1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57 * Check if any of the ctx, dispatch list or elevator
58 * have pending work in this hardware queue.
59 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 return !list_empty_careful(&hctx->dispatch) ||
63 sbitmap_any_bit_set(&hctx->ctx_map) ||
64 blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68 * Mark this ctx as having pending work in this hardware queue
69 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 struct blk_mq_ctx *ctx)
72 {
73 const int bit = ctx->index_hw[hctx->type];
74
75 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 struct blk_mq_ctx *ctx)
81 {
82 const int bit = ctx->index_hw[hctx->type];
83
84 sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88 struct block_device *part;
89 unsigned int inflight[2];
90 };
91
blk_mq_check_inflight(struct request * rq,void * priv)92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 struct mq_inflight *mi = priv;
95
96 if (rq->part && blk_do_io_stat(rq) &&
97 (!mi->part->bd_partno || rq->part == mi->part) &&
98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 mi->inflight[rq_data_dir(rq)]++;
100
101 return true;
102 }
103
blk_mq_in_flight(struct request_queue * q,struct block_device * part)104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 struct block_device *part)
106 {
107 struct mq_inflight mi = { .part = part };
108
109 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110
111 return mi.inflight[0] + mi.inflight[1];
112 }
113
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 unsigned int inflight[2])
116 {
117 struct mq_inflight mi = { .part = part };
118
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 inflight[0] = mi.inflight[0];
121 inflight[1] = mi.inflight[1];
122 }
123
blk_freeze_queue_start(struct request_queue * q)124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126 mutex_lock(&q->mq_freeze_lock);
127 if (++q->mq_freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 mutex_unlock(&q->mq_freeze_lock);
130 if (queue_is_mq(q))
131 blk_mq_run_hw_queues(q, false);
132 } else {
133 mutex_unlock(&q->mq_freeze_lock);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137
blk_mq_freeze_queue_wait(struct request_queue * q)138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145 unsigned long timeout)
146 {
147 return wait_event_timeout(q->mq_freeze_wq,
148 percpu_ref_is_zero(&q->q_usage_counter),
149 timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152
153 /*
154 * Guarantee no request is in use, so we can change any data structure of
155 * the queue afterward.
156 */
blk_freeze_queue(struct request_queue * q)157 void blk_freeze_queue(struct request_queue *q)
158 {
159 /*
160 * In the !blk_mq case we are only calling this to kill the
161 * q_usage_counter, otherwise this increases the freeze depth
162 * and waits for it to return to zero. For this reason there is
163 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164 * exported to drivers as the only user for unfreeze is blk_mq.
165 */
166 blk_freeze_queue_start(q);
167 blk_mq_freeze_queue_wait(q);
168 }
169
blk_mq_freeze_queue(struct request_queue * q)170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 /*
173 * ...just an alias to keep freeze and unfreeze actions balanced
174 * in the blk_mq_* namespace
175 */
176 blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182 mutex_lock(&q->mq_freeze_lock);
183 if (force_atomic)
184 q->q_usage_counter.data->force_atomic = true;
185 q->mq_freeze_depth--;
186 WARN_ON_ONCE(q->mq_freeze_depth < 0);
187 if (!q->mq_freeze_depth) {
188 percpu_ref_resurrect(&q->q_usage_counter);
189 wake_up_all(&q->mq_freeze_wq);
190 }
191 mutex_unlock(&q->mq_freeze_lock);
192 }
193
blk_mq_unfreeze_queue(struct request_queue * q)194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 __blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202 * mpt3sas driver such that this function can be removed.
203 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 unsigned long flags;
207
208 spin_lock_irqsave(&q->queue_lock, flags);
209 if (!q->quiesce_depth++)
210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214
215 /**
216 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217 * @set: tag_set to wait on
218 *
219 * Note: it is driver's responsibility for making sure that quiesce has
220 * been started on or more of the request_queues of the tag_set. This
221 * function only waits for the quiesce on those request_queues that had
222 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223 */
blk_mq_wait_quiesce_done(struct blk_mq_tag_set * set)224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226 if (set->flags & BLK_MQ_F_BLOCKING)
227 synchronize_srcu(set->srcu);
228 else
229 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232
233 /**
234 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235 * @q: request queue.
236 *
237 * Note: this function does not prevent that the struct request end_io()
238 * callback function is invoked. Once this function is returned, we make
239 * sure no dispatch can happen until the queue is unquiesced via
240 * blk_mq_unquiesce_queue().
241 */
blk_mq_quiesce_queue(struct request_queue * q)242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244 blk_mq_quiesce_queue_nowait(q);
245 /* nothing to wait for non-mq queues */
246 if (queue_is_mq(q))
247 blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253 * @q: request queue.
254 *
255 * This function recovers queue into the state before quiescing
256 * which is done by blk_mq_quiesce_queue.
257 */
blk_mq_unquiesce_queue(struct request_queue * q)258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 unsigned long flags;
261 bool run_queue = false;
262
263 spin_lock_irqsave(&q->queue_lock, flags);
264 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 ;
266 } else if (!--q->quiesce_depth) {
267 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268 run_queue = true;
269 }
270 spin_unlock_irqrestore(&q->queue_lock, flags);
271
272 /* dispatch requests which are inserted during quiescing */
273 if (run_queue)
274 blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277
blk_mq_quiesce_tagset(struct blk_mq_tag_set * set)278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280 struct request_queue *q;
281
282 mutex_lock(&set->tag_list_lock);
283 list_for_each_entry(q, &set->tag_list, tag_set_list) {
284 if (!blk_queue_skip_tagset_quiesce(q))
285 blk_mq_quiesce_queue_nowait(q);
286 }
287 blk_mq_wait_quiesce_done(set);
288 mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291
blk_mq_unquiesce_tagset(struct blk_mq_tag_set * set)292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294 struct request_queue *q;
295
296 mutex_lock(&set->tag_list_lock);
297 list_for_each_entry(q, &set->tag_list, tag_set_list) {
298 if (!blk_queue_skip_tagset_quiesce(q))
299 blk_mq_unquiesce_queue(q);
300 }
301 mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304
blk_mq_wake_waiters(struct request_queue * q)305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307 struct blk_mq_hw_ctx *hctx;
308 unsigned long i;
309
310 queue_for_each_hw_ctx(q, hctx, i)
311 if (blk_mq_hw_queue_mapped(hctx))
312 blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314
blk_rq_init(struct request_queue * q,struct request * rq)315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317 memset(rq, 0, sizeof(*rq));
318
319 INIT_LIST_HEAD(&rq->queuelist);
320 rq->q = q;
321 rq->__sector = (sector_t) -1;
322 INIT_HLIST_NODE(&rq->hash);
323 RB_CLEAR_NODE(&rq->rb_node);
324 rq->tag = BLK_MQ_NO_TAG;
325 rq->internal_tag = BLK_MQ_NO_TAG;
326 rq->start_time_ns = ktime_get_ns();
327 rq->part = NULL;
328 blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331
332 /* Set start and alloc time when the allocated request is actually used */
blk_mq_rq_time_init(struct request * rq,u64 alloc_time_ns)333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335 if (blk_mq_need_time_stamp(rq))
336 rq->start_time_ns = ktime_get_ns();
337 else
338 rq->start_time_ns = 0;
339
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341 if (blk_queue_rq_alloc_time(rq->q))
342 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 else
344 rq->alloc_time_ns = 0;
345 #endif
346 }
347
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag)348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349 struct blk_mq_tags *tags, unsigned int tag)
350 {
351 struct blk_mq_ctx *ctx = data->ctx;
352 struct blk_mq_hw_ctx *hctx = data->hctx;
353 struct request_queue *q = data->q;
354 struct request *rq = tags->static_rqs[tag];
355
356 rq->q = q;
357 rq->mq_ctx = ctx;
358 rq->mq_hctx = hctx;
359 rq->cmd_flags = data->cmd_flags;
360
361 if (data->flags & BLK_MQ_REQ_PM)
362 data->rq_flags |= RQF_PM;
363 if (blk_queue_io_stat(q))
364 data->rq_flags |= RQF_IO_STAT;
365 rq->rq_flags = data->rq_flags;
366
367 if (data->rq_flags & RQF_SCHED_TAGS) {
368 rq->tag = BLK_MQ_NO_TAG;
369 rq->internal_tag = tag;
370 } else {
371 rq->tag = tag;
372 rq->internal_tag = BLK_MQ_NO_TAG;
373 }
374 rq->timeout = 0;
375
376 rq->part = NULL;
377 rq->io_start_time_ns = 0;
378 rq->stats_sectors = 0;
379 rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 rq->nr_integrity_segments = 0;
382 #endif
383 rq->end_io = NULL;
384 rq->end_io_data = NULL;
385
386 blk_crypto_rq_set_defaults(rq);
387 INIT_LIST_HEAD(&rq->queuelist);
388 /* tag was already set */
389 WRITE_ONCE(rq->deadline, 0);
390 req_ref_set(rq, 1);
391
392 if (rq->rq_flags & RQF_USE_SCHED) {
393 struct elevator_queue *e = data->q->elevator;
394
395 INIT_HLIST_NODE(&rq->hash);
396 RB_CLEAR_NODE(&rq->rb_node);
397
398 if (e->type->ops.prepare_request)
399 e->type->ops.prepare_request(rq);
400 }
401
402 return rq;
403 }
404
405 static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data)406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408 unsigned int tag, tag_offset;
409 struct blk_mq_tags *tags;
410 struct request *rq;
411 unsigned long tag_mask;
412 int i, nr = 0;
413
414 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 if (unlikely(!tag_mask))
416 return NULL;
417
418 tags = blk_mq_tags_from_data(data);
419 for (i = 0; tag_mask; i++) {
420 if (!(tag_mask & (1UL << i)))
421 continue;
422 tag = tag_offset + i;
423 prefetch(tags->static_rqs[tag]);
424 tag_mask &= ~(1UL << i);
425 rq = blk_mq_rq_ctx_init(data, tags, tag);
426 rq_list_add(data->cached_rq, rq);
427 nr++;
428 }
429 /* caller already holds a reference, add for remainder */
430 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431 data->nr_tags -= nr;
432
433 return rq_list_pop(data->cached_rq);
434 }
435
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438 struct request_queue *q = data->q;
439 u64 alloc_time_ns = 0;
440 struct request *rq;
441 unsigned int tag;
442
443 /* alloc_time includes depth and tag waits */
444 if (blk_queue_rq_alloc_time(q))
445 alloc_time_ns = ktime_get_ns();
446
447 if (data->cmd_flags & REQ_NOWAIT)
448 data->flags |= BLK_MQ_REQ_NOWAIT;
449
450 if (q->elevator) {
451 /*
452 * All requests use scheduler tags when an I/O scheduler is
453 * enabled for the queue.
454 */
455 data->rq_flags |= RQF_SCHED_TAGS;
456
457 /*
458 * Flush/passthrough requests are special and go directly to the
459 * dispatch list.
460 */
461 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462 !blk_op_is_passthrough(data->cmd_flags)) {
463 struct elevator_mq_ops *ops = &q->elevator->type->ops;
464
465 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466
467 data->rq_flags |= RQF_USE_SCHED;
468 if (ops->limit_depth)
469 ops->limit_depth(data->cmd_flags, data);
470 }
471 }
472
473 retry:
474 data->ctx = blk_mq_get_ctx(q);
475 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476 if (!(data->rq_flags & RQF_SCHED_TAGS))
477 blk_mq_tag_busy(data->hctx);
478
479 if (data->flags & BLK_MQ_REQ_RESERVED)
480 data->rq_flags |= RQF_RESV;
481
482 /*
483 * Try batched alloc if we want more than 1 tag.
484 */
485 if (data->nr_tags > 1) {
486 rq = __blk_mq_alloc_requests_batch(data);
487 if (rq) {
488 blk_mq_rq_time_init(rq, alloc_time_ns);
489 return rq;
490 }
491 data->nr_tags = 1;
492 }
493
494 /*
495 * Waiting allocations only fail because of an inactive hctx. In that
496 * case just retry the hctx assignment and tag allocation as CPU hotplug
497 * should have migrated us to an online CPU by now.
498 */
499 tag = blk_mq_get_tag(data);
500 if (tag == BLK_MQ_NO_TAG) {
501 if (data->flags & BLK_MQ_REQ_NOWAIT)
502 return NULL;
503 /*
504 * Give up the CPU and sleep for a random short time to
505 * ensure that thread using a realtime scheduling class
506 * are migrated off the CPU, and thus off the hctx that
507 * is going away.
508 */
509 msleep(3);
510 goto retry;
511 }
512
513 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
514 blk_mq_rq_time_init(rq, alloc_time_ns);
515 return rq;
516 }
517
blk_mq_rq_cache_fill(struct request_queue * q,struct blk_plug * plug,blk_opf_t opf,blk_mq_req_flags_t flags)518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
519 struct blk_plug *plug,
520 blk_opf_t opf,
521 blk_mq_req_flags_t flags)
522 {
523 struct blk_mq_alloc_data data = {
524 .q = q,
525 .flags = flags,
526 .cmd_flags = opf,
527 .nr_tags = plug->nr_ios,
528 .cached_rq = &plug->cached_rq,
529 };
530 struct request *rq;
531
532 if (blk_queue_enter(q, flags))
533 return NULL;
534
535 plug->nr_ios = 1;
536
537 rq = __blk_mq_alloc_requests(&data);
538 if (unlikely(!rq))
539 blk_queue_exit(q);
540 return rq;
541 }
542
blk_mq_alloc_cached_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
544 blk_opf_t opf,
545 blk_mq_req_flags_t flags)
546 {
547 struct blk_plug *plug = current->plug;
548 struct request *rq;
549
550 if (!plug)
551 return NULL;
552
553 if (rq_list_empty(plug->cached_rq)) {
554 if (plug->nr_ios == 1)
555 return NULL;
556 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
557 if (!rq)
558 return NULL;
559 } else {
560 rq = rq_list_peek(&plug->cached_rq);
561 if (!rq || rq->q != q)
562 return NULL;
563
564 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
565 return NULL;
566 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
567 return NULL;
568
569 plug->cached_rq = rq_list_next(rq);
570 blk_mq_rq_time_init(rq, 0);
571 }
572
573 rq->cmd_flags = opf;
574 INIT_LIST_HEAD(&rq->queuelist);
575 return rq;
576 }
577
blk_mq_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
579 blk_mq_req_flags_t flags)
580 {
581 struct request *rq;
582
583 rq = blk_mq_alloc_cached_request(q, opf, flags);
584 if (!rq) {
585 struct blk_mq_alloc_data data = {
586 .q = q,
587 .flags = flags,
588 .cmd_flags = opf,
589 .nr_tags = 1,
590 };
591 int ret;
592
593 ret = blk_queue_enter(q, flags);
594 if (ret)
595 return ERR_PTR(ret);
596
597 rq = __blk_mq_alloc_requests(&data);
598 if (!rq)
599 goto out_queue_exit;
600 }
601 rq->__data_len = 0;
602 rq->__sector = (sector_t) -1;
603 rq->bio = rq->biotail = NULL;
604 return rq;
605 out_queue_exit:
606 blk_queue_exit(q);
607 return ERR_PTR(-EWOULDBLOCK);
608 }
609 EXPORT_SYMBOL(blk_mq_alloc_request);
610
blk_mq_alloc_request_hctx(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags,unsigned int hctx_idx)611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
612 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
613 {
614 struct blk_mq_alloc_data data = {
615 .q = q,
616 .flags = flags,
617 .cmd_flags = opf,
618 .nr_tags = 1,
619 };
620 u64 alloc_time_ns = 0;
621 struct request *rq;
622 unsigned int cpu;
623 unsigned int tag;
624 int ret;
625
626 /* alloc_time includes depth and tag waits */
627 if (blk_queue_rq_alloc_time(q))
628 alloc_time_ns = ktime_get_ns();
629
630 /*
631 * If the tag allocator sleeps we could get an allocation for a
632 * different hardware context. No need to complicate the low level
633 * allocator for this for the rare use case of a command tied to
634 * a specific queue.
