1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14 
15 #include "blk.h"
16 
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19 
20 unsigned long blk_max_pfn;
21 
22 /**
23  * blk_queue_prep_rq - set a prepare_request function for queue
24  * @q:		queue
25  * @pfn:	prepare_request function
26  *
27  * It's possible for a queue to register a prepare_request callback which
28  * is invoked before the request is handed to the request_fn. The goal of
29  * the function is to prepare a request for I/O, it can be used to build a
30  * cdb from the request data for instance.
31  *
32  */
blk_queue_prep_rq(struct request_queue * q,prep_rq_fn * pfn)33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 	q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38 
39 /**
40  * blk_queue_unprep_rq - set an unprepare_request function for queue
41  * @q:		queue
42  * @ufn:	unprepare_request function
43  *
44  * It's possible for a queue to register an unprepare_request callback
45  * which is invoked before the request is finally completed. The goal
46  * of the function is to deallocate any data that was allocated in the
47  * prepare_request callback.
48  *
49  */
blk_queue_unprep_rq(struct request_queue * q,unprep_rq_fn * ufn)50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 	q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55 
56 /**
57  * blk_queue_merge_bvec - set a merge_bvec function for queue
58  * @q:		queue
59  * @mbfn:	merge_bvec_fn
60  *
61  * Usually queues have static limitations on the max sectors or segments that
62  * we can put in a request. Stacking drivers may have some settings that
63  * are dynamic, and thus we have to query the queue whether it is ok to
64  * add a new bio_vec to a bio at a given offset or not. If the block device
65  * has such limitations, it needs to register a merge_bvec_fn to control
66  * the size of bio's sent to it. Note that a block device *must* allow a
67  * single page to be added to an empty bio. The block device driver may want
68  * to use the bio_split() function to deal with these bio's. By default
69  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70  * honored.
71  */
blk_queue_merge_bvec(struct request_queue * q,merge_bvec_fn * mbfn)72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73 {
74 	q->merge_bvec_fn = mbfn;
75 }
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
77 
blk_queue_softirq_done(struct request_queue * q,softirq_done_fn * fn)78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79 {
80 	q->softirq_done_fn = fn;
81 }
82 EXPORT_SYMBOL(blk_queue_softirq_done);
83 
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85 {
86 	q->rq_timeout = timeout;
87 }
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89 
blk_queue_rq_timed_out(struct request_queue * q,rq_timed_out_fn * fn)90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91 {
92 	q->rq_timed_out_fn = fn;
93 }
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95 
blk_queue_lld_busy(struct request_queue * q,lld_busy_fn * fn)96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97 {
98 	q->lld_busy_fn = fn;
99 }
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101 
102 /**
103  * blk_set_default_limits - reset limits to default values
104  * @lim:  the queue_limits structure to reset
105  *
106  * Description:
107  *   Returns a queue_limit struct to its default state.
108  */
blk_set_default_limits(struct queue_limits * lim)109 void blk_set_default_limits(struct queue_limits *lim)
110 {
111 	lim->max_segments = BLK_MAX_SEGMENTS;
112 	lim->max_integrity_segments = 0;
113 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116 	lim->max_discard_sectors = 0;
117 	lim->discard_granularity = 0;
118 	lim->discard_alignment = 0;
119 	lim->discard_misaligned = 0;
120 	lim->discard_zeroes_data = 0;
121 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
122 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
123 	lim->alignment_offset = 0;
124 	lim->io_opt = 0;
125 	lim->misaligned = 0;
126 	lim->cluster = 1;
127 }
128 EXPORT_SYMBOL(blk_set_default_limits);
129 
130 /**
131  * blk_set_stacking_limits - set default limits for stacking devices
132  * @lim:  the queue_limits structure to reset
133  *
134  * Description:
135  *   Returns a queue_limit struct to its default state. Should be used
136  *   by stacking drivers like DM that have no internal limits.
