1 /*
2  * Linux network driver for Brocade Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15  * All rights reserved
16  * www.brocade.com
17  */
18 #include <linux/netdevice.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/in.h>
22 #include <linux/ethtool.h>
23 #include <linux/if_vlan.h>
24 #include <linux/if_ether.h>
25 #include <linux/ip.h>
26 
27 #include "bnad.h"
28 #include "bna.h"
29 #include "cna.h"
30 
31 static DEFINE_MUTEX(bnad_fwimg_mutex);
32 
33 /*
34  * Module params
35  */
36 static uint bnad_msix_disable;
37 module_param(bnad_msix_disable, uint, 0444);
38 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
39 
40 static uint bnad_ioc_auto_recover = 1;
41 module_param(bnad_ioc_auto_recover, uint, 0444);
42 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
43 
44 /*
45  * Global variables
46  */
47 u32 bnad_rxqs_per_cq = 2;
48 
49 static const u8 bnad_bcast_addr[] =  {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
50 
51 /*
52  * Local MACROS
53  */
54 #define BNAD_TX_UNMAPQ_DEPTH (bnad->txq_depth * 2)
55 
56 #define BNAD_RX_UNMAPQ_DEPTH (bnad->rxq_depth)
57 
58 #define BNAD_GET_MBOX_IRQ(_bnad)				\
59 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
60 	 ((_bnad)->msix_table[(_bnad)->msix_num - 1].vector) : 	\
61 	 ((_bnad)->pcidev->irq))
62 
63 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _depth)	\
64 do {								\
65 	(_res_info)->res_type = BNA_RES_T_MEM;			\
66 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
67 	(_res_info)->res_u.mem_info.num = (_num);		\
68 	(_res_info)->res_u.mem_info.len =			\
69 	sizeof(struct bnad_unmap_q) +				\
70 	(sizeof(struct bnad_skb_unmap) * ((_depth) - 1));	\
71 } while (0)
72 
73 #define BNAD_TXRX_SYNC_MDELAY	250	/* 250 msecs */
74 
75 /*
76  * Reinitialize completions in CQ, once Rx is taken down
77  */
78 static void
bnad_cq_cmpl_init(struct bnad * bnad,struct bna_ccb * ccb)79 bnad_cq_cmpl_init(struct bnad *bnad, struct bna_ccb *ccb)
80 {
81 	struct bna_cq_entry *cmpl, *next_cmpl;
82 	unsigned int wi_range, wis = 0, ccb_prod = 0;
83 	int i;
84 
85 	BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt, cmpl,
86 			    wi_range);
87 
88 	for (i = 0; i < ccb->q_depth; i++) {
89 		wis++;
90 		if (likely(--wi_range))
91 			next_cmpl = cmpl + 1;
92 		else {
93 			BNA_QE_INDX_ADD(ccb_prod, wis, ccb->q_depth);
94 			wis = 0;
95 			BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt,
96 						next_cmpl, wi_range);
97 		}
98 		cmpl->valid = 0;
99 		cmpl = next_cmpl;
100 	}
101 }
102 
103 /*
104  * Frees all pending Tx Bufs
105  * At this point no activity is expected on the Q,
106  * so DMA unmap & freeing is fine.
107  */
108 static void
bnad_free_all_txbufs(struct bnad * bnad,struct bna_tcb * tcb)109 bnad_free_all_txbufs(struct bnad *bnad,
110 		 struct bna_tcb *tcb)
111 {
112 	u32 		unmap_cons;
113 	struct bnad_unmap_q *unmap_q = tcb->unmap_q;
114 	struct bnad_skb_unmap *unmap_array;
115 	struct sk_buff 		*skb = NULL;
116 	int			i;
117 
118 	unmap_array = unmap_q->unmap_array;
119 
120 	unmap_cons = 0;
121 	while (unmap_cons < unmap_q->q_depth) {
122 		skb = unmap_array[unmap_cons].skb;
123 		if (!skb) {
124 			unmap_cons++;
125 			continue;
126 		}
127 		unmap_array[unmap_cons].skb = NULL;
128 
129 		dma_unmap_single(&bnad->pcidev->dev,
130 				 dma_unmap_addr(&unmap_array[unmap_cons],
131 						dma_addr), skb_headlen(skb),
132 						DMA_TO_DEVICE);
133 
134 		dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr, 0);
135 		if (++unmap_cons >= unmap_q->q_depth)
136 			break;
137 
138 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
139 			dma_unmap_page(&bnad->pcidev->dev,
140 				       dma_unmap_addr(&unmap_array[unmap_cons],
141 						      dma_addr),
142 				       skb_shinfo(skb)->frags[i].size,
143 				       DMA_TO_DEVICE);
144 			dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr,
145 					   0);
146 			if (++unmap_cons >= unmap_q->q_depth)
147 				break;
148 		}
149 		dev_kfree_skb_any(skb);
150 	}
151 }
152 
153 /* Data Path Handlers */
154 
155 /*
156  * bnad_free_txbufs : Frees the Tx bufs on Tx completion
157  * Can be called in a) Interrupt context
158  *		    b) Sending context
159  *		    c) Tasklet context
160  */
161 static u32
bnad_free_txbufs(struct bnad * bnad,struct bna_tcb * tcb)162 bnad_free_txbufs(struct bnad *bnad,
163 		 struct bna_tcb *tcb)
164 {
165 	u32 		sent_packets = 0, sent_bytes = 0;
166 	u16 		wis, unmap_cons, updated_hw_cons;
167 	struct bnad_unmap_q *unmap_q = tcb->unmap_q;
168 	struct bnad_skb_unmap *unmap_array;
169 	struct sk_buff 		*skb;
170 	int i;
171 
172 	/*
173 	 * Just return if TX is stopped. This check is useful
174 	 * when bnad_free_txbufs() runs out of a tasklet scheduled
175 	 * before bnad_cb_tx_cleanup() cleared BNAD_TXQ_TX_STARTED bit
176 	 * but this routine runs actually after the cleanup has been
177 	 * executed.
178 	 */
179 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
180 		return 0;
181 
182 	updated_hw_cons = *(tcb->hw_consumer_index);
183 
184 	wis = BNA_Q_INDEX_CHANGE(tcb->consumer_index,
185 				  updated_hw_cons, tcb->q_depth);
186 
187 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
188 
189 	unmap_array = unmap_q->unmap_array;
190 	unmap_cons = unmap_q->consumer_index;
191 
192 	prefetch(&unmap_array[unmap_cons + 1]);
193 	while (wis) {
194 		skb = unmap_array[unmap_cons].skb;
195 
196 		unmap_array[unmap_cons].skb = NULL;
197 
198 		sent_packets++;
199 		sent_bytes += skb->len;
200 		wis -= BNA_TXQ_WI_NEEDED(1 + skb_shinfo(skb)->nr_frags);
201 
202 		dma_unmap_single(&bnad->pcidev->dev,
203 				 dma_unmap_addr(&unmap_array[unmap_cons],
204 						dma_addr), skb_headlen(skb),
205 				 DMA_TO_DEVICE);
206 		dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr, 0);
207 		BNA_QE_INDX_ADD(unmap_cons, 1, unmap_q->q_depth);
208 
209 		prefetch(&unmap_array[unmap_cons + 1]);
210 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
211 			prefetch(&unmap_array[unmap_cons + 1]);
212 
213 			dma_unmap_page(&bnad->pcidev->dev,
214 				       dma_unmap_addr(&unmap_array[unmap_cons],
215 						      dma_addr),
216 				       skb_shinfo(skb)->frags[i].size,
217 				       DMA_TO_DEVICE);
218 			dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr,
219 					   0);
220 			BNA_QE_INDX_ADD(unmap_cons, 1, unmap_q->q_depth);
221 		}
222 		dev_kfree_skb_any(skb);
223 	}
224 
225 	/* Update consumer pointers. */
226 	tcb->consumer_index = updated_hw_cons;
227 	unmap_q->consumer_index = unmap_cons;
228 
229 	tcb->txq->tx_packets += sent_packets;
230 	tcb->txq->tx_bytes += sent_bytes;
231 
232 	return sent_packets;
233 }
234 
235 /* Tx Free Tasklet function */
236 /* Frees for all the tcb's in all the Tx's */
237 /*
238  * Scheduled from sending context, so that
239  * the fat Tx lock is not held for too long
240  * in the sending context.
241  */
242 static void
bnad_tx_free_tasklet(unsigned long bnad_ptr)243 bnad_tx_free_tasklet(unsigned long bnad_ptr)
244 {
245 	struct bnad *bnad = (struct bnad *)bnad_ptr;
246 	struct bna_tcb *tcb;
247 	u32 		acked = 0;
248 	int			i, j;
249 
250 	for (i = 0; i < bnad->num_tx; i++) {
251 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
252 			tcb = bnad->tx_info[i].tcb[j];
253 			if (!tcb)
254 				continue;
255 			if (((u16) (*tcb->hw_consumer_index) !=
256 				tcb->consumer_index) &&
257 				(!test_and_set_bit(BNAD_TXQ_FREE_SENT,
258 						  &tcb->flags))) {
259 				acked = bnad_free_txbufs(bnad, tcb);
260 				if (likely(test_bit(BNAD_TXQ_TX_STARTED,
261 					&tcb->flags)))
262 					bna_ib_ack(tcb->i_dbell, acked);
263 				smp_mb__before_clear_bit();
264 				clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
265 			}
266 			if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED,
267 						&tcb->flags)))
268 				continue;
269 			if (netif_queue_stopped(bnad->netdev)) {
270 				if (acked && netif_carrier_ok(bnad->netdev) &&
271 					BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
272 						BNAD_NETIF_WAKE_THRESHOLD) {
273 					netif_wake_queue(bnad->netdev);
274 					/* TODO */
275 					/* Counters for individual TxQs? */
276 					BNAD_UPDATE_CTR(bnad,
277 						netif_queue_wakeup);
278 				}
279 			}
280 		}
281 	}
282 }
283 
284 static u32
bnad_tx(struct bnad * bnad,struct bna_tcb * tcb)285 bnad_tx(struct bnad *bnad, struct bna_tcb *tcb)
286 {
287 	struct net_device *netdev = bnad->netdev;
288 	u32 sent = 0;
289 
290 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
291 		return 0;
292 
293 	sent = bnad_free_txbufs(bnad, tcb);
294 	if (sent) {
295 		if (netif_queue_stopped(netdev) &&
296 		    netif_carrier_ok(netdev) &&
297 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
298 				    BNAD_NETIF_WAKE_THRESHOLD) {
299 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
300 				netif_wake_queue(netdev);
301 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
302 			}
303 		}
304 	}
305 
306 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
307 		bna_ib_ack(tcb->i_dbell, sent);
308 
309 	smp_mb__before_clear_bit();
310 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
311 
312 	return sent;
313 }
314 
315 /* MSIX Tx Completion Handler */
316 static irqreturn_t
bnad_msix_tx(int irq,void * data)317 bnad_msix_tx(int irq, void *data)
318 {
319 	struct bna_tcb *tcb = (struct bna_tcb *)data;
320 	struct bnad *bnad = tcb->bnad;
321 
322 	bnad_tx(bnad, tcb);
323 
324 	return IRQ_HANDLED;
325 }
326 
327 static void
bnad_reset_rcb(struct bnad * bnad,struct bna_rcb * rcb)328 bnad_reset_rcb(struct bnad *bnad, struct bna_rcb *rcb)
329 {
330 	struct bnad_unmap_q *unmap_q = rcb->unmap_q;
331 
332 	rcb->producer_index = 0;
333 	rcb->consumer_index = 0;
334 
335 	unmap_q->producer_index = 0;
336 	unmap_q->consumer_index = 0;
337 }
338 
339 static void
bnad_free_all_rxbufs(struct bnad * bnad,struct bna_rcb * rcb)340 bnad_free_all_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
341 {
342 	struct bnad_unmap_q *unmap_q;
343 	struct bnad_skb_unmap *unmap_array;
344 	struct sk_buff *skb;
345 	int unmap_cons;
346 
347 	unmap_q = rcb->unmap_q;
348 	unmap_array = unmap_q->unmap_array;
349 	for (unmap_cons = 0; unmap_cons < unmap_q->q_depth; unmap_cons++) {
350 		skb = unmap_array[unmap_cons].skb;
351 		if (!skb)
352 			continue;
353 		unmap_array[unmap_cons].skb = NULL;
354 		dma_unmap_single(&bnad->pcidev->dev,
355 				 dma_unmap_addr(&unmap_array[unmap_cons],
