1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to mapping data to requests
4 */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11
12 #include "blk.h"
13
14 struct bio_map_data {
15 bool is_our_pages : 1;
16 bool is_null_mapped : 1;
17 struct iov_iter iter;
18 struct iovec iov[];
19 };
20
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 gfp_t gfp_mask)
23 {
24 struct bio_map_data *bmd;
25
26 if (data->nr_segs > UIO_MAXIOV)
27 return NULL;
28
29 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 if (!bmd)
31 return NULL;
32 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 bmd->iter = *data;
34 bmd->iter.iov = bmd->iov;
35 return bmd;
36 }
37
38 /**
39 * bio_copy_from_iter - copy all pages from iov_iter to bio
40 * @bio: The &struct bio which describes the I/O as destination
41 * @iter: iov_iter as source
42 *
43 * Copy all pages from iov_iter to bio.
44 * Returns 0 on success, or error on failure.
45 */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48 struct bio_vec *bvec;
49 struct bvec_iter_all iter_all;
50
51 bio_for_each_segment_all(bvec, bio, iter_all) {
52 ssize_t ret;
53
54 ret = copy_page_from_iter(bvec->bv_page,
55 bvec->bv_offset,
56 bvec->bv_len,
57 iter);
58
59 if (!iov_iter_count(iter))
60 break;
61
62 if (ret < bvec->bv_len)
63 return -EFAULT;
64 }
65
66 return 0;
67 }
68
69 /**
70 * bio_copy_to_iter - copy all pages from bio to iov_iter
71 * @bio: The &struct bio which describes the I/O as source
72 * @iter: iov_iter as destination
73 *
74 * Copy all pages from bio to iov_iter.
75 * Returns 0 on success, or error on failure.
76 */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79 struct bio_vec *bvec;
80 struct bvec_iter_all iter_all;
81
82 bio_for_each_segment_all(bvec, bio, iter_all) {
83 ssize_t ret;
84
85 ret = copy_page_to_iter(bvec->bv_page,
86 bvec->bv_offset,
87 bvec->bv_len,
88 &iter);
89
90 if (!iov_iter_count(&iter))
91 break;
92
93 if (ret < bvec->bv_len)
94 return -EFAULT;
95 }
96
97 return 0;
98 }
99
100 /**
101 * bio_uncopy_user - finish previously mapped bio
102 * @bio: bio being terminated
103 *
104 * Free pages allocated from bio_copy_user_iov() and write back data
105 * to user space in case of a read.
106 */
bio_uncopy_user(struct bio * bio)107 static int bio_uncopy_user(struct bio *bio)
108 {
109 struct bio_map_data *bmd = bio->bi_private;
110 int ret = 0;
111
112 if (!bmd->is_null_mapped) {
113 /*
114 * if we're in a workqueue, the request is orphaned, so
115 * don't copy into a random user address space, just free
116 * and return -EINTR so user space doesn't expect any data.
117 */
118 if (!current->mm)
119 ret = -EINTR;
120 else if (bio_data_dir(bio) == READ)
121 ret = bio_copy_to_iter(bio, bmd->iter);
122 if (bmd->is_our_pages)
123 bio_free_pages(bio);
124 }
125 kfree(bmd);
126 return ret;
127 }
128
bio_copy_user_iov(struct request * rq,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)129 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
130 struct iov_iter *iter, gfp_t gfp_mask)
131 {
132 struct bio_map_data *bmd;
133 struct page *page;
134 struct bio *bio;
135 int i = 0, ret;
136 int nr_pages;
137 unsigned int len = iter->count;
138 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
139
140 bmd = bio_alloc_map_data(iter, gfp_mask);
141 if (!bmd)
142 return -ENOMEM;
143
144 /*
145 * We need to do a deep copy of the iov_iter including the iovecs.
146 * The caller provided iov might point to an on-stack or otherwise
147 * shortlived one.
