1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
touch_buffer(struct buffer_head * bh)60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
__lock_buffer(struct buffer_head * bh)67 void __lock_buffer(struct buffer_head *bh)
68 {
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
unlock_buffer(struct buffer_head * bh)73 void unlock_buffer(struct buffer_head *bh)
74 {
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82 * Returns if the folio has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the folio_test_dirty information is stale. If
84 * any of the buffers are locked, it is assumed they are locked for IO.
85 */
buffer_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)86 void buffer_check_dirty_writeback(struct folio *folio,
87 bool *dirty, bool *writeback)
88 {
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!folio_test_locked(folio));
94
95 head = folio_buffers(folio);
96 if (!head)
97 return;
98
99 if (folio_test_writeback(folio))
100 *writeback = true;
101
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
__wait_on_buffer(struct buffer_head * bh)120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
buffer_io_error(struct buffer_head * bh,char * msg)126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135 * End-of-IO handler helper function which does not touch the bh after
136 * unlocking it.
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
140 * itself.
141 */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 if (uptodate) {
145 set_buffer_uptodate(bh);
146 } else {
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh);
149 }
150 unlock_buffer(bh);
151 }
152
153 /*
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer. This is what ll_rw_block uses too.
156 */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 __end_buffer_read_notouch(bh, uptodate);
160 put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
end_buffer_write_sync(struct buffer_head * bh,int uptodate)164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 if (uptodate) {
167 set_buffer_uptodate(bh);
168 } else {
169 buffer_io_error(bh, ", lost sync page write");
170 mark_buffer_write_io_error(bh);
171 clear_buffer_uptodate(bh);
172 }
173 unlock_buffer(bh);
174 put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
182 * private_lock.
183 *
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
187 */
188 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block)189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
194 pgoff_t index;
195 struct buffer_head *bh;
196 struct buffer_head *head;
197 struct page *page;
198 int all_mapped = 1;
199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 if (!page)
204 goto out;
205
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
208 goto out_unlock;
209 head = page_buffers(page);
210 bh = head;
211 do {
212 if (!buffer_mapped(bh))
213 all_mapped = 0;
214 else if (bh->b_blocknr == block) {
215 ret = bh;
216 get_bh(bh);
217 goto out_unlock;
218 }
219 bh = bh->b_this_page;
220 } while (bh != head);
221
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
226 */
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
236 }
237 out_unlock:
238 spin_unlock(&bd_mapping->private_lock);
239 put_page(page);
240 out:
241 return ret;
242 }
243
end_buffer_async_read(struct buffer_head * bh,int uptodate)244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 unsigned long flags;
247 struct buffer_head *first;
248 struct buffer_head *tmp;
249 struct page *page;
250 int page_uptodate = 1;
251
252 BUG_ON(!buffer_async_read(bh));
253
254 page = bh->b_page;
255 if (uptodate) {
256 set_buffer_uptodate(bh);
257 } else {
258 clear_buffer_uptodate(bh);
259 buffer_io_error(bh, ", async page read");
260 SetPageError(page);
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
268 first = page_buffers(page);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 page_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284 /*
285 * If none of the buffers had errors and they are all
286 * uptodate then we can set the page uptodate.
287 */
288 if (page_uptodate && !PageError(page))
289 SetPageUptodate(page);
290 unlock_page(page);
291 return;
292
293 still_busy:
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 return;
296 }
297
298 struct decrypt_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
301 };
302
decrypt_bh(struct work_struct * work)303 static void decrypt_bh(struct work_struct *work)
304 {
305 struct decrypt_bh_ctx *ctx =
306 container_of(work, struct decrypt_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
308 int err;
309
310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 bh_offset(bh));
312 end_buffer_async_read(bh, err == 0);
313 kfree(ctx);
314 }
315
316 /*
317 * I/O completion handler for block_read_full_folio() - pages
318 * which come unlocked at the end of I/O.
319 */
end_buffer_async_read_io(struct buffer_head * bh,int uptodate)320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 /* Decrypt if needed */
323 if (uptodate &&
324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327 if (ctx) {
328 INIT_WORK(&ctx->work, decrypt_bh);
329 ctx->bh = bh;
330 fscrypt_enqueue_decrypt_work(&ctx->work);
331 return;
332 }
333 uptodate = 0;
334 }
335 end_buffer_async_read(bh, uptodate);
336 }
337
338 /*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
end_buffer_async_write(struct buffer_head * bh,int uptodate)342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 unsigned long flags;
345 struct buffer_head *first;
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
355 buffer_io_error(bh, ", lost async page write");
356 mark_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 end_page_writeback(page);
376 return;
377
378 still_busy:
379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383
384 /*
385 * If a page's buffers are under async readin (end_buffer_async_read
386 * completion) then there is a possibility that another thread of
387 * control could lock one of the buffers after it has completed
388 * but while some of the other buffers have not completed. This
389 * locked buffer would confuse end_buffer_async_read() into not unlocking
390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
391 * that this buffer is not under async I/O.
392 *
393 * The page comes unlocked when it has no locked buffer_async buffers
394 * left.
395 *
396 * PageLocked prevents anyone starting new async I/O reads any of
397 * the buffers.
398 *
399 * PageWriteback is used to prevent simultaneous writeout of the same
400 * page.
401 *
402 * PageLocked prevents anyone from starting writeback of a page which is
403 * under read I/O (PageWriteback is only ever set against a locked page).
404 */
mark_buffer_async_read(struct buffer_head * bh)405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407 bh->b_end_io = end_buffer_async_read_io;
408 set_buffer_async_read(bh);
409 }
410
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 bh_end_io_t *handler)
413 {
414 bh->b_end_io = handler;
415 set_buffer_async_write(bh);
416 }
417
mark_buffer_async_write(struct buffer_head * bh)418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420 mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425 /*
426 * fs/buffer.c contains helper functions for buffer-backed address space's
427 * fsync functions. A common requirement for buffer-based filesystems is
428 * that certain data from the backing blockdev needs to be written out for
429 * a successful fsync(). For example, ext2 indirect blocks need to be
430 * written back and waited upon before fsync() returns.
431 *
432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434 * management of a list of dependent buffers at ->i_mapping->private_list.
435 *
436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
437 * from their controlling inode's queue when they are being freed. But
438 * try_to_free_buffers() will be operating against the *blockdev* mapping
439 * at the time, not against the S_ISREG file which depends on those buffers.
440 * So the locking for private_list is via the private_lock in the address_space
441 * which backs the buffers. Which is different from the address_space
442 * against which the buffers are listed. So for a particular address_space,
443 * mapping->private_lock does *not* protect mapping->private_list! In fact,
444 * mapping->private_list will always be protected by the backing blockdev's
445 * ->private_lock.
446 *
447 * Which introduces a requirement: all buffers on an address_space's
448 * ->private_list must be from the same address_space: the blockdev's.
449 *
450 * address_spaces which do not place buffers at ->private_list via these
451 * utility functions are free to use private_lock and private_list for
452 * whatever they want. The only requirement is that list_empty(private_list)
453 * be true at clear_inode() time.
454 *
455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
456 * filesystems should do that. invalidate_inode_buffers() should just go
457 * BUG_ON(!list_empty).
458 *
459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
460 * take an address_space, not an inode. And it should be called
461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462 * queued up.
463 *
464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465 * list if it is already on a list. Because if the buffer is on a list,
466 * it *must* already be on the right one. If not, the filesystem is being
467 * silly. This will save a ton of locking. But first we have to ensure
468 * that buffers are taken *off* the old inode's list when they are freed
469 * (presumably in truncate). That requires careful auditing of all
470 * filesystems (do it inside bforget()). It could also be done by bringing
471 * b_inode back.
472 */
473
474 /*
475 * The buffer's backing address_space's private_lock must be held
476 */
__remove_assoc_queue(struct buffer_head * bh)477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479 list_del_init(&bh->b_assoc_buffers);
480 WARN_ON(!bh->b_assoc_map);
481 bh->b_assoc_map = NULL;
482 }
483
inode_has_buffers(struct inode * inode)484 int inode_has_buffers(struct inode *inode)
485 {
486 return !list_empty(&inode->i_data.private_list);
487 }
488
489 /*
490 * osync is designed to support O_SYNC io. It waits synchronously for
491 * all already-submitted IO to complete, but does not queue any new
492 * writes to the disk.
493 *
494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495 * you dirty the buffers, and then use osync_inode_buffers to wait for
496 * completion. Any other dirty buffers which are not yet queued for
497 * write will not be flushed to disk by the osync.
498 */
osync_buffers_list(spinlock_t * lock,struct list_head * list)499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501 struct buffer_head *bh;
502 struct list_head *p;
503 int err = 0;
504
505 spin_lock(lock);
506 repeat:
507 list_for_each_prev(p, list) {
508 bh = BH_ENTRY(p);
509 if (buffer_locked(bh)) {
510 get_bh(bh);
511 spin_unlock(lock);
512 wait_on_buffer(bh);
513 if (!buffer_uptodate(bh))
514 err = -EIO;
515 brelse(bh);
516 spin_lock(lock);
517 goto repeat;
518 }
519 }
520 spin_unlock(lock);
521 return err;
522 }
523
emergency_thaw_bdev(struct super_block * sb)524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529
530 /**
531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532 * @mapping: the mapping which wants those buffers written
533 *
534 * Starts I/O against the buffers at mapping->private_list, and waits upon
535 * that I/O.
536 *
537 * Basically, this is a convenience function for fsync().
538 * @mapping is a file or directory which needs those buffers to be written for
539 * a successful fsync().
540 */
sync_mapping_buffers(struct address_space * mapping)541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543 struct address_space *buffer_mapping = mapping->private_data;
544
545 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 return 0;
547
548 return fsync_buffers_list(&buffer_mapping->private_lock,
549 &mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552
553 /*
554 * Called when we've recently written block `bblock', and it is known that
555 * `bblock' was for a buffer_boundary() buffer. This means that the block at
556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
557 * dirty, schedule it for IO. So that indirects merge nicely with their data.
558 */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)559 void write_boundary_block(struct block_device *bdev,
560 sector_t bblock, unsigned blocksize)
561 {
562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 if (bh) {
564 if (buffer_dirty(bh))
565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566 put_bh(bh);
567 }
568 }
569
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572 struct address_space *mapping = inode->i_mapping;
573 struct address_space *buffer_mapping = bh->b_page->mapping;
574
575 mark_buffer_dirty(bh);
576 if (!mapping->private_data) {
577 mapping->private_data = buffer_mapping;
578 } else {
579 BUG_ON(mapping->private_data != buffer_mapping);
580 }
581 if (!bh->b_assoc_map) {
582 spin_lock(&buffer_mapping->private_lock);
583 list_move_tail(&bh->b_assoc_buffers,
584 &mapping->private_list);
585 bh->b_assoc_map = mapping;
586 spin_unlock(&buffer_mapping->private_lock);
587 }
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591 /*
592 * Add a page to the dirty page list.
593 *
594 * It is a sad fact of life that this function is called from several places
595 * deeply under spinlocking. It may not sleep.
596 *
597 * If the page has buffers, the uptodate buffers are set dirty, to preserve
598 * dirty-state coherency between the page and the buffers. It the page does
599 * not have buffers then when they are later attached they will all be set
600 * dirty.
601 *
602 * The buffers are dirtied before the page is dirtied. There's a small race
603 * window in which a writepage caller may see the page cleanness but not the
604 * buffer dirtiness. That's fine. If this code were to set the page dirty
605 * before the buffers, a concurrent writepage caller could clear the page dirty
606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607 * page on the dirty page list.
608 *
609 * We use private_lock to lock against try_to_free_buffers while using the
610 * page's buffer list. Also use this to protect against clean buffers being
611 * added to the page after it was set dirty.
612 *
613 * FIXME: may need to call ->reservepage here as well. That's rather up to the
614 * address_space though.
615 */
block_dirty_folio(struct address_space * mapping,struct folio * folio)616 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
617 {
618 struct buffer_head *head;
619 bool newly_dirty;
620
621 spin_lock(&mapping->private_lock);
622 head = folio_buffers(folio);
623 if (head) {
624 struct buffer_head *bh = head;
625
626 do {
627 set_buffer_dirty(bh);
628 bh = bh->b_this_page;
629 } while (bh != head);
630 }
631 /*
632 * Lock out page's memcg migration to keep PageDirty
633 * synchronized with per-memcg dirty page counters.
634 */
635 folio_memcg_lock(folio);
636 newly_dirty = !folio_test_set_dirty(folio);
637 spin_unlock(&mapping->private_lock);
638
639 if (newly_dirty)
640 __folio_mark_dirty(folio, mapping, 1);
641
642 folio_memcg_unlock(folio);
643
644 if (newly_dirty)
645 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
646
647 return newly_dirty;
648 }
649 EXPORT_SYMBOL(block_dirty_folio);
650
651 /*
652 * Write out and wait upon a list of buffers.
