651 {
13652 struct bnx2x_func_state_params func_params = {NULL};
13653 struct bnx2x_func_set_timesync_params *set_timesync_params =
13654 &func_params.params.set_timesync;
13655
13656 /* Prepare parameters for function state transitions */
13657 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13658 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13659
13660 func_params.f_obj = &bp->func_obj;
13661 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13662
13663 /* Function parameters */
13664 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13665 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13666 set_timesync_params->add_sub_drift_adjust_value =
13667 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13668 set_timesync_params->drift_adjust_value = best_val;
13669 set_timesync_params->drift_adjust_period = best_period;
13670
13671 return bnx2x_func_state_change(bp, &func_params);
13672 }
13673
bnx2x_ptp_adjfreq(struct ptp_clock_info * ptp,s32 ppb)13674 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13675 {
13676 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13677 int rc;
13678 int drift_dir = 1;
13679 int val, period, period1, period2, dif, dif1, dif2;
13680 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13681
13682 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13683
13684 if (!netif_running(bp->dev)) {
13685 DP(BNX2X_MSG_PTP,
13686 "PTP adjfreq called while the interface is down\n");
13687 return -ENETDOWN;
13688 }
13689
13690 if (ppb < 0) {
13691 ppb = -ppb;
13692 drift_dir = 0;
13693 }
13694
13695 if (ppb == 0) {
13696 best_val = 1;
13697 best_period = 0x1FFFFFF;
13698 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13699 best_val = 31;
13700 best_period = 1;
13701 } else {
13702 /* Changed not to allow val = 8, 16, 24 as these values
13703 * are not supported in workaround.
13704 */
13705 for (val = 0; val <= 31; val++) {
13706 if ((val & 0x7) == 0)
13707 continue;
13708 period1 = val * 1000000 / ppb;
13709 period2 = period1 + 1;
13710 if (period1 != 0)
13711 dif1 = ppb - (val * 1000000 / period1);
13712 else
13713 dif1 = BNX2X_MAX_PHC_DRIFT;
13714 if (dif1 < 0)
13715 dif1 = -dif1;
13716 dif2 = ppb - (val * 1000000 / period2);
13717 if (dif2 < 0)
13718 dif2 = -dif2;
13719 dif = (dif1 < dif2) ? dif1 : dif2;
13720 period = (dif1 < dif2) ? period1 : period2;
13721 if (dif < best_dif) {
13722 best_dif = dif;
13723 best_val = val;
13724 best_period = period;
13725 }
13726 }
13727 }
13728
13729 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13730 best_period);
13731 if (rc) {
13732 BNX2X_ERR("Failed to set drift\n");
13733 return -EFAULT;
13734 }
13735
13736 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13737 best_period);
13738
13739 return 0;
13740 }
13741
bnx2x_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)13742 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13743 {
13744 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13745
13746 if (!netif_running(bp->dev)) {
13747 DP(BNX2X_MSG_PTP,
13748 "PTP adjtime called while the interface is down\n");
13749 return -ENETDOWN;
13750 }
13751
13752 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13753
13754 timecounter_adjtime(&bp->timecounter, delta);
13755
13756 return 0;
13757 }
13758
bnx2x_ptp_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)13759 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13760 {
13761 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13762 u64 ns;
13763
13764 if (!netif_running(bp->dev)) {
13765 DP(BNX2X_MSG_PTP,
13766 "PTP gettime called while the interface is down\n");
13767 return -ENETDOWN;
13768 }
13769
13770 ns = timecounter_read(&bp->timecounter);
13771
13772 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13773
13774 *ts = ns_to_timespec64(ns);
13775
13776 return 0;
13777 }
13778
bnx2x_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)13779 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13780 const struct timespec64 *ts)
13781 {
13782 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13783 u64 ns;
13784
13785 if (!netif_running(bp->dev)) {
13786 DP(BNX2X_MSG_PTP,
13787 "PTP settime called while the interface is down\n");
13788 return -ENETDOWN;
13789 }
13790
13791 ns = timespec64_to_ns(ts);
13792
13793 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13794
13795 /* Re-init the timecounter */
13796 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13797
13798 return 0;
13799 }
13800
13801 /* Enable (or disable) ancillary features of the phc subsystem */
bnx2x_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)13802 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13803 struct ptp_clock_request *rq, int on)
13804 {
13805 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13806
13807 BNX2X_ERR("PHC ancillary features are not supported\n");
13808 return -ENOTSUPP;
13809 }
13810
bnx2x_register_phc(struct bnx2x * bp)13811 void bnx2x_register_phc(struct bnx2x *bp)
13812 {
13813 /* Fill the ptp_clock_info struct and register PTP clock*/
13814 bp->ptp_clock_info.owner = THIS_MODULE;
13815 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13816 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13817 bp->ptp_clock_info.n_alarm = 0;
13818 bp->ptp_clock_info.n_ext_ts = 0;
13819 bp->ptp_clock_info.n_per_out = 0;
13820 bp->ptp_clock_info.pps = 0;
13821 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13822 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13823 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13824 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13825 bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13826
13827 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13828 if (IS_ERR(bp->ptp_clock)) {
13829 bp->ptp_clock = NULL;
13830 BNX2X_ERR("PTP clock registration failed\n");
13831 }
13832 }
13833
bnx2x_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)13834 static int bnx2x_init_one(struct pci_dev *pdev,
13835 const struct pci_device_id *ent)
13836 {
13837 struct net_device *dev = NULL;
13838 struct bnx2x *bp;
13839 int rc, max_non_def_sbs;
13840 int rx_count, tx_count, rss_count, doorbell_size;
13841 int max_cos_est;
13842 bool is_vf;
13843 int cnic_cnt;
13844
13845 /* Management FW 'remembers' living interfaces. Allow it some time
13846 * to forget previously living interfaces, allowing a proper re-load.
13847 */
13848 if (is_kdump_kernel()) {
13849 ktime_t now = ktime_get_boottime();
13850 ktime_t fw_ready_time = ktime_set(5, 0);
13851
13852 if (ktime_before(now, fw_ready_time))
13853 msleep(ktime_ms_delta(fw_ready_time, now));
13854 }
13855
13856 /* An estimated maximum supported CoS number according to the chip
13857 * version.
13858 * We will try to roughly estimate the maximum number of CoSes this chip
13859 * may support in order to minimize the memory allocated for Tx
13860 * netdev_queue's. This number will be accurately calculated during the
13861 * initialization of bp->max_cos based on the chip versions AND chip
13862 * revision in the bnx2x_init_bp().