148 */
149 bmd->is_our_pages = !map_data;
150 bmd->is_null_mapped = (map_data && map_data->null_mapped);
151
152 nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
153
154 ret = -ENOMEM;
155 bio = bio_kmalloc(nr_pages, gfp_mask);
156 if (!bio)
157 goto out_bmd;
158 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
159
160 if (map_data) {
161 nr_pages = 1U << map_data->page_order;
162 i = map_data->offset / PAGE_SIZE;
163 }
164 while (len) {
165 unsigned int bytes = PAGE_SIZE;
166
167 bytes -= offset;
168
169 if (bytes > len)
170 bytes = len;
171
172 if (map_data) {
173 if (i == map_data->nr_entries * nr_pages) {
174 ret = -ENOMEM;
175 goto cleanup;
176 }
177
178 page = map_data->pages[i / nr_pages];
179 page += (i % nr_pages);
180
181 i++;
182 } else {
183 page = alloc_page(GFP_NOIO | gfp_mask);
184 if (!page) {
185 ret = -ENOMEM;
186 goto cleanup;
187 }
188 }
189
190 if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
191 if (!map_data)
192 __free_page(page);
193 break;
194 }
195
196 len -= bytes;
197 offset = 0;
198 }
199
200 if (map_data)
201 map_data->offset += bio->bi_iter.bi_size;
202
203 /*
204 * success
205 */
206 if ((iov_iter_rw(iter) == WRITE &&
207 (!map_data || !map_data->null_mapped)) ||
208 (map_data && map_data->from_user)) {
209 ret = bio_copy_from_iter(bio, iter);
210 if (ret)
211 goto cleanup;
212 } else {
213 if (bmd->is_our_pages)
214 zero_fill_bio(bio);
215 iov_iter_advance(iter, bio->bi_iter.bi_size);
216 }
217
218 bio->bi_private = bmd;
219
220 ret = blk_rq_append_bio(rq, bio);
221 if (ret)
222 goto cleanup;
223 return 0;
224 cleanup:
225 if (!map_data)
226 bio_free_pages(bio);
227 bio_uninit(bio);
228 kfree(bio);
229 out_bmd:
230 kfree(bmd);
231 return ret;
232 }
233
blk_mq_map_bio_put(struct bio * bio)234 static void blk_mq_map_bio_put(struct bio *bio)
235 {
236 if (bio->bi_opf & REQ_ALLOC_CACHE) {
237 bio_put(bio);
238 } else {
239 bio_uninit(bio);
240 kfree(bio);
241 }
242 }
243
blk_rq_map_bio_alloc(struct request * rq,unsigned int nr_vecs,gfp_t gfp_mask)244 static struct bio *blk_rq_map_bio_alloc(struct request *rq,
245 unsigned int nr_vecs, gfp_t gfp_mask)
246 {
247 struct bio *bio;
248
249 if (rq->cmd_flags & REQ_POLLED) {
250 blk_opf_t opf = rq->cmd_flags | REQ_ALLOC_CACHE;
251
252 bio = bio_alloc_bioset(NULL, nr_vecs, opf, gfp_mask,
253 &fs_bio_set);
254 if (!bio)
255 return NULL;
256 } else {
257 bio = bio_kmalloc(nr_vecs, gfp_mask);
258 if (!bio)
259 return NULL;
260 bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
261 }
262 return bio;
263 }
264
bio_map_user_iov(struct request * rq,struct iov_iter * iter,gfp_t gfp_mask)265 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
266 gfp_t gfp_mask)
267 {
268 unsigned int max_sectors = queue_max_hw_sectors(rq->q);
269 unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
270 struct bio *bio;
271 int ret;
272 int j;
273
274 if (!iov_iter_count(iter))
275 return -EINVAL;
276
277 bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
278 if (bio == NULL)
279 return -ENOMEM;
280
281 while (iov_iter_count(iter)) {
282 struct page **pages, *stack_pages[UIO_FASTIOV];
283 ssize_t bytes;
284 size_t offs;
285 int npages;
286
287 if (nr_vecs <= ARRAY_SIZE(stack_pages)) {
288 pages = stack_pages;
289 bytes = iov_iter_get_pages2(iter, pages, LONG_MAX,
290 nr_vecs, &offs);
291 } else {
292 bytes = iov_iter_get_pages_alloc2(iter, &pages,
293 LONG_MAX, &offs);
294 }
295 if (unlikely(bytes <= 0)) {
296 ret = bytes ? bytes : -EFAULT;
297 goto out_unmap;
298 }
299
300 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
301
302 if (unlikely(offs & queue_dma_alignment(rq->q)))
303 j = 0;
304 else {
305 for (j = 0; j < npages; j++) {
