1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11
12 struct blk_mq_tags;
13 struct blk_flush_queue;
14
15 #define BLKDEV_MIN_RQ 4
16 #define BLKDEV_DEFAULT_RQ 128
17
18 enum rq_end_io_ret {
19 RQ_END_IO_NONE,
20 RQ_END_IO_FREE,
21 };
22
23 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
24
25 /*
26 * request flags */
27 typedef __u32 __bitwise req_flags_t;
28
29 /* drive already may have started this one */
30 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
31 /* request for flush sequence */
32 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
33 /* merge of different types, fail separately */
34 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
35 /* track inflight for MQ */
36 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
37 /* don't call prep for this one */
38 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
39 /* use hctx->sched_tags */
40 #define RQF_SCHED_TAGS ((__force req_flags_t)(1 << 8))
41 /* use an I/O scheduler for this request */
42 #define RQF_USE_SCHED ((__force req_flags_t)(1 << 9))
43 /* vaguely specified driver internal error. Ignored by the block layer */
44 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
45 /* don't warn about errors */
46 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
47 /* account into disk and partition IO statistics */
48 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
49 /* runtime pm request */
50 #define RQF_PM ((__force req_flags_t)(1 << 15))
51 /* on IO scheduler merge hash */
52 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
53 /* track IO completion time */
54 #define RQF_STATS ((__force req_flags_t)(1 << 17))
55 /* Look at ->special_vec for the actual data payload instead of the
56 bio chain. */
57 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
58 /* The per-zone write lock is held for this request */
59 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
60 /* ->timeout has been called, don't expire again */
61 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
62 #define RQF_RESV ((__force req_flags_t)(1 << 23))
63
64 /* flags that prevent us from merging requests: */
65 #define RQF_NOMERGE_FLAGS \
66 (RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
67
68 enum mq_rq_state {
69 MQ_RQ_IDLE = 0,
70 MQ_RQ_IN_FLIGHT = 1,
71 MQ_RQ_COMPLETE = 2,
72 };
73
74 /*
75 * Try to put the fields that are referenced together in the same cacheline.
76 *
77 * If you modify this structure, make sure to update blk_rq_init() and
78 * especially blk_mq_rq_ctx_init() to take care of the added fields.
79 */
80 struct request {
81 struct request_queue *q;
82 struct blk_mq_ctx *mq_ctx;
83 struct blk_mq_hw_ctx *mq_hctx;
84
85 blk_opf_t cmd_flags; /* op and common flags */
86 req_flags_t rq_flags;
87
88 int tag;
89 int internal_tag;
90
91 unsigned int timeout;
92
93 /* the following two fields are internal, NEVER access directly */
94 unsigned int __data_len; /* total data len */
95 sector_t __sector; /* sector cursor */
96
97 struct bio *bio;
98 struct bio *biotail;
99
100 union {
101 struct list_head queuelist;
102 struct request *rq_next;
103 };
104
105 struct block_device *part;
106 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
107 /* Time that the first bio started allocating this request. */
108 u64 alloc_time_ns;
109 #endif
110 /* Time that this request was allocated for this IO. */
111 u64 start_time_ns;
112 /* Time that I/O was submitted to the device. */
113 u64 io_start_time_ns;
114
115 #ifdef CONFIG_BLK_WBT
116 unsigned short wbt_flags;
117 #endif
118 /*
119 * rq sectors used for blk stats. It has the same value
120 * with blk_rq_sectors(rq), except that it never be zeroed
121 * by completion.
122 */
123 unsigned short stats_sectors;
124
125 /*
126 * Number of scatter-gather DMA addr+len pairs after
127 * physical address coalescing is performed.
128 */
129 unsigned short nr_phys_segments;
130
131 #ifdef CONFIG_BLK_DEV_INTEGRITY
132 unsigned short nr_integrity_segments;
133 #endif
134
135 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
136 struct bio_crypt_ctx *crypt_ctx;
137 struct blk_crypto_keyslot *crypt_keyslot;
138 #endif
139
140 unsigned short ioprio;
141
142 enum mq_rq_state state;
143 atomic_t ref;
144
145 unsigned long deadline;
146
147 /*
148 * The hash is used inside the scheduler, and killed once the
149 * request reaches the dispatch list. The ipi_list is only used
150 * to queue the request for softirq completion, which is long
151 * after the request has been unhashed (and even removed from
152 * the dispatch list).
153 */
154 union {
155 struct hlist_node hash; /* merge hash */
156 struct llist_node ipi_list;
157 };
158
159 /*
160 * The rb_node is only used inside the io scheduler, requests
161 * are pruned when moved to the dispatch queue. special_vec must
162 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
163 * insert into an IO scheduler.
164 */
165 union {
166 struct rb_node rb_node; /* sort/lookup */
167 struct bio_vec special_vec;
168 };
169
170 /*
171 * Three pointers are available for the IO schedulers, if they need
172 * more they have to dynamically allocate it.