13863 */
13864 max_cos_est = set_max_cos_est(ent->driver_data);
13865 if (max_cos_est < 0)
13866 return max_cos_est;
13867 is_vf = set_is_vf(ent->driver_data);
13868 cnic_cnt = is_vf ? 0 : 1;
13869
13870 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13871
13872 /* add another SB for VF as it has no default SB */
13873 max_non_def_sbs += is_vf ? 1 : 0;
13874
13875 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13876 rss_count = max_non_def_sbs - cnic_cnt;
13877
13878 if (rss_count < 1)
13879 return -EINVAL;
13880
13881 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13882 rx_count = rss_count + cnic_cnt;
13883
13884 /* Maximum number of netdev Tx queues:
13885 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
13886 */
13887 tx_count = rss_count * max_cos_est + cnic_cnt;
13888
13889 /* dev zeroed in init_etherdev */
13890 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13891 if (!dev)
13892 return -ENOMEM;
13893
13894 bp = netdev_priv(dev);
13895
13896 bp->flags = 0;
13897 if (is_vf)
13898 bp->flags |= IS_VF_FLAG;
13899
13900 bp->igu_sb_cnt = max_non_def_sbs;
13901 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13902 bp->msg_enable = debug;
13903 bp->cnic_support = cnic_cnt;
13904 bp->cnic_probe = bnx2x_cnic_probe;
13905
13906 pci_set_drvdata(pdev, dev);
13907
13908 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13909 if (rc < 0) {
13910 free_netdev(dev);
13911 return rc;
13912 }
13913
13914 BNX2X_DEV_INFO("This is a %s function\n",
13915 IS_PF(bp) ? "physical" : "virtual");
13916 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13917 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13918 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13919 tx_count, rx_count);
13920
13921 rc = bnx2x_init_bp(bp);
13922 if (rc)
13923 goto init_one_exit;
13924
13925 /* Map doorbells here as we need the real value of bp->max_cos which
13926 * is initialized in bnx2x_init_bp() to determine the number of
13927 * l2 connections.
13928 */
13929 if (IS_VF(bp)) {
13930 bp->doorbells = bnx2x_vf_doorbells(bp);
13931 rc = bnx2x_vf_pci_alloc(bp);
13932 if (rc)
13933 goto init_one_freemem;
13934 } else {
13935 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13936 if (doorbell_size > pci_resource_len(pdev, 2)) {
13937 dev_err(&bp->pdev->dev,
13938 "Cannot map doorbells, bar size too small, aborting\n");
13939 rc = -ENOMEM;
13940 goto init_one_freemem;
13941 }
13942 bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13943 doorbell_size);
13944 }
13945 if (!bp->doorbells) {
13946 dev_err(&bp->pdev->dev,
13947 "Cannot map doorbell space, aborting\n");
13948 rc = -ENOMEM;
13949 goto init_one_freemem;
13950 }
13951
13952 if (IS_VF(bp)) {
13953 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13954 if (rc)
13955 goto init_one_freemem;
13956
13957 #ifdef CONFIG_BNX2X_SRIOV
13958 /* VF with OLD Hypervisor or old PF do not support filtering */
13959 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13960 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13961 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13962 }
13963 #endif
13964 }
13965
13966 /* Enable SRIOV if capability found in configuration space */
13967 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13968 if (rc)
13969 goto init_one_freemem;
13970
13971 /* calc qm_cid_count */
13972 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13973 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13974
13975 /* disable FCOE L2 queue for E1x*/
13976 if (CHIP_IS_E1x(bp))
13977 bp->flags |= NO_FCOE_FLAG;
13978
13979 /* Set bp->num_queues for MSI-X mode*/
13980 bnx2x_set_num_queues(bp);
13981
13982 /* Configure interrupt mode: try to enable MSI-X/MSI if
13983 * needed.
13984 */
13985 rc = bnx2x_set_int_mode(bp);
13986 if (rc) {
13987 dev_err(&pdev->dev, "Cannot set interrupts\n");
13988 goto init_one_freemem;
13989 }
13990 BNX2X_DEV_INFO("set interrupts successfully\n");
13991
13992 /* register the net device */
13993 rc = register_netdev(dev);
13994 if (rc) {
13995 dev_err(&pdev->dev, "Cannot register net device\n");
13996 goto init_one_freemem;
13997 }
13998 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13999
14000 if (!NO_FCOE(bp)) {
14001 /* Add storage MAC address */
14002 rtnl_lock();
14003 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14004 rtnl_unlock();
14005 }
14006 BNX2X_DEV_INFO(
14007 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14008 board_info[ent->driver_data].name,
14009 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14010 dev->base_addr, bp->pdev->irq, dev->dev_addr);
14011 pcie_print_link_status(bp->pdev);
14012
14013 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14014 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14015
14016 return 0;
14017
14018 init_one_freemem:
14019 bnx2x_free_mem_bp(bp);
14020
14021 init_one_exit:
14022 bnx2x_disable_pcie_error_reporting(bp);
14023
14024 if (bp->regview)
14025 iounmap(bp->regview);
14026
14027 if (IS_PF(bp) && bp->doorbells)
14028 iounmap(bp->doorbells);
14029
14030 free_netdev(dev);
14031
14032 if (atomic_read(&pdev->enable_cnt) == 1)
14033 pci_release_regions(pdev);
14034
14035 pci_disable_device(pdev);
14036
14037 return rc;
14038 }
14039
__bnx2x_remove(struct pci_dev * pdev,struct net_device * dev,struct bnx2x * bp,bool remove_netdev)14040 static void __bnx2x_remove(struct pci_dev *pdev,
14041 struct net_device *dev,
14042 struct bnx2x *bp,
14043 bool remove_netdev)
14044 {
14045 /* Delete storage MAC address */
14046 if (!NO_FCOE(bp)) {
14047 rtnl_lock();
14048 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14049 rtnl_unlock();
14050 }
14051
14052 #ifdef BCM_DCBNL
14053 /* Delete app tlvs from dcbnl */
14054 bnx2x_dcbnl_update_applist(bp, true);
14055 #endif
14056
14057 if (IS_PF(bp) &&
14058 !BP_NOMCP(bp) &&
14059 (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14060 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14061
14062 /* Close the interface - either directly or implicitly */
14063 if (remove_netdev) {
14064 unregister_netdev(dev);
14065 } else {
14066 rtnl_lock();
14067 dev_close(dev);
14068 rtnl_unlock();
14069 }
14070
14071 bnx2x_iov_remove_one(bp);
14072
14073 /* Power on: we can't let PCI layer write to us while we are in D3 */
14074 if (IS_PF(bp)) {
14075 bnx2x_set_power_state(bp, PCI_D0);
14076 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14077
14078 /* Set endianity registers to reset values in case next driver
14079 * boots in different endianty environment.