137  */
blk_set_stacking_limits(struct queue_limits * lim)138 void blk_set_stacking_limits(struct queue_limits *lim)
139 {
140 	blk_set_default_limits(lim);
141 
142 	/* Inherit limits from component devices */
143 	lim->discard_zeroes_data = 1;
144 	lim->max_segments = USHRT_MAX;
145 	lim->max_hw_sectors = UINT_MAX;
146 	lim->max_segment_size = UINT_MAX;
147 
148 	lim->max_sectors = BLK_DEF_MAX_SECTORS;
149 }
150 EXPORT_SYMBOL(blk_set_stacking_limits);
151 
152 /**
153  * blk_queue_make_request - define an alternate make_request function for a device
154  * @q:  the request queue for the device to be affected
155  * @mfn: the alternate make_request function
156  *
157  * Description:
158  *    The normal way for &struct bios to be passed to a device
159  *    driver is for them to be collected into requests on a request
160  *    queue, and then to allow the device driver to select requests
161  *    off that queue when it is ready.  This works well for many block
162  *    devices. However some block devices (typically virtual devices
163  *    such as md or lvm) do not benefit from the processing on the
164  *    request queue, and are served best by having the requests passed
165  *    directly to them.  This can be achieved by providing a function
166  *    to blk_queue_make_request().
167  *
168  * Caveat:
169  *    The driver that does this *must* be able to deal appropriately
170  *    with buffers in "highmemory". This can be accomplished by either calling
171  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
172  *    blk_queue_bounce() to create a buffer in normal memory.
173  **/
blk_queue_make_request(struct request_queue * q,make_request_fn * mfn)174 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
175 {
176 	/*
177 	 * set defaults
178 	 */
179 	q->nr_requests = BLKDEV_MAX_RQ;
180 
181 	q->make_request_fn = mfn;
182 	blk_queue_dma_alignment(q, 511);
183 	blk_queue_congestion_threshold(q);
184 	q->nr_batching = BLK_BATCH_REQ;
185 
186 	blk_set_default_limits(&q->limits);
187 
188 	/*
189 	 * by default assume old behaviour and bounce for any highmem page
190 	 */
191 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
192 }
193 EXPORT_SYMBOL(blk_queue_make_request);
194 
195 /**
196  * blk_queue_bounce_limit - set bounce buffer limit for queue
197  * @q: the request queue for the device
198  * @dma_mask: the maximum address the device can handle
199  *
200  * Description:
201  *    Different hardware can have different requirements as to what pages
202  *    it can do I/O directly to. A low level driver can call
203  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
204  *    buffers for doing I/O to pages residing above @dma_mask.
205  **/
blk_queue_bounce_limit(struct request_queue * q,u64 dma_mask)206 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
207 {
208 	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
209 	int dma = 0;
210 
211 	q->bounce_gfp = GFP_NOIO;
212 #if BITS_PER_LONG == 64
213 	/*
214 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
215 	 * some IOMMUs can handle everything, but I don't know of a
216 	 * way to test this here.
217 	 */
218 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
219 		dma = 1;
220 	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
221 #else
222 	if (b_pfn < blk_max_low_pfn)
223 		dma = 1;
224 	q->limits.bounce_pfn = b_pfn;
225 #endif
226 	if (dma) {
227 		init_emergency_isa_pool();
228 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
229 		q->limits.bounce_pfn = b_pfn;
230 	}
231 }
232 EXPORT_SYMBOL(blk_queue_bounce_limit);
233 
234 /**
235  * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
236  * @limits: the queue limits
237  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
238  *
239  * Description:
240  *    Enables a low level driver to set a hard upper limit,
241  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
242  *    the device driver based upon the combined capabilities of I/O
243  *    controller and storage device.
244  *
245  *    max_sectors is a soft limit imposed by the block layer for
246  *    filesystem type requests.  This value can be overridden on a
247  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
248  *    The soft limit can not exceed max_hw_sectors.
249  **/
blk_limits_max_hw_sectors(struct queue_limits * limits,unsigned int max_hw_sectors)250 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
251 {
252 	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
253 		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
254 		printk(KERN_INFO "%s: set to minimum %d\n",
255 		       __func__, max_hw_sectors);
256 	}
257 
258 	limits->max_hw_sectors = max_hw_sectors;
259 	limits->max_sectors = min_t(unsigned int, max_hw_sectors,
260 				    BLK_DEF_MAX_SECTORS);
261 }
262 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
263 
264 /**
265  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
266  * @q:  the request queue for the device
267  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
268  *
269  * Description:
270  *    See description for blk_limits_max_hw_sectors().