653 *
654 * We have conflicting pressures: we want to make sure that all
655 * initially dirty buffers get waited on, but that any subsequently
656 * dirtied buffers don't. After all, we don't want fsync to last
657 * forever if somebody is actively writing to the file.
658 *
659 * Do this in two main stages: first we copy dirty buffers to a
660 * temporary inode list, queueing the writes as we go. Then we clean
661 * up, waiting for those writes to complete.
662 *
663 * During this second stage, any subsequent updates to the file may end
664 * up refiling the buffer on the original inode's dirty list again, so
665 * there is a chance we will end up with a buffer queued for write but
666 * not yet completed on that list. So, as a final cleanup we go through
667 * the osync code to catch these locked, dirty buffers without requeuing
668 * any newly dirty buffers for write.
669 */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)670 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
671 {
672 struct buffer_head *bh;
673 struct list_head tmp;
674 struct address_space *mapping;
675 int err = 0, err2;
676 struct blk_plug plug;
677
678 INIT_LIST_HEAD(&tmp);
679 blk_start_plug(&plug);
680
681 spin_lock(lock);
682 while (!list_empty(list)) {
683 bh = BH_ENTRY(list->next);
684 mapping = bh->b_assoc_map;
685 __remove_assoc_queue(bh);
686 /* Avoid race with mark_buffer_dirty_inode() which does
687 * a lockless check and we rely on seeing the dirty bit */
688 smp_mb();
689 if (buffer_dirty(bh) || buffer_locked(bh)) {
690 list_add(&bh->b_assoc_buffers, &tmp);
691 bh->b_assoc_map = mapping;
692 if (buffer_dirty(bh)) {
693 get_bh(bh);
694 spin_unlock(lock);
695 /*
696 * Ensure any pending I/O completes so that
697 * write_dirty_buffer() actually writes the
698 * current contents - it is a noop if I/O is
699 * still in flight on potentially older
700 * contents.
701 */
702 write_dirty_buffer(bh, REQ_SYNC);
703
704 /*
705 * Kick off IO for the previous mapping. Note
706 * that we will not run the very last mapping,
707 * wait_on_buffer() will do that for us
708 * through sync_buffer().
709 */
710 brelse(bh);
711 spin_lock(lock);
712 }
713 }
714 }
715
716 spin_unlock(lock);
717 blk_finish_plug(&plug);
718 spin_lock(lock);
719
720 while (!list_empty(&tmp)) {
721 bh = BH_ENTRY(tmp.prev);
722 get_bh(bh);
723 mapping = bh->b_assoc_map;
724 __remove_assoc_queue(bh);
725 /* Avoid race with mark_buffer_dirty_inode() which does
726 * a lockless check and we rely on seeing the dirty bit */
727 smp_mb();
728 if (buffer_dirty(bh)) {
729 list_add(&bh->b_assoc_buffers,
730 &mapping->private_list);
731 bh->b_assoc_map = mapping;
732 }
733 spin_unlock(lock);
734 wait_on_buffer(bh);
735 if (!buffer_uptodate(bh))
736 err = -EIO;
737 brelse(bh);
738 spin_lock(lock);
739 }
740
741 spin_unlock(lock);
742 err2 = osync_buffers_list(lock, list);
743 if (err)
744 return err;
745 else
746 return err2;
747 }
748
749 /*
750 * Invalidate any and all dirty buffers on a given inode. We are
751 * probably unmounting the fs, but that doesn't mean we have already
752 * done a sync(). Just drop the buffers from the inode list.
753 *
754 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
755 * assumes that all the buffers are against the blockdev. Not true
756 * for reiserfs.
757 */
invalidate_inode_buffers(struct inode * inode)758 void invalidate_inode_buffers(struct inode *inode)
759 {
760 if (inode_has_buffers(inode)) {
761 struct address_space *mapping = &inode->i_data;
762 struct list_head *list = &mapping->private_list;
763 struct address_space *buffer_mapping = mapping->private_data;
764
765 spin_lock(&buffer_mapping->private_lock);
766 while (!list_empty(list))
767 __remove_assoc_queue(BH_ENTRY(list->next));
768 spin_unlock(&buffer_mapping->private_lock);
769 }
770 }
771 EXPORT_SYMBOL(invalidate_inode_buffers);
772
773 /*
774 * Remove any clean buffers from the inode's buffer list. This is called
775 * when we're trying to free the inode itself. Those buffers can pin it.
776 *
777 * Returns true if all buffers were removed.
778 */
remove_inode_buffers(struct inode * inode)779 int remove_inode_buffers(struct inode *inode)
780 {
781 int ret = 1;
782
783 if (inode_has_buffers(inode)) {
784 struct address_space *mapping = &inode->i_data;
785 struct list_head *list = &mapping->private_list;
786 struct address_space *buffer_mapping = mapping->private_data;
787
788 spin_lock(&buffer_mapping->private_lock);
789 while (!list_empty(list)) {
790 struct buffer_head *bh = BH_ENTRY(list->next);
791 if (buffer_dirty(bh)) {
792 ret = 0;
793 break;
794 }
795 __remove_assoc_queue(bh);
796 }
797 spin_unlock(&buffer_mapping->private_lock);
798 }
799 return ret;
800 }
801
802 /*
803 * Create the appropriate buffers when given a page for data area and
804 * the size of each buffer.. Use the bh->b_this_page linked list to
805 * follow the buffers created. Return NULL if unable to create more
806 * buffers.
807 *
808 * The retry flag is used to differentiate async IO (paging, swapping)
809 * which may not fail from ordinary buffer allocations.
810 */
alloc_page_buffers(struct page * page,unsigned long size,bool retry)811 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
812 bool retry)
813 {
814 struct buffer_head *bh, *head;
815 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
816 long offset;
817 struct mem_cgroup *memcg, *old_memcg;
818
819 if (retry)
820 gfp |= __GFP_NOFAIL;
821
822 /* The page lock pins the memcg */
823 memcg = page_memcg(page);
824 old_memcg = set_active_memcg(memcg);
825
826 head = NULL;
827 offset = PAGE_SIZE;
828 while ((offset -= size) >= 0) {
829 bh = alloc_buffer_head(gfp);
830 if (!bh)
831 goto no_grow;
832
833 bh->b_this_page = head;
834 bh->b_blocknr = -1;
835 head = bh;
836
837 bh->b_size = size;
838
839 /* Link the buffer to its page */
840 set_bh_page(bh, page, offset);
841 }
842 out:
843 set_active_memcg(old_memcg);
844 return head;
845 /*
846 * In case anything failed, we just free everything we got.
847 */
848 no_grow:
849 if (head) {
850 do {
851 bh = head;
852 head = head->b_this_page;
853 free_buffer_head(bh);
854 } while (head);
855 }
856
857 goto out;
858 }
859 EXPORT_SYMBOL_GPL(alloc_page_buffers);
860
861 static inline void
link_dev_buffers(struct page * page,struct buffer_head * head)862 link_dev_buffers(struct page *page, struct buffer_head *head)
863 {
864 struct buffer_head *bh, *tail;
865
866 bh = head;
867 do {
868 tail = bh;
869 bh = bh->b_this_page;
870 } while (bh);
871 tail->b_this_page = head;
872 attach_page_private(page, head);
873 }
874
blkdev_max_block(struct block_device * bdev,unsigned int size)875 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
876 {
877 sector_t retval = ~((sector_t)0);
878 loff_t sz = bdev_nr_bytes(bdev);
879
880 if (sz) {
881 unsigned int sizebits = blksize_bits(size);
882 retval = (sz >> sizebits);
883 }
884 return retval;
885 }
886
887 /*
888 * Initialise the state of a blockdev page's buffers.
889 */
890 static sector_t
init_page_buffers(struct page * page,struct block_device * bdev,sector_t block,int size)891 init_page_buffers(struct page *page, struct block_device *bdev,
892 sector_t block, int size)
893 {
894 struct buffer_head *head = page_buffers(page);
895 struct buffer_head *bh = head;
896 int uptodate = PageUptodate(page);
897 sector_t end_block = blkdev_max_block(bdev, size);
898
899 do {
900 if (!buffer_mapped(bh)) {
901 bh->b_end_io = NULL;
902 bh->b_private = NULL;
903 bh->b_bdev = bdev;
904 bh->b_blocknr = block;
905 if (uptodate)
906 set_buffer_uptodate(bh);
907 if (block < end_block)
908 set_buffer_mapped(bh);
909 }
910 block++;
911 bh = bh->b_this_page;
912 } while (bh != head);
913
914 /*
915 * Caller needs to validate requested block against end of device.
916 */
917 return end_block;
918 }
919
920 /*
921 * Create the page-cache page that contains the requested block.
922 *
923 * This is used purely for blockdev mappings.
924 */
925 static int
grow_dev_page(struct block_device * bdev,sector_t block,pgoff_t index,int size,int sizebits,gfp_t gfp)926 grow_dev_page(struct block_device *bdev, sector_t block,
927 pgoff_t index, int size, int sizebits, gfp_t gfp)
928 {
929 struct inode *inode = bdev->bd_inode;
930 struct page *page;
931 struct buffer_head *bh;
932 sector_t end_block;
933 int ret = 0;
934 gfp_t gfp_mask;
935
936 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
937
938 /*
939 * XXX: __getblk_slow() can not really deal with failure and
940 * will endlessly loop on improvised global reclaim. Prefer
941 * looping in the allocator rather than here, at least that
942 * code knows what it's doing.
943 */
944 gfp_mask |= __GFP_NOFAIL;
945
946 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
947
948 BUG_ON(!PageLocked(page));
949
950 if (page_has_buffers(page)) {
951 bh = page_buffers(page);
952 if (bh->b_size == size) {
953 end_block = init_page_buffers(page, bdev,
954 (sector_t)index << sizebits,
955 size);
956 goto done;
957 }
958 if (!try_to_free_buffers(page_folio(page)))
959 goto failed;
960 }
961
962 /*
963 * Allocate some buffers for this page
964 */
965 bh = alloc_page_buffers(page, size, true);
966
967 /*
968 * Link the page to the buffers and initialise them. Take the
969 * lock to be atomic wrt __find_get_block(), which does not
970 * run under the page lock.
971 */
972 spin_lock(&inode->i_mapping->private_lock);
973 link_dev_buffers(page, bh);
974 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
975 size);
976 spin_unlock(&inode->i_mapping->private_lock);
977 done:
978 ret = (block < end_block) ? 1 : -ENXIO;
979 failed:
980 unlock_page(page);
981 put_page(page);
982 return ret;
983 }
984
985 /*
986 * Create buffers for the specified block device block's page. If
987 * that page was dirty, the buffers are set dirty also.
988 */
989 static int
grow_buffers(struct block_device * bdev,sector_t block,int size,gfp_t gfp)990 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
991 {
992 pgoff_t index;
993 int sizebits;
994
995 sizebits = PAGE_SHIFT - __ffs(size);
996 index = block >> sizebits;
997
998 /*
999 * Check for a block which wants to lie outside our maximum possible
1000 * pagecache index. (this comparison is done using sector_t types).
1001 */
1002 if (unlikely(index != block >> sizebits)) {
1003 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1004 "device %pg\n",
1005 __func__, (unsigned long long)block,
1006 bdev);
1007 return -EIO;
1008 }
1009
1010 /* Create a page with the proper size buffers.. */
1011 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1012 }
1013
1014 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1015 __getblk_slow(struct block_device *bdev, sector_t block,
1016 unsigned size, gfp_t gfp)
1017 {
1018 /* Size must be multiple of hard sectorsize */
1019 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1020 (size < 512 || size > PAGE_SIZE))) {
1021 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1022 size);
1023 printk(KERN_ERR "logical block size: %d\n",
1024 bdev_logical_block_size(bdev));
1025
1026 dump_stack();
1027 return NULL;
1028 }
1029
1030 for (;;) {
1031 struct buffer_head *bh;
1032 int ret;
1033
1034 bh = __find_get_block(bdev, block, size);
1035 if (bh)
1036 return bh;
1037
1038 ret = grow_buffers(bdev, block, size, gfp);
1039 if (ret < 0)
1040 return NULL;
1041 }
1042 }
1043
1044 /*
1045 * The relationship between dirty buffers and dirty pages:
1046 *
1047 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1048 * the page is tagged dirty in the page cache.
1049 *
1050 * At all times, the dirtiness of the buffers represents the dirtiness of
1051 * subsections of the page. If the page has buffers, the page dirty bit is
1052 * merely a hint about the true dirty state.
1053 *
1054 * When a page is set dirty in its entirety, all its buffers are marked dirty
1055 * (if the page has buffers).
1056 *
1057 * When a buffer is marked dirty, its page is dirtied, but the page's other
1058 * buffers are not.