635 */
636 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
637 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
638 return ERR_PTR(-EINVAL);
639
640 if (hctx_idx >= q->nr_hw_queues)
641 return ERR_PTR(-EIO);
642
643 ret = blk_queue_enter(q, flags);
644 if (ret)
645 return ERR_PTR(ret);
646
647 /*
648 * Check if the hardware context is actually mapped to anything.
649 * If not tell the caller that it should skip this queue.
650 */
651 ret = -EXDEV;
652 data.hctx = xa_load(&q->hctx_table, hctx_idx);
653 if (!blk_mq_hw_queue_mapped(data.hctx))
654 goto out_queue_exit;
655 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
656 if (cpu >= nr_cpu_ids)
657 goto out_queue_exit;
658 data.ctx = __blk_mq_get_ctx(q, cpu);
659
660 if (q->elevator)
661 data.rq_flags |= RQF_SCHED_TAGS;
662 else
663 blk_mq_tag_busy(data.hctx);
664
665 if (flags & BLK_MQ_REQ_RESERVED)
666 data.rq_flags |= RQF_RESV;
667
668 ret = -EWOULDBLOCK;
669 tag = blk_mq_get_tag(&data);
670 if (tag == BLK_MQ_NO_TAG)
671 goto out_queue_exit;
672 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
673 blk_mq_rq_time_init(rq, alloc_time_ns);
674 rq->__data_len = 0;
675 rq->__sector = (sector_t) -1;
676 rq->bio = rq->biotail = NULL;
677 return rq;
678
679 out_queue_exit:
680 blk_queue_exit(q);
681 return ERR_PTR(ret);
682 }
683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
684
blk_mq_finish_request(struct request * rq)685 static void blk_mq_finish_request(struct request *rq)
686 {
687 struct request_queue *q = rq->q;
688
689 if (rq->rq_flags & RQF_USE_SCHED) {
690 q->elevator->type->ops.finish_request(rq);
691 /*
692 * For postflush request that may need to be
693 * completed twice, we should clear this flag
694 * to avoid double finish_request() on the rq.
695 */
696 rq->rq_flags &= ~RQF_USE_SCHED;
697 }
698 }
699
__blk_mq_free_request(struct request * rq)700 static void __blk_mq_free_request(struct request *rq)
701 {
702 struct request_queue *q = rq->q;
703 struct blk_mq_ctx *ctx = rq->mq_ctx;
704 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
705 const int sched_tag = rq->internal_tag;
706
707 blk_crypto_free_request(rq);
708 blk_pm_mark_last_busy(rq);
709 rq->mq_hctx = NULL;
710
711 if (rq->rq_flags & RQF_MQ_INFLIGHT)
712 __blk_mq_dec_active_requests(hctx);
713
714 if (rq->tag != BLK_MQ_NO_TAG)
715 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
716 if (sched_tag != BLK_MQ_NO_TAG)
717 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
718 blk_mq_sched_restart(hctx);
719 blk_queue_exit(q);
720 }
721
blk_mq_free_request(struct request * rq)722 void blk_mq_free_request(struct request *rq)
723 {
724 struct request_queue *q = rq->q;
725
726 blk_mq_finish_request(rq);
727
728 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
729 laptop_io_completion(q->disk->bdi);
730
731 rq_qos_done(q, rq);
732
733 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
734 if (req_ref_put_and_test(rq))
735 __blk_mq_free_request(rq);
736 }
737 EXPORT_SYMBOL_GPL(blk_mq_free_request);
738
blk_mq_free_plug_rqs(struct blk_plug * plug)739 void blk_mq_free_plug_rqs(struct blk_plug *plug)
740 {
741 struct request *rq;
742
743 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
744 blk_mq_free_request(rq);
745 }
746
blk_dump_rq_flags(struct request * rq,char * msg)747 void blk_dump_rq_flags(struct request *rq, char *msg)
748 {
749 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
750 rq->q->disk ? rq->q->disk->disk_name : "?",
751 (__force unsigned long long) rq->cmd_flags);
752
753 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
754 (unsigned long long)blk_rq_pos(rq),
755 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
756 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
757 rq->bio, rq->biotail, blk_rq_bytes(rq));
758 }
759 EXPORT_SYMBOL(blk_dump_rq_flags);
760
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)761 static void req_bio_endio(struct request *rq, struct bio *bio,
762 unsigned int nbytes, blk_status_t error)
763 {
764 if (unlikely(error)) {
765 bio->bi_status = error;
766 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
767 /*
768 * Partial zone append completions cannot be supported as the
769 * BIO fragments may end up not being written sequentially.
770 * For such case, force the completed nbytes to be equal to
771 * the BIO size so that bio_advance() sets the BIO remaining
772 * size to 0 and we end up calling bio_endio() before returning.
773 */
774 if (bio->bi_iter.bi_size != nbytes) {
775 bio->bi_status = BLK_STS_IOERR;
776 nbytes = bio->bi_iter.bi_size;
777 } else {
778 bio->bi_iter.bi_sector = rq->__sector;
779 }
780 }
781
782 bio_advance(bio, nbytes);
783
784 if (unlikely(rq->rq_flags & RQF_QUIET))
785 bio_set_flag(bio, BIO_QUIET);
786 /* don't actually finish bio if it's part of flush sequence */
787 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
788 bio_endio(bio);
789 }
790
blk_account_io_completion(struct request * req,unsigned int bytes)791 static void blk_account_io_completion(struct request *req, unsigned int bytes)
792 {
793 if (req->part && blk_do_io_stat(req)) {
794 const int sgrp = op_stat_group(req_op(req));
795
796 part_stat_lock();
797 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
798 part_stat_unlock();
799 }
800 }
801
blk_print_req_error(struct request * req,blk_status_t status)802 static void blk_print_req_error(struct request *req, blk_status_t status)
803 {
804 printk_ratelimited(KERN_ERR
805 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
806 "phys_seg %u prio class %u\n",
807 blk_status_to_str(status),
808 req->q->disk ? req->q->disk->disk_name : "?",
809 blk_rq_pos(req), (__force u32)req_op(req),
810 blk_op_str(req_op(req)),
811 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
812 req->nr_phys_segments,
813 IOPRIO_PRIO_CLASS(req->ioprio));
814 }
815
816 /*
817 * Fully end IO on a request. Does not support partial completions, or
818 * errors.
819 */
blk_complete_request(struct request * req)820 static void blk_complete_request(struct request *req)
821 {
822 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
823 int total_bytes = blk_rq_bytes(req);
824 struct bio *bio = req->bio;
825
826 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
827
828 if (!bio)
829 return;
830
831 #ifdef CONFIG_BLK_DEV_INTEGRITY
832 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
833 req->q->integrity.profile->complete_fn(req, total_bytes);
834 #endif
835
836 /*
837 * Upper layers may call blk_crypto_evict_key() anytime after the last
838 * bio_endio(). Therefore, the keyslot must be released before that.
839 */
840 blk_crypto_rq_put_keyslot(req);
841
842 blk_account_io_completion(req, total_bytes);
843
844 do {
845 struct bio *next = bio->bi_next;
846
847 /* Completion has already been traced */
848 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
849
850 if (req_op(req) == REQ_OP_ZONE_APPEND)
851 bio->bi_iter.bi_sector = req->__sector;
852
853 if (!is_flush)
854 bio_endio(bio);
855 bio = next;
856 } while (bio);
857
858 /*
859 * Reset counters so that the request stacking driver
860 * can find how many bytes remain in the request
861 * later.
862 */
863 if (!req->end_io) {
864 req->bio = NULL;
865 req->__data_len = 0;
866 }
867 }
868
869 /**
870 * blk_update_request - Complete multiple bytes without completing the request
871 * @req: the request being processed
872 * @error: block status code
873 * @nr_bytes: number of bytes to complete for @req
874 *
875 * Description:
876 * Ends I/O on a number of bytes attached to @req, but doesn't complete
877 * the request structure even if @req doesn't have leftover.
878 * If @req has leftover, sets it up for the next range of segments.
879 *
880 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
881 * %false return from this function.
882 *
883 * Note:
884 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
885 * except in the consistency check at the end of this function.
886 *
887 * Return:
888 * %false - this request doesn't have any more data
889 * %true - this request has more data
890 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)891 bool blk_update_request(struct request *req, blk_status_t error,
892 unsigned int nr_bytes)
893 {
894 int total_bytes;
895
896 trace_block_rq_complete(req, error, nr_bytes);
897
898 if (!req->bio)
899 return false;
900
901 #ifdef CONFIG_BLK_DEV_INTEGRITY
902 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
903 error == BLK_STS_OK)
904 req->q->integrity.profile->complete_fn(req, nr_bytes);
905 #endif
906
907 /*
908 * Upper layers may call blk_crypto_evict_key() anytime after the last
909 * bio_endio(). Therefore, the keyslot must be released before that.
910 */
911 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
912 __blk_crypto_rq_put_keyslot(req);
913
914 if (unlikely(error && !blk_rq_is_passthrough(req) &&
915 !(req->rq_flags & RQF_QUIET)) &&
916 !test_bit(GD_DEAD, &req->q->disk->state)) {
917 blk_print_req_error(req, error);
918 trace_block_rq_error(req, error, nr_bytes);
919 }
920
921 blk_account_io_completion(req, nr_bytes);
922
923 total_bytes = 0;
924 while (req->bio) {
925 struct bio *bio = req->bio;
926 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
927
928 if (bio_bytes == bio->bi_iter.bi_size)
929 req->bio = bio->bi_next;
930
931 /* Completion has already been traced */
932 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
933 req_bio_endio(req, bio, bio_bytes, error);
934
935 total_bytes += bio_bytes;
936 nr_bytes -= bio_bytes;
937
938 if (!nr_bytes)
939 break;
940 }
941
942 /*
943 * completely done
944 */
945 if (!req->bio) {
946 /*
947 * Reset counters so that the request stacking driver
948 * can find how many bytes remain in the request
949 * later.
950 */
951 req->__data_len = 0;
952 return false;
953 }
954
955 req->__data_len -= total_bytes;
956
957 /* update sector only for requests with clear definition of sector */
958 if (!blk_rq_is_passthrough(req))
959 req->__sector += total_bytes >> 9;
960
961 /* mixed attributes always follow the first bio */
962 if (req->rq_flags & RQF_MIXED_MERGE) {
963 req->cmd_flags &= ~REQ_FAILFAST_MASK;
964 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
965 }
966
967 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
968 /*
969 * If total number of sectors is less than the first segment
970 * size, something has gone terribly wrong.
971 */
972 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
973 blk_dump_rq_flags(req, "request botched");
974 req->__data_len = blk_rq_cur_bytes(req);
975 }
976
977 /* recalculate the number of segments */
978 req->nr_phys_segments = blk_recalc_rq_segments(req);
979 }
980
981 return true;
982 }
983 EXPORT_SYMBOL_GPL(blk_update_request);
984
blk_account_io_done(struct request * req,u64 now)985 static inline void blk_account_io_done(struct request *req, u64 now)
986 {
987 trace_block_io_done(req);
988
989 /*
990 * Account IO completion. flush_rq isn't accounted as a
991 * normal IO on queueing nor completion. Accounting the
992 * containing request is enough.
993 */
994 if (blk_do_io_stat(req) && req->part &&
995 !(req->rq_flags & RQF_FLUSH_SEQ)) {
996 const int sgrp = op_stat_group(req_op(req));
997
998 part_stat_lock();
999 update_io_ticks(req->part, jiffies, true);
1000 part_stat_inc(req->part, ios[sgrp]);
1001 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1002 part_stat_unlock();
1003 }
1004 }
1005
blk_account_io_start(struct request * req)1006 static inline void blk_account_io_start(struct request *req)
1007 {
1008 trace_block_io_start(req);
1009
1010 if (blk_do_io_stat(req)) {
1011 /*
1012 * All non-passthrough requests are created from a bio with one
1013 * exception: when a flush command that is part of a flush sequence
1014 * generated by the state machine in blk-flush.c is cloned onto the
1015 * lower device by dm-multipath we can get here without a bio.