356 						dma_addr),
357 				 rcb->rxq->buffer_size,
358 				 DMA_FROM_DEVICE);
359 		dev_kfree_skb(skb);
360 	}
361 	bnad_reset_rcb(bnad, rcb);
362 }
363 
364 static void
bnad_alloc_n_post_rxbufs(struct bnad * bnad,struct bna_rcb * rcb)365 bnad_alloc_n_post_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
366 {
367 	u16 to_alloc, alloced, unmap_prod, wi_range;
368 	struct bnad_unmap_q *unmap_q = rcb->unmap_q;
369 	struct bnad_skb_unmap *unmap_array;
370 	struct bna_rxq_entry *rxent;
371 	struct sk_buff *skb;
372 	dma_addr_t dma_addr;
373 
374 	alloced = 0;
375 	to_alloc =
376 		BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth);
377 
378 	unmap_array = unmap_q->unmap_array;
379 	unmap_prod = unmap_q->producer_index;
380 
381 	BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent, wi_range);
382 
383 	while (to_alloc--) {
384 		if (!wi_range) {
385 			BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent,
386 					     wi_range);
387 		}
388 		skb = alloc_skb(rcb->rxq->buffer_size + NET_IP_ALIGN,
389 				     GFP_ATOMIC);
390 		if (unlikely(!skb)) {
391 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
392 			goto finishing;
393 		}
394 		skb->dev = bnad->netdev;
395 		skb_reserve(skb, NET_IP_ALIGN);
396 		unmap_array[unmap_prod].skb = skb;
397 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
398 					  rcb->rxq->buffer_size,
399 					  DMA_FROM_DEVICE);
400 		dma_unmap_addr_set(&unmap_array[unmap_prod], dma_addr,
401 				   dma_addr);
402 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
403 		BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
404 
405 		rxent++;
406 		wi_range--;
407 		alloced++;
408 	}
409 
410 finishing:
411 	if (likely(alloced)) {
412 		unmap_q->producer_index = unmap_prod;
413 		rcb->producer_index = unmap_prod;
414 		smp_mb();
415 		if (likely(test_bit(BNAD_RXQ_STARTED, &rcb->flags)))
416 			bna_rxq_prod_indx_doorbell(rcb);
417 	}
418 }
419 
420 static inline void
bnad_refill_rxq(struct bnad * bnad,struct bna_rcb * rcb)421 bnad_refill_rxq(struct bnad *bnad, struct bna_rcb *rcb)
422 {
423 	struct bnad_unmap_q *unmap_q = rcb->unmap_q;
424 
425 	if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
426 		if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
427 			 >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
428 			bnad_alloc_n_post_rxbufs(bnad, rcb);
429 		smp_mb__before_clear_bit();
430 		clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
431 	}
432 }
433 
434 static u32
bnad_poll_cq(struct bnad * bnad,struct bna_ccb * ccb,int budget)435 bnad_poll_cq(struct bnad *bnad, struct bna_ccb *ccb, int budget)
436 {
437 	struct bna_cq_entry *cmpl, *next_cmpl;
438 	struct bna_rcb *rcb = NULL;
439 	unsigned int wi_range, packets = 0, wis = 0;
440 	struct bnad_unmap_q *unmap_q;
441 	struct bnad_skb_unmap *unmap_array;
442 	struct sk_buff *skb;
443 	u32 flags, unmap_cons;
444 	u32 qid0 = ccb->rcb[0]->rxq->rxq_id;
445 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
446 
447 	if (!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags))
448 		return 0;
449 
450 	prefetch(bnad->netdev);
451 	BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt, cmpl,
452 			    wi_range);
453 	BUG_ON(!(wi_range <= ccb->q_depth));
454 	while (cmpl->valid && packets < budget) {
455 		packets++;
456 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
457 
458 		if (qid0 == cmpl->rxq_id)
459 			rcb = ccb->rcb[0];
460 		else
461 			rcb = ccb->rcb[1];
462 
463 		unmap_q = rcb->unmap_q;
464 		unmap_array = unmap_q->unmap_array;
465 		unmap_cons = unmap_q->consumer_index;
466 
467 		skb = unmap_array[unmap_cons].skb;
468 		BUG_ON(!(skb));
469 		unmap_array[unmap_cons].skb = NULL;
470 		dma_unmap_single(&bnad->pcidev->dev,
471 				 dma_unmap_addr(&unmap_array[unmap_cons],
472 						dma_addr),
473 				 rcb->rxq->buffer_size,
474 				 DMA_FROM_DEVICE);
475 		BNA_QE_INDX_ADD(unmap_q->consumer_index, 1, unmap_q->q_depth);
476 
477 		/* Should be more efficient ? Performance ? */
478 		BNA_QE_INDX_ADD(rcb->consumer_index, 1, rcb->q_depth);
479 
480 		wis++;
481 		if (likely(--wi_range))
482 			next_cmpl = cmpl + 1;
483 		else {
484 			BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
485 			wis = 0;
486 			BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt,
487 						next_cmpl, wi_range);
488 			BUG_ON(!(wi_range <= ccb->q_depth));
489 		}
490 		prefetch(next_cmpl);
491 
492 		flags = ntohl(cmpl->flags);
493 		if (unlikely
494 		    (flags &
495 		     (BNA_CQ_EF_MAC_ERROR | BNA_CQ_EF_FCS_ERROR |
496 		      BNA_CQ_EF_TOO_LONG))) {
497 			dev_kfree_skb_any(skb);
498 			rcb->rxq->rx_packets_with_error++;
499 			goto next;
500 		}
501 
502 		skb_put(skb, ntohs(cmpl->length));
503 		if (likely
504 		    (bnad->rx_csum &&
505 		     (((flags & BNA_CQ_EF_IPV4) &&
506 		      (flags & BNA_CQ_EF_L3_CKSUM_OK)) ||
507 		      (flags & BNA_CQ_EF_IPV6)) &&
508 		      (flags & (BNA_CQ_EF_TCP | BNA_CQ_EF_UDP)) &&
509 		      (flags & BNA_CQ_EF_L4_CKSUM_OK)))
510 			skb->ip_summed = CHECKSUM_UNNECESSARY;
511 		else
512 			skb_checksum_none_assert(skb);
513 
514 		rcb->rxq->rx_packets++;
515 		rcb->rxq->rx_bytes += skb->len;
516 		skb->protocol = eth_type_trans(skb, bnad->netdev);
517 
518 		if (bnad->vlan_grp && (flags & BNA_CQ_EF_VLAN)) {
519 			struct bnad_rx_ctrl *rx_ctrl =
520 				(struct bnad_rx_ctrl *)ccb->ctrl;
521 			if (skb->ip_summed == CHECKSUM_UNNECESSARY)
522 				vlan_gro_receive(&rx_ctrl->napi, bnad->vlan_grp,
523 						ntohs(cmpl->vlan_tag), skb);
524 			else
525 				vlan_hwaccel_receive_skb(skb,
526 							 bnad->vlan_grp,
527 							 ntohs(cmpl->vlan_tag));
528 
529 		} else { /* Not VLAN tagged/stripped */
530 			struct bnad_rx_ctrl *rx_ctrl =
531 				(struct bnad_rx_ctrl *)ccb->ctrl;
532 			if (skb->ip_summed == CHECKSUM_UNNECESSARY)
533 				napi_gro_receive(&rx_ctrl->napi, skb);
534 			else
535 				netif_receive_skb(skb);
536 		}
537 
538 next:
539 		cmpl->valid = 0;
540 		cmpl = next_cmpl;
541 	}
542 
543 	BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
544 
545 	if (likely(ccb)) {
546 		if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
547 			bna_ib_ack(ccb->i_dbell, packets);
548 		bnad_refill_rxq(bnad, ccb->rcb[0]);
549 		if (ccb->rcb[1])
550 			bnad_refill_rxq(bnad, ccb->rcb[1]);
551 	} else {
552 		if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
553 			bna_ib_ack(ccb->i_dbell, 0);
554 	}
555 
556 	return packets;
557 }
558 
559 static void
bnad_disable_rx_irq(struct bnad * bnad,struct bna_ccb * ccb)560 bnad_disable_rx_irq(struct bnad *bnad, struct bna_ccb *ccb)
561 {
562 	if (unlikely(!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
563 		return;
564 
565 	bna_ib_coalescing_timer_set(ccb->i_dbell, 0);
566 	bna_ib_ack(ccb->i_dbell, 0);
567 }
568 
569 static void
bnad_enable_rx_irq(struct bnad * bnad,struct bna_ccb * ccb)570 bnad_enable_rx_irq(struct bnad *bnad, struct bna_ccb *ccb)
571 {
572 	unsigned long flags;
573 
574 	/* Because of polling context */
575 	spin_lock_irqsave(&bnad->bna_lock, flags);
576 	bnad_enable_rx_irq_unsafe(ccb);
577 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
578 }
579 
580 static void
bnad_netif_rx_schedule_poll(struct bnad * bnad,struct bna_ccb * ccb)581 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
582 {
583 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
584 	struct napi_struct *napi = &rx_ctrl->napi;
585 
586 	if (likely(napi_schedule_prep(napi))) {
587 		bnad_disable_rx_irq(bnad, ccb);
588 		__napi_schedule(napi);
589 	}
590 	BNAD_UPDATE_CTR(bnad, netif_rx_schedule);
591 }
592 
593 /* MSIX Rx Path Handler */
594 static irqreturn_t
bnad_msix_rx(int irq,void * data)595 bnad_msix_rx(int irq, void *data)
596 {
597 	struct bna_ccb *ccb = (struct bna_ccb *)data;
598 	struct bnad *bnad = ccb->bnad;
599 
600 	bnad_netif_rx_schedule_poll(bnad, ccb);
601 
602 	return IRQ_HANDLED;
603 }
604 
605 /* Interrupt handlers */
606 
607 /* Mbox Interrupt Handlers */
608 static irqreturn_t
bnad_msix_mbox_handler(int irq,void * data)609 bnad_msix_mbox_handler(int irq, void *data)
610 {
611 	u32 intr_status;
612 	unsigned long flags;
613 	struct bnad *bnad = (struct bnad *)data;
614 
615 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags)))
616 		return IRQ_HANDLED;
617 
618 	spin_lock_irqsave(&bnad->bna_lock, flags);
619 
620 	bna_intr_status_get(&bnad->bna, intr_status);
621 
622 	if (BNA_IS_MBOX_ERR_INTR(intr_status))
623 		bna_mbox_handler(&bnad->bna, intr_status);
624 
625 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
626 
627 	return IRQ_HANDLED;
628 }
629 
630 static irqreturn_t
bnad_isr(int irq,void * data)631 bnad_isr(int irq, void *data)
632 {
633 	int i, j;
634 	u32 intr_status;
635 	unsigned long flags;
636 	struct bnad *bnad = (struct bnad *)data;
637 	struct bnad_rx_info *rx_info;
638 	struct bnad_rx_ctrl *rx_ctrl;
639 
640 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags)))
641 		return IRQ_NONE;
642 
643 	bna_intr_status_get(&bnad->bna, intr_status);
644 
645 	if (unlikely(!intr_status))
646 		return IRQ_NONE;
647 
648 	spin_lock_irqsave(&bnad->bna_lock, flags);
649 
650 	if (BNA_IS_MBOX_ERR_INTR(intr_status))
651 		bna_mbox_handler(&bnad->bna, intr_status);
652 
653 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
654 
655 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
656 		return IRQ_HANDLED;
657 
658 	/* Process data interrupts */
659 	/* Tx processing */
660 	for (i = 0; i < bnad->num_tx; i++) {
661 		for (j = 0; j < bnad->num_txq_per_tx; j++)
662 			bnad_tx(bnad, bnad->tx_info[i].tcb[j]);
663 	}
664 	/* Rx processing */
665 	for (i = 0; i < bnad->num_rx; i++) {
666 		rx_info = &bnad->rx_info[i];
667 		if (!rx_info->rx)
668 			continue;
669 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
670 			rx_ctrl = &rx_info->rx_ctrl[j];
671 			if (rx_ctrl->ccb)
672 				bnad_netif_rx_schedule_poll(bnad,
673 							    rx_ctrl->ccb);
674 		}
675 	}
676 	return IRQ_HANDLED;
677 }
678 
679 /*
680  * Called in interrupt / callback context
681  * with bna_lock held, so cfg_flags access is OK
682  */
683 static void
bnad_enable_mbox_irq(struct bnad * bnad)684 bnad_enable_mbox_irq(struct bnad *bnad)
685 {
686 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
687 
688 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
689 }
690 
691 /*
692  * Called with bnad->bna_lock held b'cos of
693  * bnad->cfg_flags access.