271  **/
blk_queue_max_hw_sectors(struct request_queue * q,unsigned int max_hw_sectors)272 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
273 {
274 	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
275 }
276 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
277 
278 /**
279  * blk_queue_max_discard_sectors - set max sectors for a single discard
280  * @q:  the request queue for the device
281  * @max_discard_sectors: maximum number of sectors to discard
282  **/
blk_queue_max_discard_sectors(struct request_queue * q,unsigned int max_discard_sectors)283 void blk_queue_max_discard_sectors(struct request_queue *q,
284 		unsigned int max_discard_sectors)
285 {
286 	q->limits.max_discard_sectors = max_discard_sectors;
287 }
288 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
289 
290 /**
291  * blk_queue_max_segments - set max hw segments for a request for this queue
292  * @q:  the request queue for the device
293  * @max_segments:  max number of segments
294  *
295  * Description:
296  *    Enables a low level driver to set an upper limit on the number of
297  *    hw data segments in a request.
298  **/
blk_queue_max_segments(struct request_queue * q,unsigned short max_segments)299 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
300 {
301 	if (!max_segments) {
302 		max_segments = 1;
303 		printk(KERN_INFO "%s: set to minimum %d\n",
304 		       __func__, max_segments);
305 	}
306 
307 	q->limits.max_segments = max_segments;
308 }
309 EXPORT_SYMBOL(blk_queue_max_segments);
310 
311 /**
312  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
313  * @q:  the request queue for the device
314  * @max_size:  max size of segment in bytes
315  *
316  * Description:
317  *    Enables a low level driver to set an upper limit on the size of a
318  *    coalesced segment
319  **/
blk_queue_max_segment_size(struct request_queue * q,unsigned int max_size)320 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
321 {
322 	if (max_size < PAGE_CACHE_SIZE) {
323 		max_size = PAGE_CACHE_SIZE;
324 		printk(KERN_INFO "%s: set to minimum %d\n",
325 		       __func__, max_size);
326 	}
327 
328 	q->limits.max_segment_size = max_size;
329 }
330 EXPORT_SYMBOL(blk_queue_max_segment_size);
331 
332 /**
333  * blk_queue_logical_block_size - set logical block size for the queue
334  * @q:  the request queue for the device
335  * @size:  the logical block size, in bytes
336  *
337  * Description:
338  *   This should be set to the lowest possible block size that the
339  *   storage device can address.  The default of 512 covers most
340  *   hardware.
341  **/
blk_queue_logical_block_size(struct request_queue * q,unsigned short size)342 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
343 {
344 	q->limits.logical_block_size = size;
345 
346 	if (q->limits.physical_block_size < size)
347 		q->limits.physical_block_size = size;
348 
349 	if (q->limits.io_min < q->limits.physical_block_size)
350 		q->limits.io_min = q->limits.physical_block_size;
351 }
352 EXPORT_SYMBOL(blk_queue_logical_block_size);
353 
354 /**
355  * blk_queue_physical_block_size - set physical block size for the queue
356  * @q:  the request queue for the device
357  * @size:  the physical block size, in bytes
358  *
359  * Description:
360  *   This should be set to the lowest possible sector size that the
361  *   hardware can operate on without reverting to read-modify-write
362  *   operations.
363  */
blk_queue_physical_block_size(struct request_queue * q,unsigned int size)364 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
365 {
366 	q->limits.physical_block_size = size;
367 
368 	if (q->limits.physical_block_size < q->limits.logical_block_size)
369 		q->limits.physical_block_size = q->limits.logical_block_size;
370 
371 	if (q->limits.io_min < q->limits.physical_block_size)
372 		q->limits.io_min = q->limits.physical_block_size;
373 }
374 EXPORT_SYMBOL(blk_queue_physical_block_size);
375 
376 /**
377  * blk_queue_alignment_offset - set physical block alignment offset
378  * @q:	the request queue for the device
379  * @offset: alignment offset in bytes
380  *
381  * Description:
382  *   Some devices are naturally misaligned to compensate for things like
383  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
384  *   should call this function for devices whose first sector is not
385  *   naturally aligned.