1016 */
1017 if (req->bio)
1018 req->part = req->bio->bi_bdev;
1019 else
1020 req->part = req->q->disk->part0;
1021
1022 part_stat_lock();
1023 update_io_ticks(req->part, jiffies, false);
1024 part_stat_unlock();
1025 }
1026 }
1027
__blk_mq_end_request_acct(struct request * rq,u64 now)1028 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1029 {
1030 if (rq->rq_flags & RQF_STATS)
1031 blk_stat_add(rq, now);
1032
1033 blk_mq_sched_completed_request(rq, now);
1034 blk_account_io_done(rq, now);
1035 }
1036
__blk_mq_end_request(struct request * rq,blk_status_t error)1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039 if (blk_mq_need_time_stamp(rq))
1040 __blk_mq_end_request_acct(rq, ktime_get_ns());
1041
1042 blk_mq_finish_request(rq);
1043
1044 if (rq->end_io) {
1045 rq_qos_done(rq->q, rq);
1046 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1047 blk_mq_free_request(rq);
1048 } else {
1049 blk_mq_free_request(rq);
1050 }
1051 }
1052 EXPORT_SYMBOL(__blk_mq_end_request);
1053
blk_mq_end_request(struct request * rq,blk_status_t error)1054 void blk_mq_end_request(struct request *rq, blk_status_t error)
1055 {
1056 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1057 BUG();
1058 __blk_mq_end_request(rq, error);
1059 }
1060 EXPORT_SYMBOL(blk_mq_end_request);
1061
1062 #define TAG_COMP_BATCH 32
1063
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)1064 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1065 int *tag_array, int nr_tags)
1066 {
1067 struct request_queue *q = hctx->queue;
1068
1069 /*
1070 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1071 * update hctx->nr_active in batch
1072 */
1073 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1074 __blk_mq_sub_active_requests(hctx, nr_tags);
1075
1076 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1077 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1078 }
1079
blk_mq_end_request_batch(struct io_comp_batch * iob)1080 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1081 {
1082 int tags[TAG_COMP_BATCH], nr_tags = 0;
1083 struct blk_mq_hw_ctx *cur_hctx = NULL;
1084 struct request *rq;
1085 u64 now = 0;
1086
1087 if (iob->need_ts)
1088 now = ktime_get_ns();
1089
1090 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1091 prefetch(rq->bio);
1092 prefetch(rq->rq_next);
1093
1094 blk_complete_request(rq);
1095 if (iob->need_ts)
1096 __blk_mq_end_request_acct(rq, now);
1097
1098 blk_mq_finish_request(rq);
1099
1100 rq_qos_done(rq->q, rq);
1101
1102 /*
1103 * If end_io handler returns NONE, then it still has
1104 * ownership of the request.
1105 */
1106 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1107 continue;
1108
1109 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1110 if (!req_ref_put_and_test(rq))
1111 continue;
1112
1113 blk_crypto_free_request(rq);
1114 blk_pm_mark_last_busy(rq);
1115
1116 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1117 if (cur_hctx)
1118 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1119 nr_tags = 0;
1120 cur_hctx = rq->mq_hctx;
1121 }
1122 tags[nr_tags++] = rq->tag;
1123 }
1124
1125 if (nr_tags)
1126 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1127 }
1128 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1129
blk_complete_reqs(struct llist_head * list)1130 static void blk_complete_reqs(struct llist_head *list)
1131 {
1132 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1133 struct request *rq, *next;
1134
1135 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1136 rq->q->mq_ops->complete(rq);
1137 }
1138
blk_done_softirq(struct softirq_action * h)1139 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1140 {
1141 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1142 }
1143
blk_softirq_cpu_dead(unsigned int cpu)1144 static int blk_softirq_cpu_dead(unsigned int cpu)
1145 {
1146 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1147 return 0;
1148 }
1149
__blk_mq_complete_request_remote(void * data)1150 static void __blk_mq_complete_request_remote(void *data)
1151 {
1152 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1153 }
1154
blk_mq_complete_need_ipi(struct request * rq)1155 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1156 {
1157 int cpu = raw_smp_processor_id();
1158
1159 if (!IS_ENABLED(CONFIG_SMP) ||
1160 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1161 return false;
1162 /*
1163 * With force threaded interrupts enabled, raising softirq from an SMP
1164 * function call will always result in waking the ksoftirqd thread.
1165 * This is probably worse than completing the request on a different
1166 * cache domain.
1167 */
1168 if (force_irqthreads())
1169 return false;
1170
1171 /* same CPU or cache domain? Complete locally */
1172 if (cpu == rq->mq_ctx->cpu ||
1173 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1174 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1175 return false;
1176
1177 /* don't try to IPI to an offline CPU */
1178 return cpu_online(rq->mq_ctx->cpu);
1179 }
1180
blk_mq_complete_send_ipi(struct request * rq)1181 static void blk_mq_complete_send_ipi(struct request *rq)
1182 {
1183 unsigned int cpu;
1184
1185 cpu = rq->mq_ctx->cpu;
1186 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1187 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1188 }
1189
blk_mq_raise_softirq(struct request * rq)1190 static void blk_mq_raise_softirq(struct request *rq)
1191 {
1192 struct llist_head *list;
1193
1194 preempt_disable();
1195 list = this_cpu_ptr(&blk_cpu_done);
1196 if (llist_add(&rq->ipi_list, list))
1197 raise_softirq(BLOCK_SOFTIRQ);
1198 preempt_enable();
1199 }
1200
blk_mq_complete_request_remote(struct request * rq)1201 bool blk_mq_complete_request_remote(struct request *rq)
1202 {
1203 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204
1205 /*
1206 * For request which hctx has only one ctx mapping,
1207 * or a polled request, always complete locally,
1208 * it's pointless to redirect the completion.
1209 */
1210 if ((rq->mq_hctx->nr_ctx == 1 &&
1211 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1212 rq->cmd_flags & REQ_POLLED)
1213 return false;
1214
1215 if (blk_mq_complete_need_ipi(rq)) {
1216 blk_mq_complete_send_ipi(rq);
1217 return true;
1218 }
1219
1220 if (rq->q->nr_hw_queues == 1) {
1221 blk_mq_raise_softirq(rq);
1222 return true;
1223 }
1224 return false;
1225 }
1226 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1227
1228 /**
1229 * blk_mq_complete_request - end I/O on a request
1230 * @rq: the request being processed
1231 *
1232 * Description:
1233 * Complete a request by scheduling the ->complete_rq operation.
1234 **/
blk_mq_complete_request(struct request * rq)1235 void blk_mq_complete_request(struct request *rq)
1236 {
1237 if (!blk_mq_complete_request_remote(rq))
1238 rq->q->mq_ops->complete(rq);
1239 }
1240 EXPORT_SYMBOL(blk_mq_complete_request);
1241
1242 /**
1243 * blk_mq_start_request - Start processing a request
1244 * @rq: Pointer to request to be started
1245 *
1246 * Function used by device drivers to notify the block layer that a request
1247 * is going to be processed now, so blk layer can do proper initializations
1248 * such as starting the timeout timer.
1249 */
blk_mq_start_request(struct request * rq)1250 void blk_mq_start_request(struct request *rq)
1251 {
1252 struct request_queue *q = rq->q;
1253
1254 trace_block_rq_issue(rq);
1255
1256 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1257 rq->io_start_time_ns = ktime_get_ns();
1258 rq->stats_sectors = blk_rq_sectors(rq);
1259 rq->rq_flags |= RQF_STATS;
1260 rq_qos_issue(q, rq);
1261 }
1262
1263 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1264
1265 blk_add_timer(rq);
1266 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1267
1268 #ifdef CONFIG_BLK_DEV_INTEGRITY
1269 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1270 q->integrity.profile->prepare_fn(rq);
1271 #endif
1272 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1273 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1274 }
1275 EXPORT_SYMBOL(blk_mq_start_request);
1276
1277 /*
1278 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1279 * queues. This is important for md arrays to benefit from merging
1280 * requests.
1281 */
blk_plug_max_rq_count(struct blk_plug * plug)1282 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1283 {
1284 if (plug->multiple_queues)
1285 return BLK_MAX_REQUEST_COUNT * 2;
1286 return BLK_MAX_REQUEST_COUNT;
1287 }
1288
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1289 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1290 {
1291 struct request *last = rq_list_peek(&plug->mq_list);
1292
1293 if (!plug->rq_count) {
1294 trace_block_plug(rq->q);
1295 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1296 (!blk_queue_nomerges(rq->q) &&
1297 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1298 blk_mq_flush_plug_list(plug, false);
1299 last = NULL;
1300 trace_block_plug(rq->q);
1301 }
1302
1303 if (!plug->multiple_queues && last && last->q != rq->q)
1304 plug->multiple_queues = true;
1305 /*
1306 * Any request allocated from sched tags can't be issued to
1307 * ->queue_rqs() directly
1308 */
1309 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1310 plug->has_elevator = true;
1311 rq->rq_next = NULL;
1312 rq_list_add(&plug->mq_list, rq);
1313 plug->rq_count++;
1314 }
1315
1316 /**
1317 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1318 * @rq: request to insert
1319 * @at_head: insert request at head or tail of queue
1320 *
1321 * Description:
1322 * Insert a fully prepared request at the back of the I/O scheduler queue
1323 * for execution. Don't wait for completion.
1324 *
1325 * Note:
1326 * This function will invoke @done directly if the queue is dead.
1327 */
blk_execute_rq_nowait(struct request * rq,bool at_head)1328 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1329 {
1330 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1331
1332 WARN_ON(irqs_disabled());
1333 WARN_ON(!blk_rq_is_passthrough(rq));
1334
1335 blk_account_io_start(rq);
1336
1337 /*
1338 * As plugging can be enabled for passthrough requests on a zoned
1339 * device, directly accessing the plug instead of using blk_mq_plug()
1340 * should not have any consequences.
1341 */
1342 if (current->plug && !at_head) {
1343 blk_add_rq_to_plug(current->plug, rq);
1344 return;
1345 }
1346
1347 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1348 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1349 }
1350 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1351
1352 struct blk_rq_wait {
1353 struct completion done;
1354 blk_status_t ret;
1355 };
1356
blk_end_sync_rq(struct request * rq,blk_status_t ret)1357 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1358 {
1359 struct blk_rq_wait *wait = rq->end_io_data;
1360
1361 wait->ret = ret;
1362 complete(&wait->done);
1363 return RQ_END_IO_NONE;
1364 }
1365
blk_rq_is_poll(struct request * rq)1366 bool blk_rq_is_poll(struct request *rq)
1367 {
1368 if (!rq->mq_hctx)
1369 return false;
1370 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1371 return false;
1372 return true;
1373 }
1374 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1375
blk_rq_poll_completion(struct request * rq,struct completion * wait)1376 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1377 {
1378 do {
1379 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1380 cond_resched();
1381 } while (!completion_done(wait));
1382 }
1383
1384 /**
1385 * blk_execute_rq - insert a request into queue for execution
1386 * @rq: request to insert
1387 * @at_head: insert request at head or tail of queue
1388 *
1389 * Description:
1390 * Insert a fully prepared request at the back of the I/O scheduler queue
1391 * for execution and wait for completion.
1392 * Return: The blk_status_t result provided to blk_mq_end_request().
1393 */
blk_execute_rq(struct request * rq,bool at_head)1394 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1395 {
1396 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1397 struct blk_rq_wait wait = {
1398 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1399 };
1400
1401 WARN_ON(irqs_disabled());
1402 WARN_ON(!blk_rq_is_passthrough(rq));
1403
1404 rq->end_io_data = &wait;
1405 rq->end_io = blk_end_sync_rq;
1406
1407 blk_account_io_start(rq);
1408 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1409 blk_mq_run_hw_queue(hctx, false);
1410
1411 if (blk_rq_is_poll(rq)) {
1412 blk_rq_poll_completion(rq, &wait.done);
1413 } else {
1414 /*
1415 * Prevent hang_check timer from firing at us during very long
1416 * I/O
1417 */
1418 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1419
1420 if (hang_check)
1421 while (!wait_for_completion_io_timeout(&wait.done,
1422 hang_check * (HZ/2)))
1423 ;
1424 else
1425 wait_for_completion_io(&wait.done);
1426 }
1427
1428 return wait.ret;
1429 }
1430 EXPORT_SYMBOL(blk_execute_rq);
1431
__blk_mq_requeue_request(struct request * rq)1432 static void __blk_mq_requeue_request(struct request *rq)
1433 {
1434 struct request_queue *q = rq->q;
1435
1436 blk_mq_put_driver_tag(rq);
1437
1438 trace_block_rq_requeue(rq);
1439 rq_qos_requeue(q, rq);
1440
1441 if (blk_mq_request_started(rq)) {
1442 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1443 rq->rq_flags &= ~RQF_TIMED_OUT;
1444 }
1445 }
1446
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1447 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1448 {
1449 struct request_queue *q = rq->q;
1450 unsigned long flags;
1451
1452 __blk_mq_requeue_request(rq);
1453
1454 /* this request will be re-inserted to io scheduler queue */
1455 blk_mq_sched_requeue_request(rq);
1456
1457 spin_lock_irqsave(&q->requeue_lock, flags);
1458 list_add_tail(&rq->queuelist, &q->requeue_list);
1459 spin_unlock_irqrestore(&q->requeue_lock, flags);
1460
1461 if (kick_requeue_list)
1462 blk_mq_kick_requeue_list(q);
1463 }
1464 EXPORT_SYMBOL(blk_mq_requeue_request);
1465
blk_mq_requeue_work(struct work_struct * work)1466 static void blk_mq_requeue_work(struct work_struct *work)
1467 {
1468 struct request_queue *q =
1469 container_of(work, struct request_queue, requeue_work.work);
1470 LIST_HEAD(rq_list);
1471 LIST_HEAD(flush_list);
1472 struct request *rq;
1473
1474 spin_lock_irq(&q->requeue_lock);
1475 list_splice_init(&q->requeue_list, &rq_list);
1476 list_splice_init(&q->flush_list, &flush_list);
1477 spin_unlock_irq(&q->requeue_lock);
1478
1479 while (!list_empty(&rq_list)) {
1480 rq = list_entry(rq_list.next, struct request, queuelist);
1481 /*
1482 * If RQF_DONTPREP ist set, the request has been started by the
1483 * driver already and might have driver-specific data allocated
1484 * already. Insert it into the hctx dispatch list to avoid
1485 * block layer merges for the request.
1486 */
1487 if (rq->rq_flags & RQF_DONTPREP) {
1488 list_del_init(&rq->queuelist);
1489 blk_mq_request_bypass_insert(rq, 0);
1490 } else {
1491 list_del_init(&rq->queuelist);
1492 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1493 }
1494 }
1495
1496 while (!list_empty(&flush_list)) {
1497 rq = list_entry(flush_list.next, struct request, queuelist);
1498 list_del_init(&rq->queuelist);
1499 blk_mq_insert_request(rq, 0);
1500 }
1501
1502 blk_mq_run_hw_queues(q, false);
1503 }
1504
blk_mq_kick_requeue_list(struct request_queue * q)1505 void blk_mq_kick_requeue_list(struct request_queue *q)
1506 {
1507 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1508 }
1509 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1510
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1511 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1512 unsigned long msecs)
1513 {
1514 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1515 msecs_to_jiffies(msecs));
1516 }
1517 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1518
blk_is_flush_data_rq(struct request * rq)1519 static bool blk_is_flush_data_rq(struct request *rq)
1520 {
1521 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1522 }
1523
blk_mq_rq_inflight(struct request * rq,void * priv)1524 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1525 {
1526 /*
1527 * If we find a request that isn't idle we know the queue is busy
1528 * as it's checked in the iter.
1529 * Return false to stop the iteration.