14080 */
14081 bnx2x_reset_endianity(bp);
14082 }
14083
14084 /* Disable MSI/MSI-X */
14085 bnx2x_disable_msi(bp);
14086
14087 /* Power off */
14088 if (IS_PF(bp))
14089 bnx2x_set_power_state(bp, PCI_D3hot);
14090
14091 /* Make sure RESET task is not scheduled before continuing */
14092 cancel_delayed_work_sync(&bp->sp_rtnl_task);
14093
14094 /* send message via vfpf channel to release the resources of this vf */
14095 if (IS_VF(bp))
14096 bnx2x_vfpf_release(bp);
14097
14098 /* Assumes no further PCIe PM changes will occur */
14099 if (system_state == SYSTEM_POWER_OFF) {
14100 pci_wake_from_d3(pdev, bp->wol);
14101 pci_set_power_state(pdev, PCI_D3hot);
14102 }
14103
14104 bnx2x_disable_pcie_error_reporting(bp);
14105 if (remove_netdev) {
14106 if (bp->regview)
14107 iounmap(bp->regview);
14108
14109 /* For vfs, doorbells are part of the regview and were unmapped
14110 * along with it. FW is only loaded by PF.
14111 */
14112 if (IS_PF(bp)) {
14113 if (bp->doorbells)
14114 iounmap(bp->doorbells);
14115
14116 bnx2x_release_firmware(bp);
14117 } else {
14118 bnx2x_vf_pci_dealloc(bp);
14119 }
14120 bnx2x_free_mem_bp(bp);
14121
14122 free_netdev(dev);
14123
14124 if (atomic_read(&pdev->enable_cnt) == 1)
14125 pci_release_regions(pdev);
14126
14127 pci_disable_device(pdev);
14128 }
14129 }
14130
bnx2x_remove_one(struct pci_dev * pdev)14131 static void bnx2x_remove_one(struct pci_dev *pdev)
14132 {
14133 struct net_device *dev = pci_get_drvdata(pdev);
14134 struct bnx2x *bp;
14135
14136 if (!dev) {
14137 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14138 return;
14139 }
14140 bp = netdev_priv(dev);
14141
14142 __bnx2x_remove(pdev, dev, bp, true);
14143 }
14144
bnx2x_eeh_nic_unload(struct bnx2x * bp)14145 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14146 {
14147 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14148
14149 bp->rx_mode = BNX2X_RX_MODE_NONE;
14150
14151 if (CNIC_LOADED(bp))
14152 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14153
14154 /* Stop Tx */
14155 bnx2x_tx_disable(bp);
14156 netdev_reset_tc(bp->dev);
14157
14158 del_timer_sync(&bp->timer);
14159 cancel_delayed_work_sync(&bp->sp_task);
14160 cancel_delayed_work_sync(&bp->period_task);
14161
14162 if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14163 bp->stats_state = STATS_STATE_DISABLED;
14164 up(&bp->stats_lock);
14165 }
14166
14167 bnx2x_save_statistics(bp);
14168
14169 netif_carrier_off(bp->dev);
14170
14171 return 0;
14172 }
14173
14174 /**
14175 * bnx2x_io_error_detected - called when PCI error is detected
14176 * @pdev: Pointer to PCI device
14177 * @state: The current pci connection state
14178 *
14179 * This function is called after a PCI bus error affecting
14180 * this device has been detected.
14181 */
bnx2x_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)14182 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14183 pci_channel_state_t state)
14184 {
14185 struct net_device *dev = pci_get_drvdata(pdev);
14186 struct bnx2x *bp = netdev_priv(dev);
14187
14188 rtnl_lock();
14189
14190 BNX2X_ERR("IO error detected\n");
14191
14192 netif_device_detach(dev);
14193
14194 if (state == pci_channel_io_perm_failure) {
14195 rtnl_unlock();
14196 return PCI_ERS_RESULT_DISCONNECT;
14197 }
14198
14199 if (netif_running(dev))
14200 bnx2x_eeh_nic_unload(bp);
14201
14202 bnx2x_prev_path_mark_eeh(bp);
14203
14204 pci_disable_device(pdev);
14205
14206 rtnl_unlock();
14207
14208 /* Request a slot reset */
14209 return PCI_ERS_RESULT_NEED_RESET;
14210 }
14211
14212 /**
14213 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14214 * @pdev: Pointer to PCI device
14215 *
14216 * Restart the card from scratch, as if from a cold-boot.
14217 */
bnx2x_io_slot_reset(struct pci_dev * pdev)14218 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14219 {
14220 struct net_device *dev = pci_get_drvdata(pdev);
14221 struct bnx2x *bp = netdev_priv(dev);
14222 int i;
14223
14224 rtnl_lock();
14225 BNX2X_ERR("IO slot reset initializing...\n");
14226 if (pci_enable_device(pdev)) {
14227 dev_err(&pdev->dev,
14228 "Cannot re-enable PCI device after reset\n");
14229 rtnl_unlock();
14230 return PCI_ERS_RESULT_DISCONNECT;
14231 }
14232
14233 pci_set_master(pdev);
14234 pci_restore_state(pdev);
14235 pci_save_state(pdev);
14236
14237 if (netif_running(dev))
14238 bnx2x_set_power_state(bp, PCI_D0);
14239
14240 if (netif_running(dev)) {
14241 BNX2X_ERR("IO slot reset --> driver unload\n");
14242
14243 /* MCP should have been reset; Need to wait for validity */
14244 if (bnx2x_init_shmem(bp)) {
14245 rtnl_unlock();
14246 return PCI_ERS_RESULT_DISCONNECT;
14247 }
14248
14249 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14250 u32 v;
14251
14252 v = SHMEM2_RD(bp,
14253 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14254 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14255 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14256 }
14257 bnx2x_drain_tx_queues(bp);
14258 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14259 bnx2x_netif_stop(bp, 1);
14260 bnx2x_del_all_napi(bp);
14261
14262 if (CNIC_LOADED(bp))
14263 bnx2x_del_all_napi_cnic(bp);
14264
14265 bnx2x_free_irq(bp);
14266
14267 /* Report UNLOAD_DONE to MCP */
14268 bnx2x_send_unload_done(bp, true);
14269
14270 bp->sp_state = 0;
14271 bp->port.pmf = 0;
14272
14273 bnx2x_prev_unload(bp);
14274
14275 /* We should have reseted the engine, so It's fair to
14276 * assume the FW will no longer write to the bnx2x driver.
14277 */
14278 bnx2x_squeeze_objects(bp);
14279 bnx2x_free_skbs(bp);
14280 for_each_rx_queue(bp, i)
14281 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14282 bnx2x_free_fp_mem(bp);
14283 bnx2x_free_mem(bp);
14284
14285 bp->state = BNX2X_STATE_CLOSED;
14286 }
14287
14288 rtnl_unlock();
14289
14290 return PCI_ERS_RESULT_RECOVERED;
14291 }
14292
14293 /**
14294 * bnx2x_io_resume - called when traffic can start flowing again
14295 * @pdev: Pointer to PCI device
14296 *
14297 * This callback is called when the error recovery driver tells us that
14298 * its OK to resume normal operation.