173 */
174 struct {
175 struct io_cq *icq;
176 void *priv[2];
177 } elv;
178
179 struct {
180 unsigned int seq;
181 rq_end_io_fn *saved_end_io;
182 } flush;
183
184 u64 fifo_time;
185
186 /*
187 * completion callback.
188 */
189 rq_end_io_fn *end_io;
190 void *end_io_data;
191 };
192
req_op(const struct request * req)193 static inline enum req_op req_op(const struct request *req)
194 {
195 return req->cmd_flags & REQ_OP_MASK;
196 }
197
blk_rq_is_passthrough(struct request * rq)198 static inline bool blk_rq_is_passthrough(struct request *rq)
199 {
200 return blk_op_is_passthrough(rq->cmd_flags);
201 }
202
req_get_ioprio(struct request * req)203 static inline unsigned short req_get_ioprio(struct request *req)
204 {
205 return req->ioprio;
206 }
207
208 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
209
210 #define rq_dma_dir(rq) \
211 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
212
213 #define rq_list_add(listptr, rq) do { \
214 (rq)->rq_next = *(listptr); \
215 *(listptr) = rq; \
216 } while (0)
217
218 #define rq_list_add_tail(lastpptr, rq) do { \
219 (rq)->rq_next = NULL; \
220 **(lastpptr) = rq; \
221 *(lastpptr) = &rq->rq_next; \
222 } while (0)
223
224 #define rq_list_pop(listptr) \
225 ({ \
226 struct request *__req = NULL; \
227 if ((listptr) && *(listptr)) { \
228 __req = *(listptr); \
229 *(listptr) = __req->rq_next; \
230 } \
231 __req; \
232 })
233
234 #define rq_list_peek(listptr) \
235 ({ \
236 struct request *__req = NULL; \
237 if ((listptr) && *(listptr)) \
238 __req = *(listptr); \
239 __req; \
240 })
241
242 #define rq_list_for_each(listptr, pos) \
243 for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
244
245 #define rq_list_for_each_safe(listptr, pos, nxt) \
246 for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos); \
247 pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
248
249 #define rq_list_next(rq) (rq)->rq_next
250 #define rq_list_empty(list) ((list) == (struct request *) NULL)
251
252 /**
253 * rq_list_move() - move a struct request from one list to another
254 * @src: The source list @rq is currently in
255 * @dst: The destination list that @rq will be appended to
256 * @rq: The request to move
257 * @prev: The request preceding @rq in @src (NULL if @rq is the head)
258 */
rq_list_move(struct request ** src,struct request ** dst,struct request * rq,struct request * prev)259 static inline void rq_list_move(struct request **src, struct request **dst,
260 struct request *rq, struct request *prev)
261 {
262 if (prev)
263 prev->rq_next = rq->rq_next;
264 else
265 *src = rq->rq_next;
266 rq_list_add(dst, rq);
267 }
268
269 /**
270 * enum blk_eh_timer_return - How the timeout handler should proceed
271 * @BLK_EH_DONE: The block driver completed the command or will complete it at
272 * a later time.
273 * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
274 * request to complete.
275 */
276 enum blk_eh_timer_return {
277 BLK_EH_DONE,
278 BLK_EH_RESET_TIMER,
279 };
280
281 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
282 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
283
284 /**
285 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
286 * block device
287 */
288 struct blk_mq_hw_ctx {
289 struct {
290 /** @lock: Protects the dispatch list. */
291 spinlock_t lock;
292 /**
293 * @dispatch: Used for requests that are ready to be
294 * dispatched to the hardware but for some reason (e.g. lack of
295 * resources) could not be sent to the hardware. As soon as the
296 * driver can send new requests, requests at this list will
297 * be sent first for a fairer dispatch.
298 */
299 struct list_head dispatch;
300 /**
301 * @state: BLK_MQ_S_* flags. Defines the state of the hw
302 * queue (active, scheduled to restart, stopped).
303 */
304 unsigned long state;
305 } ____cacheline_aligned_in_smp;
306
307 /**
308 * @run_work: Used for scheduling a hardware queue run at a later time.
309 */
310 struct delayed_work run_work;
311 /** @cpumask: Map of available CPUs where this hctx can run. */
312 cpumask_var_t cpumask;
313 /**
314 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
315 * selection from @cpumask.
316 */
317 int next_cpu;
318 /**
319 * @next_cpu_batch: Counter of how many works left in the batch before
320 * changing to the next CPU.
321 */
322 int next_cpu_batch;
323
324 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
325 unsigned long flags;
326
327 /**
328 * @sched_data: Pointer owned by the IO scheduler attached to a request
329 * queue. It's up to the IO scheduler how to use this pointer.
330 */
331 void *sched_data;
332 /**
333 * @queue: Pointer to the request queue that owns this hardware context.
