1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14
15 #include "blk.h"
16
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19
20 unsigned long blk_max_pfn;
21
22 /**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q: queue
25 * @pfn: prepare_request function
26 *
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
31 *
32 */
blk_queue_prep_rq(struct request_queue * q,prep_rq_fn * pfn)33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38
39 /**
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
41 * @q: queue
42 * @ufn: unprepare_request function
43 *
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
48 *
49 */
blk_queue_unprep_rq(struct request_queue * q,unprep_rq_fn * ufn)50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55
56 /**
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
58 * @q: queue
59 * @mbfn: merge_bvec_fn
60 *
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70 * honored.
71 */
blk_queue_merge_bvec(struct request_queue * q,merge_bvec_fn * mbfn)72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73 {
74 q->merge_bvec_fn = mbfn;
75 }
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
77
blk_queue_softirq_done(struct request_queue * q,softirq_done_fn * fn)78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79 {
80 q->softirq_done_fn = fn;
81 }
82 EXPORT_SYMBOL(blk_queue_softirq_done);
83
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85 {
86 q->rq_timeout = timeout;
87 }
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89
blk_queue_rq_timed_out(struct request_queue * q,rq_timed_out_fn * fn)90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91 {
92 q->rq_timed_out_fn = fn;
93 }
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95
blk_queue_lld_busy(struct request_queue * q,lld_busy_fn * fn)96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97 {
98 q->lld_busy_fn = fn;
99 }
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101
102 /**
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
105 *
106 * Description:
107 * Returns a queue_limit struct to its default state. Can be used by
108 * stacking drivers like DM that stage table swaps and reuse an
109 * existing device queue.
110 */
blk_set_default_limits(struct queue_limits * lim)111 void blk_set_default_limits(struct queue_limits *lim)
112 {
113 lim->max_segments = BLK_MAX_SEGMENTS;
114 lim->max_integrity_segments = 0;
115 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
116 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
117 lim->max_sectors = BLK_DEF_MAX_SECTORS;
118 lim->max_hw_sectors = INT_MAX;
119 lim->max_discard_sectors = 0;
120 lim->discard_granularity = 0;
121 lim->discard_alignment = 0;
122 lim->discard_misaligned = 0;
123 lim->discard_zeroes_data = -1;
124 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
125 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
126 lim->alignment_offset = 0;
127 lim->io_opt = 0;
128 lim->misaligned = 0;
129 lim->cluster = 1;
130 }
131 EXPORT_SYMBOL(blk_set_default_limits);
132
133 /**
134 * blk_queue_make_request - define an alternate make_request function for a device
135 * @q: the request queue for the device to be affected
136 * @mfn: the alternate make_request function
137 *
138 * Description:
139 * The normal way for &struct bios to be passed to a device
140 * driver is for them to be collected into requests on a request
141 * queue, and then to allow the device driver to select requests
142 * off that queue when it is ready. This works well for many block
143 * devices. However some block devices (typically virtual devices
144 * such as md or lvm) do not benefit from the processing on the
145 * request queue, and are served best by having the requests passed
146 * directly to them. This can be achieved by providing a function
147 * to blk_queue_make_request().
148 *
149 * Caveat:
150 * The driver that does this *must* be able to deal appropriately
151 * with buffers in "highmemory". This can be accomplished by either calling
152 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
153 * blk_queue_bounce() to create a buffer in normal memory.
154 **/
blk_queue_make_request(struct request_queue * q,make_request_fn * mfn)155 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
156 {
157 /*
158 * set defaults
159 */
160 q->nr_requests = BLKDEV_MAX_RQ;
161
162 q->make_request_fn = mfn;
163 blk_queue_dma_alignment(q, 511);
164 blk_queue_congestion_threshold(q);
165 q->nr_batching = BLK_BATCH_REQ;
166
167 blk_set_default_limits(&q->limits);
168 blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
169
170 /*
171 * by default assume old behaviour and bounce for any highmem page
172 */
173 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
174 }
175 EXPORT_SYMBOL(blk_queue_make_request);
176
177 /**
178 * blk_queue_bounce_limit - set bounce buffer limit for queue
179 * @q: the request queue for the device
180 * @dma_mask: the maximum address the device can handle
181 *
182 * Description:
183 * Different hardware can have different requirements as to what pages
184 * it can do I/O directly to. A low level driver can call
185 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
186 * buffers for doing I/O to pages residing above @dma_mask.