306 struct page *page = pages[j];
307 unsigned int n = PAGE_SIZE - offs;
308 bool same_page = false;
309
310 if (n > bytes)
311 n = bytes;
312
313 if (!bio_add_hw_page(rq->q, bio, page, n, offs,
314 max_sectors, &same_page)) {
315 if (same_page)
316 put_page(page);
317 break;
318 }
319
320 bytes -= n;
321 offs = 0;
322 }
323 }
324 /*
325 * release the pages we didn't map into the bio, if any
326 */
327 while (j < npages)
328 put_page(pages[j++]);
329 if (pages != stack_pages)
330 kvfree(pages);
331 /* couldn't stuff something into bio? */
332 if (bytes) {
333 iov_iter_revert(iter, bytes);
334 break;
335 }
336 }
337
338 ret = blk_rq_append_bio(rq, bio);
339 if (ret)
340 goto out_unmap;
341 return 0;
342
343 out_unmap:
344 bio_release_pages(bio, false);
345 blk_mq_map_bio_put(bio);
346 return ret;
347 }
348
bio_invalidate_vmalloc_pages(struct bio * bio)349 static void bio_invalidate_vmalloc_pages(struct bio *bio)
350 {
351 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
352 if (bio->bi_private && !op_is_write(bio_op(bio))) {
353 unsigned long i, len = 0;
354
355 for (i = 0; i < bio->bi_vcnt; i++)
356 len += bio->bi_io_vec[i].bv_len;
357 invalidate_kernel_vmap_range(bio->bi_private, len);
358 }
359 #endif
360 }
361
bio_map_kern_endio(struct bio * bio)362 static void bio_map_kern_endio(struct bio *bio)
363 {
364 bio_invalidate_vmalloc_pages(bio);
365 bio_uninit(bio);
366 kfree(bio);
367 }
368
369 /**
370 * bio_map_kern - map kernel address into bio
371 * @q: the struct request_queue for the bio
372 * @data: pointer to buffer to map
373 * @len: length in bytes
374 * @gfp_mask: allocation flags for bio allocation
375 *
376 * Map the kernel address into a bio suitable for io to a block
377 * device. Returns an error pointer in case of error.
378 */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)379 static struct bio *bio_map_kern(struct request_queue *q, void *data,
380 unsigned int len, gfp_t gfp_mask)
381 {
382 unsigned long kaddr = (unsigned long)data;
383 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
384 unsigned long start = kaddr >> PAGE_SHIFT;
385 const int nr_pages = end - start;
386 bool is_vmalloc = is_vmalloc_addr(data);
387 struct page *page;
388 int offset, i;
389 struct bio *bio;
390
391 bio = bio_kmalloc(nr_pages, gfp_mask);
392 if (!bio)
393 return ERR_PTR(-ENOMEM);
394 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
395
396 if (is_vmalloc) {
397 flush_kernel_vmap_range(data, len);
398 bio->bi_private = data;
399 }
400
401 offset = offset_in_page(kaddr);
402 for (i = 0; i < nr_pages; i++) {
403 unsigned int bytes = PAGE_SIZE - offset;
404
405 if (len <= 0)
406 break;
407
408 if (bytes > len)
409 bytes = len;
410
411 if (!is_vmalloc)
412 page = virt_to_page(data);
413 else
414 page = vmalloc_to_page(data);
415 if (bio_add_pc_page(q, bio, page, bytes,
416 offset) < bytes) {
417 /* we don't support partial mappings */
418 bio_uninit(bio);
419 kfree(bio);
420 return ERR_PTR(-EINVAL);
421 }
422
423 data += bytes;
424 len -= bytes;
425 offset = 0;
426 }
427
428 bio->bi_end_io = bio_map_kern_endio;
429 return bio;
430 }
431
bio_copy_kern_endio(struct bio * bio)432 static void bio_copy_kern_endio(struct bio *bio)
433 {
434 bio_free_pages(bio);
435 bio_uninit(bio);
436 kfree(bio);
437 }
438
bio_copy_kern_endio_read(struct bio * bio)439 static void bio_copy_kern_endio_read(struct bio *bio)
440 {
441 char *p = bio->bi_private;
442 struct bio_vec *bvec;
443 struct bvec_iter_all iter_all;
444
445 bio_for_each_segment_all(bvec, bio, iter_all) {
446 memcpy_from_bvec(p, bvec);
447 p += bvec->bv_len;
448 }
449
450 bio_copy_kern_endio(bio);
451 }
452
453 /**