334 */
335 struct request_queue *queue;
336 /** @fq: Queue of requests that need to perform a flush operation. */
337 struct blk_flush_queue *fq;
338
339 /**
340 * @driver_data: Pointer to data owned by the block driver that created
341 * this hctx
342 */
343 void *driver_data;
344
345 /**
346 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
347 * pending request in that software queue.
348 */
349 struct sbitmap ctx_map;
350
351 /**
352 * @dispatch_from: Software queue to be used when no scheduler was
353 * selected.
354 */
355 struct blk_mq_ctx *dispatch_from;
356 /**
357 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
358 * decide if the hw_queue is busy using Exponential Weighted Moving
359 * Average algorithm.
360 */
361 unsigned int dispatch_busy;
362
363 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
364 unsigned short type;
365 /** @nr_ctx: Number of software queues. */
366 unsigned short nr_ctx;
367 /** @ctxs: Array of software queues. */
368 struct blk_mq_ctx **ctxs;
369
370 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
371 spinlock_t dispatch_wait_lock;
372 /**
373 * @dispatch_wait: Waitqueue to put requests when there is no tag
374 * available at the moment, to wait for another try in the future.
375 */
376 wait_queue_entry_t dispatch_wait;
377
378 /**
379 * @wait_index: Index of next available dispatch_wait queue to insert
380 * requests.
381 */
382 atomic_t wait_index;
383
384 /**
385 * @tags: Tags owned by the block driver. A tag at this set is only
386 * assigned when a request is dispatched from a hardware queue.
387 */
388 struct blk_mq_tags *tags;
389 /**
390 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
391 * scheduler associated with a request queue, a tag is assigned when
392 * that request is allocated. Else, this member is not used.
393 */
394 struct blk_mq_tags *sched_tags;
395
396 /** @run: Number of dispatched requests. */
397 unsigned long run;
398
399 /** @numa_node: NUMA node the storage adapter has been connected to. */
400 unsigned int numa_node;
401 /** @queue_num: Index of this hardware queue. */
402 unsigned int queue_num;
403
404 /**
405 * @nr_active: Number of active requests. Only used when a tag set is
406 * shared across request queues.
407 */
408 atomic_t nr_active;
409
410 /** @cpuhp_online: List to store request if CPU is going to die */
411 struct hlist_node cpuhp_online;
412 /** @cpuhp_dead: List to store request if some CPU die. */
413 struct hlist_node cpuhp_dead;
414 /** @kobj: Kernel object for sysfs. */
415 struct kobject kobj;
416
417 #ifdef CONFIG_BLK_DEBUG_FS
418 /**
419 * @debugfs_dir: debugfs directory for this hardware queue. Named
420 * as cpu<cpu_number>.
421 */
422 struct dentry *debugfs_dir;
423 /** @sched_debugfs_dir: debugfs directory for the scheduler. */
424 struct dentry *sched_debugfs_dir;
425 #endif
426
427 /**
428 * @hctx_list: if this hctx is not in use, this is an entry in
429 * q->unused_hctx_list.
430 */
431 struct list_head hctx_list;
432 };
433
434 /**
435 * struct blk_mq_queue_map - Map software queues to hardware queues
436 * @mq_map: CPU ID to hardware queue index map. This is an array
437 * with nr_cpu_ids elements. Each element has a value in the range
438 * [@queue_offset, @queue_offset + @nr_queues).
439 * @nr_queues: Number of hardware queues to map CPU IDs onto.
440 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
441 * driver to map each hardware queue type (enum hctx_type) onto a distinct
442 * set of hardware queues.
443 */
444 struct blk_mq_queue_map {
445 unsigned int *mq_map;
446 unsigned int nr_queues;
447 unsigned int queue_offset;
448 };
449
450 /**
451 * enum hctx_type - Type of hardware queue
452 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
453 * @HCTX_TYPE_READ: Just for READ I/O.
454 * @HCTX_TYPE_POLL: Polled I/O of any kind.
455 * @HCTX_MAX_TYPES: Number of types of hctx.
456 */
457 enum hctx_type {
458 HCTX_TYPE_DEFAULT,
459 HCTX_TYPE_READ,
460 HCTX_TYPE_POLL,
461
462 HCTX_MAX_TYPES,
463 };
464
465 /**
466 * struct blk_mq_tag_set - tag set that can be shared between request queues
467 * @ops: Pointers to functions that implement block driver behavior.
468 * @map: One or more ctx -> hctx mappings. One map exists for each
469 * hardware queue type (enum hctx_type) that the driver wishes
470 * to support. There are no restrictions on maps being of the
471 * same size, and it's perfectly legal to share maps between
472 * types.
473 * @nr_maps: Number of elements in the @map array. A number in the range
474 * [1, HCTX_MAX_TYPES].
475 * @nr_hw_queues: Number of hardware queues supported by the block driver that
476 * owns this data structure.
477 * @queue_depth: Number of tags per hardware queue, reserved tags included.
478 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
479 * allocations.
