1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31
32 struct pagevec;
33
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition) \
38 do { \
39 if (WARN_ON(condition)) \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } while (0)
42 #endif
43
44 enum {
45 FAULT_KMALLOC,
46 FAULT_KVMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_PAGE_GET,
49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_READ_IO,
57 FAULT_CHECKPOINT,
58 FAULT_DISCARD,
59 FAULT_WRITE_IO,
60 FAULT_SLAB_ALLOC,
61 FAULT_DQUOT_INIT,
62 FAULT_LOCK_OP,
63 FAULT_MAX,
64 };
65
66 #ifdef CONFIG_F2FS_FAULT_INJECTION
67 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
68
69 struct f2fs_fault_info {
70 atomic_t inject_ops;
71 unsigned int inject_rate;
72 unsigned int inject_type;
73 };
74
75 extern const char *f2fs_fault_name[FAULT_MAX];
76 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
77 #endif
78
79 /*
80 * For mount options
81 */
82 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
83 #define F2FS_MOUNT_DISCARD 0x00000004
84 #define F2FS_MOUNT_NOHEAP 0x00000008
85 #define F2FS_MOUNT_XATTR_USER 0x00000010
86 #define F2FS_MOUNT_POSIX_ACL 0x00000020
87 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
88 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
89 #define F2FS_MOUNT_INLINE_DATA 0x00000100
90 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
91 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
92 #define F2FS_MOUNT_NOBARRIER 0x00000800
93 #define F2FS_MOUNT_FASTBOOT 0x00001000
94 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
95 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
96 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
97 #define F2FS_MOUNT_USRQUOTA 0x00080000
98 #define F2FS_MOUNT_GRPQUOTA 0x00100000
99 #define F2FS_MOUNT_PRJQUOTA 0x00200000
100 #define F2FS_MOUNT_QUOTA 0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
103 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
104 #define F2FS_MOUNT_NORECOVERY 0x04000000
105 #define F2FS_MOUNT_ATGC 0x08000000
106 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000
107 #define F2FS_MOUNT_GC_MERGE 0x20000000
108 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000
109
110 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
111 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
112 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
113 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
114
115 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
116 typecheck(unsigned long long, b) && \
117 ((long long)((a) - (b)) > 0))
118
119 typedef u32 block_t; /*
120 * should not change u32, since it is the on-disk block
121 * address format, __le32.
122 */
123 typedef u32 nid_t;
124
125 #define COMPRESS_EXT_NUM 16
126
127 /*
128 * An implementation of an rwsem that is explicitly unfair to readers. This
129 * prevents priority inversion when a low-priority reader acquires the read lock
130 * while sleeping on the write lock but the write lock is needed by
131 * higher-priority clients.
132 */
133
134 struct f2fs_rwsem {
135 struct rw_semaphore internal_rwsem;
136 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
137 wait_queue_head_t read_waiters;
138 #endif
139 };
140
141 struct f2fs_mount_info {
142 unsigned int opt;
143 int write_io_size_bits; /* Write IO size bits */
144 block_t root_reserved_blocks; /* root reserved blocks */
145 kuid_t s_resuid; /* reserved blocks for uid */
146 kgid_t s_resgid; /* reserved blocks for gid */
147 int active_logs; /* # of active logs */
148 int inline_xattr_size; /* inline xattr size */
149 #ifdef CONFIG_F2FS_FAULT_INJECTION
150 struct f2fs_fault_info fault_info; /* For fault injection */
151 #endif
152 #ifdef CONFIG_QUOTA
153 /* Names of quota files with journalled quota */
154 char *s_qf_names[MAXQUOTAS];
155 int s_jquota_fmt; /* Format of quota to use */
156 #endif
157 /* For which write hints are passed down to block layer */
158 int alloc_mode; /* segment allocation policy */
159 int fsync_mode; /* fsync policy */
160 int fs_mode; /* fs mode: LFS or ADAPTIVE */
161 int bggc_mode; /* bggc mode: off, on or sync */
162 int memory_mode; /* memory mode */
163 int discard_unit; /*
164 * discard command's offset/size should
165 * be aligned to this unit: block,
166 * segment or section
167 */
168 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
169 block_t unusable_cap_perc; /* percentage for cap */
170 block_t unusable_cap; /* Amount of space allowed to be
171 * unusable when disabling checkpoint
172 */
173
174 /* For compression */
175 unsigned char compress_algorithm; /* algorithm type */
176 unsigned char compress_log_size; /* cluster log size */
177 unsigned char compress_level; /* compress level */
178 bool compress_chksum; /* compressed data chksum */
179 unsigned char compress_ext_cnt; /* extension count */
180 unsigned char nocompress_ext_cnt; /* nocompress extension count */
181 int compress_mode; /* compression mode */
182 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
183 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
184 };
185
186 #define F2FS_FEATURE_ENCRYPT 0x0001
187 #define F2FS_FEATURE_BLKZONED 0x0002
188 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
189 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
190 #define F2FS_FEATURE_PRJQUOTA 0x0010
191 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
192 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
193 #define F2FS_FEATURE_QUOTA_INO 0x0080
194 #define F2FS_FEATURE_INODE_CRTIME 0x0100
195 #define F2FS_FEATURE_LOST_FOUND 0x0200
196 #define F2FS_FEATURE_VERITY 0x0400
197 #define F2FS_FEATURE_SB_CHKSUM 0x0800
198 #define F2FS_FEATURE_CASEFOLD 0x1000
199 #define F2FS_FEATURE_COMPRESSION 0x2000
200 #define F2FS_FEATURE_RO 0x4000
201
202 #define __F2FS_HAS_FEATURE(raw_super, mask) \
203 ((raw_super->feature & cpu_to_le32(mask)) != 0)
204 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
205 #define F2FS_SET_FEATURE(sbi, mask) \
206 (sbi->raw_super->feature |= cpu_to_le32(mask))
207 #define F2FS_CLEAR_FEATURE(sbi, mask) \
208 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
209
210 /*
211 * Default values for user and/or group using reserved blocks
212 */
213 #define F2FS_DEF_RESUID 0
214 #define F2FS_DEF_RESGID 0
215
216 /*
217 * For checkpoint manager
218 */
219 enum {
220 NAT_BITMAP,
221 SIT_BITMAP
222 };
223
224 #define CP_UMOUNT 0x00000001
225 #define CP_FASTBOOT 0x00000002
226 #define CP_SYNC 0x00000004
227 #define CP_RECOVERY 0x00000008
228 #define CP_DISCARD 0x00000010
229 #define CP_TRIMMED 0x00000020
230 #define CP_PAUSE 0x00000040
231 #define CP_RESIZE 0x00000080
232
233 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
234 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
235 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
236 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
237 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
238 #define DEF_CP_INTERVAL 60 /* 60 secs */
239 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
240 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
241 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
242 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
243
244 struct cp_control {
245 int reason;
246 __u64 trim_start;
247 __u64 trim_end;
248 __u64 trim_minlen;
249 };
250
251 /*
252 * indicate meta/data type
253 */
254 enum {
255 META_CP,
256 META_NAT,
257 META_SIT,
258 META_SSA,
259 META_MAX,
260 META_POR,
261 DATA_GENERIC, /* check range only */
262 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
263 DATA_GENERIC_ENHANCE_READ, /*
264 * strong check on range and segment
265 * bitmap but no warning due to race
266 * condition of read on truncated area
267 * by extent_cache
268 */
269 DATA_GENERIC_ENHANCE_UPDATE, /*
270 * strong check on range and segment
271 * bitmap for update case
272 */
273 META_GENERIC,
274 };
275
276 /* for the list of ino */
277 enum {
278 ORPHAN_INO, /* for orphan ino list */
279 APPEND_INO, /* for append ino list */
280 UPDATE_INO, /* for update ino list */
281 TRANS_DIR_INO, /* for transactions dir ino list */
282 FLUSH_INO, /* for multiple device flushing */
283 MAX_INO_ENTRY, /* max. list */
284 };
285
286 struct ino_entry {
287 struct list_head list; /* list head */
288 nid_t ino; /* inode number */
289 unsigned int dirty_device; /* dirty device bitmap */
290 };
291
292 /* for the list of inodes to be GCed */
293 struct inode_entry {
294 struct list_head list; /* list head */
295 struct inode *inode; /* vfs inode pointer */
296 };
297
298 struct fsync_node_entry {
299 struct list_head list; /* list head */
300 struct page *page; /* warm node page pointer */
301 unsigned int seq_id; /* sequence id */
302 };
303
304 struct ckpt_req {
305 struct completion wait; /* completion for checkpoint done */
306 struct llist_node llnode; /* llist_node to be linked in wait queue */
307 int ret; /* return code of checkpoint */
308 ktime_t queue_time; /* request queued time */
309 };
310
311 struct ckpt_req_control {
312 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
313 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
314 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
315 atomic_t issued_ckpt; /* # of actually issued ckpts */
316 atomic_t total_ckpt; /* # of total ckpts */
317 atomic_t queued_ckpt; /* # of queued ckpts */
318 struct llist_head issue_list; /* list for command issue */
319 spinlock_t stat_lock; /* lock for below checkpoint time stats */
320 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
321 unsigned int peak_time; /* peak wait time in msec until now */
322 };
323
324 /* for the bitmap indicate blocks to be discarded */
325 struct discard_entry {
326 struct list_head list; /* list head */
327 block_t start_blkaddr; /* start blockaddr of current segment */
328 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
329 };
330
331 /* default discard granularity of inner discard thread, unit: block count */
332 #define DEFAULT_DISCARD_GRANULARITY 16
333
334 /* max discard pend list number */
335 #define MAX_PLIST_NUM 512
336 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
337 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
338
339 enum {
340 D_PREP, /* initial */
341 D_PARTIAL, /* partially submitted */
342 D_SUBMIT, /* all submitted */
343 D_DONE, /* finished */
344 };
345
346 struct discard_info {
347 block_t lstart; /* logical start address */
348 block_t len; /* length */
349 block_t start; /* actual start address in dev */
350 };
351
352 struct discard_cmd {
353 struct rb_node rb_node; /* rb node located in rb-tree */
354 union {
355 struct {
356 block_t lstart; /* logical start address */
357 block_t len; /* length */
358 block_t start; /* actual start address in dev */
359 };
360 struct discard_info di; /* discard info */
361
362 };
363 struct list_head list; /* command list */
364 struct completion wait; /* compleation */
365 struct block_device *bdev; /* bdev */
366 unsigned short ref; /* reference count */
367 unsigned char state; /* state */
368 unsigned char queued; /* queued discard */
369 int error; /* bio error */
370 spinlock_t lock; /* for state/bio_ref updating */
371 unsigned short bio_ref; /* bio reference count */
372 };
373
374 enum {
375 DPOLICY_BG,
376 DPOLICY_FORCE,
377 DPOLICY_FSTRIM,
378 DPOLICY_UMOUNT,
379 MAX_DPOLICY,
380 };
381
382 struct discard_policy {
383 int type; /* type of discard */
384 unsigned int min_interval; /* used for candidates exist */
385 unsigned int mid_interval; /* used for device busy */
386 unsigned int max_interval; /* used for candidates not exist */
387 unsigned int max_requests; /* # of discards issued per round */
388 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
389 bool io_aware; /* issue discard in idle time */
390 bool sync; /* submit discard with REQ_SYNC flag */
391 bool ordered; /* issue discard by lba order */
392 bool timeout; /* discard timeout for put_super */
393 unsigned int granularity; /* discard granularity */
394 };
395
396 struct discard_cmd_control {
397 struct task_struct *f2fs_issue_discard; /* discard thread */
398 struct list_head entry_list; /* 4KB discard entry list */
399 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
400 struct list_head wait_list; /* store on-flushing entries */
401 struct list_head fstrim_list; /* in-flight discard from fstrim */
402 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
403 unsigned int discard_wake; /* to wake up discard thread */
404 struct mutex cmd_lock;
405 unsigned int nr_discards; /* # of discards in the list */
406 unsigned int max_discards; /* max. discards to be issued */
407 unsigned int max_discard_request; /* max. discard request per round */
408 unsigned int min_discard_issue_time; /* min. interval between discard issue */
409 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
410 unsigned int max_discard_issue_time; /* max. interval between discard issue */
411 unsigned int discard_granularity; /* discard granularity */
412 unsigned int undiscard_blks; /* # of undiscard blocks */
413 unsigned int next_pos; /* next discard position */
414 atomic_t issued_discard; /* # of issued discard */
415 atomic_t queued_discard; /* # of queued discard */
416 atomic_t discard_cmd_cnt; /* # of cached cmd count */
417 struct rb_root_cached root; /* root of discard rb-tree */
418 bool rbtree_check; /* config for consistence check */
419 };
420
421 /* for the list of fsync inodes, used only during recovery */
422 struct fsync_inode_entry {
423 struct list_head list; /* list head */
424 struct inode *inode; /* vfs inode pointer */
425 block_t blkaddr; /* block address locating the last fsync */
426 block_t last_dentry; /* block address locating the last dentry */
427 };
428
429 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
430 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
431
432 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
433 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
434 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
435 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
436
437 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
438 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
439
update_nats_in_cursum(struct f2fs_journal * journal,int i)440 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
441 {
442 int before = nats_in_cursum(journal);
443
444 journal->n_nats = cpu_to_le16(before + i);
445 return before;
446 }
447
update_sits_in_cursum(struct f2fs_journal * journal,int i)448 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
449 {
450 int before = sits_in_cursum(journal);
451
452 journal->n_sits = cpu_to_le16(before + i);
453 return before;
454 }
455
__has_cursum_space(struct f2fs_journal * journal,int size,int type)456 static inline bool __has_cursum_space(struct f2fs_journal *journal,
457 int size, int type)
458 {
459 if (type == NAT_JOURNAL)
460 return size <= MAX_NAT_JENTRIES(journal);
461 return size <= MAX_SIT_JENTRIES(journal);
462 }
463
464 /* for inline stuff */
465 #define DEF_INLINE_RESERVED_SIZE 1
466 static inline int get_extra_isize(struct inode *inode);
467 static inline int get_inline_xattr_addrs(struct inode *inode);
468 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
469 (CUR_ADDRS_PER_INODE(inode) - \
470 get_inline_xattr_addrs(inode) - \
471 DEF_INLINE_RESERVED_SIZE))
472
473 /* for inline dir */
474 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
475 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
476 BITS_PER_BYTE + 1))
477 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
478 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
479 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
480 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
481 NR_INLINE_DENTRY(inode) + \
482 INLINE_DENTRY_BITMAP_SIZE(inode)))
483
484 /*
485 * For INODE and NODE manager
486 */
487 /* for directory operations */
488
489 struct f2fs_filename {
490 /*
491 * The filename the user specified. This is NULL for some
492 * filesystem-internal operations, e.g. converting an inline directory
493 * to a non-inline one, or roll-forward recovering an encrypted dentry.
494 */
495 const struct qstr *usr_fname;
496
497 /*
498 * The on-disk filename. For encrypted directories, this is encrypted.
499 * This may be NULL for lookups in an encrypted dir without the key.
500 */
501 struct fscrypt_str disk_name;
502
503 /* The dirhash of this filename */
504 f2fs_hash_t hash;
505
506 #ifdef CONFIG_FS_ENCRYPTION
507 /*
508 * For lookups in encrypted directories: either the buffer backing
509 * disk_name, or a buffer that holds the decoded no-key name.
510 */
511 struct fscrypt_str crypto_buf;
512 #endif
513 #if IS_ENABLED(CONFIG_UNICODE)
514 /*
515 * For casefolded directories: the casefolded name, but it's left NULL
516 * if the original name is not valid Unicode, if the original name is
517 * "." or "..", if the directory is both casefolded and encrypted and
518 * its encryption key is unavailable, or if the filesystem is doing an
519 * internal operation where usr_fname is also NULL. In all these cases
520 * we fall back to treating the name as an opaque byte sequence.
521 */
522 struct fscrypt_str cf_name;
523 #endif
524 };
525
526 struct f2fs_dentry_ptr {
527 struct inode *inode;
528 void *bitmap;
529 struct f2fs_dir_entry *dentry;
530 __u8 (*filename)[F2FS_SLOT_LEN];
531 int max;
532 int nr_bitmap;
533 };
534
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)535 static inline void make_dentry_ptr_block(struct inode *inode,
536 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
537 {
538 d->inode = inode;
539 d->max = NR_DENTRY_IN_BLOCK;
540 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
541 d->bitmap = t->dentry_bitmap;
542 d->dentry = t->dentry;
543 d->filename = t->filename;
544 }
545
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)546 static inline void make_dentry_ptr_inline(struct inode *inode,
547 struct f2fs_dentry_ptr *d, void *t)
548 {
549 int entry_cnt = NR_INLINE_DENTRY(inode);
550 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
551 int reserved_size = INLINE_RESERVED_SIZE(inode);
552
553 d->inode = inode;
554 d->max = entry_cnt;
555 d->nr_bitmap = bitmap_size;
556 d->bitmap = t;
557 d->dentry = t + bitmap_size + reserved_size;
558 d->filename = t + bitmap_size + reserved_size +
559 SIZE_OF_DIR_ENTRY * entry_cnt;
560 }
561
562 /*
563 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
564 * as its node offset to distinguish from index node blocks.
565 * But some bits are used to mark the node block.