14299 */
bnx2x_io_resume(struct pci_dev * pdev)14300 static void bnx2x_io_resume(struct pci_dev *pdev)
14301 {
14302 struct net_device *dev = pci_get_drvdata(pdev);
14303 struct bnx2x *bp = netdev_priv(dev);
14304
14305 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14306 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14307 return;
14308 }
14309
14310 rtnl_lock();
14311
14312 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14313 DRV_MSG_SEQ_NUMBER_MASK;
14314
14315 if (netif_running(dev))
14316 bnx2x_nic_load(bp, LOAD_NORMAL);
14317
14318 netif_device_attach(dev);
14319
14320 rtnl_unlock();
14321 }
14322
14323 static const struct pci_error_handlers bnx2x_err_handler = {
14324 .error_detected = bnx2x_io_error_detected,
14325 .slot_reset = bnx2x_io_slot_reset,
14326 .resume = bnx2x_io_resume,
14327 };
14328
bnx2x_shutdown(struct pci_dev * pdev)14329 static void bnx2x_shutdown(struct pci_dev *pdev)
14330 {
14331 struct net_device *dev = pci_get_drvdata(pdev);
14332 struct bnx2x *bp;
14333
14334 if (!dev)
14335 return;
14336
14337 bp = netdev_priv(dev);
14338 if (!bp)
14339 return;
14340
14341 rtnl_lock();
14342 netif_device_detach(dev);
14343 rtnl_unlock();
14344
14345 /* Don't remove the netdevice, as there are scenarios which will cause
14346 * the kernel to hang, e.g., when trying to remove bnx2i while the
14347 * rootfs is mounted from SAN.
14348 */
14349 __bnx2x_remove(pdev, dev, bp, false);
14350 }
14351
14352 static struct pci_driver bnx2x_pci_driver = {
14353 .name = DRV_MODULE_NAME,
14354 .id_table = bnx2x_pci_tbl,
14355 .probe = bnx2x_init_one,
14356 .remove = bnx2x_remove_one,
14357 .driver.pm = &bnx2x_pm_ops,
14358 .err_handler = &bnx2x_err_handler,
14359 #ifdef CONFIG_BNX2X_SRIOV
14360 .sriov_configure = bnx2x_sriov_configure,
14361 #endif
14362 .shutdown = bnx2x_shutdown,
14363 };
14364
bnx2x_init(void)14365 static int __init bnx2x_init(void)
14366 {
14367 int ret;
14368
14369 bnx2x_wq = create_singlethread_workqueue("bnx2x");
14370 if (bnx2x_wq == NULL) {
14371 pr_err("Cannot create workqueue\n");
14372 return -ENOMEM;
14373 }
14374 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14375 if (!bnx2x_iov_wq) {
14376 pr_err("Cannot create iov workqueue\n");
14377 destroy_workqueue(bnx2x_wq);
14378 return -ENOMEM;
14379 }
14380
14381 ret = pci_register_driver(&bnx2x_pci_driver);
14382 if (ret) {
14383 pr_err("Cannot register driver\n");
14384 destroy_workqueue(bnx2x_wq);
14385 destroy_workqueue(bnx2x_iov_wq);
14386 }
14387 return ret;
14388 }
14389
bnx2x_cleanup(void)14390 static void __exit bnx2x_cleanup(void)
14391 {
14392 struct list_head *pos, *q;
14393
14394 pci_unregister_driver(&bnx2x_pci_driver);
14395
14396 destroy_workqueue(bnx2x_wq);
14397 destroy_workqueue(bnx2x_iov_wq);
14398
14399 /* Free globally allocated resources */
14400 list_for_each_safe(pos, q, &bnx2x_prev_list) {
14401 struct bnx2x_prev_path_list *tmp =
14402 list_entry(pos, struct bnx2x_prev_path_list, list);
14403 list_del(pos);
14404 kfree(tmp);
14405 }
14406 }
14407
bnx2x_notify_link_changed(struct bnx2x * bp)14408 void bnx2x_notify_link_changed(struct bnx2x *bp)
14409 {
14410 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14411 }
14412
14413 module_init(bnx2x_init);
14414 module_exit(bnx2x_cleanup);
14415
14416 /**
14417 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14418 * @bp: driver handle
14419 *
14420 * This function will wait until the ramrod completion returns.
14421 * Return 0 if success, -ENODEV if ramrod doesn't return.
14422 */
bnx2x_set_iscsi_eth_mac_addr(struct bnx2x * bp)14423 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14424 {
14425 unsigned long ramrod_flags = 0;
14426
14427 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14428 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14429 &bp->iscsi_l2_mac_obj, true,
14430 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14431 }
14432
14433 /* count denotes the number of new completions we have seen */
bnx2x_cnic_sp_post(struct bnx2x * bp,int count)14434 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14435 {
14436 struct eth_spe *spe;
14437 int cxt_index, cxt_offset;
14438
14439 #ifdef BNX2X_STOP_ON_ERROR
14440 if (unlikely(bp->panic))
14441 return;
14442 #endif
14443
14444 spin_lock_bh(&bp->spq_lock);
14445 BUG_ON(bp->cnic_spq_pending < count);
14446 bp->cnic_spq_pending -= count;
14447
14448 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14449 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14450 & SPE_HDR_CONN_TYPE) >>
14451 SPE_HDR_CONN_TYPE_SHIFT;
14452 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14453 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14454
14455 /* Set validation for iSCSI L2 client before sending SETUP
14456 * ramrod
14457 */
14458 if (type == ETH_CONNECTION_TYPE) {
14459 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14460 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14461 ILT_PAGE_CIDS;
14462 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14463 (cxt_index * ILT_PAGE_CIDS);
14464 bnx2x_set_ctx_validation(bp,
14465 &bp->context[cxt_index].
14466 vcxt[cxt_offset].eth,
14467 BNX2X_ISCSI_ETH_CID(bp));
14468 }
14469 }
14470
14471 /*
14472 * There may be not more than 8 L2, not more than 8 L5 SPEs
14473 * and in the air. We also check that number of outstanding
14474 * COMMON ramrods is not more than the EQ and SPQ can
14475 * accommodate.