386  */
blk_queue_alignment_offset(struct request_queue * q,unsigned int offset)387 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
388 {
389 	q->limits.alignment_offset =
390 		offset & (q->limits.physical_block_size - 1);
391 	q->limits.misaligned = 0;
392 }
393 EXPORT_SYMBOL(blk_queue_alignment_offset);
394 
395 /**
396  * blk_limits_io_min - set minimum request size for a device
397  * @limits: the queue limits
398  * @min:  smallest I/O size in bytes
399  *
400  * Description:
401  *   Some devices have an internal block size bigger than the reported
402  *   hardware sector size.  This function can be used to signal the
403  *   smallest I/O the device can perform without incurring a performance
404  *   penalty.
405  */
blk_limits_io_min(struct queue_limits * limits,unsigned int min)406 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
407 {
408 	limits->io_min = min;
409 
410 	if (limits->io_min < limits->logical_block_size)
411 		limits->io_min = limits->logical_block_size;
412 
413 	if (limits->io_min < limits->physical_block_size)
414 		limits->io_min = limits->physical_block_size;
415 }
416 EXPORT_SYMBOL(blk_limits_io_min);
417 
418 /**
419  * blk_queue_io_min - set minimum request size for the queue
420  * @q:	the request queue for the device
421  * @min:  smallest I/O size in bytes
422  *
423  * Description:
424  *   Storage devices may report a granularity or preferred minimum I/O
425  *   size which is the smallest request the device can perform without
426  *   incurring a performance penalty.  For disk drives this is often the
427  *   physical block size.  For RAID arrays it is often the stripe chunk
428  *   size.  A properly aligned multiple of minimum_io_size is the
429  *   preferred request size for workloads where a high number of I/O
430  *   operations is desired.
431  */
blk_queue_io_min(struct request_queue * q,unsigned int min)432 void blk_queue_io_min(struct request_queue *q, unsigned int min)
433 {
434 	blk_limits_io_min(&q->limits, min);
435 }
436 EXPORT_SYMBOL(blk_queue_io_min);
437 
438 /**
439  * blk_limits_io_opt - set optimal request size for a device
440  * @limits: the queue limits
441  * @opt:  smallest I/O size in bytes
442  *
443  * Description:
444  *   Storage devices may report an optimal I/O size, which is the
445  *   device's preferred unit for sustained I/O.  This is rarely reported
446  *   for disk drives.  For RAID arrays it is usually the stripe width or
447  *   the internal track size.  A properly aligned multiple of
448  *   optimal_io_size is the preferred request size for workloads where
449  *   sustained throughput is desired.
450  */
blk_limits_io_opt(struct queue_limits * limits,unsigned int opt)451 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
452 {
453 	limits->io_opt = opt;
454 }
455 EXPORT_SYMBOL(blk_limits_io_opt);
456 
457 /**
458  * blk_queue_io_opt - set optimal request size for the queue
459  * @q:	the request queue for the device
460  * @opt:  optimal request size in bytes
461  *
462  * Description:
463  *   Storage devices may report an optimal I/O size, which is the
464  *   device's preferred unit for sustained I/O.  This is rarely reported
465  *   for disk drives.  For RAID arrays it is usually the stripe width or
466  *   the internal track size.  A properly aligned multiple of
467  *   optimal_io_size is the preferred request size for workloads where
468  *   sustained throughput is desired.
469  */
blk_queue_io_opt(struct request_queue * q,unsigned int opt)470 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
471 {
472 	blk_limits_io_opt(&q->limits, opt);
473 }
474 EXPORT_SYMBOL(blk_queue_io_opt);
475 
476 /**
477  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
478  * @t:	the stacking driver (top)
479  * @b:  the underlying device (bottom)
480  **/
blk_queue_stack_limits(struct request_queue * t,struct request_queue * b)481 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
482 {
483 	blk_stack_limits(&t->limits, &b->limits, 0);
484 }
485 EXPORT_SYMBOL(blk_queue_stack_limits);
486 
487 /**
488  * blk_stack_limits - adjust queue_limits for stacked devices
489  * @t:	the stacking driver limits (top device)
490  * @b:  the underlying queue limits (bottom, component device)
491  * @start:  first data sector within component device
492  *
493  * Description:
494  *    This function is used by stacking drivers like MD and DM to ensure
495  *    that all component devices have compatible block sizes and
496  *    alignments.  The stacking driver must provide a queue_limits
497  *    struct (top) and then iteratively call the stacking function for
498  *    all component (bottom) devices.  The stacking function will
499  *    attempt to combine the values and ensure proper alignment.