566 */
567 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
568 >> OFFSET_BIT_SHIFT)
569 enum {
570 ALLOC_NODE, /* allocate a new node page if needed */
571 LOOKUP_NODE, /* look up a node without readahead */
572 LOOKUP_NODE_RA, /*
573 * look up a node with readahead called
574 * by get_data_block.
575 */
576 };
577
578 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
579
580 /* congestion wait timeout value, default: 20ms */
581 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
582
583 /* maximum retry quota flush count */
584 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
585
586 /* maximum retry of EIO'ed page */
587 #define MAX_RETRY_PAGE_EIO 100
588
589 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
590
591 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
592
593 /* dirty segments threshold for triggering CP */
594 #define DEFAULT_DIRTY_THRESHOLD 4
595
596 /* for in-memory extent cache entry */
597 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
598
599 /* number of extent info in extent cache we try to shrink */
600 #define EXTENT_CACHE_SHRINK_NUMBER 128
601
602 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
603 #define RECOVERY_MIN_RA_BLOCKS 1
604
605 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
606
607 struct rb_entry {
608 struct rb_node rb_node; /* rb node located in rb-tree */
609 union {
610 struct {
611 unsigned int ofs; /* start offset of the entry */
612 unsigned int len; /* length of the entry */
613 };
614 unsigned long long key; /* 64-bits key */
615 } __packed;
616 };
617
618 struct extent_info {
619 unsigned int fofs; /* start offset in a file */
620 unsigned int len; /* length of the extent */
621 u32 blk; /* start block address of the extent */
622 #ifdef CONFIG_F2FS_FS_COMPRESSION
623 unsigned int c_len; /* physical extent length of compressed blocks */
624 #endif
625 };
626
627 struct extent_node {
628 struct rb_node rb_node; /* rb node located in rb-tree */
629 struct extent_info ei; /* extent info */
630 struct list_head list; /* node in global extent list of sbi */
631 struct extent_tree *et; /* extent tree pointer */
632 };
633
634 struct extent_tree {
635 nid_t ino; /* inode number */
636 struct rb_root_cached root; /* root of extent info rb-tree */
637 struct extent_node *cached_en; /* recently accessed extent node */
638 struct extent_info largest; /* largested extent info */
639 struct list_head list; /* to be used by sbi->zombie_list */
640 rwlock_t lock; /* protect extent info rb-tree */
641 atomic_t node_cnt; /* # of extent node in rb-tree*/
642 bool largest_updated; /* largest extent updated */
643 };
644
645 /*
646 * This structure is taken from ext4_map_blocks.
647 *
648 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
649 */
650 #define F2FS_MAP_NEW (1 << BH_New)
651 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
652 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
653 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
654 F2FS_MAP_UNWRITTEN)
655
656 struct f2fs_map_blocks {
657 struct block_device *m_bdev; /* for multi-device dio */
658 block_t m_pblk;
659 block_t m_lblk;
660 unsigned int m_len;
661 unsigned int m_flags;
662 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
663 pgoff_t *m_next_extent; /* point to next possible extent */
664 int m_seg_type;
665 bool m_may_create; /* indicate it is from write path */
666 bool m_multidev_dio; /* indicate it allows multi-device dio */
667 };
668
669 /* for flag in get_data_block */
670 enum {
671 F2FS_GET_BLOCK_DEFAULT,
672 F2FS_GET_BLOCK_FIEMAP,
673 F2FS_GET_BLOCK_BMAP,
674 F2FS_GET_BLOCK_DIO,
675 F2FS_GET_BLOCK_PRE_DIO,
676 F2FS_GET_BLOCK_PRE_AIO,
677 F2FS_GET_BLOCK_PRECACHE,
678 };
679
680 /*
681 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
682 */
683 #define FADVISE_COLD_BIT 0x01
684 #define FADVISE_LOST_PINO_BIT 0x02
685 #define FADVISE_ENCRYPT_BIT 0x04
686 #define FADVISE_ENC_NAME_BIT 0x08
687 #define FADVISE_KEEP_SIZE_BIT 0x10
688 #define FADVISE_HOT_BIT 0x20
689 #define FADVISE_VERITY_BIT 0x40
690 #define FADVISE_TRUNC_BIT 0x80
691
692 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
693
694 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
695 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
696 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
697
698 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
699 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
700 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
701
702 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
703 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
704
705 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
706 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
707
708 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
709 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
710
711 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
712 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
713 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
714
715 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
716 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
717
718 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
719 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
720 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
721
722 #define DEF_DIR_LEVEL 0
723
724 enum {
725 GC_FAILURE_PIN,
726 MAX_GC_FAILURE
727 };
728
729 /* used for f2fs_inode_info->flags */
730 enum {
731 FI_NEW_INODE, /* indicate newly allocated inode */
732 FI_DIRTY_INODE, /* indicate inode is dirty or not */
733 FI_AUTO_RECOVER, /* indicate inode is recoverable */
734 FI_DIRTY_DIR, /* indicate directory has dirty pages */
735 FI_INC_LINK, /* need to increment i_nlink */
736 FI_ACL_MODE, /* indicate acl mode */
737 FI_NO_ALLOC, /* should not allocate any blocks */
738 FI_FREE_NID, /* free allocated nide */
739 FI_NO_EXTENT, /* not to use the extent cache */
740 FI_INLINE_XATTR, /* used for inline xattr */
741 FI_INLINE_DATA, /* used for inline data*/
742 FI_INLINE_DENTRY, /* used for inline dentry */
743 FI_APPEND_WRITE, /* inode has appended data */
744 FI_UPDATE_WRITE, /* inode has in-place-update data */
745 FI_NEED_IPU, /* used for ipu per file */
746 FI_ATOMIC_FILE, /* indicate atomic file */
747 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
748 FI_DROP_CACHE, /* drop dirty page cache */
749 FI_DATA_EXIST, /* indicate data exists */
750 FI_INLINE_DOTS, /* indicate inline dot dentries */
751 FI_SKIP_WRITES, /* should skip data page writeback */
752 FI_OPU_WRITE, /* used for opu per file */
753 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
754 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
755 FI_HOT_DATA, /* indicate file is hot */
756 FI_EXTRA_ATTR, /* indicate file has extra attribute */
757 FI_PROJ_INHERIT, /* indicate file inherits projectid */
758 FI_PIN_FILE, /* indicate file should not be gced */
759 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
760 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
761 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
762 FI_MMAP_FILE, /* indicate file was mmapped */
763 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
764 FI_COMPRESS_RELEASED, /* compressed blocks were released */
765 FI_ALIGNED_WRITE, /* enable aligned write */
766 FI_COW_FILE, /* indicate COW file */
767 FI_MAX, /* max flag, never be used */
768 };
769
770 struct f2fs_inode_info {
771 struct inode vfs_inode; /* serve a vfs inode */
772 unsigned long i_flags; /* keep an inode flags for ioctl */
773 unsigned char i_advise; /* use to give file attribute hints */
774 unsigned char i_dir_level; /* use for dentry level for large dir */
775 unsigned int i_current_depth; /* only for directory depth */
776 /* for gc failure statistic */
777 unsigned int i_gc_failures[MAX_GC_FAILURE];
778 unsigned int i_pino; /* parent inode number */
779 umode_t i_acl_mode; /* keep file acl mode temporarily */
780
781 /* Use below internally in f2fs*/
782 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
783 struct f2fs_rwsem i_sem; /* protect fi info */
784 atomic_t dirty_pages; /* # of dirty pages */
785 f2fs_hash_t chash; /* hash value of given file name */
786 unsigned int clevel; /* maximum level of given file name */
787 struct task_struct *task; /* lookup and create consistency */
788 struct task_struct *cp_task; /* separate cp/wb IO stats*/
789 struct task_struct *wb_task; /* indicate inode is in context of writeback */
790 nid_t i_xattr_nid; /* node id that contains xattrs */
791 loff_t last_disk_size; /* lastly written file size */
792 spinlock_t i_size_lock; /* protect last_disk_size */
793
794 #ifdef CONFIG_QUOTA
795 struct dquot *i_dquot[MAXQUOTAS];
796
797 /* quota space reservation, managed internally by quota code */
798 qsize_t i_reserved_quota;
799 #endif
800 struct list_head dirty_list; /* dirty list for dirs and files */
801 struct list_head gdirty_list; /* linked in global dirty list */
802 struct task_struct *atomic_write_task; /* store atomic write task */
803 struct extent_tree *extent_tree; /* cached extent_tree entry */
804 struct inode *cow_inode; /* copy-on-write inode for atomic write */
805
806 /* avoid racing between foreground op and gc */
807 struct f2fs_rwsem i_gc_rwsem[2];
808 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
809
810 int i_extra_isize; /* size of extra space located in i_addr */
811 kprojid_t i_projid; /* id for project quota */
812 int i_inline_xattr_size; /* inline xattr size */
813 struct timespec64 i_crtime; /* inode creation time */
814 struct timespec64 i_disk_time[4];/* inode disk times */
815
816 /* for file compress */
817 atomic_t i_compr_blocks; /* # of compressed blocks */
818 unsigned char i_compress_algorithm; /* algorithm type */
819 unsigned char i_log_cluster_size; /* log of cluster size */
820 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
821 unsigned short i_compress_flag; /* compress flag */
822 unsigned int i_cluster_size; /* cluster size */
823
824 unsigned int atomic_write_cnt;
825 };
826
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)827 static inline void get_extent_info(struct extent_info *ext,
828 struct f2fs_extent *i_ext)
829 {
830 ext->fofs = le32_to_cpu(i_ext->fofs);
831 ext->blk = le32_to_cpu(i_ext->blk);
832 ext->len = le32_to_cpu(i_ext->len);
833 }
834
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)835 static inline void set_raw_extent(struct extent_info *ext,
836 struct f2fs_extent *i_ext)
837 {
838 i_ext->fofs = cpu_to_le32(ext->fofs);
839 i_ext->blk = cpu_to_le32(ext->blk);
840 i_ext->len = cpu_to_le32(ext->len);
841 }
842
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)843 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
844 u32 blk, unsigned int len)
845 {
846 ei->fofs = fofs;
847 ei->blk = blk;
848 ei->len = len;
849 #ifdef CONFIG_F2FS_FS_COMPRESSION
850 ei->c_len = 0;
851 #endif
852 }
853
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)854 static inline bool __is_discard_mergeable(struct discard_info *back,
855 struct discard_info *front, unsigned int max_len)
856 {
857 return (back->lstart + back->len == front->lstart) &&
858 (back->len + front->len <= max_len);
859 }
860
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)861 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
862 struct discard_info *back, unsigned int max_len)
863 {
864 return __is_discard_mergeable(back, cur, max_len);
865 }
866
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)867 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
868 struct discard_info *front, unsigned int max_len)
869 {
870 return __is_discard_mergeable(cur, front, max_len);
871 }
872
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)873 static inline bool __is_extent_mergeable(struct extent_info *back,
874 struct extent_info *front)
875 {
876 #ifdef CONFIG_F2FS_FS_COMPRESSION
877 if (back->c_len && back->len != back->c_len)
878 return false;
879 if (front->c_len && front->len != front->c_len)
880 return false;
881 #endif
882 return (back->fofs + back->len == front->fofs &&
883 back->blk + back->len == front->blk);
884 }
885
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)886 static inline bool __is_back_mergeable(struct extent_info *cur,
887 struct extent_info *back)
888 {
889 return __is_extent_mergeable(back, cur);
890 }
891
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)892 static inline bool __is_front_mergeable(struct extent_info *cur,
893 struct extent_info *front)
894 {
895 return __is_extent_mergeable(cur, front);
896 }
897
898 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)899 static inline void __try_update_largest_extent(struct extent_tree *et,
900 struct extent_node *en)
901 {
902 if (en->ei.len > et->largest.len) {
903 et->largest = en->ei;
904 et->largest_updated = true;
905 }
906 }
907
908 /*
909 * For free nid management
910 */
911 enum nid_state {
912 FREE_NID, /* newly added to free nid list */
913 PREALLOC_NID, /* it is preallocated */
914 MAX_NID_STATE,
915 };
916
917 enum nat_state {
918 TOTAL_NAT,
919 DIRTY_NAT,
920 RECLAIMABLE_NAT,
921 MAX_NAT_STATE,
922 };
923
924 struct f2fs_nm_info {
925 block_t nat_blkaddr; /* base disk address of NAT */
926 nid_t max_nid; /* maximum possible node ids */
927 nid_t available_nids; /* # of available node ids */
928 nid_t next_scan_nid; /* the next nid to be scanned */
929 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
930 unsigned int ram_thresh; /* control the memory footprint */
931 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
932 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
933
934 /* NAT cache management */
935 struct radix_tree_root nat_root;/* root of the nat entry cache */
936 struct radix_tree_root nat_set_root;/* root of the nat set cache */
937 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
938 struct list_head nat_entries; /* cached nat entry list (clean) */
939 spinlock_t nat_list_lock; /* protect clean nat entry list */
940 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
941 unsigned int nat_blocks; /* # of nat blocks */
942
943 /* free node ids management */
944 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
945 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
946 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
947 spinlock_t nid_list_lock; /* protect nid lists ops */
948 struct mutex build_lock; /* lock for build free nids */
949 unsigned char **free_nid_bitmap;
950 unsigned char *nat_block_bitmap;
951 unsigned short *free_nid_count; /* free nid count of NAT block */
952
953 /* for checkpoint */
954 char *nat_bitmap; /* NAT bitmap pointer */
955
956 unsigned int nat_bits_blocks; /* # of nat bits blocks */
957 unsigned char *nat_bits; /* NAT bits blocks */
958 unsigned char *full_nat_bits; /* full NAT pages */
959 unsigned char *empty_nat_bits; /* empty NAT pages */
960 #ifdef CONFIG_F2FS_CHECK_FS
961 char *nat_bitmap_mir; /* NAT bitmap mirror */
962 #endif
963 int bitmap_size; /* bitmap size */
964 };
965
966 /*
967 * this structure is used as one of function parameters.
968 * all the information are dedicated to a given direct node block determined
969 * by the data offset in a file.
970 */
971 struct dnode_of_data {
972 struct inode *inode; /* vfs inode pointer */
973 struct page *inode_page; /* its inode page, NULL is possible */
974 struct page *node_page; /* cached direct node page */
975 nid_t nid; /* node id of the direct node block */
976 unsigned int ofs_in_node; /* data offset in the node page */
977 bool inode_page_locked; /* inode page is locked or not */
978 bool node_changed; /* is node block changed */
979 char cur_level; /* level of hole node page */
980 char max_level; /* level of current page located */
981 block_t data_blkaddr; /* block address of the node block */
982 };
983
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)984 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
985 struct page *ipage, struct page *npage, nid_t nid)
986 {
987 memset(dn, 0, sizeof(*dn));
988 dn->inode = inode;
989 dn->inode_page = ipage;
990 dn->node_page = npage;
991 dn->nid = nid;
992 }
993
994 /*
995 * For SIT manager
996 *
997 * By default, there are 6 active log areas across the whole main area.
998 * When considering hot and cold data separation to reduce cleaning overhead,
999 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1000 * respectively.
1001 * In the current design, you should not change the numbers intentionally.
1002 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1003 * logs individually according to the underlying devices. (default: 6)
1004 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1005 * data and 8 for node logs.
1006 */
1007 #define NR_CURSEG_DATA_TYPE (3)
1008 #define NR_CURSEG_NODE_TYPE (3)
1009 #define NR_CURSEG_INMEM_TYPE (2)
1010 #define NR_CURSEG_RO_TYPE (2)
1011 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1012 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1013
1014 enum {
1015 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1016 CURSEG_WARM_DATA, /* data blocks */
1017 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1018 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1019 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1020 CURSEG_COLD_NODE, /* indirect node blocks */
1021 NR_PERSISTENT_LOG, /* number of persistent log */
1022 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1023 /* pinned file that needs consecutive block address */
1024 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1025 NO_CHECK_TYPE, /* number of persistent & inmem log */
1026 };
1027
1028 struct flush_cmd {
1029 struct completion wait;
1030 struct llist_node llnode;
1031 nid_t ino;
1032 int ret;
1033 };
1034
1035 struct flush_cmd_control {
1036 struct task_struct *f2fs_issue_flush; /* flush thread */
1037 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1038 atomic_t issued_flush; /* # of issued flushes */
1039 atomic_t queued_flush; /* # of queued flushes */
1040 struct llist_head issue_list; /* list for command issue */
1041 struct llist_node *dispatch_list; /* list for command dispatch */
1042 };
1043
1044 struct f2fs_sm_info {
1045 struct sit_info *sit_info; /* whole segment information */
1046 struct free_segmap_info *free_info; /* free segment information */
1047 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1048 struct curseg_info *curseg_array; /* active segment information */
1049
1050 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1051
1052 block_t seg0_blkaddr; /* block address of 0'th segment */
1053 block_t main_blkaddr; /* start block address of main area */
1054 block_t ssa_blkaddr; /* start block address of SSA area */
1055
1056 unsigned int segment_count; /* total # of segments */
1057 unsigned int main_segments; /* # of segments in main area */
1058 unsigned int reserved_segments; /* # of reserved segments */
1059 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1060 unsigned int ovp_segments; /* # of overprovision segments */
1061
1062 /* a threshold to reclaim prefree segments */
1063 unsigned int rec_prefree_segments;
1064
1065 /* for batched trimming */
1066 unsigned int trim_sections; /* # of sections to trim */
1067
1068 struct list_head sit_entry_set; /* sit entry set list */
1069
1070 unsigned int ipu_policy; /* in-place-update policy */
1071 unsigned int min_ipu_util; /* in-place-update threshold */
1072 unsigned int min_fsync_blocks; /* threshold for fsync */
1073 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1074 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1075 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1076
1077 /* for flush command control */
1078 struct flush_cmd_control *fcc_info;
1079
1080 /* for discard command control */
1081 struct discard_cmd_control *dcc_info;
1082 };
1083
1084 /*
1085 * For superblock
1086 */
1087 /*
1088 * COUNT_TYPE for monitoring
1089 *
1090 * f2fs monitors the number of several block types such as on-writeback,
1091 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1092 */
1093 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1094 enum count_type {
1095 F2FS_DIRTY_DENTS,
1096 F2FS_DIRTY_DATA,
1097 F2FS_DIRTY_QDATA,
1098 F2FS_DIRTY_NODES,
1099 F2FS_DIRTY_META,
1100 F2FS_DIRTY_IMETA,
1101 F2FS_WB_CP_DATA,
1102 F2FS_WB_DATA,
1103 F2FS_RD_DATA,
1104 F2FS_RD_NODE,
1105 F2FS_RD_META,
1106 F2FS_DIO_WRITE,
1107 F2FS_DIO_READ,
1108 NR_COUNT_TYPE,
1109 };
1110
1111 /*
1112 * The below are the page types of bios used in submit_bio().