1530 *
1531 * In case of queue quiesce, if one flush data request is completed,
1532 * don't count it as inflight given the flush sequence is suspended,
1533 * and the original flush data request is invisible to driver, just
1534 * like other pending requests because of quiesce
1535 */
1536 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1537 blk_is_flush_data_rq(rq) &&
1538 blk_mq_request_completed(rq))) {
1539 bool *busy = priv;
1540
1541 *busy = true;
1542 return false;
1543 }
1544
1545 return true;
1546 }
1547
blk_mq_queue_inflight(struct request_queue * q)1548 bool blk_mq_queue_inflight(struct request_queue *q)
1549 {
1550 bool busy = false;
1551
1552 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1553 return busy;
1554 }
1555 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1556
blk_mq_rq_timed_out(struct request * req)1557 static void blk_mq_rq_timed_out(struct request *req)
1558 {
1559 req->rq_flags |= RQF_TIMED_OUT;
1560 if (req->q->mq_ops->timeout) {
1561 enum blk_eh_timer_return ret;
1562
1563 ret = req->q->mq_ops->timeout(req);
1564 if (ret == BLK_EH_DONE)
1565 return;
1566 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1567 }
1568
1569 blk_add_timer(req);
1570 }
1571
1572 struct blk_expired_data {
1573 bool has_timedout_rq;
1574 unsigned long next;
1575 unsigned long timeout_start;
1576 };
1577
blk_mq_req_expired(struct request * rq,struct blk_expired_data * expired)1578 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1579 {
1580 unsigned long deadline;
1581
1582 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1583 return false;
1584 if (rq->rq_flags & RQF_TIMED_OUT)
1585 return false;
1586
1587 deadline = READ_ONCE(rq->deadline);
1588 if (time_after_eq(expired->timeout_start, deadline))
1589 return true;
1590
1591 if (expired->next == 0)
1592 expired->next = deadline;
1593 else if (time_after(expired->next, deadline))
1594 expired->next = deadline;
1595 return false;
1596 }
1597
blk_mq_put_rq_ref(struct request * rq)1598 void blk_mq_put_rq_ref(struct request *rq)
1599 {
1600 if (is_flush_rq(rq)) {
1601 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1602 blk_mq_free_request(rq);
1603 } else if (req_ref_put_and_test(rq)) {
1604 __blk_mq_free_request(rq);
1605 }
1606 }
1607
blk_mq_check_expired(struct request * rq,void * priv)1608 static bool blk_mq_check_expired(struct request *rq, void *priv)
1609 {
1610 struct blk_expired_data *expired = priv;
1611
1612 /*
1613 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1614 * be reallocated underneath the timeout handler's processing, then
1615 * the expire check is reliable. If the request is not expired, then
1616 * it was completed and reallocated as a new request after returning
1617 * from blk_mq_check_expired().
1618 */
1619 if (blk_mq_req_expired(rq, expired)) {
1620 expired->has_timedout_rq = true;
1621 return false;
1622 }
1623 return true;
1624 }
1625
blk_mq_handle_expired(struct request * rq,void * priv)1626 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1627 {
1628 struct blk_expired_data *expired = priv;
1629
1630 if (blk_mq_req_expired(rq, expired))
1631 blk_mq_rq_timed_out(rq);
1632 return true;
1633 }
1634
blk_mq_timeout_work(struct work_struct * work)1635 static void blk_mq_timeout_work(struct work_struct *work)
1636 {
1637 struct request_queue *q =
1638 container_of(work, struct request_queue, timeout_work);
1639 struct blk_expired_data expired = {
1640 .timeout_start = jiffies,
1641 };
1642 struct blk_mq_hw_ctx *hctx;
1643 unsigned long i;
1644
1645 /* A deadlock might occur if a request is stuck requiring a
1646 * timeout at the same time a queue freeze is waiting
1647 * completion, since the timeout code would not be able to
1648 * acquire the queue reference here.
1649 *
1650 * That's why we don't use blk_queue_enter here; instead, we use
1651 * percpu_ref_tryget directly, because we need to be able to
1652 * obtain a reference even in the short window between the queue
1653 * starting to freeze, by dropping the first reference in
1654 * blk_freeze_queue_start, and the moment the last request is
1655 * consumed, marked by the instant q_usage_counter reaches
1656 * zero.
1657 */
1658 if (!percpu_ref_tryget(&q->q_usage_counter))
1659 return;
1660
1661 /* check if there is any timed-out request */
1662 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1663 if (expired.has_timedout_rq) {
1664 /*
1665 * Before walking tags, we must ensure any submit started
1666 * before the current time has finished. Since the submit
1667 * uses srcu or rcu, wait for a synchronization point to
1668 * ensure all running submits have finished
1669 */
1670 blk_mq_wait_quiesce_done(q->tag_set);
1671
1672 expired.next = 0;
1673 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1674 }
1675
1676 if (expired.next != 0) {
1677 mod_timer(&q->timeout, expired.next);
1678 } else {
1679 /*
1680 * Request timeouts are handled as a forward rolling timer. If
1681 * we end up here it means that no requests are pending and
1682 * also that no request has been pending for a while. Mark
1683 * each hctx as idle.
1684 */
1685 queue_for_each_hw_ctx(q, hctx, i) {
1686 /* the hctx may be unmapped, so check it here */
1687 if (blk_mq_hw_queue_mapped(hctx))
1688 blk_mq_tag_idle(hctx);
1689 }
1690 }
1691 blk_queue_exit(q);
1692 }
1693
1694 struct flush_busy_ctx_data {
1695 struct blk_mq_hw_ctx *hctx;
1696 struct list_head *list;
1697 };
1698
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1699 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1700 {
1701 struct flush_busy_ctx_data *flush_data = data;
1702 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1703 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1704 enum hctx_type type = hctx->type;
1705
1706 spin_lock(&ctx->lock);
1707 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1708 sbitmap_clear_bit(sb, bitnr);
1709 spin_unlock(&ctx->lock);
1710 return true;
1711 }
1712
1713 /*
1714 * Process software queues that have been marked busy, splicing them
1715 * to the for-dispatch
1716 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1717 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1718 {
1719 struct flush_busy_ctx_data data = {
1720 .hctx = hctx,
1721 .list = list,
1722 };
1723
1724 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1725 }
1726 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1727
1728 struct dispatch_rq_data {
1729 struct blk_mq_hw_ctx *hctx;
1730 struct request *rq;
1731 };
1732
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1733 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1734 void *data)
1735 {
1736 struct dispatch_rq_data *dispatch_data = data;
1737 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1738 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1739 enum hctx_type type = hctx->type;
1740
1741 spin_lock(&ctx->lock);
1742 if (!list_empty(&ctx->rq_lists[type])) {
1743 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1744 list_del_init(&dispatch_data->rq->queuelist);
1745 if (list_empty(&ctx->rq_lists[type]))
1746 sbitmap_clear_bit(sb, bitnr);
1747 }
1748 spin_unlock(&ctx->lock);
1749
1750 return !dispatch_data->rq;
1751 }
1752
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1753 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1754 struct blk_mq_ctx *start)
1755 {
1756 unsigned off = start ? start->index_hw[hctx->type] : 0;
1757 struct dispatch_rq_data data = {
1758 .hctx = hctx,
1759 .rq = NULL,
1760 };
1761
1762 __sbitmap_for_each_set(&hctx->ctx_map, off,
1763 dispatch_rq_from_ctx, &data);
1764
1765 return data.rq;
1766 }
1767
__blk_mq_alloc_driver_tag(struct request * rq)1768 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1769 {
1770 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1771 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1772 int tag;
1773
1774 blk_mq_tag_busy(rq->mq_hctx);
1775
1776 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1777 bt = &rq->mq_hctx->tags->breserved_tags;
1778 tag_offset = 0;
1779 } else {
1780 if (!hctx_may_queue(rq->mq_hctx, bt))
1781 return false;
1782 }
1783
1784 tag = __sbitmap_queue_get(bt);
1785 if (tag == BLK_MQ_NO_TAG)
1786 return false;
1787
1788 rq->tag = tag + tag_offset;
1789 return true;
1790 }
1791
__blk_mq_get_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)1792 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1793 {
1794 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1795 return false;
1796
1797 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1798 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1799 rq->rq_flags |= RQF_MQ_INFLIGHT;
1800 __blk_mq_inc_active_requests(hctx);
1801 }
1802 hctx->tags->rqs[rq->tag] = rq;
1803 return true;
1804 }
1805
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1806 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1807 int flags, void *key)
1808 {
1809 struct blk_mq_hw_ctx *hctx;
1810
1811 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1812
1813 spin_lock(&hctx->dispatch_wait_lock);
1814 if (!list_empty(&wait->entry)) {
1815 struct sbitmap_queue *sbq;
1816
1817 list_del_init(&wait->entry);
1818 sbq = &hctx->tags->bitmap_tags;
1819 atomic_dec(&sbq->ws_active);
1820 }
1821 spin_unlock(&hctx->dispatch_wait_lock);
1822
1823 blk_mq_run_hw_queue(hctx, true);
1824 return 1;
1825 }
1826
1827 /*
1828 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1829 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1830 * restart. For both cases, take care to check the condition again after
1831 * marking us as waiting.
1832 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1833 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1834 struct request *rq)
1835 {
1836 struct sbitmap_queue *sbq;
1837 struct wait_queue_head *wq;
1838 wait_queue_entry_t *wait;
1839 bool ret;
1840
1841 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1842 !(blk_mq_is_shared_tags(hctx->flags))) {
1843 blk_mq_sched_mark_restart_hctx(hctx);
1844
1845 /*
1846 * It's possible that a tag was freed in the window between the
1847 * allocation failure and adding the hardware queue to the wait
1848 * queue.
1849 *
1850 * Don't clear RESTART here, someone else could have set it.
1851 * At most this will cost an extra queue run.
1852 */
1853 return blk_mq_get_driver_tag(rq);
1854 }
1855
1856 wait = &hctx->dispatch_wait;
1857 if (!list_empty_careful(&wait->entry))
1858 return false;
1859
1860 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1861 sbq = &hctx->tags->breserved_tags;
1862 else
1863 sbq = &hctx->tags->bitmap_tags;
1864 wq = &bt_wait_ptr(sbq, hctx)->wait;
1865
1866 spin_lock_irq(&wq->lock);
1867 spin_lock(&hctx->dispatch_wait_lock);
1868 if (!list_empty(&wait->entry)) {
1869 spin_unlock(&hctx->dispatch_wait_lock);
1870 spin_unlock_irq(&wq->lock);
1871 return false;
1872 }
1873
1874 atomic_inc(&sbq->ws_active);
1875 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1876 __add_wait_queue(wq, wait);
1877
1878 /*
1879 * Add one explicit barrier since blk_mq_get_driver_tag() may
1880 * not imply barrier in case of failure.
1881 *
1882 * Order adding us to wait queue and allocating driver tag.
1883 *
1884 * The pair is the one implied in sbitmap_queue_wake_up() which
1885 * orders clearing sbitmap tag bits and waitqueue_active() in
1886 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1887 *
1888 * Otherwise, re-order of adding wait queue and getting driver tag
1889 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1890 * the waitqueue_active() may not observe us in wait queue.
1891 */
1892 smp_mb();
1893
1894 /*
1895 * It's possible that a tag was freed in the window between the
1896 * allocation failure and adding the hardware queue to the wait
1897 * queue.
1898 */
1899 ret = blk_mq_get_driver_tag(rq);
1900 if (!ret) {
1901 spin_unlock(&hctx->dispatch_wait_lock);
1902 spin_unlock_irq(&wq->lock);
1903 return false;
1904 }
1905
1906 /*
1907 * We got a tag, remove ourselves from the wait queue to ensure
1908 * someone else gets the wakeup.
1909 */
1910 list_del_init(&wait->entry);
1911 atomic_dec(&sbq->ws_active);
1912 spin_unlock(&hctx->dispatch_wait_lock);
1913 spin_unlock_irq(&wq->lock);
1914
1915 return true;
1916 }
1917
1918 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1919 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1920 /*
1921 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1922 * - EWMA is one simple way to compute running average value
1923 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1924 * - take 4 as factor for avoiding to get too small(0) result, and this
1925 * factor doesn't matter because EWMA decreases exponentially
1926 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1927 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1928 {
1929 unsigned int ewma;
1930
1931 ewma = hctx->dispatch_busy;
1932
1933 if (!ewma && !busy)
1934 return;
1935
1936 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1937 if (busy)
1938 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1939 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1940
1941 hctx->dispatch_busy = ewma;
1942 }
1943
1944 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1945
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1946 static void blk_mq_handle_dev_resource(struct request *rq,
1947 struct list_head *list)
1948 {
1949 list_add(&rq->queuelist, list);
1950 __blk_mq_requeue_request(rq);
1951 }
1952
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1953 static void blk_mq_handle_zone_resource(struct request *rq,
1954 struct list_head *zone_list)
1955 {
1956 /*
1957 * If we end up here it is because we cannot dispatch a request to a
1958 * specific zone due to LLD level zone-write locking or other zone
1959 * related resource not being available. In this case, set the request
1960 * aside in zone_list for retrying it later.
1961 */
1962 list_add(&rq->queuelist, zone_list);
1963 __blk_mq_requeue_request(rq);
1964 }
1965
1966 enum prep_dispatch {
1967 PREP_DISPATCH_OK,
1968 PREP_DISPATCH_NO_TAG,
1969 PREP_DISPATCH_NO_BUDGET,
1970 };
1971
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1972 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1973 bool need_budget)
1974 {
1975 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1976 int budget_token = -1;
1977
1978 if (need_budget) {
1979 budget_token = blk_mq_get_dispatch_budget(rq->q);
1980 if (budget_token < 0) {
1981 blk_mq_put_driver_tag(rq);
1982 return PREP_DISPATCH_NO_BUDGET;
1983 }
1984 blk_mq_set_rq_budget_token(rq, budget_token);
1985 }
1986
1987 if (!blk_mq_get_driver_tag(rq)) {
1988 /*
1989 * The initial allocation attempt failed, so we need to
1990 * rerun the hardware queue when a tag is freed. The
1991 * waitqueue takes care of that. If the queue is run
1992 * before we add this entry back on the dispatch list,
1993 * we'll re-run it below.