694  */
695 static void
bnad_disable_mbox_irq(struct bnad * bnad)696 bnad_disable_mbox_irq(struct bnad *bnad)
697 {
698 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
699 
700 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
701 }
702 
703 static void
bnad_set_netdev_perm_addr(struct bnad * bnad)704 bnad_set_netdev_perm_addr(struct bnad *bnad)
705 {
706 	struct net_device *netdev = bnad->netdev;
707 
708 	memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
709 	if (is_zero_ether_addr(netdev->dev_addr))
710 		memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
711 }
712 
713 /* Control Path Handlers */
714 
715 /* Callbacks */
716 void
bnad_cb_device_enable_mbox_intr(struct bnad * bnad)717 bnad_cb_device_enable_mbox_intr(struct bnad *bnad)
718 {
719 	bnad_enable_mbox_irq(bnad);
720 }
721 
722 void
bnad_cb_device_disable_mbox_intr(struct bnad * bnad)723 bnad_cb_device_disable_mbox_intr(struct bnad *bnad)
724 {
725 	bnad_disable_mbox_irq(bnad);
726 }
727 
728 void
bnad_cb_device_enabled(struct bnad * bnad,enum bna_cb_status status)729 bnad_cb_device_enabled(struct bnad *bnad, enum bna_cb_status status)
730 {
731 	complete(&bnad->bnad_completions.ioc_comp);
732 	bnad->bnad_completions.ioc_comp_status = status;
733 }
734 
735 void
bnad_cb_device_disabled(struct bnad * bnad,enum bna_cb_status status)736 bnad_cb_device_disabled(struct bnad *bnad, enum bna_cb_status status)
737 {
738 	complete(&bnad->bnad_completions.ioc_comp);
739 	bnad->bnad_completions.ioc_comp_status = status;
740 }
741 
742 static void
bnad_cb_port_disabled(void * arg,enum bna_cb_status status)743 bnad_cb_port_disabled(void *arg, enum bna_cb_status status)
744 {
745 	struct bnad *bnad = (struct bnad *)arg;
746 
747 	complete(&bnad->bnad_completions.port_comp);
748 
749 	netif_carrier_off(bnad->netdev);
750 }
751 
752 void
bnad_cb_port_link_status(struct bnad * bnad,enum bna_link_status link_status)753 bnad_cb_port_link_status(struct bnad *bnad,
754 			enum bna_link_status link_status)
755 {
756 	bool link_up = 0;
757 
758 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
759 
760 	if (link_status == BNA_CEE_UP) {
761 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
762 		BNAD_UPDATE_CTR(bnad, cee_up);
763 	} else
764 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
765 
766 	if (link_up) {
767 		if (!netif_carrier_ok(bnad->netdev)) {
768 			struct bna_tcb *tcb = bnad->tx_info[0].tcb[0];
769 			if (!tcb)
770 				return;
771 			pr_warn("bna: %s link up\n",
772 				bnad->netdev->name);
773 			netif_carrier_on(bnad->netdev);
774 			BNAD_UPDATE_CTR(bnad, link_toggle);
775 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
776 				/* Force an immediate Transmit Schedule */
777 				pr_info("bna: %s TX_STARTED\n",
778 					bnad->netdev->name);
779 				netif_wake_queue(bnad->netdev);
780 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
781 			} else {
782 				netif_stop_queue(bnad->netdev);
783 				BNAD_UPDATE_CTR(bnad, netif_queue_stop);
784 			}
785 		}
786 	} else {
787 		if (netif_carrier_ok(bnad->netdev)) {
788 			pr_warn("bna: %s link down\n",
789 				bnad->netdev->name);
790 			netif_carrier_off(bnad->netdev);
791 			BNAD_UPDATE_CTR(bnad, link_toggle);
792 		}
793 	}
794 }
795 
796 static void
bnad_cb_tx_disabled(void * arg,struct bna_tx * tx,enum bna_cb_status status)797 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx,
798 			enum bna_cb_status status)
799 {
800 	struct bnad *bnad = (struct bnad *)arg;
801 
802 	complete(&bnad->bnad_completions.tx_comp);
803 }
804 
805 static void
bnad_cb_tcb_setup(struct bnad * bnad,struct bna_tcb * tcb)806 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
807 {
808 	struct bnad_tx_info *tx_info =
809 			(struct bnad_tx_info *)tcb->txq->tx->priv;
810 	struct bnad_unmap_q *unmap_q = tcb->unmap_q;
811 
812 	tx_info->tcb[tcb->id] = tcb;
813 	unmap_q->producer_index = 0;
814 	unmap_q->consumer_index = 0;
815 	unmap_q->q_depth = BNAD_TX_UNMAPQ_DEPTH;
816 }
817 
818 static void
bnad_cb_tcb_destroy(struct bnad * bnad,struct bna_tcb * tcb)819 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
820 {
821 	struct bnad_tx_info *tx_info =
822 			(struct bnad_tx_info *)tcb->txq->tx->priv;
823 	struct bnad_unmap_q *unmap_q = tcb->unmap_q;
824 
825 	while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
826 		cpu_relax();
827 
828 	bnad_free_all_txbufs(bnad, tcb);
829 
830 	unmap_q->producer_index = 0;
831 	unmap_q->consumer_index = 0;
832 
833 	smp_mb__before_clear_bit();
834 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
835 
836 	tx_info->tcb[tcb->id] = NULL;
837 }
838 
839 static void
bnad_cb_rcb_setup(struct bnad * bnad,struct bna_rcb * rcb)840 bnad_cb_rcb_setup(struct bnad *bnad, struct bna_rcb *rcb)
841 {
842 	struct bnad_unmap_q *unmap_q = rcb->unmap_q;
843 
844 	unmap_q->producer_index = 0;
845 	unmap_q->consumer_index = 0;
846 	unmap_q->q_depth = BNAD_RX_UNMAPQ_DEPTH;
847 }
848 
849 static void
bnad_cb_rcb_destroy(struct bnad * bnad,struct bna_rcb * rcb)850 bnad_cb_rcb_destroy(struct bnad *bnad, struct bna_rcb *rcb)
851 {
852 	bnad_free_all_rxbufs(bnad, rcb);
853 }
854 
855 static void
bnad_cb_ccb_setup(struct bnad * bnad,struct bna_ccb * ccb)856 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
857 {
858 	struct bnad_rx_info *rx_info =
859 			(struct bnad_rx_info *)ccb->cq->rx->priv;
860 
861 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
862 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
863 }
864 
865 static void
bnad_cb_ccb_destroy(struct bnad * bnad,struct bna_ccb * ccb)866 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
867 {
868 	struct bnad_rx_info *rx_info =
869 			(struct bnad_rx_info *)ccb->cq->rx->priv;
870 
871 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
872 }
873 
874 static void
bnad_cb_tx_stall(struct bnad * bnad,struct bna_tcb * tcb)875 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tcb *tcb)
876 {
877 	struct bnad_tx_info *tx_info =
878 			(struct bnad_tx_info *)tcb->txq->tx->priv;
879 
880 	if (tx_info != &bnad->tx_info[0])
881 		return;
882 
883 	clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
884 	netif_stop_queue(bnad->netdev);
885 	pr_info("bna: %s TX_STOPPED\n", bnad->netdev->name);
886 }
887 
888 static void
bnad_cb_tx_resume(struct bnad * bnad,struct bna_tcb * tcb)889 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tcb *tcb)
890 {
891 	struct bnad_unmap_q *unmap_q = tcb->unmap_q;
892 
893 	if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
894 		return;
895 
896 	clear_bit(BNAD_RF_TX_SHUTDOWN_DELAYED, &bnad->run_flags);
897 
898 	while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
899 		cpu_relax();
900 
901 	bnad_free_all_txbufs(bnad, tcb);
902 
903 	unmap_q->producer_index = 0;
904 	unmap_q->consumer_index = 0;
905 
906 	smp_mb__before_clear_bit();
907 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
908 
909 	/*
910 	 * Workaround for first device enable failure & we
911 	 * get a 0 MAC address. We try to get the MAC address
912 	 * again here.
913 	 */
914 	if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
915 		bna_port_mac_get(&bnad->bna.port, &bnad->perm_addr);
916 		bnad_set_netdev_perm_addr(bnad);
917 	}
918 
919 	set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
920 
921 	if (netif_carrier_ok(bnad->netdev)) {
922 		pr_info("bna: %s TX_STARTED\n", bnad->netdev->name);
923 		netif_wake_queue(bnad->netdev);
924 		BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
925 	}
926 }
927 
928 static void
bnad_cb_tx_cleanup(struct bnad * bnad,struct bna_tcb * tcb)929 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
930 {
931 	/* Delay only once for the whole Tx Path Shutdown */
932 	if (!test_and_set_bit(BNAD_RF_TX_SHUTDOWN_DELAYED, &bnad->run_flags))
933 		mdelay(BNAD_TXRX_SYNC_MDELAY);
934 }
935 
936 static void
bnad_cb_rx_cleanup(struct bnad * bnad,struct bna_ccb * ccb)937 bnad_cb_rx_cleanup(struct bnad *bnad,
938 			struct bna_ccb *ccb)
939 {
940 	clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
941 
942 	if (ccb->rcb[1])
943 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
944 
945 	if (!test_and_set_bit(BNAD_RF_RX_SHUTDOWN_DELAYED, &bnad->run_flags))
946 		mdelay(BNAD_TXRX_SYNC_MDELAY);
947 }
948 
949 static void
bnad_cb_rx_post(struct bnad * bnad,struct bna_rcb * rcb)950 bnad_cb_rx_post(struct bnad *bnad, struct bna_rcb *rcb)
951 {
952 	struct bnad_unmap_q *unmap_q = rcb->unmap_q;
953 
954 	clear_bit(BNAD_RF_RX_SHUTDOWN_DELAYED, &bnad->run_flags);
955 
956 	if (rcb == rcb->cq->ccb->rcb[0])
957 		bnad_cq_cmpl_init(bnad, rcb->cq->ccb);
958 
959 	bnad_free_all_rxbufs(bnad, rcb);
960 
961 	set_bit(BNAD_RXQ_STARTED, &rcb->flags);
962 
963 	/* Now allocate & post buffers for this RCB */
964 	/* !!Allocation in callback context */
965 	if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
966 		if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
967 			 >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
968 			bnad_alloc_n_post_rxbufs(bnad, rcb);
969 		smp_mb__before_clear_bit();
970 		clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
971 	}
972 }
973 
974 static void
bnad_cb_rx_disabled(void * arg,struct bna_rx * rx,enum bna_cb_status status)975 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx,
976 			enum bna_cb_status status)
977 {
978 	struct bnad *bnad = (struct bnad *)arg;
979 
980 	complete(&bnad->bnad_completions.rx_comp);
981 }
982 
983 static void
bnad_cb_rx_mcast_add(struct bnad * bnad,struct bna_rx * rx,enum bna_cb_status status)984 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx,
985 				enum bna_cb_status status)
986 {
987 	bnad->bnad_completions.mcast_comp_status = status;
988 	complete(&bnad->bnad_completions.mcast_comp);
989 }
990 
991 void
bnad_cb_stats_get(struct bnad * bnad,enum bna_cb_status status,struct bna_stats * stats)992 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
993 		       struct bna_stats *stats)
994 {
995 	if (status == BNA_CB_SUCCESS)
996 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
997 
998 	if (!netif_running(bnad->netdev) ||
999 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1000 		return;
1001 
1002 	mod_timer(&bnad->stats_timer,
1003 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1004 }
1005 
1006 /* Resource allocation, free functions */
1007 
1008 static void
bnad_mem_free(struct bnad * bnad,struct bna_mem_info * mem_info)1009 bnad_mem_free(struct bnad *bnad,
1010 	      struct bna_mem_info *mem_info)
1011 {
1012 	int i;
1013 	dma_addr_t dma_pa;
1014 
1015 	if (mem_info->mdl == NULL)
1016 		return;
1017 
1018 	for (i = 0; i < mem_info->num; i++) {
1019 		if (mem_info->mdl[i].kva != NULL) {
1020 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1021 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1022 						dma_pa);
1023 				dma_free_coherent(&bnad->pcidev->dev,
1024 						  mem_info->mdl[i].len,
1025 						  mem_info->mdl[i].kva, dma_pa);
1026 			} else
1027 				kfree(mem_info->mdl[i].kva);
1028 		}
1029 	}
1030 	kfree(mem_info->mdl);
1031 	mem_info->mdl = NULL;
1032 }
1033 
1034 static int
bnad_mem_alloc(struct bnad * bnad,struct bna_mem_info * mem_info)1035 bnad_mem_alloc(struct bnad *bnad,
1036 	       struct bna_mem_info *mem_info)
1037 {
1038 	int i;
1039 	dma_addr_t dma_pa;
1040 
1041 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1042 		mem_info->mdl = NULL;
1043 		return 0;
1044 	}
1045 
1046 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1047 				GFP_KERNEL);
1048 	if (mem_info->mdl == NULL)
1049 		return -ENOMEM;
1050 
1051 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1052 		for (i = 0; i < mem_info->num; i++) {
1053 			mem_info->mdl[i].len = mem_info->len;
1054 			mem_info->mdl[i].kva =
1055 				dma_alloc_coherent(&bnad->pcidev->dev,
1056 						mem_info->len, &dma_pa,
1057 						GFP_KERNEL);
1058 
1059 			if (mem_info->mdl[i].kva == NULL)
1060 				goto err_return;
1061 
1062 			BNA_SET_DMA_ADDR(dma_pa,
1063 					 &(mem_info->mdl[i].dma));
1064 		}
1065 	} else {
1066 		for (i = 0; i < mem_info->num; i++) {
1067 			mem_info->mdl[i].len = mem_info->len;
1068 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1069 							GFP_KERNEL);
1070 			if (mem_info->mdl[i].kva == NULL)
1071 				goto err_return;
1072 		}
1073 	}
1074 
1075 	return 0;
1076 
1077 err_return:
1078 	bnad_mem_free(bnad, mem_info);
1079 	return -ENOMEM;
1080 }
1081 
1082 /* Free IRQ for Mailbox */
1083 static void
bnad_mbox_irq_free(struct bnad * bnad,struct bna_intr_info * intr_info)1084 bnad_mbox_irq_free(struct bnad *bnad,
1085 		   struct bna_intr_info *intr_info)
1086 {
1087 	int irq;
1088 	unsigned long flags;
1089 
1090 	if (intr_info->idl == NULL)
1091 		return;
1092 
1093 	spin_lock_irqsave(&bnad->bna_lock, flags);
1094 	bnad_disable_mbox_irq(bnad);
1095 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1096 
1097 	irq = BNAD_GET_MBOX_IRQ(bnad);
1098 	free_irq(irq, bnad);
1099 
1100 	kfree(intr_info->idl);
1101 }
1102 
1103 /*
1104  * Allocates IRQ for Mailbox, but keep it disabled
1105  * This will be enabled once we get the mbox enable callback
1106  * from bna
1107  */
1108 static int
bnad_mbox_irq_alloc(struct bnad * bnad,struct bna_intr_info * intr_info)1109 bnad_mbox_irq_alloc(struct bnad *bnad,
1110 		    struct bna_intr_info *intr_info)
1111 {
1112 	int 		err = 0;
1113 	unsigned long 	flags;
1114 	u32	irq;
1115 	irq_handler_t 	irq_handler;
1116 
1117 	/* Mbox should use only 1 vector */
1118 
1119 	intr_info->idl = kzalloc(sizeof(*(intr_info->idl)), GFP_KERNEL);
1120 	if (!intr_info->idl)
1121 		return -ENOMEM;
1122 
1123 	spin_lock_irqsave(&bnad->bna_lock, flags);
1124 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1125 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1126 		irq = bnad->msix_table[bnad->msix_num - 1].vector;
1127 		flags = 0;
1128 		intr_info->intr_type = BNA_INTR_T_MSIX;
1129 		intr_info->idl[0].vector = bnad->msix_num - 1;
1130 	} else {
1131 		irq_handler = (irq_handler_t)bnad_isr;
1132 		irq = bnad->pcidev->irq;
1133 		flags = IRQF_SHARED;
1134 		intr_info->intr_type = BNA_INTR_T_INTX;
1135 		/* intr_info->idl.vector = 0 ? */
1136 	}
1137 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1138 
1139 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1140 
1141 	/*