500  *
501  *    Returns 0 if the top and bottom queue_limits are compatible.  The
502  *    top device's block sizes and alignment offsets may be adjusted to
503  *    ensure alignment with the bottom device. If no compatible sizes
504  *    and alignments exist, -1 is returned and the resulting top
505  *    queue_limits will have the misaligned flag set to indicate that
506  *    the alignment_offset is undefined.
507  */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)508 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
509 		     sector_t start)
510 {
511 	unsigned int top, bottom, alignment, ret = 0;
512 
513 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
514 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
515 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
516 
517 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
518 					    b->seg_boundary_mask);
519 
520 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
521 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
522 						 b->max_integrity_segments);
523 
524 	t->max_segment_size = min_not_zero(t->max_segment_size,
525 					   b->max_segment_size);
526 
527 	t->misaligned |= b->misaligned;
528 
529 	alignment = queue_limit_alignment_offset(b, start);
530 
531 	/* Bottom device has different alignment.  Check that it is
532 	 * compatible with the current top alignment.
533 	 */
534 	if (t->alignment_offset != alignment) {
535 
536 		top = max(t->physical_block_size, t->io_min)
537 			+ t->alignment_offset;
538 		bottom = max(b->physical_block_size, b->io_min) + alignment;
539 
540 		/* Verify that top and bottom intervals line up */
541 		if (max(top, bottom) & (min(top, bottom) - 1)) {
542 			t->misaligned = 1;
543 			ret = -1;
544 		}
545 	}
546 
547 	t->logical_block_size = max(t->logical_block_size,
548 				    b->logical_block_size);
549 
550 	t->physical_block_size = max(t->physical_block_size,
551 				     b->physical_block_size);
552 
553 	t->io_min = max(t->io_min, b->io_min);
554 	t->io_opt = lcm(t->io_opt, b->io_opt);
555 
556 	t->cluster &= b->cluster;
557 	t->discard_zeroes_data &= b->discard_zeroes_data;
558 
559 	/* Physical block size a multiple of the logical block size? */
560 	if (t->physical_block_size & (t->logical_block_size - 1)) {
561 		t->physical_block_size = t->logical_block_size;
562 		t->misaligned = 1;
563 		ret = -1;
564 	}
565 
566 	/* Minimum I/O a multiple of the physical block size? */
567 	if (t->io_min & (t->physical_block_size - 1)) {
568 		t->io_min = t->physical_block_size;
569 		t->misaligned = 1;
570 		ret = -1;
571 	}
572 
573 	/* Optimal I/O a multiple of the physical block size? */
574 	if (t->io_opt & (t->physical_block_size - 1)) {
575 		t->io_opt = 0;
576 		t->misaligned = 1;
577 		ret = -1;
578 	}
579 
580 	/* Find lowest common alignment_offset */
581 	t->alignment_offset = lcm(t->alignment_offset, alignment)
582 		& (max(t->physical_block_size, t->io_min) - 1);
583 
584 	/* Verify that new alignment_offset is on a logical block boundary */
585 	if (t->alignment_offset & (t->logical_block_size - 1)) {
586 		t->misaligned = 1;
587 		ret = -1;
588 	}
589 
590 	/* Discard alignment and granularity */
591 	if (b->discard_granularity) {
592 		alignment = queue_limit_discard_alignment(b, start);
593 
594 		if (t->discard_granularity != 0 &&
595 		    t->discard_alignment != alignment) {
596 			top = t->discard_granularity + t->discard_alignment;
597 			bottom = b->discard_granularity + alignment;
598 
599 			/* Verify that top and bottom intervals line up */
600 			if (max(top, bottom) & (min(top, bottom) - 1))
601 				t->discard_misaligned = 1;
602 		}
603 
604 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
605 						      b->max_discard_sectors);
606 		t->discard_granularity = max(t->discard_granularity,
607 					     b->discard_granularity);
608 		t->discard_alignment = lcm(t->discard_alignment, alignment) &
609 			(t->discard_granularity - 1);
610 	}
611 
612 	return ret;
613 }
614 EXPORT_SYMBOL(blk_stack_limits);
615 
616 /**
617  * bdev_stack_limits - adjust queue limits for stacked drivers
618  * @t:	the stacking driver limits (top device)
619  * @bdev:  the component block_device (bottom)
620  * @start:  first data sector within component device
621  *
622  * Description:
623  *    Merges queue limits for a top device and a block_device.  Returns
624  *    0 if alignment didn't change.  Returns -1 if adding the bottom
625  *    device caused misalignment.
