1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11 
12 #include "blk.h"
13 
14 struct bio_map_data {
15 	bool is_our_pages : 1;
16 	bool is_null_mapped : 1;
17 	struct iov_iter iter;
18 	struct iovec iov[];
19 };
20 
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 					       gfp_t gfp_mask)
23 {
24 	struct bio_map_data *bmd;
25 
26 	if (data->nr_segs > UIO_MAXIOV)
27 		return NULL;
28 
29 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 	if (!bmd)
31 		return NULL;
32 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 	bmd->iter = *data;
34 	bmd->iter.iov = bmd->iov;
35 	return bmd;
36 }
37 
38 /**
39  * bio_copy_from_iter - copy all pages from iov_iter to bio
40  * @bio: The &struct bio which describes the I/O as destination
41  * @iter: iov_iter as source
42  *
43  * Copy all pages from iov_iter to bio.
44  * Returns 0 on success, or error on failure.
45  */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48 	struct bio_vec *bvec;
49 	struct bvec_iter_all iter_all;
50 
51 	bio_for_each_segment_all(bvec, bio, iter_all) {
52 		ssize_t ret;
53 
54 		ret = copy_page_from_iter(bvec->bv_page,
55 					  bvec->bv_offset,
56 					  bvec->bv_len,
57 					  iter);
58 
59 		if (!iov_iter_count(iter))
60 			break;
61 
62 		if (ret < bvec->bv_len)
63 			return -EFAULT;
64 	}
65 
66 	return 0;
67 }
68 
69 /**
70  * bio_copy_to_iter - copy all pages from bio to iov_iter
71  * @bio: The &struct bio which describes the I/O as source
72  * @iter: iov_iter as destination
73  *
74  * Copy all pages from bio to iov_iter.
75  * Returns 0 on success, or error on failure.
76  */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79 	struct bio_vec *bvec;
80 	struct bvec_iter_all iter_all;
81 
82 	bio_for_each_segment_all(bvec, bio, iter_all) {
83 		ssize_t ret;
84 
85 		ret = copy_page_to_iter(bvec->bv_page,
86 					bvec->bv_offset,
87 					bvec->bv_len,
88 					&iter);
89 
90 		if (!iov_iter_count(&iter))
91 			break;
92 
93 		if (ret < bvec->bv_len)
94 			return -EFAULT;
95 	}
96 
97 	return 0;
98 }
99 
100 /**
101  *	bio_uncopy_user	-	finish previously mapped bio
102  *	@bio: bio being terminated
103  *
104  *	Free pages allocated from bio_copy_user_iov() and write back data
105  *	to user space in case of a read.
106  */
bio_uncopy_user(struct bio * bio)107 static int bio_uncopy_user(struct bio *bio)
108 {
109 	struct bio_map_data *bmd = bio->bi_private;
110 	int ret = 0;
111 
112 	if (!bmd->is_null_mapped) {
113 		/*
114 		 * if we're in a workqueue, the request is orphaned, so
115 		 * don't copy into a random user address space, just free
116 		 * and return -EINTR so user space doesn't expect any data.
117 		 */
118 		if (!current->mm)
119 			ret = -EINTR;
120 		else if (bio_data_dir(bio) == READ)
121 			ret = bio_copy_to_iter(bio, bmd->iter);
122 		if (bmd->is_our_pages)
123 			bio_free_pages(bio);
124 	}
125 	kfree(bmd);
126 	return ret;
127 }
128 
bio_copy_user_iov(struct request * rq,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)129 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
130 		struct iov_iter *iter, gfp_t gfp_mask)
131 {
132 	struct bio_map_data *bmd;
133 	struct page *page;
134 	struct bio *bio;
135 	int i = 0, ret;
136 	int nr_pages;
137 	unsigned int len = iter->count;
138 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
139 
140 	bmd = bio_alloc_map_data(iter, gfp_mask);
141 	if (!bmd)
142 		return -ENOMEM;
143 
144 	/*
145 	 * We need to do a deep copy of the iov_iter including the iovecs.
146 	 * The caller provided iov might point to an on-stack or otherwise
147 	 * shortlived one.