1113 * The available types are:
1114 * DATA User data pages. It operates as async mode.
1115 * NODE Node pages. It operates as async mode.
1116 * META FS metadata pages such as SIT, NAT, CP.
1117 * NR_PAGE_TYPE The number of page types.
1118 * META_FLUSH Make sure the previous pages are written
1119 * with waiting the bio's completion
1120 * ... Only can be used with META.
1121 */
1122 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1123 enum page_type {
1124 DATA = 0,
1125 NODE = 1, /* should not change this */
1126 META,
1127 NR_PAGE_TYPE,
1128 META_FLUSH,
1129 IPU, /* the below types are used by tracepoints only. */
1130 OPU,
1131 };
1132
1133 enum temp_type {
1134 HOT = 0, /* must be zero for meta bio */
1135 WARM,
1136 COLD,
1137 NR_TEMP_TYPE,
1138 };
1139
1140 enum need_lock_type {
1141 LOCK_REQ = 0,
1142 LOCK_DONE,
1143 LOCK_RETRY,
1144 };
1145
1146 enum cp_reason_type {
1147 CP_NO_NEEDED,
1148 CP_NON_REGULAR,
1149 CP_COMPRESSED,
1150 CP_HARDLINK,
1151 CP_SB_NEED_CP,
1152 CP_WRONG_PINO,
1153 CP_NO_SPC_ROLL,
1154 CP_NODE_NEED_CP,
1155 CP_FASTBOOT_MODE,
1156 CP_SPEC_LOG_NUM,
1157 CP_RECOVER_DIR,
1158 };
1159
1160 enum iostat_type {
1161 /* WRITE IO */
1162 APP_DIRECT_IO, /* app direct write IOs */
1163 APP_BUFFERED_IO, /* app buffered write IOs */
1164 APP_WRITE_IO, /* app write IOs */
1165 APP_MAPPED_IO, /* app mapped IOs */
1166 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1167 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1168 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1169 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1170 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1171 FS_META_IO, /* meta IOs from kworker/reclaimer */
1172 FS_GC_DATA_IO, /* data IOs from forground gc */
1173 FS_GC_NODE_IO, /* node IOs from forground gc */
1174 FS_CP_DATA_IO, /* data IOs from checkpoint */
1175 FS_CP_NODE_IO, /* node IOs from checkpoint */
1176 FS_CP_META_IO, /* meta IOs from checkpoint */
1177
1178 /* READ IO */
1179 APP_DIRECT_READ_IO, /* app direct read IOs */
1180 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1181 APP_READ_IO, /* app read IOs */
1182 APP_MAPPED_READ_IO, /* app mapped read IOs */
1183 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1184 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1185 FS_DATA_READ_IO, /* data read IOs */
1186 FS_GDATA_READ_IO, /* data read IOs from background gc */
1187 FS_CDATA_READ_IO, /* compressed data read IOs */
1188 FS_NODE_READ_IO, /* node read IOs */
1189 FS_META_READ_IO, /* meta read IOs */
1190
1191 /* other */
1192 FS_DISCARD, /* discard */
1193 NR_IO_TYPE,
1194 };
1195
1196 struct f2fs_io_info {
1197 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1198 nid_t ino; /* inode number */
1199 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1200 enum temp_type temp; /* contains HOT/WARM/COLD */
1201 enum req_op op; /* contains REQ_OP_ */
1202 blk_opf_t op_flags; /* req_flag_bits */
1203 block_t new_blkaddr; /* new block address to be written */
1204 block_t old_blkaddr; /* old block address before Cow */
1205 struct page *page; /* page to be written */
1206 struct page *encrypted_page; /* encrypted page */
1207 struct page *compressed_page; /* compressed page */
1208 struct list_head list; /* serialize IOs */
1209 bool submitted; /* indicate IO submission */
1210 int need_lock; /* indicate we need to lock cp_rwsem */
1211 bool in_list; /* indicate fio is in io_list */
1212 bool is_por; /* indicate IO is from recovery or not */
1213 bool retry; /* need to reallocate block address */
1214 int compr_blocks; /* # of compressed block addresses */
1215 bool encrypted; /* indicate file is encrypted */
1216 bool post_read; /* require post read */
1217 enum iostat_type io_type; /* io type */
1218 struct writeback_control *io_wbc; /* writeback control */
1219 struct bio **bio; /* bio for ipu */
1220 sector_t *last_block; /* last block number in bio */
1221 unsigned char version; /* version of the node */
1222 };
1223
1224 struct bio_entry {
1225 struct bio *bio;
1226 struct list_head list;
1227 };
1228
1229 #define is_read_io(rw) ((rw) == READ)
1230 struct f2fs_bio_info {
1231 struct f2fs_sb_info *sbi; /* f2fs superblock */
1232 struct bio *bio; /* bios to merge */
1233 sector_t last_block_in_bio; /* last block number */
1234 struct f2fs_io_info fio; /* store buffered io info. */
1235 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1236 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1237 struct list_head io_list; /* track fios */
1238 struct list_head bio_list; /* bio entry list head */
1239 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1240 };
1241
1242 #define FDEV(i) (sbi->devs[i])
1243 #define RDEV(i) (raw_super->devs[i])
1244 struct f2fs_dev_info {
1245 struct block_device *bdev;
1246 char path[MAX_PATH_LEN];
1247 unsigned int total_segments;
1248 block_t start_blk;
1249 block_t end_blk;
1250 #ifdef CONFIG_BLK_DEV_ZONED
1251 unsigned int nr_blkz; /* Total number of zones */
1252 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1253 #endif
1254 };
1255
1256 enum inode_type {
1257 DIR_INODE, /* for dirty dir inode */
1258 FILE_INODE, /* for dirty regular/symlink inode */
1259 DIRTY_META, /* for all dirtied inode metadata */
1260 NR_INODE_TYPE,
1261 };
1262
1263 /* for inner inode cache management */
1264 struct inode_management {
1265 struct radix_tree_root ino_root; /* ino entry array */
1266 spinlock_t ino_lock; /* for ino entry lock */
1267 struct list_head ino_list; /* inode list head */
1268 unsigned long ino_num; /* number of entries */
1269 };
1270
1271 /* for GC_AT */
1272 struct atgc_management {
1273 bool atgc_enabled; /* ATGC is enabled or not */
1274 struct rb_root_cached root; /* root of victim rb-tree */
1275 struct list_head victim_list; /* linked with all victim entries */
1276 unsigned int victim_count; /* victim count in rb-tree */
1277 unsigned int candidate_ratio; /* candidate ratio */
1278 unsigned int max_candidate_count; /* max candidate count */
1279 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1280 unsigned long long age_threshold; /* age threshold */
1281 };
1282
1283 struct f2fs_gc_control {
1284 unsigned int victim_segno; /* target victim segment number */
1285 int init_gc_type; /* FG_GC or BG_GC */
1286 bool no_bg_gc; /* check the space and stop bg_gc */
1287 bool should_migrate_blocks; /* should migrate blocks */
1288 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1289 unsigned int nr_free_secs; /* # of free sections to do GC */
1290 };
1291
1292 /* For s_flag in struct f2fs_sb_info */
1293 enum {
1294 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1295 SBI_IS_CLOSE, /* specify unmounting */
1296 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1297 SBI_POR_DOING, /* recovery is doing or not */
1298 SBI_NEED_SB_WRITE, /* need to recover superblock */
1299 SBI_NEED_CP, /* need to checkpoint */
1300 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1301 SBI_IS_RECOVERED, /* recovered orphan/data */
1302 SBI_CP_DISABLED, /* CP was disabled last mount */
1303 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1304 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1305 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1306 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1307 SBI_IS_RESIZEFS, /* resizefs is in process */
1308 SBI_IS_FREEZING, /* freezefs is in process */
1309 };
1310
1311 enum {
1312 CP_TIME,
1313 REQ_TIME,
1314 DISCARD_TIME,
1315 GC_TIME,
1316 DISABLE_TIME,
1317 UMOUNT_DISCARD_TIMEOUT,
1318 MAX_TIME,
1319 };
1320
1321 enum {
1322 GC_NORMAL,
1323 GC_IDLE_CB,
1324 GC_IDLE_GREEDY,
1325 GC_IDLE_AT,
1326 GC_URGENT_HIGH,
1327 GC_URGENT_LOW,
1328 GC_URGENT_MID,
1329 MAX_GC_MODE,
1330 };
1331
1332 enum {
1333 BGGC_MODE_ON, /* background gc is on */
1334 BGGC_MODE_OFF, /* background gc is off */
1335 BGGC_MODE_SYNC, /*
1336 * background gc is on, migrating blocks
1337 * like foreground gc
1338 */
1339 };
1340
1341 enum {
1342 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1343 FS_MODE_LFS, /* use lfs allocation only */
1344 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1345 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1346 };
1347
1348 enum {
1349 ALLOC_MODE_DEFAULT, /* stay default */
1350 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1351 };
1352
1353 enum fsync_mode {
1354 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1355 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1356 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1357 };
1358
1359 enum {
1360 COMPR_MODE_FS, /*
1361 * automatically compress compression
1362 * enabled files
1363 */
1364 COMPR_MODE_USER, /*
1365 * automatical compression is disabled.
1366 * user can control the file compression
1367 * using ioctls
1368 */
1369 };
1370
1371 enum {
1372 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1373 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1374 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1375 };
1376
1377 enum {
1378 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1379 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1380 };
1381
1382
1383
1384 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1385 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1386 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1387
1388 /*
1389 * Layout of f2fs page.private:
1390 *
1391 * Layout A: lowest bit should be 1
1392 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1393 * bit 0 PAGE_PRIVATE_NOT_POINTER
1394 * bit 1 PAGE_PRIVATE_ATOMIC_WRITE
1395 * bit 2 PAGE_PRIVATE_DUMMY_WRITE
1396 * bit 3 PAGE_PRIVATE_ONGOING_MIGRATION
1397 * bit 4 PAGE_PRIVATE_INLINE_INODE
1398 * bit 5 PAGE_PRIVATE_REF_RESOURCE
1399 * bit 6- f2fs private data
1400 *
1401 * Layout B: lowest bit should be 0
1402 * page.private is a wrapped pointer.
1403 */
1404 enum {
1405 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1406 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1407 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */
1408 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1409 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1410 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1411 PAGE_PRIVATE_MAX
1412 };
1413
1414 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1415 static inline bool page_private_##name(struct page *page) \
1416 { \
1417 return PagePrivate(page) && \
1418 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1419 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1420 }
1421
1422 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1423 static inline void set_page_private_##name(struct page *page) \
1424 { \
1425 if (!PagePrivate(page)) { \
1426 get_page(page); \
1427 SetPagePrivate(page); \
1428 set_page_private(page, 0); \
1429 } \
1430 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1431 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1432 }
1433
1434 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1435 static inline void clear_page_private_##name(struct page *page) \
1436 { \
1437 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1438 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1439 set_page_private(page, 0); \
1440 if (PagePrivate(page)) { \
1441 ClearPagePrivate(page); \
1442 put_page(page); \
1443 }\
1444 } \
1445 }
1446
1447 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1448 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1449 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1450 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1451 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1452 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1453
1454 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1455 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1456 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1457 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1458 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1459
1460 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1461 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1462 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1463 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1464 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1465
get_page_private_data(struct page * page)1466 static inline unsigned long get_page_private_data(struct page *page)
1467 {
1468 unsigned long data = page_private(page);
1469
1470 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1471 return 0;
1472 return data >> PAGE_PRIVATE_MAX;
1473 }
1474
set_page_private_data(struct page * page,unsigned long data)1475 static inline void set_page_private_data(struct page *page, unsigned long data)
1476 {
1477 if (!PagePrivate(page)) {
1478 get_page(page);
1479 SetPagePrivate(page);
1480 set_page_private(page, 0);
1481 }
1482 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1483 page_private(page) |= data << PAGE_PRIVATE_MAX;
1484 }
1485
clear_page_private_data(struct page * page)1486 static inline void clear_page_private_data(struct page *page)
1487 {
1488 page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1489 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1490 set_page_private(page, 0);
1491 if (PagePrivate(page)) {
1492 ClearPagePrivate(page);
1493 put_page(page);
1494 }
1495 }
1496 }
1497
1498 /* For compression */
1499 enum compress_algorithm_type {
1500 COMPRESS_LZO,
1501 COMPRESS_LZ4,
1502 COMPRESS_ZSTD,
1503 COMPRESS_LZORLE,
1504 COMPRESS_MAX,
1505 };
1506
1507 enum compress_flag {
1508 COMPRESS_CHKSUM,
1509 COMPRESS_MAX_FLAG,
1510 };
1511
1512 #define COMPRESS_WATERMARK 20
1513 #define COMPRESS_PERCENT 20
1514
1515 #define COMPRESS_DATA_RESERVED_SIZE 4
1516 struct compress_data {
1517 __le32 clen; /* compressed data size */
1518 __le32 chksum; /* compressed data chksum */
1519 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1520 u8 cdata[]; /* compressed data */
1521 };
1522
1523 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1524
1525 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1526
1527 #define COMPRESS_LEVEL_OFFSET 8
1528
1529 /* compress context */
1530 struct compress_ctx {
1531 struct inode *inode; /* inode the context belong to */
1532 pgoff_t cluster_idx; /* cluster index number */
1533 unsigned int cluster_size; /* page count in cluster */
1534 unsigned int log_cluster_size; /* log of cluster size */
1535 struct page **rpages; /* pages store raw data in cluster */
1536 unsigned int nr_rpages; /* total page number in rpages */
1537 struct page **cpages; /* pages store compressed data in cluster */
1538 unsigned int nr_cpages; /* total page number in cpages */
1539 unsigned int valid_nr_cpages; /* valid page number in cpages */
1540 void *rbuf; /* virtual mapped address on rpages */
1541 struct compress_data *cbuf; /* virtual mapped address on cpages */
1542 size_t rlen; /* valid data length in rbuf */
1543 size_t clen; /* valid data length in cbuf */
1544 void *private; /* payload buffer for specified compression algorithm */
1545 void *private2; /* extra payload buffer */
1546 };
1547
1548 /* compress context for write IO path */
1549 struct compress_io_ctx {
1550 u32 magic; /* magic number to indicate page is compressed */
1551 struct inode *inode; /* inode the context belong to */
1552 struct page **rpages; /* pages store raw data in cluster */
1553 unsigned int nr_rpages; /* total page number in rpages */
1554 atomic_t pending_pages; /* in-flight compressed page count */
1555 };
1556
1557 /* Context for decompressing one cluster on the read IO path */
1558 struct decompress_io_ctx {
1559 u32 magic; /* magic number to indicate page is compressed */
1560 struct inode *inode; /* inode the context belong to */
1561 pgoff_t cluster_idx; /* cluster index number */
1562 unsigned int cluster_size; /* page count in cluster */
1563 unsigned int log_cluster_size; /* log of cluster size */
1564 struct page **rpages; /* pages store raw data in cluster */
1565 unsigned int nr_rpages; /* total page number in rpages */
1566 struct page **cpages; /* pages store compressed data in cluster */
1567 unsigned int nr_cpages; /* total page number in cpages */
1568 struct page **tpages; /* temp pages to pad holes in cluster */
1569 void *rbuf; /* virtual mapped address on rpages */
1570 struct compress_data *cbuf; /* virtual mapped address on cpages */
1571 size_t rlen; /* valid data length in rbuf */
1572 size_t clen; /* valid data length in cbuf */
1573
1574 /*
1575 * The number of compressed pages remaining to be read in this cluster.
1576 * This is initially nr_cpages. It is decremented by 1 each time a page
1577 * has been read (or failed to be read). When it reaches 0, the cluster
1578 * is decompressed (or an error is reported).
1579 *
1580 * If an error occurs before all the pages have been submitted for I/O,
1581 * then this will never reach 0. In this case the I/O submitter is
1582 * responsible for calling f2fs_decompress_end_io() instead.
1583 */
1584 atomic_t remaining_pages;
1585
1586 /*
1587 * Number of references to this decompress_io_ctx.