1059 *
1060 * Also. When blockdev buffers are explicitly read with bread(), they
1061 * individually become uptodate. But their backing page remains not
1062 * uptodate - even if all of its buffers are uptodate. A subsequent
1063 * block_read_full_folio() against that folio will discover all the uptodate
1064 * buffers, will set the folio uptodate and will perform no I/O.
1065 */
1066
1067 /**
1068 * mark_buffer_dirty - mark a buffer_head as needing writeout
1069 * @bh: the buffer_head to mark dirty
1070 *
1071 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1072 * its backing page dirty, then tag the page as dirty in the page cache
1073 * and then attach the address_space's inode to its superblock's dirty
1074 * inode list.
1075 *
1076 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1077 * i_pages lock and mapping->host->i_lock.
1078 */
mark_buffer_dirty(struct buffer_head * bh)1079 void mark_buffer_dirty(struct buffer_head *bh)
1080 {
1081 WARN_ON_ONCE(!buffer_uptodate(bh));
1082
1083 trace_block_dirty_buffer(bh);
1084
1085 /*
1086 * Very *carefully* optimize the it-is-already-dirty case.
1087 *
1088 * Don't let the final "is it dirty" escape to before we
1089 * perhaps modified the buffer.
1090 */
1091 if (buffer_dirty(bh)) {
1092 smp_mb();
1093 if (buffer_dirty(bh))
1094 return;
1095 }
1096
1097 if (!test_set_buffer_dirty(bh)) {
1098 struct page *page = bh->b_page;
1099 struct address_space *mapping = NULL;
1100
1101 lock_page_memcg(page);
1102 if (!TestSetPageDirty(page)) {
1103 mapping = page_mapping(page);
1104 if (mapping)
1105 __set_page_dirty(page, mapping, 0);
1106 }
1107 unlock_page_memcg(page);
1108 if (mapping)
1109 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1110 }
1111 }
1112 EXPORT_SYMBOL(mark_buffer_dirty);
1113
mark_buffer_write_io_error(struct buffer_head * bh)1114 void mark_buffer_write_io_error(struct buffer_head *bh)
1115 {
1116 struct super_block *sb;
1117
1118 set_buffer_write_io_error(bh);
1119 /* FIXME: do we need to set this in both places? */
1120 if (bh->b_page && bh->b_page->mapping)
1121 mapping_set_error(bh->b_page->mapping, -EIO);
1122 if (bh->b_assoc_map)
1123 mapping_set_error(bh->b_assoc_map, -EIO);
1124 rcu_read_lock();
1125 sb = READ_ONCE(bh->b_bdev->bd_super);
1126 if (sb)
1127 errseq_set(&sb->s_wb_err, -EIO);
1128 rcu_read_unlock();
1129 }
1130 EXPORT_SYMBOL(mark_buffer_write_io_error);
1131
1132 /*
1133 * Decrement a buffer_head's reference count. If all buffers against a page
1134 * have zero reference count, are clean and unlocked, and if the page is clean
1135 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137 * a page but it ends up not being freed, and buffers may later be reattached).
1138 */
__brelse(struct buffer_head * buf)1139 void __brelse(struct buffer_head * buf)
1140 {
1141 if (atomic_read(&buf->b_count)) {
1142 put_bh(buf);
1143 return;
1144 }
1145 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1146 }
1147 EXPORT_SYMBOL(__brelse);
1148
1149 /*
1150 * bforget() is like brelse(), except it discards any
1151 * potentially dirty data.
1152 */
__bforget(struct buffer_head * bh)1153 void __bforget(struct buffer_head *bh)
1154 {
1155 clear_buffer_dirty(bh);
1156 if (bh->b_assoc_map) {
1157 struct address_space *buffer_mapping = bh->b_page->mapping;
1158
1159 spin_lock(&buffer_mapping->private_lock);
1160 list_del_init(&bh->b_assoc_buffers);
1161 bh->b_assoc_map = NULL;
1162 spin_unlock(&buffer_mapping->private_lock);
1163 }
1164 __brelse(bh);
1165 }
1166 EXPORT_SYMBOL(__bforget);
1167
__bread_slow(struct buffer_head * bh)1168 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169 {
1170 lock_buffer(bh);
1171 if (buffer_uptodate(bh)) {
1172 unlock_buffer(bh);
1173 return bh;
1174 } else {
1175 get_bh(bh);
1176 bh->b_end_io = end_buffer_read_sync;
1177 submit_bh(REQ_OP_READ, 0, bh);
1178 wait_on_buffer(bh);
1179 if (buffer_uptodate(bh))
1180 return bh;
1181 }
1182 brelse(bh);
1183 return NULL;
1184 }
1185
1186 /*
1187 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1188 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1189 * refcount elevated by one when they're in an LRU. A buffer can only appear
1190 * once in a particular CPU's LRU. A single buffer can be present in multiple
1191 * CPU's LRUs at the same time.
1192 *
1193 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194 * sb_find_get_block().
1195 *
1196 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1197 * a local interrupt disable for that.
1198 */
1199
1200 #define BH_LRU_SIZE 16
1201
1202 struct bh_lru {
1203 struct buffer_head *bhs[BH_LRU_SIZE];
1204 };
1205
1206 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207
1208 #ifdef CONFIG_SMP
1209 #define bh_lru_lock() local_irq_disable()
1210 #define bh_lru_unlock() local_irq_enable()
1211 #else
1212 #define bh_lru_lock() preempt_disable()
1213 #define bh_lru_unlock() preempt_enable()
1214 #endif
1215
check_irqs_on(void)1216 static inline void check_irqs_on(void)
1217 {
1218 #ifdef irqs_disabled
1219 BUG_ON(irqs_disabled());
1220 #endif
1221 }
1222
1223 /*
1224 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1225 * inserted at the front, and the buffer_head at the back if any is evicted.
1226 * Or, if already in the LRU it is moved to the front.
1227 */
bh_lru_install(struct buffer_head * bh)1228 static void bh_lru_install(struct buffer_head *bh)
1229 {
1230 struct buffer_head *evictee = bh;
1231 struct bh_lru *b;
1232 int i;
1233
1234 check_irqs_on();
1235 bh_lru_lock();
1236
1237 /*
1238 * the refcount of buffer_head in bh_lru prevents dropping the
1239 * attached page(i.e., try_to_free_buffers) so it could cause
1240 * failing page migration.
1241 * Skip putting upcoming bh into bh_lru until migration is done.
1242 */
1243 if (lru_cache_disabled()) {
1244 bh_lru_unlock();
1245 return;
1246 }
1247
1248 b = this_cpu_ptr(&bh_lrus);
1249 for (i = 0; i < BH_LRU_SIZE; i++) {
1250 swap(evictee, b->bhs[i]);
1251 if (evictee == bh) {
1252 bh_lru_unlock();
1253 return;
1254 }
1255 }
1256
1257 get_bh(bh);
1258 bh_lru_unlock();
1259 brelse(evictee);
1260 }
1261
1262 /*
1263 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1264 */
1265 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1266 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1267 {
1268 struct buffer_head *ret = NULL;
1269 unsigned int i;
1270
1271 check_irqs_on();
1272 bh_lru_lock();
1273 for (i = 0; i < BH_LRU_SIZE; i++) {
1274 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1275
1276 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1277 bh->b_size == size) {
1278 if (i) {
1279 while (i) {
1280 __this_cpu_write(bh_lrus.bhs[i],
1281 __this_cpu_read(bh_lrus.bhs[i - 1]));
1282 i--;
1283 }
1284 __this_cpu_write(bh_lrus.bhs[0], bh);
1285 }
1286 get_bh(bh);
1287 ret = bh;
1288 break;
1289 }
1290 }
1291 bh_lru_unlock();
1292 return ret;
1293 }
1294
1295 /*
1296 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1297 * it in the LRU and mark it as accessed. If it is not present then return
1298 * NULL
1299 */
1300 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1301 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1302 {
1303 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1304
1305 if (bh == NULL) {
1306 /* __find_get_block_slow will mark the page accessed */
1307 bh = __find_get_block_slow(bdev, block);
1308 if (bh)
1309 bh_lru_install(bh);
1310 } else
1311 touch_buffer(bh);
1312
1313 return bh;
1314 }
1315 EXPORT_SYMBOL(__find_get_block);
1316
1317 /*
1318 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1319 * which corresponds to the passed block_device, block and size. The
1320 * returned buffer has its reference count incremented.
1321 *
1322 * __getblk_gfp() will lock up the machine if grow_dev_page's
1323 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1324 */
1325 struct buffer_head *
__getblk_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1326 __getblk_gfp(struct block_device *bdev, sector_t block,
1327 unsigned size, gfp_t gfp)
1328 {
1329 struct buffer_head *bh = __find_get_block(bdev, block, size);
1330
1331 might_sleep();
1332 if (bh == NULL)
1333 bh = __getblk_slow(bdev, block, size, gfp);
1334 return bh;
1335 }
1336 EXPORT_SYMBOL(__getblk_gfp);
1337
1338 /*
1339 * Do async read-ahead on a buffer..
1340 */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1341 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1342 {
1343 struct buffer_head *bh = __getblk(bdev, block, size);
1344 if (likely(bh)) {
1345 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1346 brelse(bh);
1347 }
1348 }
1349 EXPORT_SYMBOL(__breadahead);
1350
__breadahead_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1351 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1352 gfp_t gfp)
1353 {
1354 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1355 if (likely(bh)) {
1356 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1357 brelse(bh);
1358 }
1359 }
1360 EXPORT_SYMBOL(__breadahead_gfp);
1361
1362 /**
1363 * __bread_gfp() - reads a specified block and returns the bh
1364 * @bdev: the block_device to read from
1365 * @block: number of block
1366 * @size: size (in bytes) to read
1367 * @gfp: page allocation flag
1368 *
1369 * Reads a specified block, and returns buffer head that contains it.
1370 * The page cache can be allocated from non-movable area
1371 * not to prevent page migration if you set gfp to zero.
1372 * It returns NULL if the block was unreadable.
1373 */
1374 struct buffer_head *
__bread_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1375 __bread_gfp(struct block_device *bdev, sector_t block,
1376 unsigned size, gfp_t gfp)
1377 {
1378 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1379
1380 if (likely(bh) && !buffer_uptodate(bh))
1381 bh = __bread_slow(bh);
1382 return bh;
1383 }
1384 EXPORT_SYMBOL(__bread_gfp);
1385
__invalidate_bh_lrus(struct bh_lru * b)1386 static void __invalidate_bh_lrus(struct bh_lru *b)
1387 {
1388 int i;
1389
1390 for (i = 0; i < BH_LRU_SIZE; i++) {
1391 brelse(b->bhs[i]);
1392 b->bhs[i] = NULL;
1393 }
1394 }
1395 /*
1396 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1397 * This doesn't race because it runs in each cpu either in irq
1398 * or with preempt disabled.
1399 */
invalidate_bh_lru(void * arg)1400 static void invalidate_bh_lru(void *arg)
1401 {
1402 struct bh_lru *b = &get_cpu_var(bh_lrus);
1403
1404 __invalidate_bh_lrus(b);
1405 put_cpu_var(bh_lrus);
1406 }
1407
has_bh_in_lru(int cpu,void * dummy)1408 bool has_bh_in_lru(int cpu, void *dummy)
1409 {
1410 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1411 int i;
1412
1413 for (i = 0; i < BH_LRU_SIZE; i++) {
1414 if (b->bhs[i])
1415 return true;
1416 }
1417
1418 return false;
1419 }
1420
invalidate_bh_lrus(void)1421 void invalidate_bh_lrus(void)
1422 {
1423 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1424 }
1425 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1426
1427 /*
1428 * It's called from workqueue context so we need a bh_lru_lock to close
1429 * the race with preemption/irq.
1430 */
invalidate_bh_lrus_cpu(void)1431 void invalidate_bh_lrus_cpu(void)
1432 {
1433 struct bh_lru *b;
1434
1435 bh_lru_lock();
1436 b = this_cpu_ptr(&bh_lrus);
1437 __invalidate_bh_lrus(b);
1438 bh_lru_unlock();
1439 }
1440
set_bh_page(struct buffer_head * bh,struct page * page,unsigned long offset)1441 void set_bh_page(struct buffer_head *bh,
1442 struct page *page, unsigned long offset)
1443 {
1444 bh->b_page = page;
1445 BUG_ON(offset >= PAGE_SIZE);
1446 if (PageHighMem(page))
1447 /*
1448 * This catches illegal uses and preserves the offset:
1449 */
1450 bh->b_data = (char *)(0 + offset);
1451 else
1452 bh->b_data = page_address(page) + offset;
1453 }
1454 EXPORT_SYMBOL(set_bh_page);
1455
1456 /*
1457 * Called when truncating a buffer on a page completely.