454 * bio_copy_kern - copy kernel address into bio
455 * @q: the struct request_queue for the bio
456 * @data: pointer to buffer to copy
457 * @len: length in bytes
458 * @gfp_mask: allocation flags for bio and page allocation
459 * @reading: data direction is READ
460 *
461 * copy the kernel address into a bio suitable for io to a block
462 * device. Returns an error pointer in case of error.
463 */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)464 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
465 unsigned int len, gfp_t gfp_mask, int reading)
466 {
467 unsigned long kaddr = (unsigned long)data;
468 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
469 unsigned long start = kaddr >> PAGE_SHIFT;
470 struct bio *bio;
471 void *p = data;
472 int nr_pages = 0;
473
474 /*
475 * Overflow, abort
476 */
477 if (end < start)
478 return ERR_PTR(-EINVAL);
479
480 nr_pages = end - start;
481 bio = bio_kmalloc(nr_pages, gfp_mask);
482 if (!bio)
483 return ERR_PTR(-ENOMEM);
484 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
485
486 while (len) {
487 struct page *page;
488 unsigned int bytes = PAGE_SIZE;
489
490 if (bytes > len)
491 bytes = len;
492
493 page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
494 if (!page)
495 goto cleanup;
496
497 if (!reading)
498 memcpy(page_address(page), p, bytes);
499
500 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
501 break;
502
503 len -= bytes;
504 p += bytes;
505 }
506
507 if (reading) {
508 bio->bi_end_io = bio_copy_kern_endio_read;
509 bio->bi_private = data;
510 } else {
511 bio->bi_end_io = bio_copy_kern_endio;
512 }
513
514 return bio;
515
516 cleanup:
517 bio_free_pages(bio);
518 bio_uninit(bio);
519 kfree(bio);
520 return ERR_PTR(-ENOMEM);
521 }
522
523 /*
524 * Append a bio to a passthrough request. Only works if the bio can be merged
525 * into the request based on the driver constraints.
526 */
blk_rq_append_bio(struct request * rq,struct bio * bio)527 int blk_rq_append_bio(struct request *rq, struct bio *bio)
528 {
529 struct bvec_iter iter;
530 struct bio_vec bv;
531 unsigned int nr_segs = 0;
532
533 bio_for_each_bvec(bv, bio, iter)
534 nr_segs++;
535
536 if (!rq->bio) {
537 blk_rq_bio_prep(rq, bio, nr_segs);
538 } else {
539 if (!ll_back_merge_fn(rq, bio, nr_segs))
540 return -EINVAL;
541 rq->biotail->bi_next = bio;
542 rq->biotail = bio;
543 rq->__data_len += (bio)->bi_iter.bi_size;
544 bio_crypt_free_ctx(bio);
545 }
546
547 return 0;
548 }
549 EXPORT_SYMBOL(blk_rq_append_bio);
550
551 /* Prepare bio for passthrough IO given ITER_BVEC iter */
blk_rq_map_user_bvec(struct request * rq,const struct iov_iter * iter)552 static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
553 {
554 struct request_queue *q = rq->q;
555 size_t nr_iter = iov_iter_count(iter);
556 size_t nr_segs = iter->nr_segs;
557 struct bio_vec *bvecs, *bvprvp = NULL;
558 struct queue_limits *lim = &q->limits;
559 unsigned int nsegs = 0, bytes = 0;
560 struct bio *bio;
561 size_t i;
562
563 if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q))
564 return -EINVAL;
565 if (nr_segs > queue_max_segments(q))
566 return -EINVAL;
567
568 /* no iovecs to alloc, as we already have a BVEC iterator */
569 bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
570 if (bio == NULL)
571 return -ENOMEM;
572
573 bio_iov_bvec_set(bio, (struct iov_iter *)iter);
574 blk_rq_bio_prep(rq, bio, nr_segs);
575
576 /* loop to perform a bunch of sanity checks */
577 bvecs = (struct bio_vec *)iter->bvec;
578 for (i = 0; i < nr_segs; i++) {
579 struct bio_vec *bv = &bvecs[i];
580
581 /*
582 * If the queue doesn't support SG gaps and adding this
583 * offset would create a gap, fallback to copy.
