1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
bio_get_first_bvec(struct bio * bio,struct bio_vec * bv)21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
bio_get_last_bvec(struct bio * bio,struct bio_vec * bv)26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
86 }
87 
req_gap_back_merge(struct request * req,struct bio * bio)88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
req_gap_front_merge(struct request * req,struct bio * bio)93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
blk_bio_discard_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)98 static struct bio *blk_bio_discard_split(struct request_queue *q,
99 					 struct bio *bio,
100 					 struct bio_set *bs,
101 					 unsigned *nsegs)
102 {
103 	unsigned int max_discard_sectors, granularity;
104 	int alignment;
105 	sector_t tmp;
106 	unsigned split_sectors;
107 
108 	*nsegs = 1;
109 
110 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
111 	granularity = max(q->limits.discard_granularity >> 9, 1U);
112 
113 	max_discard_sectors = min(q->limits.max_discard_sectors,
114 			bio_allowed_max_sectors(q));
115 	max_discard_sectors -= max_discard_sectors % granularity;
116 
117 	if (unlikely(!max_discard_sectors)) {
118 		/* XXX: warn */
119 		return NULL;
120 	}
121 
122 	if (bio_sectors(bio) <= max_discard_sectors)
123 		return NULL;
124 
125 	split_sectors = max_discard_sectors;
126 
127 	/*
128 	 * If the next starting sector would be misaligned, stop the discard at
129 	 * the previous aligned sector.
130 	 */
131 	alignment = (q->limits.discard_alignment >> 9) % granularity;
132 
133 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
134 	tmp = sector_div(tmp, granularity);
135 
136 	if (split_sectors > tmp)
137 		split_sectors -= tmp;
138 
139 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
140 }
141 
blk_bio_write_zeroes_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)142 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
143 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
144 {
145 	*nsegs = 0;
146 
147 	if (!q->limits.max_write_zeroes_sectors)
148 		return NULL;
149 
150 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
151 		return NULL;
152 
153 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
154 }
155 
156 /*
157  * Return the maximum number of sectors from the start of a bio that may be
158  * submitted as a single request to a block device. If enough sectors remain,
159  * align the end to the physical block size. Otherwise align the end to the
160  * logical block size. This approach minimizes the number of non-aligned
161  * requests that are submitted to a block device if the start of a bio is not
162  * aligned to a physical block boundary.
163  */
get_max_io_size(struct request_queue * q,struct bio * bio)164 static inline unsigned get_max_io_size(struct request_queue *q,
165 				       struct bio *bio)
166 {
167 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
168 	unsigned max_sectors = sectors;
169 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
170 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
171 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
172 
173 	max_sectors += start_offset;
174 	max_sectors &= ~(pbs - 1);
175 	if (max_sectors > start_offset)
176 		return max_sectors - start_offset;
177 
178 	return sectors & ~(lbs - 1);
179 }
180 
get_max_segment_size(const struct request_queue * q,struct page * start_page,unsigned long offset)181 static inline unsigned get_max_segment_size(const struct request_queue *q,
182 					    struct page *start_page,
183 					    unsigned long offset)
184 {
185 	unsigned long mask = queue_segment_boundary(q);
186 
187 	offset = mask & (page_to_phys(start_page) + offset);
188 
189 	/*
190 	 * overflow may be triggered in case of zero page physical address
191 	 * on 32bit arch, use queue's max segment size when that happens.
192 	 */
193 	return min_not_zero(mask - offset + 1,
194 			(unsigned long)queue_max_segment_size(q));
195 }
196 
197 /**
198  * bvec_split_segs - verify whether or not a bvec should be split in the middle
199  * @q:        [in] request queue associated with the bio associated with @bv
200  * @bv:       [in] bvec to examine
201  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
202  *            by the number of segments from @bv that may be appended to that
203  *            bio without exceeding @max_segs
204  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
205  *            by the number of sectors from @bv that may be appended to that
206  *            bio without exceeding @max_sectors
207  * @max_segs: [in] upper bound for *@nsegs
208  * @max_sectors: [in] upper bound for *@sectors
209  *
210  * When splitting a bio, it can happen that a bvec is encountered that is too
211  * big to fit in a single segment and hence that it has to be split in the
212  * middle. This function verifies whether or not that should happen. The value
213  * %true is returned if and only if appending the entire @bv to a bio with
214  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
215  * the block driver.