1142 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1143 	 * called from request_irq() for SHARED IRQs do not execute
1144 	 */
1145 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1146 
1147 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1148 
1149 	err = request_irq(irq, irq_handler, flags,
1150 			  bnad->mbox_irq_name, bnad);
1151 
1152 	if (err) {
1153 		kfree(intr_info->idl);
1154 		intr_info->idl = NULL;
1155 	}
1156 
1157 	return err;
1158 }
1159 
1160 static void
bnad_txrx_irq_free(struct bnad * bnad,struct bna_intr_info * intr_info)1161 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1162 {
1163 	kfree(intr_info->idl);
1164 	intr_info->idl = NULL;
1165 }
1166 
1167 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1168 static int
bnad_txrx_irq_alloc(struct bnad * bnad,enum bnad_intr_source src,uint txrx_id,struct bna_intr_info * intr_info)1169 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1170 		    uint txrx_id, struct bna_intr_info *intr_info)
1171 {
1172 	int i, vector_start = 0;
1173 	u32 cfg_flags;
1174 	unsigned long flags;
1175 
1176 	spin_lock_irqsave(&bnad->bna_lock, flags);
1177 	cfg_flags = bnad->cfg_flags;
1178 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1179 
1180 	if (cfg_flags & BNAD_CF_MSIX) {
1181 		intr_info->intr_type = BNA_INTR_T_MSIX;
1182 		intr_info->idl = kcalloc(intr_info->num,
1183 					sizeof(struct bna_intr_descr),
1184 					GFP_KERNEL);
1185 		if (!intr_info->idl)
1186 			return -ENOMEM;
1187 
1188 		switch (src) {
1189 		case BNAD_INTR_TX:
1190 			vector_start = txrx_id;
1191 			break;
1192 
1193 		case BNAD_INTR_RX:
1194 			vector_start = bnad->num_tx * bnad->num_txq_per_tx +
1195 					txrx_id;
1196 			break;
1197 
1198 		default:
1199 			BUG();
1200 		}
1201 
1202 		for (i = 0; i < intr_info->num; i++)
1203 			intr_info->idl[i].vector = vector_start + i;
1204 	} else {
1205 		intr_info->intr_type = BNA_INTR_T_INTX;
1206 		intr_info->num = 1;
1207 		intr_info->idl = kcalloc(intr_info->num,
1208 					sizeof(struct bna_intr_descr),
1209 					GFP_KERNEL);
1210 		if (!intr_info->idl)
1211 			return -ENOMEM;
1212 
1213 		switch (src) {
1214 		case BNAD_INTR_TX:
1215 			intr_info->idl[0].vector = 0x1; /* Bit mask : Tx IB */
1216 			break;
1217 
1218 		case BNAD_INTR_RX:
1219 			intr_info->idl[0].vector = 0x2; /* Bit mask : Rx IB */
1220 			break;
1221 		}
1222 	}
1223 	return 0;
1224 }
1225 
1226 /**
1227  * NOTE: Should be called for MSIX only
1228  * Unregisters Tx MSIX vector(s) from the kernel
1229  */
1230 static void
bnad_tx_msix_unregister(struct bnad * bnad,struct bnad_tx_info * tx_info,int num_txqs)1231 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1232 			int num_txqs)
1233 {
1234 	int i;
1235 	int vector_num;
1236 
1237 	for (i = 0; i < num_txqs; i++) {
1238 		if (tx_info->tcb[i] == NULL)
1239 			continue;
1240 
1241 		vector_num = tx_info->tcb[i]->intr_vector;
1242 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1243 	}
1244 }
1245 
1246 /**
1247  * NOTE: Should be called for MSIX only
1248  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1249  */
1250 static int
bnad_tx_msix_register(struct bnad * bnad,struct bnad_tx_info * tx_info,uint tx_id,int num_txqs)1251 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1252 			uint tx_id, int num_txqs)
1253 {
1254 	int i;
1255 	int err;
1256 	int vector_num;
1257 
1258 	for (i = 0; i < num_txqs; i++) {
1259 		vector_num = tx_info->tcb[i]->intr_vector;
1260 		sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1261 				tx_id + tx_info->tcb[i]->id);
1262 		err = request_irq(bnad->msix_table[vector_num].vector,
1263 				  (irq_handler_t)bnad_msix_tx, 0,
1264 				  tx_info->tcb[i]->name,
1265 				  tx_info->tcb[i]);
1266 		if (err)
1267 			goto err_return;
1268 	}
1269 
1270 	return 0;
1271 
1272 err_return:
1273 	if (i > 0)
1274 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1275 	return -1;
1276 }
1277 
1278 /**
1279  * NOTE: Should be called for MSIX only
1280  * Unregisters Rx MSIX vector(s) from the kernel
1281  */
1282 static void
bnad_rx_msix_unregister(struct bnad * bnad,struct bnad_rx_info * rx_info,int num_rxps)1283 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1284 			int num_rxps)
1285 {
1286 	int i;
1287 	int vector_num;
1288 
1289 	for (i = 0; i < num_rxps; i++) {
1290 		if (rx_info->rx_ctrl[i].ccb == NULL)
1291 			continue;
1292 
1293 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1294 		free_irq(bnad->msix_table[vector_num].vector,
1295 			 rx_info->rx_ctrl[i].ccb);
1296 	}
1297 }
1298 
1299 /**
1300  * NOTE: Should be called for MSIX only
1301  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1302  */
1303 static int
bnad_rx_msix_register(struct bnad * bnad,struct bnad_rx_info * rx_info,uint rx_id,int num_rxps)1304 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1305 			uint rx_id, int num_rxps)
1306 {
1307 	int i;
1308 	int err;
1309 	int vector_num;
1310 
1311 	for (i = 0; i < num_rxps; i++) {
1312 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1313 		sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1314 			bnad->netdev->name,
1315 			rx_id + rx_info->rx_ctrl[i].ccb->id);
1316 		err = request_irq(bnad->msix_table[vector_num].vector,
1317 				  (irq_handler_t)bnad_msix_rx, 0,
1318 				  rx_info->rx_ctrl[i].ccb->name,
1319 				  rx_info->rx_ctrl[i].ccb);
1320 		if (err)
1321 			goto err_return;
1322 	}
1323 
1324 	return 0;
1325 
1326 err_return:
1327 	if (i > 0)
1328 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1329 	return -1;
1330 }
1331 
1332 /* Free Tx object Resources */
1333 static void
bnad_tx_res_free(struct bnad * bnad,struct bna_res_info * res_info)1334 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1335 {
1336 	int i;
1337 
1338 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1339 		if (res_info[i].res_type == BNA_RES_T_MEM)
1340 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1341 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1342 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1343 	}
1344 }
1345 
1346 /* Allocates memory and interrupt resources for Tx object */
1347 static int
bnad_tx_res_alloc(struct bnad * bnad,struct bna_res_info * res_info,uint tx_id)1348 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1349 		  uint tx_id)
1350 {
1351 	int i, err = 0;
1352 
1353 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1354 		if (res_info[i].res_type == BNA_RES_T_MEM)
1355 			err = bnad_mem_alloc(bnad,
1356 					&res_info[i].res_u.mem_info);
1357 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1358 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1359 					&res_info[i].res_u.intr_info);
1360 		if (err)
1361 			goto err_return;
1362 	}
1363 	return 0;
1364 
1365 err_return:
1366 	bnad_tx_res_free(bnad, res_info);
1367 	return err;
1368 }
1369 
1370 /* Free Rx object Resources */
1371 static void
bnad_rx_res_free(struct bnad * bnad,struct bna_res_info * res_info)1372 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1373 {
1374 	int i;
1375 
1376 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1377 		if (res_info[i].res_type == BNA_RES_T_MEM)
1378 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1379 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1380 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1381 	}
1382 }
1383 
1384 /* Allocates memory and interrupt resources for Rx object */
1385 static int
bnad_rx_res_alloc(struct bnad * bnad,struct bna_res_info * res_info,uint rx_id)1386 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1387 		  uint rx_id)
1388 {
1389 	int i, err = 0;
1390 
1391 	/* All memory needs to be allocated before setup_ccbs */
1392 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1393 		if (res_info[i].res_type == BNA_RES_T_MEM)
1394 			err = bnad_mem_alloc(bnad,
1395 					&res_info[i].res_u.mem_info);
1396 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1397 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1398 					&res_info[i].res_u.intr_info);
1399 		if (err)
1400 			goto err_return;
1401 	}
1402 	return 0;
1403 
1404 err_return:
1405 	bnad_rx_res_free(bnad, res_info);
1406 	return err;
1407 }
1408 
1409 /* Timer callbacks */
1410 /* a) IOC timer */
1411 static void
bnad_ioc_timeout(unsigned long data)1412 bnad_ioc_timeout(unsigned long data)
1413 {
1414 	struct bnad *bnad = (struct bnad *)data;
1415 	unsigned long flags;
1416 
1417 	spin_lock_irqsave(&bnad->bna_lock, flags);
1418 	bfa_nw_ioc_timeout((void *) &bnad->bna.device.ioc);
1419 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1420 }
1421 
1422 static void
bnad_ioc_hb_check(unsigned long data)1423 bnad_ioc_hb_check(unsigned long data)
1424 {
1425 	struct bnad *bnad = (struct bnad *)data;
1426 	unsigned long flags;
1427 
1428 	spin_lock_irqsave(&bnad->bna_lock, flags);
1429 	bfa_nw_ioc_hb_check((void *) &bnad->bna.device.ioc);
1430 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1431 }
1432 
1433 static void
bnad_iocpf_timeout(unsigned long data)1434 bnad_iocpf_timeout(unsigned long data)
1435 {
1436 	struct bnad *bnad = (struct bnad *)data;
1437 	unsigned long flags;
1438 
1439 	spin_lock_irqsave(&bnad->bna_lock, flags);
1440 	bfa_nw_iocpf_timeout((void *) &bnad->bna.device.ioc);
1441 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1442 }
1443 
1444 static void
bnad_iocpf_sem_timeout(unsigned long data)1445 bnad_iocpf_sem_timeout(unsigned long data)
1446 {
1447 	struct bnad *bnad = (struct bnad *)data;
1448 	unsigned long flags;
1449 
1450 	spin_lock_irqsave(&bnad->bna_lock, flags);
1451 	bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.device.ioc);
1452 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1453 }
1454 
1455 /*
1456  * All timer routines use bnad->bna_lock to protect against
1457  * the following race, which may occur in case of no locking:
1458  * 	Time	CPU m  		CPU n
1459  *	0       1 = test_bit
1460  *	1			clear_bit
1461  *	2			del_timer_sync
1462  *	3	mod_timer
1463  */
1464 
1465 /* b) Dynamic Interrupt Moderation Timer */
1466 static void
bnad_dim_timeout(unsigned long data)1467 bnad_dim_timeout(unsigned long data)
1468 {
1469 	struct bnad *bnad = (struct bnad *)data;
1470 	struct bnad_rx_info *rx_info;
1471 	struct bnad_rx_ctrl *rx_ctrl;
1472 	int i, j;
1473 	unsigned long flags;
1474 
1475 	if (!netif_carrier_ok(bnad->netdev))
1476 		return;
1477 
1478 	spin_lock_irqsave(&bnad->bna_lock, flags);
1479 	for (i = 0; i < bnad->num_rx; i++) {
1480 		rx_info = &bnad->rx_info[i];
1481 		if (!rx_info->rx)
1482 			continue;
1483 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1484 			rx_ctrl = &rx_info->rx_ctrl[j];
1485 			if (!rx_ctrl->ccb)
1486 				continue;
1487 			bna_rx_dim_update(rx_ctrl->ccb);
1488 		}
1489 	}
1490 
1491 	/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1492 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1493 		mod_timer(&bnad->dim_timer,
1494 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1495 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1496 }
1497 
1498 /* c)  Statistics Timer */
1499 static void
bnad_stats_timeout(unsigned long data)1500 bnad_stats_timeout(unsigned long data)
1501 {
1502 	struct bnad *bnad = (struct bnad *)data;
1503 	unsigned long flags;
1504 
1505 	if (!netif_running(bnad->netdev) ||
1506 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1507 		return;
1508 
1509 	spin_lock_irqsave(&bnad->bna_lock, flags);
1510 	bna_stats_get(&bnad->bna);
1511 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1512 }
1513 
1514 /*
1515  * Set up timer for DIM
1516  * Called with bnad->bna_lock held
1517  */
1518 void
bnad_dim_timer_start(struct bnad * bnad)1519 bnad_dim_timer_start(struct bnad *bnad)
1520 {
1521 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1522 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1523 		setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1524 			    (unsigned long)bnad);
1525 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1526 		mod_timer(&bnad->dim_timer,
1527 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1528 	}
1529 }
1530 
1531 /*
1532  * Set up timer for statistics
1533  * Called with mutex_lock(&bnad->conf_mutex) held
1534  */
1535 static void
bnad_stats_timer_start(struct bnad * bnad)1536 bnad_stats_timer_start(struct bnad *bnad)
1537 {
1538 	unsigned long flags;
1539 
1540 	spin_lock_irqsave(&bnad->bna_lock, flags);
1541 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1542 		setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1543 			    (unsigned long)bnad);
1544 		mod_timer(&bnad->stats_timer,
1545 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1546 	}
1547 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1548 }
1549 
1550 /*
1551  * Stops the stats timer
1552  * Called with mutex_lock(&bnad->conf_mutex) held
1553  */
1554 static void
bnad_stats_timer_stop(struct bnad * bnad)1555 bnad_stats_timer_stop(struct bnad *bnad)
1556 {
1557 	int to_del = 0;
1558 	unsigned long flags;
1559 
1560 	spin_lock_irqsave(&bnad->bna_lock, flags);
1561 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1562 		to_del = 1;
1563 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1564 	if (to_del)
1565 		del_timer_sync(&bnad->stats_timer);
1566 }
1567 
1568 /* Utilities */
1569 
1570 static void
bnad_netdev_mc_list_get(struct net_device * netdev,u8 * mc_list)1571 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1572 {
1573 	int i = 1; /* Index 0 has broadcast address */
1574 	struct netdev_hw_addr *mc_addr;
1575 
1576 	netdev_for_each_mc_addr(mc_addr, netdev) {
1577 		memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1578 							ETH_ALEN);
1579 		i++;
1580 	}
1581 }
1582 
1583 static int
bnad_napi_poll_rx(struct napi_struct * napi,int budget)1584 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1585 {
1586 	struct bnad_rx_ctrl *rx_ctrl =
1587 		container_of(napi, struct bnad_rx_ctrl, napi);
1588 	struct bna_ccb *ccb;
1589 	struct bnad *bnad;
1590 	int rcvd = 0;
1591 
1592 	ccb = rx_ctrl->ccb;
1593 
1594 	bnad = ccb->bnad;
1595 
1596 	if (!netif_carrier_ok(bnad->netdev))
1597 		goto poll_exit;
1598 
1599 	rcvd = bnad_poll_cq(bnad, ccb, budget);
1600 	if (rcvd == budget)
1601 		return rcvd;
1602 
1603 poll_exit:
1604 	napi_complete((napi));
1605 
1606 	BNAD_UPDATE_CTR(bnad, netif_rx_complete);
1607 