1994 */
1995 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1996 /*
1997 * All budgets not got from this function will be put
1998 * together during handling partial dispatch
1999 */
2000 if (need_budget)
2001 blk_mq_put_dispatch_budget(rq->q, budget_token);
2002 return PREP_DISPATCH_NO_TAG;
2003 }
2004 }
2005
2006 return PREP_DISPATCH_OK;
2007 }
2008
2009 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)2010 static void blk_mq_release_budgets(struct request_queue *q,
2011 struct list_head *list)
2012 {
2013 struct request *rq;
2014
2015 list_for_each_entry(rq, list, queuelist) {
2016 int budget_token = blk_mq_get_rq_budget_token(rq);
2017
2018 if (budget_token >= 0)
2019 blk_mq_put_dispatch_budget(q, budget_token);
2020 }
2021 }
2022
2023 /*
2024 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2025 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2026 * details)
2027 * Attention, we should explicitly call this in unusual cases:
2028 * 1) did not queue everything initially scheduled to queue
2029 * 2) the last attempt to queue a request failed
2030 */
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int queued,bool from_schedule)2031 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2032 bool from_schedule)
2033 {
2034 if (hctx->queue->mq_ops->commit_rqs && queued) {
2035 trace_block_unplug(hctx->queue, queued, !from_schedule);
2036 hctx->queue->mq_ops->commit_rqs(hctx);
2037 }
2038 }
2039
2040 /*
2041 * Returns true if we did some work AND can potentially do more.
2042 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)2043 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2044 unsigned int nr_budgets)
2045 {
2046 enum prep_dispatch prep;
2047 struct request_queue *q = hctx->queue;
2048 struct request *rq;
2049 int queued;
2050 blk_status_t ret = BLK_STS_OK;
2051 LIST_HEAD(zone_list);
2052 bool needs_resource = false;
2053
2054 if (list_empty(list))
2055 return false;
2056
2057 /*
2058 * Now process all the entries, sending them to the driver.
2059 */
2060 queued = 0;
2061 do {
2062 struct blk_mq_queue_data bd;
2063
2064 rq = list_first_entry(list, struct request, queuelist);
2065
2066 WARN_ON_ONCE(hctx != rq->mq_hctx);
2067 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2068 if (prep != PREP_DISPATCH_OK)
2069 break;
2070
2071 list_del_init(&rq->queuelist);
2072
2073 bd.rq = rq;
2074 bd.last = list_empty(list);
2075
2076 /*
2077 * once the request is queued to lld, no need to cover the
2078 * budget any more
2079 */
2080 if (nr_budgets)
2081 nr_budgets--;
2082 ret = q->mq_ops->queue_rq(hctx, &bd);
2083 switch (ret) {
2084 case BLK_STS_OK:
2085 queued++;
2086 break;
2087 case BLK_STS_RESOURCE:
2088 needs_resource = true;
2089 fallthrough;
2090 case BLK_STS_DEV_RESOURCE:
2091 blk_mq_handle_dev_resource(rq, list);
2092 goto out;
2093 case BLK_STS_ZONE_RESOURCE:
2094 /*
2095 * Move the request to zone_list and keep going through
2096 * the dispatch list to find more requests the drive can
2097 * accept.
2098 */
2099 blk_mq_handle_zone_resource(rq, &zone_list);
2100 needs_resource = true;
2101 break;
2102 default:
2103 blk_mq_end_request(rq, ret);
2104 }
2105 } while (!list_empty(list));
2106 out:
2107 if (!list_empty(&zone_list))
2108 list_splice_tail_init(&zone_list, list);
2109
2110 /* If we didn't flush the entire list, we could have told the driver
2111 * there was more coming, but that turned out to be a lie.
2112 */
2113 if (!list_empty(list) || ret != BLK_STS_OK)
2114 blk_mq_commit_rqs(hctx, queued, false);
2115
2116 /*
2117 * Any items that need requeuing? Stuff them into hctx->dispatch,
2118 * that is where we will continue on next queue run.
2119 */
2120 if (!list_empty(list)) {
2121 bool needs_restart;
2122 /* For non-shared tags, the RESTART check will suffice */
2123 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2124 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2125 blk_mq_is_shared_tags(hctx->flags));
2126
2127 if (nr_budgets)
2128 blk_mq_release_budgets(q, list);
2129
2130 spin_lock(&hctx->lock);
2131 list_splice_tail_init(list, &hctx->dispatch);
2132 spin_unlock(&hctx->lock);
2133
2134 /*
2135 * Order adding requests to hctx->dispatch and checking
2136 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2137 * in blk_mq_sched_restart(). Avoid restart code path to
2138 * miss the new added requests to hctx->dispatch, meantime
2139 * SCHED_RESTART is observed here.
2140 */
2141 smp_mb();
2142
2143 /*
2144 * If SCHED_RESTART was set by the caller of this function and
2145 * it is no longer set that means that it was cleared by another
2146 * thread and hence that a queue rerun is needed.
2147 *
2148 * If 'no_tag' is set, that means that we failed getting
2149 * a driver tag with an I/O scheduler attached. If our dispatch
2150 * waitqueue is no longer active, ensure that we run the queue
2151 * AFTER adding our entries back to the list.
2152 *
2153 * If no I/O scheduler has been configured it is possible that
2154 * the hardware queue got stopped and restarted before requests
2155 * were pushed back onto the dispatch list. Rerun the queue to
2156 * avoid starvation. Notes:
2157 * - blk_mq_run_hw_queue() checks whether or not a queue has
2158 * been stopped before rerunning a queue.
2159 * - Some but not all block drivers stop a queue before
2160 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2161 * and dm-rq.
2162 *
2163 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2164 * bit is set, run queue after a delay to avoid IO stalls
2165 * that could otherwise occur if the queue is idle. We'll do
2166 * similar if we couldn't get budget or couldn't lock a zone
2167 * and SCHED_RESTART is set.
2168 */
2169 needs_restart = blk_mq_sched_needs_restart(hctx);
2170 if (prep == PREP_DISPATCH_NO_BUDGET)
2171 needs_resource = true;
2172 if (!needs_restart ||
2173 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2174 blk_mq_run_hw_queue(hctx, true);
2175 else if (needs_resource)
2176 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2177
2178 blk_mq_update_dispatch_busy(hctx, true);
2179 return false;
2180 }
2181
2182 blk_mq_update_dispatch_busy(hctx, false);
2183 return true;
2184 }
2185
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2186 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2187 {
2188 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2189
2190 if (cpu >= nr_cpu_ids)
2191 cpu = cpumask_first(hctx->cpumask);
2192 return cpu;
2193 }
2194
2195 /*
2196 * It'd be great if the workqueue API had a way to pass
2197 * in a mask and had some smarts for more clever placement.
2198 * For now we just round-robin here, switching for every
2199 * BLK_MQ_CPU_WORK_BATCH queued items.
2200 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2201 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2202 {
2203 bool tried = false;
2204 int next_cpu = hctx->next_cpu;
2205
2206 if (hctx->queue->nr_hw_queues == 1)
2207 return WORK_CPU_UNBOUND;
2208
2209 if (--hctx->next_cpu_batch <= 0) {
2210 select_cpu:
2211 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2212 cpu_online_mask);
2213 if (next_cpu >= nr_cpu_ids)
2214 next_cpu = blk_mq_first_mapped_cpu(hctx);
2215 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2216 }
2217
2218 /*
2219 * Do unbound schedule if we can't find a online CPU for this hctx,
2220 * and it should only happen in the path of handling CPU DEAD.
2221 */
2222 if (!cpu_online(next_cpu)) {
2223 if (!tried) {
2224 tried = true;
2225 goto select_cpu;
2226 }
2227
2228 /*
2229 * Make sure to re-select CPU next time once after CPUs
2230 * in hctx->cpumask become online again.
2231 */
2232 hctx->next_cpu = next_cpu;
2233 hctx->next_cpu_batch = 1;
2234 return WORK_CPU_UNBOUND;
2235 }
2236
2237 hctx->next_cpu = next_cpu;
2238 return next_cpu;
2239 }
2240
2241 /**
2242 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2243 * @hctx: Pointer to the hardware queue to run.
2244 * @msecs: Milliseconds of delay to wait before running the queue.
2245 *
2246 * Run a hardware queue asynchronously with a delay of @msecs.
2247 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2248 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2249 {
2250 if (unlikely(blk_mq_hctx_stopped(hctx)))
2251 return;
2252 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2253 msecs_to_jiffies(msecs));
2254 }
2255 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2256
2257 /**
2258 * blk_mq_run_hw_queue - Start to run a hardware queue.
2259 * @hctx: Pointer to the hardware queue to run.
2260 * @async: If we want to run the queue asynchronously.
2261 *
2262 * Check if the request queue is not in a quiesced state and if there are
2263 * pending requests to be sent. If this is true, run the queue to send requests
2264 * to hardware.
2265 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2266 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2267 {
2268 bool need_run;
2269
2270 /*
2271 * We can't run the queue inline with interrupts disabled.
2272 */
2273 WARN_ON_ONCE(!async && in_interrupt());
2274
2275 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2276
2277 /*
2278 * When queue is quiesced, we may be switching io scheduler, or
2279 * updating nr_hw_queues, or other things, and we can't run queue
2280 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2281 *
2282 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2283 * quiesced.
2284 */
2285 __blk_mq_run_dispatch_ops(hctx->queue, false,
2286 need_run = !blk_queue_quiesced(hctx->queue) &&
2287 blk_mq_hctx_has_pending(hctx));
2288
2289 if (!need_run)
2290 return;
2291
2292 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2293 blk_mq_delay_run_hw_queue(hctx, 0);
2294 return;
2295 }
2296
2297 blk_mq_run_dispatch_ops(hctx->queue,
2298 blk_mq_sched_dispatch_requests(hctx));
2299 }
2300 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2301
2302 /*
2303 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2304 * scheduler.
2305 */
blk_mq_get_sq_hctx(struct request_queue * q)2306 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2307 {
2308 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2309 /*
2310 * If the IO scheduler does not respect hardware queues when
2311 * dispatching, we just don't bother with multiple HW queues and
2312 * dispatch from hctx for the current CPU since running multiple queues
2313 * just causes lock contention inside the scheduler and pointless cache
2314 * bouncing.
2315 */
2316 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2317
2318 if (!blk_mq_hctx_stopped(hctx))
2319 return hctx;
2320 return NULL;
2321 }
2322
2323 /**
2324 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2325 * @q: Pointer to the request queue to run.
2326 * @async: If we want to run the queue asynchronously.
2327 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)2328 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2329 {
2330 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2331 unsigned long i;
2332
2333 sq_hctx = NULL;
2334 if (blk_queue_sq_sched(q))
2335 sq_hctx = blk_mq_get_sq_hctx(q);
2336 queue_for_each_hw_ctx(q, hctx, i) {
2337 if (blk_mq_hctx_stopped(hctx))
2338 continue;
2339 /*
2340 * Dispatch from this hctx either if there's no hctx preferred
2341 * by IO scheduler or if it has requests that bypass the
2342 * scheduler.
2343 */
2344 if (!sq_hctx || sq_hctx == hctx ||
2345 !list_empty_careful(&hctx->dispatch))
2346 blk_mq_run_hw_queue(hctx, async);
2347 }
2348 }
2349 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2350
2351 /**
2352 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2353 * @q: Pointer to the request queue to run.
2354 * @msecs: Milliseconds of delay to wait before running the queues.
2355 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2356 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2357 {
2358 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2359 unsigned long i;
2360
2361 sq_hctx = NULL;
2362 if (blk_queue_sq_sched(q))
2363 sq_hctx = blk_mq_get_sq_hctx(q);
2364 queue_for_each_hw_ctx(q, hctx, i) {
2365 if (blk_mq_hctx_stopped(hctx))
2366 continue;
2367 /*
2368 * If there is already a run_work pending, leave the
2369 * pending delay untouched. Otherwise, a hctx can stall
2370 * if another hctx is re-delaying the other's work
2371 * before the work executes.
2372 */
2373 if (delayed_work_pending(&hctx->run_work))
2374 continue;
2375 /*
2376 * Dispatch from this hctx either if there's no hctx preferred
2377 * by IO scheduler or if it has requests that bypass the
2378 * scheduler.
2379 */
2380 if (!sq_hctx || sq_hctx == hctx ||
2381 !list_empty_careful(&hctx->dispatch))
2382 blk_mq_delay_run_hw_queue(hctx, msecs);
2383 }
2384 }
2385 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2386
2387 /*
2388 * This function is often used for pausing .queue_rq() by driver when
2389 * there isn't enough resource or some conditions aren't satisfied, and
2390 * BLK_STS_RESOURCE is usually returned.
2391 *
2392 * We do not guarantee that dispatch can be drained or blocked
2393 * after blk_mq_stop_hw_queue() returns. Please use
2394 * blk_mq_quiesce_queue() for that requirement.
2395 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2396 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2397 {
2398 cancel_delayed_work(&hctx->run_work);
2399
2400 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2401 }
2402 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2403
2404 /*
2405 * This function is often used for pausing .queue_rq() by driver when
2406 * there isn't enough resource or some conditions aren't satisfied, and
2407 * BLK_STS_RESOURCE is usually returned.
2408 *
2409 * We do not guarantee that dispatch can be drained or blocked
2410 * after blk_mq_stop_hw_queues() returns. Please use
2411 * blk_mq_quiesce_queue() for that requirement.
2412 */
blk_mq_stop_hw_queues(struct request_queue * q)2413 void blk_mq_stop_hw_queues(struct request_queue *q)
2414 {
2415 struct blk_mq_hw_ctx *hctx;
2416 unsigned long i;
2417
2418 queue_for_each_hw_ctx(q, hctx, i)
2419 blk_mq_stop_hw_queue(hctx);
2420 }
2421 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2422
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2423 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2424 {
2425 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2426
2427 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2428 }
2429 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2430
blk_mq_start_hw_queues(struct request_queue * q)2431 void blk_mq_start_hw_queues(struct request_queue *q)
2432 {
2433 struct blk_mq_hw_ctx *hctx;
2434 unsigned long i;
2435
2436 queue_for_each_hw_ctx(q, hctx, i)
2437 blk_mq_start_hw_queue(hctx);
2438 }
2439 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2440
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2441 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2442 {
2443 if (!blk_mq_hctx_stopped(hctx))
2444 return;
2445
2446 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2447 blk_mq_run_hw_queue(hctx, async);
2448 }
2449 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2450
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2451 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2452 {
2453 struct blk_mq_hw_ctx *hctx;
2454 unsigned long i;
2455
2456 queue_for_each_hw_ctx(q, hctx, i)
2457 blk_mq_start_stopped_hw_queue(hctx, async ||
2458 (hctx->flags & BLK_MQ_F_BLOCKING));
2459 }
2460 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2461
blk_mq_run_work_fn(struct work_struct * work)2462 static void blk_mq_run_work_fn(struct work_struct *work)
2463 {
2464 struct blk_mq_hw_ctx *hctx =
2465 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2466
2467 blk_mq_run_dispatch_ops(hctx->queue,
2468 blk_mq_sched_dispatch_requests(hctx));
2469 }
2470
2471 /**
2472 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2473 * @rq: Pointer to request to be inserted.
2474 * @flags: BLK_MQ_INSERT_*
2475 *
2476 * Should only be used carefully, when the caller knows we want to
2477 * bypass a potential IO scheduler on the target device.