216  */
bvec_split_segs(const struct request_queue * q,const struct bio_vec * bv,unsigned * nsegs,unsigned * sectors,unsigned max_segs,unsigned max_sectors)217 static bool bvec_split_segs(const struct request_queue *q,
218 			    const struct bio_vec *bv, unsigned *nsegs,
219 			    unsigned *sectors, unsigned max_segs,
220 			    unsigned max_sectors)
221 {
222 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
223 	unsigned len = min(bv->bv_len, max_len);
224 	unsigned total_len = 0;
225 	unsigned seg_size = 0;
226 
227 	while (len && *nsegs < max_segs) {
228 		seg_size = get_max_segment_size(q, bv->bv_page,
229 						bv->bv_offset + total_len);
230 		seg_size = min(seg_size, len);
231 
232 		(*nsegs)++;
233 		total_len += seg_size;
234 		len -= seg_size;
235 
236 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
237 			break;
238 	}
239 
240 	*sectors += total_len >> 9;
241 
242 	/* tell the caller to split the bvec if it is too big to fit */
243 	return len > 0 || bv->bv_len > max_len;
244 }
245 
246 /**
247  * blk_bio_segment_split - split a bio in two bios
248  * @q:    [in] request queue pointer
249  * @bio:  [in] bio to be split
250  * @bs:	  [in] bio set to allocate the clone from
251  * @segs: [out] number of segments in the bio with the first half of the sectors
252  *
253  * Clone @bio, update the bi_iter of the clone to represent the first sectors
254  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
255  * following is guaranteed for the cloned bio:
256  * - That it has at most get_max_io_size(@q, @bio) sectors.
257  * - That it has at most queue_max_segments(@q) segments.
258  *
259  * Except for discard requests the cloned bio will point at the bi_io_vec of
260  * the original bio. It is the responsibility of the caller to ensure that the
261  * original bio is not freed before the cloned bio. The caller is also
262  * responsible for ensuring that @bs is only destroyed after processing of the
263  * split bio has finished.
264  */
blk_bio_segment_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * segs)265 static struct bio *blk_bio_segment_split(struct request_queue *q,
266 					 struct bio *bio,
267 					 struct bio_set *bs,
268 					 unsigned *segs)
269 {
270 	struct bio_vec bv, bvprv, *bvprvp = NULL;
271 	struct bvec_iter iter;
272 	unsigned nsegs = 0, sectors = 0;
273 	const unsigned max_sectors = get_max_io_size(q, bio);
274 	const unsigned max_segs = queue_max_segments(q);
275 
276 	bio_for_each_bvec(bv, bio, iter) {
277 		/*
278 		 * If the queue doesn't support SG gaps and adding this
279 		 * offset would create a gap, disallow it.
280 		 */
281 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
282 			goto split;
283 
284 		if (nsegs < max_segs &&
285 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
286 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
287 			nsegs++;
288 			sectors += bv.bv_len >> 9;
289 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
290 					 max_sectors)) {
291 			goto split;
292 		}
293 
294 		bvprv = bv;
295 		bvprvp = &bvprv;
296 	}
297 
298 	*segs = nsegs;
299 	return NULL;
300 split:
301 	*segs = nsegs;
302 
303 	/*
304 	 * Bio splitting may cause subtle trouble such as hang when doing sync
305 	 * iopoll in direct IO routine. Given performance gain of iopoll for
306 	 * big IO can be trival, disable iopoll when split needed.
307 	 */
308 	bio_clear_polled(bio);
309 	return bio_split(bio, sectors, GFP_NOIO, bs);
310 }
311 
312 /**
313  * __blk_queue_split - split a bio and submit the second half
314  * @q:       [in] request_queue new bio is being queued at
315  * @bio:     [in, out] bio to be split
316  * @nr_segs: [out] number of segments in the first bio
317  *
318  * Split a bio into two bios, chain the two bios, submit the second half and
319  * store a pointer to the first half in *@bio. If the second bio is still too
320  * big it will be split by a recursive call to this function. Since this
321  * function may allocate a new bio from q->bio_split, it is the responsibility
322  * of the caller to ensure that q->bio_split is only released after processing
323  * of the split bio has finished.