584 */
585 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) {
586 blk_mq_map_bio_put(bio);
587 return -EREMOTEIO;
588 }
589 /* check full condition */
590 if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len)
591 goto put_bio;
592 if (bytes + bv->bv_len > nr_iter)
593 goto put_bio;
594 if (bv->bv_offset + bv->bv_len > PAGE_SIZE)
595 goto put_bio;
596
597 nsegs++;
598 bytes += bv->bv_len;
599 bvprvp = bv;
600 }
601 return 0;
602 put_bio:
603 blk_mq_map_bio_put(bio);
604 return -EINVAL;
605 }
606
607 /**
608 * blk_rq_map_user_iov - map user data to a request, for passthrough requests
609 * @q: request queue where request should be inserted
610 * @rq: request to map data to
611 * @map_data: pointer to the rq_map_data holding pages (if necessary)
612 * @iter: iovec iterator
613 * @gfp_mask: memory allocation flags
614 *
615 * Description:
616 * Data will be mapped directly for zero copy I/O, if possible. Otherwise
617 * a kernel bounce buffer is used.
618 *
619 * A matching blk_rq_unmap_user() must be issued at the end of I/O, while
620 * still in process context.
621 */
blk_rq_map_user_iov(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,const struct iov_iter * iter,gfp_t gfp_mask)622 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
623 struct rq_map_data *map_data,
624 const struct iov_iter *iter, gfp_t gfp_mask)
625 {
626 bool copy = false, map_bvec = false;
627 unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
628 struct bio *bio = NULL;
629 struct iov_iter i;
630 int ret = -EINVAL;
631
632 if (map_data)
633 copy = true;
634 else if (blk_queue_may_bounce(q))
635 copy = true;
636 else if (iov_iter_alignment(iter) & align)
637 copy = true;
638 else if (iov_iter_is_bvec(iter))
639 map_bvec = true;
640 else if (!iter_is_iovec(iter))
641 copy = true;
642 else if (queue_virt_boundary(q))
643 copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
644
645 if (map_bvec) {
646 ret = blk_rq_map_user_bvec(rq, iter);
647 if (!ret)
648 return 0;
649 if (ret != -EREMOTEIO)
650 goto fail;
651 /* fall back to copying the data on limits mismatches */
652 copy = true;
653 }
654
655 i = *iter;
656 do {
657 if (copy)
658 ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
659 else
660 ret = bio_map_user_iov(rq, &i, gfp_mask);
661 if (ret)
662 goto unmap_rq;
663 if (!bio)
664 bio = rq->bio;
665 } while (iov_iter_count(&i));
666
667 return 0;
668
669 unmap_rq:
670 blk_rq_unmap_user(bio);
671 fail:
672 rq->bio = NULL;
673 return ret;
674 }
675 EXPORT_SYMBOL(blk_rq_map_user_iov);
676
blk_rq_map_user(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,void __user * ubuf,unsigned long len,gfp_t gfp_mask)677 int blk_rq_map_user(struct request_queue *q, struct request *rq,
678 struct rq_map_data *map_data, void __user *ubuf,
679 unsigned long len, gfp_t gfp_mask)
680 {
681 struct iovec iov;
682 struct iov_iter i;
683 int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
684
685 if (unlikely(ret < 0))
686 return ret;
687
688 return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
689 }
690 EXPORT_SYMBOL(blk_rq_map_user);
691