480 * @cmd_size: Number of additional bytes to allocate per request. The block
481 * driver owns these additional bytes.
482 * @numa_node: NUMA node the storage adapter has been connected to.
483 * @timeout: Request processing timeout in jiffies.
484 * @flags: Zero or more BLK_MQ_F_* flags.
485 * @driver_data: Pointer to data owned by the block driver that created this
486 * tag set.
487 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
488 * elements.
489 * @shared_tags:
490 * Shared set of tags. Has @nr_hw_queues elements. If set,
491 * shared by all @tags.
492 * @tag_list_lock: Serializes tag_list accesses.
493 * @tag_list: List of the request queues that use this tag set. See also
494 * request_queue.tag_set_list.
495 * @srcu: Use as lock when type of the request queue is blocking
496 * (BLK_MQ_F_BLOCKING).
497 */
498 struct blk_mq_tag_set {
499 const struct blk_mq_ops *ops;
500 struct blk_mq_queue_map map[HCTX_MAX_TYPES];
501 unsigned int nr_maps;
502 unsigned int nr_hw_queues;
503 unsigned int queue_depth;
504 unsigned int reserved_tags;
505 unsigned int cmd_size;
506 int numa_node;
507 unsigned int timeout;
508 unsigned int flags;
509 void *driver_data;
510
511 struct blk_mq_tags **tags;
512
513 struct blk_mq_tags *shared_tags;
514
515 struct mutex tag_list_lock;
516 struct list_head tag_list;
517 struct srcu_struct *srcu;
518 };
519
520 /**
521 * struct blk_mq_queue_data - Data about a request inserted in a queue
522 *
523 * @rq: Request pointer.
524 * @last: If it is the last request in the queue.
525 */
526 struct blk_mq_queue_data {
527 struct request *rq;
528 bool last;
529 };
530
531 typedef bool (busy_tag_iter_fn)(struct request *, void *);
532
533 /**
534 * struct blk_mq_ops - Callback functions that implements block driver
535 * behaviour.
536 */
537 struct blk_mq_ops {
538 /**
539 * @queue_rq: Queue a new request from block IO.
540 */
541 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
542 const struct blk_mq_queue_data *);
543
544 /**
545 * @commit_rqs: If a driver uses bd->last to judge when to submit
546 * requests to hardware, it must define this function. In case of errors
547 * that make us stop issuing further requests, this hook serves the
548 * purpose of kicking the hardware (which the last request otherwise
549 * would have done).
550 */
551 void (*commit_rqs)(struct blk_mq_hw_ctx *);
552
553 /**
554 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
555 * that each request belongs to the same queue. If the driver doesn't
556 * empty the @rqlist completely, then the rest will be queued
557 * individually by the block layer upon return.
558 */
559 void (*queue_rqs)(struct request **rqlist);
560
561 /**
562 * @get_budget: Reserve budget before queue request, once .queue_rq is
563 * run, it is driver's responsibility to release the
564 * reserved budget. Also we have to handle failure case
565 * of .get_budget for avoiding I/O deadlock.
566 */
567 int (*get_budget)(struct request_queue *);
568
569 /**
570 * @put_budget: Release the reserved budget.
571 */
572 void (*put_budget)(struct request_queue *, int);
573
574 /**
575 * @set_rq_budget_token: store rq's budget token
576 */
577 void (*set_rq_budget_token)(struct request *, int);
578 /**
579 * @get_rq_budget_token: retrieve rq's budget token
580 */
581 int (*get_rq_budget_token)(struct request *);
582
583 /**
584 * @timeout: Called on request timeout.
585 */
586 enum blk_eh_timer_return (*timeout)(struct request *);
587
588 /**
589 * @poll: Called to poll for completion of a specific tag.
590 */
591 int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
592
593 /**
594 * @complete: Mark the request as complete.
595 */
596 void (*complete)(struct request *);
597
598 /**
599 * @init_hctx: Called when the block layer side of a hardware queue has
600 * been set up, allowing the driver to allocate/init matching
601 * structures.
602 */
603 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
604 /**
605 * @exit_hctx: Ditto for exit/teardown.
606 */
607 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
608
609 /**
610 * @init_request: Called for every command allocated by the block layer
611 * to allow the driver to set up driver specific data.
612 *
613 * Tag greater than or equal to queue_depth is for setting up
614 * flush request.
615 */
616 int (*init_request)(struct blk_mq_tag_set *set, struct request *,
617 unsigned int, unsigned int);
618 /**
619 * @exit_request: Ditto for exit/teardown.
620 */
621 void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
622 unsigned int);
623
624 /**
625 * @cleanup_rq: Called before freeing one request which isn't completed
626 * yet, and usually for freeing the driver private data.
627 */
628 void (*cleanup_rq)(struct request *);
629
630 /**
631 * @busy: If set, returns whether or not this queue currently is busy.