187 **/
blk_queue_bounce_limit(struct request_queue * q,u64 dma_mask)188 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
189 {
190 unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
191 int dma = 0;
192
193 q->bounce_gfp = GFP_NOIO;
194 #if BITS_PER_LONG == 64
195 /*
196 * Assume anything <= 4GB can be handled by IOMMU. Actually
197 * some IOMMUs can handle everything, but I don't know of a
198 * way to test this here.
199 */
200 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
201 dma = 1;
202 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
203 #else
204 if (b_pfn < blk_max_low_pfn)
205 dma = 1;
206 q->limits.bounce_pfn = b_pfn;
207 #endif
208 if (dma) {
209 init_emergency_isa_pool();
210 q->bounce_gfp = GFP_NOIO | GFP_DMA;
211 q->limits.bounce_pfn = b_pfn;
212 }
213 }
214 EXPORT_SYMBOL(blk_queue_bounce_limit);
215
216 /**
217 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
218 * @limits: the queue limits
219 * @max_hw_sectors: max hardware sectors in the usual 512b unit
220 *
221 * Description:
222 * Enables a low level driver to set a hard upper limit,
223 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
224 * the device driver based upon the combined capabilities of I/O
225 * controller and storage device.
226 *
227 * max_sectors is a soft limit imposed by the block layer for
228 * filesystem type requests. This value can be overridden on a
229 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
230 * The soft limit can not exceed max_hw_sectors.
231 **/
blk_limits_max_hw_sectors(struct queue_limits * limits,unsigned int max_hw_sectors)232 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
233 {
234 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
235 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
236 printk(KERN_INFO "%s: set to minimum %d\n",
237 __func__, max_hw_sectors);
238 }
239
240 limits->max_hw_sectors = max_hw_sectors;
241 limits->max_sectors = min_t(unsigned int, max_hw_sectors,
242 BLK_DEF_MAX_SECTORS);
243 }
244 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
245
246 /**
247 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
248 * @q: the request queue for the device
249 * @max_hw_sectors: max hardware sectors in the usual 512b unit
250 *
251 * Description:
252 * See description for blk_limits_max_hw_sectors().
253 **/
blk_queue_max_hw_sectors(struct request_queue * q,unsigned int max_hw_sectors)254 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
255 {
256 blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
257 }
258 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
259
260 /**
261 * blk_queue_max_discard_sectors - set max sectors for a single discard
262 * @q: the request queue for the device
263 * @max_discard_sectors: maximum number of sectors to discard
264 **/
blk_queue_max_discard_sectors(struct request_queue * q,unsigned int max_discard_sectors)265 void blk_queue_max_discard_sectors(struct request_queue *q,
266 unsigned int max_discard_sectors)
267 {
268 q->limits.max_discard_sectors = max_discard_sectors;
269 }
270 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
271
272 /**
273 * blk_queue_max_segments - set max hw segments for a request for this queue
274 * @q: the request queue for the device
275 * @max_segments: max number of segments
276 *
277 * Description:
278 * Enables a low level driver to set an upper limit on the number of
279 * hw data segments in a request.
280 **/
blk_queue_max_segments(struct request_queue * q,unsigned short max_segments)281 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
282 {
283 if (!max_segments) {
284 max_segments = 1;
285 printk(KERN_INFO "%s: set to minimum %d\n",
286 __func__, max_segments);
287 }
288
289 q->limits.max_segments = max_segments;
290 }
291 EXPORT_SYMBOL(blk_queue_max_segments);
292
293 /**
294 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
295 * @q: the request queue for the device
296 * @max_size: max size of segment in bytes
297 *
298 * Description:
299 * Enables a low level driver to set an upper limit on the size of a
300 * coalesced segment
301 **/
blk_queue_max_segment_size(struct request_queue * q,unsigned int max_size)302 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
303 {
304 if (max_size < PAGE_CACHE_SIZE) {
305 max_size = PAGE_CACHE_SIZE;
306 printk(KERN_INFO "%s: set to minimum %d\n",
307 __func__, max_size);
308 }
309
310 q->limits.max_segment_size = max_size;
311 }
312 EXPORT_SYMBOL(blk_queue_max_segment_size);
313
314 /**
315 * blk_queue_logical_block_size - set logical block size for the queue
316 * @q: the request queue for the device
317 * @size: the logical block size, in bytes
318 *
319 * Description:
320 * This should be set to the lowest possible block size that the
321 * storage device can address. The default of 512 covers most
322 * hardware.