324  */
__blk_queue_split(struct request_queue * q,struct bio ** bio,unsigned int * nr_segs)325 void __blk_queue_split(struct request_queue *q, struct bio **bio,
326 		       unsigned int *nr_segs)
327 {
328 	struct bio *split = NULL;
329 
330 	switch (bio_op(*bio)) {
331 	case REQ_OP_DISCARD:
332 	case REQ_OP_SECURE_ERASE:
333 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
334 		break;
335 	case REQ_OP_WRITE_ZEROES:
336 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
337 				nr_segs);
338 		break;
339 	default:
340 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
341 		break;
342 	}
343 
344 	if (split) {
345 		/* there isn't chance to merge the splitted bio */
346 		split->bi_opf |= REQ_NOMERGE;
347 
348 		blkcg_bio_issue_init(split);
349 		bio_chain(split, *bio);
350 		trace_block_split(split, (*bio)->bi_iter.bi_sector);
351 		submit_bio_noacct(*bio);
352 		*bio = split;
353 	}
354 }
355 
356 /**
357  * blk_queue_split - split a bio and submit the second half
358  * @bio: [in, out] bio to be split
359  *
360  * Split a bio into two bios, chains the two bios, submit the second half and
361  * store a pointer to the first half in *@bio. Since this function may allocate
362  * a new bio from q->bio_split, it is the responsibility of the caller to ensure
363  * that q->bio_split is only released after processing of the split bio has
364  * finished.
365  */
blk_queue_split(struct bio ** bio)366 void blk_queue_split(struct bio **bio)
367 {
368 	struct request_queue *q = bdev_get_queue((*bio)->bi_bdev);
369 	unsigned int nr_segs;
370 
371 	if (blk_may_split(q, *bio))
372 		__blk_queue_split(q, bio, &nr_segs);
373 }
374 EXPORT_SYMBOL(blk_queue_split);
375 
blk_recalc_rq_segments(struct request * rq)376 unsigned int blk_recalc_rq_segments(struct request *rq)
377 {
378 	unsigned int nr_phys_segs = 0;
379 	unsigned int nr_sectors = 0;
380 	struct req_iterator iter;
381 	struct bio_vec bv;
382 
383 	if (!rq->bio)
384 		return 0;
385 
386 	switch (bio_op(rq->bio)) {
387 	case REQ_OP_DISCARD:
388 	case REQ_OP_SECURE_ERASE:
389 		if (queue_max_discard_segments(rq->q) > 1) {
390 			struct bio *bio = rq->bio;
391 
392 			for_each_bio(bio)
393 				nr_phys_segs++;
394 			return nr_phys_segs;
395 		}
396 		return 1;
397 	case REQ_OP_WRITE_ZEROES:
398 		return 0;
399 	}
400 
401 	rq_for_each_bvec(bv, rq, iter)
402 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
403 				UINT_MAX, UINT_MAX);
404 	return nr_phys_segs;
405 }
406 
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)407 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
408 		struct scatterlist *sglist)
409 {
410 	if (!*sg)
411 		return sglist;
412 
413 	/*
414 	 * If the driver previously mapped a shorter list, we could see a
415 	 * termination bit prematurely unless it fully inits the sg table
416 	 * on each mapping. We KNOW that there must be more entries here
417 	 * or the driver would be buggy, so force clear the termination bit
418 	 * to avoid doing a full sg_init_table() in drivers for each command.
419 	 */
420 	sg_unmark_end(*sg);
421 	return sg_next(*sg);
422 }
423 
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)424 static unsigned blk_bvec_map_sg(struct request_queue *q,
425 		struct bio_vec *bvec, struct scatterlist *sglist,
426 		struct scatterlist **sg)
427 {
428 	unsigned nbytes = bvec->bv_len;
429 	unsigned nsegs = 0, total = 0;
430 
431 	while (nbytes > 0) {
432 		unsigned offset = bvec->bv_offset + total;
433 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
434 					offset), nbytes);
435 		struct page *page = bvec->bv_page;
436 
437 		/*
438 		 * Unfortunately a fair number of drivers barf on scatterlists
439 		 * that have an offset larger than PAGE_SIZE, despite other
440 		 * subsystems dealing with that invariant just fine.  For now
441 		 * stick to the legacy format where we never present those from
442 		 * the block layer, but the code below should be removed once
443 		 * these offenders (mostly MMC/SD drivers) are fixed.