1458 */
1459
1460 /* Bits that are cleared during an invalidate */
1461 #define BUFFER_FLAGS_DISCARD \
1462 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1463 1 << BH_Delay | 1 << BH_Unwritten)
1464
discard_buffer(struct buffer_head * bh)1465 static void discard_buffer(struct buffer_head * bh)
1466 {
1467 unsigned long b_state, b_state_old;
1468
1469 lock_buffer(bh);
1470 clear_buffer_dirty(bh);
1471 bh->b_bdev = NULL;
1472 b_state = bh->b_state;
1473 for (;;) {
1474 b_state_old = cmpxchg(&bh->b_state, b_state,
1475 (b_state & ~BUFFER_FLAGS_DISCARD));
1476 if (b_state_old == b_state)
1477 break;
1478 b_state = b_state_old;
1479 }
1480 unlock_buffer(bh);
1481 }
1482
1483 /**
1484 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1485 * @folio: The folio which is affected.
1486 * @offset: start of the range to invalidate
1487 * @length: length of the range to invalidate
1488 *
1489 * block_invalidate_folio() is called when all or part of the folio has been
1490 * invalidated by a truncate operation.
1491 *
1492 * block_invalidate_folio() does not have to release all buffers, but it must
1493 * ensure that no dirty buffer is left outside @offset and that no I/O
1494 * is underway against any of the blocks which are outside the truncation
1495 * point. Because the caller is about to free (and possibly reuse) those
1496 * blocks on-disk.
1497 */
block_invalidate_folio(struct folio * folio,size_t offset,size_t length)1498 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1499 {
1500 struct buffer_head *head, *bh, *next;
1501 size_t curr_off = 0;
1502 size_t stop = length + offset;
1503
1504 BUG_ON(!folio_test_locked(folio));
1505
1506 /*
1507 * Check for overflow
1508 */
1509 BUG_ON(stop > folio_size(folio) || stop < length);
1510
1511 head = folio_buffers(folio);
1512 if (!head)
1513 return;
1514
1515 bh = head;
1516 do {
1517 size_t next_off = curr_off + bh->b_size;
1518 next = bh->b_this_page;
1519
1520 /*
1521 * Are we still fully in range ?
1522 */
1523 if (next_off > stop)
1524 goto out;
1525
1526 /*
1527 * is this block fully invalidated?
1528 */
1529 if (offset <= curr_off)
1530 discard_buffer(bh);
1531 curr_off = next_off;
1532 bh = next;
1533 } while (bh != head);
1534
1535 /*
1536 * We release buffers only if the entire folio is being invalidated.
1537 * The get_block cached value has been unconditionally invalidated,
1538 * so real IO is not possible anymore.
1539 */
1540 if (length == folio_size(folio))
1541 filemap_release_folio(folio, 0);
1542 out:
1543 return;
1544 }
1545 EXPORT_SYMBOL(block_invalidate_folio);
1546
1547
1548 /*
1549 * We attach and possibly dirty the buffers atomically wrt
1550 * block_dirty_folio() via private_lock. try_to_free_buffers
1551 * is already excluded via the page lock.
1552 */
create_empty_buffers(struct page * page,unsigned long blocksize,unsigned long b_state)1553 void create_empty_buffers(struct page *page,
1554 unsigned long blocksize, unsigned long b_state)
1555 {
1556 struct buffer_head *bh, *head, *tail;
1557
1558 head = alloc_page_buffers(page, blocksize, true);
1559 bh = head;
1560 do {
1561 bh->b_state |= b_state;
1562 tail = bh;
1563 bh = bh->b_this_page;
1564 } while (bh);
1565 tail->b_this_page = head;
1566
1567 spin_lock(&page->mapping->private_lock);
1568 if (PageUptodate(page) || PageDirty(page)) {
1569 bh = head;
1570 do {
1571 if (PageDirty(page))
1572 set_buffer_dirty(bh);
1573 if (PageUptodate(page))
1574 set_buffer_uptodate(bh);
1575 bh = bh->b_this_page;
1576 } while (bh != head);
1577 }
1578 attach_page_private(page, head);
1579 spin_unlock(&page->mapping->private_lock);
1580 }
1581 EXPORT_SYMBOL(create_empty_buffers);
1582
1583 /**
1584 * clean_bdev_aliases: clean a range of buffers in block device
1585 * @bdev: Block device to clean buffers in
1586 * @block: Start of a range of blocks to clean
1587 * @len: Number of blocks to clean
1588 *
1589 * We are taking a range of blocks for data and we don't want writeback of any
1590 * buffer-cache aliases starting from return from this function and until the
1591 * moment when something will explicitly mark the buffer dirty (hopefully that
1592 * will not happen until we will free that block ;-) We don't even need to mark
1593 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1594 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1595 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1596 * would confuse anyone who might pick it with bread() afterwards...
1597 *
1598 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1599 * writeout I/O going on against recently-freed buffers. We don't wait on that
1600 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1601 * need to. That happens here.
1602 */
clean_bdev_aliases(struct block_device * bdev,sector_t block,sector_t len)1603 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1604 {
1605 struct inode *bd_inode = bdev->bd_inode;
1606 struct address_space *bd_mapping = bd_inode->i_mapping;
1607 struct pagevec pvec;
1608 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1609 pgoff_t end;
1610 int i, count;
1611 struct buffer_head *bh;
1612 struct buffer_head *head;
1613
1614 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1615 pagevec_init(&pvec);
1616 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1617 count = pagevec_count(&pvec);
1618 for (i = 0; i < count; i++) {
1619 struct page *page = pvec.pages[i];
1620
1621 if (!page_has_buffers(page))
1622 continue;
1623 /*
1624 * We use page lock instead of bd_mapping->private_lock
1625 * to pin buffers here since we can afford to sleep and
1626 * it scales better than a global spinlock lock.
1627 */
1628 lock_page(page);
1629 /* Recheck when the page is locked which pins bhs */
1630 if (!page_has_buffers(page))
1631 goto unlock_page;
1632 head = page_buffers(page);
1633 bh = head;
1634 do {
1635 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1636 goto next;
1637 if (bh->b_blocknr >= block + len)
1638 break;
1639 clear_buffer_dirty(bh);
1640 wait_on_buffer(bh);
1641 clear_buffer_req(bh);
1642 next:
1643 bh = bh->b_this_page;
1644 } while (bh != head);
1645 unlock_page:
1646 unlock_page(page);
1647 }
1648 pagevec_release(&pvec);
1649 cond_resched();
1650 /* End of range already reached? */
1651 if (index > end || !index)
1652 break;
1653 }
1654 }
1655 EXPORT_SYMBOL(clean_bdev_aliases);
1656
1657 /*
1658 * Size is a power-of-two in the range 512..PAGE_SIZE,
1659 * and the case we care about most is PAGE_SIZE.
1660 *
1661 * So this *could* possibly be written with those
1662 * constraints in mind (relevant mostly if some
1663 * architecture has a slow bit-scan instruction)
1664 */
block_size_bits(unsigned int blocksize)1665 static inline int block_size_bits(unsigned int blocksize)
1666 {
1667 return ilog2(blocksize);
1668 }
1669
create_page_buffers(struct page * page,struct inode * inode,unsigned int b_state)1670 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1671 {
1672 BUG_ON(!PageLocked(page));
1673
1674 if (!page_has_buffers(page))
1675 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1676 b_state);
1677 return page_buffers(page);
1678 }
1679
1680 /*
1681 * NOTE! All mapped/uptodate combinations are valid:
1682 *
1683 * Mapped Uptodate Meaning
1684 *
1685 * No No "unknown" - must do get_block()
1686 * No Yes "hole" - zero-filled
1687 * Yes No "allocated" - allocated on disk, not read in
1688 * Yes Yes "valid" - allocated and up-to-date in memory.
1689 *
1690 * "Dirty" is valid only with the last case (mapped+uptodate).
1691 */
1692
1693 /*
1694 * While block_write_full_page is writing back the dirty buffers under
1695 * the page lock, whoever dirtied the buffers may decide to clean them
1696 * again at any time. We handle that by only looking at the buffer
1697 * state inside lock_buffer().
1698 *
1699 * If block_write_full_page() is called for regular writeback
1700 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1701 * locked buffer. This only can happen if someone has written the buffer
1702 * directly, with submit_bh(). At the address_space level PageWriteback
1703 * prevents this contention from occurring.
1704 *
1705 * If block_write_full_page() is called with wbc->sync_mode ==
1706 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1707 * causes the writes to be flagged as synchronous writes.
1708 */
__block_write_full_page(struct inode * inode,struct page * page,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)1709 int __block_write_full_page(struct inode *inode, struct page *page,
1710 get_block_t *get_block, struct writeback_control *wbc,
1711 bh_end_io_t *handler)
1712 {
1713 int err;
1714 sector_t block;
1715 sector_t last_block;
1716 struct buffer_head *bh, *head;
1717 unsigned int blocksize, bbits;
1718 int nr_underway = 0;
1719 int write_flags = wbc_to_write_flags(wbc);
1720
1721 head = create_page_buffers(page, inode,
1722 (1 << BH_Dirty)|(1 << BH_Uptodate));
1723
1724 /*
1725 * Be very careful. We have no exclusion from block_dirty_folio
1726 * here, and the (potentially unmapped) buffers may become dirty at
1727 * any time. If a buffer becomes dirty here after we've inspected it
1728 * then we just miss that fact, and the page stays dirty.
1729 *
1730 * Buffers outside i_size may be dirtied by block_dirty_folio;
1731 * handle that here by just cleaning them.
1732 */
1733
1734 bh = head;
1735 blocksize = bh->b_size;
1736 bbits = block_size_bits(blocksize);
1737
1738 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1739 last_block = (i_size_read(inode) - 1) >> bbits;
1740
1741 /*
1742 * Get all the dirty buffers mapped to disk addresses and
1743 * handle any aliases from the underlying blockdev's mapping.
1744 */
1745 do {
1746 if (block > last_block) {
1747 /*
1748 * mapped buffers outside i_size will occur, because
1749 * this page can be outside i_size when there is a
1750 * truncate in progress.
1751 */
1752 /*
1753 * The buffer was zeroed by block_write_full_page()
1754 */
1755 clear_buffer_dirty(bh);
1756 set_buffer_uptodate(bh);
1757 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1758 buffer_dirty(bh)) {
1759 WARN_ON(bh->b_size != blocksize);
1760 err = get_block(inode, block, bh, 1);
1761 if (err)
1762 goto recover;
1763 clear_buffer_delay(bh);
1764 if (buffer_new(bh)) {
1765 /* blockdev mappings never come here */
1766 clear_buffer_new(bh);
1767 clean_bdev_bh_alias(bh);
1768 }
1769 }
1770 bh = bh->b_this_page;
1771 block++;
1772 } while (bh != head);
1773
1774 do {
1775 if (!buffer_mapped(bh))
1776 continue;
1777 /*
1778 * If it's a fully non-blocking write attempt and we cannot
1779 * lock the buffer then redirty the page. Note that this can
1780 * potentially cause a busy-wait loop from writeback threads
1781 * and kswapd activity, but those code paths have their own
1782 * higher-level throttling.
1783 */
1784 if (wbc->sync_mode != WB_SYNC_NONE) {
1785 lock_buffer(bh);
1786 } else if (!trylock_buffer(bh)) {
1787 redirty_page_for_writepage(wbc, page);
1788 continue;
1789 }
1790 if (test_clear_buffer_dirty(bh)) {
1791 mark_buffer_async_write_endio(bh, handler);
1792 } else {
1793 unlock_buffer(bh);
1794 }
1795 } while ((bh = bh->b_this_page) != head);
1796
1797 /*
1798 * The page and its buffers are protected by PageWriteback(), so we can
1799 * drop the bh refcounts early.
1800 */
1801 BUG_ON(PageWriteback(page));
1802 set_page_writeback(page);
1803
1804 do {
1805 struct buffer_head *next = bh->b_this_page;
1806 if (buffer_async_write(bh)) {
1807 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, wbc);
1808 nr_underway++;
1809 }
1810 bh = next;
1811 } while (bh != head);
1812 unlock_page(page);
1813
1814 err = 0;
1815 done:
1816 if (nr_underway == 0) {
1817 /*
1818 * The page was marked dirty, but the buffers were
1819 * clean. Someone wrote them back by hand with
1820 * ll_rw_block/submit_bh. A rare case.
1821 */
1822 end_page_writeback(page);
1823
1824 /*
1825 * The page and buffer_heads can be released at any time from
1826 * here on.
1827 */
1828 }
1829 return err;
1830
1831 recover:
1832 /*
1833 * ENOSPC, or some other error. We may already have added some
1834 * blocks to the file, so we need to write these out to avoid
1835 * exposing stale data.
1836 * The page is currently locked and not marked for writeback
1837 */
1838 bh = head;
1839 /* Recovery: lock and submit the mapped buffers */
1840 do {
1841 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1842 !buffer_delay(bh)) {
1843 lock_buffer(bh);
1844 mark_buffer_async_write_endio(bh, handler);
1845 } else {
1846 /*
1847 * The buffer may have been set dirty during
1848 * attachment to a dirty page.
