1 /*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 /*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18 #include <linux/netdevice.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/in.h>
22 #include <linux/ethtool.h>
23 #include <linux/if_vlan.h>
24 #include <linux/if_ether.h>
25 #include <linux/ip.h>
26
27 #include "bnad.h"
28 #include "bna.h"
29 #include "cna.h"
30
31 static DEFINE_MUTEX(bnad_fwimg_mutex);
32
33 /*
34 * Module params
35 */
36 static uint bnad_msix_disable;
37 module_param(bnad_msix_disable, uint, 0444);
38 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
39
40 static uint bnad_ioc_auto_recover = 1;
41 module_param(bnad_ioc_auto_recover, uint, 0444);
42 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
43
44 /*
45 * Global variables
46 */
47 u32 bnad_rxqs_per_cq = 2;
48
49 static const u8 bnad_bcast_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
50
51 /*
52 * Local MACROS
53 */
54 #define BNAD_TX_UNMAPQ_DEPTH (bnad->txq_depth * 2)
55
56 #define BNAD_RX_UNMAPQ_DEPTH (bnad->rxq_depth)
57
58 #define BNAD_GET_MBOX_IRQ(_bnad) \
59 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
60 ((_bnad)->msix_table[(_bnad)->msix_num - 1].vector) : \
61 ((_bnad)->pcidev->irq))
62
63 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _depth) \
64 do { \
65 (_res_info)->res_type = BNA_RES_T_MEM; \
66 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
67 (_res_info)->res_u.mem_info.num = (_num); \
68 (_res_info)->res_u.mem_info.len = \
69 sizeof(struct bnad_unmap_q) + \
70 (sizeof(struct bnad_skb_unmap) * ((_depth) - 1)); \
71 } while (0)
72
73 #define BNAD_TXRX_SYNC_MDELAY 250 /* 250 msecs */
74
75 /*
76 * Reinitialize completions in CQ, once Rx is taken down
77 */
78 static void
bnad_cq_cmpl_init(struct bnad * bnad,struct bna_ccb * ccb)79 bnad_cq_cmpl_init(struct bnad *bnad, struct bna_ccb *ccb)
80 {
81 struct bna_cq_entry *cmpl, *next_cmpl;
82 unsigned int wi_range, wis = 0, ccb_prod = 0;
83 int i;
84
85 BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt, cmpl,
86 wi_range);
87
88 for (i = 0; i < ccb->q_depth; i++) {
89 wis++;
90 if (likely(--wi_range))
91 next_cmpl = cmpl + 1;
92 else {
93 BNA_QE_INDX_ADD(ccb_prod, wis, ccb->q_depth);
94 wis = 0;
95 BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt,
96 next_cmpl, wi_range);
97 }
98 cmpl->valid = 0;
99 cmpl = next_cmpl;
100 }
101 }
102
103 /*
104 * Frees all pending Tx Bufs
105 * At this point no activity is expected on the Q,
106 * so DMA unmap & freeing is fine.
107 */
108 static void
bnad_free_all_txbufs(struct bnad * bnad,struct bna_tcb * tcb)109 bnad_free_all_txbufs(struct bnad *bnad,
110 struct bna_tcb *tcb)
111 {
112 u32 unmap_cons;
113 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
114 struct bnad_skb_unmap *unmap_array;
115 struct sk_buff *skb = NULL;
116 int i;
117
118 unmap_array = unmap_q->unmap_array;
119
120 unmap_cons = 0;
121 while (unmap_cons < unmap_q->q_depth) {
122 skb = unmap_array[unmap_cons].skb;
123 if (!skb) {
124 unmap_cons++;
125 continue;
126 }
127 unmap_array[unmap_cons].skb = NULL;
128
129 dma_unmap_single(&bnad->pcidev->dev,
130 dma_unmap_addr(&unmap_array[unmap_cons],
131 dma_addr), skb_headlen(skb),
132 DMA_TO_DEVICE);
133
134 dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr, 0);
135 if (++unmap_cons >= unmap_q->q_depth)
136 break;
137
138 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
139 dma_unmap_page(&bnad->pcidev->dev,
140 dma_unmap_addr(&unmap_array[unmap_cons],
141 dma_addr),
142 skb_shinfo(skb)->frags[i].size,
143 DMA_TO_DEVICE);
144 dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr,
145 0);
146 if (++unmap_cons >= unmap_q->q_depth)
147 break;
148 }
149 dev_kfree_skb_any(skb);
150 }
151 }
152
153 /* Data Path Handlers */
154
155 /*
156 * bnad_free_txbufs : Frees the Tx bufs on Tx completion
157 * Can be called in a) Interrupt context
158 * b) Sending context
159 * c) Tasklet context
160 */
161 static u32
bnad_free_txbufs(struct bnad * bnad,struct bna_tcb * tcb)162 bnad_free_txbufs(struct bnad *bnad,
163 struct bna_tcb *tcb)
164 {
165 u32 sent_packets = 0, sent_bytes = 0;
166 u16 wis, unmap_cons, updated_hw_cons;
167 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
168 struct bnad_skb_unmap *unmap_array;
169 struct sk_buff *skb;
170 int i;
171
172 /*
173 * Just return if TX is stopped. This check is useful
174 * when bnad_free_txbufs() runs out of a tasklet scheduled
175 * before bnad_cb_tx_cleanup() cleared BNAD_TXQ_TX_STARTED bit
176 * but this routine runs actually after the cleanup has been
177 * executed.
178 */
179 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
180 return 0;
181
182 updated_hw_cons = *(tcb->hw_consumer_index);
183
184 wis = BNA_Q_INDEX_CHANGE(tcb->consumer_index,
185 updated_hw_cons, tcb->q_depth);
186
187 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
188
189 unmap_array = unmap_q->unmap_array;
190 unmap_cons = unmap_q->consumer_index;
191
192 prefetch(&unmap_array[unmap_cons + 1]);
193 while (wis) {
194 skb = unmap_array[unmap_cons].skb;
195
196 unmap_array[unmap_cons].skb = NULL;
197
198 sent_packets++;
199 sent_bytes += skb->len;
200 wis -= BNA_TXQ_WI_NEEDED(1 + skb_shinfo(skb)->nr_frags);
201
202 dma_unmap_single(&bnad->pcidev->dev,
203 dma_unmap_addr(&unmap_array[unmap_cons],
204 dma_addr), skb_headlen(skb),
205 DMA_TO_DEVICE);
206 dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr, 0);
207 BNA_QE_INDX_ADD(unmap_cons, 1, unmap_q->q_depth);
208
209 prefetch(&unmap_array[unmap_cons + 1]);
210 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
211 prefetch(&unmap_array[unmap_cons + 1]);
212
213 dma_unmap_page(&bnad->pcidev->dev,
214 dma_unmap_addr(&unmap_array[unmap_cons],
215 dma_addr),
216 skb_shinfo(skb)->frags[i].size,
217 DMA_TO_DEVICE);
218 dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr,
219 0);
220 BNA_QE_INDX_ADD(unmap_cons, 1, unmap_q->q_depth);
221 }
222 dev_kfree_skb_any(skb);
223 }
224
225 /* Update consumer pointers. */
226 tcb->consumer_index = updated_hw_cons;
227 unmap_q->consumer_index = unmap_cons;
228
229 tcb->txq->tx_packets += sent_packets;
230 tcb->txq->tx_bytes += sent_bytes;
231
232 return sent_packets;
233 }
234
235 /* Tx Free Tasklet function */
236 /* Frees for all the tcb's in all the Tx's */
237 /*
238 * Scheduled from sending context, so that
239 * the fat Tx lock is not held for too long
240 * in the sending context.
241 */
242 static void
bnad_tx_free_tasklet(unsigned long bnad_ptr)243 bnad_tx_free_tasklet(unsigned long bnad_ptr)
244 {
245 struct bnad *bnad = (struct bnad *)bnad_ptr;
246 struct bna_tcb *tcb;
247 u32 acked = 0;
248 int i, j;
249
250 for (i = 0; i < bnad->num_tx; i++) {
251 for (j = 0; j < bnad->num_txq_per_tx; j++) {
252 tcb = bnad->tx_info[i].tcb[j];
253 if (!tcb)
254 continue;
255 if (((u16) (*tcb->hw_consumer_index) !=
256 tcb->consumer_index) &&
257 (!test_and_set_bit(BNAD_TXQ_FREE_SENT,
258 &tcb->flags))) {
259 acked = bnad_free_txbufs(bnad, tcb);
260 if (likely(test_bit(BNAD_TXQ_TX_STARTED,
261 &tcb->flags)))
262 bna_ib_ack(tcb->i_dbell, acked);
263 smp_mb__before_clear_bit();
264 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
265 }
266 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED,
267 &tcb->flags)))
268 continue;
269 if (netif_queue_stopped(bnad->netdev)) {
270 if (acked && netif_carrier_ok(bnad->netdev) &&
271 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
272 BNAD_NETIF_WAKE_THRESHOLD) {
273 netif_wake_queue(bnad->netdev);
274 /* TODO */
275 /* Counters for individual TxQs? */
276 BNAD_UPDATE_CTR(bnad,
277 netif_queue_wakeup);
278 }
279 }
280 }
281 }
282 }
283
284 static u32
bnad_tx(struct bnad * bnad,struct bna_tcb * tcb)285 bnad_tx(struct bnad *bnad, struct bna_tcb *tcb)
286 {
287 struct net_device *netdev = bnad->netdev;
288 u32 sent = 0;
289
290 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
291 return 0;
292
293 sent = bnad_free_txbufs(bnad, tcb);
294 if (sent) {
295 if (netif_queue_stopped(netdev) &&
296 netif_carrier_ok(netdev) &&
297 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
298 BNAD_NETIF_WAKE_THRESHOLD) {
299 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
300 netif_wake_queue(netdev);
301 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
302 }
303 }
304 }
305
306 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
307 bna_ib_ack(tcb->i_dbell, sent);
308
309 smp_mb__before_clear_bit();
310 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
311
312 return sent;
313 }
314
315 /* MSIX Tx Completion Handler */
316 static irqreturn_t
bnad_msix_tx(int irq,void * data)317 bnad_msix_tx(int irq, void *data)
318 {
319 struct bna_tcb *tcb = (struct bna_tcb *)data;
320 struct bnad *bnad = tcb->bnad;
321
322 bnad_tx(bnad, tcb);
323
324 return IRQ_HANDLED;
325 }
326
327 static void
bnad_reset_rcb(struct bnad * bnad,struct bna_rcb * rcb)328 bnad_reset_rcb(struct bnad *bnad, struct bna_rcb *rcb)
329 {
330 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
331
332 rcb->producer_index = 0;
333 rcb->consumer_index = 0;
334
335 unmap_q->producer_index = 0;
336 unmap_q->consumer_index = 0;
337 }
338
339 static void
bnad_free_all_rxbufs(struct bnad * bnad,struct bna_rcb * rcb)340 bnad_free_all_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
341 {
342 struct bnad_unmap_q *unmap_q;
343 struct bnad_skb_unmap *unmap_array;
344 struct sk_buff *skb;
345 int unmap_cons;
346
347 unmap_q = rcb->unmap_q;
348 unmap_array = unmap_q->unmap_array;
349 for (unmap_cons = 0; unmap_cons < unmap_q->q_depth; unmap_cons++) {
350 skb = unmap_array[unmap_cons].skb;
351 if (!skb)
352 continue;
353 unmap_array[unmap_cons].skb = NULL;
354 dma_unmap_single(&bnad->pcidev->dev,
355 dma_unmap_addr(&unmap_array[unmap_cons],
356 dma_addr),
357 rcb->rxq->buffer_size,
358 DMA_FROM_DEVICE);
359 dev_kfree_skb(skb);
360 }
361 bnad_reset_rcb(bnad, rcb);
362 }
363
364 static void
bnad_alloc_n_post_rxbufs(struct bnad * bnad,struct bna_rcb * rcb)365 bnad_alloc_n_post_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
366 {
367 u16 to_alloc, alloced, unmap_prod, wi_range;
368 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
369 struct bnad_skb_unmap *unmap_array;
370 struct bna_rxq_entry *rxent;
371 struct sk_buff *skb;
372 dma_addr_t dma_addr;
373
374 alloced = 0;
375 to_alloc =
376 BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth);
377
378 unmap_array = unmap_q->unmap_array;
379 unmap_prod = unmap_q->producer_index;
380
381 BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent, wi_range);
382
383 while (to_alloc--) {
384 if (!wi_range) {
385 BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent,
386 wi_range);
387 }
388 skb = alloc_skb(rcb->rxq->buffer_size + NET_IP_ALIGN,
389 GFP_ATOMIC);
390 if (unlikely(!skb)) {
391 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
392 goto finishing;
393 }
394 skb->dev = bnad->netdev;
395 skb_reserve(skb, NET_IP_ALIGN);
396 unmap_array[unmap_prod].skb = skb;
397 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
398 rcb->rxq->buffer_size,
399 DMA_FROM_DEVICE);
400 dma_unmap_addr_set(&unmap_array[unmap_prod], dma_addr,
401 dma_addr);
402 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
403 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
404
405 rxent++;
406 wi_range--;
407 alloced++;
408 }
409
410 finishing:
411 if (likely(alloced)) {
412 unmap_q->producer_index = unmap_prod;
413 rcb->producer_index = unmap_prod;
414 smp_mb();
415 if (likely(test_bit(BNAD_RXQ_STARTED, &rcb->flags)))
416 bna_rxq_prod_indx_doorbell(rcb);
417 }
418 }
419
420 static inline void
bnad_refill_rxq(struct bnad * bnad,struct bna_rcb * rcb)421 bnad_refill_rxq(struct bnad *bnad, struct bna_rcb *rcb)
422 {
423 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
424
425 if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
426 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
427 >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
428 bnad_alloc_n_post_rxbufs(bnad, rcb);
429 smp_mb__before_clear_bit();
430 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
431 }
432 }
433
434 static u32
bnad_poll_cq(struct bnad * bnad,struct bna_ccb * ccb,int budget)435 bnad_poll_cq(struct bnad *bnad, struct bna_ccb *ccb, int budget)
436 {
437 struct bna_cq_entry *cmpl, *next_cmpl;
438 struct bna_rcb *rcb = NULL;
439 unsigned int wi_range, packets = 0, wis = 0;
440 struct bnad_unmap_q *unmap_q;
441 struct bnad_skb_unmap *unmap_array;
442 struct sk_buff *skb;
443 u32 flags, unmap_cons;
444 u32 qid0 = ccb->rcb[0]->rxq->rxq_id;
445 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
446
447 if (!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags))
448 return 0;
449
450 prefetch(bnad->netdev);
451 BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt, cmpl,
452 wi_range);
453 BUG_ON(!(wi_range <= ccb->q_depth));
454 while (cmpl->valid && packets < budget) {
455 packets++;
456 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
457
458 if (qid0 == cmpl->rxq_id)
459 rcb = ccb->rcb[0];
460 else
461 rcb = ccb->rcb[1];
462
463 unmap_q = rcb->unmap_q;
464 unmap_array = unmap_q->unmap_array;
465 unmap_cons = unmap_q->consumer_index;
466
467 skb = unmap_array[unmap_cons].skb;