632 */
633 bool (*busy)(struct request_queue *);
634
635 /**
636 * @map_queues: This allows drivers specify their own queue mapping by
637 * overriding the setup-time function that builds the mq_map.
638 */
639 void (*map_queues)(struct blk_mq_tag_set *set);
640
641 #ifdef CONFIG_BLK_DEBUG_FS
642 /**
643 * @show_rq: Used by the debugfs implementation to show driver-specific
644 * information about a request.
645 */
646 void (*show_rq)(struct seq_file *m, struct request *rq);
647 #endif
648 };
649
650 enum {
651 BLK_MQ_F_SHOULD_MERGE = 1 << 0,
652 BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
653 /*
654 * Set when this device requires underlying blk-mq device for
655 * completing IO:
656 */
657 BLK_MQ_F_STACKING = 1 << 2,
658 BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
659 BLK_MQ_F_BLOCKING = 1 << 5,
660 /* Do not allow an I/O scheduler to be configured. */
661 BLK_MQ_F_NO_SCHED = 1 << 6,
662 /*
663 * Select 'none' during queue registration in case of a single hwq
664 * or shared hwqs instead of 'mq-deadline'.
665 */
666 BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 7,
667 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
668 BLK_MQ_F_ALLOC_POLICY_BITS = 1,
669
670 BLK_MQ_S_STOPPED = 0,
671 BLK_MQ_S_TAG_ACTIVE = 1,
672 BLK_MQ_S_SCHED_RESTART = 2,
673
674 /* hw queue is inactive after all its CPUs become offline */
675 BLK_MQ_S_INACTIVE = 3,
676
677 BLK_MQ_MAX_DEPTH = 10240,
678
679 BLK_MQ_CPU_WORK_BATCH = 8,
680 };
681 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
682 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
683 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
684 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
685 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
686 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
687
688 #define BLK_MQ_NO_HCTX_IDX (-1U)
689
690 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
691 struct lock_class_key *lkclass);
692 #define blk_mq_alloc_disk(set, queuedata) \
693 ({ \
694 static struct lock_class_key __key; \
695 \
696 __blk_mq_alloc_disk(set, queuedata, &__key); \
697 })
698 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
699 struct lock_class_key *lkclass);
700 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
701 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
702 struct request_queue *q);
703 void blk_mq_destroy_queue(struct request_queue *);
704
705 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
706 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
707 const struct blk_mq_ops *ops, unsigned int queue_depth,
708 unsigned int set_flags);
709 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
710
711 void blk_mq_free_request(struct request *rq);
712 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
713 unsigned int poll_flags);
714
715 bool blk_mq_queue_inflight(struct request_queue *q);
716
717 enum {
718 /* return when out of requests */
719 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
720 /* allocate from reserved pool */
721 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
722 /* set RQF_PM */
723 BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2),
724 };
725
726 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
727 blk_mq_req_flags_t flags);
728 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
729 blk_opf_t opf, blk_mq_req_flags_t flags,
730 unsigned int hctx_idx);
731
732 /*
733 * Tag address space map.
734 */
735 struct blk_mq_tags {
736 unsigned int nr_tags;
737 unsigned int nr_reserved_tags;
738 unsigned int active_queues;
739
740 struct sbitmap_queue bitmap_tags;
741 struct sbitmap_queue breserved_tags;
742
743 struct request **rqs;
744 struct request **static_rqs;
745 struct list_head page_list;
746
747 /*
748 * used to clear request reference in rqs[] before freeing one
749 * request pool
750 */
751 spinlock_t lock;
752 };
753
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)754 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
755 unsigned int tag)
756 {
757 if (tag < tags->nr_tags) {
758 prefetch(tags->rqs[tag]);
759 return tags->rqs[tag];
760 }
761
762 return NULL;
763 }
764
765 enum {
766 BLK_MQ_UNIQUE_TAG_BITS = 16,
767 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
768 };
769
770 u32 blk_mq_unique_tag(struct request *rq);
771
blk_mq_unique_tag_to_hwq(u32 unique_tag)772 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
773 {
774 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
775 }
776
blk_mq_unique_tag_to_tag(u32 unique_tag)777 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
778 {
779 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
780 }
781
782 /**
783 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
784 * @rq: target request.
785 */
blk_mq_rq_state(struct request * rq)786 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
787 {
788 return READ_ONCE(rq->state);
789 }
790
blk_mq_request_started(struct request * rq)791 static inline int blk_mq_request_started(struct request *rq)
792 {
793 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
794 }
795
blk_mq_request_completed(struct request * rq)796 static inline int blk_mq_request_completed(struct request *rq)
797 {
798 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
799 }
800
801 /*
802 *
803 * Set the state to complete when completing a request from inside ->queue_rq.
804 * This is used by drivers that want to ensure special complete actions that
805 * need access to the request are called on failure, e.g. by nvme for
806 * multipathing.