1608 	bnad_enable_rx_irq(bnad, ccb);
1609 	return rcvd;
1610 }
1611 
1612 static void
bnad_napi_enable(struct bnad * bnad,u32 rx_id)1613 bnad_napi_enable(struct bnad *bnad, u32 rx_id)
1614 {
1615 	struct bnad_rx_ctrl *rx_ctrl;
1616 	int i;
1617 
1618 	/* Initialize & enable NAPI */
1619 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1620 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1621 
1622 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1623 			       bnad_napi_poll_rx, 64);
1624 
1625 		napi_enable(&rx_ctrl->napi);
1626 	}
1627 }
1628 
1629 static void
bnad_napi_disable(struct bnad * bnad,u32 rx_id)1630 bnad_napi_disable(struct bnad *bnad, u32 rx_id)
1631 {
1632 	int i;
1633 
1634 	/* First disable and then clean up */
1635 	for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1636 		napi_disable(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1637 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1638 	}
1639 }
1640 
1641 /* Should be held with conf_lock held */
1642 void
bnad_cleanup_tx(struct bnad * bnad,uint tx_id)1643 bnad_cleanup_tx(struct bnad *bnad, uint tx_id)
1644 {
1645 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1646 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1647 	unsigned long flags;
1648 
1649 	if (!tx_info->tx)
1650 		return;
1651 
1652 	init_completion(&bnad->bnad_completions.tx_comp);
1653 	spin_lock_irqsave(&bnad->bna_lock, flags);
1654 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1655 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1656 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1657 
1658 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1659 		bnad_tx_msix_unregister(bnad, tx_info,
1660 			bnad->num_txq_per_tx);
1661 
1662 	spin_lock_irqsave(&bnad->bna_lock, flags);
1663 	bna_tx_destroy(tx_info->tx);
1664 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1665 
1666 	tx_info->tx = NULL;
1667 
1668 	if (0 == tx_id)
1669 		tasklet_kill(&bnad->tx_free_tasklet);
1670 
1671 	bnad_tx_res_free(bnad, res_info);
1672 }
1673 
1674 /* Should be held with conf_lock held */
1675 int
bnad_setup_tx(struct bnad * bnad,uint tx_id)1676 bnad_setup_tx(struct bnad *bnad, uint tx_id)
1677 {
1678 	int err;
1679 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1680 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1681 	struct bna_intr_info *intr_info =
1682 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1683 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1684 	struct bna_tx_event_cbfn tx_cbfn;
1685 	struct bna_tx *tx;
1686 	unsigned long flags;
1687 
1688 	/* Initialize the Tx object configuration */
1689 	tx_config->num_txq = bnad->num_txq_per_tx;
1690 	tx_config->txq_depth = bnad->txq_depth;
1691 	tx_config->tx_type = BNA_TX_T_REGULAR;
1692 
1693 	/* Initialize the tx event handlers */
1694 	tx_cbfn.tcb_setup_cbfn = bnad_cb_tcb_setup;
1695 	tx_cbfn.tcb_destroy_cbfn = bnad_cb_tcb_destroy;
1696 	tx_cbfn.tx_stall_cbfn = bnad_cb_tx_stall;
1697 	tx_cbfn.tx_resume_cbfn = bnad_cb_tx_resume;
1698 	tx_cbfn.tx_cleanup_cbfn = bnad_cb_tx_cleanup;
1699 
1700 	/* Get BNA's resource requirement for one tx object */
1701 	spin_lock_irqsave(&bnad->bna_lock, flags);
1702 	bna_tx_res_req(bnad->num_txq_per_tx,
1703 		bnad->txq_depth, res_info);
1704 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1705 
1706 	/* Fill Unmap Q memory requirements */
1707 	BNAD_FILL_UNMAPQ_MEM_REQ(
1708 			&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1709 			bnad->num_txq_per_tx,
1710 			BNAD_TX_UNMAPQ_DEPTH);
1711 
1712 	/* Allocate resources */
1713 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1714 	if (err)
1715 		return err;
1716 
1717 	/* Ask BNA to create one Tx object, supplying required resources */
1718 	spin_lock_irqsave(&bnad->bna_lock, flags);
1719 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1720 			tx_info);
1721 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1722 	if (!tx)
1723 		goto err_return;
1724 	tx_info->tx = tx;
1725 
1726 	/* Register ISR for the Tx object */
1727 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1728 		err = bnad_tx_msix_register(bnad, tx_info,
1729 			tx_id, bnad->num_txq_per_tx);
1730 		if (err)
1731 			goto err_return;
1732 	}
1733 
1734 	spin_lock_irqsave(&bnad->bna_lock, flags);
1735 	bna_tx_enable(tx);
1736 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1737 
1738 	return 0;
1739 
1740 err_return:
1741 	bnad_tx_res_free(bnad, res_info);
1742 	return err;
1743 }
1744 
1745 /* Setup the rx config for bna_rx_create */
1746 /* bnad decides the configuration */
1747 static void
bnad_init_rx_config(struct bnad * bnad,struct bna_rx_config * rx_config)1748 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1749 {
1750 	rx_config->rx_type = BNA_RX_T_REGULAR;
1751 	rx_config->num_paths = bnad->num_rxp_per_rx;
1752 
1753 	if (bnad->num_rxp_per_rx > 1) {
1754 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
1755 		rx_config->rss_config.hash_type =
1756 				(BFI_RSS_T_V4_TCP |
1757 				 BFI_RSS_T_V6_TCP |
1758 				 BFI_RSS_T_V4_IP  |
1759 				 BFI_RSS_T_V6_IP);
1760 		rx_config->rss_config.hash_mask =
1761 				bnad->num_rxp_per_rx - 1;
1762 		get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1763 			sizeof(rx_config->rss_config.toeplitz_hash_key));
1764 	} else {
1765 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
1766 		memset(&rx_config->rss_config, 0,
1767 		       sizeof(rx_config->rss_config));
1768 	}
1769 	rx_config->rxp_type = BNA_RXP_SLR;
1770 	rx_config->q_depth = bnad->rxq_depth;
1771 
1772 	rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1773 
1774 	rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1775 }
1776 
1777 /* Called with mutex_lock(&bnad->conf_mutex) held */
1778 void
bnad_cleanup_rx(struct bnad * bnad,uint rx_id)1779 bnad_cleanup_rx(struct bnad *bnad, uint rx_id)
1780 {
1781 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1782 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1783 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1784 	unsigned long flags;
1785 	int dim_timer_del = 0;
1786 
1787 	if (!rx_info->rx)
1788 		return;
1789 
1790 	if (0 == rx_id) {
1791 		spin_lock_irqsave(&bnad->bna_lock, flags);
1792 		dim_timer_del = bnad_dim_timer_running(bnad);
1793 		if (dim_timer_del)
1794 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1795 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
1796 		if (dim_timer_del)
1797 			del_timer_sync(&bnad->dim_timer);
1798 	}
1799 
1800 	bnad_napi_disable(bnad, rx_id);
1801 
1802 	init_completion(&bnad->bnad_completions.rx_comp);
1803 	spin_lock_irqsave(&bnad->bna_lock, flags);
1804 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
1805 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1806 	wait_for_completion(&bnad->bnad_completions.rx_comp);
1807 
1808 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
1809 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
1810 
1811 	spin_lock_irqsave(&bnad->bna_lock, flags);
1812 	bna_rx_destroy(rx_info->rx);
1813 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1814 
1815 	rx_info->rx = NULL;
1816 
1817 	bnad_rx_res_free(bnad, res_info);
1818 }
1819 
1820 /* Called with mutex_lock(&bnad->conf_mutex) held */
1821 int
bnad_setup_rx(struct bnad * bnad,uint rx_id)1822 bnad_setup_rx(struct bnad *bnad, uint rx_id)
1823 {
1824 	int err;
1825 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1826 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1827 	struct bna_intr_info *intr_info =
1828 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
1829 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1830 	struct bna_rx_event_cbfn rx_cbfn;
1831 	struct bna_rx *rx;
1832 	unsigned long flags;
1833 
1834 	/* Initialize the Rx object configuration */
1835 	bnad_init_rx_config(bnad, rx_config);
1836 
1837 	/* Initialize the Rx event handlers */
1838 	rx_cbfn.rcb_setup_cbfn = bnad_cb_rcb_setup;
1839 	rx_cbfn.rcb_destroy_cbfn = bnad_cb_rcb_destroy;
1840 	rx_cbfn.ccb_setup_cbfn = bnad_cb_ccb_setup;
1841 	rx_cbfn.ccb_destroy_cbfn = bnad_cb_ccb_destroy;
1842 	rx_cbfn.rx_cleanup_cbfn = bnad_cb_rx_cleanup;
1843 	rx_cbfn.rx_post_cbfn = bnad_cb_rx_post;
1844 
1845 	/* Get BNA's resource requirement for one Rx object */
1846 	spin_lock_irqsave(&bnad->bna_lock, flags);
1847 	bna_rx_res_req(rx_config, res_info);
1848 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1849 
1850 	/* Fill Unmap Q memory requirements */
1851 	BNAD_FILL_UNMAPQ_MEM_REQ(
1852 			&res_info[BNA_RX_RES_MEM_T_UNMAPQ],
1853 			rx_config->num_paths +
1854 			((rx_config->rxp_type == BNA_RXP_SINGLE) ? 0 :
1855 				rx_config->num_paths), BNAD_RX_UNMAPQ_DEPTH);
1856 
1857 	/* Allocate resource */
1858 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
1859 	if (err)
1860 		return err;
1861 
1862 	/* Ask BNA to create one Rx object, supplying required resources */
1863 	spin_lock_irqsave(&bnad->bna_lock, flags);
1864 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
1865 			rx_info);
1866 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1867 	if (!rx)
1868 		goto err_return;
1869 	rx_info->rx = rx;
1870 
1871 	/* Register ISR for the Rx object */
1872 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1873 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
1874 						rx_config->num_paths);
1875 		if (err)
1876 			goto err_return;
1877 	}
1878 
1879 	/* Enable NAPI */
1880 	bnad_napi_enable(bnad, rx_id);
1881 
1882 	spin_lock_irqsave(&bnad->bna_lock, flags);
1883 	if (0 == rx_id) {
1884 		/* Set up Dynamic Interrupt Moderation Vector */
1885 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
1886 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
1887 
1888 		/* Enable VLAN filtering only on the default Rx */
1889 		bna_rx_vlanfilter_enable(rx);
1890 
1891 		/* Start the DIM timer */
1892 		bnad_dim_timer_start(bnad);
1893 	}
1894 
1895 	bna_rx_enable(rx);
1896 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1897 
1898 	return 0;
1899 
1900 err_return:
1901 	bnad_cleanup_rx(bnad, rx_id);
1902 	return err;
1903 }
1904 
1905 /* Called with conf_lock & bnad->bna_lock held */
1906 void
bnad_tx_coalescing_timeo_set(struct bnad * bnad)1907 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
1908 {
1909 	struct bnad_tx_info *tx_info;
1910 
1911 	tx_info = &bnad->tx_info[0];
1912 	if (!tx_info->tx)
1913 		return;
1914 
1915 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
1916 }
1917 
1918 /* Called with conf_lock & bnad->bna_lock held */
1919 void
bnad_rx_coalescing_timeo_set(struct bnad * bnad)1920 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
1921 {
1922 	struct bnad_rx_info *rx_info;
1923 	int 	i;
1924 
1925 	for (i = 0; i < bnad->num_rx; i++) {
1926 		rx_info = &bnad->rx_info[i];
1927 		if (!rx_info->rx)
1928 			continue;
1929 		bna_rx_coalescing_timeo_set(rx_info->rx,
1930 				bnad->rx_coalescing_timeo);
1931 	}
1932 }
1933 
1934 /*
1935  * Called with bnad->bna_lock held
1936  */
1937 static int
bnad_mac_addr_set_locked(struct bnad * bnad,u8 * mac_addr)1938 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
1939 {
1940 	int ret;
1941 
1942 	if (!is_valid_ether_addr(mac_addr))
1943 		return -EADDRNOTAVAIL;
1944 
1945 	/* If datapath is down, pretend everything went through */
1946 	if (!bnad->rx_info[0].rx)
1947 		return 0;
1948 
1949 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
1950 	if (ret != BNA_CB_SUCCESS)
1951 		return -EADDRNOTAVAIL;
1952 
1953 	return 0;
1954 }
1955 
1956 /* Should be called with conf_lock held */
1957 static int
bnad_enable_default_bcast(struct bnad * bnad)1958 bnad_enable_default_bcast(struct bnad *bnad)
1959 {
1960 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
1961 	int ret;
1962 	unsigned long flags;
1963 
1964 	init_completion(&bnad->bnad_completions.mcast_comp);
1965 
1966 	spin_lock_irqsave(&bnad->bna_lock, flags);
1967 	ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
1968 				bnad_cb_rx_mcast_add);
1969 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1970 
1971 	if (ret == BNA_CB_SUCCESS)
1972 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
1973 	else
1974 		return -ENODEV;
1975 
1976 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
1977 		return -ENODEV;
1978 
1979 	return 0;
1980 }
1981 
1982 /* Called with bnad_conf_lock() held */
1983 static void
bnad_restore_vlans(struct bnad * bnad,u32 rx_id)1984 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
1985 {
1986 	u16 vlan_id;
1987 	unsigned long flags;
1988 
1989 	if (!bnad->vlan_grp)
1990 		return;
1991 
1992 	BUG_ON(!(VLAN_N_VID == (BFI_MAX_VLAN + 1)));
1993 
1994 	for (vlan_id = 0; vlan_id < VLAN_N_VID; vlan_id++) {
1995 		if (!vlan_group_get_device(bnad->vlan_grp, vlan_id))
1996 			continue;
1997 		spin_lock_irqsave(&bnad->bna_lock, flags);
1998 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vlan_id);
1999 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2000 	}
2001 }
2002 
2003 /* Statistics utilities */
2004 void
bnad_netdev_qstats_fill(struct bnad * bnad,struct rtnl_link_stats64 * stats)2005 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2006 {
2007 	int i, j;
2008 
2009 	for (i = 0; i < bnad->num_rx; i++) {
2010 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2011 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2012 				stats->rx_packets += bnad->rx_info[i].
2013 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2014 				stats->rx_bytes += bnad->rx_info[i].
2015 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2016 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2017 					bnad->rx_info[i].rx_ctrl[j].ccb->
2018 					rcb[1]->rxq) {
2019 					stats->rx_packets +=
2020 						bnad->rx_info[i].rx_ctrl[j].
2021 						ccb->rcb[1]->rxq->rx_packets;
2022 					stats->rx_bytes +=
2023 						bnad->rx_info[i].rx_ctrl[j].
2024 						ccb->rcb[1]->rxq->rx_bytes;
2025 				}
2026 			}
2027 		}
2028 	}
2029 	for (i = 0; i < bnad->num_tx; i++) {
2030 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2031 			if (bnad->tx_info[i].tcb[j]) {
2032 				stats->tx_packets +=
2033 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2034 				stats->tx_bytes +=
2035 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2036 			}
2037 		}
2038 	}
2039 }
2040 
2041 /*
2042  * Must be called with the bna_lock held.