468 BUG_ON(!(skb));
469 unmap_array[unmap_cons].skb = NULL;
470 dma_unmap_single(&bnad->pcidev->dev,
471 dma_unmap_addr(&unmap_array[unmap_cons],
472 dma_addr),
473 rcb->rxq->buffer_size,
474 DMA_FROM_DEVICE);
475 BNA_QE_INDX_ADD(unmap_q->consumer_index, 1, unmap_q->q_depth);
476
477 /* Should be more efficient ? Performance ? */
478 BNA_QE_INDX_ADD(rcb->consumer_index, 1, rcb->q_depth);
479
480 wis++;
481 if (likely(--wi_range))
482 next_cmpl = cmpl + 1;
483 else {
484 BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
485 wis = 0;
486 BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt,
487 next_cmpl, wi_range);
488 BUG_ON(!(wi_range <= ccb->q_depth));
489 }
490 prefetch(next_cmpl);
491
492 flags = ntohl(cmpl->flags);
493 if (unlikely
494 (flags &
495 (BNA_CQ_EF_MAC_ERROR | BNA_CQ_EF_FCS_ERROR |
496 BNA_CQ_EF_TOO_LONG))) {
497 dev_kfree_skb_any(skb);
498 rcb->rxq->rx_packets_with_error++;
499 goto next;
500 }
501
502 skb_put(skb, ntohs(cmpl->length));
503 if (likely
504 (bnad->rx_csum &&
505 (((flags & BNA_CQ_EF_IPV4) &&
506 (flags & BNA_CQ_EF_L3_CKSUM_OK)) ||
507 (flags & BNA_CQ_EF_IPV6)) &&
508 (flags & (BNA_CQ_EF_TCP | BNA_CQ_EF_UDP)) &&
509 (flags & BNA_CQ_EF_L4_CKSUM_OK)))
510 skb->ip_summed = CHECKSUM_UNNECESSARY;
511 else
512 skb_checksum_none_assert(skb);
513
514 rcb->rxq->rx_packets++;
515 rcb->rxq->rx_bytes += skb->len;
516 skb->protocol = eth_type_trans(skb, bnad->netdev);
517
518 if (bnad->vlan_grp && (flags & BNA_CQ_EF_VLAN)) {
519 struct bnad_rx_ctrl *rx_ctrl =
520 (struct bnad_rx_ctrl *)ccb->ctrl;
521 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
522 vlan_gro_receive(&rx_ctrl->napi, bnad->vlan_grp,
523 ntohs(cmpl->vlan_tag), skb);
524 else
525 vlan_hwaccel_receive_skb(skb,
526 bnad->vlan_grp,
527 ntohs(cmpl->vlan_tag));
528
529 } else { /* Not VLAN tagged/stripped */
530 struct bnad_rx_ctrl *rx_ctrl =
531 (struct bnad_rx_ctrl *)ccb->ctrl;
532 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
533 napi_gro_receive(&rx_ctrl->napi, skb);
534 else
535 netif_receive_skb(skb);
536 }
537
538 next:
539 cmpl->valid = 0;
540 cmpl = next_cmpl;
541 }
542
543 BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
544
545 if (likely(ccb)) {
546 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
547 bna_ib_ack(ccb->i_dbell, packets);
548 bnad_refill_rxq(bnad, ccb->rcb[0]);
549 if (ccb->rcb[1])
550 bnad_refill_rxq(bnad, ccb->rcb[1]);
551 } else {
552 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
553 bna_ib_ack(ccb->i_dbell, 0);
554 }
555
556 return packets;
557 }
558
559 static void
bnad_disable_rx_irq(struct bnad * bnad,struct bna_ccb * ccb)560 bnad_disable_rx_irq(struct bnad *bnad, struct bna_ccb *ccb)
561 {
562 if (unlikely(!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
563 return;
564
565 bna_ib_coalescing_timer_set(ccb->i_dbell, 0);
566 bna_ib_ack(ccb->i_dbell, 0);
567 }
568
569 static void
bnad_enable_rx_irq(struct bnad * bnad,struct bna_ccb * ccb)570 bnad_enable_rx_irq(struct bnad *bnad, struct bna_ccb *ccb)
571 {
572 unsigned long flags;
573
574 /* Because of polling context */
575 spin_lock_irqsave(&bnad->bna_lock, flags);
576 bnad_enable_rx_irq_unsafe(ccb);
577 spin_unlock_irqrestore(&bnad->bna_lock, flags);
578 }
579
580 static void
bnad_netif_rx_schedule_poll(struct bnad * bnad,struct bna_ccb * ccb)581 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
582 {
583 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
584 struct napi_struct *napi = &rx_ctrl->napi;
585
586 if (likely(napi_schedule_prep(napi))) {
587 bnad_disable_rx_irq(bnad, ccb);
588 __napi_schedule(napi);
589 }
590 BNAD_UPDATE_CTR(bnad, netif_rx_schedule);
591 }
592
593 /* MSIX Rx Path Handler */
594 static irqreturn_t
bnad_msix_rx(int irq,void * data)595 bnad_msix_rx(int irq, void *data)
596 {
597 struct bna_ccb *ccb = (struct bna_ccb *)data;
598 struct bnad *bnad = ccb->bnad;
599
600 bnad_netif_rx_schedule_poll(bnad, ccb);
601
602 return IRQ_HANDLED;
603 }
604
605 /* Interrupt handlers */
606
607 /* Mbox Interrupt Handlers */
608 static irqreturn_t
bnad_msix_mbox_handler(int irq,void * data)609 bnad_msix_mbox_handler(int irq, void *data)
610 {
611 u32 intr_status;
612 unsigned long flags;
613 struct bnad *bnad = (struct bnad *)data;
614
615 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags)))
616 return IRQ_HANDLED;
617
618 spin_lock_irqsave(&bnad->bna_lock, flags);
619
620 bna_intr_status_get(&bnad->bna, intr_status);
621
622 if (BNA_IS_MBOX_ERR_INTR(intr_status))
623 bna_mbox_handler(&bnad->bna, intr_status);
624
625 spin_unlock_irqrestore(&bnad->bna_lock, flags);
626
627 return IRQ_HANDLED;
628 }
629
630 static irqreturn_t
bnad_isr(int irq,void * data)631 bnad_isr(int irq, void *data)
632 {
633 int i, j;
634 u32 intr_status;
635 unsigned long flags;
636 struct bnad *bnad = (struct bnad *)data;
637 struct bnad_rx_info *rx_info;
638 struct bnad_rx_ctrl *rx_ctrl;
639
640 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags)))
641 return IRQ_NONE;
642
643 bna_intr_status_get(&bnad->bna, intr_status);
644
645 if (unlikely(!intr_status))
646 return IRQ_NONE;
647
648 spin_lock_irqsave(&bnad->bna_lock, flags);
649
650 if (BNA_IS_MBOX_ERR_INTR(intr_status))
651 bna_mbox_handler(&bnad->bna, intr_status);
652
653 spin_unlock_irqrestore(&bnad->bna_lock, flags);
654
655 if (!BNA_IS_INTX_DATA_INTR(intr_status))
656 return IRQ_HANDLED;
657
658 /* Process data interrupts */
659 /* Tx processing */
660 for (i = 0; i < bnad->num_tx; i++) {
661 for (j = 0; j < bnad->num_txq_per_tx; j++)
662 bnad_tx(bnad, bnad->tx_info[i].tcb[j]);
663 }
664 /* Rx processing */
665 for (i = 0; i < bnad->num_rx; i++) {
666 rx_info = &bnad->rx_info[i];
667 if (!rx_info->rx)
668 continue;
669 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
670 rx_ctrl = &rx_info->rx_ctrl[j];
671 if (rx_ctrl->ccb)
672 bnad_netif_rx_schedule_poll(bnad,
673 rx_ctrl->ccb);
674 }
675 }
676 return IRQ_HANDLED;
677 }
678
679 /*
680 * Called in interrupt / callback context
681 * with bna_lock held, so cfg_flags access is OK
682 */
683 static void
bnad_enable_mbox_irq(struct bnad * bnad)684 bnad_enable_mbox_irq(struct bnad *bnad)
685 {
686 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
687
688 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
689 }
690
691 /*
692 * Called with bnad->bna_lock held b'cos of
693 * bnad->cfg_flags access.
694 */
695 static void
bnad_disable_mbox_irq(struct bnad * bnad)696 bnad_disable_mbox_irq(struct bnad *bnad)
697 {
698 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
699
700 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
701 }
702
703 static void
bnad_set_netdev_perm_addr(struct bnad * bnad)704 bnad_set_netdev_perm_addr(struct bnad *bnad)
705 {
706 struct net_device *netdev = bnad->netdev;
707
708 memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
709 if (is_zero_ether_addr(netdev->dev_addr))
710 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
711 }
712
713 /* Control Path Handlers */
714
715 /* Callbacks */
716 void
bnad_cb_device_enable_mbox_intr(struct bnad * bnad)717 bnad_cb_device_enable_mbox_intr(struct bnad *bnad)
718 {
719 bnad_enable_mbox_irq(bnad);
720 }
721
722 void
bnad_cb_device_disable_mbox_intr(struct bnad * bnad)723 bnad_cb_device_disable_mbox_intr(struct bnad *bnad)
724 {
725 bnad_disable_mbox_irq(bnad);
726 }
727
728 void
bnad_cb_device_enabled(struct bnad * bnad,enum bna_cb_status status)729 bnad_cb_device_enabled(struct bnad *bnad, enum bna_cb_status status)
730 {
731 complete(&bnad->bnad_completions.ioc_comp);
732 bnad->bnad_completions.ioc_comp_status = status;
733 }
734
735 void
bnad_cb_device_disabled(struct bnad * bnad,enum bna_cb_status status)736 bnad_cb_device_disabled(struct bnad *bnad, enum bna_cb_status status)
737 {
738 complete(&bnad->bnad_completions.ioc_comp);
739 bnad->bnad_completions.ioc_comp_status = status;
740 }
741
742 static void
bnad_cb_port_disabled(void * arg,enum bna_cb_status status)743 bnad_cb_port_disabled(void *arg, enum bna_cb_status status)
744 {
745 struct bnad *bnad = (struct bnad *)arg;
746
747 complete(&bnad->bnad_completions.port_comp);
748
749 netif_carrier_off(bnad->netdev);
750 }
751
752 void
bnad_cb_port_link_status(struct bnad * bnad,enum bna_link_status link_status)753 bnad_cb_port_link_status(struct bnad *bnad,
754 enum bna_link_status link_status)
755 {
756 bool link_up = 0;
757
758 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
759
760 if (link_status == BNA_CEE_UP) {
761 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
762 BNAD_UPDATE_CTR(bnad, cee_up);
763 } else
764 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
765
766 if (link_up) {
767 if (!netif_carrier_ok(bnad->netdev)) {
768 struct bna_tcb *tcb = bnad->tx_info[0].tcb[0];
769 if (!tcb)
770 return;
771 pr_warn("bna: %s link up\n",
772 bnad->netdev->name);
773 netif_carrier_on(bnad->netdev);
774 BNAD_UPDATE_CTR(bnad, link_toggle);
775 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
776 /* Force an immediate Transmit Schedule */
777 pr_info("bna: %s TX_STARTED\n",
778 bnad->netdev->name);
779 netif_wake_queue(bnad->netdev);
780 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
781 } else {
782 netif_stop_queue(bnad->netdev);
783 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
784 }
785 }
786 } else {
787 if (netif_carrier_ok(bnad->netdev)) {
788 pr_warn("bna: %s link down\n",
789 bnad->netdev->name);
790 netif_carrier_off(bnad->netdev);
791 BNAD_UPDATE_CTR(bnad, link_toggle);
792 }
793 }
794 }
795
796 static void
bnad_cb_tx_disabled(void * arg,struct bna_tx * tx,enum bna_cb_status status)797 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx,
798 enum bna_cb_status status)
799 {
800 struct bnad *bnad = (struct bnad *)arg;
801
802 complete(&bnad->bnad_completions.tx_comp);
803 }
804
805 static void
bnad_cb_tcb_setup(struct bnad * bnad,struct bna_tcb * tcb)806 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
807 {
808 struct bnad_tx_info *tx_info =
809 (struct bnad_tx_info *)tcb->txq->tx->priv;
810 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
811
812 tx_info->tcb[tcb->id] = tcb;
813 unmap_q->producer_index = 0;
814 unmap_q->consumer_index = 0;
815 unmap_q->q_depth = BNAD_TX_UNMAPQ_DEPTH;
816 }
817
818 static void
bnad_cb_tcb_destroy(struct bnad * bnad,struct bna_tcb * tcb)819 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
820 {
821 struct bnad_tx_info *tx_info =
822 (struct bnad_tx_info *)tcb->txq->tx->priv;
823 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
824
825 while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
826 cpu_relax();
827
828 bnad_free_all_txbufs(bnad, tcb);
829
830 unmap_q->producer_index = 0;
831 unmap_q->consumer_index = 0;
832
833 smp_mb__before_clear_bit();
834 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
835
836 tx_info->tcb[tcb->id] = NULL;
837 }
838
839 static void
bnad_cb_rcb_setup(struct bnad * bnad,struct bna_rcb * rcb)840 bnad_cb_rcb_setup(struct bnad *bnad, struct bna_rcb *rcb)
841 {
842 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
843
844 unmap_q->producer_index = 0;
845 unmap_q->consumer_index = 0;
846 unmap_q->q_depth = BNAD_RX_UNMAPQ_DEPTH;
847 }
848
849 static void
bnad_cb_rcb_destroy(struct bnad * bnad,struct bna_rcb * rcb)850 bnad_cb_rcb_destroy(struct bnad *bnad, struct bna_rcb *rcb)
851 {
852 bnad_free_all_rxbufs(bnad, rcb);
853 }
854
855 static void
bnad_cb_ccb_setup(struct bnad * bnad,struct bna_ccb * ccb)856 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
857 {
858 struct bnad_rx_info *rx_info =
859 (struct bnad_rx_info *)ccb->cq->rx->priv;
860
861 rx_info->rx_ctrl[ccb->id].ccb = ccb;
862 ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
863 }
864
865 static void
bnad_cb_ccb_destroy(struct bnad * bnad,struct bna_ccb * ccb)866 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
867 {
868 struct bnad_rx_info *rx_info =
869 (struct bnad_rx_info *)ccb->cq->rx->priv;
870
871 rx_info->rx_ctrl[ccb->id].ccb = NULL;
872 }
873
874 static void
bnad_cb_tx_stall(struct bnad * bnad,struct bna_tcb * tcb)875 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tcb *tcb)
876 {
877 struct bnad_tx_info *tx_info =
878 (struct bnad_tx_info *)tcb->txq->tx->priv;
879
880 if (tx_info != &bnad->tx_info[0])
881 return;
882
883 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
884 netif_stop_queue(bnad->netdev);
885 pr_info("bna: %s TX_STOPPED\n", bnad->netdev->name);
886 }
887
888 static void
bnad_cb_tx_resume(struct bnad * bnad,struct bna_tcb * tcb)889 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tcb *tcb)
890 {
891 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
892
893 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
894 return;
895
896 clear_bit(BNAD_RF_TX_SHUTDOWN_DELAYED, &bnad->run_flags);
897
898 while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
899 cpu_relax();
900
901 bnad_free_all_txbufs(bnad, tcb);
902
903 unmap_q->producer_index = 0;
904 unmap_q->consumer_index = 0;
905
906 smp_mb__before_clear_bit();
907 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
908
909 /*
910 * Workaround for first device enable failure & we
911 * get a 0 MAC address. We try to get the MAC address
912 * again here.