148 	 */
149 	bmd->is_our_pages = !map_data;
150 	bmd->is_null_mapped = (map_data && map_data->null_mapped);
151 
152 	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
153 
154 	ret = -ENOMEM;
155 	bio = bio_kmalloc(nr_pages, gfp_mask);
156 	if (!bio)
157 		goto out_bmd;
158 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
159 
160 	if (map_data) {
161 		nr_pages = 1U << map_data->page_order;
162 		i = map_data->offset / PAGE_SIZE;
163 	}
164 	while (len) {
165 		unsigned int bytes = PAGE_SIZE;
166 
167 		bytes -= offset;
168 
169 		if (bytes > len)
170 			bytes = len;
171 
172 		if (map_data) {
173 			if (i == map_data->nr_entries * nr_pages) {
174 				ret = -ENOMEM;
175 				goto cleanup;
176 			}
177 
178 			page = map_data->pages[i / nr_pages];
179 			page += (i % nr_pages);
180 
181 			i++;
182 		} else {
183 			page = alloc_page(GFP_NOIO | gfp_mask);
184 			if (!page) {
185 				ret = -ENOMEM;
186 				goto cleanup;
187 			}
188 		}
189 
190 		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
191 			if (!map_data)
192 				__free_page(page);
193 			break;
194 		}
195 
196 		len -= bytes;
197 		offset = 0;
198 	}
199 
200 	if (map_data)
201 		map_data->offset += bio->bi_iter.bi_size;
202 
203 	/*
204 	 * success
205 	 */
206 	if ((iov_iter_rw(iter) == WRITE &&
207 	     (!map_data || !map_data->null_mapped)) ||
208 	    (map_data && map_data->from_user)) {
209 		ret = bio_copy_from_iter(bio, iter);
210 		if (ret)
211 			goto cleanup;
212 	} else {
213 		if (bmd->is_our_pages)
214 			zero_fill_bio(bio);
215 		iov_iter_advance(iter, bio->bi_iter.bi_size);
216 	}
217 
218 	bio->bi_private = bmd;
219 
220 	ret = blk_rq_append_bio(rq, bio);
221 	if (ret)
222 		goto cleanup;
223 	return 0;
224 cleanup:
225 	if (!map_data)
226 		bio_free_pages(bio);
227 	bio_uninit(bio);
228 	kfree(bio);
229 out_bmd:
230 	kfree(bmd);
231 	return ret;
232 }
233 
blk_mq_map_bio_put(struct bio * bio)234 static void blk_mq_map_bio_put(struct bio *bio)
235 {
236 	if (bio->bi_opf & REQ_ALLOC_CACHE) {
237 		bio_put(bio);
238 	} else {
239 		bio_uninit(bio);
240 		kfree(bio);
241 	}
242 }
243 
blk_rq_map_bio_alloc(struct request * rq,unsigned int nr_vecs,gfp_t gfp_mask)244 static struct bio *blk_rq_map_bio_alloc(struct request *rq,
245 		unsigned int nr_vecs, gfp_t gfp_mask)
246 {
247 	struct bio *bio;
248 
249 	if (rq->cmd_flags & REQ_POLLED) {
250 		blk_opf_t opf = rq->cmd_flags | REQ_ALLOC_CACHE;
251 
252 		bio = bio_alloc_bioset(NULL, nr_vecs, opf, gfp_mask,
253 					&fs_bio_set);
254 		if (!bio)
255 			return NULL;
256 	} else {
257 		bio = bio_kmalloc(nr_vecs, gfp_mask);
258 		if (!bio)
259 			return NULL;
260 		bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
261 	}
262 	return bio;
263 }
264 
bio_map_user_iov(struct request * rq,struct iov_iter * iter,gfp_t gfp_mask)265 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
266 		gfp_t gfp_mask)
267 {
268 	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
269 	unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
270 	struct bio *bio;
271 	int ret;
272 	int j;
273 
274 	if (!iov_iter_count(iter))
275 		return -EINVAL;
276 
277 	bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
278 	if (bio == NULL)
279 		return -ENOMEM;
280 
281 	while (iov_iter_count(iter)) {