14476 */
14477 if (type == ETH_CONNECTION_TYPE) {
14478 if (!atomic_read(&bp->cq_spq_left))
14479 break;
14480 else
14481 atomic_dec(&bp->cq_spq_left);
14482 } else if (type == NONE_CONNECTION_TYPE) {
14483 if (!atomic_read(&bp->eq_spq_left))
14484 break;
14485 else
14486 atomic_dec(&bp->eq_spq_left);
14487 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14488 (type == FCOE_CONNECTION_TYPE)) {
14489 if (bp->cnic_spq_pending >=
14490 bp->cnic_eth_dev.max_kwqe_pending)
14491 break;
14492 else
14493 bp->cnic_spq_pending++;
14494 } else {
14495 BNX2X_ERR("Unknown SPE type: %d\n", type);
14496 bnx2x_panic();
14497 break;
14498 }
14499
14500 spe = bnx2x_sp_get_next(bp);
14501 *spe = *bp->cnic_kwq_cons;
14502
14503 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14504 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14505
14506 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14507 bp->cnic_kwq_cons = bp->cnic_kwq;
14508 else
14509 bp->cnic_kwq_cons++;
14510 }
14511 bnx2x_sp_prod_update(bp);
14512 spin_unlock_bh(&bp->spq_lock);
14513 }
14514
bnx2x_cnic_sp_queue(struct net_device * dev,struct kwqe_16 * kwqes[],u32 count)14515 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14516 struct kwqe_16 *kwqes[], u32 count)
14517 {
14518 struct bnx2x *bp = netdev_priv(dev);
14519 int i;
14520
14521 #ifdef BNX2X_STOP_ON_ERROR
14522 if (unlikely(bp->panic)) {
14523 BNX2X_ERR("Can't post to SP queue while panic\n");
14524 return -EIO;
14525 }
14526 #endif
14527
14528 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14529 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14530 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14531 return -EAGAIN;
14532 }
14533
14534 spin_lock_bh(&bp->spq_lock);
14535
14536 for (i = 0; i < count; i++) {
14537 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14538
14539 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14540 break;
14541
14542 *bp->cnic_kwq_prod = *spe;
14543
14544 bp->cnic_kwq_pending++;
14545
14546 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14547 spe->hdr.conn_and_cmd_data, spe->hdr.type,
14548 spe->data.update_data_addr.hi,
14549 spe->data.update_data_addr.lo,
14550 bp->cnic_kwq_pending);
14551
14552 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14553 bp->cnic_kwq_prod = bp->cnic_kwq;
14554 else
14555 bp->cnic_kwq_prod++;
14556 }
14557
14558 spin_unlock_bh(&bp->spq_lock);
14559
14560 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14561 bnx2x_cnic_sp_post(bp, 0);
14562
14563 return i;
14564 }
14565
bnx2x_cnic_ctl_send(struct bnx2x * bp,struct cnic_ctl_info * ctl)14566 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14567 {
14568 struct cnic_ops *c_ops;
14569 int rc = 0;
14570
14571 mutex_lock(&bp->cnic_mutex);
14572 c_ops = rcu_dereference_protected(bp->cnic_ops,
14573 lockdep_is_held(&bp->cnic_mutex));
14574 if (c_ops)
14575 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14576 mutex_unlock(&bp->cnic_mutex);
14577
14578 return rc;
14579 }
14580
bnx2x_cnic_ctl_send_bh(struct bnx2x * bp,struct cnic_ctl_info * ctl)14581 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14582 {
14583 struct cnic_ops *c_ops;
14584 int rc = 0;
14585
14586 rcu_read_lock();
14587 c_ops = rcu_dereference(bp->cnic_ops);
14588 if (c_ops)
14589 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14590 rcu_read_unlock();
14591
14592 return rc;
14593 }
14594
14595 /*
14596 * for commands that have no data
14597 */
bnx2x_cnic_notify(struct bnx2x * bp,int cmd)14598 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14599 {
14600 struct cnic_ctl_info ctl = {0};
14601
14602 ctl.cmd = cmd;
14603
14604 return bnx2x_cnic_ctl_send(bp, &ctl);
14605 }
14606
bnx2x_cnic_cfc_comp(struct bnx2x * bp,int cid,u8 err)14607 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14608 {
14609 struct cnic_ctl_info ctl = {0};
14610
14611 /* first we tell CNIC and only then we count this as a completion */
14612 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14613 ctl.data.comp.cid = cid;
14614 ctl.data.comp.error = err;
14615
14616 bnx2x_cnic_ctl_send_bh(bp, &ctl);
14617 bnx2x_cnic_sp_post(bp, 0);
14618 }
14619
14620 /* Called with netif_addr_lock_bh() taken.
14621 * Sets an rx_mode config for an iSCSI ETH client.
14622 * Doesn't block.
14623 * Completion should be checked outside.
14624 */
bnx2x_set_iscsi_eth_rx_mode(struct bnx2x * bp,bool start)14625 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14626 {
14627 unsigned long accept_flags = 0, ramrod_flags = 0;
14628 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14629 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14630
14631 if (start) {
14632 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14633 * because it's the only way for UIO Queue to accept
14634 * multicasts (in non-promiscuous mode only one Queue per
14635 * function will receive multicast packets (leading in our
14636 * case).
14637 */
14638 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14639 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14640 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14641 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14642
14643 /* Clear STOP_PENDING bit if START is requested */
14644 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14645
14646 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14647 } else
14648 /* Clear START_PENDING bit if STOP is requested */
14649 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14650
14651 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14652 set_bit(sched_state, &bp->sp_state);
14653 else {
14654 __set_bit(RAMROD_RX, &ramrod_flags);
14655 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14656 ramrod_flags);
14657 }
14658 }
14659
bnx2x_drv_ctl(struct net_device * dev,struct drv_ctl_info * ctl)14660 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14661 {
14662 struct bnx2x *bp = netdev_priv(dev);
14663 int rc = 0;
14664
14665 switch (ctl->cmd) {
14666 case DRV_CTL_CTXTBL_WR_CMD: {
14667 u32 index = ctl->data.io.offset;
14668 dma_addr_t addr = ctl->data.io.dma_addr;
14669
14670 bnx2x_ilt_wr(bp, index, addr);
14671 break;
14672 }
14673
14674 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14675 int count = ctl->data.credit.credit_count;
14676
14677 bnx2x_cnic_sp_post(bp, count);
14678 break;
14679 }
14680
14681 /* rtnl_lock is held. */
14682 case DRV_CTL_START_L2_CMD: {
14683 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14684 unsigned long sp_bits = 0;
14685
14686 /* Configure the iSCSI classification object */
14687 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14688 cp->iscsi_l2_client_id,
14689 cp->iscsi_l2_cid, BP_FUNC(bp),
14690 bnx2x_sp(bp, mac_rdata),
14691 bnx2x_sp_mapping(bp, mac_rdata),
14692 BNX2X_FILTER_MAC_PENDING,
14693 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14694 &bp->macs_pool);
14695
14696 /* Set iSCSI MAC address */
14697 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14698 if (rc)
14699 break;
14700
14701 barrier();
14702
14703 /* Start accepting on iSCSI L2 ring */
14704
14705 netif_addr_lock_bh(dev);
14706 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14707 netif_addr_unlock_bh(dev);
14708
14709 /* bits to wait on */
14710 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14711 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14712
14713 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14714 BNX2X_ERR("rx_mode completion timed out!\n");
14715
14716 break;
14717 }
14718
14719 /* rtnl_lock is held. */
14720 case DRV_CTL_STOP_L2_CMD: {
14721 unsigned long sp_bits = 0;
14722
14723 /* Stop accepting on iSCSI L2 ring */
14724 netif_addr_lock_bh(dev);
14725 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14726 netif_addr_unlock_bh(dev);
14727
14728 /* bits to wait on */
14729 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14730 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14731
14732 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14733 BNX2X_ERR("rx_mode completion timed out!\n");
14734
14735 barrier();
14736
14737 /* Unset iSCSI L2 MAC */
14738 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14739 BNX2X_ISCSI_ETH_MAC, true);
14740 break;
14741 }
14742 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14743 int count = ctl->data.credit.credit_count;
14744
14745 smp_mb__before_atomic();
14746 atomic_add(count, &bp->cq_spq_left);
14747 smp_mb__after_atomic();
14748 break;
14749 }
14750 case DRV_CTL_ULP_REGISTER_CMD: {
14751 int ulp_type = ctl->data.register_data.ulp_type;
14752
14753 if (CHIP_IS_E3(bp)) {
14754 int idx = BP_FW_MB_IDX(bp);
14755 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14756 int path = BP_PATH(bp);
14757 int port = BP_PORT(bp);
14758 int i;
14759 u32 scratch_offset;
14760 u32 *host_addr;
14761
14762 /* first write capability to shmem2 */
14763 if (ulp_type == CNIC_ULP_ISCSI)
14764 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14765 else if (ulp_type == CNIC_ULP_FCOE)
14766 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14767 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14768
14769 if ((ulp_type != CNIC_ULP_FCOE) ||
14770 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14771 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
14772 break;
14773
14774 /* if reached here - should write fcoe capabilities */
14775 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14776 if (!scratch_offset)
14777 break;
14778 scratch_offset += offsetof(struct glob_ncsi_oem_data,
14779 fcoe_features[path][port]);
14780 host_addr = (u32 *) &(ctl->data.register_data.