444 		 */
445 		page += (offset >> PAGE_SHIFT);
446 		offset &= ~PAGE_MASK;
447 
448 		*sg = blk_next_sg(sg, sglist);
449 		sg_set_page(*sg, page, len, offset);
450 
451 		total += len;
452 		nbytes -= len;
453 		nsegs++;
454 	}
455 
456 	return nsegs;
457 }
458 
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)459 static inline int __blk_bvec_map_sg(struct bio_vec bv,
460 		struct scatterlist *sglist, struct scatterlist **sg)
461 {
462 	*sg = blk_next_sg(sg, sglist);
463 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
464 	return 1;
465 }
466 
467 /* only try to merge bvecs into one sg if they are from two bios */
468 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)469 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
470 			   struct bio_vec *bvprv, struct scatterlist **sg)
471 {
472 
473 	int nbytes = bvec->bv_len;
474 
475 	if (!*sg)
476 		return false;
477 
478 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
479 		return false;
480 
481 	if (!biovec_phys_mergeable(q, bvprv, bvec))
482 		return false;
483 
484 	(*sg)->length += nbytes;
485 
486 	return true;
487 }
488 
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)489 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
490 			     struct scatterlist *sglist,
491 			     struct scatterlist **sg)
492 {
493 	struct bio_vec bvec, bvprv = { NULL };
494 	struct bvec_iter iter;
495 	int nsegs = 0;
496 	bool new_bio = false;
497 
498 	for_each_bio(bio) {
499 		bio_for_each_bvec(bvec, bio, iter) {
500 			/*
501 			 * Only try to merge bvecs from two bios given we
502 			 * have done bio internal merge when adding pages
503 			 * to bio
504 			 */
505 			if (new_bio &&
506 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
507 				goto next_bvec;
508 
509 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
510 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
511 			else
512 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
513  next_bvec:
514 			new_bio = false;
515 		}
516 		if (likely(bio->bi_iter.bi_size)) {
517 			bvprv = bvec;
518 			new_bio = true;
519 		}
520 	}
521 
522 	return nsegs;
523 }
524 
525 /*
526  * map a request to scatterlist, return number of sg entries setup. Caller
527  * must make sure sg can hold rq->nr_phys_segments entries
528  */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)529 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
530 		struct scatterlist *sglist, struct scatterlist **last_sg)
531 {
532 	int nsegs = 0;
533 
534 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
535 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
536 	else if (rq->bio)
537 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
538 
539 	if (*last_sg)
540 		sg_mark_end(*last_sg);
541 
542 	/*
543 	 * Something must have been wrong if the figured number of
544 	 * segment is bigger than number of req's physical segments
545 	 */
546 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
547 
548 	return nsegs;
549 }
550 EXPORT_SYMBOL(__blk_rq_map_sg);
551 
blk_rq_get_max_segments(struct request * rq)552 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
553 {
554 	if (req_op(rq) == REQ_OP_DISCARD)
555 		return queue_max_discard_segments(rq->q);
556 	return queue_max_segments(rq->q);
557 }
558 
blk_rq_get_max_sectors(struct request * rq,sector_t offset)559 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
560 						  sector_t offset)
561 {
562 	struct request_queue *q = rq->q;
563 
564 	if (blk_rq_is_passthrough(rq))
565 		return q->limits.max_hw_sectors;
566 
567 	if (!q->limits.chunk_sectors ||
568 	    req_op(rq) == REQ_OP_DISCARD ||
569 	    req_op(rq) == REQ_OP_SECURE_ERASE)
570 		return blk_queue_get_max_sectors(q, req_op(rq));
571 
572 	return min(blk_max_size_offset(q, offset, 0),
573 			blk_queue_get_max_sectors(q, req_op(rq)));
574 }
575 
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)576 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
577 		unsigned int nr_phys_segs)
578 {
579 	if (!blk_cgroup_mergeable(req, bio))
580 		goto no_merge;
581 
582 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
583 		goto no_merge;
584 
585 	/* discard request merge won't add new segment */
586 	if (req_op(req) == REQ_OP_DISCARD)
587 		return 1;
588 
589 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
590 		goto no_merge;
591 
592 	/*
593 	 * This will form the start of a new hw segment.  Bump both
594 	 * counters.