282 		struct page **pages, *stack_pages[UIO_FASTIOV];
283 		ssize_t bytes;
284 		size_t offs;
285 		int npages;
286 
287 		if (nr_vecs <= ARRAY_SIZE(stack_pages)) {
288 			pages = stack_pages;
289 			bytes = iov_iter_get_pages2(iter, pages, LONG_MAX,
290 							nr_vecs, &offs);
291 		} else {
292 			bytes = iov_iter_get_pages_alloc2(iter, &pages,
293 							LONG_MAX, &offs);
294 		}
295 		if (unlikely(bytes <= 0)) {
296 			ret = bytes ? bytes : -EFAULT;
297 			goto out_unmap;
298 		}
299 
300 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
301 
302 		if (unlikely(offs & queue_dma_alignment(rq->q)))
303 			j = 0;
304 		else {
305 			for (j = 0; j < npages; j++) {
306 				struct page *page = pages[j];
307 				unsigned int n = PAGE_SIZE - offs;
308 				bool same_page = false;
309 
310 				if (n > bytes)
311 					n = bytes;
312 
313 				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
314 						     max_sectors, &same_page)) {
315 					if (same_page)
316 						put_page(page);
317 					break;
318 				}
319 
320 				bytes -= n;
321 				offs = 0;
322 			}
323 		}
324 		/*
325 		 * release the pages we didn't map into the bio, if any
326 		 */
327 		while (j < npages)
328 			put_page(pages[j++]);
329 		if (pages != stack_pages)
330 			kvfree(pages);
331 		/* couldn't stuff something into bio? */
332 		if (bytes) {
333 			iov_iter_revert(iter, bytes);
334 			break;
335 		}
336 	}
337 
338 	ret = blk_rq_append_bio(rq, bio);
339 	if (ret)
340 		goto out_unmap;
341 	return 0;
342 
343  out_unmap:
344 	bio_release_pages(bio, false);
345 	blk_mq_map_bio_put(bio);
346 	return ret;
347 }
348 
bio_invalidate_vmalloc_pages(struct bio * bio)349 static void bio_invalidate_vmalloc_pages(struct bio *bio)
350 {
351 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
352 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
353 		unsigned long i, len = 0;
354 
355 		for (i = 0; i < bio->bi_vcnt; i++)
356 			len += bio->bi_io_vec[i].bv_len;
357 		invalidate_kernel_vmap_range(bio->bi_private, len);
358 	}
359 #endif
360 }
361 
bio_map_kern_endio(struct bio * bio)362 static void bio_map_kern_endio(struct bio *bio)
363 {
364 	bio_invalidate_vmalloc_pages(bio);
365 	bio_uninit(bio);
366 	kfree(bio);
367 }
368 
369 /**
370  *	bio_map_kern	-	map kernel address into bio
371  *	@q: the struct request_queue for the bio
372  *	@data: pointer to buffer to map
373  *	@len: length in bytes
374  *	@gfp_mask: allocation flags for bio allocation
375  *
376  *	Map the kernel address into a bio suitable for io to a block
377  *	device. Returns an error pointer in case of error.
378  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)379 static struct bio *bio_map_kern(struct request_queue *q, void *data,
380 		unsigned int len, gfp_t gfp_mask)
381 {
382 	unsigned long kaddr = (unsigned long)data;
383 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
384 	unsigned long start = kaddr >> PAGE_SHIFT;
385 	const int nr_pages = end - start;
386 	bool is_vmalloc = is_vmalloc_addr(data);
387 	struct page *page;
388 	int offset, i;
389 	struct bio *bio;
390 
391 	bio = bio_kmalloc(nr_pages, gfp_mask);
392 	if (!bio)
393 		return ERR_PTR(-ENOMEM);
394 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
395 
396 	if (is_vmalloc) {