14781 fcoe_features);
14782 for (i = 0; i < sizeof(struct fcoe_capabilities);
14783 i += 4)
14784 REG_WR(bp, scratch_offset + i,
14785 *(host_addr + i/4));
14786 }
14787 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14788 break;
14789 }
14790
14791 case DRV_CTL_ULP_UNREGISTER_CMD: {
14792 int ulp_type = ctl->data.ulp_type;
14793
14794 if (CHIP_IS_E3(bp)) {
14795 int idx = BP_FW_MB_IDX(bp);
14796 u32 cap;
14797
14798 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14799 if (ulp_type == CNIC_ULP_ISCSI)
14800 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14801 else if (ulp_type == CNIC_ULP_FCOE)
14802 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14803 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14804 }
14805 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14806 break;
14807 }
14808
14809 default:
14810 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14811 rc = -EINVAL;
14812 }
14813
14814 /* For storage-only interfaces, change driver state */
14815 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14816 switch (ctl->drv_state) {
14817 case DRV_NOP:
14818 break;
14819 case DRV_ACTIVE:
14820 bnx2x_set_os_driver_state(bp,
14821 OS_DRIVER_STATE_ACTIVE);
14822 break;
14823 case DRV_INACTIVE:
14824 bnx2x_set_os_driver_state(bp,
14825 OS_DRIVER_STATE_DISABLED);
14826 break;
14827 case DRV_UNLOADED:
14828 bnx2x_set_os_driver_state(bp,
14829 OS_DRIVER_STATE_NOT_LOADED);
14830 break;
14831 default:
14832 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14833 }
14834 }
14835
14836 return rc;
14837 }
14838
bnx2x_get_fc_npiv(struct net_device * dev,struct cnic_fc_npiv_tbl * cnic_tbl)14839 static int bnx2x_get_fc_npiv(struct net_device *dev,
14840 struct cnic_fc_npiv_tbl *cnic_tbl)
14841 {
14842 struct bnx2x *bp = netdev_priv(dev);
14843 struct bdn_fc_npiv_tbl *tbl = NULL;
14844 u32 offset, entries;
14845 int rc = -EINVAL;
14846 int i;
14847
14848 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14849 goto out;
14850
14851 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14852
14853 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14854 if (!tbl) {
14855 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14856 goto out;
14857 }
14858
14859 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14860 if (!offset) {
14861 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14862 goto out;
14863 }
14864 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14865
14866 /* Read the table contents from nvram */
14867 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14868 BNX2X_ERR("Failed to read FC-NPIV table\n");
14869 goto out;
14870 }
14871
14872 /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14873 * the number of entries back to cpu endianness.
14874 */
14875 entries = tbl->fc_npiv_cfg.num_of_npiv;
14876 entries = (__force u32)be32_to_cpu((__force __be32)entries);
14877 tbl->fc_npiv_cfg.num_of_npiv = entries;
14878
14879 if (!tbl->fc_npiv_cfg.num_of_npiv) {
14880 DP(BNX2X_MSG_MCP,
14881 "No FC-NPIV table [valid, simply not present]\n");
14882 goto out;
14883 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14884 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14885 tbl->fc_npiv_cfg.num_of_npiv);
14886 goto out;
14887 } else {
14888 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14889 tbl->fc_npiv_cfg.num_of_npiv);
14890 }
14891
14892 /* Copy the data into cnic-provided struct */
14893 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14894 for (i = 0; i < cnic_tbl->count; i++) {
14895 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14896 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14897 }
14898
14899 rc = 0;
14900 out:
14901 kfree(tbl);
14902 return rc;
14903 }
14904
bnx2x_setup_cnic_irq_info(struct bnx2x * bp)14905 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14906 {
14907 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14908
14909 if (bp->flags & USING_MSIX_FLAG) {
14910 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14911 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14912 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14913 } else {
14914 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14915 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14916 }
14917 if (!CHIP_IS_E1x(bp))
14918 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14919 else
14920 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14921
14922 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
14923 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14924 cp->irq_arr[1].status_blk = bp->def_status_blk;
14925 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14926 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14927
14928 cp->num_irq = 2;
14929 }
14930
bnx2x_setup_cnic_info(struct bnx2x * bp)14931 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14932 {
14933 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14934
14935 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14936 bnx2x_cid_ilt_lines(bp);
14937 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14938 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14939 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14940
14941 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14942 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14943 cp->iscsi_l2_cid);
14944
14945 if (NO_ISCSI_OOO(bp))
14946 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14947 }
14948
bnx2x_register_cnic(struct net_device * dev,struct cnic_ops * ops,void * data)14949 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14950 void *data)
14951 {
14952 struct bnx2x *bp = netdev_priv(dev);
14953 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14954 int rc;
14955
14956 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14957
14958 if (ops == NULL) {
14959 BNX2X_ERR("NULL ops received\n");
14960 return -EINVAL;
14961 }
14962
14963 if (!CNIC_SUPPORT(bp)) {
14964 BNX2X_ERR("Can't register CNIC when not supported\n");
14965 return -EOPNOTSUPP;
14966 }
14967
14968 if (!CNIC_LOADED(bp)) {
14969 rc = bnx2x_load_cnic(bp);
14970 if (rc) {
14971 BNX2X_ERR("CNIC-related load failed\n");
14972 return rc;
14973 }
14974 }
14975
14976 bp->cnic_enabled = true;
14977
14978 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14979 if (!bp->cnic_kwq)
14980 return -ENOMEM;
14981
14982 bp->cnic_kwq_cons = bp->cnic_kwq;
14983 bp->cnic_kwq_prod = bp->cnic_kwq;
14984 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14985
14986 bp->cnic_spq_pending = 0;
14987 bp->cnic_kwq_pending = 0;
14988
14989 bp->cnic_data = data;
14990
14991 cp->num_irq = 0;
14992 cp->drv_state |= CNIC_DRV_STATE_REGD;
14993 cp->iro_arr = bp->iro_arr;
14994
14995 bnx2x_setup_cnic_irq_info(bp);
14996
14997 rcu_assign_pointer(bp->cnic_ops, ops);
14998
14999 /* Schedule driver to read CNIC driver versions */
15000 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15001
15002 return 0;
15003 }
15004
bnx2x_unregister_cnic(struct net_device * dev)15005 static int bnx2x_unregister_cnic(struct net_device *dev)
15006 {
15007 struct bnx2x *bp = netdev_priv(dev);
15008 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15009
15010 mutex_lock(&bp->cnic_mutex);
15011 cp->drv_state = 0;
15012 RCU_INIT_POINTER(bp->cnic_ops, NULL);
15013 mutex_unlock(&bp->cnic_mutex);
15014 synchronize_rcu();
15015 bp->cnic_enabled = false;
15016 kfree(bp->cnic_kwq);
15017 bp->cnic_kwq = NULL;
15018
15019 return 0;
15020 }
15021
bnx2x_cnic_probe(struct net_device * dev)15022 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15023 {
15024 struct bnx2x *bp = netdev_priv(dev);
15025 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15026
15027 /* If both iSCSI and FCoE are disabled - return NULL in
15028 * order to indicate CNIC that it should not try to work
15029 * with this device.