1588 *
1589 * One reference is held for I/O completion. This reference is dropped
1590 * after the pagecache pages are updated and unlocked -- either after
1591 * decompression (and verity if enabled), or after an error.
1592 *
1593 * In addition, each compressed page holds a reference while it is in a
1594 * bio. These references are necessary prevent compressed pages from
1595 * being freed while they are still in a bio.
1596 */
1597 refcount_t refcnt;
1598
1599 bool failed; /* IO error occurred before decompression? */
1600 bool need_verity; /* need fs-verity verification after decompression? */
1601 void *private; /* payload buffer for specified decompression algorithm */
1602 void *private2; /* extra payload buffer */
1603 struct work_struct verity_work; /* work to verify the decompressed pages */
1604 struct work_struct free_work; /* work for late free this structure itself */
1605 };
1606
1607 #define NULL_CLUSTER ((unsigned int)(~0))
1608 #define MIN_COMPRESS_LOG_SIZE 2
1609 #define MAX_COMPRESS_LOG_SIZE 8
1610 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1611
1612 struct f2fs_sb_info {
1613 struct super_block *sb; /* pointer to VFS super block */
1614 struct proc_dir_entry *s_proc; /* proc entry */
1615 struct f2fs_super_block *raw_super; /* raw super block pointer */
1616 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1617 int valid_super_block; /* valid super block no */
1618 unsigned long s_flag; /* flags for sbi */
1619 struct mutex writepages; /* mutex for writepages() */
1620
1621 #ifdef CONFIG_BLK_DEV_ZONED
1622 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1623 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1624 #endif
1625
1626 /* for node-related operations */
1627 struct f2fs_nm_info *nm_info; /* node manager */
1628 struct inode *node_inode; /* cache node blocks */
1629
1630 /* for segment-related operations */
1631 struct f2fs_sm_info *sm_info; /* segment manager */
1632
1633 /* for bio operations */
1634 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1635 /* keep migration IO order for LFS mode */
1636 struct f2fs_rwsem io_order_lock;
1637 mempool_t *write_io_dummy; /* Dummy pages */
1638 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1639 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1640
1641 /* for checkpoint */
1642 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1643 int cur_cp_pack; /* remain current cp pack */
1644 spinlock_t cp_lock; /* for flag in ckpt */
1645 struct inode *meta_inode; /* cache meta blocks */
1646 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1647 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1648 struct f2fs_rwsem node_write; /* locking node writes */
1649 struct f2fs_rwsem node_change; /* locking node change */
1650 wait_queue_head_t cp_wait;
1651 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1652 long interval_time[MAX_TIME]; /* to store thresholds */
1653 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1654
1655 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1656
1657 spinlock_t fsync_node_lock; /* for node entry lock */
1658 struct list_head fsync_node_list; /* node list head */
1659 unsigned int fsync_seg_id; /* sequence id */
1660 unsigned int fsync_node_num; /* number of node entries */
1661
1662 /* for orphan inode, use 0'th array */
1663 unsigned int max_orphans; /* max orphan inodes */
1664
1665 /* for inode management */
1666 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1667 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1668 struct mutex flush_lock; /* for flush exclusion */
1669
1670 /* for extent tree cache */
1671 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1672 struct mutex extent_tree_lock; /* locking extent radix tree */
1673 struct list_head extent_list; /* lru list for shrinker */
1674 spinlock_t extent_lock; /* locking extent lru list */
1675 atomic_t total_ext_tree; /* extent tree count */
1676 struct list_head zombie_list; /* extent zombie tree list */
1677 atomic_t total_zombie_tree; /* extent zombie tree count */
1678 atomic_t total_ext_node; /* extent info count */
1679
1680 /* basic filesystem units */
1681 unsigned int log_sectors_per_block; /* log2 sectors per block */
1682 unsigned int log_blocksize; /* log2 block size */
1683 unsigned int blocksize; /* block size */
1684 unsigned int root_ino_num; /* root inode number*/
1685 unsigned int node_ino_num; /* node inode number*/
1686 unsigned int meta_ino_num; /* meta inode number*/
1687 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1688 unsigned int blocks_per_seg; /* blocks per segment */
1689 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1690 unsigned int segs_per_sec; /* segments per section */
1691 unsigned int secs_per_zone; /* sections per zone */
1692 unsigned int total_sections; /* total section count */
1693 unsigned int total_node_count; /* total node block count */
1694 unsigned int total_valid_node_count; /* valid node block count */
1695 int dir_level; /* directory level */
1696 int readdir_ra; /* readahead inode in readdir */
1697 u64 max_io_bytes; /* max io bytes to merge IOs */
1698
1699 block_t user_block_count; /* # of user blocks */
1700 block_t total_valid_block_count; /* # of valid blocks */
1701 block_t discard_blks; /* discard command candidats */
1702 block_t last_valid_block_count; /* for recovery */
1703 block_t reserved_blocks; /* configurable reserved blocks */
1704 block_t current_reserved_blocks; /* current reserved blocks */
1705
1706 /* Additional tracking for no checkpoint mode */
1707 block_t unusable_block_count; /* # of blocks saved by last cp */
1708
1709 unsigned int nquota_files; /* # of quota sysfile */
1710 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1711
1712 /* # of pages, see count_type */
1713 atomic_t nr_pages[NR_COUNT_TYPE];
1714 /* # of allocated blocks */
1715 struct percpu_counter alloc_valid_block_count;
1716 /* # of node block writes as roll forward recovery */
1717 struct percpu_counter rf_node_block_count;
1718
1719 /* writeback control */
1720 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1721
1722 /* valid inode count */
1723 struct percpu_counter total_valid_inode_count;
1724
1725 struct f2fs_mount_info mount_opt; /* mount options */
1726
1727 /* for cleaning operations */
1728 struct f2fs_rwsem gc_lock; /*
1729 * semaphore for GC, avoid
1730 * race between GC and GC or CP
1731 */
1732 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1733 struct atgc_management am; /* atgc management */
1734 unsigned int cur_victim_sec; /* current victim section num */
1735 unsigned int gc_mode; /* current GC state */
1736 unsigned int next_victim_seg[2]; /* next segment in victim section */
1737 spinlock_t gc_urgent_high_lock;
1738 unsigned int gc_urgent_high_remaining; /* remaining trial count for GC_URGENT_HIGH */
1739
1740 /* for skip statistic */
1741 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1742
1743 /* threshold for gc trials on pinned files */
1744 u64 gc_pin_file_threshold;
1745 struct f2fs_rwsem pin_sem;
1746
1747 /* maximum # of trials to find a victim segment for SSR and GC */
1748 unsigned int max_victim_search;
1749 /* migration granularity of garbage collection, unit: segment */
1750 unsigned int migration_granularity;
1751
1752 /*
1753 * for stat information.
1754 * one is for the LFS mode, and the other is for the SSR mode.
1755 */
1756 #ifdef CONFIG_F2FS_STAT_FS
1757 struct f2fs_stat_info *stat_info; /* FS status information */
1758 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1759 unsigned int segment_count[2]; /* # of allocated segments */
1760 unsigned int block_count[2]; /* # of allocated blocks */
1761 atomic_t inplace_count; /* # of inplace update */
1762 atomic64_t total_hit_ext; /* # of lookup extent cache */
1763 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1764 atomic64_t read_hit_largest; /* # of hit largest extent node */
1765 atomic64_t read_hit_cached; /* # of hit cached extent node */
1766 atomic_t inline_xattr; /* # of inline_xattr inodes */
1767 atomic_t inline_inode; /* # of inline_data inodes */
1768 atomic_t inline_dir; /* # of inline_dentry inodes */
1769 atomic_t compr_inode; /* # of compressed inodes */
1770 atomic64_t compr_blocks; /* # of compressed blocks */
1771 atomic_t swapfile_inode; /* # of swapfile inodes */
1772 atomic_t atomic_files; /* # of opened atomic file */
1773 atomic_t max_aw_cnt; /* max # of atomic writes */
1774 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1775 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1776 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1777 #endif
1778 spinlock_t stat_lock; /* lock for stat operations */
1779
1780 /* to attach REQ_META|REQ_FUA flags */
1781 unsigned int data_io_flag;
1782 unsigned int node_io_flag;
1783
1784 /* For sysfs support */
1785 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1786 struct completion s_kobj_unregister;
1787
1788 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1789 struct completion s_stat_kobj_unregister;
1790
1791 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1792 struct completion s_feature_list_kobj_unregister;
1793
1794 /* For shrinker support */
1795 struct list_head s_list;
1796 struct mutex umount_mutex;
1797 unsigned int shrinker_run_no;
1798
1799 /* For multi devices */
1800 int s_ndevs; /* number of devices */
1801 struct f2fs_dev_info *devs; /* for device list */
1802 unsigned int dirty_device; /* for checkpoint data flush */
1803 spinlock_t dev_lock; /* protect dirty_device */
1804 bool aligned_blksize; /* all devices has the same logical blksize */
1805
1806 /* For write statistics */
1807 u64 sectors_written_start;
1808 u64 kbytes_written;
1809
1810 /* Reference to checksum algorithm driver via cryptoapi */
1811 struct crypto_shash *s_chksum_driver;
1812
1813 /* Precomputed FS UUID checksum for seeding other checksums */
1814 __u32 s_chksum_seed;
1815
1816 struct workqueue_struct *post_read_wq; /* post read workqueue */
1817
1818 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1819 spinlock_t error_lock; /* protect errors array */
1820 bool error_dirty; /* errors of sb is dirty */
1821
1822 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1823 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1824
1825 /* For reclaimed segs statistics per each GC mode */
1826 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1827 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1828
1829 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1830
1831 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1832 int max_fragment_hole; /* max hole size for block fragmentation mode */
1833
1834 /* For atomic write statistics */
1835 atomic64_t current_atomic_write;
1836 s64 peak_atomic_write;
1837 u64 committed_atomic_block;
1838 u64 revoked_atomic_block;
1839
1840 #ifdef CONFIG_F2FS_FS_COMPRESSION
1841 struct kmem_cache *page_array_slab; /* page array entry */
1842 unsigned int page_array_slab_size; /* default page array slab size */
1843
1844 /* For runtime compression statistics */
1845 u64 compr_written_block;
1846 u64 compr_saved_block;
1847 u32 compr_new_inode;
1848
1849 /* For compressed block cache */
1850 struct inode *compress_inode; /* cache compressed blocks */
1851 unsigned int compress_percent; /* cache page percentage */
1852 unsigned int compress_watermark; /* cache page watermark */
1853 atomic_t compress_page_hit; /* cache hit count */
1854 #endif
1855
1856 #ifdef CONFIG_F2FS_IOSTAT
1857 /* For app/fs IO statistics */
1858 spinlock_t iostat_lock;
1859 unsigned long long rw_iostat[NR_IO_TYPE];
1860 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1861 bool iostat_enable;
1862 unsigned long iostat_next_period;
1863 unsigned int iostat_period_ms;
1864
1865 /* For io latency related statistics info in one iostat period */
1866 spinlock_t iostat_lat_lock;
1867 struct iostat_lat_info *iostat_io_lat;
1868 #endif
1869 };
1870
1871 #ifdef CONFIG_F2FS_FAULT_INJECTION
1872 #define f2fs_show_injection_info(sbi, type) \
1873 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1874 KERN_INFO, sbi->sb->s_id, \
1875 f2fs_fault_name[type], \
1876 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1877 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1878 {
1879 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1880
1881 if (!ffi->inject_rate)
1882 return false;
1883
1884 if (!IS_FAULT_SET(ffi, type))
1885 return false;
1886
1887 atomic_inc(&ffi->inject_ops);
1888 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1889 atomic_set(&ffi->inject_ops, 0);
1890 return true;
1891 }
1892 return false;
1893 }
1894 #else
1895 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1896 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1897 {
1898 return false;
1899 }
1900 #endif
1901
1902 /*
1903 * Test if the mounted volume is a multi-device volume.
1904 * - For a single regular disk volume, sbi->s_ndevs is 0.
1905 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1906 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1907 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1908 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1909 {
1910 return sbi->s_ndevs > 1;
1911 }
1912
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1913 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1914 {
1915 unsigned long now = jiffies;
1916
1917 sbi->last_time[type] = now;
1918
1919 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1920 if (type == REQ_TIME) {
1921 sbi->last_time[DISCARD_TIME] = now;
1922 sbi->last_time[GC_TIME] = now;
1923 }
1924 }
1925
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1926 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1927 {
1928 unsigned long interval = sbi->interval_time[type] * HZ;
1929
1930 return time_after(jiffies, sbi->last_time[type] + interval);
1931 }
1932
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1933 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1934 int type)
1935 {
1936 unsigned long interval = sbi->interval_time[type] * HZ;
1937 unsigned int wait_ms = 0;
1938 long delta;
1939
1940 delta = (sbi->last_time[type] + interval) - jiffies;
1941 if (delta > 0)
1942 wait_ms = jiffies_to_msecs(delta);
1943
1944 return wait_ms;
1945 }
1946
1947 /*
1948 * Inline functions
1949 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1950 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1951 const void *address, unsigned int length)
1952 {
1953 struct {
1954 struct shash_desc shash;
1955 char ctx[4];
1956 } desc;
1957 int err;
1958
1959 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1960
1961 desc.shash.tfm = sbi->s_chksum_driver;
1962 *(u32 *)desc.ctx = crc;
1963
1964 err = crypto_shash_update(&desc.shash, address, length);
1965 BUG_ON(err);
1966
1967 return *(u32 *)desc.ctx;
1968 }
1969
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1970 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1971 unsigned int length)
1972 {
1973 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1974 }
1975
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1976 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1977 void *buf, size_t buf_size)
1978 {
1979 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1980 }
1981
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1982 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1983 const void *address, unsigned int length)
1984 {
1985 return __f2fs_crc32(sbi, crc, address, length);
1986 }
1987
F2FS_I(struct inode * inode)1988 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1989 {
1990 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1991 }
1992
F2FS_SB(struct super_block * sb)1993 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1994 {
1995 return sb->s_fs_info;
1996 }
1997
F2FS_I_SB(struct inode * inode)1998 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1999 {
2000 return F2FS_SB(inode->i_sb);
2001 }
2002
F2FS_M_SB(struct address_space * mapping)2003 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2004 {
2005 return F2FS_I_SB(mapping->host);
2006 }
2007
F2FS_P_SB(struct page * page)2008 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2009 {
2010 return F2FS_M_SB(page_file_mapping(page));
2011 }
2012
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2013 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2014 {
2015 return (struct f2fs_super_block *)(sbi->raw_super);
2016 }
2017
F2FS_CKPT(struct f2fs_sb_info * sbi)2018 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2019 {
2020 return (struct f2fs_checkpoint *)(sbi->ckpt);
2021 }
2022
F2FS_NODE(struct page * page)2023 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2024 {
2025 return (struct f2fs_node *)page_address(page);
2026 }
2027
F2FS_INODE(struct page * page)2028 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2029 {
2030 return &((struct f2fs_node *)page_address(page))->i;
2031 }
2032
NM_I(struct f2fs_sb_info * sbi)2033 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2034 {
2035 return (struct f2fs_nm_info *)(sbi->nm_info);
2036 }
2037
SM_I(struct f2fs_sb_info * sbi)2038 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2039 {
2040 return (struct f2fs_sm_info *)(sbi->sm_info);
2041 }
2042
SIT_I(struct f2fs_sb_info * sbi)2043 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2044 {
2045 return (struct sit_info *)(SM_I(sbi)->sit_info);
2046 }
2047
FREE_I(struct f2fs_sb_info * sbi)2048 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2049 {
2050 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2051 }
2052
DIRTY_I(struct f2fs_sb_info * sbi)2053 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2054 {
2055 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2056 }
2057
META_MAPPING(struct f2fs_sb_info * sbi)2058 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2059 {
2060 return sbi->meta_inode->i_mapping;
2061 }
2062
NODE_MAPPING(struct f2fs_sb_info * sbi)2063 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2064 {
2065 return sbi->node_inode->i_mapping;
2066 }
2067
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2068 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2069 {
2070 return test_bit(type, &sbi->s_flag);
2071 }
2072
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2073 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2074 {
2075 set_bit(type, &sbi->s_flag);
2076 }
2077
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2078 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2079 {
2080 clear_bit(type, &sbi->s_flag);
2081 }
2082
cur_cp_version(struct f2fs_checkpoint * cp)2083 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2084 {
2085 return le64_to_cpu(cp->checkpoint_ver);
2086 }
2087
f2fs_qf_ino(struct super_block * sb,int type)2088 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2089 {
2090 if (type < F2FS_MAX_QUOTAS)
2091 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2092 return 0;
2093 }
2094
cur_cp_crc(struct f2fs_checkpoint * cp)2095 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2096 {
2097 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2098 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2099 }
2100
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2101 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2102 {
2103 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2104
2105 return ckpt_flags & f;
2106 }
2107
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2108 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2109 {
2110 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2111 }
2112
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2113 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2114 {
2115 unsigned int ckpt_flags;
2116
2117 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2118 ckpt_flags |= f;
2119 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2120 }
2121
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2122 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2123 {
2124 unsigned long flags;
2125
2126 spin_lock_irqsave(&sbi->cp_lock, flags);