323 **/
blk_queue_logical_block_size(struct request_queue * q,unsigned short size)324 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
325 {
326 q->limits.logical_block_size = size;
327
328 if (q->limits.physical_block_size < size)
329 q->limits.physical_block_size = size;
330
331 if (q->limits.io_min < q->limits.physical_block_size)
332 q->limits.io_min = q->limits.physical_block_size;
333 }
334 EXPORT_SYMBOL(blk_queue_logical_block_size);
335
336 /**
337 * blk_queue_physical_block_size - set physical block size for the queue
338 * @q: the request queue for the device
339 * @size: the physical block size, in bytes
340 *
341 * Description:
342 * This should be set to the lowest possible sector size that the
343 * hardware can operate on without reverting to read-modify-write
344 * operations.
345 */
blk_queue_physical_block_size(struct request_queue * q,unsigned int size)346 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
347 {
348 q->limits.physical_block_size = size;
349
350 if (q->limits.physical_block_size < q->limits.logical_block_size)
351 q->limits.physical_block_size = q->limits.logical_block_size;
352
353 if (q->limits.io_min < q->limits.physical_block_size)
354 q->limits.io_min = q->limits.physical_block_size;
355 }
356 EXPORT_SYMBOL(blk_queue_physical_block_size);
357
358 /**
359 * blk_queue_alignment_offset - set physical block alignment offset
360 * @q: the request queue for the device
361 * @offset: alignment offset in bytes
362 *
363 * Description:
364 * Some devices are naturally misaligned to compensate for things like
365 * the legacy DOS partition table 63-sector offset. Low-level drivers
366 * should call this function for devices whose first sector is not
367 * naturally aligned.
368 */
blk_queue_alignment_offset(struct request_queue * q,unsigned int offset)369 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
370 {
371 q->limits.alignment_offset =
372 offset & (q->limits.physical_block_size - 1);
373 q->limits.misaligned = 0;
374 }
375 EXPORT_SYMBOL(blk_queue_alignment_offset);
376
377 /**
378 * blk_limits_io_min - set minimum request size for a device
379 * @limits: the queue limits
380 * @min: smallest I/O size in bytes
381 *
382 * Description:
383 * Some devices have an internal block size bigger than the reported
384 * hardware sector size. This function can be used to signal the
385 * smallest I/O the device can perform without incurring a performance
386 * penalty.
387 */
blk_limits_io_min(struct queue_limits * limits,unsigned int min)388 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
389 {
390 limits->io_min = min;
391
392 if (limits->io_min < limits->logical_block_size)
393 limits->io_min = limits->logical_block_size;
394
395 if (limits->io_min < limits->physical_block_size)
396 limits->io_min = limits->physical_block_size;
397 }
398 EXPORT_SYMBOL(blk_limits_io_min);
399
400 /**
401 * blk_queue_io_min - set minimum request size for the queue
402 * @q: the request queue for the device
403 * @min: smallest I/O size in bytes
404 *
405 * Description:
406 * Storage devices may report a granularity or preferred minimum I/O
407 * size which is the smallest request the device can perform without
408 * incurring a performance penalty. For disk drives this is often the
409 * physical block size. For RAID arrays it is often the stripe chunk
410 * size. A properly aligned multiple of minimum_io_size is the
411 * preferred request size for workloads where a high number of I/O
412 * operations is desired.
413 */
blk_queue_io_min(struct request_queue * q,unsigned int min)414 void blk_queue_io_min(struct request_queue *q, unsigned int min)
415 {
416 blk_limits_io_min(&q->limits, min);
417 }
418 EXPORT_SYMBOL(blk_queue_io_min);
419
420 /**
421 * blk_limits_io_opt - set optimal request size for a device
422 * @limits: the queue limits
423 * @opt: smallest I/O size in bytes
424 *
425 * Description:
426 * Storage devices may report an optimal I/O size, which is the
427 * device's preferred unit for sustained I/O. This is rarely reported
428 * for disk drives. For RAID arrays it is usually the stripe width or
429 * the internal track size. A properly aligned multiple of
430 * optimal_io_size is the preferred request size for workloads where
431 * sustained throughput is desired.