15030 */
15031 if (NO_ISCSI(bp) && NO_FCOE(bp))
15032 return NULL;
15033
15034 cp->drv_owner = THIS_MODULE;
15035 cp->chip_id = CHIP_ID(bp);
15036 cp->pdev = bp->pdev;
15037 cp->io_base = bp->regview;
15038 cp->io_base2 = bp->doorbells;
15039 cp->max_kwqe_pending = 8;
15040 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15041 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15042 bnx2x_cid_ilt_lines(bp);
15043 cp->ctx_tbl_len = CNIC_ILT_LINES;
15044 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15045 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15046 cp->drv_ctl = bnx2x_drv_ctl;
15047 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15048 cp->drv_register_cnic = bnx2x_register_cnic;
15049 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15050 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15051 cp->iscsi_l2_client_id =
15052 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15053 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15054
15055 if (NO_ISCSI_OOO(bp))
15056 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15057
15058 if (NO_ISCSI(bp))
15059 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15060
15061 if (NO_FCOE(bp))
15062 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15063
15064 BNX2X_DEV_INFO(
15065 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15066 cp->ctx_blk_size,
15067 cp->ctx_tbl_offset,
15068 cp->ctx_tbl_len,
15069 cp->starting_cid);
15070 return cp;
15071 }
15072
bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath * fp)15073 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15074 {
15075 struct bnx2x *bp = fp->bp;
15076 u32 offset = BAR_USTRORM_INTMEM;
15077
15078 if (IS_VF(bp))
15079 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15080 else if (!CHIP_IS_E1x(bp))
15081 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15082 else
15083 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15084
15085 return offset;
15086 }
15087
15088 /* called only on E1H or E2.
15089 * When pretending to be PF, the pretend value is the function number 0...7
15090 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15091 * combination
15092 */
bnx2x_pretend_func(struct bnx2x * bp,u16 pretend_func_val)15093 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15094 {
15095 u32 pretend_reg;
15096
15097 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15098 return -1;
15099
15100 /* get my own pretend register */
15101 pretend_reg = bnx2x_get_pretend_reg(bp);
15102 REG_WR(bp, pretend_reg, pretend_func_val);
15103 REG_RD(bp, pretend_reg);
15104 return 0;
15105 }
15106
bnx2x_ptp_task(struct work_struct * work)15107 static void bnx2x_ptp_task(struct work_struct *work)
15108 {
15109 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15110 int port = BP_PORT(bp);
15111 u32 val_seq;
15112 u64 timestamp, ns;
15113 struct skb_shared_hwtstamps shhwtstamps;
15114 bool bail = true;
15115 int i;
15116
15117 /* FW may take a while to complete timestamping; try a bit and if it's
15118 * still not complete, may indicate an error state - bail out then.
15119 */
15120 for (i = 0; i < 10; i++) {
15121 /* Read Tx timestamp registers */
15122 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15123 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15124 if (val_seq & 0x10000) {
15125 bail = false;
15126 break;
15127 }
15128 msleep(1 << i);
15129 }
15130
15131 if (!bail) {
15132 /* There is a valid timestamp value */
15133 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15134 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15135 timestamp <<= 32;
15136 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15137 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15138 /* Reset timestamp register to allow new timestamp */
15139 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15140 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15141 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15142
15143 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15144 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15145 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15146
15147 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15148 timestamp, ns);
15149 } else {
15150 DP(BNX2X_MSG_PTP,
15151 "Tx timestamp is not recorded (register read=%u)\n",
15152 val_seq);
15153 bp->eth_stats.ptp_skip_tx_ts++;
15154 }
15155
15156 dev_kfree_skb_any(bp->ptp_tx_skb);
15157 bp->ptp_tx_skb = NULL;
15158 }
15159
bnx2x_set_rx_ts(struct bnx2x * bp,struct sk_buff * skb)15160 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15161 {
15162 int port = BP_PORT(bp);
15163 u64 timestamp, ns;
15164
15165 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15166 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15167 timestamp <<= 32;
15168 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15169 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15170
15171 /* Reset timestamp register to allow new timestamp */
15172 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15173 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15174
15175 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15176
15177 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15178
15179 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15180 timestamp, ns);
15181 }
15182
15183 /* Read the PHC */
bnx2x_cyclecounter_read(const struct cyclecounter * cc)15184 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15185 {
15186 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15187 int port = BP_PORT(bp);
15188 u32 wb_data[2];
15189 u64 phc_cycles;
15190
15191 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15192 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15193 phc_cycles = wb_data[1];
15194 phc_cycles = (phc_cycles << 32) + wb_data[0];
15195
15196 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15197
15198 return phc_cycles;
15199 }
15200
bnx2x_init_cyclecounter(struct bnx2x * bp)15201 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15202 {
15203 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15204 bp->cyclecounter.read = bnx2x_cyclecounter_read;
15205 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15206 bp->cyclecounter.shift = 0;
15207 bp->cyclecounter.mult = 1;
15208 }
15209
bnx2x_send_reset_timesync_ramrod(struct bnx2x * bp)15210 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15211 {
15212 struct bnx2x_func_state_params func_params = {NULL};
15213 struct bnx2x_func_set_timesync_params *set_timesync_params =
15214 &func_params.params.set_timesync;
15215
15216 /* Prepare parameters for function state transitions */
15217 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15218 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15219
15220 func_params.f_obj = &bp->func_obj;
15221 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15222
15223 /* Function parameters */
15224 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15225 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15226
15227 return bnx2x_func_state_change(bp, &func_params);
15228 }
15229
bnx2x_enable_ptp_packets(struct bnx2x * bp)15230 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15231 {
15232 struct bnx2x_queue_state_params q_params;
15233 int rc, i;
15234
15235 /* send queue update ramrod to enable PTP packets */
15236 memset(&q_params, 0, sizeof(q_params));
15237 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15238 q_params.cmd = BNX2X_Q_CMD_UPDATE;
15239 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15240 &q_params.params.update.update_flags);
15241 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15242 &q_params.params.update.update_flags);
15243
15244 /* send the ramrod on all the queues of the PF */
15245 for_each_eth_queue(bp, i) {
15246 struct bnx2x_fastpath *fp = &bp->fp[i];
15247
15248 /* Set the appropriate Queue object */