397 		flush_kernel_vmap_range(data, len);
398 		bio->bi_private = data;
399 	}
400 
401 	offset = offset_in_page(kaddr);
402 	for (i = 0; i < nr_pages; i++) {
403 		unsigned int bytes = PAGE_SIZE - offset;
404 
405 		if (len <= 0)
406 			break;
407 
408 		if (bytes > len)
409 			bytes = len;
410 
411 		if (!is_vmalloc)
412 			page = virt_to_page(data);
413 		else
414 			page = vmalloc_to_page(data);
415 		if (bio_add_pc_page(q, bio, page, bytes,
416 				    offset) < bytes) {
417 			/* we don't support partial mappings */
418 			bio_uninit(bio);
419 			kfree(bio);
420 			return ERR_PTR(-EINVAL);
421 		}
422 
423 		data += bytes;
424 		len -= bytes;
425 		offset = 0;
426 	}
427 
428 	bio->bi_end_io = bio_map_kern_endio;
429 	return bio;
430 }
431 
bio_copy_kern_endio(struct bio * bio)432 static void bio_copy_kern_endio(struct bio *bio)
433 {
434 	bio_free_pages(bio);
435 	bio_uninit(bio);
436 	kfree(bio);
437 }
438 
bio_copy_kern_endio_read(struct bio * bio)439 static void bio_copy_kern_endio_read(struct bio *bio)
440 {
441 	char *p = bio->bi_private;
442 	struct bio_vec *bvec;
443 	struct bvec_iter_all iter_all;
444 
445 	bio_for_each_segment_all(bvec, bio, iter_all) {
446 		memcpy_from_bvec(p, bvec);
447 		p += bvec->bv_len;
448 	}
449 
450 	bio_copy_kern_endio(bio);
451 }
452 
453 /**
454  *	bio_copy_kern	-	copy kernel address into bio
455  *	@q: the struct request_queue for the bio
456  *	@data: pointer to buffer to copy
457  *	@len: length in bytes
458  *	@gfp_mask: allocation flags for bio and page allocation
459  *	@reading: data direction is READ
460  *
461  *	copy the kernel address into a bio suitable for io to a block
462  *	device. Returns an error pointer in case of error.
463  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)464 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
465 		unsigned int len, gfp_t gfp_mask, int reading)
466 {
467 	unsigned long kaddr = (unsigned long)data;
468 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
469 	unsigned long start = kaddr >> PAGE_SHIFT;
470 	struct bio *bio;
471 	void *p = data;
472 	int nr_pages = 0;
473 
474 	/*
475 	 * Overflow, abort
476 	 */
477 	if (end < start)
478 		return ERR_PTR(-EINVAL);
479 
480 	nr_pages = end - start;
481 	bio = bio_kmalloc(nr_pages, gfp_mask);
482 	if (!bio)
483 		return ERR_PTR(-ENOMEM);
484 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
485 
486 	while (len) {
487 		struct page *page;
488 		unsigned int bytes = PAGE_SIZE;
489 
490 		if (bytes > len)
491 			bytes = len;
492 
493 		page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
494 		if (!page)
495 			goto cleanup;
496 
497 		if (!reading)
498 			memcpy(page_address(page), p, bytes);
499 
500 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
501 			break;
502 
503 		len -= bytes;
504 		p += bytes;
505 	}
506 
507 	if (reading) {
508 		bio->bi_end_io = bio_copy_kern_endio_read;
509 		bio->bi_private = data;
510 	} else {
511 		bio->bi_end_io = bio_copy_kern_endio;
512 	}
513 
514 	return bio;
515 
516 cleanup:
517 	bio_free_pages(bio);
518 	bio_uninit(bio);
519 	kfree(bio);
520 	return ERR_PTR(-ENOMEM);
521 }
522 
523 /*
524  * Append a bio to a passthrough request.  Only works if the bio can be merged
525  * into the request based on the driver constraints.