2478 */
blk_mq_request_bypass_insert(struct request * rq,blk_insert_t flags)2479 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2480 {
2481 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2482
2483 spin_lock(&hctx->lock);
2484 if (flags & BLK_MQ_INSERT_AT_HEAD)
2485 list_add(&rq->queuelist, &hctx->dispatch);
2486 else
2487 list_add_tail(&rq->queuelist, &hctx->dispatch);
2488 spin_unlock(&hctx->lock);
2489 }
2490
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)2491 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2492 struct blk_mq_ctx *ctx, struct list_head *list,
2493 bool run_queue_async)
2494 {
2495 struct request *rq;
2496 enum hctx_type type = hctx->type;
2497
2498 /*
2499 * Try to issue requests directly if the hw queue isn't busy to save an
2500 * extra enqueue & dequeue to the sw queue.
2501 */
2502 if (!hctx->dispatch_busy && !run_queue_async) {
2503 blk_mq_run_dispatch_ops(hctx->queue,
2504 blk_mq_try_issue_list_directly(hctx, list));
2505 if (list_empty(list))
2506 goto out;
2507 }
2508
2509 /*
2510 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2511 * offline now
2512 */
2513 list_for_each_entry(rq, list, queuelist) {
2514 BUG_ON(rq->mq_ctx != ctx);
2515 trace_block_rq_insert(rq);
2516 if (rq->cmd_flags & REQ_NOWAIT)
2517 run_queue_async = true;
2518 }
2519
2520 spin_lock(&ctx->lock);
2521 list_splice_tail_init(list, &ctx->rq_lists[type]);
2522 blk_mq_hctx_mark_pending(hctx, ctx);
2523 spin_unlock(&ctx->lock);
2524 out:
2525 blk_mq_run_hw_queue(hctx, run_queue_async);
2526 }
2527
blk_mq_insert_request(struct request * rq,blk_insert_t flags)2528 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2529 {
2530 struct request_queue *q = rq->q;
2531 struct blk_mq_ctx *ctx = rq->mq_ctx;
2532 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2533
2534 if (blk_rq_is_passthrough(rq)) {
2535 /*
2536 * Passthrough request have to be added to hctx->dispatch
2537 * directly. The device may be in a situation where it can't
2538 * handle FS request, and always returns BLK_STS_RESOURCE for
2539 * them, which gets them added to hctx->dispatch.
2540 *
2541 * If a passthrough request is required to unblock the queues,
2542 * and it is added to the scheduler queue, there is no chance to
2543 * dispatch it given we prioritize requests in hctx->dispatch.
2544 */
2545 blk_mq_request_bypass_insert(rq, flags);
2546 } else if (req_op(rq) == REQ_OP_FLUSH) {
2547 /*
2548 * Firstly normal IO request is inserted to scheduler queue or
2549 * sw queue, meantime we add flush request to dispatch queue(
2550 * hctx->dispatch) directly and there is at most one in-flight
2551 * flush request for each hw queue, so it doesn't matter to add
2552 * flush request to tail or front of the dispatch queue.
2553 *
2554 * Secondly in case of NCQ, flush request belongs to non-NCQ
2555 * command, and queueing it will fail when there is any
2556 * in-flight normal IO request(NCQ command). When adding flush
2557 * rq to the front of hctx->dispatch, it is easier to introduce
2558 * extra time to flush rq's latency because of S_SCHED_RESTART
2559 * compared with adding to the tail of dispatch queue, then
2560 * chance of flush merge is increased, and less flush requests
2561 * will be issued to controller. It is observed that ~10% time
2562 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2563 * drive when adding flush rq to the front of hctx->dispatch.
2564 *
2565 * Simply queue flush rq to the front of hctx->dispatch so that
2566 * intensive flush workloads can benefit in case of NCQ HW.
2567 */
2568 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2569 } else if (q->elevator) {
2570 LIST_HEAD(list);
2571
2572 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2573
2574 list_add(&rq->queuelist, &list);
2575 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2576 } else {
2577 trace_block_rq_insert(rq);
2578
2579 spin_lock(&ctx->lock);
2580 if (flags & BLK_MQ_INSERT_AT_HEAD)
2581 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2582 else
2583 list_add_tail(&rq->queuelist,
2584 &ctx->rq_lists[hctx->type]);
2585 blk_mq_hctx_mark_pending(hctx, ctx);
2586 spin_unlock(&ctx->lock);
2587 }
2588 }
2589
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2590 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2591 unsigned int nr_segs)
2592 {
2593 int err;
2594
2595 if (bio->bi_opf & REQ_RAHEAD)
2596 rq->cmd_flags |= REQ_FAILFAST_MASK;
2597
2598 rq->__sector = bio->bi_iter.bi_sector;
2599 blk_rq_bio_prep(rq, bio, nr_segs);
2600
2601 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2602 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2603 WARN_ON_ONCE(err);
2604
2605 blk_account_io_start(rq);
2606 }
2607
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2608 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2609 struct request *rq, bool last)
2610 {
2611 struct request_queue *q = rq->q;
2612 struct blk_mq_queue_data bd = {
2613 .rq = rq,
2614 .last = last,
2615 };
2616 blk_status_t ret;
2617
2618 /*
2619 * For OK queue, we are done. For error, caller may kill it.
2620 * Any other error (busy), just add it to our list as we
2621 * previously would have done.
2622 */
2623 ret = q->mq_ops->queue_rq(hctx, &bd);
2624 switch (ret) {
2625 case BLK_STS_OK:
2626 blk_mq_update_dispatch_busy(hctx, false);
2627 break;
2628 case BLK_STS_RESOURCE:
2629 case BLK_STS_DEV_RESOURCE:
2630 blk_mq_update_dispatch_busy(hctx, true);
2631 __blk_mq_requeue_request(rq);
2632 break;
2633 default:
2634 blk_mq_update_dispatch_busy(hctx, false);
2635 break;
2636 }
2637
2638 return ret;
2639 }
2640
blk_mq_get_budget_and_tag(struct request * rq)2641 static bool blk_mq_get_budget_and_tag(struct request *rq)
2642 {
2643 int budget_token;
2644
2645 budget_token = blk_mq_get_dispatch_budget(rq->q);
2646 if (budget_token < 0)
2647 return false;
2648 blk_mq_set_rq_budget_token(rq, budget_token);
2649 if (!blk_mq_get_driver_tag(rq)) {
2650 blk_mq_put_dispatch_budget(rq->q, budget_token);
2651 return false;
2652 }
2653 return true;
2654 }
2655
2656 /**
2657 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2658 * @hctx: Pointer of the associated hardware queue.
2659 * @rq: Pointer to request to be sent.
2660 *
2661 * If the device has enough resources to accept a new request now, send the
2662 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2663 * we can try send it another time in the future. Requests inserted at this
2664 * queue have higher priority.
2665 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2666 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2667 struct request *rq)
2668 {
2669 blk_status_t ret;
2670
2671 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2672 blk_mq_insert_request(rq, 0);
2673 return;
2674 }
2675
2676 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2677 blk_mq_insert_request(rq, 0);
2678 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2679 return;
2680 }
2681
2682 ret = __blk_mq_issue_directly(hctx, rq, true);
2683 switch (ret) {
2684 case BLK_STS_OK:
2685 break;
2686 case BLK_STS_RESOURCE:
2687 case BLK_STS_DEV_RESOURCE:
2688 blk_mq_request_bypass_insert(rq, 0);
2689 blk_mq_run_hw_queue(hctx, false);
2690 break;
2691 default:
2692 blk_mq_end_request(rq, ret);
2693 break;
2694 }
2695 }
2696
blk_mq_request_issue_directly(struct request * rq,bool last)2697 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2698 {
2699 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2700
2701 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2702 blk_mq_insert_request(rq, 0);
2703 return BLK_STS_OK;
2704 }
2705
2706 if (!blk_mq_get_budget_and_tag(rq))
2707 return BLK_STS_RESOURCE;
2708 return __blk_mq_issue_directly(hctx, rq, last);
2709 }
2710
blk_mq_plug_issue_direct(struct blk_plug * plug)2711 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2712 {
2713 struct blk_mq_hw_ctx *hctx = NULL;
2714 struct request *rq;
2715 int queued = 0;
2716 blk_status_t ret = BLK_STS_OK;
2717
2718 while ((rq = rq_list_pop(&plug->mq_list))) {
2719 bool last = rq_list_empty(plug->mq_list);
2720
2721 if (hctx != rq->mq_hctx) {
2722 if (hctx) {
2723 blk_mq_commit_rqs(hctx, queued, false);
2724 queued = 0;
2725 }
2726 hctx = rq->mq_hctx;
2727 }
2728
2729 ret = blk_mq_request_issue_directly(rq, last);
2730 switch (ret) {
2731 case BLK_STS_OK:
2732 queued++;
2733 break;
2734 case BLK_STS_RESOURCE:
2735 case BLK_STS_DEV_RESOURCE:
2736 blk_mq_request_bypass_insert(rq, 0);
2737 blk_mq_run_hw_queue(hctx, false);
2738 goto out;
2739 default:
2740 blk_mq_end_request(rq, ret);
2741 break;
2742 }
2743 }
2744
2745 out:
2746 if (ret != BLK_STS_OK)
2747 blk_mq_commit_rqs(hctx, queued, false);
2748 }
2749
__blk_mq_flush_plug_list(struct request_queue * q,struct blk_plug * plug)2750 static void __blk_mq_flush_plug_list(struct request_queue *q,
2751 struct blk_plug *plug)
2752 {
2753 if (blk_queue_quiesced(q))
2754 return;
2755 q->mq_ops->queue_rqs(&plug->mq_list);
2756 }
2757
blk_mq_dispatch_plug_list(struct blk_plug * plug,bool from_sched)2758 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2759 {
2760 struct blk_mq_hw_ctx *this_hctx = NULL;
2761 struct blk_mq_ctx *this_ctx = NULL;
2762 struct request *requeue_list = NULL;
2763 struct request **requeue_lastp = &requeue_list;
2764 unsigned int depth = 0;
2765 bool is_passthrough = false;
2766 LIST_HEAD(list);
2767
2768 do {
2769 struct request *rq = rq_list_pop(&plug->mq_list);
2770
2771 if (!this_hctx) {
2772 this_hctx = rq->mq_hctx;
2773 this_ctx = rq->mq_ctx;
2774 is_passthrough = blk_rq_is_passthrough(rq);
2775 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2776 is_passthrough != blk_rq_is_passthrough(rq)) {
2777 rq_list_add_tail(&requeue_lastp, rq);
2778 continue;
2779 }
2780 list_add(&rq->queuelist, &list);
2781 depth++;
2782 } while (!rq_list_empty(plug->mq_list));
2783
2784 plug->mq_list = requeue_list;
2785 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2786
2787 percpu_ref_get(&this_hctx->queue->q_usage_counter);
2788 /* passthrough requests should never be issued to the I/O scheduler */
2789 if (is_passthrough) {
2790 spin_lock(&this_hctx->lock);
2791 list_splice_tail_init(&list, &this_hctx->dispatch);
2792 spin_unlock(&this_hctx->lock);
2793 blk_mq_run_hw_queue(this_hctx, from_sched);
2794 } else if (this_hctx->queue->elevator) {
2795 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2796 &list, 0);
2797 blk_mq_run_hw_queue(this_hctx, from_sched);
2798 } else {
2799 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2800 }
2801 percpu_ref_put(&this_hctx->queue->q_usage_counter);
2802 }
2803
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2804 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2805 {
2806 struct request *rq;
2807
2808 /*
2809 * We may have been called recursively midway through handling
2810 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2811 * To avoid mq_list changing under our feet, clear rq_count early and
2812 * bail out specifically if rq_count is 0 rather than checking
2813 * whether the mq_list is empty.
2814 */
2815 if (plug->rq_count == 0)
2816 return;
2817 plug->rq_count = 0;
2818
2819 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2820 struct request_queue *q;
2821
2822 rq = rq_list_peek(&plug->mq_list);
2823 q = rq->q;
2824
2825 /*
2826 * Peek first request and see if we have a ->queue_rqs() hook.
2827 * If we do, we can dispatch the whole plug list in one go. We
2828 * already know at this point that all requests belong to the
2829 * same queue, caller must ensure that's the case.
2830 *
2831 * Since we pass off the full list to the driver at this point,
2832 * we do not increment the active request count for the queue.
2833 * Bypass shared tags for now because of that.
2834 */
2835 if (q->mq_ops->queue_rqs &&
2836 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2837 blk_mq_run_dispatch_ops(q,
2838 __blk_mq_flush_plug_list(q, plug));
2839 if (rq_list_empty(plug->mq_list))
2840 return;
2841 }
2842
2843 blk_mq_run_dispatch_ops(q,
2844 blk_mq_plug_issue_direct(plug));
2845 if (rq_list_empty(plug->mq_list))
2846 return;
2847 }
2848
2849 do {
2850 blk_mq_dispatch_plug_list(plug, from_schedule);
2851 } while (!rq_list_empty(plug->mq_list));
2852 }
2853
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2854 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2855 struct list_head *list)
2856 {
2857 int queued = 0;
2858 blk_status_t ret = BLK_STS_OK;
2859
2860 while (!list_empty(list)) {
2861 struct request *rq = list_first_entry(list, struct request,
2862 queuelist);
2863
2864 list_del_init(&rq->queuelist);
2865 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2866 switch (ret) {
2867 case BLK_STS_OK:
2868 queued++;
2869 break;
2870 case BLK_STS_RESOURCE:
2871 case BLK_STS_DEV_RESOURCE:
2872 blk_mq_request_bypass_insert(rq, 0);
2873 if (list_empty(list))
2874 blk_mq_run_hw_queue(hctx, false);
2875 goto out;
2876 default:
2877 blk_mq_end_request(rq, ret);
2878 break;
2879 }
2880 }
2881
2882 out:
2883 if (ret != BLK_STS_OK)
2884 blk_mq_commit_rqs(hctx, queued, false);
2885 }
2886
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2887 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2888 struct bio *bio, unsigned int nr_segs)
2889 {
2890 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2891 if (blk_attempt_plug_merge(q, bio, nr_segs))
2892 return true;
2893 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2894 return true;
2895 }
2896 return false;
2897 }
2898
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs)2899 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2900 struct blk_plug *plug,
2901 struct bio *bio,
2902 unsigned int nsegs)
2903 {
2904 struct blk_mq_alloc_data data = {
2905 .q = q,
2906 .nr_tags = 1,
2907 .cmd_flags = bio->bi_opf,
2908 };
2909 struct request *rq;
2910
2911 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2912 return NULL;
2913
2914 rq_qos_throttle(q, bio);
2915
2916 if (plug) {
2917 data.nr_tags = plug->nr_ios;
2918 plug->nr_ios = 1;
2919 data.cached_rq = &plug->cached_rq;
2920 }
2921
2922 rq = __blk_mq_alloc_requests(&data);
2923 if (rq)
2924 return rq;
2925 rq_qos_cleanup(q, bio);
2926 if (bio->bi_opf & REQ_NOWAIT)
2927 bio_wouldblock_error(bio);
2928 return NULL;
2929 }
2930
2931 /* return true if this @rq can be used for @bio */
blk_mq_can_use_cached_rq(struct request * rq,struct blk_plug * plug,struct bio * bio)2932 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2933 struct bio *bio)
2934 {
2935 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2936 enum hctx_type hctx_type = rq->mq_hctx->type;
2937
2938 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2939
2940 if (type != hctx_type &&
2941 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2942 return false;
2943 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2944 return false;
2945
2946 /*
2947 * If any qos ->throttle() end up blocking, we will have flushed the
2948 * plug and hence killed the cached_rq list as well. Pop this entry
2949 * before we throttle.