2043  */
2044 void
bnad_netdev_hwstats_fill(struct bnad * bnad,struct rtnl_link_stats64 * stats)2045 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2046 {
2047 	struct bfi_ll_stats_mac *mac_stats;
2048 	u64 bmap;
2049 	int i;
2050 
2051 	mac_stats = &bnad->stats.bna_stats->hw_stats->mac_stats;
2052 	stats->rx_errors =
2053 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2054 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2055 		mac_stats->rx_undersize;
2056 	stats->tx_errors = mac_stats->tx_fcs_error +
2057 					mac_stats->tx_undersize;
2058 	stats->rx_dropped = mac_stats->rx_drop;
2059 	stats->tx_dropped = mac_stats->tx_drop;
2060 	stats->multicast = mac_stats->rx_multicast;
2061 	stats->collisions = mac_stats->tx_total_collision;
2062 
2063 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2064 
2065 	/* receive ring buffer overflow  ?? */
2066 
2067 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2068 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2069 	/* recv'r fifo overrun */
2070 	bmap = (u64)bnad->stats.bna_stats->rxf_bmap[0] |
2071 		((u64)bnad->stats.bna_stats->rxf_bmap[1] << 32);
2072 	for (i = 0; bmap && (i < BFI_LL_RXF_ID_MAX); i++) {
2073 		if (bmap & 1) {
2074 			stats->rx_fifo_errors +=
2075 				bnad->stats.bna_stats->
2076 					hw_stats->rxf_stats[i].frame_drops;
2077 			break;
2078 		}
2079 		bmap >>= 1;
2080 	}
2081 }
2082 
2083 static void
bnad_mbox_irq_sync(struct bnad * bnad)2084 bnad_mbox_irq_sync(struct bnad *bnad)
2085 {
2086 	u32 irq;
2087 	unsigned long flags;
2088 
2089 	spin_lock_irqsave(&bnad->bna_lock, flags);
2090 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2091 		irq = bnad->msix_table[bnad->msix_num - 1].vector;
2092 	else
2093 		irq = bnad->pcidev->irq;
2094 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2095 
2096 	synchronize_irq(irq);
2097 }
2098 
2099 /* Utility used by bnad_start_xmit, for doing TSO */
2100 static int
bnad_tso_prepare(struct bnad * bnad,struct sk_buff * skb)2101 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2102 {
2103 	int err;
2104 
2105 	/* SKB_GSO_TCPV4 and SKB_GSO_TCPV6 is defined since 2.6.18. */
2106 	BUG_ON(!(skb_shinfo(skb)->gso_type == SKB_GSO_TCPV4 ||
2107 		   skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6));
2108 	if (skb_header_cloned(skb)) {
2109 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2110 		if (err) {
2111 			BNAD_UPDATE_CTR(bnad, tso_err);
2112 			return err;
2113 		}
2114 	}
2115 
2116 	/*
2117 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2118 	 * excluding the length field.
2119 	 */
2120 	if (skb->protocol == htons(ETH_P_IP)) {
2121 		struct iphdr *iph = ip_hdr(skb);
2122 
2123 		/* Do we really need these? */
2124 		iph->tot_len = 0;
2125 		iph->check = 0;
2126 
2127 		tcp_hdr(skb)->check =
2128 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2129 					   IPPROTO_TCP, 0);
2130 		BNAD_UPDATE_CTR(bnad, tso4);
2131 	} else {
2132 		struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2133 
2134 		BUG_ON(!(skb->protocol == htons(ETH_P_IPV6)));
2135 		ipv6h->payload_len = 0;
2136 		tcp_hdr(skb)->check =
2137 			~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2138 					 IPPROTO_TCP, 0);
2139 		BNAD_UPDATE_CTR(bnad, tso6);
2140 	}
2141 
2142 	return 0;
2143 }
2144 
2145 /*
2146  * Initialize Q numbers depending on Rx Paths
2147  * Called with bnad->bna_lock held, because of cfg_flags
2148  * access.
2149  */
2150 static void
bnad_q_num_init(struct bnad * bnad)2151 bnad_q_num_init(struct bnad *bnad)
2152 {
2153 	int rxps;
2154 
2155 	rxps = min((uint)num_online_cpus(),
2156 			(uint)(BNAD_MAX_RXS * BNAD_MAX_RXPS_PER_RX));
2157 
2158 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2159 		rxps = 1;	/* INTx */
2160 
2161 	bnad->num_rx = 1;
2162 	bnad->num_tx = 1;
2163 	bnad->num_rxp_per_rx = rxps;
2164 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2165 }
2166 
2167 /*
2168  * Adjusts the Q numbers, given a number of msix vectors
2169  * Give preference to RSS as opposed to Tx priority Queues,
2170  * in such a case, just use 1 Tx Q
2171  * Called with bnad->bna_lock held b'cos of cfg_flags access
2172  */
2173 static void
bnad_q_num_adjust(struct bnad * bnad,int msix_vectors)2174 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors)
2175 {
2176 	bnad->num_txq_per_tx = 1;
2177 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2178 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2179 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2180 		bnad->num_rxp_per_rx = msix_vectors -
2181 			(bnad->num_tx * bnad->num_txq_per_tx) -
2182 			BNAD_MAILBOX_MSIX_VECTORS;
2183 	} else
2184 		bnad->num_rxp_per_rx = 1;
2185 }
2186 
2187 /* Enable / disable device */
2188 static void
bnad_device_disable(struct bnad * bnad)2189 bnad_device_disable(struct bnad *bnad)
2190 {
2191 	unsigned long flags;
2192 
2193 	init_completion(&bnad->bnad_completions.ioc_comp);
2194 
2195 	spin_lock_irqsave(&bnad->bna_lock, flags);
2196 	bna_device_disable(&bnad->bna.device, BNA_HARD_CLEANUP);
2197 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2198 
2199 	wait_for_completion(&bnad->bnad_completions.ioc_comp);
2200 }
2201 
2202 static int
bnad_device_enable(struct bnad * bnad)2203 bnad_device_enable(struct bnad *bnad)
2204 {
2205 	int err = 0;
2206 	unsigned long flags;
2207 
2208 	init_completion(&bnad->bnad_completions.ioc_comp);
2209 
2210 	spin_lock_irqsave(&bnad->bna_lock, flags);
2211 	bna_device_enable(&bnad->bna.device);
2212 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2213 
2214 	wait_for_completion(&bnad->bnad_completions.ioc_comp);
2215 
2216 	if (bnad->bnad_completions.ioc_comp_status)
2217 		err = bnad->bnad_completions.ioc_comp_status;
2218 
2219 	return err;
2220 }
2221 
2222 /* Free BNA resources */
2223 static void
bnad_res_free(struct bnad * bnad)2224 bnad_res_free(struct bnad *bnad)
2225 {
2226 	int i;
2227 	struct bna_res_info *res_info = &bnad->res_info[0];
2228 
2229 	for (i = 0; i < BNA_RES_T_MAX; i++) {
2230 		if (res_info[i].res_type == BNA_RES_T_MEM)
2231 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2232 		else
2233 			bnad_mbox_irq_free(bnad, &res_info[i].res_u.intr_info);
2234 	}
2235 }
2236 
2237 /* Allocates memory and interrupt resources for BNA */
2238 static int
bnad_res_alloc(struct bnad * bnad)2239 bnad_res_alloc(struct bnad *bnad)
2240 {
2241 	int i, err;
2242 	struct bna_res_info *res_info = &bnad->res_info[0];
2243 
2244 	for (i = 0; i < BNA_RES_T_MAX; i++) {
2245 		if (res_info[i].res_type == BNA_RES_T_MEM)
2246 			err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2247 		else
2248 			err = bnad_mbox_irq_alloc(bnad,
2249 						  &res_info[i].res_u.intr_info);
2250 		if (err)
2251 			goto err_return;
2252 	}
2253 	return 0;
2254 
2255 err_return:
2256 	bnad_res_free(bnad);
2257 	return err;
2258 }
2259 
2260 /* Interrupt enable / disable */
2261 static void
bnad_enable_msix(struct bnad * bnad)2262 bnad_enable_msix(struct bnad *bnad)
2263 {
2264 	int i, ret;
2265 	unsigned long flags;
2266 
2267 	spin_lock_irqsave(&bnad->bna_lock, flags);
2268 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2269 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2270 		return;
2271 	}
2272 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2273 
2274 	if (bnad->msix_table)
2275 		return;
2276 
2277 	bnad->msix_table =
2278 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2279 
2280 	if (!bnad->msix_table)
2281 		goto intx_mode;
2282 
2283 	for (i = 0; i < bnad->msix_num; i++)
2284 		bnad->msix_table[i].entry = i;
2285 
2286 	ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2287 	if (ret > 0) {
2288 		/* Not enough MSI-X vectors. */
2289 
2290 		spin_lock_irqsave(&bnad->bna_lock, flags);
2291 		/* ret = #of vectors that we got */
2292 		bnad_q_num_adjust(bnad, ret);
2293 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2294 
2295 		bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx)
2296 			+ (bnad->num_rx
2297 			* bnad->num_rxp_per_rx) +
2298 			 BNAD_MAILBOX_MSIX_VECTORS;
2299 
2300 		/* Try once more with adjusted numbers */
2301 		/* If this fails, fall back to INTx */
2302 		ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2303 				      bnad->msix_num);
2304 		if (ret)
2305 			goto intx_mode;
2306 
2307 	} else if (ret < 0)
2308 		goto intx_mode;
2309 	return;
2310 
2311 intx_mode:
2312 
2313 	kfree(bnad->msix_table);
2314 	bnad->msix_table = NULL;
2315 	bnad->msix_num = 0;
2316 	spin_lock_irqsave(&bnad->bna_lock, flags);
2317 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2318 	bnad_q_num_init(bnad);
2319 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2320 }
2321 
2322 static void
bnad_disable_msix(struct bnad * bnad)2323 bnad_disable_msix(struct bnad *bnad)
2324 {
2325 	u32 cfg_flags;
2326 	unsigned long flags;
2327 
2328 	spin_lock_irqsave(&bnad->bna_lock, flags);
2329 	cfg_flags = bnad->cfg_flags;
2330 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2331 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2332 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2333 
2334 	if (cfg_flags & BNAD_CF_MSIX) {
2335 		pci_disable_msix(bnad->pcidev);
2336 		kfree(bnad->msix_table);
2337 		bnad->msix_table = NULL;
2338 	}
2339 }
2340 
2341 /* Netdev entry points */
2342 static int
bnad_open(struct net_device * netdev)2343 bnad_open(struct net_device *netdev)
2344 {
2345 	int err;
2346 	struct bnad *bnad = netdev_priv(netdev);
2347 	struct bna_pause_config pause_config;
2348 	int mtu;
2349 	unsigned long flags;
2350 
2351 	mutex_lock(&bnad->conf_mutex);
2352 
2353 	/* Tx */
2354 	err = bnad_setup_tx(bnad, 0);
2355 	if (err)
2356 		goto err_return;
2357 
2358 	/* Rx */
2359 	err = bnad_setup_rx(bnad, 0);
2360 	if (err)
2361 		goto cleanup_tx;
2362 
2363 	/* Port */
2364 	pause_config.tx_pause = 0;
2365 	pause_config.rx_pause = 0;
2366 
2367 	mtu = ETH_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2368 
2369 	spin_lock_irqsave(&bnad->bna_lock, flags);
2370 	bna_port_mtu_set(&bnad->bna.port, mtu, NULL);
2371 	bna_port_pause_config(&bnad->bna.port, &pause_config, NULL);
2372 	bna_port_enable(&bnad->bna.port);
2373 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2374 
2375 	/* Enable broadcast */
2376 	bnad_enable_default_bcast(bnad);
2377 
2378 	/* Restore VLANs, if any */
2379 	bnad_restore_vlans(bnad, 0);
2380 
2381 	/* Set the UCAST address */
2382 	spin_lock_irqsave(&bnad->bna_lock, flags);
2383 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2384 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2385 
2386 	/* Start the stats timer */
2387 	bnad_stats_timer_start(bnad);
2388 
2389 	mutex_unlock(&bnad->conf_mutex);
2390 
2391 	return 0;
2392 
2393 cleanup_tx:
2394 	bnad_cleanup_tx(bnad, 0);
2395 
2396 err_return:
2397 	mutex_unlock(&bnad->conf_mutex);
2398 	return err;
2399 }
2400 
2401 static int
bnad_stop(struct net_device * netdev)2402 bnad_stop(struct net_device *netdev)
2403 {
2404 	struct bnad *bnad = netdev_priv(netdev);
2405 	unsigned long flags;
2406 
2407 	mutex_lock(&bnad->conf_mutex);
2408 
2409 	/* Stop the stats timer */
2410 	bnad_stats_timer_stop(bnad);
2411 
2412 	init_completion(&bnad->bnad_completions.port_comp);
2413 
2414 	spin_lock_irqsave(&bnad->bna_lock, flags);
2415 	bna_port_disable(&bnad->bna.port, BNA_HARD_CLEANUP,
2416 			bnad_cb_port_disabled);
2417 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2418 
2419 	wait_for_completion(&bnad->bnad_completions.port_comp);
2420 
2421 	bnad_cleanup_tx(bnad, 0);
2422 	bnad_cleanup_rx(bnad, 0);
2423 
2424 	/* Synchronize mailbox IRQ */
2425 	bnad_mbox_irq_sync(bnad);
2426 
2427 	mutex_unlock(&bnad->conf_mutex);
2428 
2429 	return 0;
2430 }
2431 
2432 /* TX */
2433 /*
2434  * bnad_start_xmit : Netdev entry point for Transmit
2435  *		     Called under lock held by net_device
2436  */
2437 static netdev_tx_t
bnad_start_xmit(struct sk_buff * skb,struct net_device * netdev)2438 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2439 {
2440 	struct bnad *bnad = netdev_priv(netdev);
2441 
2442 	u16 		txq_prod, vlan_tag = 0;
2443 	u32 		unmap_prod, wis, wis_used, wi_range;
2444 	u32 		vectors, vect_id, i, acked;
2445 	u32		tx_id;
2446 	int 			err;
2447 
2448 	struct bnad_tx_info *tx_info;
2449 	struct bna_tcb *tcb;
2450 	struct bnad_unmap_q *unmap_q;
2451 	dma_addr_t 		dma_addr;
2452 	struct bna_txq_entry *txqent;
2453 	bna_txq_wi_ctrl_flag_t 	flags;
2454 
2455 	if (unlikely
2456 	    (skb->len <= ETH_HLEN || skb->len > BFI_TX_MAX_DATA_PER_PKT)) {
2457 		dev_kfree_skb(skb);
2458 		return NETDEV_TX_OK;
2459 	}
2460 
2461 	tx_id = 0;
2462 
2463 	tx_info = &bnad->tx_info[tx_id];
2464 	tcb = tx_info->tcb[tx_id];
2465 	unmap_q = tcb->unmap_q;
2466 
2467 	/*
2468 	 * Takes care of the Tx that is scheduled between clearing the flag
2469 	 * and the netif_stop_queue() call.