595 	 */
596 	req->nr_phys_segments += nr_phys_segs;
597 	return 1;
598 
599 no_merge:
600 	req_set_nomerge(req->q, req);
601 	return 0;
602 }
603 
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)604 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
605 {
606 	if (req_gap_back_merge(req, bio))
607 		return 0;
608 	if (blk_integrity_rq(req) &&
609 	    integrity_req_gap_back_merge(req, bio))
610 		return 0;
611 	if (!bio_crypt_ctx_back_mergeable(req, bio))
612 		return 0;
613 	if (blk_rq_sectors(req) + bio_sectors(bio) >
614 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
615 		req_set_nomerge(req->q, req);
616 		return 0;
617 	}
618 
619 	return ll_new_hw_segment(req, bio, nr_segs);
620 }
621 
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)622 static int ll_front_merge_fn(struct request *req, struct bio *bio,
623 		unsigned int nr_segs)
624 {
625 	if (req_gap_front_merge(req, bio))
626 		return 0;
627 	if (blk_integrity_rq(req) &&
628 	    integrity_req_gap_front_merge(req, bio))
629 		return 0;
630 	if (!bio_crypt_ctx_front_mergeable(req, bio))
631 		return 0;
632 	if (blk_rq_sectors(req) + bio_sectors(bio) >
633 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
634 		req_set_nomerge(req->q, req);
635 		return 0;
636 	}
637 
638 	return ll_new_hw_segment(req, bio, nr_segs);
639 }
640 
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)641 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
642 		struct request *next)
643 {
644 	unsigned short segments = blk_rq_nr_discard_segments(req);
645 
646 	if (segments >= queue_max_discard_segments(q))
647 		goto no_merge;
648 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
649 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
650 		goto no_merge;
651 
652 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
653 	return true;
654 no_merge:
655 	req_set_nomerge(q, req);
656 	return false;
657 }
658 
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)659 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
660 				struct request *next)
661 {
662 	int total_phys_segments;
663 
664 	if (req_gap_back_merge(req, next->bio))
665 		return 0;
666 
667 	/*
668 	 * Will it become too large?
669 	 */
670 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
671 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
672 		return 0;
673 
674 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
675 	if (total_phys_segments > blk_rq_get_max_segments(req))
676 		return 0;
677 
678 	if (!blk_cgroup_mergeable(req, next->bio))
679 		return 0;
680 
681 	if (blk_integrity_merge_rq(q, req, next) == false)
682 		return 0;
683 
684 	if (!bio_crypt_ctx_merge_rq(req, next))
685 		return 0;
686 
687 	/* Merge is OK... */
688 	req->nr_phys_segments = total_phys_segments;
689 	return 1;
690 }
691 
692 /**
693  * blk_rq_set_mixed_merge - mark a request as mixed merge
694  * @rq: request to mark as mixed merge
695  *
696  * Description:
697  *     @rq is about to be mixed merged.  Make sure the attributes
698  *     which can be mixed are set in each bio and mark @rq as mixed
699  *     merged.
700  */
blk_rq_set_mixed_merge(struct request * rq)701 void blk_rq_set_mixed_merge(struct request *rq)
702 {
703 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
704 	struct bio *bio;
705 
706 	if (rq->rq_flags & RQF_MIXED_MERGE)
707 		return;
708 
709 	/*
710 	 * @rq will no longer represent mixable attributes for all the
711 	 * contained bios.  It will just track those of the first one.
712 	 * Distributes the attributs to each bio.