432 */
blk_limits_io_opt(struct queue_limits * limits,unsigned int opt)433 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
434 {
435 limits->io_opt = opt;
436 }
437 EXPORT_SYMBOL(blk_limits_io_opt);
438
439 /**
440 * blk_queue_io_opt - set optimal request size for the queue
441 * @q: the request queue for the device
442 * @opt: optimal request size in bytes
443 *
444 * Description:
445 * Storage devices may report an optimal I/O size, which is the
446 * device's preferred unit for sustained I/O. This is rarely reported
447 * for disk drives. For RAID arrays it is usually the stripe width or
448 * the internal track size. A properly aligned multiple of
449 * optimal_io_size is the preferred request size for workloads where
450 * sustained throughput is desired.
451 */
blk_queue_io_opt(struct request_queue * q,unsigned int opt)452 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
453 {
454 blk_limits_io_opt(&q->limits, opt);
455 }
456 EXPORT_SYMBOL(blk_queue_io_opt);
457
458 /**
459 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
460 * @t: the stacking driver (top)
461 * @b: the underlying device (bottom)
462 **/
blk_queue_stack_limits(struct request_queue * t,struct request_queue * b)463 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
464 {
465 blk_stack_limits(&t->limits, &b->limits, 0);
466 }
467 EXPORT_SYMBOL(blk_queue_stack_limits);
468
469 /**
470 * blk_stack_limits - adjust queue_limits for stacked devices
471 * @t: the stacking driver limits (top device)
472 * @b: the underlying queue limits (bottom, component device)
473 * @start: first data sector within component device
474 *
475 * Description:
476 * This function is used by stacking drivers like MD and DM to ensure
477 * that all component devices have compatible block sizes and
478 * alignments. The stacking driver must provide a queue_limits
479 * struct (top) and then iteratively call the stacking function for
480 * all component (bottom) devices. The stacking function will
481 * attempt to combine the values and ensure proper alignment.
482 *
483 * Returns 0 if the top and bottom queue_limits are compatible. The
484 * top device's block sizes and alignment offsets may be adjusted to
485 * ensure alignment with the bottom device. If no compatible sizes
486 * and alignments exist, -1 is returned and the resulting top
487 * queue_limits will have the misaligned flag set to indicate that
488 * the alignment_offset is undefined.
489 */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)490 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
491 sector_t start)
492 {
493 unsigned int top, bottom, alignment, ret = 0;
494
495 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
496 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
497 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
498
499 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
500 b->seg_boundary_mask);
501
502 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
503 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
504 b->max_integrity_segments);
505
506 t->max_segment_size = min_not_zero(t->max_segment_size,
507 b->max_segment_size);
508
509 t->misaligned |= b->misaligned;
510
511 alignment = queue_limit_alignment_offset(b, start);
512
513 /* Bottom device has different alignment. Check that it is
514 * compatible with the current top alignment.
515 */
516 if (t->alignment_offset != alignment) {
517
518 top = max(t->physical_block_size, t->io_min)
519 + t->alignment_offset;
520 bottom = max(b->physical_block_size, b->io_min) + alignment;
521
522 /* Verify that top and bottom intervals line up */
523 if (max(top, bottom) & (min(top, bottom) - 1)) {
524 t->misaligned = 1;
525 ret = -1;
526 }
527 }
528
529 t->logical_block_size = max(t->logical_block_size,
530 b->logical_block_size);
531
532 t->physical_block_size = max(t->physical_block_size,
533 b->physical_block_size);
534
535 t->io_min = max(t->io_min, b->io_min);
536 t->io_opt = lcm(t->io_opt, b->io_opt);
537
538 t->cluster &= b->cluster;
539 t->discard_zeroes_data &= b->discard_zeroes_data;
540
541 /* Physical block size a multiple of the logical block size? */
542 if (t->physical_block_size & (t->logical_block_size - 1)) {
543 t->physical_block_size = t->logical_block_size;
544 t->misaligned = 1;
545 ret = -1;
546 }
547
548 /* Minimum I/O a multiple of the physical block size? */
549 if (t->io_min & (t->physical_block_size - 1)) {
550 t->io_min = t->physical_block_size;
551 t->misaligned = 1;
552 ret = -1;
553 }
554
555 /* Optimal I/O a multiple of the physical block size? */
556 if (t->io_opt & (t->physical_block_size - 1)) {
557 t->io_opt = 0;
558 t->misaligned = 1;