626  */
bdev_stack_limits(struct queue_limits * t,struct block_device * bdev,sector_t start)627 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
628 		      sector_t start)
629 {
630 	struct request_queue *bq = bdev_get_queue(bdev);
631 
632 	start += get_start_sect(bdev);
633 
634 	return blk_stack_limits(t, &bq->limits, start);
635 }
636 EXPORT_SYMBOL(bdev_stack_limits);
637 
638 /**
639  * disk_stack_limits - adjust queue limits for stacked drivers
640  * @disk:  MD/DM gendisk (top)
641  * @bdev:  the underlying block device (bottom)
642  * @offset:  offset to beginning of data within component device
643  *
644  * Description:
645  *    Merges the limits for a top level gendisk and a bottom level
646  *    block_device.
647  */
disk_stack_limits(struct gendisk * disk,struct block_device * bdev,sector_t offset)648 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
649 		       sector_t offset)
650 {
651 	struct request_queue *t = disk->queue;
652 
653 	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
654 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
655 
656 		disk_name(disk, 0, top);
657 		bdevname(bdev, bottom);
658 
659 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
660 		       top, bottom);
661 	}
662 }
663 EXPORT_SYMBOL(disk_stack_limits);
664 
665 /**
666  * blk_queue_dma_pad - set pad mask
667  * @q:     the request queue for the device
668  * @mask:  pad mask
669  *
670  * Set dma pad mask.
671  *
672  * Appending pad buffer to a request modifies the last entry of a
673  * scatter list such that it includes the pad buffer.
674  **/
blk_queue_dma_pad(struct request_queue * q,unsigned int mask)675 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
676 {
677 	q->dma_pad_mask = mask;
678 }
679 EXPORT_SYMBOL(blk_queue_dma_pad);
680 
681 /**
682  * blk_queue_update_dma_pad - update pad mask
683  * @q:     the request queue for the device
684  * @mask:  pad mask
685  *
686  * Update dma pad mask.
687  *
688  * Appending pad buffer to a request modifies the last entry of a
689  * scatter list such that it includes the pad buffer.
690  **/
blk_queue_update_dma_pad(struct request_queue * q,unsigned int mask)691 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
692 {
693 	if (mask > q->dma_pad_mask)
694 		q->dma_pad_mask = mask;
695 }
696 EXPORT_SYMBOL(blk_queue_update_dma_pad);
697 
698 /**
699  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
700  * @q:  the request queue for the device
701  * @dma_drain_needed: fn which returns non-zero if drain is necessary
702  * @buf:	physically contiguous buffer
703  * @size:	size of the buffer in bytes
704  *
705  * Some devices have excess DMA problems and can't simply discard (or
706  * zero fill) the unwanted piece of the transfer.  They have to have a
707  * real area of memory to transfer it into.  The use case for this is
708  * ATAPI devices in DMA mode.  If the packet command causes a transfer
709  * bigger than the transfer size some HBAs will lock up if there
710  * aren't DMA elements to contain the excess transfer.  What this API
711  * does is adjust the queue so that the buf is always appended
712  * silently to the scatterlist.