1849 */
1850 clear_buffer_dirty(bh);
1851 }
1852 } while ((bh = bh->b_this_page) != head);
1853 SetPageError(page);
1854 BUG_ON(PageWriteback(page));
1855 mapping_set_error(page->mapping, err);
1856 set_page_writeback(page);
1857 do {
1858 struct buffer_head *next = bh->b_this_page;
1859 if (buffer_async_write(bh)) {
1860 clear_buffer_dirty(bh);
1861 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, wbc);
1862 nr_underway++;
1863 }
1864 bh = next;
1865 } while (bh != head);
1866 unlock_page(page);
1867 goto done;
1868 }
1869 EXPORT_SYMBOL(__block_write_full_page);
1870
1871 /*
1872 * If a page has any new buffers, zero them out here, and mark them uptodate
1873 * and dirty so they'll be written out (in order to prevent uninitialised
1874 * block data from leaking). And clear the new bit.
1875 */
page_zero_new_buffers(struct page * page,unsigned from,unsigned to)1876 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1877 {
1878 unsigned int block_start, block_end;
1879 struct buffer_head *head, *bh;
1880
1881 BUG_ON(!PageLocked(page));
1882 if (!page_has_buffers(page))
1883 return;
1884
1885 bh = head = page_buffers(page);
1886 block_start = 0;
1887 do {
1888 block_end = block_start + bh->b_size;
1889
1890 if (buffer_new(bh)) {
1891 if (block_end > from && block_start < to) {
1892 if (!PageUptodate(page)) {
1893 unsigned start, size;
1894
1895 start = max(from, block_start);
1896 size = min(to, block_end) - start;
1897
1898 zero_user(page, start, size);
1899 set_buffer_uptodate(bh);
1900 }
1901
1902 clear_buffer_new(bh);
1903 mark_buffer_dirty(bh);
1904 }
1905 }
1906
1907 block_start = block_end;
1908 bh = bh->b_this_page;
1909 } while (bh != head);
1910 }
1911 EXPORT_SYMBOL(page_zero_new_buffers);
1912
1913 static void
iomap_to_bh(struct inode * inode,sector_t block,struct buffer_head * bh,const struct iomap * iomap)1914 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1915 const struct iomap *iomap)
1916 {
1917 loff_t offset = block << inode->i_blkbits;
1918
1919 bh->b_bdev = iomap->bdev;
1920
1921 /*
1922 * Block points to offset in file we need to map, iomap contains
1923 * the offset at which the map starts. If the map ends before the
1924 * current block, then do not map the buffer and let the caller
1925 * handle it.
1926 */
1927 BUG_ON(offset >= iomap->offset + iomap->length);
1928
1929 switch (iomap->type) {
1930 case IOMAP_HOLE:
1931 /*
1932 * If the buffer is not up to date or beyond the current EOF,
1933 * we need to mark it as new to ensure sub-block zeroing is
1934 * executed if necessary.
1935 */
1936 if (!buffer_uptodate(bh) ||
1937 (offset >= i_size_read(inode)))
1938 set_buffer_new(bh);
1939 break;
1940 case IOMAP_DELALLOC:
1941 if (!buffer_uptodate(bh) ||
1942 (offset >= i_size_read(inode)))
1943 set_buffer_new(bh);
1944 set_buffer_uptodate(bh);
1945 set_buffer_mapped(bh);
1946 set_buffer_delay(bh);
1947 break;
1948 case IOMAP_UNWRITTEN:
1949 /*
1950 * For unwritten regions, we always need to ensure that regions
1951 * in the block we are not writing to are zeroed. Mark the
1952 * buffer as new to ensure this.
1953 */
1954 set_buffer_new(bh);
1955 set_buffer_unwritten(bh);
1956 fallthrough;
1957 case IOMAP_MAPPED:
1958 if ((iomap->flags & IOMAP_F_NEW) ||
1959 offset >= i_size_read(inode))
1960 set_buffer_new(bh);
1961 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1962 inode->i_blkbits;
1963 set_buffer_mapped(bh);
1964 break;
1965 }
1966 }
1967
__block_write_begin_int(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block,const struct iomap * iomap)1968 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1969 get_block_t *get_block, const struct iomap *iomap)
1970 {
1971 unsigned from = pos & (PAGE_SIZE - 1);
1972 unsigned to = from + len;
1973 struct inode *inode = folio->mapping->host;
1974 unsigned block_start, block_end;
1975 sector_t block;
1976 int err = 0;
1977 unsigned blocksize, bbits;
1978 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1979
1980 BUG_ON(!folio_test_locked(folio));
1981 BUG_ON(from > PAGE_SIZE);
1982 BUG_ON(to > PAGE_SIZE);
1983 BUG_ON(from > to);
1984
1985 head = create_page_buffers(&folio->page, inode, 0);
1986 blocksize = head->b_size;
1987 bbits = block_size_bits(blocksize);
1988
1989 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1990
1991 for(bh = head, block_start = 0; bh != head || !block_start;
1992 block++, block_start=block_end, bh = bh->b_this_page) {
1993 block_end = block_start + blocksize;
1994 if (block_end <= from || block_start >= to) {
1995 if (folio_test_uptodate(folio)) {
1996 if (!buffer_uptodate(bh))
1997 set_buffer_uptodate(bh);
1998 }
1999 continue;
2000 }
2001 if (buffer_new(bh))
2002 clear_buffer_new(bh);
2003 if (!buffer_mapped(bh)) {
2004 WARN_ON(bh->b_size != blocksize);
2005 if (get_block) {
2006 err = get_block(inode, block, bh, 1);
2007 if (err)
2008 break;
2009 } else {
2010 iomap_to_bh(inode, block, bh, iomap);
2011 }
2012
2013 if (buffer_new(bh)) {
2014 clean_bdev_bh_alias(bh);
2015 if (folio_test_uptodate(folio)) {
2016 clear_buffer_new(bh);
2017 set_buffer_uptodate(bh);
2018 mark_buffer_dirty(bh);
2019 continue;
2020 }
2021 if (block_end > to || block_start < from)
2022 folio_zero_segments(folio,
2023 to, block_end,
2024 block_start, from);
2025 continue;
2026 }
2027 }
2028 if (folio_test_uptodate(folio)) {
2029 if (!buffer_uptodate(bh))
2030 set_buffer_uptodate(bh);
2031 continue;
2032 }
2033 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2034 !buffer_unwritten(bh) &&
2035 (block_start < from || block_end > to)) {
2036 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2037 *wait_bh++=bh;
2038 }
2039 }
2040 /*
2041 * If we issued read requests - let them complete.
2042 */
2043 while(wait_bh > wait) {
2044 wait_on_buffer(*--wait_bh);
2045 if (!buffer_uptodate(*wait_bh))
2046 err = -EIO;
2047 }
2048 if (unlikely(err))
2049 page_zero_new_buffers(&folio->page, from, to);
2050 return err;
2051 }
2052
__block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)2053 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2054 get_block_t *get_block)
2055 {
2056 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2057 NULL);
2058 }
2059 EXPORT_SYMBOL(__block_write_begin);
2060
__block_commit_write(struct inode * inode,struct page * page,unsigned from,unsigned to)2061 static int __block_commit_write(struct inode *inode, struct page *page,
2062 unsigned from, unsigned to)
2063 {
2064 unsigned block_start, block_end;
2065 int partial = 0;
2066 unsigned blocksize;
2067 struct buffer_head *bh, *head;
2068
2069 bh = head = page_buffers(page);
2070 blocksize = bh->b_size;
2071
2072 block_start = 0;
2073 do {
2074 block_end = block_start + blocksize;
2075 if (block_end <= from || block_start >= to) {
2076 if (!buffer_uptodate(bh))
2077 partial = 1;
2078 } else {
2079 set_buffer_uptodate(bh);
2080 mark_buffer_dirty(bh);
2081 }
2082 if (buffer_new(bh))
2083 clear_buffer_new(bh);
2084
2085 block_start = block_end;
2086 bh = bh->b_this_page;
2087 } while (bh != head);
2088
2089 /*
2090 * If this is a partial write which happened to make all buffers
2091 * uptodate then we can optimize away a bogus read_folio() for
2092 * the next read(). Here we 'discover' whether the page went
2093 * uptodate as a result of this (potentially partial) write.
2094 */
2095 if (!partial)
2096 SetPageUptodate(page);
2097 return 0;
2098 }
2099
2100 /*
2101 * block_write_begin takes care of the basic task of block allocation and
2102 * bringing partial write blocks uptodate first.
2103 *
2104 * The filesystem needs to handle block truncation upon failure.
2105 */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,get_block_t * get_block)2106 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2107 struct page **pagep, get_block_t *get_block)
2108 {
2109 pgoff_t index = pos >> PAGE_SHIFT;
2110 struct page *page;
2111 int status;
2112
2113 page = grab_cache_page_write_begin(mapping, index);
2114 if (!page)
2115 return -ENOMEM;
2116
2117 status = __block_write_begin(page, pos, len, get_block);
2118 if (unlikely(status)) {
2119 unlock_page(page);
2120 put_page(page);
2121 page = NULL;
2122 }
2123
2124 *pagep = page;
2125 return status;
2126 }
2127 EXPORT_SYMBOL(block_write_begin);
2128
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2129 int block_write_end(struct file *file, struct address_space *mapping,
2130 loff_t pos, unsigned len, unsigned copied,
2131 struct page *page, void *fsdata)
2132 {
2133 struct inode *inode = mapping->host;
2134 unsigned start;
2135
2136 start = pos & (PAGE_SIZE - 1);
2137
2138 if (unlikely(copied < len)) {
2139 /*
2140 * The buffers that were written will now be uptodate, so
2141 * we don't have to worry about a read_folio reading them
2142 * and overwriting a partial write. However if we have
2143 * encountered a short write and only partially written
2144 * into a buffer, it will not be marked uptodate, so a
2145 * read_folio might come in and destroy our partial write.
2146 *
2147 * Do the simplest thing, and just treat any short write to a
2148 * non uptodate page as a zero-length write, and force the
2149 * caller to redo the whole thing.
2150 */
2151 if (!PageUptodate(page))
2152 copied = 0;
2153
2154 page_zero_new_buffers(page, start+copied, start+len);
2155 }
2156 flush_dcache_page(page);
2157
2158 /* This could be a short (even 0-length) commit */
2159 __block_commit_write(inode, page, start, start+copied);
2160
2161 return copied;
2162 }
2163 EXPORT_SYMBOL(block_write_end);
2164
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2165 int generic_write_end(struct file *file, struct address_space *mapping,
2166 loff_t pos, unsigned len, unsigned copied,
2167 struct page *page, void *fsdata)
2168 {
2169 struct inode *inode = mapping->host;
2170 loff_t old_size = inode->i_size;
2171 bool i_size_changed = false;
2172
2173 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2174
2175 /*
2176 * No need to use i_size_read() here, the i_size cannot change under us
2177 * because we hold i_rwsem.
2178 *
2179 * But it's important to update i_size while still holding page lock:
2180 * page writeout could otherwise come in and zero beyond i_size.
2181 */
2182 if (pos + copied > inode->i_size) {
2183 i_size_write(inode, pos + copied);
2184 i_size_changed = true;
2185 }
2186
2187 unlock_page(page);
2188 put_page(page);
2189
2190 if (old_size < pos)
2191 pagecache_isize_extended(inode, old_size, pos);
2192 /*
2193 * Don't mark the inode dirty under page lock. First, it unnecessarily
2194 * makes the holding time of page lock longer. Second, it forces lock
2195 * ordering of page lock and transaction start for journaling
2196 * filesystems.
2197 */
2198 if (i_size_changed)
2199 mark_inode_dirty(inode);
2200 return copied;
2201 }
2202 EXPORT_SYMBOL(generic_write_end);
2203
2204 /*
2205 * block_is_partially_uptodate checks whether buffers within a folio are
2206 * uptodate or not.
2207 *
2208 * Returns true if all buffers which correspond to the specified part
2209 * of the folio are uptodate.
2210 */
block_is_partially_uptodate(struct folio * folio,size_t from,size_t count)2211 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2212 {
2213 unsigned block_start, block_end, blocksize;
2214 unsigned to;
2215 struct buffer_head *bh, *head;
2216 bool ret = true;
2217
2218 head = folio_buffers(folio);
2219 if (!head)
2220 return false;
2221 blocksize = head->b_size;
2222 to = min_t(unsigned, folio_size(folio) - from, count);
2223 to = from + to;
2224 if (from < blocksize && to > folio_size(folio) - blocksize)
2225 return false;
2226
2227 bh = head;
2228 block_start = 0;
2229 do {
2230 block_end = block_start + blocksize;
2231 if (block_end > from && block_start < to) {
2232 if (!buffer_uptodate(bh)) {
2233 ret = false;
2234 break;
2235 }
2236 if (block_end >= to)
2237 break;
2238 }
2239 block_start = block_end;
2240 bh = bh->b_this_page;
2241 } while (bh != head);
2242
2243 return ret;
2244 }
2245 EXPORT_SYMBOL(block_is_partially_uptodate);
2246
2247 /*
2248 * Generic "read_folio" function for block devices that have the normal
2249 * get_block functionality. This is most of the block device filesystems.