2127 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2128 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2129 }
2130
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2131 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2132 {
2133 unsigned int ckpt_flags;
2134
2135 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2136 ckpt_flags &= (~f);
2137 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2138 }
2139
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2140 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2141 {
2142 unsigned long flags;
2143
2144 spin_lock_irqsave(&sbi->cp_lock, flags);
2145 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2146 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2147 }
2148
2149 #define init_f2fs_rwsem(sem) \
2150 do { \
2151 static struct lock_class_key __key; \
2152 \
2153 __init_f2fs_rwsem((sem), #sem, &__key); \
2154 } while (0)
2155
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2156 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2157 const char *sem_name, struct lock_class_key *key)
2158 {
2159 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2160 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2161 init_waitqueue_head(&sem->read_waiters);
2162 #endif
2163 }
2164
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2165 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2166 {
2167 return rwsem_is_locked(&sem->internal_rwsem);
2168 }
2169
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2170 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2171 {
2172 return rwsem_is_contended(&sem->internal_rwsem);
2173 }
2174
f2fs_down_read(struct f2fs_rwsem * sem)2175 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2176 {
2177 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2178 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2179 #else
2180 down_read(&sem->internal_rwsem);
2181 #endif
2182 }
2183
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2184 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2185 {
2186 return down_read_trylock(&sem->internal_rwsem);
2187 }
2188
2189 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2190 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2191 {
2192 down_read_nested(&sem->internal_rwsem, subclass);
2193 }
2194 #else
2195 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2196 #endif
2197
f2fs_up_read(struct f2fs_rwsem * sem)2198 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2199 {
2200 up_read(&sem->internal_rwsem);
2201 }
2202
f2fs_down_write(struct f2fs_rwsem * sem)2203 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2204 {
2205 down_write(&sem->internal_rwsem);
2206 }
2207
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2208 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2209 {
2210 return down_write_trylock(&sem->internal_rwsem);
2211 }
2212
f2fs_up_write(struct f2fs_rwsem * sem)2213 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2214 {
2215 up_write(&sem->internal_rwsem);
2216 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2217 wake_up_all(&sem->read_waiters);
2218 #endif
2219 }
2220
f2fs_lock_op(struct f2fs_sb_info * sbi)2221 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2222 {
2223 f2fs_down_read(&sbi->cp_rwsem);
2224 }
2225
f2fs_trylock_op(struct f2fs_sb_info * sbi)2226 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2227 {
2228 if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2229 f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2230 return 0;
2231 }
2232 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2233 }
2234
f2fs_unlock_op(struct f2fs_sb_info * sbi)2235 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2236 {
2237 f2fs_up_read(&sbi->cp_rwsem);
2238 }
2239
f2fs_lock_all(struct f2fs_sb_info * sbi)2240 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2241 {
2242 f2fs_down_write(&sbi->cp_rwsem);
2243 }
2244
f2fs_unlock_all(struct f2fs_sb_info * sbi)2245 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2246 {
2247 f2fs_up_write(&sbi->cp_rwsem);
2248 }
2249
__get_cp_reason(struct f2fs_sb_info * sbi)2250 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2251 {
2252 int reason = CP_SYNC;
2253
2254 if (test_opt(sbi, FASTBOOT))
2255 reason = CP_FASTBOOT;
2256 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2257 reason = CP_UMOUNT;
2258 return reason;
2259 }
2260
__remain_node_summaries(int reason)2261 static inline bool __remain_node_summaries(int reason)
2262 {
2263 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2264 }
2265
__exist_node_summaries(struct f2fs_sb_info * sbi)2266 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2267 {
2268 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2269 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2270 }
2271
2272 /*
2273 * Check whether the inode has blocks or not
2274 */
F2FS_HAS_BLOCKS(struct inode * inode)2275 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2276 {
2277 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2278
2279 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2280 }
2281
f2fs_has_xattr_block(unsigned int ofs)2282 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2283 {
2284 return ofs == XATTR_NODE_OFFSET;
2285 }
2286
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2287 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2288 struct inode *inode, bool cap)
2289 {
2290 if (!inode)
2291 return true;
2292 if (!test_opt(sbi, RESERVE_ROOT))
2293 return false;
2294 if (IS_NOQUOTA(inode))
2295 return true;
2296 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2297 return true;
2298 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2299 in_group_p(F2FS_OPTION(sbi).s_resgid))
2300 return true;
2301 if (cap && capable(CAP_SYS_RESOURCE))
2302 return true;
2303 return false;
2304 }
2305
2306 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2307 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2308 struct inode *inode, blkcnt_t *count)
2309 {
2310 blkcnt_t diff = 0, release = 0;
2311 block_t avail_user_block_count;
2312 int ret;
2313
2314 ret = dquot_reserve_block(inode, *count);
2315 if (ret)
2316 return ret;
2317
2318 if (time_to_inject(sbi, FAULT_BLOCK)) {
2319 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2320 release = *count;
2321 goto release_quota;
2322 }
2323
2324 /*
2325 * let's increase this in prior to actual block count change in order
2326 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2327 */
2328 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2329
2330 spin_lock(&sbi->stat_lock);
2331 sbi->total_valid_block_count += (block_t)(*count);
2332 avail_user_block_count = sbi->user_block_count -
2333 sbi->current_reserved_blocks;
2334
2335 if (!__allow_reserved_blocks(sbi, inode, true))
2336 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2337
2338 if (F2FS_IO_ALIGNED(sbi))
2339 avail_user_block_count -= sbi->blocks_per_seg *
2340 SM_I(sbi)->additional_reserved_segments;
2341
2342 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2343 if (avail_user_block_count > sbi->unusable_block_count)
2344 avail_user_block_count -= sbi->unusable_block_count;
2345 else
2346 avail_user_block_count = 0;
2347 }
2348 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2349 diff = sbi->total_valid_block_count - avail_user_block_count;
2350 if (diff > *count)
2351 diff = *count;
2352 *count -= diff;
2353 release = diff;
2354 sbi->total_valid_block_count -= diff;
2355 if (!*count) {
2356 spin_unlock(&sbi->stat_lock);
2357 goto enospc;
2358 }
2359 }
2360 spin_unlock(&sbi->stat_lock);
2361
2362 if (unlikely(release)) {
2363 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2364 dquot_release_reservation_block(inode, release);
2365 }
2366 f2fs_i_blocks_write(inode, *count, true, true);
2367 return 0;
2368
2369 enospc:
2370 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2371 release_quota:
2372 dquot_release_reservation_block(inode, release);
2373 return -ENOSPC;
2374 }
2375
2376 __printf(2, 3)
2377 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2378
2379 #define f2fs_err(sbi, fmt, ...) \
2380 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2381 #define f2fs_warn(sbi, fmt, ...) \
2382 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2383 #define f2fs_notice(sbi, fmt, ...) \
2384 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2385 #define f2fs_info(sbi, fmt, ...) \
2386 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2387 #define f2fs_debug(sbi, fmt, ...) \
2388 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2389
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2390 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2391 struct inode *inode,
2392 block_t count)
2393 {
2394 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2395
2396 spin_lock(&sbi->stat_lock);
2397 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2398 sbi->total_valid_block_count -= (block_t)count;
2399 if (sbi->reserved_blocks &&
2400 sbi->current_reserved_blocks < sbi->reserved_blocks)
2401 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2402 sbi->current_reserved_blocks + count);
2403 spin_unlock(&sbi->stat_lock);
2404 if (unlikely(inode->i_blocks < sectors)) {
2405 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2406 inode->i_ino,
2407 (unsigned long long)inode->i_blocks,
2408 (unsigned long long)sectors);
2409 set_sbi_flag(sbi, SBI_NEED_FSCK);
2410 return;
2411 }
2412 f2fs_i_blocks_write(inode, count, false, true);
2413 }
2414
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2415 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2416 {
2417 atomic_inc(&sbi->nr_pages[count_type]);
2418
2419 if (count_type == F2FS_DIRTY_DENTS ||
2420 count_type == F2FS_DIRTY_NODES ||
2421 count_type == F2FS_DIRTY_META ||
2422 count_type == F2FS_DIRTY_QDATA ||
2423 count_type == F2FS_DIRTY_IMETA)
2424 set_sbi_flag(sbi, SBI_IS_DIRTY);
2425 }
2426
inode_inc_dirty_pages(struct inode * inode)2427 static inline void inode_inc_dirty_pages(struct inode *inode)
2428 {
2429 atomic_inc(&F2FS_I(inode)->dirty_pages);
2430 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2431 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2432 if (IS_NOQUOTA(inode))
2433 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2434 }
2435
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2436 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2437 {
2438 atomic_dec(&sbi->nr_pages[count_type]);
2439 }
2440
inode_dec_dirty_pages(struct inode * inode)2441 static inline void inode_dec_dirty_pages(struct inode *inode)
2442 {
2443 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2444 !S_ISLNK(inode->i_mode))
2445 return;
2446
2447 atomic_dec(&F2FS_I(inode)->dirty_pages);
2448 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2449 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2450 if (IS_NOQUOTA(inode))
2451 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2452 }
2453
inc_atomic_write_cnt(struct inode * inode)2454 static inline void inc_atomic_write_cnt(struct inode *inode)
2455 {
2456 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2457 struct f2fs_inode_info *fi = F2FS_I(inode);
2458 u64 current_write;
2459
2460 fi->atomic_write_cnt++;
2461 atomic64_inc(&sbi->current_atomic_write);
2462 current_write = atomic64_read(&sbi->current_atomic_write);
2463 if (current_write > sbi->peak_atomic_write)
2464 sbi->peak_atomic_write = current_write;
2465 }
2466
release_atomic_write_cnt(struct inode * inode)2467 static inline void release_atomic_write_cnt(struct inode *inode)
2468 {
2469 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2470 struct f2fs_inode_info *fi = F2FS_I(inode);
2471
2472 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2473 fi->atomic_write_cnt = 0;
2474 }
2475
get_pages(struct f2fs_sb_info * sbi,int count_type)2476 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2477 {
2478 return atomic_read(&sbi->nr_pages[count_type]);
2479 }
2480
get_dirty_pages(struct inode * inode)2481 static inline int get_dirty_pages(struct inode *inode)
2482 {
2483 return atomic_read(&F2FS_I(inode)->dirty_pages);
2484 }
2485
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2486 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2487 {
2488 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2489 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2490 sbi->log_blocks_per_seg;
2491
2492 return segs / sbi->segs_per_sec;
2493 }
2494
valid_user_blocks(struct f2fs_sb_info * sbi)2495 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2496 {
2497 return sbi->total_valid_block_count;
2498 }
2499
discard_blocks(struct f2fs_sb_info * sbi)2500 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2501 {
2502 return sbi->discard_blks;
2503 }
2504
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2505 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2506 {
2507 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2508
2509 /* return NAT or SIT bitmap */
2510 if (flag == NAT_BITMAP)
2511 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2512 else if (flag == SIT_BITMAP)
2513 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2514
2515 return 0;
2516 }
2517
__cp_payload(struct f2fs_sb_info * sbi)2518 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2519 {
2520 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2521 }
2522
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2523 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2524 {
2525 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2526 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2527 int offset;
2528
2529 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2530 offset = (flag == SIT_BITMAP) ?
2531 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2532 /*
2533 * if large_nat_bitmap feature is enabled, leave checksum
2534 * protection for all nat/sit bitmaps.
2535 */
2536 return tmp_ptr + offset + sizeof(__le32);
2537 }
2538
2539 if (__cp_payload(sbi) > 0) {
2540 if (flag == NAT_BITMAP)
2541 return tmp_ptr;
2542 else
2543 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2544 } else {
2545 offset = (flag == NAT_BITMAP) ?
2546 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2547 return tmp_ptr + offset;
2548 }
2549 }
2550
__start_cp_addr(struct f2fs_sb_info * sbi)2551 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2552 {
2553 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2554
2555 if (sbi->cur_cp_pack == 2)
2556 start_addr += sbi->blocks_per_seg;
2557 return start_addr;
2558 }
2559
__start_cp_next_addr(struct f2fs_sb_info * sbi)2560 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2561 {
2562 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2563
2564 if (sbi->cur_cp_pack == 1)
2565 start_addr += sbi->blocks_per_seg;
2566 return start_addr;
2567 }
2568
__set_cp_next_pack(struct f2fs_sb_info * sbi)2569 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2570 {
2571 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2572 }
2573
__start_sum_addr(struct f2fs_sb_info * sbi)2574 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2575 {
2576 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2577 }
2578
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2579 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2580 struct inode *inode, bool is_inode)
2581 {
2582 block_t valid_block_count;
2583 unsigned int valid_node_count, user_block_count;
2584 int err;
2585
2586 if (is_inode) {
2587 if (inode) {
2588 err = dquot_alloc_inode(inode);
2589 if (err)
2590 return err;
2591 }
2592 } else {
2593 err = dquot_reserve_block(inode, 1);
2594 if (err)
2595 return err;
2596 }
2597
2598 if (time_to_inject(sbi, FAULT_BLOCK)) {
2599 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2600 goto enospc;
2601 }
2602
2603 spin_lock(&sbi->stat_lock);
2604
2605 valid_block_count = sbi->total_valid_block_count +
2606 sbi->current_reserved_blocks + 1;
2607
2608 if (!__allow_reserved_blocks(sbi, inode, false))
2609 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2610
2611 if (F2FS_IO_ALIGNED(sbi))
2612 valid_block_count += sbi->blocks_per_seg *
2613 SM_I(sbi)->additional_reserved_segments;
2614
2615 user_block_count = sbi->user_block_count;
2616 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2617 user_block_count -= sbi->unusable_block_count;
2618
2619 if (unlikely(valid_block_count > user_block_count)) {
2620 spin_unlock(&sbi->stat_lock);
2621 goto enospc;
2622 }
2623
2624 valid_node_count = sbi->total_valid_node_count + 1;
2625 if (unlikely(valid_node_count > sbi->total_node_count)) {
2626 spin_unlock(&sbi->stat_lock);
2627 goto enospc;
2628 }
2629
2630 sbi->total_valid_node_count++;
2631 sbi->total_valid_block_count++;
2632 spin_unlock(&sbi->stat_lock);
2633
2634 if (inode) {
2635 if (is_inode)
2636 f2fs_mark_inode_dirty_sync(inode, true);
2637 else
2638 f2fs_i_blocks_write(inode, 1, true, true);
2639 }
2640
2641 percpu_counter_inc(&sbi->alloc_valid_block_count);
2642 return 0;
2643
2644 enospc:
2645 if (is_inode) {
2646 if (inode)
2647 dquot_free_inode(inode);
2648 } else {
2649 dquot_release_reservation_block(inode, 1);
2650 }
2651 return -ENOSPC;
2652 }
2653
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2654 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2655 struct inode *inode, bool is_inode)
2656 {
2657 spin_lock(&sbi->stat_lock);
2658
2659 if (unlikely(!sbi->total_valid_block_count ||
2660 !sbi->total_valid_node_count)) {
2661 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2662 sbi->total_valid_block_count,
2663 sbi->total_valid_node_count);
2664 set_sbi_flag(sbi, SBI_NEED_FSCK);
2665 } else {
2666 sbi->total_valid_block_count--;
2667 sbi->total_valid_node_count--;
2668 }
2669
2670 if (sbi->reserved_blocks &&
2671 sbi->current_reserved_blocks < sbi->reserved_blocks)
2672 sbi->current_reserved_blocks++;
2673
2674 spin_unlock(&sbi->stat_lock);
2675
2676 if (is_inode) {
2677 dquot_free_inode(inode);
2678 } else {
2679 if (unlikely(inode->i_blocks == 0)) {
2680 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2681 inode->i_ino,
2682 (unsigned long long)inode->i_blocks);
2683 set_sbi_flag(sbi, SBI_NEED_FSCK);
2684 return;
2685 }
2686 f2fs_i_blocks_write(inode, 1, false, true);
2687 }
2688 }
2689
valid_node_count(struct f2fs_sb_info * sbi)2690 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2691 {
2692 return sbi->total_valid_node_count;
2693 }
2694
inc_valid_inode_count(struct f2fs_sb_info * sbi)2695 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2696 {
2697 percpu_counter_inc(&sbi->total_valid_inode_count);
2698 }
2699
dec_valid_inode_count(struct f2fs_sb_info * sbi)2700 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2701 {
2702 percpu_counter_dec(&sbi->total_valid_inode_count);
2703 }
2704
valid_inode_count(struct f2fs_sb_info * sbi)2705 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2706 {
2707 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2708 }
2709
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2710 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2711 pgoff_t index, bool for_write)
2712 {
2713 struct page *page;
2714 unsigned int flags;
2715
2716 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2717 if (!for_write)
2718 page = find_get_page_flags(mapping, index,
2719 FGP_LOCK | FGP_ACCESSED);
2720 else
2721 page = find_lock_page(mapping, index);
2722 if (page)
2723 return page;
2724
2725 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2726 f2fs_show_injection_info(F2FS_M_SB(mapping),
2727 FAULT_PAGE_ALLOC);
2728 return NULL;
2729 }
2730 }
2731
2732 if (!for_write)
2733 return grab_cache_page(mapping, index);
2734
2735 flags = memalloc_nofs_save();
2736 page = grab_cache_page_write_begin(mapping, index);
2737 memalloc_nofs_restore(flags);
2738
2739 return page;
2740 }
2741
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2742 static inline struct page *f2fs_pagecache_get_page(
2743 struct address_space *mapping, pgoff_t index,
2744 int fgp_flags, gfp_t gfp_mask)
2745 {