913 */
914 if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
915 bna_port_mac_get(&bnad->bna.port, &bnad->perm_addr);
916 bnad_set_netdev_perm_addr(bnad);
917 }
918
919 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
920
921 if (netif_carrier_ok(bnad->netdev)) {
922 pr_info("bna: %s TX_STARTED\n", bnad->netdev->name);
923 netif_wake_queue(bnad->netdev);
924 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
925 }
926 }
927
928 static void
bnad_cb_tx_cleanup(struct bnad * bnad,struct bna_tcb * tcb)929 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
930 {
931 /* Delay only once for the whole Tx Path Shutdown */
932 if (!test_and_set_bit(BNAD_RF_TX_SHUTDOWN_DELAYED, &bnad->run_flags))
933 mdelay(BNAD_TXRX_SYNC_MDELAY);
934 }
935
936 static void
bnad_cb_rx_cleanup(struct bnad * bnad,struct bna_ccb * ccb)937 bnad_cb_rx_cleanup(struct bnad *bnad,
938 struct bna_ccb *ccb)
939 {
940 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
941
942 if (ccb->rcb[1])
943 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
944
945 if (!test_and_set_bit(BNAD_RF_RX_SHUTDOWN_DELAYED, &bnad->run_flags))
946 mdelay(BNAD_TXRX_SYNC_MDELAY);
947 }
948
949 static void
bnad_cb_rx_post(struct bnad * bnad,struct bna_rcb * rcb)950 bnad_cb_rx_post(struct bnad *bnad, struct bna_rcb *rcb)
951 {
952 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
953
954 clear_bit(BNAD_RF_RX_SHUTDOWN_DELAYED, &bnad->run_flags);
955
956 if (rcb == rcb->cq->ccb->rcb[0])
957 bnad_cq_cmpl_init(bnad, rcb->cq->ccb);
958
959 bnad_free_all_rxbufs(bnad, rcb);
960
961 set_bit(BNAD_RXQ_STARTED, &rcb->flags);
962
963 /* Now allocate & post buffers for this RCB */
964 /* !!Allocation in callback context */
965 if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
966 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
967 >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
968 bnad_alloc_n_post_rxbufs(bnad, rcb);
969 smp_mb__before_clear_bit();
970 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
971 }
972 }
973
974 static void
bnad_cb_rx_disabled(void * arg,struct bna_rx * rx,enum bna_cb_status status)975 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx,
976 enum bna_cb_status status)
977 {
978 struct bnad *bnad = (struct bnad *)arg;
979
980 complete(&bnad->bnad_completions.rx_comp);
981 }
982
983 static void
bnad_cb_rx_mcast_add(struct bnad * bnad,struct bna_rx * rx,enum bna_cb_status status)984 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx,
985 enum bna_cb_status status)
986 {
987 bnad->bnad_completions.mcast_comp_status = status;
988 complete(&bnad->bnad_completions.mcast_comp);
989 }
990
991 void
bnad_cb_stats_get(struct bnad * bnad,enum bna_cb_status status,struct bna_stats * stats)992 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
993 struct bna_stats *stats)
994 {
995 if (status == BNA_CB_SUCCESS)
996 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
997
998 if (!netif_running(bnad->netdev) ||
999 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1000 return;
1001
1002 mod_timer(&bnad->stats_timer,
1003 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1004 }
1005
1006 /* Resource allocation, free functions */
1007
1008 static void
bnad_mem_free(struct bnad * bnad,struct bna_mem_info * mem_info)1009 bnad_mem_free(struct bnad *bnad,
1010 struct bna_mem_info *mem_info)
1011 {
1012 int i;
1013 dma_addr_t dma_pa;
1014
1015 if (mem_info->mdl == NULL)
1016 return;
1017
1018 for (i = 0; i < mem_info->num; i++) {
1019 if (mem_info->mdl[i].kva != NULL) {
1020 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1021 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1022 dma_pa);
1023 dma_free_coherent(&bnad->pcidev->dev,
1024 mem_info->mdl[i].len,
1025 mem_info->mdl[i].kva, dma_pa);
1026 } else
1027 kfree(mem_info->mdl[i].kva);
1028 }
1029 }
1030 kfree(mem_info->mdl);
1031 mem_info->mdl = NULL;
1032 }
1033
1034 static int
bnad_mem_alloc(struct bnad * bnad,struct bna_mem_info * mem_info)1035 bnad_mem_alloc(struct bnad *bnad,
1036 struct bna_mem_info *mem_info)
1037 {
1038 int i;
1039 dma_addr_t dma_pa;
1040
1041 if ((mem_info->num == 0) || (mem_info->len == 0)) {
1042 mem_info->mdl = NULL;
1043 return 0;
1044 }
1045
1046 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1047 GFP_KERNEL);
1048 if (mem_info->mdl == NULL)
1049 return -ENOMEM;
1050
1051 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1052 for (i = 0; i < mem_info->num; i++) {
1053 mem_info->mdl[i].len = mem_info->len;
1054 mem_info->mdl[i].kva =
1055 dma_alloc_coherent(&bnad->pcidev->dev,
1056 mem_info->len, &dma_pa,
1057 GFP_KERNEL);
1058
1059 if (mem_info->mdl[i].kva == NULL)
1060 goto err_return;
1061
1062 BNA_SET_DMA_ADDR(dma_pa,
1063 &(mem_info->mdl[i].dma));
1064 }
1065 } else {
1066 for (i = 0; i < mem_info->num; i++) {
1067 mem_info->mdl[i].len = mem_info->len;
1068 mem_info->mdl[i].kva = kzalloc(mem_info->len,
1069 GFP_KERNEL);
1070 if (mem_info->mdl[i].kva == NULL)
1071 goto err_return;
1072 }
1073 }
1074
1075 return 0;
1076
1077 err_return:
1078 bnad_mem_free(bnad, mem_info);
1079 return -ENOMEM;
1080 }
1081
1082 /* Free IRQ for Mailbox */
1083 static void
bnad_mbox_irq_free(struct bnad * bnad,struct bna_intr_info * intr_info)1084 bnad_mbox_irq_free(struct bnad *bnad,
1085 struct bna_intr_info *intr_info)
1086 {
1087 int irq;
1088 unsigned long flags;
1089
1090 if (intr_info->idl == NULL)
1091 return;
1092
1093 spin_lock_irqsave(&bnad->bna_lock, flags);
1094 bnad_disable_mbox_irq(bnad);
1095 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1096
1097 irq = BNAD_GET_MBOX_IRQ(bnad);
1098 free_irq(irq, bnad);
1099
1100 kfree(intr_info->idl);
1101 }
1102
1103 /*
1104 * Allocates IRQ for Mailbox, but keep it disabled
1105 * This will be enabled once we get the mbox enable callback
1106 * from bna
1107 */
1108 static int
bnad_mbox_irq_alloc(struct bnad * bnad,struct bna_intr_info * intr_info)1109 bnad_mbox_irq_alloc(struct bnad *bnad,
1110 struct bna_intr_info *intr_info)
1111 {
1112 int err = 0;
1113 unsigned long flags;
1114 u32 irq;
1115 irq_handler_t irq_handler;
1116
1117 /* Mbox should use only 1 vector */
1118
1119 intr_info->idl = kzalloc(sizeof(*(intr_info->idl)), GFP_KERNEL);
1120 if (!intr_info->idl)
1121 return -ENOMEM;
1122
1123 spin_lock_irqsave(&bnad->bna_lock, flags);
1124 if (bnad->cfg_flags & BNAD_CF_MSIX) {
1125 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1126 irq = bnad->msix_table[bnad->msix_num - 1].vector;
1127 flags = 0;
1128 intr_info->intr_type = BNA_INTR_T_MSIX;
1129 intr_info->idl[0].vector = bnad->msix_num - 1;
1130 } else {
1131 irq_handler = (irq_handler_t)bnad_isr;
1132 irq = bnad->pcidev->irq;
1133 flags = IRQF_SHARED;
1134 intr_info->intr_type = BNA_INTR_T_INTX;
1135 /* intr_info->idl.vector = 0 ? */
1136 }
1137 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1138
1139 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1140
1141 /*
1142 * Set the Mbox IRQ disable flag, so that the IRQ handler
1143 * called from request_irq() for SHARED IRQs do not execute
1144 */
1145 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1146
1147 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1148
1149 err = request_irq(irq, irq_handler, flags,
1150 bnad->mbox_irq_name, bnad);
1151
1152 if (err) {
1153 kfree(intr_info->idl);
1154 intr_info->idl = NULL;
1155 }
1156
1157 return err;
1158 }
1159
1160 static void
bnad_txrx_irq_free(struct bnad * bnad,struct bna_intr_info * intr_info)1161 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1162 {
1163 kfree(intr_info->idl);
1164 intr_info->idl = NULL;
1165 }
1166
1167 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1168 static int
bnad_txrx_irq_alloc(struct bnad * bnad,enum bnad_intr_source src,uint txrx_id,struct bna_intr_info * intr_info)1169 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1170 uint txrx_id, struct bna_intr_info *intr_info)
1171 {
1172 int i, vector_start = 0;
1173 u32 cfg_flags;
1174 unsigned long flags;
1175
1176 spin_lock_irqsave(&bnad->bna_lock, flags);
1177 cfg_flags = bnad->cfg_flags;
1178 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1179
1180 if (cfg_flags & BNAD_CF_MSIX) {
1181 intr_info->intr_type = BNA_INTR_T_MSIX;
1182 intr_info->idl = kcalloc(intr_info->num,
1183 sizeof(struct bna_intr_descr),
1184 GFP_KERNEL);
1185 if (!intr_info->idl)
1186 return -ENOMEM;
1187
1188 switch (src) {
1189 case BNAD_INTR_TX:
1190 vector_start = txrx_id;
1191 break;
1192
1193 case BNAD_INTR_RX:
1194 vector_start = bnad->num_tx * bnad->num_txq_per_tx +
1195 txrx_id;
1196 break;
1197
1198 default:
1199 BUG();
1200 }
1201
1202 for (i = 0; i < intr_info->num; i++)
1203 intr_info->idl[i].vector = vector_start + i;
1204 } else {
1205 intr_info->intr_type = BNA_INTR_T_INTX;
1206 intr_info->num = 1;
1207 intr_info->idl = kcalloc(intr_info->num,
1208 sizeof(struct bna_intr_descr),
1209 GFP_KERNEL);
1210 if (!intr_info->idl)
1211 return -ENOMEM;
1212
1213 switch (src) {
1214 case BNAD_INTR_TX:
1215 intr_info->idl[0].vector = 0x1; /* Bit mask : Tx IB */
1216 break;
1217
1218 case BNAD_INTR_RX:
1219 intr_info->idl[0].vector = 0x2; /* Bit mask : Rx IB */
1220 break;
1221 }
1222 }
1223 return 0;
1224 }
1225
1226 /**
1227 * NOTE: Should be called for MSIX only
1228 * Unregisters Tx MSIX vector(s) from the kernel
1229 */
1230 static void
bnad_tx_msix_unregister(struct bnad * bnad,struct bnad_tx_info * tx_info,int num_txqs)1231 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1232 int num_txqs)
1233 {
1234 int i;
1235 int vector_num;
1236
1237 for (i = 0; i < num_txqs; i++) {
1238 if (tx_info->tcb[i] == NULL)
1239 continue;
1240
1241 vector_num = tx_info->tcb[i]->intr_vector;
1242 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1243 }
1244 }
1245
1246 /**
1247 * NOTE: Should be called for MSIX only
1248 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1249 */
1250 static int
bnad_tx_msix_register(struct bnad * bnad,struct bnad_tx_info * tx_info,uint tx_id,int num_txqs)1251 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1252 uint tx_id, int num_txqs)
1253 {
1254 int i;
1255 int err;
1256 int vector_num;
1257
1258 for (i = 0; i < num_txqs; i++) {
1259 vector_num = tx_info->tcb[i]->intr_vector;
1260 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1261 tx_id + tx_info->tcb[i]->id);
1262 err = request_irq(bnad->msix_table[vector_num].vector,
1263 (irq_handler_t)bnad_msix_tx, 0,
1264 tx_info->tcb[i]->name,
1265 tx_info->tcb[i]);
1266 if (err)
1267 goto err_return;
1268 }
1269
1270 return 0;
1271
1272 err_return:
1273 if (i > 0)
1274 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1275 return -1;
1276 }
1277
1278 /**
1279 * NOTE: Should be called for MSIX only
1280 * Unregisters Rx MSIX vector(s) from the kernel
1281 */
1282 static void
bnad_rx_msix_unregister(struct bnad * bnad,struct bnad_rx_info * rx_info,int num_rxps)1283 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1284 int num_rxps)
1285 {
1286 int i;
1287 int vector_num;
1288
1289 for (i = 0; i < num_rxps; i++) {
1290 if (rx_info->rx_ctrl[i].ccb == NULL)
1291 continue;
1292
1293 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1294 free_irq(bnad->msix_table[vector_num].vector,
1295 rx_info->rx_ctrl[i].ccb);
1296 }
1297 }
1298
1299 /**
1300 * NOTE: Should be called for MSIX only
1301 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1302 */
1303 static int
bnad_rx_msix_register(struct bnad * bnad,struct bnad_rx_info * rx_info,uint rx_id,int num_rxps)1304 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1305 uint rx_id, int num_rxps)