713 	 */
714 	for (bio = rq->bio; bio; bio = bio->bi_next) {
715 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
716 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
717 		bio->bi_opf |= ff;
718 	}
719 	rq->rq_flags |= RQF_MIXED_MERGE;
720 }
721 
blk_account_io_merge_request(struct request * req)722 static void blk_account_io_merge_request(struct request *req)
723 {
724 	if (blk_do_io_stat(req)) {
725 		part_stat_lock();
726 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
727 		part_stat_unlock();
728 	}
729 }
730 
blk_try_req_merge(struct request * req,struct request * next)731 static enum elv_merge blk_try_req_merge(struct request *req,
732 					struct request *next)
733 {
734 	if (blk_discard_mergable(req))
735 		return ELEVATOR_DISCARD_MERGE;
736 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
737 		return ELEVATOR_BACK_MERGE;
738 
739 	return ELEVATOR_NO_MERGE;
740 }
741 
742 /*
743  * For non-mq, this has to be called with the request spinlock acquired.
744  * For mq with scheduling, the appropriate queue wide lock should be held.
745  */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)746 static struct request *attempt_merge(struct request_queue *q,
747 				     struct request *req, struct request *next)
748 {
749 	if (!rq_mergeable(req) || !rq_mergeable(next))
750 		return NULL;
751 
752 	if (req_op(req) != req_op(next))
753 		return NULL;
754 
755 	if (rq_data_dir(req) != rq_data_dir(next))
756 		return NULL;
757 
758 	if (req->ioprio != next->ioprio)
759 		return NULL;
760 
761 	/*
762 	 * If we are allowed to merge, then append bio list
763 	 * from next to rq and release next. merge_requests_fn
764 	 * will have updated segment counts, update sector
765 	 * counts here. Handle DISCARDs separately, as they
766 	 * have separate settings.
767 	 */
768 
769 	switch (blk_try_req_merge(req, next)) {
770 	case ELEVATOR_DISCARD_MERGE:
771 		if (!req_attempt_discard_merge(q, req, next))
772 			return NULL;
773 		break;
774 	case ELEVATOR_BACK_MERGE:
775 		if (!ll_merge_requests_fn(q, req, next))
776 			return NULL;
777 		break;
778 	default:
779 		return NULL;
780 	}
781 
782 	/*
783 	 * If failfast settings disagree or any of the two is already
784 	 * a mixed merge, mark both as mixed before proceeding.  This
785 	 * makes sure that all involved bios have mixable attributes
786 	 * set properly.
787 	 */
788 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
789 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
790 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
791 		blk_rq_set_mixed_merge(req);
792 		blk_rq_set_mixed_merge(next);
793 	}
794 
795 	/*
796 	 * At this point we have either done a back merge or front merge. We
797 	 * need the smaller start_time_ns of the merged requests to be the
798 	 * current request for accounting purposes.
799 	 */
800 	if (next->start_time_ns < req->start_time_ns)
801 		req->start_time_ns = next->start_time_ns;
802 
803 	req->biotail->bi_next = next->bio;
804 	req->biotail = next->biotail;
805 
806 	req->__data_len += blk_rq_bytes(next);
807 
808 	if (!blk_discard_mergable(req))
809 		elv_merge_requests(q, req, next);
810 
811 	/*
812 	 * 'next' is going away, so update stats accordingly
813 	 */
814 	blk_account_io_merge_request(next);
815 
816 	trace_block_rq_merge(next);
817 
818 	/*
819 	 * ownership of bio passed from next to req, return 'next' for
820 	 * the caller to free
821 	 */
822 	next->bio = NULL;
823 	return next;
824 }
825 
attempt_back_merge(struct request_queue * q,struct request * rq)826 static struct request *attempt_back_merge(struct request_queue *q,
827 		struct request *rq)
828 {
829 	struct request *next = elv_latter_request(q, rq);
830 
831 	if (next)
832 		return attempt_merge(q, rq, next);
833 
834 	return NULL;
835 }
836 
attempt_front_merge(struct request_queue * q,struct request * rq)837 static struct request *attempt_front_merge(struct request_queue *q,
838 		struct request *rq)
839 {
840 	struct request *prev = elv_former_request(q, rq);
841 
842 	if (prev)
843 		return attempt_merge(q, prev, rq);
844 
845 	return NULL;
846 }
847 
848 /*
849  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
850  * otherwise. The caller is responsible for freeing 'next' if the merge
851  * happened.