807 */
blk_mq_set_request_complete(struct request * rq)808 static inline void blk_mq_set_request_complete(struct request *rq)
809 {
810 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
811 }
812
813 /*
814 * Complete the request directly instead of deferring it to softirq or
815 * completing it another CPU. Useful in preemptible instead of an interrupt.
816 */
blk_mq_complete_request_direct(struct request * rq,void (* complete)(struct request * rq))817 static inline void blk_mq_complete_request_direct(struct request *rq,
818 void (*complete)(struct request *rq))
819 {
820 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
821 complete(rq);
822 }
823
824 void blk_mq_start_request(struct request *rq);
825 void blk_mq_end_request(struct request *rq, blk_status_t error);
826 void __blk_mq_end_request(struct request *rq, blk_status_t error);
827 void blk_mq_end_request_batch(struct io_comp_batch *ib);
828
829 /*
830 * Only need start/end time stamping if we have iostat or
831 * blk stats enabled, or using an IO scheduler.
832 */
blk_mq_need_time_stamp(struct request * rq)833 static inline bool blk_mq_need_time_stamp(struct request *rq)
834 {
835 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
836 }
837
blk_mq_is_reserved_rq(struct request * rq)838 static inline bool blk_mq_is_reserved_rq(struct request *rq)
839 {
840 return rq->rq_flags & RQF_RESV;
841 }
842
843 /*
844 * Batched completions only work when there is no I/O error and no special
845 * ->end_io handler.
846 */
blk_mq_add_to_batch(struct request * req,struct io_comp_batch * iob,int ioerror,void (* complete)(struct io_comp_batch *))847 static inline bool blk_mq_add_to_batch(struct request *req,
848 struct io_comp_batch *iob, int ioerror,
849 void (*complete)(struct io_comp_batch *))
850 {
851 /*
852 * blk_mq_end_request_batch() can't end request allocated from
853 * sched tags
854 */
855 if (!iob || (req->rq_flags & RQF_SCHED_TAGS) || ioerror ||
856 (req->end_io && !blk_rq_is_passthrough(req)))
857 return false;
858
859 if (!iob->complete)
860 iob->complete = complete;
861 else if (iob->complete != complete)
862 return false;
863 iob->need_ts |= blk_mq_need_time_stamp(req);
864 rq_list_add(&iob->req_list, req);
865 return true;
866 }
867
868 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
869 void blk_mq_kick_requeue_list(struct request_queue *q);
870 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
871 void blk_mq_complete_request(struct request *rq);
872 bool blk_mq_complete_request_remote(struct request *rq);
873 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
874 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
875 void blk_mq_stop_hw_queues(struct request_queue *q);
876 void blk_mq_start_hw_queues(struct request_queue *q);
877 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
878 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
879 void blk_mq_quiesce_queue(struct request_queue *q);
880 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
881 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
882 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
883 void blk_mq_unquiesce_queue(struct request_queue *q);
884 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
885 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
886 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
887 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
888 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
889 busy_tag_iter_fn *fn, void *priv);
890 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
891 void blk_mq_freeze_queue(struct request_queue *q);
892 void blk_mq_unfreeze_queue(struct request_queue *q);
893 void blk_freeze_queue_start(struct request_queue *q);
894 void blk_mq_freeze_queue_wait(struct request_queue *q);
895 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
896 unsigned long timeout);
897
898 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
899 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
900
901 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
902
903 unsigned int blk_mq_rq_cpu(struct request *rq);
904
905 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)906 static inline bool blk_should_fake_timeout(struct request_queue *q)
907 {
908 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
909 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
910 return __blk_should_fake_timeout(q);
911 return false;
912 }
913
914 /**
915 * blk_mq_rq_from_pdu - cast a PDU to a request
916 * @pdu: the PDU (Protocol Data Unit) to be casted
917 *
918 * Return: request
919 *
920 * Driver command data is immediately after the request. So subtract request
921 * size to get back to the original request.
922 */
blk_mq_rq_from_pdu(void * pdu)923 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
924 {
925 return pdu - sizeof(struct request);
926 }
927
928 /**
929 * blk_mq_rq_to_pdu - cast a request to a PDU
930 * @rq: the request to be casted
931 *
932 * Return: pointer to the PDU
933 *
934 * Driver command data is immediately after the request. So add request to get
935 * the PDU.