526  */
blk_rq_append_bio(struct request * rq,struct bio * bio)527 int blk_rq_append_bio(struct request *rq, struct bio *bio)
528 {
529 	struct bvec_iter iter;
530 	struct bio_vec bv;
531 	unsigned int nr_segs = 0;
532 
533 	bio_for_each_bvec(bv, bio, iter)
534 		nr_segs++;
535 
536 	if (!rq->bio) {
537 		blk_rq_bio_prep(rq, bio, nr_segs);
538 	} else {
539 		if (!ll_back_merge_fn(rq, bio, nr_segs))
540 			return -EINVAL;
541 		rq->biotail->bi_next = bio;
542 		rq->biotail = bio;
543 		rq->__data_len += (bio)->bi_iter.bi_size;
544 		bio_crypt_free_ctx(bio);
545 	}
546 
547 	return 0;
548 }
549 EXPORT_SYMBOL(blk_rq_append_bio);
550 
551 /* Prepare bio for passthrough IO given ITER_BVEC iter */
blk_rq_map_user_bvec(struct request * rq,const struct iov_iter * iter)552 static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
553 {
554 	struct request_queue *q = rq->q;
555 	size_t nr_iter = iov_iter_count(iter);
556 	size_t nr_segs = iter->nr_segs;
557 	struct bio_vec *bvecs, *bvprvp = NULL;
558 	struct queue_limits *lim = &q->limits;
559 	unsigned int nsegs = 0, bytes = 0;
560 	struct bio *bio;
561 	size_t i;
562 
563 	if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q))
564 		return -EINVAL;
565 	if (nr_segs > queue_max_segments(q))
566 		return -EINVAL;
567 
568 	/* no iovecs to alloc, as we already have a BVEC iterator */
569 	bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
570 	if (bio == NULL)
571 		return -ENOMEM;
572 
573 	bio_iov_bvec_set(bio, (struct iov_iter *)iter);
574 	blk_rq_bio_prep(rq, bio, nr_segs);
575 
576 	/* loop to perform a bunch of sanity checks */
577 	bvecs = (struct bio_vec *)iter->bvec;
578 	for (i = 0; i < nr_segs; i++) {
579 		struct bio_vec *bv = &bvecs[i];
580 
581 		/*
582 		 * If the queue doesn't support SG gaps and adding this
583 		 * offset would create a gap, fallback to copy.
584 		 */
585 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) {
586 			blk_mq_map_bio_put(bio);
587 			return -EREMOTEIO;
588 		}
589 		/* check full condition */
590 		if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len)
591 			goto put_bio;
592 		if (bytes + bv->bv_len > nr_iter)
593 			goto put_bio;
594 		if (bv->bv_offset + bv->bv_len > PAGE_SIZE)
595 			goto put_bio;
596 
597 		nsegs++;
598 		bytes += bv->bv_len;
599 		bvprvp = bv;
600 	}
601 	return 0;
602 put_bio:
603 	blk_mq_map_bio_put(bio);
604 	return -EINVAL;
605 }
606 
607 /**
608  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
609  * @q:		request queue where request should be inserted
610  * @rq:		request to map data to
611  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
612  * @iter:	iovec iterator
613  * @gfp_mask:	memory allocation flags
614  *
615  * Description:
616  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
617  *    a kernel bounce buffer is used.
618  *
619  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
620  *    still in process context.
621  */
blk_rq_map_user_iov(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,const struct iov_iter * iter,gfp_t gfp_mask)622 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
623 			struct rq_map_data *map_data,
624 			const struct iov_iter *iter, gfp_t gfp_mask)
625 {
626 	bool copy = false, map_bvec = false;
627 	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
628 	struct bio *bio = NULL;
629 	struct iov_iter i;
630 	int ret = -EINVAL;
631 
632 	if (map_data)
633 		copy = true;
634 	else if (blk_queue_may_bounce(q))
635 		copy = true;
636 	else if (iov_iter_alignment(iter) & align)
637 		copy = true;
638 	else if (iov_iter_is_bvec(iter))
639 		map_bvec = true;
640 	else if (!iter_is_iovec(iter))
641 		copy = true;
642 	else if (queue_virt_boundary(q))
643 		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
644 
645 	if (map_bvec) {
646 		ret = blk_rq_map_user_bvec(rq, iter);
647 		if (!ret)
648 			return 0;
649 		if (ret != -EREMOTEIO)
650 			goto fail;
651 		/* fall back to copying the data on limits mismatches */
652 		copy = true;
653 	}
654 
655 	i = *iter;
656 	do {
657 		if (copy)
658 			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
659 		else
660 			ret = bio_map_user_iov(rq, &i, gfp_mask);
661 		if (ret)
662 			goto unmap_rq;
663 		if (!bio)
664 			bio = rq->bio;