blk_rq_map_user_io(struct request * req,struct rq_map_data * map_data,void __user * ubuf,unsigned long buf_len,gfp_t gfp_mask,bool vec,int iov_count,bool check_iter_count,int rw)692 int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
693 void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
694 bool vec, int iov_count, bool check_iter_count, int rw)
695 {
696 int ret = 0;
697
698 if (vec) {
699 struct iovec fast_iov[UIO_FASTIOV];
700 struct iovec *iov = fast_iov;
701 struct iov_iter iter;
702
703 ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
704 UIO_FASTIOV, &iov, &iter);
705 if (ret < 0)
706 return ret;
707
708 if (iov_count) {
709 /* SG_IO howto says that the shorter of the two wins */
710 iov_iter_truncate(&iter, buf_len);
711 if (check_iter_count && !iov_iter_count(&iter)) {
712 kfree(iov);
713 return -EINVAL;
714 }
715 }
716
717 ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
718 gfp_mask);
719 kfree(iov);
720 } else if (buf_len) {
721 ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
722 gfp_mask);
723 }
724 return ret;
725 }
726 EXPORT_SYMBOL(blk_rq_map_user_io);
727
728 /**
729 * blk_rq_unmap_user - unmap a request with user data
730 * @bio: start of bio list
731 *
732 * Description:
733 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
734 * supply the original rq->bio from the blk_rq_map_user() return, since
735 * the I/O completion may have changed rq->bio.
736 */
blk_rq_unmap_user(struct bio * bio)737 int blk_rq_unmap_user(struct bio *bio)
738 {
739 struct bio *next_bio;
740 int ret = 0, ret2;
741
742 while (bio) {
743 if (bio->bi_private) {
744 ret2 = bio_uncopy_user(bio);
745 if (ret2 && !ret)
746 ret = ret2;
747 } else {
748 bio_release_pages(bio, bio_data_dir(bio) == READ);
749 }
750
751 next_bio = bio;
752 bio = bio->bi_next;
753 blk_mq_map_bio_put(next_bio);
754 }
755
756 return ret;
757 }
758 EXPORT_SYMBOL(blk_rq_unmap_user);
759
760 /**
761 * blk_rq_map_kern - map kernel data to a request, for passthrough requests
762 * @q: request queue where request should be inserted
763 * @rq: request to fill
764 * @kbuf: the kernel buffer
765 * @len: length of user data
766 * @gfp_mask: memory allocation flags
767 *
768 * Description:
769 * Data will be mapped directly if possible. Otherwise a bounce
770 * buffer is used. Can be called multiple times to append multiple
771 * buffers.
772 */
blk_rq_map_kern(struct request_queue * q,struct request * rq,void * kbuf,unsigned int len,gfp_t gfp_mask)773 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
774 unsigned int len, gfp_t gfp_mask)
775 {
776 int reading = rq_data_dir(rq) == READ;
777 unsigned long addr = (unsigned long) kbuf;
778 struct bio *bio;
779 int ret;
780
781 if (len > (queue_max_hw_sectors(q) << 9))
782 return -EINVAL;
783 if (!len || !kbuf)
784 return -EINVAL;
785
786 if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
787 blk_queue_may_bounce(q))
788 bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
789 else
790 bio = bio_map_kern(q, kbuf, len, gfp_mask);
791
792 if (IS_ERR(bio))
793 return PTR_ERR(bio);
794
795 bio->bi_opf &= ~REQ_OP_MASK;
796 bio->bi_opf |= req_op(rq);
797
798 ret = blk_rq_append_bio(rq, bio);
799 if (unlikely(ret)) {
800 bio_uninit(bio);
801 kfree(bio);
802 }
803 return ret;
804 }
805 EXPORT_SYMBOL(blk_rq_map_kern);
806