15249 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15250
15251 /* Update the Queue state */
15252 rc = bnx2x_queue_state_change(bp, &q_params);
15253 if (rc) {
15254 BNX2X_ERR("Failed to enable PTP packets\n");
15255 return rc;
15256 }
15257 }
15258
15259 return 0;
15260 }
15261
15262 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15263 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15264 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15265 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15266 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15267 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15268 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15269 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15270 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15271 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15272 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15273 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15274
bnx2x_configure_ptp_filters(struct bnx2x * bp)15275 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15276 {
15277 int port = BP_PORT(bp);
15278 u32 param, rule;
15279 int rc;
15280
15281 if (!bp->hwtstamp_ioctl_called)
15282 return 0;
15283
15284 param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15285 NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15286 rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15287 NIG_REG_P0_TLLH_PTP_RULE_MASK;
15288 switch (bp->tx_type) {
15289 case HWTSTAMP_TX_ON:
15290 bp->flags |= TX_TIMESTAMPING_EN;
15291 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15292 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15293 break;
15294 case HWTSTAMP_TX_ONESTEP_SYNC:
15295 case HWTSTAMP_TX_ONESTEP_P2P:
15296 BNX2X_ERR("One-step timestamping is not supported\n");
15297 return -ERANGE;
15298 }
15299
15300 param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15301 NIG_REG_P0_LLH_PTP_PARAM_MASK;
15302 rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15303 NIG_REG_P0_LLH_PTP_RULE_MASK;
15304 switch (bp->rx_filter) {
15305 case HWTSTAMP_FILTER_NONE:
15306 break;
15307 case HWTSTAMP_FILTER_ALL:
15308 case HWTSTAMP_FILTER_SOME:
15309 case HWTSTAMP_FILTER_NTP_ALL:
15310 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15311 break;
15312 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15313 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15314 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15315 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15316 /* Initialize PTP detection for UDP/IPv4 events */
15317 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15318 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15319 break;
15320 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15321 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15322 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15323 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15324 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15325 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15326 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15327 break;
15328 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15329 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15330 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15331 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15332 /* Initialize PTP detection L2 events */
15333 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15334 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15335
15336 break;
15337 case HWTSTAMP_FILTER_PTP_V2_EVENT:
15338 case HWTSTAMP_FILTER_PTP_V2_SYNC:
15339 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15340 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15341 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15342 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15343 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15344 break;
15345 }
15346
15347 /* Indicate to FW that this PF expects recorded PTP packets */
15348 rc = bnx2x_enable_ptp_packets(bp);
15349 if (rc)
15350 return rc;
15351
15352 /* Enable sending PTP packets to host */
15353 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15354 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15355
15356 return 0;
15357 }
15358
bnx2x_hwtstamp_ioctl(struct bnx2x * bp,struct ifreq * ifr)15359 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15360 {
15361 struct hwtstamp_config config;
15362 int rc;
15363
15364 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15365
15366 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15367 return -EFAULT;
15368
15369 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15370 config.tx_type, config.rx_filter);
15371
15372 bp->hwtstamp_ioctl_called = true;
15373 bp->tx_type = config.tx_type;
15374 bp->rx_filter = config.rx_filter;
15375
15376 rc = bnx2x_configure_ptp_filters(bp);
15377 if (rc)
15378 return rc;
15379
15380 config.rx_filter = bp->rx_filter;
15381
15382 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15383 -EFAULT : 0;
15384 }
15385
15386 /* Configures HW for PTP */
bnx2x_configure_ptp(struct bnx2x * bp)15387 static int bnx2x_configure_ptp(struct bnx2x *bp)
15388 {
15389 int rc, port = BP_PORT(bp);
15390 u32 wb_data[2];
15391
15392 /* Reset PTP event detection rules - will be configured in the IOCTL */
15393 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15394 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15395 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15396 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15397 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15398 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15399 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15400 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15401
15402 /* Disable PTP packets to host - will be configured in the IOCTL*/
15403 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15404 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15405
15406 /* Enable the PTP feature */
15407 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15408 NIG_REG_P0_PTP_EN, 0x3F);
15409
15410 /* Enable the free-running counter */
15411 wb_data[0] = 0;
15412 wb_data[1] = 0;
15413 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15414
15415 /* Reset drift register (offset register is not reset) */
15416 rc = bnx2x_send_reset_timesync_ramrod(bp);
15417 if (rc) {
15418 BNX2X_ERR("Failed to reset PHC drift register\n");
15419 return -EFAULT;
15420 }
15421
15422 /* Reset possibly old timestamps */
15423 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15424 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15425 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15426 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15427
15428 return 0;
15429 }
15430
15431 /* Called during load, to initialize PTP-related stuff */
bnx2x_init_ptp(struct bnx2x * bp)15432 void bnx2x_init_ptp(struct bnx2x *bp)
15433 {
15434 int rc;
15435
15436 /* Configure PTP in HW */
15437 rc = bnx2x_configure_ptp(bp);
15438 if (rc) {
15439 BNX2X_ERR("Stopping PTP initialization\n");
15440 return;
15441 }
15442
15443 /* Init work queue for Tx timestamping */
15444 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15445
15446 /* Init cyclecounter and timecounter. This is done only in the first
15447 * load. If done in every load, PTP application will fail when doing
15448 * unload / load (e.g. MTU change) while it is running.
15449 */
15450 if (!bp->timecounter_init_done) {
15451 bnx2x_init_cyclecounter(bp);
15452 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15453 ktime_to_ns(ktime_get_real()));
15454 bp->timecounter_init_done = true;
15455 }
15456
15457 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15458 }
15459