936 */
blk_mq_rq_to_pdu(struct request * rq)937 static inline void *blk_mq_rq_to_pdu(struct request *rq)
938 {
939 return rq + 1;
940 }
941
942 #define queue_for_each_hw_ctx(q, hctx, i) \
943 xa_for_each(&(q)->hctx_table, (i), (hctx))
944
945 #define hctx_for_each_ctx(hctx, ctx, i) \
946 for ((i) = 0; (i) < (hctx)->nr_ctx && \
947 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
948
blk_mq_cleanup_rq(struct request * rq)949 static inline void blk_mq_cleanup_rq(struct request *rq)
950 {
951 if (rq->q->mq_ops->cleanup_rq)
952 rq->q->mq_ops->cleanup_rq(rq);
953 }
954
blk_rq_bio_prep(struct request * rq,struct bio * bio,unsigned int nr_segs)955 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
956 unsigned int nr_segs)
957 {
958 rq->nr_phys_segments = nr_segs;
959 rq->__data_len = bio->bi_iter.bi_size;
960 rq->bio = rq->biotail = bio;
961 rq->ioprio = bio_prio(bio);
962 }
963
964 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
965 struct lock_class_key *key);
966
rq_is_sync(struct request * rq)967 static inline bool rq_is_sync(struct request *rq)
968 {
969 return op_is_sync(rq->cmd_flags);
970 }
971
972 void blk_rq_init(struct request_queue *q, struct request *rq);
973 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
974 struct bio_set *bs, gfp_t gfp_mask,
975 int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
976 void blk_rq_unprep_clone(struct request *rq);
977 blk_status_t blk_insert_cloned_request(struct request *rq);
978
979 struct rq_map_data {
980 struct page **pages;
981 unsigned long offset;
982 unsigned short page_order;
983 unsigned short nr_entries;
984 bool null_mapped;
985 bool from_user;
986 };
987
988 int blk_rq_map_user(struct request_queue *, struct request *,
989 struct rq_map_data *, void __user *, unsigned long, gfp_t);
990 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
991 void __user *, unsigned long, gfp_t, bool, int, bool, int);
992 int blk_rq_map_user_iov(struct request_queue *, struct request *,
993 struct rq_map_data *, const struct iov_iter *, gfp_t);
994 int blk_rq_unmap_user(struct bio *);
995 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
996 unsigned int, gfp_t);
997 int blk_rq_append_bio(struct request *rq, struct bio *bio);
998 void blk_execute_rq_nowait(struct request *rq, bool at_head);
999 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1000 bool blk_rq_is_poll(struct request *rq);
1001
1002 struct req_iterator {
1003 struct bvec_iter iter;
1004 struct bio *bio;
1005 };
1006
1007 #define __rq_for_each_bio(_bio, rq) \
1008 if ((rq->bio)) \
1009 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1010
1011 #define rq_for_each_segment(bvl, _rq, _iter) \
1012 __rq_for_each_bio(_iter.bio, _rq) \
1013 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1014
1015 #define rq_for_each_bvec(bvl, _rq, _iter) \
1016 __rq_for_each_bio(_iter.bio, _rq) \
1017 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1018
1019 #define rq_iter_last(bvec, _iter) \
1020 (_iter.bio->bi_next == NULL && \
1021 bio_iter_last(bvec, _iter.iter))
1022
1023 /*
1024 * blk_rq_pos() : the current sector
1025 * blk_rq_bytes() : bytes left in the entire request
1026 * blk_rq_cur_bytes() : bytes left in the current segment
1027 * blk_rq_sectors() : sectors left in the entire request
1028 * blk_rq_cur_sectors() : sectors left in the current segment
1029 * blk_rq_stats_sectors() : sectors of the entire request used for stats
1030 */
blk_rq_pos(const struct request * rq)1031 static inline sector_t blk_rq_pos(const struct request *rq)
1032 {
1033 return rq->__sector;
1034 }
1035
blk_rq_bytes(const struct request * rq)1036 static inline unsigned int blk_rq_bytes(const struct request *rq)
1037 {
1038 return rq->__data_len;
1039 }
1040
blk_rq_cur_bytes(const struct request * rq)1041 static inline int blk_rq_cur_bytes(const struct request *rq)
1042 {
1043 if (!rq->bio)
1044 return 0;
1045 if (!bio_has_data(rq->bio)) /* dataless requests such as discard */
1046 return rq->bio->bi_iter.bi_size;
1047 return bio_iovec(rq->bio).bv_len;
1048 }
1049
blk_rq_sectors(const struct request * rq)1050 static inline unsigned int blk_rq_sectors(const struct request *rq)
1051 {
1052 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1053 }
1054
blk_rq_cur_sectors(const struct request * rq)1055 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1056 {
1057 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1058 }
1059
blk_rq_stats_sectors(const struct request * rq)1060 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1061 {
1062 return rq->stats_sectors;
1063 }
1064
1065 /*
1066 * Some commands like WRITE SAME have a payload or data transfer size which
1067 * is different from the size of the request. Any driver that supports such
1068 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1069 * calculate the data transfer size.
1070 */
blk_rq_payload_bytes(struct request * rq)1071 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1072 {
1073 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1074 return rq->special_vec.bv_len;
1075 return blk_rq_bytes(rq);
1076 }
1077
1078 /*
1079 * Return the first full biovec in the request. The caller needs to check that
1080 * there are any bvecs before calling this helper.