2746 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2747 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2748 return NULL;
2749 }
2750
2751 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2752 }
2753
f2fs_put_page(struct page * page,int unlock)2754 static inline void f2fs_put_page(struct page *page, int unlock)
2755 {
2756 if (!page)
2757 return;
2758
2759 if (unlock) {
2760 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2761 unlock_page(page);
2762 }
2763 put_page(page);
2764 }
2765
f2fs_put_dnode(struct dnode_of_data * dn)2766 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2767 {
2768 if (dn->node_page)
2769 f2fs_put_page(dn->node_page, 1);
2770 if (dn->inode_page && dn->node_page != dn->inode_page)
2771 f2fs_put_page(dn->inode_page, 0);
2772 dn->node_page = NULL;
2773 dn->inode_page = NULL;
2774 }
2775
f2fs_kmem_cache_create(const char * name,size_t size)2776 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2777 size_t size)
2778 {
2779 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2780 }
2781
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2782 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2783 gfp_t flags)
2784 {
2785 void *entry;
2786
2787 entry = kmem_cache_alloc(cachep, flags);
2788 if (!entry)
2789 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2790 return entry;
2791 }
2792
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2793 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2794 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2795 {
2796 if (nofail)
2797 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2798
2799 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2800 f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2801 return NULL;
2802 }
2803
2804 return kmem_cache_alloc(cachep, flags);
2805 }
2806
is_inflight_io(struct f2fs_sb_info * sbi,int type)2807 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2808 {
2809 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2810 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2811 get_pages(sbi, F2FS_WB_CP_DATA) ||
2812 get_pages(sbi, F2FS_DIO_READ) ||
2813 get_pages(sbi, F2FS_DIO_WRITE))
2814 return true;
2815
2816 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2817 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2818 return true;
2819
2820 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2821 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2822 return true;
2823 return false;
2824 }
2825
is_idle(struct f2fs_sb_info * sbi,int type)2826 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2827 {
2828 if (sbi->gc_mode == GC_URGENT_HIGH)
2829 return true;
2830
2831 if (is_inflight_io(sbi, type))
2832 return false;
2833
2834 if (sbi->gc_mode == GC_URGENT_MID)
2835 return true;
2836
2837 if (sbi->gc_mode == GC_URGENT_LOW &&
2838 (type == DISCARD_TIME || type == GC_TIME))
2839 return true;
2840
2841 return f2fs_time_over(sbi, type);
2842 }
2843
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2844 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2845 unsigned long index, void *item)
2846 {
2847 while (radix_tree_insert(root, index, item))
2848 cond_resched();
2849 }
2850
2851 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2852
IS_INODE(struct page * page)2853 static inline bool IS_INODE(struct page *page)
2854 {
2855 struct f2fs_node *p = F2FS_NODE(page);
2856
2857 return RAW_IS_INODE(p);
2858 }
2859
offset_in_addr(struct f2fs_inode * i)2860 static inline int offset_in_addr(struct f2fs_inode *i)
2861 {
2862 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2863 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2864 }
2865
blkaddr_in_node(struct f2fs_node * node)2866 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2867 {
2868 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2869 }
2870
2871 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2872 static inline block_t data_blkaddr(struct inode *inode,
2873 struct page *node_page, unsigned int offset)
2874 {
2875 struct f2fs_node *raw_node;
2876 __le32 *addr_array;
2877 int base = 0;
2878 bool is_inode = IS_INODE(node_page);
2879
2880 raw_node = F2FS_NODE(node_page);
2881
2882 if (is_inode) {
2883 if (!inode)
2884 /* from GC path only */
2885 base = offset_in_addr(&raw_node->i);
2886 else if (f2fs_has_extra_attr(inode))
2887 base = get_extra_isize(inode);
2888 }
2889
2890 addr_array = blkaddr_in_node(raw_node);
2891 return le32_to_cpu(addr_array[base + offset]);
2892 }
2893
f2fs_data_blkaddr(struct dnode_of_data * dn)2894 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2895 {
2896 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2897 }
2898
f2fs_test_bit(unsigned int nr,char * addr)2899 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2900 {
2901 int mask;
2902
2903 addr += (nr >> 3);
2904 mask = 1 << (7 - (nr & 0x07));
2905 return mask & *addr;
2906 }
2907
f2fs_set_bit(unsigned int nr,char * addr)2908 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2909 {
2910 int mask;
2911
2912 addr += (nr >> 3);
2913 mask = 1 << (7 - (nr & 0x07));
2914 *addr |= mask;
2915 }
2916
f2fs_clear_bit(unsigned int nr,char * addr)2917 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2918 {
2919 int mask;
2920
2921 addr += (nr >> 3);
2922 mask = 1 << (7 - (nr & 0x07));
2923 *addr &= ~mask;
2924 }
2925
f2fs_test_and_set_bit(unsigned int nr,char * addr)2926 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2927 {
2928 int mask;
2929 int ret;
2930
2931 addr += (nr >> 3);
2932 mask = 1 << (7 - (nr & 0x07));
2933 ret = mask & *addr;
2934 *addr |= mask;
2935 return ret;
2936 }
2937
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2938 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2939 {
2940 int mask;
2941 int ret;
2942
2943 addr += (nr >> 3);
2944 mask = 1 << (7 - (nr & 0x07));
2945 ret = mask & *addr;
2946 *addr &= ~mask;
2947 return ret;
2948 }
2949
f2fs_change_bit(unsigned int nr,char * addr)2950 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2951 {
2952 int mask;
2953
2954 addr += (nr >> 3);
2955 mask = 1 << (7 - (nr & 0x07));
2956 *addr ^= mask;
2957 }
2958
2959 /*
2960 * On-disk inode flags (f2fs_inode::i_flags)
2961 */
2962 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2963 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2964 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2965 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2966 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2967 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2968 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2969 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2970 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2971 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2972 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2973
2974 /* Flags that should be inherited by new inodes from their parent. */
2975 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2976 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2977 F2FS_CASEFOLD_FL)
2978
2979 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2980 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2981 F2FS_CASEFOLD_FL))
2982
2983 /* Flags that are appropriate for non-directories/regular files. */
2984 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2985
f2fs_mask_flags(umode_t mode,__u32 flags)2986 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2987 {
2988 if (S_ISDIR(mode))
2989 return flags;
2990 else if (S_ISREG(mode))
2991 return flags & F2FS_REG_FLMASK;
2992 else
2993 return flags & F2FS_OTHER_FLMASK;
2994 }
2995
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2996 static inline void __mark_inode_dirty_flag(struct inode *inode,
2997 int flag, bool set)
2998 {
2999 switch (flag) {
3000 case FI_INLINE_XATTR:
3001 case FI_INLINE_DATA:
3002 case FI_INLINE_DENTRY:
3003 case FI_NEW_INODE:
3004 if (set)
3005 return;
3006 fallthrough;
3007 case FI_DATA_EXIST:
3008 case FI_INLINE_DOTS:
3009 case FI_PIN_FILE:
3010 case FI_COMPRESS_RELEASED:
3011 f2fs_mark_inode_dirty_sync(inode, true);
3012 }
3013 }
3014
set_inode_flag(struct inode * inode,int flag)3015 static inline void set_inode_flag(struct inode *inode, int flag)
3016 {
3017 set_bit(flag, F2FS_I(inode)->flags);
3018 __mark_inode_dirty_flag(inode, flag, true);
3019 }
3020
is_inode_flag_set(struct inode * inode,int flag)3021 static inline int is_inode_flag_set(struct inode *inode, int flag)
3022 {
3023 return test_bit(flag, F2FS_I(inode)->flags);
3024 }
3025
clear_inode_flag(struct inode * inode,int flag)3026 static inline void clear_inode_flag(struct inode *inode, int flag)
3027 {
3028 clear_bit(flag, F2FS_I(inode)->flags);
3029 __mark_inode_dirty_flag(inode, flag, false);
3030 }
3031
f2fs_verity_in_progress(struct inode * inode)3032 static inline bool f2fs_verity_in_progress(struct inode *inode)
3033 {
3034 return IS_ENABLED(CONFIG_FS_VERITY) &&
3035 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3036 }
3037
set_acl_inode(struct inode * inode,umode_t mode)3038 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3039 {
3040 F2FS_I(inode)->i_acl_mode = mode;
3041 set_inode_flag(inode, FI_ACL_MODE);
3042 f2fs_mark_inode_dirty_sync(inode, false);
3043 }
3044
f2fs_i_links_write(struct inode * inode,bool inc)3045 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3046 {
3047 if (inc)
3048 inc_nlink(inode);
3049 else
3050 drop_nlink(inode);
3051 f2fs_mark_inode_dirty_sync(inode, true);
3052 }
3053
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3054 static inline void f2fs_i_blocks_write(struct inode *inode,
3055 block_t diff, bool add, bool claim)
3056 {
3057 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3058 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3059
3060 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3061 if (add) {
3062 if (claim)
3063 dquot_claim_block(inode, diff);
3064 else
3065 dquot_alloc_block_nofail(inode, diff);
3066 } else {
3067 dquot_free_block(inode, diff);
3068 }
3069
3070 f2fs_mark_inode_dirty_sync(inode, true);
3071 if (clean || recover)
3072 set_inode_flag(inode, FI_AUTO_RECOVER);
3073 }
3074
f2fs_i_size_write(struct inode * inode,loff_t i_size)3075 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3076 {
3077 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3078 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3079
3080 if (i_size_read(inode) == i_size)
3081 return;
3082
3083 i_size_write(inode, i_size);
3084 f2fs_mark_inode_dirty_sync(inode, true);
3085 if (clean || recover)
3086 set_inode_flag(inode, FI_AUTO_RECOVER);
3087 }
3088
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3089 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3090 {
3091 F2FS_I(inode)->i_current_depth = depth;
3092 f2fs_mark_inode_dirty_sync(inode, true);
3093 }
3094
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3095 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3096 unsigned int count)
3097 {
3098 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3099 f2fs_mark_inode_dirty_sync(inode, true);
3100 }
3101
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3102 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3103 {
3104 F2FS_I(inode)->i_xattr_nid = xnid;
3105 f2fs_mark_inode_dirty_sync(inode, true);
3106 }
3107
f2fs_i_pino_write(struct inode * inode,nid_t pino)3108 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3109 {
3110 F2FS_I(inode)->i_pino = pino;
3111 f2fs_mark_inode_dirty_sync(inode, true);
3112 }
3113
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3114 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3115 {
3116 struct f2fs_inode_info *fi = F2FS_I(inode);
3117
3118 if (ri->i_inline & F2FS_INLINE_XATTR)
3119 set_bit(FI_INLINE_XATTR, fi->flags);
3120 if (ri->i_inline & F2FS_INLINE_DATA)
3121 set_bit(FI_INLINE_DATA, fi->flags);
3122 if (ri->i_inline & F2FS_INLINE_DENTRY)
3123 set_bit(FI_INLINE_DENTRY, fi->flags);
3124 if (ri->i_inline & F2FS_DATA_EXIST)
3125 set_bit(FI_DATA_EXIST, fi->flags);
3126 if (ri->i_inline & F2FS_INLINE_DOTS)
3127 set_bit(FI_INLINE_DOTS, fi->flags);
3128 if (ri->i_inline & F2FS_EXTRA_ATTR)
3129 set_bit(FI_EXTRA_ATTR, fi->flags);
3130 if (ri->i_inline & F2FS_PIN_FILE)
3131 set_bit(FI_PIN_FILE, fi->flags);
3132 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3133 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3134 }
3135
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3136 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3137 {
3138 ri->i_inline = 0;
3139
3140 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3141 ri->i_inline |= F2FS_INLINE_XATTR;
3142 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3143 ri->i_inline |= F2FS_INLINE_DATA;
3144 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3145 ri->i_inline |= F2FS_INLINE_DENTRY;
3146 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3147 ri->i_inline |= F2FS_DATA_EXIST;
3148 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3149 ri->i_inline |= F2FS_INLINE_DOTS;
3150 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3151 ri->i_inline |= F2FS_EXTRA_ATTR;
3152 if (is_inode_flag_set(inode, FI_PIN_FILE))
3153 ri->i_inline |= F2FS_PIN_FILE;
3154 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3155 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3156 }
3157
f2fs_has_extra_attr(struct inode * inode)3158 static inline int f2fs_has_extra_attr(struct inode *inode)
3159 {
3160 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3161 }
3162
f2fs_has_inline_xattr(struct inode * inode)3163 static inline int f2fs_has_inline_xattr(struct inode *inode)
3164 {
3165 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3166 }
3167
f2fs_compressed_file(struct inode * inode)3168 static inline int f2fs_compressed_file(struct inode *inode)
3169 {
3170 return S_ISREG(inode->i_mode) &&
3171 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3172 }
3173
f2fs_need_compress_data(struct inode * inode)3174 static inline bool f2fs_need_compress_data(struct inode *inode)
3175 {
3176 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3177
3178 if (!f2fs_compressed_file(inode))
3179 return false;
3180
3181 if (compress_mode == COMPR_MODE_FS)
3182 return true;
3183 else if (compress_mode == COMPR_MODE_USER &&
3184 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3185 return true;
3186
3187 return false;
3188 }
3189
addrs_per_inode(struct inode * inode)3190 static inline unsigned int addrs_per_inode(struct inode *inode)
3191 {
3192 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3193 get_inline_xattr_addrs(inode);
3194
3195 if (!f2fs_compressed_file(inode))
3196 return addrs;
3197 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3198 }
3199
addrs_per_block(struct inode * inode)3200 static inline unsigned int addrs_per_block(struct inode *inode)
3201 {
3202 if (!f2fs_compressed_file(inode))
3203 return DEF_ADDRS_PER_BLOCK;
3204 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3205 }
3206
inline_xattr_addr(struct inode * inode,struct page * page)3207 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3208 {
3209 struct f2fs_inode *ri = F2FS_INODE(page);
3210
3211 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3212 get_inline_xattr_addrs(inode)]);
3213 }
3214
inline_xattr_size(struct inode * inode)3215 static inline int inline_xattr_size(struct inode *inode)
3216 {
3217 if (f2fs_has_inline_xattr(inode))
3218 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3219 return 0;
3220 }
3221
3222 /*
3223 * Notice: check inline_data flag without inode page lock is unsafe.
3224 * It could change at any time by f2fs_convert_inline_page().
3225 */
f2fs_has_inline_data(struct inode * inode)3226 static inline int f2fs_has_inline_data(struct inode *inode)
3227 {
3228 return is_inode_flag_set(inode, FI_INLINE_DATA);
3229 }
3230
f2fs_exist_data(struct inode * inode)3231 static inline int f2fs_exist_data(struct inode *inode)
3232 {
3233 return is_inode_flag_set(inode, FI_DATA_EXIST);
3234 }
3235
f2fs_has_inline_dots(struct inode * inode)3236 static inline int f2fs_has_inline_dots(struct inode *inode)
3237 {
3238 return is_inode_flag_set(inode, FI_INLINE_DOTS);
3239 }
3240
f2fs_is_mmap_file(struct inode * inode)3241 static inline int f2fs_is_mmap_file(struct inode *inode)
3242 {
3243 return is_inode_flag_set(inode, FI_MMAP_FILE);
3244 }
3245
f2fs_is_pinned_file(struct inode * inode)3246 static inline bool f2fs_is_pinned_file(struct inode *inode)
3247 {
3248 return is_inode_flag_set(inode, FI_PIN_FILE);
3249 }
3250
f2fs_is_atomic_file(struct inode * inode)3251 static inline bool f2fs_is_atomic_file(struct inode *inode)
3252 {
3253 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3254 }
3255
f2fs_is_cow_file(struct inode * inode)3256 static inline bool f2fs_is_cow_file(struct inode *inode)
3257 {
3258 return is_inode_flag_set(inode, FI_COW_FILE);
3259 }
3260
f2fs_is_first_block_written(struct inode * inode)3261 static inline bool f2fs_is_first_block_written(struct inode *inode)
3262 {
3263 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3264 }
3265
f2fs_is_drop_cache(struct inode * inode)3266 static inline bool f2fs_is_drop_cache(struct inode *inode)
3267 {
3268 return is_inode_flag_set(inode, FI_DROP_CACHE);
3269 }
3270
inline_data_addr(struct inode * inode,struct page * page)3271 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3272 {
3273 struct f2fs_inode *ri = F2FS_INODE(page);
3274 int extra_size = get_extra_isize(inode);
3275
3276 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3277 }
3278
f2fs_has_inline_dentry(struct inode * inode)3279 static inline int f2fs_has_inline_dentry(struct inode *inode)
3280 {
3281 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3282 }
3283
is_file(struct inode * inode,int type)3284 static inline int is_file(struct inode *inode, int type)
3285 {
3286 return F2FS_I(inode)->i_advise & type;
3287 }
3288
set_file(struct inode * inode,int type)3289 static inline void set_file(struct inode *inode, int type)
3290 {
3291 if (is_file(inode, type))
3292 return;
3293 F2FS_I(inode)->i_advise |= type;
3294 f2fs_mark_inode_dirty_sync(inode, true);
3295 }
3296
clear_file(struct inode * inode,int type)3297 static inline void clear_file(struct inode *inode, int type)
3298 {
3299 if (!is_file(inode, type))
3300 return;
3301 F2FS_I(inode)->i_advise &= ~type;
3302 f2fs_mark_inode_dirty_sync(inode, true);
3303 }
3304
f2fs_is_time_consistent(struct inode * inode)3305 static inline bool f2fs_is_time_consistent(struct inode *inode)
3306 {
3307 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3308 return false;
3309 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3310 return false;
3311 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3312 return false;
3313 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3314 &F2FS_I(inode)->i_crtime))
3315 return false;
3316 return true;
3317 }
3318
f2fs_skip_inode_update(struct inode * inode,int dsync)3319 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3320 {
3321 bool ret;
3322
3323 if (dsync) {
3324 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3325
3326 spin_lock(&sbi->inode_lock[DIRTY_META]);
3327 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3328 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3329 return ret;
3330 }
3331 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3332 file_keep_isize(inode) ||
3333 i_size_read(inode) & ~PAGE_MASK)
3334 return false;
3335
3336 if (!f2fs_is_time_consistent(inode))
3337 return false;
3338
3339 spin_lock(&F2FS_I(inode)->i_size_lock);
3340 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3341 spin_unlock(&F2FS_I(inode)->i_size_lock);
3342
3343 return ret;
3344 }
3345
f2fs_readonly(struct super_block * sb)3346 static inline bool f2fs_readonly(struct super_block *sb)
3347 {
3348 return sb_rdonly(sb);
3349 }
3350
f2fs_cp_error(struct f2fs_sb_info * sbi)3351 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3352 {
3353 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3354 }
3355
is_dot_dotdot(const u8 * name,size_t len)3356 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3357 {
3358 if (len == 1 && name[0] == '.')