1306 {
1307 int i;
1308 int err;
1309 int vector_num;
1310
1311 for (i = 0; i < num_rxps; i++) {
1312 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1313 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1314 bnad->netdev->name,
1315 rx_id + rx_info->rx_ctrl[i].ccb->id);
1316 err = request_irq(bnad->msix_table[vector_num].vector,
1317 (irq_handler_t)bnad_msix_rx, 0,
1318 rx_info->rx_ctrl[i].ccb->name,
1319 rx_info->rx_ctrl[i].ccb);
1320 if (err)
1321 goto err_return;
1322 }
1323
1324 return 0;
1325
1326 err_return:
1327 if (i > 0)
1328 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1329 return -1;
1330 }
1331
1332 /* Free Tx object Resources */
1333 static void
bnad_tx_res_free(struct bnad * bnad,struct bna_res_info * res_info)1334 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1335 {
1336 int i;
1337
1338 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1339 if (res_info[i].res_type == BNA_RES_T_MEM)
1340 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1341 else if (res_info[i].res_type == BNA_RES_T_INTR)
1342 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1343 }
1344 }
1345
1346 /* Allocates memory and interrupt resources for Tx object */
1347 static int
bnad_tx_res_alloc(struct bnad * bnad,struct bna_res_info * res_info,uint tx_id)1348 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1349 uint tx_id)
1350 {
1351 int i, err = 0;
1352
1353 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1354 if (res_info[i].res_type == BNA_RES_T_MEM)
1355 err = bnad_mem_alloc(bnad,
1356 &res_info[i].res_u.mem_info);
1357 else if (res_info[i].res_type == BNA_RES_T_INTR)
1358 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1359 &res_info[i].res_u.intr_info);
1360 if (err)
1361 goto err_return;
1362 }
1363 return 0;
1364
1365 err_return:
1366 bnad_tx_res_free(bnad, res_info);
1367 return err;
1368 }
1369
1370 /* Free Rx object Resources */
1371 static void
bnad_rx_res_free(struct bnad * bnad,struct bna_res_info * res_info)1372 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1373 {
1374 int i;
1375
1376 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1377 if (res_info[i].res_type == BNA_RES_T_MEM)
1378 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1379 else if (res_info[i].res_type == BNA_RES_T_INTR)
1380 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1381 }
1382 }
1383
1384 /* Allocates memory and interrupt resources for Rx object */
1385 static int
bnad_rx_res_alloc(struct bnad * bnad,struct bna_res_info * res_info,uint rx_id)1386 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1387 uint rx_id)
1388 {
1389 int i, err = 0;
1390
1391 /* All memory needs to be allocated before setup_ccbs */
1392 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1393 if (res_info[i].res_type == BNA_RES_T_MEM)
1394 err = bnad_mem_alloc(bnad,
1395 &res_info[i].res_u.mem_info);
1396 else if (res_info[i].res_type == BNA_RES_T_INTR)
1397 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1398 &res_info[i].res_u.intr_info);
1399 if (err)
1400 goto err_return;
1401 }
1402 return 0;
1403
1404 err_return:
1405 bnad_rx_res_free(bnad, res_info);
1406 return err;
1407 }
1408
1409 /* Timer callbacks */
1410 /* a) IOC timer */
1411 static void
bnad_ioc_timeout(unsigned long data)1412 bnad_ioc_timeout(unsigned long data)
1413 {
1414 struct bnad *bnad = (struct bnad *)data;
1415 unsigned long flags;
1416
1417 spin_lock_irqsave(&bnad->bna_lock, flags);
1418 bfa_nw_ioc_timeout((void *) &bnad->bna.device.ioc);
1419 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1420 }
1421
1422 static void
bnad_ioc_hb_check(unsigned long data)1423 bnad_ioc_hb_check(unsigned long data)
1424 {
1425 struct bnad *bnad = (struct bnad *)data;
1426 unsigned long flags;
1427
1428 spin_lock_irqsave(&bnad->bna_lock, flags);
1429 bfa_nw_ioc_hb_check((void *) &bnad->bna.device.ioc);
1430 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1431 }
1432
1433 static void
bnad_iocpf_timeout(unsigned long data)1434 bnad_iocpf_timeout(unsigned long data)
1435 {
1436 struct bnad *bnad = (struct bnad *)data;
1437 unsigned long flags;
1438
1439 spin_lock_irqsave(&bnad->bna_lock, flags);
1440 bfa_nw_iocpf_timeout((void *) &bnad->bna.device.ioc);
1441 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1442 }
1443
1444 static void
bnad_iocpf_sem_timeout(unsigned long data)1445 bnad_iocpf_sem_timeout(unsigned long data)
1446 {
1447 struct bnad *bnad = (struct bnad *)data;
1448 unsigned long flags;
1449
1450 spin_lock_irqsave(&bnad->bna_lock, flags);
1451 bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.device.ioc);
1452 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1453 }
1454
1455 /*
1456 * All timer routines use bnad->bna_lock to protect against
1457 * the following race, which may occur in case of no locking:
1458 * Time CPU m CPU n
1459 * 0 1 = test_bit
1460 * 1 clear_bit
1461 * 2 del_timer_sync
1462 * 3 mod_timer
1463 */
1464
1465 /* b) Dynamic Interrupt Moderation Timer */
1466 static void
bnad_dim_timeout(unsigned long data)1467 bnad_dim_timeout(unsigned long data)
1468 {
1469 struct bnad *bnad = (struct bnad *)data;
1470 struct bnad_rx_info *rx_info;
1471 struct bnad_rx_ctrl *rx_ctrl;
1472 int i, j;
1473 unsigned long flags;
1474
1475 if (!netif_carrier_ok(bnad->netdev))
1476 return;
1477
1478 spin_lock_irqsave(&bnad->bna_lock, flags);
1479 for (i = 0; i < bnad->num_rx; i++) {
1480 rx_info = &bnad->rx_info[i];
1481 if (!rx_info->rx)
1482 continue;
1483 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1484 rx_ctrl = &rx_info->rx_ctrl[j];
1485 if (!rx_ctrl->ccb)
1486 continue;
1487 bna_rx_dim_update(rx_ctrl->ccb);
1488 }
1489 }
1490
1491 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1492 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1493 mod_timer(&bnad->dim_timer,
1494 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1495 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1496 }
1497
1498 /* c) Statistics Timer */
1499 static void
bnad_stats_timeout(unsigned long data)1500 bnad_stats_timeout(unsigned long data)
1501 {
1502 struct bnad *bnad = (struct bnad *)data;
1503 unsigned long flags;
1504
1505 if (!netif_running(bnad->netdev) ||
1506 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1507 return;
1508
1509 spin_lock_irqsave(&bnad->bna_lock, flags);
1510 bna_stats_get(&bnad->bna);
1511 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1512 }
1513
1514 /*
1515 * Set up timer for DIM
1516 * Called with bnad->bna_lock held
1517 */
1518 void
bnad_dim_timer_start(struct bnad * bnad)1519 bnad_dim_timer_start(struct bnad *bnad)
1520 {
1521 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1522 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1523 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1524 (unsigned long)bnad);
1525 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1526 mod_timer(&bnad->dim_timer,
1527 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1528 }
1529 }
1530
1531 /*
1532 * Set up timer for statistics
1533 * Called with mutex_lock(&bnad->conf_mutex) held
1534 */
1535 static void
bnad_stats_timer_start(struct bnad * bnad)1536 bnad_stats_timer_start(struct bnad *bnad)
1537 {
1538 unsigned long flags;
1539
1540 spin_lock_irqsave(&bnad->bna_lock, flags);
1541 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1542 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1543 (unsigned long)bnad);
1544 mod_timer(&bnad->stats_timer,
1545 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1546 }
1547 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1548 }
1549
1550 /*
1551 * Stops the stats timer
1552 * Called with mutex_lock(&bnad->conf_mutex) held
1553 */
1554 static void
bnad_stats_timer_stop(struct bnad * bnad)1555 bnad_stats_timer_stop(struct bnad *bnad)
1556 {
1557 int to_del = 0;
1558 unsigned long flags;
1559
1560 spin_lock_irqsave(&bnad->bna_lock, flags);
1561 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1562 to_del = 1;
1563 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1564 if (to_del)
1565 del_timer_sync(&bnad->stats_timer);
1566 }
1567
1568 /* Utilities */
1569
1570 static void
bnad_netdev_mc_list_get(struct net_device * netdev,u8 * mc_list)1571 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1572 {
1573 int i = 1; /* Index 0 has broadcast address */
1574 struct netdev_hw_addr *mc_addr;
1575
1576 netdev_for_each_mc_addr(mc_addr, netdev) {
1577 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1578 ETH_ALEN);
1579 i++;
1580 }
1581 }
1582
1583 static int
bnad_napi_poll_rx(struct napi_struct * napi,int budget)1584 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1585 {
1586 struct bnad_rx_ctrl *rx_ctrl =
1587 container_of(napi, struct bnad_rx_ctrl, napi);
1588 struct bna_ccb *ccb;
1589 struct bnad *bnad;
1590 int rcvd = 0;
1591
1592 ccb = rx_ctrl->ccb;
1593
1594 bnad = ccb->bnad;
1595
1596 if (!netif_carrier_ok(bnad->netdev))
1597 goto poll_exit;
1598
1599 rcvd = bnad_poll_cq(bnad, ccb, budget);
1600 if (rcvd == budget)
1601 return rcvd;
1602
1603 poll_exit:
1604 napi_complete((napi));
1605
1606 BNAD_UPDATE_CTR(bnad, netif_rx_complete);
1607
1608 bnad_enable_rx_irq(bnad, ccb);
1609 return rcvd;
1610 }
1611
1612 static void
bnad_napi_enable(struct bnad * bnad,u32 rx_id)1613 bnad_napi_enable(struct bnad *bnad, u32 rx_id)
1614 {
1615 struct bnad_rx_ctrl *rx_ctrl;
1616 int i;
1617
1618 /* Initialize & enable NAPI */
1619 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1620 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1621
1622 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1623 bnad_napi_poll_rx, 64);
1624
1625 napi_enable(&rx_ctrl->napi);
1626 }
1627 }
1628
1629 static void
bnad_napi_disable(struct bnad * bnad,u32 rx_id)1630 bnad_napi_disable(struct bnad *bnad, u32 rx_id)
1631 {
1632 int i;
1633
1634 /* First disable and then clean up */
1635 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1636 napi_disable(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1637 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1638 }
1639 }
1640
1641 /* Should be held with conf_lock held */
1642 void
bnad_cleanup_tx(struct bnad * bnad,uint tx_id)1643 bnad_cleanup_tx(struct bnad *bnad, uint tx_id)
1644 {
1645 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1646 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1647 unsigned long flags;
1648
1649 if (!tx_info->tx)
1650 return;
1651
1652 init_completion(&bnad->bnad_completions.tx_comp);
1653 spin_lock_irqsave(&bnad->bna_lock, flags);
1654 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1655 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1656 wait_for_completion(&bnad->bnad_completions.tx_comp);
1657
1658 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1659 bnad_tx_msix_unregister(bnad, tx_info,
1660 bnad->num_txq_per_tx);
1661
1662 spin_lock_irqsave(&bnad->bna_lock, flags);
1663 bna_tx_destroy(tx_info->tx);
1664 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1665
1666 tx_info->tx = NULL;
1667
1668 if (0 == tx_id)
1669 tasklet_kill(&bnad->tx_free_tasklet);
1670
1671 bnad_tx_res_free(bnad, res_info);
1672 }
1673
1674 /* Should be held with conf_lock held */
1675 int
bnad_setup_tx(struct bnad * bnad,uint tx_id)1676 bnad_setup_tx(struct bnad *bnad, uint tx_id)
1677 {
1678 int err;
1679 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1680 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1681 struct bna_intr_info *intr_info =