2250 * Reads the folio asynchronously --- the unlock_buffer() and
2251 * set/clear_buffer_uptodate() functions propagate buffer state into the
2252 * folio once IO has completed.
2253 */
block_read_full_folio(struct folio * folio,get_block_t * get_block)2254 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2255 {
2256 struct inode *inode = folio->mapping->host;
2257 sector_t iblock, lblock;
2258 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2259 unsigned int blocksize, bbits;
2260 int nr, i;
2261 int fully_mapped = 1;
2262
2263 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2264
2265 head = create_page_buffers(&folio->page, inode, 0);
2266 blocksize = head->b_size;
2267 bbits = block_size_bits(blocksize);
2268
2269 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2270 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2271 bh = head;
2272 nr = 0;
2273 i = 0;
2274
2275 do {
2276 if (buffer_uptodate(bh))
2277 continue;
2278
2279 if (!buffer_mapped(bh)) {
2280 int err = 0;
2281
2282 fully_mapped = 0;
2283 if (iblock < lblock) {
2284 WARN_ON(bh->b_size != blocksize);
2285 err = get_block(inode, iblock, bh, 0);
2286 if (err)
2287 folio_set_error(folio);
2288 }
2289 if (!buffer_mapped(bh)) {
2290 folio_zero_range(folio, i * blocksize,
2291 blocksize);
2292 if (!err)
2293 set_buffer_uptodate(bh);
2294 continue;
2295 }
2296 /*
2297 * get_block() might have updated the buffer
2298 * synchronously
2299 */
2300 if (buffer_uptodate(bh))
2301 continue;
2302 }
2303 arr[nr++] = bh;
2304 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2305
2306 if (fully_mapped)
2307 folio_set_mappedtodisk(folio);
2308
2309 if (!nr) {
2310 /*
2311 * All buffers are uptodate - we can set the folio uptodate
2312 * as well. But not if get_block() returned an error.
2313 */
2314 if (!folio_test_error(folio))
2315 folio_mark_uptodate(folio);
2316 folio_unlock(folio);
2317 return 0;
2318 }
2319
2320 /* Stage two: lock the buffers */
2321 for (i = 0; i < nr; i++) {
2322 bh = arr[i];
2323 lock_buffer(bh);
2324 mark_buffer_async_read(bh);
2325 }
2326
2327 /*
2328 * Stage 3: start the IO. Check for uptodateness
2329 * inside the buffer lock in case another process reading
2330 * the underlying blockdev brought it uptodate (the sct fix).
2331 */
2332 for (i = 0; i < nr; i++) {
2333 bh = arr[i];
2334 if (buffer_uptodate(bh))
2335 end_buffer_async_read(bh, 1);
2336 else
2337 submit_bh(REQ_OP_READ, 0, bh);
2338 }
2339 return 0;
2340 }
2341 EXPORT_SYMBOL(block_read_full_folio);
2342
2343 /* utility function for filesystems that need to do work on expanding
2344 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2345 * deal with the hole.
2346 */
generic_cont_expand_simple(struct inode * inode,loff_t size)2347 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2348 {
2349 struct address_space *mapping = inode->i_mapping;
2350 const struct address_space_operations *aops = mapping->a_ops;
2351 struct page *page;
2352 void *fsdata;
2353 int err;
2354
2355 err = inode_newsize_ok(inode, size);
2356 if (err)
2357 goto out;
2358
2359 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2360 if (err)
2361 goto out;
2362
2363 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2364 BUG_ON(err > 0);
2365
2366 out:
2367 return err;
2368 }
2369 EXPORT_SYMBOL(generic_cont_expand_simple);
2370
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2371 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2372 loff_t pos, loff_t *bytes)
2373 {
2374 struct inode *inode = mapping->host;
2375 const struct address_space_operations *aops = mapping->a_ops;
2376 unsigned int blocksize = i_blocksize(inode);
2377 struct page *page;
2378 void *fsdata;
2379 pgoff_t index, curidx;
2380 loff_t curpos;
2381 unsigned zerofrom, offset, len;
2382 int err = 0;
2383
2384 index = pos >> PAGE_SHIFT;
2385 offset = pos & ~PAGE_MASK;
2386
2387 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2388 zerofrom = curpos & ~PAGE_MASK;
2389 if (zerofrom & (blocksize-1)) {
2390 *bytes |= (blocksize-1);
2391 (*bytes)++;
2392 }
2393 len = PAGE_SIZE - zerofrom;
2394
2395 err = aops->write_begin(file, mapping, curpos, len,
2396 &page, &fsdata);
2397 if (err)
2398 goto out;
2399 zero_user(page, zerofrom, len);
2400 err = aops->write_end(file, mapping, curpos, len, len,
2401 page, fsdata);
2402 if (err < 0)
2403 goto out;
2404 BUG_ON(err != len);
2405 err = 0;
2406
2407 balance_dirty_pages_ratelimited(mapping);
2408
2409 if (fatal_signal_pending(current)) {
2410 err = -EINTR;
2411 goto out;
2412 }
2413 }
2414
2415 /* page covers the boundary, find the boundary offset */
2416 if (index == curidx) {
2417 zerofrom = curpos & ~PAGE_MASK;
2418 /* if we will expand the thing last block will be filled */
2419 if (offset <= zerofrom) {
2420 goto out;
2421 }
2422 if (zerofrom & (blocksize-1)) {
2423 *bytes |= (blocksize-1);
2424 (*bytes)++;
2425 }
2426 len = offset - zerofrom;
2427
2428 err = aops->write_begin(file, mapping, curpos, len,
2429 &page, &fsdata);
2430 if (err)
2431 goto out;
2432 zero_user(page, zerofrom, len);
2433 err = aops->write_end(file, mapping, curpos, len, len,
2434 page, fsdata);
2435 if (err < 0)
2436 goto out;
2437 BUG_ON(err != len);
2438 err = 0;
2439 }
2440 out:
2441 return err;
2442 }
2443
2444 /*
2445 * For moronic filesystems that do not allow holes in file.
2446 * We may have to extend the file.
2447 */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata,get_block_t * get_block,loff_t * bytes)2448 int cont_write_begin(struct file *file, struct address_space *mapping,
2449 loff_t pos, unsigned len,
2450 struct page **pagep, void **fsdata,
2451 get_block_t *get_block, loff_t *bytes)
2452 {
2453 struct inode *inode = mapping->host;
2454 unsigned int blocksize = i_blocksize(inode);
2455 unsigned int zerofrom;
2456 int err;
2457
2458 err = cont_expand_zero(file, mapping, pos, bytes);
2459 if (err)
2460 return err;
2461
2462 zerofrom = *bytes & ~PAGE_MASK;
2463 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2464 *bytes |= (blocksize-1);
2465 (*bytes)++;
2466 }
2467
2468 return block_write_begin(mapping, pos, len, pagep, get_block);
2469 }
2470 EXPORT_SYMBOL(cont_write_begin);
2471
block_commit_write(struct page * page,unsigned from,unsigned to)2472 int block_commit_write(struct page *page, unsigned from, unsigned to)
2473 {
2474 struct inode *inode = page->mapping->host;
2475 __block_commit_write(inode,page,from,to);
2476 return 0;
2477 }
2478 EXPORT_SYMBOL(block_commit_write);
2479
2480 /*
2481 * block_page_mkwrite() is not allowed to change the file size as it gets
2482 * called from a page fault handler when a page is first dirtied. Hence we must
2483 * be careful to check for EOF conditions here. We set the page up correctly
2484 * for a written page which means we get ENOSPC checking when writing into
2485 * holes and correct delalloc and unwritten extent mapping on filesystems that
2486 * support these features.
2487 *
2488 * We are not allowed to take the i_mutex here so we have to play games to
2489 * protect against truncate races as the page could now be beyond EOF. Because
2490 * truncate writes the inode size before removing pages, once we have the
2491 * page lock we can determine safely if the page is beyond EOF. If it is not
2492 * beyond EOF, then the page is guaranteed safe against truncation until we
2493 * unlock the page.
2494 *
2495 * Direct callers of this function should protect against filesystem freezing
2496 * using sb_start_pagefault() - sb_end_pagefault() functions.
2497 */
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2498 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2499 get_block_t get_block)
2500 {
2501 struct page *page = vmf->page;
2502 struct inode *inode = file_inode(vma->vm_file);
2503 unsigned long end;
2504 loff_t size;
2505 int ret;
2506
2507 lock_page(page);
2508 size = i_size_read(inode);
2509 if ((page->mapping != inode->i_mapping) ||
2510 (page_offset(page) > size)) {
2511 /* We overload EFAULT to mean page got truncated */
2512 ret = -EFAULT;
2513 goto out_unlock;
2514 }
2515
2516 /* page is wholly or partially inside EOF */
2517 if (((page->index + 1) << PAGE_SHIFT) > size)
2518 end = size & ~PAGE_MASK;
2519 else
2520 end = PAGE_SIZE;
2521
2522 ret = __block_write_begin(page, 0, end, get_block);
2523 if (!ret)
2524 ret = block_commit_write(page, 0, end);
2525
2526 if (unlikely(ret < 0))
2527 goto out_unlock;
2528 set_page_dirty(page);
2529 wait_for_stable_page(page);
2530 return 0;
2531 out_unlock:
2532 unlock_page(page);
2533 return ret;
2534 }
2535 EXPORT_SYMBOL(block_page_mkwrite);
2536
2537 /*
2538 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2539 * immediately, while under the page lock. So it needs a special end_io
2540 * handler which does not touch the bh after unlocking it.
2541 */
end_buffer_read_nobh(struct buffer_head * bh,int uptodate)2542 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2543 {
2544 __end_buffer_read_notouch(bh, uptodate);
2545 }
2546
2547 /*
2548 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2549 * the page (converting it to circular linked list and taking care of page
2550 * dirty races).
2551 */
attach_nobh_buffers(struct page * page,struct buffer_head * head)2552 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2553 {
2554 struct buffer_head *bh;
2555
2556 BUG_ON(!PageLocked(page));
2557
2558 spin_lock(&page->mapping->private_lock);
2559 bh = head;
2560 do {
2561 if (PageDirty(page))
2562 set_buffer_dirty(bh);
2563 if (!bh->b_this_page)
2564 bh->b_this_page = head;
2565 bh = bh->b_this_page;
2566 } while (bh != head);
2567 attach_page_private(page, head);
2568 spin_unlock(&page->mapping->private_lock);
2569 }
2570
2571 /*
2572 * On entry, the page is fully not uptodate.
2573 * On exit the page is fully uptodate in the areas outside (from,to)
2574 * The filesystem needs to handle block truncation upon failure.
2575 */
nobh_write_begin(struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata,get_block_t * get_block)2576 int nobh_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2577 struct page **pagep, void **fsdata,
2578 get_block_t *get_block)
2579 {
2580 struct inode *inode = mapping->host;
2581 const unsigned blkbits = inode->i_blkbits;
2582 const unsigned blocksize = 1 << blkbits;
2583 struct buffer_head *head, *bh;
2584 struct page *page;
2585 pgoff_t index;
2586 unsigned from, to;
2587 unsigned block_in_page;
2588 unsigned block_start, block_end;
2589 sector_t block_in_file;
2590 int nr_reads = 0;
2591 int ret = 0;
2592 int is_mapped_to_disk = 1;
2593
2594 index = pos >> PAGE_SHIFT;
2595 from = pos & (PAGE_SIZE - 1);
2596 to = from + len;
2597
2598 page = grab_cache_page_write_begin(mapping, index);
2599 if (!page)
2600 return -ENOMEM;
2601 *pagep = page;
2602 *fsdata = NULL;
2603
2604 if (page_has_buffers(page)) {
2605 ret = __block_write_begin(page, pos, len, get_block);
2606 if (unlikely(ret))
2607 goto out_release;
2608 return ret;
2609 }
2610
2611 if (PageMappedToDisk(page))
2612 return 0;
2613
2614 /*
2615 * Allocate buffers so that we can keep track of state, and potentially
2616 * attach them to the page if an error occurs. In the common case of
2617 * no error, they will just be freed again without ever being attached
2618 * to the page (which is all OK, because we're under the page lock).
2619 *
2620 * Be careful: the buffer linked list is a NULL terminated one, rather
2621 * than the circular one we're used to.