2950 */
2951 plug->cached_rq = rq_list_next(rq);
2952 rq_qos_throttle(rq->q, bio);
2953
2954 blk_mq_rq_time_init(rq, 0);
2955 rq->cmd_flags = bio->bi_opf;
2956 INIT_LIST_HEAD(&rq->queuelist);
2957 return true;
2958 }
2959
bio_set_ioprio(struct bio * bio)2960 static void bio_set_ioprio(struct bio *bio)
2961 {
2962 /* Nobody set ioprio so far? Initialize it based on task's nice value */
2963 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2964 bio->bi_ioprio = get_current_ioprio();
2965 blkcg_set_ioprio(bio);
2966 }
2967
2968 /**
2969 * blk_mq_submit_bio - Create and send a request to block device.
2970 * @bio: Bio pointer.
2971 *
2972 * Builds up a request structure from @q and @bio and send to the device. The
2973 * request may not be queued directly to hardware if:
2974 * * This request can be merged with another one
2975 * * We want to place request at plug queue for possible future merging
2976 * * There is an IO scheduler active at this queue
2977 *
2978 * It will not queue the request if there is an error with the bio, or at the
2979 * request creation.
2980 */
blk_mq_submit_bio(struct bio * bio)2981 void blk_mq_submit_bio(struct bio *bio)
2982 {
2983 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2984 struct blk_plug *plug = blk_mq_plug(bio);
2985 const int is_sync = op_is_sync(bio->bi_opf);
2986 struct blk_mq_hw_ctx *hctx;
2987 struct request *rq = NULL;
2988 unsigned int nr_segs = 1;
2989 blk_status_t ret;
2990
2991 bio = blk_queue_bounce(bio, q);
2992 bio_set_ioprio(bio);
2993
2994 if (plug) {
2995 rq = rq_list_peek(&plug->cached_rq);
2996 if (rq && rq->q != q)
2997 rq = NULL;
2998 }
2999 if (rq) {
3000 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3001 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3002 if (!bio)
3003 return;
3004 }
3005 if (!bio_integrity_prep(bio))
3006 return;
3007 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3008 return;
3009 if (blk_mq_can_use_cached_rq(rq, plug, bio))
3010 goto done;
3011 percpu_ref_get(&q->q_usage_counter);
3012 } else {
3013 if (unlikely(bio_queue_enter(bio)))
3014 return;
3015 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3016 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3017 if (!bio)
3018 goto fail;
3019 }
3020 if (!bio_integrity_prep(bio))
3021 goto fail;
3022 }
3023
3024 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3025 if (unlikely(!rq)) {
3026 fail:
3027 blk_queue_exit(q);
3028 return;
3029 }
3030
3031 done:
3032 trace_block_getrq(bio);
3033
3034 rq_qos_track(q, rq, bio);
3035
3036 blk_mq_bio_to_request(rq, bio, nr_segs);
3037
3038 ret = blk_crypto_rq_get_keyslot(rq);
3039 if (ret != BLK_STS_OK) {
3040 bio->bi_status = ret;
3041 bio_endio(bio);
3042 blk_mq_free_request(rq);
3043 return;
3044 }
3045
3046 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3047 return;
3048
3049 if (plug) {
3050 blk_add_rq_to_plug(plug, rq);
3051 return;
3052 }
3053
3054 hctx = rq->mq_hctx;
3055 if ((rq->rq_flags & RQF_USE_SCHED) ||
3056 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3057 blk_mq_insert_request(rq, 0);
3058 blk_mq_run_hw_queue(hctx, true);
3059 } else {
3060 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3061 }
3062 }
3063
3064 #ifdef CONFIG_BLK_MQ_STACKING
3065 /**
3066 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3067 * @rq: the request being queued
3068 */
blk_insert_cloned_request(struct request * rq)3069 blk_status_t blk_insert_cloned_request(struct request *rq)
3070 {
3071 struct request_queue *q = rq->q;
3072 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3073 unsigned int max_segments = blk_rq_get_max_segments(rq);
3074 blk_status_t ret;
3075
3076 if (blk_rq_sectors(rq) > max_sectors) {
3077 /*
3078 * SCSI device does not have a good way to return if
3079 * Write Same/Zero is actually supported. If a device rejects
3080 * a non-read/write command (discard, write same,etc.) the
3081 * low-level device driver will set the relevant queue limit to
3082 * 0 to prevent blk-lib from issuing more of the offending
3083 * operations. Commands queued prior to the queue limit being
3084 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3085 * errors being propagated to upper layers.
3086 */
3087 if (max_sectors == 0)
3088 return BLK_STS_NOTSUPP;
3089
3090 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3091 __func__, blk_rq_sectors(rq), max_sectors);
3092 return BLK_STS_IOERR;
3093 }
3094
3095 /*
3096 * The queue settings related to segment counting may differ from the
3097 * original queue.
3098 */
3099 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3100 if (rq->nr_phys_segments > max_segments) {
3101 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3102 __func__, rq->nr_phys_segments, max_segments);
3103 return BLK_STS_IOERR;
3104 }
3105
3106 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3107 return BLK_STS_IOERR;
3108
3109 ret = blk_crypto_rq_get_keyslot(rq);
3110 if (ret != BLK_STS_OK)
3111 return ret;
3112
3113 blk_account_io_start(rq);
3114
3115 /*
3116 * Since we have a scheduler attached on the top device,
3117 * bypass a potential scheduler on the bottom device for
3118 * insert.
3119 */
3120 blk_mq_run_dispatch_ops(q,
3121 ret = blk_mq_request_issue_directly(rq, true));
3122 if (ret)
3123 blk_account_io_done(rq, ktime_get_ns());
3124 return ret;
3125 }
3126 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3127
3128 /**
3129 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3130 * @rq: the clone request to be cleaned up
3131 *
3132 * Description:
3133 * Free all bios in @rq for a cloned request.
3134 */
blk_rq_unprep_clone(struct request * rq)3135 void blk_rq_unprep_clone(struct request *rq)
3136 {
3137 struct bio *bio;
3138
3139 while ((bio = rq->bio) != NULL) {
3140 rq->bio = bio->bi_next;
3141
3142 bio_put(bio);
3143 }
3144 }
3145 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3146
3147 /**
3148 * blk_rq_prep_clone - Helper function to setup clone request
3149 * @rq: the request to be setup
3150 * @rq_src: original request to be cloned
3151 * @bs: bio_set that bios for clone are allocated from
3152 * @gfp_mask: memory allocation mask for bio
3153 * @bio_ctr: setup function to be called for each clone bio.
3154 * Returns %0 for success, non %0 for failure.
3155 * @data: private data to be passed to @bio_ctr
3156 *
3157 * Description:
3158 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3159 * Also, pages which the original bios are pointing to are not copied
3160 * and the cloned bios just point same pages.
3161 * So cloned bios must be completed before original bios, which means
3162 * the caller must complete @rq before @rq_src.
3163 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3164 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3165 struct bio_set *bs, gfp_t gfp_mask,
3166 int (*bio_ctr)(struct bio *, struct bio *, void *),
3167 void *data)
3168 {
3169 struct bio *bio, *bio_src;
3170
3171 if (!bs)
3172 bs = &fs_bio_set;
3173
3174 __rq_for_each_bio(bio_src, rq_src) {
3175 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3176 bs);
3177 if (!bio)
3178 goto free_and_out;
3179
3180 if (bio_ctr && bio_ctr(bio, bio_src, data))
3181 goto free_and_out;
3182
3183 if (rq->bio) {
3184 rq->biotail->bi_next = bio;
3185 rq->biotail = bio;
3186 } else {
3187 rq->bio = rq->biotail = bio;
3188 }
3189 bio = NULL;
3190 }
3191
3192 /* Copy attributes of the original request to the clone request. */
3193 rq->__sector = blk_rq_pos(rq_src);
3194 rq->__data_len = blk_rq_bytes(rq_src);
3195 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3196 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3197 rq->special_vec = rq_src->special_vec;
3198 }
3199 rq->nr_phys_segments = rq_src->nr_phys_segments;
3200 rq->ioprio = rq_src->ioprio;
3201
3202 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3203 goto free_and_out;
3204
3205 return 0;
3206
3207 free_and_out:
3208 if (bio)
3209 bio_put(bio);
3210 blk_rq_unprep_clone(rq);
3211
3212 return -ENOMEM;
3213 }
3214 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3215 #endif /* CONFIG_BLK_MQ_STACKING */
3216
3217 /*
3218 * Steal bios from a request and add them to a bio list.
3219 * The request must not have been partially completed before.
3220 */
blk_steal_bios(struct bio_list * list,struct request * rq)3221 void blk_steal_bios(struct bio_list *list, struct request *rq)
3222 {
3223 if (rq->bio) {
3224 if (list->tail)
3225 list->tail->bi_next = rq->bio;
3226 else
3227 list->head = rq->bio;
3228 list->tail = rq->biotail;
3229
3230 rq->bio = NULL;
3231 rq->biotail = NULL;
3232 }
3233
3234 rq->__data_len = 0;
3235 }
3236 EXPORT_SYMBOL_GPL(blk_steal_bios);
3237
order_to_size(unsigned int order)3238 static size_t order_to_size(unsigned int order)
3239 {
3240 return (size_t)PAGE_SIZE << order;
3241 }
3242
3243 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3244 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3245 struct blk_mq_tags *tags)
3246 {
3247 struct page *page;
3248 unsigned long flags;
3249
3250 /*
3251 * There is no need to clear mapping if driver tags is not initialized
3252 * or the mapping belongs to the driver tags.
3253 */
3254 if (!drv_tags || drv_tags == tags)
3255 return;
3256
3257 list_for_each_entry(page, &tags->page_list, lru) {
3258 unsigned long start = (unsigned long)page_address(page);
3259 unsigned long end = start + order_to_size(page->private);
3260 int i;
3261
3262 for (i = 0; i < drv_tags->nr_tags; i++) {
3263 struct request *rq = drv_tags->rqs[i];
3264 unsigned long rq_addr = (unsigned long)rq;
3265
3266 if (rq_addr >= start && rq_addr < end) {
3267 WARN_ON_ONCE(req_ref_read(rq) != 0);
3268 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3269 }
3270 }
3271 }
3272
3273 /*
3274 * Wait until all pending iteration is done.
3275 *
3276 * Request reference is cleared and it is guaranteed to be observed
3277 * after the ->lock is released.
3278 */
3279 spin_lock_irqsave(&drv_tags->lock, flags);
3280 spin_unlock_irqrestore(&drv_tags->lock, flags);
3281 }
3282
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3283 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3284 unsigned int hctx_idx)
3285 {
3286 struct blk_mq_tags *drv_tags;
3287 struct page *page;
3288
3289 if (list_empty(&tags->page_list))
3290 return;
3291
3292 if (blk_mq_is_shared_tags(set->flags))
3293 drv_tags = set->shared_tags;
3294 else
3295 drv_tags = set->tags[hctx_idx];
3296
3297 if (tags->static_rqs && set->ops->exit_request) {
3298 int i;
3299
3300 for (i = 0; i < tags->nr_tags; i++) {
3301 struct request *rq = tags->static_rqs[i];
3302
3303 if (!rq)
3304 continue;
3305 set->ops->exit_request(set, rq, hctx_idx);
3306 tags->static_rqs[i] = NULL;
3307 }
3308 }
3309
3310 blk_mq_clear_rq_mapping(drv_tags, tags);
3311
3312 while (!list_empty(&tags->page_list)) {
3313 page = list_first_entry(&tags->page_list, struct page, lru);
3314 list_del_init(&page->lru);
3315 /*
3316 * Remove kmemleak object previously allocated in
3317 * blk_mq_alloc_rqs().
3318 */
3319 kmemleak_free(page_address(page));
3320 __free_pages(page, page->private);
3321 }
3322 }
3323
blk_mq_free_rq_map(struct blk_mq_tags * tags)3324 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3325 {
3326 kfree(tags->rqs);
3327 tags->rqs = NULL;
3328 kfree(tags->static_rqs);
3329 tags->static_rqs = NULL;
3330
3331 blk_mq_free_tags(tags);
3332 }
3333
hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3334 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3335 unsigned int hctx_idx)
3336 {
3337 int i;
3338
3339 for (i = 0; i < set->nr_maps; i++) {
3340 unsigned int start = set->map[i].queue_offset;
3341 unsigned int end = start + set->map[i].nr_queues;
3342
3343 if (hctx_idx >= start && hctx_idx < end)
3344 break;
3345 }
3346
3347 if (i >= set->nr_maps)
3348 i = HCTX_TYPE_DEFAULT;
3349
3350 return i;
3351 }
3352
blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3353 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3354 unsigned int hctx_idx)
3355 {
3356 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3357
3358 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3359 }
3360
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3361 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3362 unsigned int hctx_idx,
3363 unsigned int nr_tags,
3364 unsigned int reserved_tags)
3365 {
3366 int node = blk_mq_get_hctx_node(set, hctx_idx);
3367 struct blk_mq_tags *tags;
3368
3369 if (node == NUMA_NO_NODE)
3370 node = set->numa_node;
3371
3372 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3373 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3374 if (!tags)
3375 return NULL;
3376
3377 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3378 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3379 node);
3380 if (!tags->rqs)
3381 goto err_free_tags;
3382
3383 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3384 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3385 node);
3386 if (!tags->static_rqs)
3387 goto err_free_rqs;
3388
3389 return tags;
3390
3391 err_free_rqs:
3392 kfree(tags->rqs);
3393 err_free_tags:
3394 blk_mq_free_tags(tags);
3395 return NULL;
3396 }
3397
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3398 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3399 unsigned int hctx_idx, int node)
3400 {
3401 int ret;
3402
3403 if (set->ops->init_request) {
3404 ret = set->ops->init_request(set, rq, hctx_idx, node);
3405 if (ret)
3406 return ret;
3407 }
3408
3409 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3410 return 0;
3411 }
3412
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3413 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3414 struct blk_mq_tags *tags,
3415 unsigned int hctx_idx, unsigned int depth)
3416 {
3417 unsigned int i, j, entries_per_page, max_order = 4;
3418 int node = blk_mq_get_hctx_node(set, hctx_idx);
3419 size_t rq_size, left;
3420
3421 if (node == NUMA_NO_NODE)
3422 node = set->numa_node;
3423
3424 INIT_LIST_HEAD(&tags->page_list);
3425
3426 /*
3427 * rq_size is the size of the request plus driver payload, rounded
3428 * to the cacheline size
3429 */
3430 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3431 cache_line_size());
3432 left = rq_size * depth;
3433
3434 for (i = 0; i < depth; ) {
3435 int this_order = max_order;
3436 struct page *page;
3437 int to_do;
3438 void *p;
3439
3440 while (this_order && left < order_to_size(this_order - 1))
3441 this_order--;
3442
3443 do {
3444 page = alloc_pages_node(node,
3445 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3446 this_order);
3447 if (page)
3448 break;
3449 if (!this_order--)
3450 break;
3451 if (order_to_size(this_order) < rq_size)
3452 break;
3453 } while (1);
3454
3455 if (!page)
3456 goto fail;
3457
3458 page->private = this_order;
3459 list_add_tail(&page->lru, &tags->page_list);
3460
3461 p = page_address(page);
3462 /*
3463 * Allow kmemleak to scan these pages as they contain pointers
3464 * to additional allocations like via ops->init_request().