852  */
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)853 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
854 			   struct request *next)
855 {
856 	return attempt_merge(q, rq, next);
857 }
858 
blk_rq_merge_ok(struct request * rq,struct bio * bio)859 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
860 {
861 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
862 		return false;
863 
864 	if (req_op(rq) != bio_op(bio))
865 		return false;
866 
867 	/* different data direction or already started, don't merge */
868 	if (bio_data_dir(bio) != rq_data_dir(rq))
869 		return false;
870 
871 	/* don't merge across cgroup boundaries */
872 	if (!blk_cgroup_mergeable(rq, bio))
873 		return false;
874 
875 	/* only merge integrity protected bio into ditto rq */
876 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
877 		return false;
878 
879 	/* Only merge if the crypt contexts are compatible */
880 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
881 		return false;
882 
883 	if (rq->ioprio != bio_prio(bio))
884 		return false;
885 
886 	return true;
887 }
888 
blk_try_merge(struct request * rq,struct bio * bio)889 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
890 {
891 	if (blk_discard_mergable(rq))
892 		return ELEVATOR_DISCARD_MERGE;
893 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
894 		return ELEVATOR_BACK_MERGE;
895 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
896 		return ELEVATOR_FRONT_MERGE;
897 	return ELEVATOR_NO_MERGE;
898 }
899 
blk_account_io_merge_bio(struct request * req)900 static void blk_account_io_merge_bio(struct request *req)
901 {
902 	if (!blk_do_io_stat(req))
903 		return;
904 
905 	part_stat_lock();
906 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
907 	part_stat_unlock();
908 }
909 
910 enum bio_merge_status {
911 	BIO_MERGE_OK,
912 	BIO_MERGE_NONE,
913 	BIO_MERGE_FAILED,
914 };
915 
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)916 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
917 		struct bio *bio, unsigned int nr_segs)
918 {
919 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
920 
921 	if (!ll_back_merge_fn(req, bio, nr_segs))
922 		return BIO_MERGE_FAILED;
923 
924 	trace_block_bio_backmerge(bio);
925 	rq_qos_merge(req->q, req, bio);
926 
927 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
928 		blk_rq_set_mixed_merge(req);
929 
930 	req->biotail->bi_next = bio;
931 	req->biotail = bio;
932 	req->__data_len += bio->bi_iter.bi_size;
933 
934 	bio_crypt_free_ctx(bio);
935 
936 	blk_account_io_merge_bio(req);
937 	return BIO_MERGE_OK;
938 }
939 
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)940 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
941 		struct bio *bio, unsigned int nr_segs)
942 {
943 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
944 
945 	if (!ll_front_merge_fn(req, bio, nr_segs))
946 		return BIO_MERGE_FAILED;
947 
948 	trace_block_bio_frontmerge(bio);
949 	rq_qos_merge(req->q, req, bio);
950 
951 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
952 		blk_rq_set_mixed_merge(req);
953 
954 	bio->bi_next = req->bio;
955 	req->bio = bio;
956 
957 	req->__sector = bio->bi_iter.bi_sector;
958 	req->__data_len += bio->bi_iter.bi_size;
959 
960 	bio_crypt_do_front_merge(req, bio);
961 
962 	blk_account_io_merge_bio(req);
963 	return BIO_MERGE_OK;
964 }
965 
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)966 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
967 		struct request *req, struct bio *bio)
968 {
969 	unsigned short segments = blk_rq_nr_discard_segments(req);
970 
971 	if (segments >= queue_max_discard_segments(q))
972 		goto no_merge;
973 	if (blk_rq_sectors(req) + bio_sectors(bio) >
974 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
975 		goto no_merge;
976 
977 	rq_qos_merge(q, req, bio);
978 
979 	req->biotail->bi_next = bio;
980 	req->biotail = bio;
981 	req->__data_len += bio->bi_iter.bi_size;
982 	req->nr_phys_segments = segments + 1;
983 
984 	blk_account_io_merge_bio(req);
985 	return BIO_MERGE_OK;
986 no_merge:
987 	req_set_nomerge(q, req);
988 	return BIO_MERGE_FAILED;
989 }
990 
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)991 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
992 						   struct request *rq,
993 						   struct bio *bio,