2622 */
2623 head = alloc_page_buffers(page, blocksize, false);
2624 if (!head) {
2625 ret = -ENOMEM;
2626 goto out_release;
2627 }
2628
2629 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2630
2631 /*
2632 * We loop across all blocks in the page, whether or not they are
2633 * part of the affected region. This is so we can discover if the
2634 * page is fully mapped-to-disk.
2635 */
2636 for (block_start = 0, block_in_page = 0, bh = head;
2637 block_start < PAGE_SIZE;
2638 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2639 int create;
2640
2641 block_end = block_start + blocksize;
2642 bh->b_state = 0;
2643 create = 1;
2644 if (block_start >= to)
2645 create = 0;
2646 ret = get_block(inode, block_in_file + block_in_page,
2647 bh, create);
2648 if (ret)
2649 goto failed;
2650 if (!buffer_mapped(bh))
2651 is_mapped_to_disk = 0;
2652 if (buffer_new(bh))
2653 clean_bdev_bh_alias(bh);
2654 if (PageUptodate(page)) {
2655 set_buffer_uptodate(bh);
2656 continue;
2657 }
2658 if (buffer_new(bh) || !buffer_mapped(bh)) {
2659 zero_user_segments(page, block_start, from,
2660 to, block_end);
2661 continue;
2662 }
2663 if (buffer_uptodate(bh))
2664 continue; /* reiserfs does this */
2665 if (block_start < from || block_end > to) {
2666 lock_buffer(bh);
2667 bh->b_end_io = end_buffer_read_nobh;
2668 submit_bh(REQ_OP_READ, 0, bh);
2669 nr_reads++;
2670 }
2671 }
2672
2673 if (nr_reads) {
2674 /*
2675 * The page is locked, so these buffers are protected from
2676 * any VM or truncate activity. Hence we don't need to care
2677 * for the buffer_head refcounts.
2678 */
2679 for (bh = head; bh; bh = bh->b_this_page) {
2680 wait_on_buffer(bh);
2681 if (!buffer_uptodate(bh))
2682 ret = -EIO;
2683 }
2684 if (ret)
2685 goto failed;
2686 }
2687
2688 if (is_mapped_to_disk)
2689 SetPageMappedToDisk(page);
2690
2691 *fsdata = head; /* to be released by nobh_write_end */
2692
2693 return 0;
2694
2695 failed:
2696 BUG_ON(!ret);
2697 /*
2698 * Error recovery is a bit difficult. We need to zero out blocks that
2699 * were newly allocated, and dirty them to ensure they get written out.
2700 * Buffers need to be attached to the page at this point, otherwise
2701 * the handling of potential IO errors during writeout would be hard
2702 * (could try doing synchronous writeout, but what if that fails too?)
2703 */
2704 attach_nobh_buffers(page, head);
2705 page_zero_new_buffers(page, from, to);
2706
2707 out_release:
2708 unlock_page(page);
2709 put_page(page);
2710 *pagep = NULL;
2711
2712 return ret;
2713 }
2714 EXPORT_SYMBOL(nobh_write_begin);
2715
nobh_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2716 int nobh_write_end(struct file *file, struct address_space *mapping,
2717 loff_t pos, unsigned len, unsigned copied,
2718 struct page *page, void *fsdata)
2719 {
2720 struct inode *inode = page->mapping->host;
2721 struct buffer_head *head = fsdata;
2722 struct buffer_head *bh;
2723 BUG_ON(fsdata != NULL && page_has_buffers(page));
2724
2725 if (unlikely(copied < len) && head)
2726 attach_nobh_buffers(page, head);
2727 if (page_has_buffers(page))
2728 return generic_write_end(file, mapping, pos, len,
2729 copied, page, fsdata);
2730
2731 SetPageUptodate(page);
2732 set_page_dirty(page);
2733 if (pos+copied > inode->i_size) {
2734 i_size_write(inode, pos+copied);
2735 mark_inode_dirty(inode);
2736 }
2737
2738 unlock_page(page);
2739 put_page(page);
2740
2741 while (head) {
2742 bh = head;
2743 head = head->b_this_page;
2744 free_buffer_head(bh);
2745 }
2746
2747 return copied;
2748 }
2749 EXPORT_SYMBOL(nobh_write_end);
2750
2751 /*
2752 * nobh_writepage() - based on block_full_write_page() except
2753 * that it tries to operate without attaching bufferheads to
2754 * the page.
2755 */
nobh_writepage(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2756 int nobh_writepage(struct page *page, get_block_t *get_block,
2757 struct writeback_control *wbc)
2758 {
2759 struct inode * const inode = page->mapping->host;
2760 loff_t i_size = i_size_read(inode);
2761 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2762 unsigned offset;
2763 int ret;
2764
2765 /* Is the page fully inside i_size? */
2766 if (page->index < end_index)
2767 goto out;
2768
2769 /* Is the page fully outside i_size? (truncate in progress) */
2770 offset = i_size & (PAGE_SIZE-1);
2771 if (page->index >= end_index+1 || !offset) {
2772 unlock_page(page);
2773 return 0; /* don't care */
2774 }
2775
2776 /*
2777 * The page straddles i_size. It must be zeroed out on each and every
2778 * writepage invocation because it may be mmapped. "A file is mapped
2779 * in multiples of the page size. For a file that is not a multiple of
2780 * the page size, the remaining memory is zeroed when mapped, and
2781 * writes to that region are not written out to the file."
2782 */
2783 zero_user_segment(page, offset, PAGE_SIZE);
2784 out:
2785 ret = mpage_writepage(page, get_block, wbc);
2786 if (ret == -EAGAIN)
2787 ret = __block_write_full_page(inode, page, get_block, wbc,
2788 end_buffer_async_write);
2789 return ret;
2790 }
2791 EXPORT_SYMBOL(nobh_writepage);
2792
nobh_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2793 int nobh_truncate_page(struct address_space *mapping,
2794 loff_t from, get_block_t *get_block)
2795 {
2796 pgoff_t index = from >> PAGE_SHIFT;
2797 struct inode *inode = mapping->host;
2798 unsigned blocksize = i_blocksize(inode);
2799 struct folio *folio;
2800 struct buffer_head map_bh;
2801 size_t offset;
2802 sector_t iblock;
2803 int err;
2804
2805 /* Block boundary? Nothing to do */
2806 if (!(from & (blocksize - 1)))
2807 return 0;
2808
2809 folio = __filemap_get_folio(mapping, index, FGP_LOCK | FGP_CREAT,
2810 mapping_gfp_mask(mapping));
2811 err = -ENOMEM;
2812 if (!folio)
2813 goto out;
2814
2815 if (folio_buffers(folio))
2816 goto has_buffers;
2817
2818 iblock = from >> inode->i_blkbits;
2819 map_bh.b_size = blocksize;
2820 map_bh.b_state = 0;
2821 err = get_block(inode, iblock, &map_bh, 0);
2822 if (err)
2823 goto unlock;
2824 /* unmapped? It's a hole - nothing to do */
2825 if (!buffer_mapped(&map_bh))
2826 goto unlock;
2827
2828 /* Ok, it's mapped. Make sure it's up-to-date */
2829 if (!folio_test_uptodate(folio)) {
2830 err = mapping->a_ops->read_folio(NULL, folio);
2831 if (err) {
2832 folio_put(folio);
2833 goto out;
2834 }
2835 folio_lock(folio);
2836 if (!folio_test_uptodate(folio)) {
2837 err = -EIO;
2838 goto unlock;
2839 }
2840 if (folio_buffers(folio))
2841 goto has_buffers;
2842 }
2843 offset = offset_in_folio(folio, from);
2844 folio_zero_segment(folio, offset, round_up(offset, blocksize));
2845 folio_mark_dirty(folio);
2846 err = 0;
2847
2848 unlock:
2849 folio_unlock(folio);
2850 folio_put(folio);
2851 out:
2852 return err;
2853
2854 has_buffers:
2855 folio_unlock(folio);
2856 folio_put(folio);
2857 return block_truncate_page(mapping, from, get_block);
2858 }
2859 EXPORT_SYMBOL(nobh_truncate_page);
2860
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2861 int block_truncate_page(struct address_space *mapping,
2862 loff_t from, get_block_t *get_block)
2863 {
2864 pgoff_t index = from >> PAGE_SHIFT;
2865 unsigned offset = from & (PAGE_SIZE-1);
2866 unsigned blocksize;
2867 sector_t iblock;
2868 unsigned length, pos;
2869 struct inode *inode = mapping->host;
2870 struct page *page;
2871 struct buffer_head *bh;
2872 int err;
2873
2874 blocksize = i_blocksize(inode);
2875 length = offset & (blocksize - 1);
2876
2877 /* Block boundary? Nothing to do */
2878 if (!length)
2879 return 0;
2880
2881 length = blocksize - length;
2882 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2883
2884 page = grab_cache_page(mapping, index);
2885 err = -ENOMEM;
2886 if (!page)
2887 goto out;
2888
2889 if (!page_has_buffers(page))
2890 create_empty_buffers(page, blocksize, 0);
2891
2892 /* Find the buffer that contains "offset" */
2893 bh = page_buffers(page);
2894 pos = blocksize;
2895 while (offset >= pos) {
2896 bh = bh->b_this_page;
2897 iblock++;
2898 pos += blocksize;
2899 }
2900
2901 err = 0;
2902 if (!buffer_mapped(bh)) {
2903 WARN_ON(bh->b_size != blocksize);
2904 err = get_block(inode, iblock, bh, 0);
2905 if (err)
2906 goto unlock;
2907 /* unmapped? It's a hole - nothing to do */
2908 if (!buffer_mapped(bh))
2909 goto unlock;
2910 }
2911
2912 /* Ok, it's mapped. Make sure it's up-to-date */
2913 if (PageUptodate(page))
2914 set_buffer_uptodate(bh);
2915
2916 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2917 err = -EIO;
2918 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2919 wait_on_buffer(bh);
2920 /* Uhhuh. Read error. Complain and punt. */
2921 if (!buffer_uptodate(bh))
2922 goto unlock;
2923 }
2924
2925 zero_user(page, offset, length);
2926 mark_buffer_dirty(bh);
2927 err = 0;
2928
2929 unlock:
2930 unlock_page(page);
2931 put_page(page);
2932 out:
2933 return err;
2934 }
2935 EXPORT_SYMBOL(block_truncate_page);
2936
2937 /*
2938 * The generic ->writepage function for buffer-backed address_spaces
2939 */
block_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2940 int block_write_full_page(struct page *page, get_block_t *get_block,
2941 struct writeback_control *wbc)
2942 {
2943 struct inode * const inode = page->mapping->host;
2944 loff_t i_size = i_size_read(inode);
2945 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2946 unsigned offset;
2947
2948 /* Is the page fully inside i_size? */
2949 if (page->index < end_index)
2950 return __block_write_full_page(inode, page, get_block, wbc,
2951 end_buffer_async_write);
2952
2953 /* Is the page fully outside i_size? (truncate in progress) */
2954 offset = i_size & (PAGE_SIZE-1);
2955 if (page->index >= end_index+1 || !offset) {
2956 unlock_page(page);
2957 return 0; /* don't care */
2958 }
2959
2960 /*
2961 * The page straddles i_size. It must be zeroed out on each and every
2962 * writepage invocation because it may be mmapped. "A file is mapped
2963 * in multiples of the page size. For a file that is not a multiple of
2964 * the page size, the remaining memory is zeroed when mapped, and
2965 * writes to that region are not written out to the file."
2966 */
2967 zero_user_segment(page, offset, PAGE_SIZE);
2968 return __block_write_full_page(inode, page, get_block, wbc,
2969 end_buffer_async_write);
2970 }
2971 EXPORT_SYMBOL(block_write_full_page);
2972
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)2973 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2974 get_block_t *get_block)
2975 {
2976 struct inode *inode = mapping->host;
2977 struct buffer_head tmp = {
2978 .b_size = i_blocksize(inode),
2979 };
2980
2981 get_block(inode, block, &tmp, 0);
2982 return tmp.b_blocknr;
2983 }
2984 EXPORT_SYMBOL(generic_block_bmap);
2985
end_bio_bh_io_sync(struct bio * bio)2986 static void end_bio_bh_io_sync(struct bio *bio)
2987 {
2988 struct buffer_head *bh = bio->bi_private;
2989
2990 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2991 set_bit(BH_Quiet, &bh->b_state);
2992
2993 bh->b_end_io(bh, !bio->bi_status);
2994 bio_put(bio);
2995 }
2996
submit_bh_wbc(int op,int op_flags,struct buffer_head * bh,struct writeback_control * wbc)2997 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
2998 struct writeback_control *wbc)
2999 {
3000 struct bio *bio;
3001
3002 BUG_ON(!buffer_locked(bh));
3003 BUG_ON(!buffer_mapped(bh));
3004 BUG_ON(!bh->b_end_io);
3005 BUG_ON(buffer_delay(bh));
3006 BUG_ON(buffer_unwritten(bh));
3007
3008 /*
3009 * Only clear out a write error when rewriting
3010 */
3011 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3012 clear_buffer_write_io_error(bh);
3013
3014 if (buffer_meta(bh))
3015 op_flags |= REQ_META;
3016 if (buffer_prio(bh))
3017 op_flags |= REQ_PRIO;
3018
3019 bio = bio_alloc(bh->b_bdev, 1, op | op_flags, GFP_NOIO);
3020
3021 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3022
3023 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3024
3025 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3026 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3027
3028 bio->bi_end_io = end_bio_bh_io_sync;
3029 bio->bi_private = bh;
3030
3031 /* Take care of bh's that straddle the end of the device */
3032 guard_bio_eod(bio);
3033
3034 if (wbc) {
3035 wbc_init_bio(wbc, bio);
3036 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3037 }
3038
3039 submit_bio(bio);
3040 return 0;
3041 }
3042
submit_bh(int op,int op_flags,struct buffer_head * bh)3043 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3044 {
3045 return submit_bh_wbc(op, op_flags, bh, NULL);
3046 }
3047 EXPORT_SYMBOL(submit_bh);
3048
3049 /**
3050 * ll_rw_block: low-level access to block devices (DEPRECATED)
3051 * @op: whether to %READ or %WRITE
3052 * @op_flags: req_flag_bits
3053 * @nr: number of &struct buffer_heads in the array
3054 * @bhs: array of pointers to &struct buffer_head
3055 *
3056 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3057 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3058 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3059 * %REQ_RAHEAD.