713  *
714  * Note: This routine adjusts max_hw_segments to make room for appending
715  * the drain buffer.  If you call blk_queue_max_segments() after calling
716  * this routine, you must set the limit to one fewer than your device
717  * can support otherwise there won't be room for the drain buffer.
718  */
blk_queue_dma_drain(struct request_queue * q,dma_drain_needed_fn * dma_drain_needed,void * buf,unsigned int size)719 int blk_queue_dma_drain(struct request_queue *q,
720 			       dma_drain_needed_fn *dma_drain_needed,
721 			       void *buf, unsigned int size)
722 {
723 	if (queue_max_segments(q) < 2)
724 		return -EINVAL;
725 	/* make room for appending the drain */
726 	blk_queue_max_segments(q, queue_max_segments(q) - 1);
727 	q->dma_drain_needed = dma_drain_needed;
728 	q->dma_drain_buffer = buf;
729 	q->dma_drain_size = size;
730 
731 	return 0;
732 }
733 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
734 
735 /**
736  * blk_queue_segment_boundary - set boundary rules for segment merging
737  * @q:  the request queue for the device
738  * @mask:  the memory boundary mask
739  **/
blk_queue_segment_boundary(struct request_queue * q,unsigned long mask)740 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
741 {
742 	if (mask < PAGE_CACHE_SIZE - 1) {
743 		mask = PAGE_CACHE_SIZE - 1;
744 		printk(KERN_INFO "%s: set to minimum %lx\n",
745 		       __func__, mask);
746 	}
747 
748 	q->limits.seg_boundary_mask = mask;
749 }
750 EXPORT_SYMBOL(blk_queue_segment_boundary);
751 
752 /**
753  * blk_queue_dma_alignment - set dma length and memory alignment
754  * @q:     the request queue for the device
755  * @mask:  alignment mask
756  *
757  * description:
758  *    set required memory and length alignment for direct dma transactions.
759  *    this is used when building direct io requests for the queue.
760  *
761  **/
blk_queue_dma_alignment(struct request_queue * q,int mask)762 void blk_queue_dma_alignment(struct request_queue *q, int mask)
763 {
764 	q->dma_alignment = mask;
765 }
766 EXPORT_SYMBOL(blk_queue_dma_alignment);
767 
768 /**
769  * blk_queue_update_dma_alignment - update dma length and memory alignment
770  * @q:     the request queue for the device
771  * @mask:  alignment mask
772  *
773  * description:
774  *    update required memory and length alignment for direct dma transactions.
775  *    If the requested alignment is larger than the current alignment, then
776  *    the current queue alignment is updated to the new value, otherwise it
777  *    is left alone.  The design of this is to allow multiple objects
778  *    (driver, device, transport etc) to set their respective
779  *    alignments without having them interfere.
780  *
781  **/
blk_queue_update_dma_alignment(struct request_queue * q,int mask)782 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
783 {
784 	BUG_ON(mask > PAGE_SIZE);
785 
786 	if (mask > q->dma_alignment)
787 		q->dma_alignment = mask;
788 }
789 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
790 
791 /**
792  * blk_queue_flush - configure queue's cache flush capability
793  * @q:		the request queue for the device
794  * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
795  *
796  * Tell block layer cache flush capability of @q.  If it supports
797  * flushing, REQ_FLUSH should be set.  If it supports bypassing
798  * write cache for individual writes, REQ_FUA should be set.
799  */
blk_queue_flush(struct request_queue * q,unsigned int flush)800 void blk_queue_flush(struct request_queue *q, unsigned int flush)
801 {
802 	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
803 
804 	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
805 		flush &= ~REQ_FUA;
806 
807 	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
808 }
809 EXPORT_SYMBOL_GPL(blk_queue_flush);
810 
blk_queue_flush_queueable(struct request_queue * q,bool queueable)811 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
812 {
813 	q->flush_not_queueable = !queueable;
814 }
815 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
816 
blk_settings_init(void)817 static int __init blk_settings_init(void)
818 {
819 	blk_max_low_pfn = max_low_pfn - 1;
820 	blk_max_pfn = max_pfn - 1;
821 	return 0;
822 }
823 subsys_initcall(blk_settings_init);
824