559 ret = -1;
560 }
561
562 /* Find lowest common alignment_offset */
563 t->alignment_offset = lcm(t->alignment_offset, alignment)
564 & (max(t->physical_block_size, t->io_min) - 1);
565
566 /* Verify that new alignment_offset is on a logical block boundary */
567 if (t->alignment_offset & (t->logical_block_size - 1)) {
568 t->misaligned = 1;
569 ret = -1;
570 }
571
572 /* Discard alignment and granularity */
573 if (b->discard_granularity) {
574 alignment = queue_limit_discard_alignment(b, start);
575
576 if (t->discard_granularity != 0 &&
577 t->discard_alignment != alignment) {
578 top = t->discard_granularity + t->discard_alignment;
579 bottom = b->discard_granularity + alignment;
580
581 /* Verify that top and bottom intervals line up */
582 if (max(top, bottom) & (min(top, bottom) - 1))
583 t->discard_misaligned = 1;
584 }
585
586 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
587 b->max_discard_sectors);
588 t->discard_granularity = max(t->discard_granularity,
589 b->discard_granularity);
590 t->discard_alignment = lcm(t->discard_alignment, alignment) &
591 (t->discard_granularity - 1);
592 }
593
594 return ret;
595 }
596 EXPORT_SYMBOL(blk_stack_limits);
597
598 /**
599 * bdev_stack_limits - adjust queue limits for stacked drivers
600 * @t: the stacking driver limits (top device)
601 * @bdev: the component block_device (bottom)
602 * @start: first data sector within component device
603 *
604 * Description:
605 * Merges queue limits for a top device and a block_device. Returns
606 * 0 if alignment didn't change. Returns -1 if adding the bottom
607 * device caused misalignment.
608 */
bdev_stack_limits(struct queue_limits * t,struct block_device * bdev,sector_t start)609 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
610 sector_t start)
611 {
612 struct request_queue *bq = bdev_get_queue(bdev);
613
614 start += get_start_sect(bdev);
615
616 return blk_stack_limits(t, &bq->limits, start);
617 }
618 EXPORT_SYMBOL(bdev_stack_limits);
619
620 /**
621 * disk_stack_limits - adjust queue limits for stacked drivers
622 * @disk: MD/DM gendisk (top)
623 * @bdev: the underlying block device (bottom)
624 * @offset: offset to beginning of data within component device
625 *
626 * Description:
627 * Merges the limits for a top level gendisk and a bottom level
628 * block_device.
629 */
disk_stack_limits(struct gendisk * disk,struct block_device * bdev,sector_t offset)630 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
631 sector_t offset)
632 {
633 struct request_queue *t = disk->queue;
634
635 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
636 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
637
638 disk_name(disk, 0, top);
639 bdevname(bdev, bottom);
640
641 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
642 top, bottom);
643 }
644 }
645 EXPORT_SYMBOL(disk_stack_limits);
646
647 /**
648 * blk_queue_dma_pad - set pad mask
649 * @q: the request queue for the device
650 * @mask: pad mask
651 *
652 * Set dma pad mask.
653 *
654 * Appending pad buffer to a request modifies the last entry of a
655 * scatter list such that it includes the pad buffer.
656 **/
blk_queue_dma_pad(struct request_queue * q,unsigned int mask)657 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
658 {
659 q->dma_pad_mask = mask;
660 }
661 EXPORT_SYMBOL(blk_queue_dma_pad);
662
663 /**
664 * blk_queue_update_dma_pad - update pad mask
665 * @q: the request queue for the device
666 * @mask: pad mask
667 *
668 * Update dma pad mask.
669 *
670 * Appending pad buffer to a request modifies the last entry of a
671 * scatter list such that it includes the pad buffer.
672 **/
blk_queue_update_dma_pad(struct request_queue * q,unsigned int mask)673 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
674 {
675 if (mask > q->dma_pad_mask)
676 q->dma_pad_mask = mask;
677 }
678 EXPORT_SYMBOL(blk_queue_update_dma_pad);
679
680 /**
681 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
682 * @q: the request queue for the device
683 * @dma_drain_needed: fn which returns non-zero if drain is necessary
684 * @buf: physically contiguous buffer
685 * @size: size of the buffer in bytes
686 *
687 * Some devices have excess DMA problems and can't simply discard (or
688 * zero fill) the unwanted piece of the transfer. They have to have a
689 * real area of memory to transfer it into. The use case for this is
690 * ATAPI devices in DMA mode. If the packet command causes a transfer
691 * bigger than the transfer size some HBAs will lock up if there
692 * aren't DMA elements to contain the excess transfer. What this API
693 * does is adjust the queue so that the buf is always appended
694 * silently to the scatterlist.