3359 return true;
3360
3361 if (len == 2 && name[0] == '.' && name[1] == '.')
3362 return true;
3363
3364 return false;
3365 }
3366
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3367 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3368 size_t size, gfp_t flags)
3369 {
3370 if (time_to_inject(sbi, FAULT_KMALLOC)) {
3371 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3372 return NULL;
3373 }
3374
3375 return kmalloc(size, flags);
3376 }
3377
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3378 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3379 size_t size, gfp_t flags)
3380 {
3381 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3382 }
3383
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3384 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3385 size_t size, gfp_t flags)
3386 {
3387 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3388 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3389 return NULL;
3390 }
3391
3392 return kvmalloc(size, flags);
3393 }
3394
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3395 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3396 size_t size, gfp_t flags)
3397 {
3398 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3399 }
3400
get_extra_isize(struct inode * inode)3401 static inline int get_extra_isize(struct inode *inode)
3402 {
3403 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3404 }
3405
get_inline_xattr_addrs(struct inode * inode)3406 static inline int get_inline_xattr_addrs(struct inode *inode)
3407 {
3408 return F2FS_I(inode)->i_inline_xattr_size;
3409 }
3410
3411 #define f2fs_get_inode_mode(i) \
3412 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3413 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3414
3415 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3416 (offsetof(struct f2fs_inode, i_extra_end) - \
3417 offsetof(struct f2fs_inode, i_extra_isize)) \
3418
3419 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3420 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3421 ((offsetof(typeof(*(f2fs_inode)), field) + \
3422 sizeof((f2fs_inode)->field)) \
3423 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3424
3425 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3426
3427 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3428
3429 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3430 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3431 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3432 block_t blkaddr, int type)
3433 {
3434 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3435 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3436 blkaddr, type);
3437 f2fs_bug_on(sbi, 1);
3438 }
3439 }
3440
__is_valid_data_blkaddr(block_t blkaddr)3441 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3442 {
3443 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3444 blkaddr == COMPRESS_ADDR)
3445 return false;
3446 return true;
3447 }
3448
3449 /*
3450 * file.c
3451 */
3452 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3453 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3454 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3455 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3456 int f2fs_truncate(struct inode *inode);
3457 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3458 struct kstat *stat, u32 request_mask, unsigned int flags);
3459 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3460 struct iattr *attr);
3461 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3462 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3463 int f2fs_precache_extents(struct inode *inode);
3464 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3465 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3466 struct dentry *dentry, struct fileattr *fa);
3467 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3468 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3469 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3470 int f2fs_pin_file_control(struct inode *inode, bool inc);
3471
3472 /*
3473 * inode.c
3474 */
3475 void f2fs_set_inode_flags(struct inode *inode);
3476 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3477 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3478 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3479 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3480 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3481 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3482 void f2fs_update_inode_page(struct inode *inode);
3483 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3484 void f2fs_evict_inode(struct inode *inode);
3485 void f2fs_handle_failed_inode(struct inode *inode);
3486
3487 /*
3488 * namei.c
3489 */
3490 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3491 bool hot, bool set);
3492 struct dentry *f2fs_get_parent(struct dentry *child);
3493 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3494 struct inode **new_inode);
3495
3496 /*
3497 * dir.c
3498 */
3499 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3500 int f2fs_init_casefolded_name(const struct inode *dir,
3501 struct f2fs_filename *fname);
3502 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3503 int lookup, struct f2fs_filename *fname);
3504 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3505 struct f2fs_filename *fname);
3506 void f2fs_free_filename(struct f2fs_filename *fname);
3507 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3508 const struct f2fs_filename *fname, int *max_slots);
3509 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3510 unsigned int start_pos, struct fscrypt_str *fstr);
3511 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3512 struct f2fs_dentry_ptr *d);
3513 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3514 const struct f2fs_filename *fname, struct page *dpage);
3515 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3516 unsigned int current_depth);
3517 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3518 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3519 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3520 const struct f2fs_filename *fname,
3521 struct page **res_page);
3522 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3523 const struct qstr *child, struct page **res_page);
3524 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3525 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3526 struct page **page);
3527 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3528 struct page *page, struct inode *inode);
3529 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3530 const struct f2fs_filename *fname);
3531 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3532 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3533 unsigned int bit_pos);
3534 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3535 struct inode *inode, nid_t ino, umode_t mode);
3536 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3537 struct inode *inode, nid_t ino, umode_t mode);
3538 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3539 struct inode *inode, nid_t ino, umode_t mode);
3540 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3541 struct inode *dir, struct inode *inode);
3542 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3543 bool f2fs_empty_dir(struct inode *dir);
3544
f2fs_add_link(struct dentry * dentry,struct inode * inode)3545 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3546 {
3547 if (fscrypt_is_nokey_name(dentry))
3548 return -ENOKEY;
3549 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3550 inode, inode->i_ino, inode->i_mode);
3551 }
3552
3553 /*
3554 * super.c
3555 */
3556 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3557 void f2fs_inode_synced(struct inode *inode);
3558 int f2fs_dquot_initialize(struct inode *inode);
3559 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3560 int f2fs_quota_sync(struct super_block *sb, int type);
3561 loff_t max_file_blocks(struct inode *inode);
3562 void f2fs_quota_off_umount(struct super_block *sb);
3563 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3564 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3565 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3566 int f2fs_sync_fs(struct super_block *sb, int sync);
3567 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3568
3569 /*
3570 * hash.c
3571 */
3572 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3573
3574 /*
3575 * node.c
3576 */
3577 struct node_info;
3578
3579 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3580 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3581 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3582 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3583 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3584 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3585 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3586 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3587 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3588 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3589 struct node_info *ni, bool checkpoint_context);
3590 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3591 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3592 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3593 int f2fs_truncate_xattr_node(struct inode *inode);
3594 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3595 unsigned int seq_id);
3596 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3597 int f2fs_remove_inode_page(struct inode *inode);
3598 struct page *f2fs_new_inode_page(struct inode *inode);
3599 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3600 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3601 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3602 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3603 int f2fs_move_node_page(struct page *node_page, int gc_type);
3604 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3605 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3606 struct writeback_control *wbc, bool atomic,
3607 unsigned int *seq_id);
3608 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3609 struct writeback_control *wbc,
3610 bool do_balance, enum iostat_type io_type);
3611 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3612 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3613 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3614 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3615 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3616 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3617 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3618 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3619 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3620 unsigned int segno, struct f2fs_summary_block *sum);
3621 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3622 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3623 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3624 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3625 int __init f2fs_create_node_manager_caches(void);
3626 void f2fs_destroy_node_manager_caches(void);
3627
3628 /*
3629 * segment.c
3630 */
3631 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3632 int f2fs_commit_atomic_write(struct inode *inode);
3633 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3634 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3635 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3636 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3637 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3638 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3639 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3640 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3641 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3642 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3643 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3644 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3645 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3646 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3647 struct cp_control *cpc);
3648 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3649 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3650 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3651 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3652 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3653 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3654 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3655 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3656 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3657 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3658 unsigned int *newseg, bool new_sec, int dir);
3659 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3660 unsigned int start, unsigned int end);
3661 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3662 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3663 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3664 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3665 struct cp_control *cpc);
3666 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3667 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3668 block_t blk_addr);
3669 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3670 enum iostat_type io_type);
3671 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3672 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3673 struct f2fs_io_info *fio);
3674 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3675 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3676 block_t old_blkaddr, block_t new_blkaddr,
3677 bool recover_curseg, bool recover_newaddr,
3678 bool from_gc);
3679 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3680 block_t old_addr, block_t new_addr,
3681 unsigned char version, bool recover_curseg,
3682 bool recover_newaddr);
3683 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3684 block_t old_blkaddr, block_t *new_blkaddr,
3685 struct f2fs_summary *sum, int type,
3686 struct f2fs_io_info *fio);
3687 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3688 block_t blkaddr, unsigned int blkcnt);
3689 void f2fs_wait_on_page_writeback(struct page *page,
3690 enum page_type type, bool ordered, bool locked);
3691 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3692 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3693 block_t len);
3694 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3695 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3696 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3697 unsigned int val, int alloc);
3698 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3699 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3700 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3701 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3702 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3703 int __init f2fs_create_segment_manager_caches(void);
3704 void f2fs_destroy_segment_manager_caches(void);
3705 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3706 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3707 unsigned int segno);
3708 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3709 unsigned int segno);
3710
3711 #define DEF_FRAGMENT_SIZE 4
3712 #define MIN_FRAGMENT_SIZE 1
3713 #define MAX_FRAGMENT_SIZE 512
3714
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3715 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3716 {
3717 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3718 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3719 }
3720
3721 /*
3722 * checkpoint.c
3723 */
3724 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3725 unsigned char reason);
3726 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3727 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3728 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3729 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3730 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3731 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3732 block_t blkaddr, int type);
3733 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3734 int type, bool sync);
3735 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3736 unsigned int ra_blocks);
3737 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3738 long nr_to_write, enum iostat_type io_type);
3739 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3740 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3741 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3742 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3743 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3744 unsigned int devidx, int type);
3745 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3746 unsigned int devidx, int type);
3747 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3748 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3749 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3750 void f2fs_add_orphan_inode(struct inode *inode);
3751 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3752 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3753 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3754 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3755 void f2fs_remove_dirty_inode(struct inode *inode);
3756 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3757 bool from_cp);
3758 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3759 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3760 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3761 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3762 int __init f2fs_create_checkpoint_caches(void);
3763 void f2fs_destroy_checkpoint_caches(void);
3764 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3765 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3766 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3767 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3768
3769 /*
3770 * data.c
3771 */
3772 int __init f2fs_init_bioset(void);
3773 void f2fs_destroy_bioset(void);
3774 int f2fs_init_bio_entry_cache(void);
3775 void f2fs_destroy_bio_entry_cache(void);
3776 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3777 struct bio *bio, enum page_type type);
3778 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3779 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3780 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3781 struct inode *inode, struct page *page,
3782 nid_t ino, enum page_type type);
3783 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3784 struct bio **bio, struct page *page);
3785 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3786 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3787 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3788 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3789 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3790 block_t blk_addr, sector_t *sector);
3791 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3792 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3793 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3794 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3795 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3796 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3797 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3798 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3799 blk_opf_t op_flags, bool for_write);
3800 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3801 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3802 bool for_write);
3803 struct page *f2fs_get_new_data_page(struct inode *inode,
3804 struct page *ipage, pgoff_t index, bool new_i_size);
3805 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3806 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3807 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3808 int create, int flag);
3809 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3810 u64 start, u64 len);
3811 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3812 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3813 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3814 int f2fs_write_single_data_page(struct page *page, int *submitted,
3815 struct bio **bio, sector_t *last_block,
3816 struct writeback_control *wbc,
3817 enum iostat_type io_type,
3818 int compr_blocks, bool allow_balance);
3819 void f2fs_write_failed(struct inode *inode, loff_t to);
3820 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3821 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3822 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3823 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3824 int f2fs_init_post_read_processing(void);
3825 void f2fs_destroy_post_read_processing(void);
3826 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3827 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3828 extern const struct iomap_ops f2fs_iomap_ops;
3829
3830 /*
3831 * gc.c
3832 */
3833 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3834 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3835 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3836 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3837 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3838 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3839 int __init f2fs_create_garbage_collection_cache(void);
3840 void f2fs_destroy_garbage_collection_cache(void);
3841
3842 /*
3843 * recovery.c
3844 */
3845 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3846 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3847 int __init f2fs_create_recovery_cache(void);
3848 void f2fs_destroy_recovery_cache(void);
3849
3850 /*
3851 * debug.c
3852 */
3853 #ifdef CONFIG_F2FS_STAT_FS
3854 struct f2fs_stat_info {
3855 struct list_head stat_list;
3856 struct f2fs_sb_info *sbi;
3857 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3858 int main_area_segs, main_area_sections, main_area_zones;
3859 unsigned long long hit_largest, hit_cached, hit_rbtree;
3860 unsigned long long hit_total, total_ext;
3861 int ext_tree, zombie_tree, ext_node;
3862 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3863 int ndirty_data, ndirty_qdata;
3864 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3865 int nats, dirty_nats, sits, dirty_sits;
3866 int free_nids, avail_nids, alloc_nids;
3867 int total_count, utilization;
3868 int bg_gc, nr_wb_cp_data, nr_wb_data;
3869 int nr_rd_data, nr_rd_node, nr_rd_meta;
3870 int nr_dio_read, nr_dio_write;
3871 unsigned int io_skip_bggc, other_skip_bggc;
3872 int nr_flushing, nr_flushed, flush_list_empty;
3873 int nr_discarding, nr_discarded;
3874 int nr_discard_cmd;
3875 unsigned int undiscard_blks;
3876 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3877 unsigned int cur_ckpt_time, peak_ckpt_time;
3878 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3879 int compr_inode, swapfile_inode;
3880 unsigned long long compr_blocks;
3881 int aw_cnt, max_aw_cnt;
3882 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3883 unsigned int bimodal, avg_vblocks;
3884 int util_free, util_valid, util_invalid;
3885 int rsvd_segs, overp_segs;
3886 int dirty_count, node_pages, meta_pages, compress_pages;
3887 int compress_page_hit;
3888 int prefree_count, call_count, cp_count, bg_cp_count;
3889 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3890 int bg_node_segs, bg_data_segs;
3891 int tot_blks, data_blks, node_blks;
3892 int bg_data_blks, bg_node_blks;
3893 int curseg[NR_CURSEG_TYPE];
3894 int cursec[NR_CURSEG_TYPE];
3895 int curzone[NR_CURSEG_TYPE];
3896 unsigned int dirty_seg[NR_CURSEG_TYPE];
3897 unsigned int full_seg[NR_CURSEG_TYPE];
3898 unsigned int valid_blks[NR_CURSEG_TYPE];
3899
3900 unsigned int meta_count[META_MAX];
3901 unsigned int segment_count[2];
3902 unsigned int block_count[2];
3903 unsigned int inplace_count;
3904 unsigned long long base_mem, cache_mem, page_mem;
3905 };
3906
F2FS_STAT(struct f2fs_sb_info * sbi)3907 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3908 {
3909 return (struct f2fs_stat_info *)sbi->stat_info;
3910 }
3911
3912 #define stat_inc_cp_count(si) ((si)->cp_count++)
3913 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3914 #define stat_inc_call_count(si) ((si)->call_count++)
3915 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3916 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3917 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3918 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3919 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3920 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3921 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3922 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3923 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3924 #define stat_inc_inline_xattr(inode) \
3925 do { \
3926 if (f2fs_has_inline_xattr(inode)) \
3927 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3928 } while (0)
3929 #define stat_dec_inline_xattr(inode) \
3930 do { \
3931 if (f2fs_has_inline_xattr(inode)) \
3932 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3933 } while (0)
3934 #define stat_inc_inline_inode(inode) \
3935 do { \
3936 if (f2fs_has_inline_data(inode)) \
3937 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3938 } while (0)