1682 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1683 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1684 struct bna_tx_event_cbfn tx_cbfn;
1685 struct bna_tx *tx;
1686 unsigned long flags;
1687
1688 /* Initialize the Tx object configuration */
1689 tx_config->num_txq = bnad->num_txq_per_tx;
1690 tx_config->txq_depth = bnad->txq_depth;
1691 tx_config->tx_type = BNA_TX_T_REGULAR;
1692
1693 /* Initialize the tx event handlers */
1694 tx_cbfn.tcb_setup_cbfn = bnad_cb_tcb_setup;
1695 tx_cbfn.tcb_destroy_cbfn = bnad_cb_tcb_destroy;
1696 tx_cbfn.tx_stall_cbfn = bnad_cb_tx_stall;
1697 tx_cbfn.tx_resume_cbfn = bnad_cb_tx_resume;
1698 tx_cbfn.tx_cleanup_cbfn = bnad_cb_tx_cleanup;
1699
1700 /* Get BNA's resource requirement for one tx object */
1701 spin_lock_irqsave(&bnad->bna_lock, flags);
1702 bna_tx_res_req(bnad->num_txq_per_tx,
1703 bnad->txq_depth, res_info);
1704 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1705
1706 /* Fill Unmap Q memory requirements */
1707 BNAD_FILL_UNMAPQ_MEM_REQ(
1708 &res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1709 bnad->num_txq_per_tx,
1710 BNAD_TX_UNMAPQ_DEPTH);
1711
1712 /* Allocate resources */
1713 err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1714 if (err)
1715 return err;
1716
1717 /* Ask BNA to create one Tx object, supplying required resources */
1718 spin_lock_irqsave(&bnad->bna_lock, flags);
1719 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1720 tx_info);
1721 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1722 if (!tx)
1723 goto err_return;
1724 tx_info->tx = tx;
1725
1726 /* Register ISR for the Tx object */
1727 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1728 err = bnad_tx_msix_register(bnad, tx_info,
1729 tx_id, bnad->num_txq_per_tx);
1730 if (err)
1731 goto err_return;
1732 }
1733
1734 spin_lock_irqsave(&bnad->bna_lock, flags);
1735 bna_tx_enable(tx);
1736 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1737
1738 return 0;
1739
1740 err_return:
1741 bnad_tx_res_free(bnad, res_info);
1742 return err;
1743 }
1744
1745 /* Setup the rx config for bna_rx_create */
1746 /* bnad decides the configuration */
1747 static void
bnad_init_rx_config(struct bnad * bnad,struct bna_rx_config * rx_config)1748 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1749 {
1750 rx_config->rx_type = BNA_RX_T_REGULAR;
1751 rx_config->num_paths = bnad->num_rxp_per_rx;
1752
1753 if (bnad->num_rxp_per_rx > 1) {
1754 rx_config->rss_status = BNA_STATUS_T_ENABLED;
1755 rx_config->rss_config.hash_type =
1756 (BFI_RSS_T_V4_TCP |
1757 BFI_RSS_T_V6_TCP |
1758 BFI_RSS_T_V4_IP |
1759 BFI_RSS_T_V6_IP);
1760 rx_config->rss_config.hash_mask =
1761 bnad->num_rxp_per_rx - 1;
1762 get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1763 sizeof(rx_config->rss_config.toeplitz_hash_key));
1764 } else {
1765 rx_config->rss_status = BNA_STATUS_T_DISABLED;
1766 memset(&rx_config->rss_config, 0,
1767 sizeof(rx_config->rss_config));
1768 }
1769 rx_config->rxp_type = BNA_RXP_SLR;
1770 rx_config->q_depth = bnad->rxq_depth;
1771
1772 rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1773
1774 rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1775 }
1776
1777 /* Called with mutex_lock(&bnad->conf_mutex) held */
1778 void
bnad_cleanup_rx(struct bnad * bnad,uint rx_id)1779 bnad_cleanup_rx(struct bnad *bnad, uint rx_id)
1780 {
1781 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1782 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1783 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1784 unsigned long flags;
1785 int dim_timer_del = 0;
1786
1787 if (!rx_info->rx)
1788 return;
1789
1790 if (0 == rx_id) {
1791 spin_lock_irqsave(&bnad->bna_lock, flags);
1792 dim_timer_del = bnad_dim_timer_running(bnad);
1793 if (dim_timer_del)
1794 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1795 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1796 if (dim_timer_del)
1797 del_timer_sync(&bnad->dim_timer);
1798 }
1799
1800 bnad_napi_disable(bnad, rx_id);
1801
1802 init_completion(&bnad->bnad_completions.rx_comp);
1803 spin_lock_irqsave(&bnad->bna_lock, flags);
1804 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
1805 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1806 wait_for_completion(&bnad->bnad_completions.rx_comp);
1807
1808 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
1809 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
1810
1811 spin_lock_irqsave(&bnad->bna_lock, flags);
1812 bna_rx_destroy(rx_info->rx);
1813 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1814
1815 rx_info->rx = NULL;
1816
1817 bnad_rx_res_free(bnad, res_info);
1818 }
1819
1820 /* Called with mutex_lock(&bnad->conf_mutex) held */
1821 int
bnad_setup_rx(struct bnad * bnad,uint rx_id)1822 bnad_setup_rx(struct bnad *bnad, uint rx_id)
1823 {
1824 int err;
1825 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1826 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1827 struct bna_intr_info *intr_info =
1828 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
1829 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1830 struct bna_rx_event_cbfn rx_cbfn;
1831 struct bna_rx *rx;
1832 unsigned long flags;
1833
1834 /* Initialize the Rx object configuration */
1835 bnad_init_rx_config(bnad, rx_config);
1836
1837 /* Initialize the Rx event handlers */
1838 rx_cbfn.rcb_setup_cbfn = bnad_cb_rcb_setup;
1839 rx_cbfn.rcb_destroy_cbfn = bnad_cb_rcb_destroy;
1840 rx_cbfn.ccb_setup_cbfn = bnad_cb_ccb_setup;
1841 rx_cbfn.ccb_destroy_cbfn = bnad_cb_ccb_destroy;
1842 rx_cbfn.rx_cleanup_cbfn = bnad_cb_rx_cleanup;
1843 rx_cbfn.rx_post_cbfn = bnad_cb_rx_post;
1844
1845 /* Get BNA's resource requirement for one Rx object */
1846 spin_lock_irqsave(&bnad->bna_lock, flags);
1847 bna_rx_res_req(rx_config, res_info);
1848 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1849
1850 /* Fill Unmap Q memory requirements */
1851 BNAD_FILL_UNMAPQ_MEM_REQ(
1852 &res_info[BNA_RX_RES_MEM_T_UNMAPQ],
1853 rx_config->num_paths +
1854 ((rx_config->rxp_type == BNA_RXP_SINGLE) ? 0 :
1855 rx_config->num_paths), BNAD_RX_UNMAPQ_DEPTH);
1856
1857 /* Allocate resource */
1858 err = bnad_rx_res_alloc(bnad, res_info, rx_id);
1859 if (err)
1860 return err;
1861
1862 /* Ask BNA to create one Rx object, supplying required resources */
1863 spin_lock_irqsave(&bnad->bna_lock, flags);
1864 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
1865 rx_info);
1866 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1867 if (!rx)
1868 goto err_return;
1869 rx_info->rx = rx;
1870
1871 /* Register ISR for the Rx object */
1872 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1873 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
1874 rx_config->num_paths);
1875 if (err)
1876 goto err_return;
1877 }
1878
1879 /* Enable NAPI */
1880 bnad_napi_enable(bnad, rx_id);
1881
1882 spin_lock_irqsave(&bnad->bna_lock, flags);
1883 if (0 == rx_id) {
1884 /* Set up Dynamic Interrupt Moderation Vector */
1885 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
1886 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
1887
1888 /* Enable VLAN filtering only on the default Rx */
1889 bna_rx_vlanfilter_enable(rx);
1890
1891 /* Start the DIM timer */
1892 bnad_dim_timer_start(bnad);
1893 }
1894
1895 bna_rx_enable(rx);
1896 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1897
1898 return 0;
1899
1900 err_return:
1901 bnad_cleanup_rx(bnad, rx_id);
1902 return err;
1903 }
1904
1905 /* Called with conf_lock & bnad->bna_lock held */
1906 void
bnad_tx_coalescing_timeo_set(struct bnad * bnad)1907 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
1908 {
1909 struct bnad_tx_info *tx_info;
1910
1911 tx_info = &bnad->tx_info[0];
1912 if (!tx_info->tx)
1913 return;
1914
1915 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
1916 }
1917
1918 /* Called with conf_lock & bnad->bna_lock held */
1919 void
bnad_rx_coalescing_timeo_set(struct bnad * bnad)1920 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
1921 {
1922 struct bnad_rx_info *rx_info;
1923 int i;
1924
1925 for (i = 0; i < bnad->num_rx; i++) {
1926 rx_info = &bnad->rx_info[i];
1927 if (!rx_info->rx)
1928 continue;
1929 bna_rx_coalescing_timeo_set(rx_info->rx,
1930 bnad->rx_coalescing_timeo);
1931 }
1932 }
1933
1934 /*
1935 * Called with bnad->bna_lock held
1936 */
1937 static int
bnad_mac_addr_set_locked(struct bnad * bnad,u8 * mac_addr)1938 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
1939 {
1940 int ret;
1941
1942 if (!is_valid_ether_addr(mac_addr))
1943 return -EADDRNOTAVAIL;
1944
1945 /* If datapath is down, pretend everything went through */
1946 if (!bnad->rx_info[0].rx)
1947 return 0;
1948
1949 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
1950 if (ret != BNA_CB_SUCCESS)
1951 return -EADDRNOTAVAIL;
1952
1953 return 0;
1954 }
1955
1956 /* Should be called with conf_lock held */
1957 static int
bnad_enable_default_bcast(struct bnad * bnad)1958 bnad_enable_default_bcast(struct bnad *bnad)
1959 {
1960 struct bnad_rx_info *rx_info = &bnad->rx_info[0];
1961 int ret;
1962 unsigned long flags;
1963
1964 init_completion(&bnad->bnad_completions.mcast_comp);
1965
1966 spin_lock_irqsave(&bnad->bna_lock, flags);
1967 ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
1968 bnad_cb_rx_mcast_add);
1969 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1970
1971 if (ret == BNA_CB_SUCCESS)
1972 wait_for_completion(&bnad->bnad_completions.mcast_comp);
1973 else
1974 return -ENODEV;
1975
1976 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
1977 return -ENODEV;
1978
1979 return 0;
1980 }
1981
1982 /* Called with bnad_conf_lock() held */
1983 static void
bnad_restore_vlans(struct bnad * bnad,u32 rx_id)1984 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
1985 {
1986 u16 vlan_id;
1987 unsigned long flags;
1988
1989 if (!bnad->vlan_grp)
1990 return;
1991
1992 BUG_ON(!(VLAN_N_VID == (BFI_MAX_VLAN + 1)));
1993
1994 for (vlan_id = 0; vlan_id < VLAN_N_VID; vlan_id++) {
1995 if (!vlan_group_get_device(bnad->vlan_grp, vlan_id))
1996 continue;
1997 spin_lock_irqsave(&bnad->bna_lock, flags);
1998 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vlan_id);
1999 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2000 }
2001 }
2002
2003 /* Statistics utilities */
2004 void
bnad_netdev_qstats_fill(struct bnad * bnad,struct rtnl_link_stats64 * stats)2005 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2006 {
2007 int i, j;
2008
2009 for (i = 0; i < bnad->num_rx; i++) {
2010 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2011 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2012 stats->rx_packets += bnad->rx_info[i].
2013 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2014 stats->rx_bytes += bnad->rx_info[i].
2015 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2016 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2017 bnad->rx_info[i].rx_ctrl[j].ccb->
2018 rcb[1]->rxq) {
2019 stats->rx_packets +=
2020 bnad->rx_info[i].rx_ctrl[j].
2021 ccb->rcb[1]->rxq->rx_packets;
2022 stats->rx_bytes +=
2023 bnad->rx_info[i].rx_ctrl[j].
2024 ccb->rcb[1]->rxq->rx_bytes;
2025 }
2026 }
2027 }
2028 }
2029 for (i = 0; i < bnad->num_tx; i++) {
2030 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2031 if (bnad->tx_info[i].tcb[j]) {
2032 stats->tx_packets +=
2033 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2034 stats->tx_bytes +=
2035 bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2036 }
2037 }
2038 }
2039 }
2040
2041 /*
2042 * Must be called with the bna_lock held.