2470 	 */
2471 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2472 		dev_kfree_skb(skb);
2473 		return NETDEV_TX_OK;
2474 	}
2475 
2476 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2477 	if (vectors > BFI_TX_MAX_VECTORS_PER_PKT) {
2478 		dev_kfree_skb(skb);
2479 		return NETDEV_TX_OK;
2480 	}
2481 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2482 	acked = 0;
2483 	if (unlikely
2484 	    (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2485 	     vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2486 		if ((u16) (*tcb->hw_consumer_index) !=
2487 		    tcb->consumer_index &&
2488 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2489 			acked = bnad_free_txbufs(bnad, tcb);
2490 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2491 				bna_ib_ack(tcb->i_dbell, acked);
2492 			smp_mb__before_clear_bit();
2493 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2494 		} else {
2495 			netif_stop_queue(netdev);
2496 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2497 		}
2498 
2499 		smp_mb();
2500 		/*
2501 		 * Check again to deal with race condition between
2502 		 * netif_stop_queue here, and netif_wake_queue in
2503 		 * interrupt handler which is not inside netif tx lock.
2504 		 */
2505 		if (likely
2506 		    (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2507 		     vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2508 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2509 			return NETDEV_TX_BUSY;
2510 		} else {
2511 			netif_wake_queue(netdev);
2512 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2513 		}
2514 	}
2515 
2516 	unmap_prod = unmap_q->producer_index;
2517 	wis_used = 1;
2518 	vect_id = 0;
2519 	flags = 0;
2520 
2521 	txq_prod = tcb->producer_index;
2522 	BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt, txqent, wi_range);
2523 	BUG_ON(!(wi_range <= tcb->q_depth));
2524 	txqent->hdr.wi.reserved = 0;
2525 	txqent->hdr.wi.num_vectors = vectors;
2526 	txqent->hdr.wi.opcode =
2527 		htons((skb_is_gso(skb) ? BNA_TXQ_WI_SEND_LSO :
2528 		       BNA_TXQ_WI_SEND));
2529 
2530 	if (vlan_tx_tag_present(skb)) {
2531 		vlan_tag = (u16) vlan_tx_tag_get(skb);
2532 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2533 	}
2534 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2535 		vlan_tag =
2536 			(tcb->priority & 0x7) << 13 | (vlan_tag & 0x1fff);
2537 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2538 	}
2539 
2540 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2541 
2542 	if (skb_is_gso(skb)) {
2543 		err = bnad_tso_prepare(bnad, skb);
2544 		if (err) {
2545 			dev_kfree_skb(skb);
2546 			return NETDEV_TX_OK;
2547 		}
2548 		txqent->hdr.wi.lso_mss = htons(skb_is_gso(skb));
2549 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2550 		txqent->hdr.wi.l4_hdr_size_n_offset =
2551 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2552 			      (tcp_hdrlen(skb) >> 2,
2553 			       skb_transport_offset(skb)));
2554 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2555 		u8 proto = 0;
2556 
2557 		txqent->hdr.wi.lso_mss = 0;
2558 
2559 		if (skb->protocol == htons(ETH_P_IP))
2560 			proto = ip_hdr(skb)->protocol;
2561 		else if (skb->protocol == htons(ETH_P_IPV6)) {
2562 			/* nexthdr may not be TCP immediately. */
2563 			proto = ipv6_hdr(skb)->nexthdr;
2564 		}
2565 		if (proto == IPPROTO_TCP) {
2566 			flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2567 			txqent->hdr.wi.l4_hdr_size_n_offset =
2568 				htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2569 				      (0, skb_transport_offset(skb)));
2570 
2571 			BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2572 
2573 			BUG_ON(!(skb_headlen(skb) >=
2574 				skb_transport_offset(skb) + tcp_hdrlen(skb)));
2575 
2576 		} else if (proto == IPPROTO_UDP) {
2577 			flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2578 			txqent->hdr.wi.l4_hdr_size_n_offset =
2579 				htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2580 				      (0, skb_transport_offset(skb)));
2581 
2582 			BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2583 
2584 			BUG_ON(!(skb_headlen(skb) >=
2585 				   skb_transport_offset(skb) +
2586 				   sizeof(struct udphdr)));
2587 		} else {
2588 			err = skb_checksum_help(skb);
2589 			BNAD_UPDATE_CTR(bnad, csum_help);
2590 			if (err) {
2591 				dev_kfree_skb(skb);
2592 				BNAD_UPDATE_CTR(bnad, csum_help_err);
2593 				return NETDEV_TX_OK;
2594 			}
2595 		}
2596 	} else {
2597 		txqent->hdr.wi.lso_mss = 0;
2598 		txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2599 	}
2600 
2601 	txqent->hdr.wi.flags = htons(flags);
2602 
2603 	txqent->hdr.wi.frame_length = htonl(skb->len);
2604 
2605 	unmap_q->unmap_array[unmap_prod].skb = skb;
2606 	BUG_ON(!(skb_headlen(skb) <= BFI_TX_MAX_DATA_PER_VECTOR));
2607 	txqent->vector[vect_id].length = htons(skb_headlen(skb));
2608 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
2609 				  skb_headlen(skb), DMA_TO_DEVICE);
2610 	dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2611 			   dma_addr);
2612 
2613 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2614 	BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2615 
2616 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2617 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2618 		u32		size = frag->size;
2619 
2620 		if (++vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2621 			vect_id = 0;
2622 			if (--wi_range)
2623 				txqent++;
2624 			else {
2625 				BNA_QE_INDX_ADD(txq_prod, wis_used,
2626 						tcb->q_depth);
2627 				wis_used = 0;
2628 				BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt,
2629 						     txqent, wi_range);
2630 				BUG_ON(!(wi_range <= tcb->q_depth));
2631 			}
2632 			wis_used++;
2633 			txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
2634 		}
2635 
2636 		BUG_ON(!(size <= BFI_TX_MAX_DATA_PER_VECTOR));
2637 		txqent->vector[vect_id].length = htons(size);
2638 		dma_addr = dma_map_page(&bnad->pcidev->dev, frag->page,
2639 					frag->page_offset, size, DMA_TO_DEVICE);
2640 		dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2641 				   dma_addr);
2642 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2643 		BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2644 	}
2645 
2646 	unmap_q->producer_index = unmap_prod;
2647 	BNA_QE_INDX_ADD(txq_prod, wis_used, tcb->q_depth);
2648 	tcb->producer_index = txq_prod;
2649 
2650 	smp_mb();
2651 
2652 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2653 		return NETDEV_TX_OK;
2654 
2655 	bna_txq_prod_indx_doorbell(tcb);
2656 
2657 	if ((u16) (*tcb->hw_consumer_index) != tcb->consumer_index)
2658 		tasklet_schedule(&bnad->tx_free_tasklet);
2659 
2660 	return NETDEV_TX_OK;
2661 }
2662 
2663 /*
2664  * Used spin_lock to synchronize reading of stats structures, which
2665  * is written by BNA under the same lock.
2666  */
2667 static struct rtnl_link_stats64 *
bnad_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2668 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2669 {
2670 	struct bnad *bnad = netdev_priv(netdev);
2671 	unsigned long flags;
2672 
2673 	spin_lock_irqsave(&bnad->bna_lock, flags);
2674 
2675 	bnad_netdev_qstats_fill(bnad, stats);
2676 	bnad_netdev_hwstats_fill(bnad, stats);
2677 
2678 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2679 
2680 	return stats;
2681 }
2682 
2683 static void
bnad_set_rx_mode(struct net_device * netdev)2684 bnad_set_rx_mode(struct net_device *netdev)
2685 {
2686 	struct bnad *bnad = netdev_priv(netdev);
2687 	u32	new_mask, valid_mask;
2688 	unsigned long flags;
2689 
2690 	spin_lock_irqsave(&bnad->bna_lock, flags);
2691 
2692 	new_mask = valid_mask = 0;
2693 
2694 	if (netdev->flags & IFF_PROMISC) {
2695 		if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2696 			new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2697 			valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2698 			bnad->cfg_flags |= BNAD_CF_PROMISC;
2699 		}
2700 	} else {
2701 		if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2702 			new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2703 			valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2704 			bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2705 		}
2706 	}
2707 
2708 	if (netdev->flags & IFF_ALLMULTI) {
2709 		if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2710 			new_mask |= BNA_RXMODE_ALLMULTI;
2711 			valid_mask |= BNA_RXMODE_ALLMULTI;
2712 			bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2713 		}
2714 	} else {
2715 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2716 			new_mask &= ~BNA_RXMODE_ALLMULTI;
2717 			valid_mask |= BNA_RXMODE_ALLMULTI;
2718 			bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2719 		}
2720 	}
2721 
2722 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2723 
2724 	if (!netdev_mc_empty(netdev)) {
2725 		u8 *mcaddr_list;
2726 		int mc_count = netdev_mc_count(netdev);
2727 
2728 		/* Index 0 holds the broadcast address */
2729 		mcaddr_list =
2730 			kzalloc((mc_count + 1) * ETH_ALEN,
2731 				GFP_ATOMIC);
2732 		if (!mcaddr_list)
2733 			goto unlock;
2734 
2735 		memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2736 
2737 		/* Copy rest of the MC addresses */
2738 		bnad_netdev_mc_list_get(netdev, mcaddr_list);
2739 
2740 		bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2741 					mcaddr_list, NULL);
2742 
2743 		/* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
2744 		kfree(mcaddr_list);
2745 	}
2746 unlock:
2747 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2748 }
2749 
2750 /*
2751  * bna_lock is used to sync writes to netdev->addr
2752  * conf_lock cannot be used since this call may be made
2753  * in a non-blocking context.
2754  */
2755 static int
bnad_set_mac_address(struct net_device * netdev,void * mac_addr)2756 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
2757 {
2758 	int err;
2759 	struct bnad *bnad = netdev_priv(netdev);
2760 	struct sockaddr *sa = (struct sockaddr *)mac_addr;
2761 	unsigned long flags;
2762 
2763 	spin_lock_irqsave(&bnad->bna_lock, flags);
2764 
2765 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
2766 
2767 	if (!err)
2768 		memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
2769 
2770 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2771 
2772 	return err;
2773 }
2774 
2775 static int
bnad_change_mtu(struct net_device * netdev,int new_mtu)2776 bnad_change_mtu(struct net_device *netdev, int new_mtu)
2777 {
2778 	int mtu, err = 0;
2779 	unsigned long flags;
2780 
2781 	struct bnad *bnad = netdev_priv(netdev);
2782 
2783 	if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
2784 		return -EINVAL;
2785 
2786 	mutex_lock(&bnad->conf_mutex);
2787 
2788 	netdev->mtu = new_mtu;
2789 
2790 	mtu = ETH_HLEN + new_mtu + ETH_FCS_LEN;
2791 
2792 	spin_lock_irqsave(&bnad->bna_lock, flags);
2793 	bna_port_mtu_set(&bnad->bna.port, mtu, NULL);
2794 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2795 
2796 	mutex_unlock(&bnad->conf_mutex);
2797 	return err;
2798 }
2799 
2800 static void
bnad_vlan_rx_register(struct net_device * netdev,struct vlan_group * vlan_grp)2801 bnad_vlan_rx_register(struct net_device *netdev,
2802 				  struct vlan_group *vlan_grp)
2803 {
2804 	struct bnad *bnad = netdev_priv(netdev);
2805 
2806 	mutex_lock(&bnad->conf_mutex);
2807 	bnad->vlan_grp = vlan_grp;
2808 	mutex_unlock(&bnad->conf_mutex);
2809 }
2810 
2811 static void
bnad_vlan_rx_add_vid(struct net_device * netdev,unsigned short vid)2812 bnad_vlan_rx_add_vid(struct net_device *netdev,
2813 				 unsigned short vid)
2814 {
2815 	struct bnad *bnad = netdev_priv(netdev);
2816 	unsigned long flags;
2817 
2818 	if (!bnad->rx_info[0].rx)
2819 		return;
2820 
2821 	mutex_lock(&bnad->conf_mutex);
2822 
2823 	spin_lock_irqsave(&bnad->bna_lock, flags);
2824 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
2825 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2826 
2827 	mutex_unlock(&bnad->conf_mutex);
2828 }
2829 
2830 static void
bnad_vlan_rx_kill_vid(struct net_device * netdev,unsigned short vid)2831 bnad_vlan_rx_kill_vid(struct net_device *netdev,
2832 				  unsigned short vid)
2833 {
2834 	struct bnad *bnad = netdev_priv(netdev);
2835 	unsigned long flags;
2836 
2837 	if (!bnad->rx_info[0].rx)
2838 		return;
2839 
2840 	mutex_lock(&bnad->conf_mutex);
2841 
2842 	spin_lock_irqsave(&bnad->bna_lock, flags);
2843 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
2844 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2845 
2846 	mutex_unlock(&bnad->conf_mutex);
2847 }
2848 
2849 #ifdef CONFIG_NET_POLL_CONTROLLER
2850 static void
bnad_netpoll(struct net_device * netdev)2851 bnad_netpoll(struct net_device *netdev)
2852 {
2853 	struct bnad *bnad = netdev_priv(netdev);
2854 	struct bnad_rx_info *rx_info;
2855 	struct bnad_rx_ctrl *rx_ctrl;
2856 	u32 curr_mask;
2857 	int i, j;
2858 
2859 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2860 		bna_intx_disable(&bnad->bna, curr_mask);
2861 		bnad_isr(bnad->pcidev->irq, netdev);
2862 		bna_intx_enable(&bnad->bna, curr_mask);
2863 	} else {
2864 		for (i = 0; i < bnad->num_rx; i++) {
2865 			rx_info = &bnad->rx_info[i];
2866 			if (!rx_info->rx)
2867 				continue;
2868 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2869 				rx_ctrl = &rx_info->rx_ctrl[j];
2870 				if (rx_ctrl->ccb) {
2871 					bnad_disable_rx_irq(bnad,
2872 							    rx_ctrl->ccb);
2873 					bnad_netif_rx_schedule_poll(bnad,
2874 							    rx_ctrl->ccb);
2875 				}
2876 			}
2877 		}
2878 	}
2879 }
2880 #endif
2881 
2882 static const struct net_device_ops bnad_netdev_ops = {
2883 	.ndo_open		= bnad_open,
2884 	.ndo_stop		= bnad_stop,
2885 	.ndo_start_xmit		= bnad_start_xmit,
2886 	.ndo_get_stats64		= bnad_get_stats64,
2887 	.ndo_set_rx_mode	= bnad_set_rx_mode,
2888 	.ndo_set_multicast_list = bnad_set_rx_mode,
2889 	.ndo_validate_addr      = eth_validate_addr,
2890 	.ndo_set_mac_address    = bnad_set_mac_address,
2891 	.ndo_change_mtu		= bnad_change_mtu,
2892 	.ndo_vlan_rx_register   = bnad_vlan_rx_register,
2893 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
2894 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
2895 #ifdef CONFIG_NET_POLL_CONTROLLER
2896 	.ndo_poll_controller    = bnad_netpoll
2897 #endif
2898 };
2899 
2900 static void
bnad_netdev_init(struct bnad * bnad,bool using_dac)2901 bnad_netdev_init(struct bnad *bnad, bool using_dac)
2902 {
2903 	struct net_device *netdev = bnad->netdev;
2904 
2905 	netdev->features |= NETIF_F_IPV6_CSUM;
2906 	netdev->features |= NETIF_F_TSO;
2907 	netdev->features |= NETIF_F_TSO6;
2908 
2909 	netdev->features |= NETIF_F_GRO;
2910 	pr_warn("bna: GRO enabled, using kernel stack GRO\n");
2911 
2912 	netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2913 
2914 	if (using_dac)
2915 		netdev->features |= NETIF_F_HIGHDMA;
2916 
2917 	netdev->features |=
2918 		NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2919 		NETIF_F_HW_VLAN_FILTER;
2920 
2921 	netdev->vlan_features = netdev->features;
2922 	netdev->mem_start = bnad->mmio_start;
2923 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
2924 
2925 	netdev->netdev_ops = &bnad_netdev_ops;
2926 	bnad_set_ethtool_ops(netdev);
2927 }
2928 
2929 /*
2930  * 1. Initialize the bnad structure
2931  * 2. Setup netdev pointer in pci_dev
2932  * 3. Initialze Tx free tasklet
2933  * 4. Initialize no. of TxQ & CQs & MSIX vectors
2934  */
2935 static int
bnad_init(struct bnad * bnad,struct pci_dev * pdev,struct net_device * netdev)2936 bnad_init(struct bnad *bnad,
2937 	  struct pci_dev *pdev, struct net_device *netdev)
2938 {
2939 	unsigned long flags;
2940 
2941 	SET_NETDEV_DEV(netdev, &pdev->dev);
2942 	pci_set_drvdata(pdev, netdev);
2943 
2944 	bnad->netdev = netdev;
2945 	bnad->pcidev = pdev;
2946 	bnad->mmio_start = pci_resource_start(pdev, 0);
2947 	bnad->mmio_len = pci_resource_len(pdev, 0);
2948 	bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
2949 	if (!bnad->bar0) {
2950 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
2951 		pci_set_drvdata(pdev, NULL);
2952 		return -ENOMEM;
2953 	}
2954 	pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
2955 	       (unsigned long long) bnad->mmio_len);
2956 
2957 	spin_lock_irqsave(&bnad->bna_lock, flags);
2958 	if (!bnad_msix_disable)
2959 		bnad->cfg_flags = BNAD_CF_MSIX;
2960 
2961 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
2962 
2963 	bnad_q_num_init(bnad);
2964 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2965 
2966 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
2967 		(bnad->num_rx * bnad->num_rxp_per_rx) +
2968 			 BNAD_MAILBOX_MSIX_VECTORS;
2969 
2970 	bnad->txq_depth = BNAD_TXQ_DEPTH;
2971 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
2972 	bnad->rx_csum = true;
2973 
2974 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
2975 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
2976 
2977 	tasklet_init(&bnad->tx_free_tasklet, bnad_tx_free_tasklet,
2978 		     (unsigned long)bnad);
2979 
2980 	return 0;
2981 }
2982 
2983 /*
2984  * Must be called after bnad_pci_uninit()
2985  * so that iounmap() and pci_set_drvdata(NULL)
2986  * happens only after PCI uninitialization.