665 	} while (iov_iter_count(&i));
666 
667 	return 0;
668 
669 unmap_rq:
670 	blk_rq_unmap_user(bio);
671 fail:
672 	rq->bio = NULL;
673 	return ret;
674 }
675 EXPORT_SYMBOL(blk_rq_map_user_iov);
676 
blk_rq_map_user(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,void __user * ubuf,unsigned long len,gfp_t gfp_mask)677 int blk_rq_map_user(struct request_queue *q, struct request *rq,
678 		    struct rq_map_data *map_data, void __user *ubuf,
679 		    unsigned long len, gfp_t gfp_mask)
680 {
681 	struct iovec iov;
682 	struct iov_iter i;
683 	int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
684 
685 	if (unlikely(ret < 0))
686 		return ret;
687 
688 	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
689 }
690 EXPORT_SYMBOL(blk_rq_map_user);
691 
blk_rq_map_user_io(struct request * req,struct rq_map_data * map_data,void __user * ubuf,unsigned long buf_len,gfp_t gfp_mask,bool vec,int iov_count,bool check_iter_count,int rw)692 int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
693 		void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
694 		bool vec, int iov_count, bool check_iter_count, int rw)
695 {
696 	int ret = 0;
697 
698 	if (vec) {
699 		struct iovec fast_iov[UIO_FASTIOV];
700 		struct iovec *iov = fast_iov;
701 		struct iov_iter iter;
702 
703 		ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
704 				UIO_FASTIOV, &iov, &iter);
705 		if (ret < 0)
706 			return ret;
707 
708 		if (iov_count) {
709 			/* SG_IO howto says that the shorter of the two wins */
710 			iov_iter_truncate(&iter, buf_len);
711 			if (check_iter_count && !iov_iter_count(&iter)) {
712 				kfree(iov);
713 				return -EINVAL;
714 			}
715 		}
716 
717 		ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
718 				gfp_mask);
719 		kfree(iov);
720 	} else if (buf_len) {
721 		ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
722 				gfp_mask);
723 	}
724 	return ret;
725 }
726 EXPORT_SYMBOL(blk_rq_map_user_io);
727 
728 /**
729  * blk_rq_unmap_user - unmap a request with user data
730  * @bio:	       start of bio list
731  *
732  * Description:
733  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
734  *    supply the original rq->bio from the blk_rq_map_user() return, since
735  *    the I/O completion may have changed rq->bio.
736  */
blk_rq_unmap_user(struct bio * bio)737 int blk_rq_unmap_user(struct bio *bio)
738 {
739 	struct bio *next_bio;
740 	int ret = 0, ret2;
741 
742 	while (bio) {
743 		if (bio->bi_private) {
744 			ret2 = bio_uncopy_user(bio);
745 			if (ret2 && !ret)
746 				ret = ret2;
747 		} else {
748 			bio_release_pages(bio, bio_data_dir(bio) == READ);
749 		}
750 
751 		next_bio = bio;
752 		bio = bio->bi_next;
753 		blk_mq_map_bio_put(next_bio);
754 	}
755 
756 	return ret;
757 }
758 EXPORT_SYMBOL(blk_rq_unmap_user);
759 
760 /**
761  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
762  * @q:		request queue where request should be inserted
763  * @rq:		request to fill
764  * @kbuf:	the kernel buffer
765  * @len:	length of user data
766  * @gfp_mask:	memory allocation flags
767  *
768  * Description:
769  *    Data will be mapped directly if possible. Otherwise a bounce
770  *    buffer is used. Can be called multiple times to append multiple
771  *    buffers.
772  */
blk_rq_map_kern(struct request_queue * q,struct request * rq,void * kbuf,unsigned int len,gfp_t gfp_mask)773 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
774 		    unsigned int len, gfp_t gfp_mask)
775 {
776 	int reading = rq_data_dir(rq) == READ;
777 	unsigned long addr = (unsigned long) kbuf;
778 	struct bio *bio;
779 	int ret;
780 
781 	if (len > (queue_max_hw_sectors(q) << 9))
782 		return -EINVAL;
783 	if (!len || !kbuf)
784 		return -EINVAL;
785 
786 	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
787 	    blk_queue_may_bounce(q))
788 		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
789 	else
790 		bio = bio_map_kern(q, kbuf, len, gfp_mask);
791 
792 	if (IS_ERR(bio))
793 		return PTR_ERR(bio);
794 
795 	bio->bi_opf &= ~REQ_OP_MASK;
796 	bio->bi_opf |= req_op(rq);
797 
798 	ret = blk_rq_append_bio(rq, bio);
799 	if (unlikely(ret)) {
800 		bio_uninit(bio);
801 		kfree(bio);
802 	}
803 	return ret;
804 }
805 EXPORT_SYMBOL(blk_rq_map_kern);
806