3060 *
3061 * This function drops any buffer that it cannot get a lock on (with the
3062 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3063 * request, and any buffer that appears to be up-to-date when doing read
3064 * request. Further it marks as clean buffers that are processed for
3065 * writing (the buffer cache won't assume that they are actually clean
3066 * until the buffer gets unlocked).
3067 *
3068 * ll_rw_block sets b_end_io to simple completion handler that marks
3069 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3070 * any waiters.
3071 *
3072 * All of the buffers must be for the same device, and must also be a
3073 * multiple of the current approved size for the device.
3074 */
ll_rw_block(int op,int op_flags,int nr,struct buffer_head * bhs[])3075 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3076 {
3077 int i;
3078
3079 for (i = 0; i < nr; i++) {
3080 struct buffer_head *bh = bhs[i];
3081
3082 if (!trylock_buffer(bh))
3083 continue;
3084 if (op == WRITE) {
3085 if (test_clear_buffer_dirty(bh)) {
3086 bh->b_end_io = end_buffer_write_sync;
3087 get_bh(bh);
3088 submit_bh(op, op_flags, bh);
3089 continue;
3090 }
3091 } else {
3092 if (!buffer_uptodate(bh)) {
3093 bh->b_end_io = end_buffer_read_sync;
3094 get_bh(bh);
3095 submit_bh(op, op_flags, bh);
3096 continue;
3097 }
3098 }
3099 unlock_buffer(bh);
3100 }
3101 }
3102 EXPORT_SYMBOL(ll_rw_block);
3103
write_dirty_buffer(struct buffer_head * bh,int op_flags)3104 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3105 {
3106 lock_buffer(bh);
3107 if (!test_clear_buffer_dirty(bh)) {
3108 unlock_buffer(bh);
3109 return;
3110 }
3111 bh->b_end_io = end_buffer_write_sync;
3112 get_bh(bh);
3113 submit_bh(REQ_OP_WRITE, op_flags, bh);
3114 }
3115 EXPORT_SYMBOL(write_dirty_buffer);
3116
3117 /*
3118 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3119 * and then start new I/O and then wait upon it. The caller must have a ref on
3120 * the buffer_head.
3121 */
__sync_dirty_buffer(struct buffer_head * bh,int op_flags)3122 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3123 {
3124 int ret = 0;
3125
3126 WARN_ON(atomic_read(&bh->b_count) < 1);
3127 lock_buffer(bh);
3128 if (test_clear_buffer_dirty(bh)) {
3129 /*
3130 * The bh should be mapped, but it might not be if the
3131 * device was hot-removed. Not much we can do but fail the I/O.
3132 */
3133 if (!buffer_mapped(bh)) {
3134 unlock_buffer(bh);
3135 return -EIO;
3136 }
3137
3138 get_bh(bh);
3139 bh->b_end_io = end_buffer_write_sync;
3140 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3141 wait_on_buffer(bh);
3142 if (!ret && !buffer_uptodate(bh))
3143 ret = -EIO;
3144 } else {
3145 unlock_buffer(bh);
3146 }
3147 return ret;
3148 }
3149 EXPORT_SYMBOL(__sync_dirty_buffer);
3150
sync_dirty_buffer(struct buffer_head * bh)3151 int sync_dirty_buffer(struct buffer_head *bh)
3152 {
3153 return __sync_dirty_buffer(bh, REQ_SYNC);
3154 }
3155 EXPORT_SYMBOL(sync_dirty_buffer);
3156
3157 /*
3158 * try_to_free_buffers() checks if all the buffers on this particular folio
3159 * are unused, and releases them if so.
3160 *
3161 * Exclusion against try_to_free_buffers may be obtained by either
3162 * locking the folio or by holding its mapping's private_lock.
3163 *
3164 * If the folio is dirty but all the buffers are clean then we need to
3165 * be sure to mark the folio clean as well. This is because the folio
3166 * may be against a block device, and a later reattachment of buffers
3167 * to a dirty folio will set *all* buffers dirty. Which would corrupt
3168 * filesystem data on the same device.
3169 *
3170 * The same applies to regular filesystem folios: if all the buffers are
3171 * clean then we set the folio clean and proceed. To do that, we require
3172 * total exclusion from block_dirty_folio(). That is obtained with
3173 * private_lock.
3174 *
3175 * try_to_free_buffers() is non-blocking.
3176 */
buffer_busy(struct buffer_head * bh)3177 static inline int buffer_busy(struct buffer_head *bh)
3178 {
3179 return atomic_read(&bh->b_count) |
3180 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3181 }
3182
3183 static bool
drop_buffers(struct folio * folio,struct buffer_head ** buffers_to_free)3184 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
3185 {
3186 struct buffer_head *head = folio_buffers(folio);
3187 struct buffer_head *bh;
3188
3189 bh = head;
3190 do {
3191 if (buffer_busy(bh))
3192 goto failed;
3193 bh = bh->b_this_page;
3194 } while (bh != head);
3195
3196 do {
3197 struct buffer_head *next = bh->b_this_page;
3198
3199 if (bh->b_assoc_map)
3200 __remove_assoc_queue(bh);
3201 bh = next;
3202 } while (bh != head);
3203 *buffers_to_free = head;
3204 folio_detach_private(folio);
3205 return true;
3206 failed:
3207 return false;
3208 }
3209
try_to_free_buffers(struct folio * folio)3210 bool try_to_free_buffers(struct folio *folio)
3211 {
3212 struct address_space * const mapping = folio->mapping;
3213 struct buffer_head *buffers_to_free = NULL;
3214 bool ret = 0;
3215
3216 BUG_ON(!folio_test_locked(folio));
3217 if (folio_test_writeback(folio))
3218 return false;
3219
3220 if (mapping == NULL) { /* can this still happen? */
3221 ret = drop_buffers(folio, &buffers_to_free);
3222 goto out;
3223 }
3224
3225 spin_lock(&mapping->private_lock);
3226 ret = drop_buffers(folio, &buffers_to_free);
3227
3228 /*
3229 * If the filesystem writes its buffers by hand (eg ext3)
3230 * then we can have clean buffers against a dirty folio. We
3231 * clean the folio here; otherwise the VM will never notice
3232 * that the filesystem did any IO at all.
3233 *
3234 * Also, during truncate, discard_buffer will have marked all
3235 * the folio's buffers clean. We discover that here and clean
3236 * the folio also.
3237 *
3238 * private_lock must be held over this entire operation in order
3239 * to synchronise against block_dirty_folio and prevent the
3240 * dirty bit from being lost.
3241 */
3242 if (ret)
3243 folio_cancel_dirty(folio);
3244 spin_unlock(&mapping->private_lock);
3245 out:
3246 if (buffers_to_free) {
3247 struct buffer_head *bh = buffers_to_free;
3248
3249 do {
3250 struct buffer_head *next = bh->b_this_page;
3251 free_buffer_head(bh);
3252 bh = next;
3253 } while (bh != buffers_to_free);
3254 }
3255 return ret;
3256 }
3257 EXPORT_SYMBOL(try_to_free_buffers);
3258
3259 /*
3260 * Buffer-head allocation
3261 */
3262 static struct kmem_cache *bh_cachep __read_mostly;
3263
3264 /*
3265 * Once the number of bh's in the machine exceeds this level, we start
3266 * stripping them in writeback.
3267 */
3268 static unsigned long max_buffer_heads;
3269
3270 int buffer_heads_over_limit;
3271
3272 struct bh_accounting {
3273 int nr; /* Number of live bh's */
3274 int ratelimit; /* Limit cacheline bouncing */
3275 };
3276
3277 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3278
recalc_bh_state(void)3279 static void recalc_bh_state(void)
3280 {
3281 int i;
3282 int tot = 0;
3283
3284 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3285 return;
3286 __this_cpu_write(bh_accounting.ratelimit, 0);
3287 for_each_online_cpu(i)
3288 tot += per_cpu(bh_accounting, i).nr;
3289 buffer_heads_over_limit = (tot > max_buffer_heads);
3290 }
3291
alloc_buffer_head(gfp_t gfp_flags)3292 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3293 {
3294 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3295 if (ret) {
3296 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3297 spin_lock_init(&ret->b_uptodate_lock);
3298 preempt_disable();
3299 __this_cpu_inc(bh_accounting.nr);
3300 recalc_bh_state();
3301 preempt_enable();
3302 }
3303 return ret;
3304 }
3305 EXPORT_SYMBOL(alloc_buffer_head);
3306
free_buffer_head(struct buffer_head * bh)3307 void free_buffer_head(struct buffer_head *bh)
3308 {
3309 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3310 kmem_cache_free(bh_cachep, bh);
3311 preempt_disable();
3312 __this_cpu_dec(bh_accounting.nr);
3313 recalc_bh_state();
3314 preempt_enable();
3315 }
3316 EXPORT_SYMBOL(free_buffer_head);
3317
buffer_exit_cpu_dead(unsigned int cpu)3318 static int buffer_exit_cpu_dead(unsigned int cpu)
3319 {
3320 int i;
3321 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3322
3323 for (i = 0; i < BH_LRU_SIZE; i++) {
3324 brelse(b->bhs[i]);
3325 b->bhs[i] = NULL;
3326 }
3327 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3328 per_cpu(bh_accounting, cpu).nr = 0;
3329 return 0;
3330 }
3331
3332 /**
3333 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3334 * @bh: struct buffer_head
3335 *
3336 * Return true if the buffer is up-to-date and false,
3337 * with the buffer locked, if not.
3338 */
bh_uptodate_or_lock(struct buffer_head * bh)3339 int bh_uptodate_or_lock(struct buffer_head *bh)
3340 {
3341 if (!buffer_uptodate(bh)) {
3342 lock_buffer(bh);
3343 if (!buffer_uptodate(bh))
3344 return 0;
3345 unlock_buffer(bh);
3346 }
3347 return 1;
3348 }
3349 EXPORT_SYMBOL(bh_uptodate_or_lock);
3350
3351 /**
3352 * bh_submit_read - Submit a locked buffer for reading
3353 * @bh: struct buffer_head
3354 *
3355 * Returns zero on success and -EIO on error.
3356 */
bh_submit_read(struct buffer_head * bh)3357 int bh_submit_read(struct buffer_head *bh)
3358 {
3359 BUG_ON(!buffer_locked(bh));
3360
3361 if (buffer_uptodate(bh)) {
3362 unlock_buffer(bh);
3363 return 0;
3364 }
3365
3366 get_bh(bh);
3367 bh->b_end_io = end_buffer_read_sync;
3368 submit_bh(REQ_OP_READ, 0, bh);
3369 wait_on_buffer(bh);
3370 if (buffer_uptodate(bh))
3371 return 0;
3372 return -EIO;
3373 }
3374 EXPORT_SYMBOL(bh_submit_read);
3375
buffer_init(void)3376 void __init buffer_init(void)
3377 {
3378 unsigned long nrpages;
3379 int ret;
3380
3381 bh_cachep = kmem_cache_create("buffer_head",
3382 sizeof(struct buffer_head), 0,
3383 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3384 SLAB_MEM_SPREAD),
3385 NULL);
3386
3387 /*
3388 * Limit the bh occupancy to 10% of ZONE_NORMAL
3389 */
3390 nrpages = (nr_free_buffer_pages() * 10) / 100;
3391 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3392 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3393 NULL, buffer_exit_cpu_dead);
3394 WARN_ON(ret < 0);
3395 }
3396