2043 */
2044 void
bnad_netdev_hwstats_fill(struct bnad * bnad,struct rtnl_link_stats64 * stats)2045 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2046 {
2047 struct bfi_ll_stats_mac *mac_stats;
2048 u64 bmap;
2049 int i;
2050
2051 mac_stats = &bnad->stats.bna_stats->hw_stats->mac_stats;
2052 stats->rx_errors =
2053 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2054 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2055 mac_stats->rx_undersize;
2056 stats->tx_errors = mac_stats->tx_fcs_error +
2057 mac_stats->tx_undersize;
2058 stats->rx_dropped = mac_stats->rx_drop;
2059 stats->tx_dropped = mac_stats->tx_drop;
2060 stats->multicast = mac_stats->rx_multicast;
2061 stats->collisions = mac_stats->tx_total_collision;
2062
2063 stats->rx_length_errors = mac_stats->rx_frame_length_error;
2064
2065 /* receive ring buffer overflow ?? */
2066
2067 stats->rx_crc_errors = mac_stats->rx_fcs_error;
2068 stats->rx_frame_errors = mac_stats->rx_alignment_error;
2069 /* recv'r fifo overrun */
2070 bmap = (u64)bnad->stats.bna_stats->rxf_bmap[0] |
2071 ((u64)bnad->stats.bna_stats->rxf_bmap[1] << 32);
2072 for (i = 0; bmap && (i < BFI_LL_RXF_ID_MAX); i++) {
2073 if (bmap & 1) {
2074 stats->rx_fifo_errors +=
2075 bnad->stats.bna_stats->
2076 hw_stats->rxf_stats[i].frame_drops;
2077 break;
2078 }
2079 bmap >>= 1;
2080 }
2081 }
2082
2083 static void
bnad_mbox_irq_sync(struct bnad * bnad)2084 bnad_mbox_irq_sync(struct bnad *bnad)
2085 {
2086 u32 irq;
2087 unsigned long flags;
2088
2089 spin_lock_irqsave(&bnad->bna_lock, flags);
2090 if (bnad->cfg_flags & BNAD_CF_MSIX)
2091 irq = bnad->msix_table[bnad->msix_num - 1].vector;
2092 else
2093 irq = bnad->pcidev->irq;
2094 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2095
2096 synchronize_irq(irq);
2097 }
2098
2099 /* Utility used by bnad_start_xmit, for doing TSO */
2100 static int
bnad_tso_prepare(struct bnad * bnad,struct sk_buff * skb)2101 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2102 {
2103 int err;
2104
2105 /* SKB_GSO_TCPV4 and SKB_GSO_TCPV6 is defined since 2.6.18. */
2106 BUG_ON(!(skb_shinfo(skb)->gso_type == SKB_GSO_TCPV4 ||
2107 skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6));
2108 if (skb_header_cloned(skb)) {
2109 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2110 if (err) {
2111 BNAD_UPDATE_CTR(bnad, tso_err);
2112 return err;
2113 }
2114 }
2115
2116 /*
2117 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2118 * excluding the length field.
2119 */
2120 if (skb->protocol == htons(ETH_P_IP)) {
2121 struct iphdr *iph = ip_hdr(skb);
2122
2123 /* Do we really need these? */
2124 iph->tot_len = 0;
2125 iph->check = 0;
2126
2127 tcp_hdr(skb)->check =
2128 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2129 IPPROTO_TCP, 0);
2130 BNAD_UPDATE_CTR(bnad, tso4);
2131 } else {
2132 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2133
2134 BUG_ON(!(skb->protocol == htons(ETH_P_IPV6)));
2135 ipv6h->payload_len = 0;
2136 tcp_hdr(skb)->check =
2137 ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2138 IPPROTO_TCP, 0);
2139 BNAD_UPDATE_CTR(bnad, tso6);
2140 }
2141
2142 return 0;
2143 }
2144
2145 /*
2146 * Initialize Q numbers depending on Rx Paths
2147 * Called with bnad->bna_lock held, because of cfg_flags
2148 * access.
2149 */
2150 static void
bnad_q_num_init(struct bnad * bnad)2151 bnad_q_num_init(struct bnad *bnad)
2152 {
2153 int rxps;
2154
2155 rxps = min((uint)num_online_cpus(),
2156 (uint)(BNAD_MAX_RXS * BNAD_MAX_RXPS_PER_RX));
2157
2158 if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2159 rxps = 1; /* INTx */
2160
2161 bnad->num_rx = 1;
2162 bnad->num_tx = 1;
2163 bnad->num_rxp_per_rx = rxps;
2164 bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2165 }
2166
2167 /*
2168 * Adjusts the Q numbers, given a number of msix vectors
2169 * Give preference to RSS as opposed to Tx priority Queues,
2170 * in such a case, just use 1 Tx Q
2171 * Called with bnad->bna_lock held b'cos of cfg_flags access
2172 */
2173 static void
bnad_q_num_adjust(struct bnad * bnad,int msix_vectors)2174 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors)
2175 {
2176 bnad->num_txq_per_tx = 1;
2177 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
2178 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2179 (bnad->cfg_flags & BNAD_CF_MSIX)) {
2180 bnad->num_rxp_per_rx = msix_vectors -
2181 (bnad->num_tx * bnad->num_txq_per_tx) -
2182 BNAD_MAILBOX_MSIX_VECTORS;
2183 } else
2184 bnad->num_rxp_per_rx = 1;
2185 }
2186
2187 /* Enable / disable device */
2188 static void
bnad_device_disable(struct bnad * bnad)2189 bnad_device_disable(struct bnad *bnad)
2190 {
2191 unsigned long flags;
2192
2193 init_completion(&bnad->bnad_completions.ioc_comp);
2194
2195 spin_lock_irqsave(&bnad->bna_lock, flags);
2196 bna_device_disable(&bnad->bna.device, BNA_HARD_CLEANUP);
2197 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2198
2199 wait_for_completion(&bnad->bnad_completions.ioc_comp);
2200 }
2201
2202 static int
bnad_device_enable(struct bnad * bnad)2203 bnad_device_enable(struct bnad *bnad)
2204 {
2205 int err = 0;
2206 unsigned long flags;
2207
2208 init_completion(&bnad->bnad_completions.ioc_comp);
2209
2210 spin_lock_irqsave(&bnad->bna_lock, flags);
2211 bna_device_enable(&bnad->bna.device);
2212 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2213
2214 wait_for_completion(&bnad->bnad_completions.ioc_comp);
2215
2216 if (bnad->bnad_completions.ioc_comp_status)
2217 err = bnad->bnad_completions.ioc_comp_status;
2218
2219 return err;
2220 }
2221
2222 /* Free BNA resources */
2223 static void
bnad_res_free(struct bnad * bnad)2224 bnad_res_free(struct bnad *bnad)
2225 {
2226 int i;
2227 struct bna_res_info *res_info = &bnad->res_info[0];
2228
2229 for (i = 0; i < BNA_RES_T_MAX; i++) {
2230 if (res_info[i].res_type == BNA_RES_T_MEM)
2231 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2232 else
2233 bnad_mbox_irq_free(bnad, &res_info[i].res_u.intr_info);
2234 }
2235 }
2236
2237 /* Allocates memory and interrupt resources for BNA */
2238 static int
bnad_res_alloc(struct bnad * bnad)2239 bnad_res_alloc(struct bnad *bnad)
2240 {
2241 int i, err;
2242 struct bna_res_info *res_info = &bnad->res_info[0];
2243
2244 for (i = 0; i < BNA_RES_T_MAX; i++) {
2245 if (res_info[i].res_type == BNA_RES_T_MEM)
2246 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2247 else
2248 err = bnad_mbox_irq_alloc(bnad,
2249 &res_info[i].res_u.intr_info);
2250 if (err)
2251 goto err_return;
2252 }
2253 return 0;
2254
2255 err_return:
2256 bnad_res_free(bnad);
2257 return err;
2258 }
2259
2260 /* Interrupt enable / disable */
2261 static void
bnad_enable_msix(struct bnad * bnad)2262 bnad_enable_msix(struct bnad *bnad)
2263 {
2264 int i, ret;
2265 unsigned long flags;
2266
2267 spin_lock_irqsave(&bnad->bna_lock, flags);
2268 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2269 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2270 return;
2271 }
2272 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2273
2274 if (bnad->msix_table)
2275 return;
2276
2277 bnad->msix_table =
2278 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2279
2280 if (!bnad->msix_table)
2281 goto intx_mode;
2282
2283 for (i = 0; i < bnad->msix_num; i++)
2284 bnad->msix_table[i].entry = i;
2285
2286 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2287 if (ret > 0) {
2288 /* Not enough MSI-X vectors. */
2289
2290 spin_lock_irqsave(&bnad->bna_lock, flags);
2291 /* ret = #of vectors that we got */
2292 bnad_q_num_adjust(bnad, ret);
2293 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2294
2295 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx)
2296 + (bnad->num_rx
2297 * bnad->num_rxp_per_rx) +
2298 BNAD_MAILBOX_MSIX_VECTORS;
2299
2300 /* Try once more with adjusted numbers */
2301 /* If this fails, fall back to INTx */
2302 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2303 bnad->msix_num);
2304 if (ret)
2305 goto intx_mode;
2306
2307 } else if (ret < 0)
2308 goto intx_mode;
2309 return;
2310
2311 intx_mode:
2312
2313 kfree(bnad->msix_table);
2314 bnad->msix_table = NULL;
2315 bnad->msix_num = 0;
2316 spin_lock_irqsave(&bnad->bna_lock, flags);
2317 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2318 bnad_q_num_init(bnad);
2319 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2320 }
2321
2322 static void
bnad_disable_msix(struct bnad * bnad)2323 bnad_disable_msix(struct bnad *bnad)
2324 {
2325 u32 cfg_flags;
2326 unsigned long flags;
2327
2328 spin_lock_irqsave(&bnad->bna_lock, flags);
2329 cfg_flags = bnad->cfg_flags;
2330 if (bnad->cfg_flags & BNAD_CF_MSIX)
2331 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2332 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2333
2334 if (cfg_flags & BNAD_CF_MSIX) {
2335 pci_disable_msix(bnad->pcidev);
2336 kfree(bnad->msix_table);
2337 bnad->msix_table = NULL;
2338 }
2339 }
2340
2341 /* Netdev entry points */
2342 static int
bnad_open(struct net_device * netdev)2343 bnad_open(struct net_device *netdev)
2344 {
2345 int err;
2346 struct bnad *bnad = netdev_priv(netdev);
2347 struct bna_pause_config pause_config;
2348 int mtu;
2349 unsigned long flags;
2350
2351 mutex_lock(&bnad->conf_mutex);
2352
2353 /* Tx */
2354 err = bnad_setup_tx(bnad, 0);
2355 if (err)
2356 goto err_return;
2357
2358 /* Rx */
2359 err = bnad_setup_rx(bnad, 0);
2360 if (err)
2361 goto cleanup_tx;
2362
2363 /* Port */
2364 pause_config.tx_pause = 0;
2365 pause_config.rx_pause = 0;
2366
2367 mtu = ETH_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2368
2369 spin_lock_irqsave(&bnad->bna_lock, flags);
2370 bna_port_mtu_set(&bnad->bna.port, mtu, NULL);
2371 bna_port_pause_config(&bnad->bna.port, &pause_config, NULL);
2372 bna_port_enable(&bnad->bna.port);
2373 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2374
2375 /* Enable broadcast */
2376 bnad_enable_default_bcast(bnad);
2377
2378 /* Restore VLANs, if any */
2379 bnad_restore_vlans(bnad, 0);
2380
2381 /* Set the UCAST address */
2382 spin_lock_irqsave(&bnad->bna_lock, flags);
2383 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2384 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2385
2386 /* Start the stats timer */
2387 bnad_stats_timer_start(bnad);
2388
2389 mutex_unlock(&bnad->conf_mutex);
2390
2391 return 0;
2392
2393 cleanup_tx:
2394 bnad_cleanup_tx(bnad, 0);
2395
2396 err_return:
2397 mutex_unlock(&bnad->conf_mutex);
2398 return err;
2399 }
2400
2401 static int
bnad_stop(struct net_device * netdev)2402 bnad_stop(struct net_device *netdev)
2403 {
2404 struct bnad *bnad = netdev_priv(netdev);
2405 unsigned long flags;
2406
2407 mutex_lock(&bnad->conf_mutex);
2408
2409 /* Stop the stats timer */
2410 bnad_stats_timer_stop(bnad);
2411
2412 init_completion(&bnad->bnad_completions.port_comp);
2413
2414 spin_lock_irqsave(&bnad->bna_lock, flags);
2415 bna_port_disable(&bnad->bna.port, BNA_HARD_CLEANUP,
2416 bnad_cb_port_disabled);
2417 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2418
2419 wait_for_completion(&bnad->bnad_completions.port_comp);
2420
2421 bnad_cleanup_tx(bnad, 0);
2422 bnad_cleanup_rx(bnad, 0);
2423
2424 /* Synchronize mailbox IRQ */
2425 bnad_mbox_irq_sync(bnad);
2426
2427 mutex_unlock(&bnad->conf_mutex);
2428
2429 return 0;
2430 }
2431
2432 /* TX */
2433 /*
2434 * bnad_start_xmit : Netdev entry point for Transmit
2435 * Called under lock held by net_device
2436 */
2437 static netdev_tx_t
bnad_start_xmit(struct sk_buff * skb,struct net_device * netdev)2438 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2439 {
2440 struct bnad *bnad = netdev_priv(netdev);
2441
2442 u16 txq_prod, vlan_tag = 0;
2443 u32 unmap_prod, wis, wis_used, wi_range;
2444 u32 vectors, vect_id, i, acked;
2445 u32 tx_id;
2446 int err;
2447
2448 struct bnad_tx_info *tx_info;
2449 struct bna_tcb *tcb;
2450 struct bnad_unmap_q *unmap_q;
2451 dma_addr_t dma_addr;
2452 struct bna_txq_entry *txqent;
2453 bna_txq_wi_ctrl_flag_t flags;
2454
2455 if (unlikely
2456 (skb->len <= ETH_HLEN || skb->len > BFI_TX_MAX_DATA_PER_PKT)) {
2457 dev_kfree_skb(skb);
2458 return NETDEV_TX_OK;
2459 }
2460
2461 tx_id = 0;
2462
2463 tx_info = &bnad->tx_info[tx_id];
2464 tcb = tx_info->tcb[tx_id];
2465 unmap_q = tcb->unmap_q;
2466
2467 /*
2468 * Takes care of the Tx that is scheduled between clearing the flag
2469 * and the netif_stop_queue() call.