2987  */
2988 static void
bnad_uninit(struct bnad * bnad)2989 bnad_uninit(struct bnad *bnad)
2990 {
2991 	if (bnad->bar0)
2992 		iounmap(bnad->bar0);
2993 	pci_set_drvdata(bnad->pcidev, NULL);
2994 }
2995 
2996 /*
2997  * Initialize locks
2998 	a) Per device mutes used for serializing configuration
2999 	   changes from OS interface
3000 	b) spin lock used to protect bna state machine
3001  */
3002 static void
bnad_lock_init(struct bnad * bnad)3003 bnad_lock_init(struct bnad *bnad)
3004 {
3005 	spin_lock_init(&bnad->bna_lock);
3006 	mutex_init(&bnad->conf_mutex);
3007 }
3008 
3009 static void
bnad_lock_uninit(struct bnad * bnad)3010 bnad_lock_uninit(struct bnad *bnad)
3011 {
3012 	mutex_destroy(&bnad->conf_mutex);
3013 }
3014 
3015 /* PCI Initialization */
3016 static int
bnad_pci_init(struct bnad * bnad,struct pci_dev * pdev,bool * using_dac)3017 bnad_pci_init(struct bnad *bnad,
3018 	      struct pci_dev *pdev, bool *using_dac)
3019 {
3020 	int err;
3021 
3022 	err = pci_enable_device(pdev);
3023 	if (err)
3024 		return err;
3025 	err = pci_request_regions(pdev, BNAD_NAME);
3026 	if (err)
3027 		goto disable_device;
3028 	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3029 	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3030 		*using_dac = 1;
3031 	} else {
3032 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3033 		if (err) {
3034 			err = dma_set_coherent_mask(&pdev->dev,
3035 						    DMA_BIT_MASK(32));
3036 			if (err)
3037 				goto release_regions;
3038 		}
3039 		*using_dac = 0;
3040 	}
3041 	pci_set_master(pdev);
3042 	return 0;
3043 
3044 release_regions:
3045 	pci_release_regions(pdev);
3046 disable_device:
3047 	pci_disable_device(pdev);
3048 
3049 	return err;
3050 }
3051 
3052 static void
bnad_pci_uninit(struct pci_dev * pdev)3053 bnad_pci_uninit(struct pci_dev *pdev)
3054 {
3055 	pci_release_regions(pdev);
3056 	pci_disable_device(pdev);
3057 }
3058 
3059 static int __devinit
bnad_pci_probe(struct pci_dev * pdev,const struct pci_device_id * pcidev_id)3060 bnad_pci_probe(struct pci_dev *pdev,
3061 		const struct pci_device_id *pcidev_id)
3062 {
3063 	bool 	using_dac = false;
3064 	int 	err;
3065 	struct bnad *bnad;
3066 	struct bna *bna;
3067 	struct net_device *netdev;
3068 	struct bfa_pcidev pcidev_info;
3069 	unsigned long flags;
3070 
3071 	pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3072 	       pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3073 
3074 	mutex_lock(&bnad_fwimg_mutex);
3075 	if (!cna_get_firmware_buf(pdev)) {
3076 		mutex_unlock(&bnad_fwimg_mutex);
3077 		pr_warn("Failed to load Firmware Image!\n");
3078 		return -ENODEV;
3079 	}
3080 	mutex_unlock(&bnad_fwimg_mutex);
3081 
3082 	/*
3083 	 * Allocates sizeof(struct net_device + struct bnad)
3084 	 * bnad = netdev->priv
3085 	 */
3086 	netdev = alloc_etherdev(sizeof(struct bnad));
3087 	if (!netdev) {
3088 		dev_err(&pdev->dev, "alloc_etherdev failed\n");
3089 		err = -ENOMEM;
3090 		return err;
3091 	}
3092 	bnad = netdev_priv(netdev);
3093 
3094 	/*
3095 	 * PCI initialization
3096 	 * 	Output : using_dac = 1 for 64 bit DMA
3097 	 *			   = 0 for 32 bit DMA
3098 	 */
3099 	err = bnad_pci_init(bnad, pdev, &using_dac);
3100 	if (err)
3101 		goto free_netdev;
3102 
3103 	bnad_lock_init(bnad);
3104 	/*
3105 	 * Initialize bnad structure
3106 	 * Setup relation between pci_dev & netdev
3107 	 * Init Tx free tasklet
3108 	 */
3109 	err = bnad_init(bnad, pdev, netdev);
3110 	if (err)
3111 		goto pci_uninit;
3112 	/* Initialize netdev structure, set up ethtool ops */
3113 	bnad_netdev_init(bnad, using_dac);
3114 
3115 	/* Set link to down state */
3116 	netif_carrier_off(netdev);
3117 
3118 	bnad_enable_msix(bnad);
3119 
3120 	/* Get resource requirement form bna */
3121 	bna_res_req(&bnad->res_info[0]);
3122 
3123 	/* Allocate resources from bna */
3124 	err = bnad_res_alloc(bnad);
3125 	if (err)
3126 		goto free_netdev;
3127 
3128 	bna = &bnad->bna;
3129 
3130 	/* Setup pcidev_info for bna_init() */
3131 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3132 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3133 	pcidev_info.device_id = bnad->pcidev->device;
3134 	pcidev_info.pci_bar_kva = bnad->bar0;
3135 
3136 	mutex_lock(&bnad->conf_mutex);
3137 
3138 	spin_lock_irqsave(&bnad->bna_lock, flags);
3139 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3140 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3141 
3142 	bnad->stats.bna_stats = &bna->stats;
3143 
3144 	/* Set up timers */
3145 	setup_timer(&bnad->bna.device.ioc.ioc_timer, bnad_ioc_timeout,
3146 				((unsigned long)bnad));
3147 	setup_timer(&bnad->bna.device.ioc.hb_timer, bnad_ioc_hb_check,
3148 				((unsigned long)bnad));
3149 	setup_timer(&bnad->bna.device.ioc.iocpf_timer, bnad_iocpf_timeout,
3150 				((unsigned long)bnad));
3151 	setup_timer(&bnad->bna.device.ioc.sem_timer, bnad_iocpf_sem_timeout,
3152 				((unsigned long)bnad));
3153 
3154 	/* Now start the timer before calling IOC */
3155 	mod_timer(&bnad->bna.device.ioc.iocpf_timer,
3156 		  jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3157 
3158 	/*
3159 	 * Start the chip
3160 	 * Don't care even if err != 0, bna state machine will
3161 	 * deal with it
3162 	 */
3163 	err = bnad_device_enable(bnad);
3164 
3165 	/* Get the burnt-in mac */
3166 	spin_lock_irqsave(&bnad->bna_lock, flags);
3167 	bna_port_mac_get(&bna->port, &bnad->perm_addr);
3168 	bnad_set_netdev_perm_addr(bnad);
3169 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3170 
3171 	mutex_unlock(&bnad->conf_mutex);
3172 
3173 	/* Finally, reguister with net_device layer */
3174 	err = register_netdev(netdev);
3175 	if (err) {
3176 		pr_err("BNA : Registering with netdev failed\n");
3177 		goto disable_device;
3178 	}
3179 
3180 	return 0;
3181 
3182 disable_device:
3183 	mutex_lock(&bnad->conf_mutex);
3184 	bnad_device_disable(bnad);
3185 	del_timer_sync(&bnad->bna.device.ioc.ioc_timer);
3186 	del_timer_sync(&bnad->bna.device.ioc.sem_timer);
3187 	del_timer_sync(&bnad->bna.device.ioc.hb_timer);
3188 	spin_lock_irqsave(&bnad->bna_lock, flags);
3189 	bna_uninit(bna);
3190 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3191 	mutex_unlock(&bnad->conf_mutex);
3192 
3193 	bnad_res_free(bnad);
3194 	bnad_disable_msix(bnad);
3195 pci_uninit:
3196 	bnad_pci_uninit(pdev);
3197 	bnad_lock_uninit(bnad);
3198 	bnad_uninit(bnad);
3199 free_netdev:
3200 	free_netdev(netdev);
3201 	return err;
3202 }
3203 
3204 static void __devexit
bnad_pci_remove(struct pci_dev * pdev)3205 bnad_pci_remove(struct pci_dev *pdev)
3206 {
3207 	struct net_device *netdev = pci_get_drvdata(pdev);
3208 	struct bnad *bnad;
3209 	struct bna *bna;
3210 	unsigned long flags;
3211 
3212 	if (!netdev)
3213 		return;
3214 
3215 	pr_info("%s bnad_pci_remove\n", netdev->name);
3216 	bnad = netdev_priv(netdev);
3217 	bna = &bnad->bna;
3218 
3219 	unregister_netdev(netdev);
3220 
3221 	mutex_lock(&bnad->conf_mutex);
3222 	bnad_device_disable(bnad);
3223 	del_timer_sync(&bnad->bna.device.ioc.ioc_timer);
3224 	del_timer_sync(&bnad->bna.device.ioc.sem_timer);
3225 	del_timer_sync(&bnad->bna.device.ioc.hb_timer);
3226 	spin_lock_irqsave(&bnad->bna_lock, flags);
3227 	bna_uninit(bna);
3228 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3229 	mutex_unlock(&bnad->conf_mutex);
3230 
3231 	bnad_res_free(bnad);
3232 	bnad_disable_msix(bnad);
3233 	bnad_pci_uninit(pdev);
3234 	bnad_lock_uninit(bnad);
3235 	bnad_uninit(bnad);
3236 	free_netdev(netdev);
3237 }
3238 
3239 static const struct pci_device_id bnad_pci_id_table[] = {
3240 	{
3241 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3242 			PCI_DEVICE_ID_BROCADE_CT),
3243 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3244 		.class_mask =  0xffff00
3245 	}, {0,  }
3246 };
3247 
3248 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3249 
3250 static struct pci_driver bnad_pci_driver = {
3251 	.name = BNAD_NAME,
3252 	.id_table = bnad_pci_id_table,
3253 	.probe = bnad_pci_probe,
3254 	.remove = __devexit_p(bnad_pci_remove),
3255 };
3256 
3257 static int __init
bnad_module_init(void)3258 bnad_module_init(void)
3259 {
3260 	int err;
3261 
3262 	pr_info("Brocade 10G Ethernet driver\n");
3263 
3264 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3265 
3266 	err = pci_register_driver(&bnad_pci_driver);
3267 	if (err < 0) {
3268 		pr_err("bna : PCI registration failed in module init "
3269 		       "(%d)\n", err);
3270 		return err;
3271 	}
3272 
3273 	return 0;
3274 }
3275 
3276 static void __exit
bnad_module_exit(void)3277 bnad_module_exit(void)
3278 {
3279 	pci_unregister_driver(&bnad_pci_driver);
3280 
3281 	if (bfi_fw)
3282 		release_firmware(bfi_fw);
3283 }
3284 
3285 module_init(bnad_module_init);
3286 module_exit(bnad_module_exit);
3287 
3288 MODULE_AUTHOR("Brocade");
3289 MODULE_LICENSE("GPL");
3290 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3291 MODULE_VERSION(BNAD_VERSION);
3292 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3293