695 *
696 * Note: This routine adjusts max_hw_segments to make room for appending
697 * the drain buffer. If you call blk_queue_max_segments() after calling
698 * this routine, you must set the limit to one fewer than your device
699 * can support otherwise there won't be room for the drain buffer.
700 */
blk_queue_dma_drain(struct request_queue * q,dma_drain_needed_fn * dma_drain_needed,void * buf,unsigned int size)701 int blk_queue_dma_drain(struct request_queue *q,
702 dma_drain_needed_fn *dma_drain_needed,
703 void *buf, unsigned int size)
704 {
705 if (queue_max_segments(q) < 2)
706 return -EINVAL;
707 /* make room for appending the drain */
708 blk_queue_max_segments(q, queue_max_segments(q) - 1);
709 q->dma_drain_needed = dma_drain_needed;
710 q->dma_drain_buffer = buf;
711 q->dma_drain_size = size;
712
713 return 0;
714 }
715 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
716
717 /**
718 * blk_queue_segment_boundary - set boundary rules for segment merging
719 * @q: the request queue for the device
720 * @mask: the memory boundary mask
721 **/
blk_queue_segment_boundary(struct request_queue * q,unsigned long mask)722 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
723 {
724 if (mask < PAGE_CACHE_SIZE - 1) {
725 mask = PAGE_CACHE_SIZE - 1;
726 printk(KERN_INFO "%s: set to minimum %lx\n",
727 __func__, mask);
728 }
729
730 q->limits.seg_boundary_mask = mask;
731 }
732 EXPORT_SYMBOL(blk_queue_segment_boundary);
733
734 /**
735 * blk_queue_dma_alignment - set dma length and memory alignment
736 * @q: the request queue for the device
737 * @mask: alignment mask
738 *
739 * description:
740 * set required memory and length alignment for direct dma transactions.
741 * this is used when building direct io requests for the queue.
742 *
743 **/
blk_queue_dma_alignment(struct request_queue * q,int mask)744 void blk_queue_dma_alignment(struct request_queue *q, int mask)
745 {
746 q->dma_alignment = mask;
747 }
748 EXPORT_SYMBOL(blk_queue_dma_alignment);
749
750 /**
751 * blk_queue_update_dma_alignment - update dma length and memory alignment
752 * @q: the request queue for the device
753 * @mask: alignment mask
754 *
755 * description:
756 * update required memory and length alignment for direct dma transactions.
757 * If the requested alignment is larger than the current alignment, then
758 * the current queue alignment is updated to the new value, otherwise it
759 * is left alone. The design of this is to allow multiple objects
760 * (driver, device, transport etc) to set their respective
761 * alignments without having them interfere.
762 *
763 **/
blk_queue_update_dma_alignment(struct request_queue * q,int mask)764 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
765 {
766 BUG_ON(mask > PAGE_SIZE);
767
768 if (mask > q->dma_alignment)
769 q->dma_alignment = mask;
770 }
771 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
772
773 /**
774 * blk_queue_flush - configure queue's cache flush capability
775 * @q: the request queue for the device
776 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
777 *
778 * Tell block layer cache flush capability of @q. If it supports
779 * flushing, REQ_FLUSH should be set. If it supports bypassing
780 * write cache for individual writes, REQ_FUA should be set.
781 */
blk_queue_flush(struct request_queue * q,unsigned int flush)782 void blk_queue_flush(struct request_queue *q, unsigned int flush)
783 {
784 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
785
786 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
787 flush &= ~REQ_FUA;
788
789 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
790 }
791 EXPORT_SYMBOL_GPL(blk_queue_flush);
792
blk_settings_init(void)793 static int __init blk_settings_init(void)
794 {
795 blk_max_low_pfn = max_low_pfn - 1;
796 blk_max_pfn = max_pfn - 1;
797 return 0;
798 }
799 subsys_initcall(blk_settings_init);
800