2470 */
2471 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2472 dev_kfree_skb(skb);
2473 return NETDEV_TX_OK;
2474 }
2475
2476 vectors = 1 + skb_shinfo(skb)->nr_frags;
2477 if (vectors > BFI_TX_MAX_VECTORS_PER_PKT) {
2478 dev_kfree_skb(skb);
2479 return NETDEV_TX_OK;
2480 }
2481 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
2482 acked = 0;
2483 if (unlikely
2484 (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2485 vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2486 if ((u16) (*tcb->hw_consumer_index) !=
2487 tcb->consumer_index &&
2488 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2489 acked = bnad_free_txbufs(bnad, tcb);
2490 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2491 bna_ib_ack(tcb->i_dbell, acked);
2492 smp_mb__before_clear_bit();
2493 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2494 } else {
2495 netif_stop_queue(netdev);
2496 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2497 }
2498
2499 smp_mb();
2500 /*
2501 * Check again to deal with race condition between
2502 * netif_stop_queue here, and netif_wake_queue in
2503 * interrupt handler which is not inside netif tx lock.
2504 */
2505 if (likely
2506 (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2507 vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2508 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2509 return NETDEV_TX_BUSY;
2510 } else {
2511 netif_wake_queue(netdev);
2512 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2513 }
2514 }
2515
2516 unmap_prod = unmap_q->producer_index;
2517 wis_used = 1;
2518 vect_id = 0;
2519 flags = 0;
2520
2521 txq_prod = tcb->producer_index;
2522 BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt, txqent, wi_range);
2523 BUG_ON(!(wi_range <= tcb->q_depth));
2524 txqent->hdr.wi.reserved = 0;
2525 txqent->hdr.wi.num_vectors = vectors;
2526 txqent->hdr.wi.opcode =
2527 htons((skb_is_gso(skb) ? BNA_TXQ_WI_SEND_LSO :
2528 BNA_TXQ_WI_SEND));
2529
2530 if (vlan_tx_tag_present(skb)) {
2531 vlan_tag = (u16) vlan_tx_tag_get(skb);
2532 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2533 }
2534 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2535 vlan_tag =
2536 (tcb->priority & 0x7) << 13 | (vlan_tag & 0x1fff);
2537 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2538 }
2539
2540 txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2541
2542 if (skb_is_gso(skb)) {
2543 err = bnad_tso_prepare(bnad, skb);
2544 if (err) {
2545 dev_kfree_skb(skb);
2546 return NETDEV_TX_OK;
2547 }
2548 txqent->hdr.wi.lso_mss = htons(skb_is_gso(skb));
2549 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2550 txqent->hdr.wi.l4_hdr_size_n_offset =
2551 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2552 (tcp_hdrlen(skb) >> 2,
2553 skb_transport_offset(skb)));
2554 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2555 u8 proto = 0;
2556
2557 txqent->hdr.wi.lso_mss = 0;
2558
2559 if (skb->protocol == htons(ETH_P_IP))
2560 proto = ip_hdr(skb)->protocol;
2561 else if (skb->protocol == htons(ETH_P_IPV6)) {
2562 /* nexthdr may not be TCP immediately. */
2563 proto = ipv6_hdr(skb)->nexthdr;
2564 }
2565 if (proto == IPPROTO_TCP) {
2566 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2567 txqent->hdr.wi.l4_hdr_size_n_offset =
2568 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2569 (0, skb_transport_offset(skb)));
2570
2571 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2572
2573 BUG_ON(!(skb_headlen(skb) >=
2574 skb_transport_offset(skb) + tcp_hdrlen(skb)));
2575
2576 } else if (proto == IPPROTO_UDP) {
2577 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2578 txqent->hdr.wi.l4_hdr_size_n_offset =
2579 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2580 (0, skb_transport_offset(skb)));
2581
2582 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2583
2584 BUG_ON(!(skb_headlen(skb) >=
2585 skb_transport_offset(skb) +
2586 sizeof(struct udphdr)));
2587 } else {
2588 err = skb_checksum_help(skb);
2589 BNAD_UPDATE_CTR(bnad, csum_help);
2590 if (err) {
2591 dev_kfree_skb(skb);
2592 BNAD_UPDATE_CTR(bnad, csum_help_err);
2593 return NETDEV_TX_OK;
2594 }
2595 }
2596 } else {
2597 txqent->hdr.wi.lso_mss = 0;
2598 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2599 }
2600
2601 txqent->hdr.wi.flags = htons(flags);
2602
2603 txqent->hdr.wi.frame_length = htonl(skb->len);
2604
2605 unmap_q->unmap_array[unmap_prod].skb = skb;
2606 BUG_ON(!(skb_headlen(skb) <= BFI_TX_MAX_DATA_PER_VECTOR));
2607 txqent->vector[vect_id].length = htons(skb_headlen(skb));
2608 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
2609 skb_headlen(skb), DMA_TO_DEVICE);
2610 dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2611 dma_addr);
2612
2613 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2614 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2615
2616 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2617 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2618 u32 size = frag->size;
2619
2620 if (++vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2621 vect_id = 0;
2622 if (--wi_range)
2623 txqent++;
2624 else {
2625 BNA_QE_INDX_ADD(txq_prod, wis_used,
2626 tcb->q_depth);
2627 wis_used = 0;
2628 BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt,
2629 txqent, wi_range);
2630 BUG_ON(!(wi_range <= tcb->q_depth));
2631 }
2632 wis_used++;
2633 txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
2634 }
2635
2636 BUG_ON(!(size <= BFI_TX_MAX_DATA_PER_VECTOR));
2637 txqent->vector[vect_id].length = htons(size);
2638 dma_addr = dma_map_page(&bnad->pcidev->dev, frag->page,
2639 frag->page_offset, size, DMA_TO_DEVICE);
2640 dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2641 dma_addr);
2642 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2643 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2644 }
2645
2646 unmap_q->producer_index = unmap_prod;
2647 BNA_QE_INDX_ADD(txq_prod, wis_used, tcb->q_depth);
2648 tcb->producer_index = txq_prod;
2649
2650 smp_mb();
2651
2652 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2653 return NETDEV_TX_OK;
2654
2655 bna_txq_prod_indx_doorbell(tcb);
2656
2657 if ((u16) (*tcb->hw_consumer_index) != tcb->consumer_index)
2658 tasklet_schedule(&bnad->tx_free_tasklet);
2659
2660 return NETDEV_TX_OK;
2661 }
2662
2663 /*
2664 * Used spin_lock to synchronize reading of stats structures, which
2665 * is written by BNA under the same lock.
2666 */
2667 static struct rtnl_link_stats64 *
bnad_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2668 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2669 {
2670 struct bnad *bnad = netdev_priv(netdev);
2671 unsigned long flags;
2672
2673 spin_lock_irqsave(&bnad->bna_lock, flags);
2674
2675 bnad_netdev_qstats_fill(bnad, stats);
2676 bnad_netdev_hwstats_fill(bnad, stats);
2677
2678 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2679
2680 return stats;
2681 }
2682
2683 static void
bnad_set_rx_mode(struct net_device * netdev)2684 bnad_set_rx_mode(struct net_device *netdev)
2685 {
2686 struct bnad *bnad = netdev_priv(netdev);
2687 u32 new_mask, valid_mask;
2688 unsigned long flags;
2689
2690 spin_lock_irqsave(&bnad->bna_lock, flags);
2691
2692 new_mask = valid_mask = 0;
2693
2694 if (netdev->flags & IFF_PROMISC) {
2695 if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2696 new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2697 valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2698 bnad->cfg_flags |= BNAD_CF_PROMISC;
2699 }
2700 } else {
2701 if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2702 new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2703 valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2704 bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2705 }
2706 }
2707
2708 if (netdev->flags & IFF_ALLMULTI) {
2709 if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2710 new_mask |= BNA_RXMODE_ALLMULTI;
2711 valid_mask |= BNA_RXMODE_ALLMULTI;
2712 bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2713 }
2714 } else {
2715 if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2716 new_mask &= ~BNA_RXMODE_ALLMULTI;
2717 valid_mask |= BNA_RXMODE_ALLMULTI;
2718 bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2719 }
2720 }
2721
2722 bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2723
2724 if (!netdev_mc_empty(netdev)) {
2725 u8 *mcaddr_list;
2726 int mc_count = netdev_mc_count(netdev);
2727
2728 /* Index 0 holds the broadcast address */
2729 mcaddr_list =
2730 kzalloc((mc_count + 1) * ETH_ALEN,
2731 GFP_ATOMIC);
2732 if (!mcaddr_list)
2733 goto unlock;
2734
2735 memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2736
2737 /* Copy rest of the MC addresses */
2738 bnad_netdev_mc_list_get(netdev, mcaddr_list);
2739
2740 bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2741 mcaddr_list, NULL);
2742
2743 /* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
2744 kfree(mcaddr_list);
2745 }
2746 unlock:
2747 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2748 }
2749
2750 /*
2751 * bna_lock is used to sync writes to netdev->addr
2752 * conf_lock cannot be used since this call may be made
2753 * in a non-blocking context.
2754 */
2755 static int
bnad_set_mac_address(struct net_device * netdev,void * mac_addr)2756 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
2757 {
2758 int err;
2759 struct bnad *bnad = netdev_priv(netdev);
2760 struct sockaddr *sa = (struct sockaddr *)mac_addr;
2761 unsigned long flags;
2762
2763 spin_lock_irqsave(&bnad->bna_lock, flags);
2764
2765 err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
2766
2767 if (!err)
2768 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
2769
2770 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2771
2772 return err;
2773 }
2774
2775 static int
bnad_change_mtu(struct net_device * netdev,int new_mtu)2776 bnad_change_mtu(struct net_device *netdev, int new_mtu)
2777 {
2778 int mtu, err = 0;
2779 unsigned long flags;
2780
2781 struct bnad *bnad = netdev_priv(netdev);
2782
2783 if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
2784 return -EINVAL;
2785
2786 mutex_lock(&bnad->conf_mutex);
2787
2788 netdev->mtu = new_mtu;
2789
2790 mtu = ETH_HLEN + new_mtu + ETH_FCS_LEN;
2791
2792 spin_lock_irqsave(&bnad->bna_lock, flags);
2793 bna_port_mtu_set(&bnad->bna.port, mtu, NULL);
2794 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2795
2796 mutex_unlock(&bnad->conf_mutex);
2797 return err;
2798 }
2799
2800 static void
bnad_vlan_rx_register(struct net_device * netdev,struct vlan_group * vlan_grp)2801 bnad_vlan_rx_register(struct net_device *netdev,
2802 struct vlan_group *vlan_grp)
2803 {
2804 struct bnad *bnad = netdev_priv(netdev);
2805
2806 mutex_lock(&bnad->conf_mutex);
2807 bnad->vlan_grp = vlan_grp;
2808 mutex_unlock(&bnad->conf_mutex);
2809 }
2810
2811 static void
bnad_vlan_rx_add_vid(struct net_device * netdev,unsigned short vid)2812 bnad_vlan_rx_add_vid(struct net_device *netdev,
2813 unsigned short vid)
2814 {
2815 struct bnad *bnad = netdev_priv(netdev);
2816 unsigned long flags;
2817
2818 if (!bnad->rx_info[0].rx)
2819 return;
2820
2821 mutex_lock(&bnad->conf_mutex);
2822
2823 spin_lock_irqsave(&bnad->bna_lock, flags);
2824 bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
2825 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2826
2827 mutex_unlock(&bnad->conf_mutex);
2828 }
2829
2830 static void
bnad_vlan_rx_kill_vid(struct net_device * netdev,unsigned short vid)2831 bnad_vlan_rx_kill_vid(struct net_device *netdev,
2832 unsigned short vid)
2833 {
2834 struct bnad *bnad = netdev_priv(netdev);
2835 unsigned long flags;
2836
2837 if (!bnad->rx_info[0].rx)
2838 return;
2839
2840 mutex_lock(&bnad->conf_mutex);
2841
2842 spin_lock_irqsave(&bnad->bna_lock, flags);
2843 bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
2844 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2845
2846 mutex_unlock(&bnad->conf_mutex);
2847 }
2848
2849 #ifdef CONFIG_NET_POLL_CONTROLLER
2850 static void
bnad_netpoll(struct net_device * netdev)2851 bnad_netpoll(struct net_device *netdev)
2852 {
2853 struct bnad *bnad = netdev_priv(netdev);
2854 struct bnad_rx_info *rx_info;
2855 struct bnad_rx_ctrl *rx_ctrl;
2856 u32 curr_mask;
2857 int i, j;
2858
2859 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2860 bna_intx_disable(&bnad->bna, curr_mask);
2861 bnad_isr(bnad->pcidev->irq, netdev);
2862 bna_intx_enable(&bnad->bna, curr_mask);
2863 } else {
2864 for (i = 0; i < bnad->num_rx; i++) {
2865 rx_info = &bnad->rx_info[i];
2866 if (!rx_info->rx)
2867 continue;
2868 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2869 rx_ctrl = &rx_info->rx_ctrl[j];
2870 if (rx_ctrl->ccb) {
2871 bnad_disable_rx_irq(bnad,
2872 rx_ctrl->ccb);
2873 bnad_netif_rx_schedule_poll(bnad,
2874 rx_ctrl->ccb);
2875 }
2876 }
2877 }
2878 }
2879 }
2880 #endif
2881
2882 static const struct net_device_ops bnad_netdev_ops = {
2883 .ndo_open = bnad_open,
2884 .ndo_stop = bnad_stop,
2885 .ndo_start_xmit = bnad_start_xmit,
2886 .ndo_get_stats64 = bnad_get_stats64,
2887 .ndo_set_rx_mode = bnad_set_rx_mode,
2888 .ndo_set_multicast_list = bnad_set_rx_mode,
2889 .ndo_validate_addr = eth_validate_addr,
2890 .ndo_set_mac_address = bnad_set_mac_address,
2891 .ndo_change_mtu = bnad_change_mtu,
2892 .ndo_vlan_rx_register = bnad_vlan_rx_register,
2893 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
2894 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
2895 #ifdef CONFIG_NET_POLL_CONTROLLER
2896 .ndo_poll_controller = bnad_netpoll
2897 #endif
2898 };
2899
2900 static void
bnad_netdev_init(struct bnad * bnad,bool using_dac)2901 bnad_netdev_init(struct bnad *bnad, bool using_dac)
2902 {
2903 struct net_device *netdev = bnad->netdev;
2904
2905 netdev->features |= NETIF_F_IPV6_CSUM;
2906 netdev->features |= NETIF_F_TSO;
2907 netdev->features |= NETIF_F_TSO6;
2908
2909 netdev->features |= NETIF_F_GRO;
2910 pr_warn("bna: GRO enabled, using kernel stack GRO\n");
2911
2912 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2913
2914 if (using_dac)
2915 netdev->features |= NETIF_F_HIGHDMA;
2916
2917 netdev->features |=
2918 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2919 NETIF_F_HW_VLAN_FILTER;
2920
2921 netdev->vlan_features = netdev->features;
2922 netdev->mem_start = bnad->mmio_start;
2923 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
2924
2925 netdev->netdev_ops = &bnad_netdev_ops;
2926 bnad_set_ethtool_ops(netdev);
2927 }
2928
2929 /*
2930 * 1. Initialize the bnad structure
2931 * 2. Setup netdev pointer in pci_dev
2932 * 3. Initialze Tx free tasklet
2933 * 4. Initialize no. of TxQ & CQs & MSIX vectors
2934 */
2935 static int
bnad_init(struct bnad * bnad,struct pci_dev * pdev,struct net_device * netdev)2936 bnad_init(struct bnad *bnad,
2937 struct pci_dev *pdev, struct net_device *netdev)
2938 {
2939 unsigned long flags;
2940
2941 SET_NETDEV_DEV(netdev, &pdev->dev);
2942 pci_set_drvdata(pdev, netdev);
2943
2944 bnad->netdev = netdev;
2945 bnad->pcidev = pdev;
2946 bnad->mmio_start = pci_resource_start(pdev, 0);
2947 bnad->mmio_len = pci_resource_len(pdev, 0);
2948 bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
2949 if (!bnad->bar0) {
2950 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
2951 pci_set_drvdata(pdev, NULL);
2952 return -ENOMEM;
2953 }
2954 pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
2955 (unsigned long long) bnad->mmio_len);
2956
2957 spin_lock_irqsave(&bnad->bna_lock, flags);
2958 if (!bnad_msix_disable)
2959 bnad->cfg_flags = BNAD_CF_MSIX;
2960
2961 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
2962
2963 bnad_q_num_init(bnad);
2964 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2965
2966 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
2967 (bnad->num_rx * bnad->num_rxp_per_rx) +
2968 BNAD_MAILBOX_MSIX_VECTORS;
2969
2970 bnad->txq_depth = BNAD_TXQ_DEPTH;
2971 bnad->rxq_depth = BNAD_RXQ_DEPTH;
2972 bnad->rx_csum = true;
2973
2974 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
2975 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
2976
2977 tasklet_init(&bnad->tx_free_tasklet, bnad_tx_free_tasklet,
2978 (unsigned long)bnad);
2979
2980 return 0;
2981 }
2982
2983 /*
2984 * Must be called after bnad_pci_uninit()
2985 * so that iounmap() and pci_set_drvdata(NULL)
2986 * happens only after PCI uninitialization.