1081 */
req_bvec(struct request * rq)1082 static inline struct bio_vec req_bvec(struct request *rq)
1083 {
1084 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1085 return rq->special_vec;
1086 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1087 }
1088
blk_rq_count_bios(struct request * rq)1089 static inline unsigned int blk_rq_count_bios(struct request *rq)
1090 {
1091 unsigned int nr_bios = 0;
1092 struct bio *bio;
1093
1094 __rq_for_each_bio(bio, rq)
1095 nr_bios++;
1096
1097 return nr_bios;
1098 }
1099
1100 void blk_steal_bios(struct bio_list *list, struct request *rq);
1101
1102 /*
1103 * Request completion related functions.
1104 *
1105 * blk_update_request() completes given number of bytes and updates
1106 * the request without completing it.
1107 */
1108 bool blk_update_request(struct request *rq, blk_status_t error,
1109 unsigned int nr_bytes);
1110 void blk_abort_request(struct request *);
1111
1112 /*
1113 * Number of physical segments as sent to the device.
1114 *
1115 * Normally this is the number of discontiguous data segments sent by the
1116 * submitter. But for data-less command like discard we might have no
1117 * actual data segments submitted, but the driver might have to add it's
1118 * own special payload. In that case we still return 1 here so that this
1119 * special payload will be mapped.
1120 */
blk_rq_nr_phys_segments(struct request * rq)1121 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1122 {
1123 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1124 return 1;
1125 return rq->nr_phys_segments;
1126 }
1127
1128 /*
1129 * Number of discard segments (or ranges) the driver needs to fill in.
1130 * Each discard bio merged into a request is counted as one segment.
1131 */
blk_rq_nr_discard_segments(struct request * rq)1132 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1133 {
1134 return max_t(unsigned short, rq->nr_phys_segments, 1);
1135 }
1136
1137 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1138 struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1139 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1140 struct scatterlist *sglist)
1141 {
1142 struct scatterlist *last_sg = NULL;
1143
1144 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1145 }
1146 void blk_dump_rq_flags(struct request *, char *);
1147
1148 #ifdef CONFIG_BLK_DEV_ZONED
blk_rq_zone_no(struct request * rq)1149 static inline unsigned int blk_rq_zone_no(struct request *rq)
1150 {
1151 return disk_zone_no(rq->q->disk, blk_rq_pos(rq));
1152 }
1153
blk_rq_zone_is_seq(struct request * rq)1154 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1155 {
1156 return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq));
1157 }
1158
1159 /**
1160 * blk_rq_is_seq_zoned_write() - Check if @rq requires write serialization.
1161 * @rq: Request to examine.
1162 *
1163 * Note: REQ_OP_ZONE_APPEND requests do not require serialization.
1164 */
blk_rq_is_seq_zoned_write(struct request * rq)1165 static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1166 {
1167 return op_needs_zoned_write_locking(req_op(rq)) &&
1168 blk_rq_zone_is_seq(rq);
1169 }
1170
1171 bool blk_req_needs_zone_write_lock(struct request *rq);
1172 bool blk_req_zone_write_trylock(struct request *rq);
1173 void __blk_req_zone_write_lock(struct request *rq);
1174 void __blk_req_zone_write_unlock(struct request *rq);
1175
blk_req_zone_write_lock(struct request * rq)1176 static inline void blk_req_zone_write_lock(struct request *rq)
1177 {
1178 if (blk_req_needs_zone_write_lock(rq))
1179 __blk_req_zone_write_lock(rq);
1180 }
1181
blk_req_zone_write_unlock(struct request * rq)1182 static inline void blk_req_zone_write_unlock(struct request *rq)
1183 {
1184 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1185 __blk_req_zone_write_unlock(rq);
1186 }
1187
blk_req_zone_is_write_locked(struct request * rq)1188 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1189 {
1190 return rq->q->disk->seq_zones_wlock &&
1191 test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock);
1192 }
1193
blk_req_can_dispatch_to_zone(struct request * rq)1194 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1195 {
1196 if (!blk_req_needs_zone_write_lock(rq))
1197 return true;
1198 return !blk_req_zone_is_write_locked(rq);
1199 }
1200 #else /* CONFIG_BLK_DEV_ZONED */
blk_rq_is_seq_zoned_write(struct request * rq)1201 static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1202 {
1203 return false;
1204 }
1205
blk_req_needs_zone_write_lock(struct request * rq)1206 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1207 {
1208 return false;
1209 }
1210
blk_req_zone_write_lock(struct request * rq)1211 static inline void blk_req_zone_write_lock(struct request *rq)
1212 {
1213 }
1214
blk_req_zone_write_unlock(struct request * rq)1215 static inline void blk_req_zone_write_unlock(struct request *rq)
1216 {
1217 }
blk_req_zone_is_write_locked(struct request * rq)1218 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1219 {
1220 return false;
1221 }
1222
blk_req_can_dispatch_to_zone(struct request * rq)1223 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1224 {
1225 return true;
1226 }
1227 #endif /* CONFIG_BLK_DEV_ZONED */
1228
1229 #endif /* BLK_MQ_H */
1230