994 						   unsigned int nr_segs,
995 						   bool sched_allow_merge)
996 {
997 	if (!blk_rq_merge_ok(rq, bio))
998 		return BIO_MERGE_NONE;
999 
1000 	switch (blk_try_merge(rq, bio)) {
1001 	case ELEVATOR_BACK_MERGE:
1002 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1003 			return bio_attempt_back_merge(rq, bio, nr_segs);
1004 		break;
1005 	case ELEVATOR_FRONT_MERGE:
1006 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1007 			return bio_attempt_front_merge(rq, bio, nr_segs);
1008 		break;
1009 	case ELEVATOR_DISCARD_MERGE:
1010 		return bio_attempt_discard_merge(q, rq, bio);
1011 	default:
1012 		return BIO_MERGE_NONE;
1013 	}
1014 
1015 	return BIO_MERGE_FAILED;
1016 }
1017 
1018 /**
1019  * blk_attempt_plug_merge - try to merge with %current's plugged list
1020  * @q: request_queue new bio is being queued at
1021  * @bio: new bio being queued
1022  * @nr_segs: number of segments in @bio
1023  * from the passed in @q already in the plug list
1024  *
1025  * Determine whether @bio being queued on @q can be merged with the previous
1026  * request on %current's plugged list.  Returns %true if merge was successful,
1027  * otherwise %false.
1028  *
1029  * Plugging coalesces IOs from the same issuer for the same purpose without
1030  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1031  * than scheduling, and the request, while may have elvpriv data, is not
1032  * added on the elevator at this point.  In addition, we don't have
1033  * reliable access to the elevator outside queue lock.  Only check basic
1034  * merging parameters without querying the elevator.
1035  *
1036  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1037  */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)1038 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1039 		unsigned int nr_segs)
1040 {
1041 	struct blk_plug *plug;
1042 	struct request *rq;
1043 
1044 	plug = blk_mq_plug(q, bio);
1045 	if (!plug || rq_list_empty(plug->mq_list))
1046 		return false;
1047 
1048 	rq_list_for_each(&plug->mq_list, rq) {
1049 		if (rq->q == q) {
1050 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1051 			    BIO_MERGE_OK)
1052 				return true;
1053 			break;
1054 		}
1055 
1056 		/*
1057 		 * Only keep iterating plug list for merges if we have multiple
1058 		 * queues
1059 		 */
1060 		if (!plug->multiple_queues)
1061 			break;
1062 	}
1063 	return false;
1064 }
1065 
1066 /*
1067  * Iterate list of requests and see if we can merge this bio with any
1068  * of them.
1069  */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1070 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1071 			struct bio *bio, unsigned int nr_segs)
1072 {
1073 	struct request *rq;
1074 	int checked = 8;
1075 
1076 	list_for_each_entry_reverse(rq, list, queuelist) {
1077 		if (!checked--)
1078 			break;
1079 
1080 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1081 		case BIO_MERGE_NONE:
1082 			continue;
1083 		case BIO_MERGE_OK:
1084 			return true;
1085 		case BIO_MERGE_FAILED:
1086 			return false;
1087 		}
1088 
1089 	}
1090 
1091 	return false;
1092 }
1093 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1094 
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1095 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1096 		unsigned int nr_segs, struct request **merged_request)
1097 {
1098 	struct request *rq;
1099 
1100 	switch (elv_merge(q, &rq, bio)) {
1101 	case ELEVATOR_BACK_MERGE:
1102 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1103 			return false;
1104 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1105 			return false;
1106 		*merged_request = attempt_back_merge(q, rq);
1107 		if (!*merged_request)
1108 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1109 		return true;
1110 	case ELEVATOR_FRONT_MERGE:
1111 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1112 			return false;
1113 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1114 			return false;
1115 		*merged_request = attempt_front_merge(q, rq);
1116 		if (!*merged_request)
1117 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1118 		return true;
1119 	case ELEVATOR_DISCARD_MERGE:
1120 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1121 	default:
1122 		return false;
1123 	}
1124 }
1125 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1126