2987 */
2988 static void
bnad_uninit(struct bnad * bnad)2989 bnad_uninit(struct bnad *bnad)
2990 {
2991 if (bnad->bar0)
2992 iounmap(bnad->bar0);
2993 pci_set_drvdata(bnad->pcidev, NULL);
2994 }
2995
2996 /*
2997 * Initialize locks
2998 a) Per device mutes used for serializing configuration
2999 changes from OS interface
3000 b) spin lock used to protect bna state machine
3001 */
3002 static void
bnad_lock_init(struct bnad * bnad)3003 bnad_lock_init(struct bnad *bnad)
3004 {
3005 spin_lock_init(&bnad->bna_lock);
3006 mutex_init(&bnad->conf_mutex);
3007 }
3008
3009 static void
bnad_lock_uninit(struct bnad * bnad)3010 bnad_lock_uninit(struct bnad *bnad)
3011 {
3012 mutex_destroy(&bnad->conf_mutex);
3013 }
3014
3015 /* PCI Initialization */
3016 static int
bnad_pci_init(struct bnad * bnad,struct pci_dev * pdev,bool * using_dac)3017 bnad_pci_init(struct bnad *bnad,
3018 struct pci_dev *pdev, bool *using_dac)
3019 {
3020 int err;
3021
3022 err = pci_enable_device(pdev);
3023 if (err)
3024 return err;
3025 err = pci_request_regions(pdev, BNAD_NAME);
3026 if (err)
3027 goto disable_device;
3028 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3029 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3030 *using_dac = 1;
3031 } else {
3032 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3033 if (err) {
3034 err = dma_set_coherent_mask(&pdev->dev,
3035 DMA_BIT_MASK(32));
3036 if (err)
3037 goto release_regions;
3038 }
3039 *using_dac = 0;
3040 }
3041 pci_set_master(pdev);
3042 return 0;
3043
3044 release_regions:
3045 pci_release_regions(pdev);
3046 disable_device:
3047 pci_disable_device(pdev);
3048
3049 return err;
3050 }
3051
3052 static void
bnad_pci_uninit(struct pci_dev * pdev)3053 bnad_pci_uninit(struct pci_dev *pdev)
3054 {
3055 pci_release_regions(pdev);
3056 pci_disable_device(pdev);
3057 }
3058
3059 static int __devinit
bnad_pci_probe(struct pci_dev * pdev,const struct pci_device_id * pcidev_id)3060 bnad_pci_probe(struct pci_dev *pdev,
3061 const struct pci_device_id *pcidev_id)
3062 {
3063 bool using_dac = false;
3064 int err;
3065 struct bnad *bnad;
3066 struct bna *bna;
3067 struct net_device *netdev;
3068 struct bfa_pcidev pcidev_info;
3069 unsigned long flags;
3070
3071 pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3072 pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3073
3074 mutex_lock(&bnad_fwimg_mutex);
3075 if (!cna_get_firmware_buf(pdev)) {
3076 mutex_unlock(&bnad_fwimg_mutex);
3077 pr_warn("Failed to load Firmware Image!\n");
3078 return -ENODEV;
3079 }
3080 mutex_unlock(&bnad_fwimg_mutex);
3081
3082 /*
3083 * Allocates sizeof(struct net_device + struct bnad)
3084 * bnad = netdev->priv
3085 */
3086 netdev = alloc_etherdev(sizeof(struct bnad));
3087 if (!netdev) {
3088 dev_err(&pdev->dev, "alloc_etherdev failed\n");
3089 err = -ENOMEM;
3090 return err;
3091 }
3092 bnad = netdev_priv(netdev);
3093
3094 /*
3095 * PCI initialization
3096 * Output : using_dac = 1 for 64 bit DMA
3097 * = 0 for 32 bit DMA
3098 */
3099 err = bnad_pci_init(bnad, pdev, &using_dac);
3100 if (err)
3101 goto free_netdev;
3102
3103 bnad_lock_init(bnad);
3104 /*
3105 * Initialize bnad structure
3106 * Setup relation between pci_dev & netdev
3107 * Init Tx free tasklet
3108 */
3109 err = bnad_init(bnad, pdev, netdev);
3110 if (err)
3111 goto pci_uninit;
3112 /* Initialize netdev structure, set up ethtool ops */
3113 bnad_netdev_init(bnad, using_dac);
3114
3115 /* Set link to down state */
3116 netif_carrier_off(netdev);
3117
3118 bnad_enable_msix(bnad);
3119
3120 /* Get resource requirement form bna */
3121 bna_res_req(&bnad->res_info[0]);
3122
3123 /* Allocate resources from bna */
3124 err = bnad_res_alloc(bnad);
3125 if (err)
3126 goto free_netdev;
3127
3128 bna = &bnad->bna;
3129
3130 /* Setup pcidev_info for bna_init() */
3131 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3132 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3133 pcidev_info.device_id = bnad->pcidev->device;
3134 pcidev_info.pci_bar_kva = bnad->bar0;
3135
3136 mutex_lock(&bnad->conf_mutex);
3137
3138 spin_lock_irqsave(&bnad->bna_lock, flags);
3139 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3140 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3141
3142 bnad->stats.bna_stats = &bna->stats;
3143
3144 /* Set up timers */
3145 setup_timer(&bnad->bna.device.ioc.ioc_timer, bnad_ioc_timeout,
3146 ((unsigned long)bnad));
3147 setup_timer(&bnad->bna.device.ioc.hb_timer, bnad_ioc_hb_check,
3148 ((unsigned long)bnad));
3149 setup_timer(&bnad->bna.device.ioc.iocpf_timer, bnad_iocpf_timeout,
3150 ((unsigned long)bnad));
3151 setup_timer(&bnad->bna.device.ioc.sem_timer, bnad_iocpf_sem_timeout,
3152 ((unsigned long)bnad));
3153
3154 /* Now start the timer before calling IOC */
3155 mod_timer(&bnad->bna.device.ioc.iocpf_timer,
3156 jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3157
3158 /*
3159 * Start the chip
3160 * Don't care even if err != 0, bna state machine will
3161 * deal with it
3162 */
3163 err = bnad_device_enable(bnad);
3164
3165 /* Get the burnt-in mac */
3166 spin_lock_irqsave(&bnad->bna_lock, flags);
3167 bna_port_mac_get(&bna->port, &bnad->perm_addr);
3168 bnad_set_netdev_perm_addr(bnad);
3169 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3170
3171 mutex_unlock(&bnad->conf_mutex);
3172
3173 /* Finally, reguister with net_device layer */
3174 err = register_netdev(netdev);
3175 if (err) {
3176 pr_err("BNA : Registering with netdev failed\n");
3177 goto disable_device;
3178 }
3179
3180 return 0;
3181
3182 disable_device:
3183 mutex_lock(&bnad->conf_mutex);
3184 bnad_device_disable(bnad);
3185 del_timer_sync(&bnad->bna.device.ioc.ioc_timer);
3186 del_timer_sync(&bnad->bna.device.ioc.sem_timer);
3187 del_timer_sync(&bnad->bna.device.ioc.hb_timer);
3188 spin_lock_irqsave(&bnad->bna_lock, flags);
3189 bna_uninit(bna);
3190 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3191 mutex_unlock(&bnad->conf_mutex);
3192
3193 bnad_res_free(bnad);
3194 bnad_disable_msix(bnad);
3195 pci_uninit:
3196 bnad_pci_uninit(pdev);
3197 bnad_lock_uninit(bnad);
3198 bnad_uninit(bnad);
3199 free_netdev:
3200 free_netdev(netdev);
3201 return err;
3202 }
3203
3204 static void __devexit
bnad_pci_remove(struct pci_dev * pdev)3205 bnad_pci_remove(struct pci_dev *pdev)
3206 {
3207 struct net_device *netdev = pci_get_drvdata(pdev);
3208 struct bnad *bnad;
3209 struct bna *bna;
3210 unsigned long flags;
3211
3212 if (!netdev)
3213 return;
3214
3215 pr_info("%s bnad_pci_remove\n", netdev->name);
3216 bnad = netdev_priv(netdev);
3217 bna = &bnad->bna;
3218
3219 unregister_netdev(netdev);
3220
3221 mutex_lock(&bnad->conf_mutex);
3222 bnad_device_disable(bnad);
3223 del_timer_sync(&bnad->bna.device.ioc.ioc_timer);
3224 del_timer_sync(&bnad->bna.device.ioc.sem_timer);
3225 del_timer_sync(&bnad->bna.device.ioc.hb_timer);
3226 spin_lock_irqsave(&bnad->bna_lock, flags);
3227 bna_uninit(bna);
3228 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3229 mutex_unlock(&bnad->conf_mutex);
3230
3231 bnad_res_free(bnad);
3232 bnad_disable_msix(bnad);
3233 bnad_pci_uninit(pdev);
3234 bnad_lock_uninit(bnad);
3235 bnad_uninit(bnad);
3236 free_netdev(netdev);
3237 }
3238
3239 static const struct pci_device_id bnad_pci_id_table[] = {
3240 {
3241 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3242 PCI_DEVICE_ID_BROCADE_CT),
3243 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3244 .class_mask = 0xffff00
3245 }, {0, }
3246 };
3247
3248 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3249
3250 static struct pci_driver bnad_pci_driver = {
3251 .name = BNAD_NAME,
3252 .id_table = bnad_pci_id_table,
3253 .probe = bnad_pci_probe,
3254 .remove = __devexit_p(bnad_pci_remove),
3255 };
3256
3257 static int __init
bnad_module_init(void)3258 bnad_module_init(void)
3259 {
3260 int err;
3261
3262 pr_info("Brocade 10G Ethernet driver\n");
3263
3264 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3265
3266 err = pci_register_driver(&bnad_pci_driver);
3267 if (err < 0) {
3268 pr_err("bna : PCI registration failed in module init "
3269 "(%d)\n", err);
3270 return err;
3271 }
3272
3273 return 0;
3274 }
3275
3276 static void __exit
bnad_module_exit(void)3277 bnad_module_exit(void)
3278 {
3279 pci_unregister_driver(&bnad_pci_driver);
3280
3281 if (bfi_fw)
3282 release_firmware(bfi_fw);
3283 }
3284
3285 module_init(bnad_module_init);
3286 module_exit(bnad_module_exit);
3287
3288 MODULE_AUTHOR("Brocade");
3289 MODULE_LICENSE("GPL");
3290 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3291 MODULE_VERSION(BNAD_VERSION);
3292 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3293