3939 #define stat_dec_inline_inode(inode) \
3940 do { \
3941 if (f2fs_has_inline_data(inode)) \
3942 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3943 } while (0)
3944 #define stat_inc_inline_dir(inode) \
3945 do { \
3946 if (f2fs_has_inline_dentry(inode)) \
3947 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3948 } while (0)
3949 #define stat_dec_inline_dir(inode) \
3950 do { \
3951 if (f2fs_has_inline_dentry(inode)) \
3952 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3953 } while (0)
3954 #define stat_inc_compr_inode(inode) \
3955 do { \
3956 if (f2fs_compressed_file(inode)) \
3957 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3958 } while (0)
3959 #define stat_dec_compr_inode(inode) \
3960 do { \
3961 if (f2fs_compressed_file(inode)) \
3962 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3963 } while (0)
3964 #define stat_add_compr_blocks(inode, blocks) \
3965 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3966 #define stat_sub_compr_blocks(inode, blocks) \
3967 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3968 #define stat_inc_swapfile_inode(inode) \
3969 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3970 #define stat_dec_swapfile_inode(inode) \
3971 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3972 #define stat_inc_atomic_inode(inode) \
3973 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3974 #define stat_dec_atomic_inode(inode) \
3975 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3976 #define stat_inc_meta_count(sbi, blkaddr) \
3977 do { \
3978 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3979 atomic_inc(&(sbi)->meta_count[META_CP]); \
3980 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3981 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3982 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3983 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3984 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3985 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3986 } while (0)
3987 #define stat_inc_seg_type(sbi, curseg) \
3988 ((sbi)->segment_count[(curseg)->alloc_type]++)
3989 #define stat_inc_block_count(sbi, curseg) \
3990 ((sbi)->block_count[(curseg)->alloc_type]++)
3991 #define stat_inc_inplace_blocks(sbi) \
3992 (atomic_inc(&(sbi)->inplace_count))
3993 #define stat_update_max_atomic_write(inode) \
3994 do { \
3995 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
3996 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3997 if (cur > max) \
3998 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3999 } while (0)
4000 #define stat_inc_seg_count(sbi, type, gc_type) \
4001 do { \
4002 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4003 si->tot_segs++; \
4004 if ((type) == SUM_TYPE_DATA) { \
4005 si->data_segs++; \
4006 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
4007 } else { \
4008 si->node_segs++; \
4009 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
4010 } \
4011 } while (0)
4012
4013 #define stat_inc_tot_blk_count(si, blks) \
4014 ((si)->tot_blks += (blks))
4015
4016 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4017 do { \
4018 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4019 stat_inc_tot_blk_count(si, blks); \
4020 si->data_blks += (blks); \
4021 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4022 } while (0)
4023
4024 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4025 do { \
4026 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4027 stat_inc_tot_blk_count(si, blks); \
4028 si->node_blks += (blks); \
4029 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4030 } while (0)
4031
4032 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4033 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4034 void __init f2fs_create_root_stats(void);
4035 void f2fs_destroy_root_stats(void);
4036 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4037 #else
4038 #define stat_inc_cp_count(si) do { } while (0)
4039 #define stat_inc_bg_cp_count(si) do { } while (0)
4040 #define stat_inc_call_count(si) do { } while (0)
4041 #define stat_inc_bggc_count(si) do { } while (0)
4042 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4043 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4044 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4045 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4046 #define stat_inc_total_hit(sbi) do { } while (0)
4047 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
4048 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4049 #define stat_inc_cached_node_hit(sbi) do { } while (0)
4050 #define stat_inc_inline_xattr(inode) do { } while (0)
4051 #define stat_dec_inline_xattr(inode) do { } while (0)
4052 #define stat_inc_inline_inode(inode) do { } while (0)
4053 #define stat_dec_inline_inode(inode) do { } while (0)
4054 #define stat_inc_inline_dir(inode) do { } while (0)
4055 #define stat_dec_inline_dir(inode) do { } while (0)
4056 #define stat_inc_compr_inode(inode) do { } while (0)
4057 #define stat_dec_compr_inode(inode) do { } while (0)
4058 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4059 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4060 #define stat_inc_swapfile_inode(inode) do { } while (0)
4061 #define stat_dec_swapfile_inode(inode) do { } while (0)
4062 #define stat_inc_atomic_inode(inode) do { } while (0)
4063 #define stat_dec_atomic_inode(inode) do { } while (0)
4064 #define stat_update_max_atomic_write(inode) do { } while (0)
4065 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4066 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4067 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4068 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4069 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
4070 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4071 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4072 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4073
f2fs_build_stats(struct f2fs_sb_info * sbi)4074 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4075 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4076 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4077 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4078 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4079 #endif
4080
4081 extern const struct file_operations f2fs_dir_operations;
4082 extern const struct file_operations f2fs_file_operations;
4083 extern const struct inode_operations f2fs_file_inode_operations;
4084 extern const struct address_space_operations f2fs_dblock_aops;
4085 extern const struct address_space_operations f2fs_node_aops;
4086 extern const struct address_space_operations f2fs_meta_aops;
4087 extern const struct inode_operations f2fs_dir_inode_operations;
4088 extern const struct inode_operations f2fs_symlink_inode_operations;
4089 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4090 extern const struct inode_operations f2fs_special_inode_operations;
4091 extern struct kmem_cache *f2fs_inode_entry_slab;
4092
4093 /*
4094 * inline.c
4095 */
4096 bool f2fs_may_inline_data(struct inode *inode);
4097 bool f2fs_sanity_check_inline_data(struct inode *inode);
4098 bool f2fs_may_inline_dentry(struct inode *inode);
4099 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4100 void f2fs_truncate_inline_inode(struct inode *inode,
4101 struct page *ipage, u64 from);
4102 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4103 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4104 int f2fs_convert_inline_inode(struct inode *inode);
4105 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4106 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4107 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4108 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4109 const struct f2fs_filename *fname,
4110 struct page **res_page);
4111 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4112 struct page *ipage);
4113 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4114 struct inode *inode, nid_t ino, umode_t mode);
4115 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4116 struct page *page, struct inode *dir,
4117 struct inode *inode);
4118 bool f2fs_empty_inline_dir(struct inode *dir);
4119 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4120 struct fscrypt_str *fstr);
4121 int f2fs_inline_data_fiemap(struct inode *inode,
4122 struct fiemap_extent_info *fieinfo,
4123 __u64 start, __u64 len);
4124
4125 /*
4126 * shrinker.c
4127 */
4128 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4129 struct shrink_control *sc);
4130 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4131 struct shrink_control *sc);
4132 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4133 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4134
4135 /*
4136 * extent_cache.c
4137 */
4138 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4139 struct rb_entry *cached_re, unsigned int ofs);
4140 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4141 struct rb_root_cached *root,
4142 struct rb_node **parent,
4143 unsigned long long key, bool *left_most);
4144 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4145 struct rb_root_cached *root,
4146 struct rb_node **parent,
4147 unsigned int ofs, bool *leftmost);
4148 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4149 struct rb_entry *cached_re, unsigned int ofs,
4150 struct rb_entry **prev_entry, struct rb_entry **next_entry,
4151 struct rb_node ***insert_p, struct rb_node **insert_parent,
4152 bool force, bool *leftmost);
4153 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4154 struct rb_root_cached *root, bool check_key);
4155 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4156 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4157 void f2fs_drop_extent_tree(struct inode *inode);
4158 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4159 void f2fs_destroy_extent_tree(struct inode *inode);
4160 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4161 struct extent_info *ei);
4162 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4163 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4164 pgoff_t fofs, block_t blkaddr, unsigned int len);
4165 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4166 int __init f2fs_create_extent_cache(void);
4167 void f2fs_destroy_extent_cache(void);
4168
4169 /*
4170 * sysfs.c
4171 */
4172 #define MIN_RA_MUL 2
4173 #define MAX_RA_MUL 256
4174
4175 int __init f2fs_init_sysfs(void);
4176 void f2fs_exit_sysfs(void);
4177 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4178 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4179
4180 /* verity.c */
4181 extern const struct fsverity_operations f2fs_verityops;
4182
4183 /*
4184 * crypto support
4185 */
f2fs_encrypted_file(struct inode * inode)4186 static inline bool f2fs_encrypted_file(struct inode *inode)
4187 {
4188 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4189 }
4190
f2fs_set_encrypted_inode(struct inode * inode)4191 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4192 {
4193 #ifdef CONFIG_FS_ENCRYPTION
4194 file_set_encrypt(inode);
4195 f2fs_set_inode_flags(inode);
4196 #endif
4197 }
4198
4199 /*
4200 * Returns true if the reads of the inode's data need to undergo some
4201 * postprocessing step, like decryption or authenticity verification.
4202 */
f2fs_post_read_required(struct inode * inode)4203 static inline bool f2fs_post_read_required(struct inode *inode)
4204 {
4205 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4206 f2fs_compressed_file(inode);
4207 }
4208
4209 /*
4210 * compress.c
4211 */
4212 #ifdef CONFIG_F2FS_FS_COMPRESSION
4213 bool f2fs_is_compressed_page(struct page *page);
4214 struct page *f2fs_compress_control_page(struct page *page);
4215 int f2fs_prepare_compress_overwrite(struct inode *inode,
4216 struct page **pagep, pgoff_t index, void **fsdata);
4217 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4218 pgoff_t index, unsigned copied);
4219 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4220 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4221 bool f2fs_is_compress_backend_ready(struct inode *inode);
4222 int f2fs_init_compress_mempool(void);
4223 void f2fs_destroy_compress_mempool(void);
4224 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4225 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4226 block_t blkaddr, bool in_task);
4227 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4228 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4229 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4230 int index, int nr_pages, bool uptodate);
4231 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4232 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4233 int f2fs_write_multi_pages(struct compress_ctx *cc,
4234 int *submitted,
4235 struct writeback_control *wbc,
4236 enum iostat_type io_type);
4237 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4238 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4239 pgoff_t fofs, block_t blkaddr, unsigned int llen,
4240 unsigned int c_len);
4241 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4242 unsigned nr_pages, sector_t *last_block_in_bio,
4243 bool is_readahead, bool for_write);
4244 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4245 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4246 bool in_task);
4247 void f2fs_put_page_dic(struct page *page, bool in_task);
4248 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4249 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4250 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4251 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4252 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4253 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4254 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4255 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4256 int __init f2fs_init_compress_cache(void);
4257 void f2fs_destroy_compress_cache(void);
4258 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4259 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4260 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4261 nid_t ino, block_t blkaddr);
4262 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4263 block_t blkaddr);
4264 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4265 #define inc_compr_inode_stat(inode) \
4266 do { \
4267 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4268 sbi->compr_new_inode++; \
4269 } while (0)
4270 #define add_compr_block_stat(inode, blocks) \
4271 do { \
4272 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4273 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4274 sbi->compr_written_block += blocks; \
4275 sbi->compr_saved_block += diff; \
4276 } while (0)
4277 #else
f2fs_is_compressed_page(struct page * page)4278 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4279 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4280 {
4281 if (!f2fs_compressed_file(inode))
4282 return true;
4283 /* not support compression */
4284 return false;
4285 }
f2fs_compress_control_page(struct page * page)4286 static inline struct page *f2fs_compress_control_page(struct page *page)
4287 {
4288 WARN_ON_ONCE(1);
4289 return ERR_PTR(-EINVAL);
4290 }
f2fs_init_compress_mempool(void)4291 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4292 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4293 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4294 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4295 static inline void f2fs_end_read_compressed_page(struct page *page,
4296 bool failed, block_t blkaddr, bool in_task)
4297 {
4298 WARN_ON_ONCE(1);
4299 }
f2fs_put_page_dic(struct page * page,bool in_task)4300 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4301 {
4302 WARN_ON_ONCE(1);
4303 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4304 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4305 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4306 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4307 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4308 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4309 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4310 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4311 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4312 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4313 block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4314 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4315 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4316 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4317 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4318 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4319 nid_t ino) { }
4320 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_update_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4321 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4322 pgoff_t fofs, block_t blkaddr, unsigned int llen,
4323 unsigned int c_len) { }
4324 #endif
4325
set_compress_context(struct inode * inode)4326 static inline int set_compress_context(struct inode *inode)
4327 {
4328 #ifdef CONFIG_F2FS_FS_COMPRESSION
4329 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4330
4331 F2FS_I(inode)->i_compress_algorithm =
4332 F2FS_OPTION(sbi).compress_algorithm;
4333 F2FS_I(inode)->i_log_cluster_size =
4334 F2FS_OPTION(sbi).compress_log_size;
4335 F2FS_I(inode)->i_compress_flag =
4336 F2FS_OPTION(sbi).compress_chksum ?
4337 1 << COMPRESS_CHKSUM : 0;
4338 F2FS_I(inode)->i_cluster_size =
4339 1 << F2FS_I(inode)->i_log_cluster_size;
4340 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4341 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4342 F2FS_OPTION(sbi).compress_level)
4343 F2FS_I(inode)->i_compress_flag |=
4344 F2FS_OPTION(sbi).compress_level <<
4345 COMPRESS_LEVEL_OFFSET;
4346 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4347 set_inode_flag(inode, FI_COMPRESSED_FILE);
4348 stat_inc_compr_inode(inode);
4349 inc_compr_inode_stat(inode);
4350 f2fs_mark_inode_dirty_sync(inode, true);
4351 return 0;
4352 #else
4353 return -EOPNOTSUPP;
4354 #endif
4355 }
4356
f2fs_disable_compressed_file(struct inode * inode)4357 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4358 {
4359 struct f2fs_inode_info *fi = F2FS_I(inode);
4360
4361 if (!f2fs_compressed_file(inode))
4362 return true;
4363 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4364 return false;
4365
4366 fi->i_flags &= ~F2FS_COMPR_FL;
4367 stat_dec_compr_inode(inode);
4368 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4369 f2fs_mark_inode_dirty_sync(inode, true);
4370 return true;
4371 }
4372
4373 #define F2FS_FEATURE_FUNCS(name, flagname) \
4374 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4375 { \
4376 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4377 }
4378
4379 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4380 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4381 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4382 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4383 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4384 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4385 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4386 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4387 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4388 F2FS_FEATURE_FUNCS(verity, VERITY);
4389 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4390 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4391 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4392 F2FS_FEATURE_FUNCS(readonly, RO);
4393
f2fs_may_extent_tree(struct inode * inode)4394 static inline bool f2fs_may_extent_tree(struct inode *inode)
4395 {
4396 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4397
4398 if (!test_opt(sbi, EXTENT_CACHE) ||
4399 is_inode_flag_set(inode, FI_NO_EXTENT) ||
4400 (is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4401 !f2fs_sb_has_readonly(sbi)))
4402 return false;
4403
4404 /*
4405 * for recovered files during mount do not create extents
4406 * if shrinker is not registered.
4407 */
4408 if (list_empty(&sbi->s_list))
4409 return false;
4410
4411 return S_ISREG(inode->i_mode);
4412 }
4413
4414 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4415 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4416 block_t blkaddr)
4417 {
4418 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4419
4420 return test_bit(zno, FDEV(devi).blkz_seq);
4421 }
4422 #endif
4423
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4424 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4425 {
4426 return f2fs_sb_has_blkzoned(sbi);
4427 }
4428
f2fs_bdev_support_discard(struct block_device * bdev)4429 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4430 {
4431 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4432 }
4433
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4434 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4435 {
4436 int i;
4437
4438 if (!f2fs_is_multi_device(sbi))
4439 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4440
4441 for (i = 0; i < sbi->s_ndevs; i++)
4442 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4443 return true;
4444 return false;
4445 }
4446
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4447 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4448 {
4449 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4450 f2fs_hw_should_discard(sbi);
4451 }
4452
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4453 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4454 {
4455 int i;
4456
4457 if (!f2fs_is_multi_device(sbi))
4458 return bdev_read_only(sbi->sb->s_bdev);
4459
4460 for (i = 0; i < sbi->s_ndevs; i++)
4461 if (bdev_read_only(FDEV(i).bdev))
4462 return true;
4463 return false;
4464 }
4465
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4466 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4467 {
4468 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4469 }
4470
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4471 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4472 {
4473 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4474 }
4475
f2fs_may_compress(struct inode * inode)4476 static inline bool f2fs_may_compress(struct inode *inode)
4477 {
4478 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4479 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4480 return false;
4481 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4482 }
4483
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4484 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4485 u64 blocks, bool add)
4486 {
4487 struct f2fs_inode_info *fi = F2FS_I(inode);
4488 int diff = fi->i_cluster_size - blocks;
4489
4490 /* don't update i_compr_blocks if saved blocks were released */
4491 if (!add && !atomic_read(&fi->i_compr_blocks))
4492 return;
4493
4494 if (add) {
4495 atomic_add(diff, &fi->i_compr_blocks);
4496 stat_add_compr_blocks(inode, diff);
4497 } else {
4498 atomic_sub(diff, &fi->i_compr_blocks);
4499 stat_sub_compr_blocks(inode, diff);
4500 }
4501 f2fs_mark_inode_dirty_sync(inode, true);
4502 }
4503
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4504 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4505 int flag)
4506 {
4507 if (!f2fs_is_multi_device(sbi))
4508 return false;
4509 if (flag != F2FS_GET_BLOCK_DIO)
4510 return false;
4511 return sbi->aligned_blksize;
4512 }
4513
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4514 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4515 {
4516 return fsverity_active(inode) &&
4517 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4518 }
4519
4520 #ifdef CONFIG_F2FS_FAULT_INJECTION
4521 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4522 unsigned int type);
4523 #else
4524 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4525 #endif
4526
is_journalled_quota(struct f2fs_sb_info * sbi)4527 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4528 {
4529 #ifdef CONFIG_QUOTA
4530 if (f2fs_sb_has_quota_ino(sbi))
4531 return true;
4532 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4533 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4534 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4535 return true;
4536 #endif
4537 return false;
4538 }
4539
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4540 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4541 {
4542 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4543 }
4544
f2fs_io_schedule_timeout(long timeout)4545 static inline void f2fs_io_schedule_timeout(long timeout)
4546 {
4547 set_current_state(TASK_UNINTERRUPTIBLE);
4548 io_schedule_timeout(timeout);
4549 }
4550
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4551 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4552 enum page_type type)
4553 {
4554 if (unlikely(f2fs_cp_error(sbi)))
4555 return;
4556
4557 if (ofs == sbi->page_eio_ofs[type]) {
4558 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4559 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4560 } else {
4561 sbi->page_eio_ofs[type] = ofs;
4562 sbi->page_eio_cnt[type] = 0;
4563 }
4564 }
4565
4566 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4567 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4568
4569 #endif /* _LINUX_F2FS_H */
4570