3465 */
3466 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3467 entries_per_page = order_to_size(this_order) / rq_size;
3468 to_do = min(entries_per_page, depth - i);
3469 left -= to_do * rq_size;
3470 for (j = 0; j < to_do; j++) {
3471 struct request *rq = p;
3472
3473 tags->static_rqs[i] = rq;
3474 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3475 tags->static_rqs[i] = NULL;
3476 goto fail;
3477 }
3478
3479 p += rq_size;
3480 i++;
3481 }
3482 }
3483 return 0;
3484
3485 fail:
3486 blk_mq_free_rqs(set, tags, hctx_idx);
3487 return -ENOMEM;
3488 }
3489
3490 struct rq_iter_data {
3491 struct blk_mq_hw_ctx *hctx;
3492 bool has_rq;
3493 };
3494
blk_mq_has_request(struct request * rq,void * data)3495 static bool blk_mq_has_request(struct request *rq, void *data)
3496 {
3497 struct rq_iter_data *iter_data = data;
3498
3499 if (rq->mq_hctx != iter_data->hctx)
3500 return true;
3501 iter_data->has_rq = true;
3502 return false;
3503 }
3504
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3505 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3506 {
3507 struct blk_mq_tags *tags = hctx->sched_tags ?
3508 hctx->sched_tags : hctx->tags;
3509 struct rq_iter_data data = {
3510 .hctx = hctx,
3511 };
3512
3513 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3514 return data.has_rq;
3515 }
3516
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)3517 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3518 struct blk_mq_hw_ctx *hctx)
3519 {
3520 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3521 return false;
3522 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3523 return false;
3524 return true;
3525 }
3526
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3527 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3528 {
3529 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3530 struct blk_mq_hw_ctx, cpuhp_online);
3531
3532 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3533 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3534 return 0;
3535
3536 /*
3537 * Prevent new request from being allocated on the current hctx.
3538 *
3539 * The smp_mb__after_atomic() Pairs with the implied barrier in
3540 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3541 * seen once we return from the tag allocator.
3542 */
3543 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3544 smp_mb__after_atomic();
3545
3546 /*
3547 * Try to grab a reference to the queue and wait for any outstanding
3548 * requests. If we could not grab a reference the queue has been
3549 * frozen and there are no requests.
3550 */
3551 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3552 while (blk_mq_hctx_has_requests(hctx))
3553 msleep(5);
3554 percpu_ref_put(&hctx->queue->q_usage_counter);
3555 }
3556
3557 return 0;
3558 }
3559
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3560 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3561 {
3562 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3563 struct blk_mq_hw_ctx, cpuhp_online);
3564
3565 if (cpumask_test_cpu(cpu, hctx->cpumask))
3566 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3567 return 0;
3568 }
3569
3570 /*
3571 * 'cpu' is going away. splice any existing rq_list entries from this
3572 * software queue to the hw queue dispatch list, and ensure that it
3573 * gets run.
3574 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3575 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3576 {
3577 struct blk_mq_hw_ctx *hctx;
3578 struct blk_mq_ctx *ctx;
3579 LIST_HEAD(tmp);
3580 enum hctx_type type;
3581
3582 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3583 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3584 return 0;
3585
3586 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3587 type = hctx->type;
3588
3589 spin_lock(&ctx->lock);
3590 if (!list_empty(&ctx->rq_lists[type])) {
3591 list_splice_init(&ctx->rq_lists[type], &tmp);
3592 blk_mq_hctx_clear_pending(hctx, ctx);
3593 }
3594 spin_unlock(&ctx->lock);
3595
3596 if (list_empty(&tmp))
3597 return 0;
3598
3599 spin_lock(&hctx->lock);
3600 list_splice_tail_init(&tmp, &hctx->dispatch);
3601 spin_unlock(&hctx->lock);
3602
3603 blk_mq_run_hw_queue(hctx, true);
3604 return 0;
3605 }
3606
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3607 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3608 {
3609 if (!(hctx->flags & BLK_MQ_F_STACKING))
3610 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3611 &hctx->cpuhp_online);
3612 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3613 &hctx->cpuhp_dead);
3614 }
3615
3616 /*
3617 * Before freeing hw queue, clearing the flush request reference in
3618 * tags->rqs[] for avoiding potential UAF.
3619 */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3620 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3621 unsigned int queue_depth, struct request *flush_rq)
3622 {
3623 int i;
3624 unsigned long flags;
3625
3626 /* The hw queue may not be mapped yet */
3627 if (!tags)
3628 return;
3629
3630 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3631
3632 for (i = 0; i < queue_depth; i++)
3633 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3634
3635 /*
3636 * Wait until all pending iteration is done.
3637 *
3638 * Request reference is cleared and it is guaranteed to be observed
3639 * after the ->lock is released.
3640 */
3641 spin_lock_irqsave(&tags->lock, flags);
3642 spin_unlock_irqrestore(&tags->lock, flags);
3643 }
3644
3645 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3646 static void blk_mq_exit_hctx(struct request_queue *q,
3647 struct blk_mq_tag_set *set,
3648 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3649 {
3650 struct request *flush_rq = hctx->fq->flush_rq;
3651
3652 if (blk_mq_hw_queue_mapped(hctx))
3653 blk_mq_tag_idle(hctx);
3654
3655 if (blk_queue_init_done(q))
3656 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3657 set->queue_depth, flush_rq);
3658 if (set->ops->exit_request)
3659 set->ops->exit_request(set, flush_rq, hctx_idx);
3660
3661 if (set->ops->exit_hctx)
3662 set->ops->exit_hctx(hctx, hctx_idx);
3663
3664 blk_mq_remove_cpuhp(hctx);
3665
3666 xa_erase(&q->hctx_table, hctx_idx);
3667
3668 spin_lock(&q->unused_hctx_lock);
3669 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3670 spin_unlock(&q->unused_hctx_lock);
3671 }
3672
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3673 static void blk_mq_exit_hw_queues(struct request_queue *q,
3674 struct blk_mq_tag_set *set, int nr_queue)
3675 {
3676 struct blk_mq_hw_ctx *hctx;
3677 unsigned long i;
3678
3679 queue_for_each_hw_ctx(q, hctx, i) {
3680 if (i == nr_queue)
3681 break;
3682 blk_mq_exit_hctx(q, set, hctx, i);
3683 }
3684 }
3685
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3686 static int blk_mq_init_hctx(struct request_queue *q,
3687 struct blk_mq_tag_set *set,
3688 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3689 {
3690 hctx->queue_num = hctx_idx;
3691
3692 if (!(hctx->flags & BLK_MQ_F_STACKING))
3693 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3694 &hctx->cpuhp_online);
3695 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3696
3697 hctx->tags = set->tags[hctx_idx];
3698
3699 if (set->ops->init_hctx &&
3700 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3701 goto unregister_cpu_notifier;
3702
3703 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3704 hctx->numa_node))
3705 goto exit_hctx;
3706
3707 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3708 goto exit_flush_rq;
3709
3710 return 0;
3711
3712 exit_flush_rq:
3713 if (set->ops->exit_request)
3714 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3715 exit_hctx:
3716 if (set->ops->exit_hctx)
3717 set->ops->exit_hctx(hctx, hctx_idx);
3718 unregister_cpu_notifier:
3719 blk_mq_remove_cpuhp(hctx);
3720 return -1;
3721 }
3722
3723 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)3724 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3725 int node)
3726 {
3727 struct blk_mq_hw_ctx *hctx;
3728 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3729
3730 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3731 if (!hctx)
3732 goto fail_alloc_hctx;
3733
3734 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3735 goto free_hctx;
3736
3737 atomic_set(&hctx->nr_active, 0);
3738 if (node == NUMA_NO_NODE)
3739 node = set->numa_node;
3740 hctx->numa_node = node;
3741
3742 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3743 spin_lock_init(&hctx->lock);
3744 INIT_LIST_HEAD(&hctx->dispatch);
3745 hctx->queue = q;
3746 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3747
3748 INIT_LIST_HEAD(&hctx->hctx_list);
3749
3750 /*
3751 * Allocate space for all possible cpus to avoid allocation at
3752 * runtime
3753 */
3754 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3755 gfp, node);
3756 if (!hctx->ctxs)
3757 goto free_cpumask;
3758
3759 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3760 gfp, node, false, false))
3761 goto free_ctxs;
3762 hctx->nr_ctx = 0;
3763
3764 spin_lock_init(&hctx->dispatch_wait_lock);
3765 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3766 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3767
3768 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3769 if (!hctx->fq)
3770 goto free_bitmap;
3771
3772 blk_mq_hctx_kobj_init(hctx);
3773
3774 return hctx;
3775
3776 free_bitmap:
3777 sbitmap_free(&hctx->ctx_map);
3778 free_ctxs:
3779 kfree(hctx->ctxs);
3780 free_cpumask:
3781 free_cpumask_var(hctx->cpumask);
3782 free_hctx:
3783 kfree(hctx);
3784 fail_alloc_hctx:
3785 return NULL;
3786 }
3787
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)3788 static void blk_mq_init_cpu_queues(struct request_queue *q,
3789 unsigned int nr_hw_queues)
3790 {
3791 struct blk_mq_tag_set *set = q->tag_set;
3792 unsigned int i, j;
3793
3794 for_each_possible_cpu(i) {
3795 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3796 struct blk_mq_hw_ctx *hctx;
3797 int k;
3798
3799 __ctx->cpu = i;
3800 spin_lock_init(&__ctx->lock);
3801 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3802 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3803
3804 __ctx->queue = q;
3805
3806 /*
3807 * Set local node, IFF we have more than one hw queue. If
3808 * not, we remain on the home node of the device
3809 */
3810 for (j = 0; j < set->nr_maps; j++) {
3811 hctx = blk_mq_map_queue_type(q, j, i);
3812 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3813 hctx->numa_node = cpu_to_node(i);
3814 }
3815 }
3816 }
3817
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)3818 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3819 unsigned int hctx_idx,
3820 unsigned int depth)
3821 {
3822 struct blk_mq_tags *tags;
3823 int ret;
3824
3825 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3826 if (!tags)
3827 return NULL;
3828
3829 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3830 if (ret) {
3831 blk_mq_free_rq_map(tags);
3832 return NULL;
3833 }
3834
3835 return tags;
3836 }
3837
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)3838 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3839 int hctx_idx)
3840 {
3841 if (blk_mq_is_shared_tags(set->flags)) {
3842 set->tags[hctx_idx] = set->shared_tags;
3843
3844 return true;
3845 }
3846
3847 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3848 set->queue_depth);
3849
3850 return set->tags[hctx_idx];
3851 }
3852
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3853 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3854 struct blk_mq_tags *tags,
3855 unsigned int hctx_idx)
3856 {
3857 if (tags) {
3858 blk_mq_free_rqs(set, tags, hctx_idx);
3859 blk_mq_free_rq_map(tags);
3860 }
3861 }
3862
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)3863 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3864 unsigned int hctx_idx)
3865 {
3866 if (!blk_mq_is_shared_tags(set->flags))
3867 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3868
3869 set->tags[hctx_idx] = NULL;
3870 }
3871
blk_mq_map_swqueue(struct request_queue * q)3872 static void blk_mq_map_swqueue(struct request_queue *q)
3873 {
3874 unsigned int j, hctx_idx;
3875 unsigned long i;
3876 struct blk_mq_hw_ctx *hctx;
3877 struct blk_mq_ctx *ctx;
3878 struct blk_mq_tag_set *set = q->tag_set;
3879
3880 queue_for_each_hw_ctx(q, hctx, i) {
3881 cpumask_clear(hctx->cpumask);
3882 hctx->nr_ctx = 0;
3883 hctx->dispatch_from = NULL;
3884 }
3885
3886 /*
3887 * Map software to hardware queues.
3888 *
3889 * If the cpu isn't present, the cpu is mapped to first hctx.
3890 */
3891 for_each_possible_cpu(i) {
3892
3893 ctx = per_cpu_ptr(q->queue_ctx, i);
3894 for (j = 0; j < set->nr_maps; j++) {
3895 if (!set->map[j].nr_queues) {
3896 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3897 HCTX_TYPE_DEFAULT, i);
3898 continue;
3899 }
3900 hctx_idx = set->map[j].mq_map[i];
3901 /* unmapped hw queue can be remapped after CPU topo changed */
3902 if (!set->tags[hctx_idx] &&
3903 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3904 /*
3905 * If tags initialization fail for some hctx,
3906 * that hctx won't be brought online. In this
3907 * case, remap the current ctx to hctx[0] which
3908 * is guaranteed to always have tags allocated
3909 */
3910 set->map[j].mq_map[i] = 0;
3911 }
3912
3913 hctx = blk_mq_map_queue_type(q, j, i);
3914 ctx->hctxs[j] = hctx;
3915 /*
3916 * If the CPU is already set in the mask, then we've
3917 * mapped this one already. This can happen if
3918 * devices share queues across queue maps.
3919 */
3920 if (cpumask_test_cpu(i, hctx->cpumask))
3921 continue;
3922
3923 cpumask_set_cpu(i, hctx->cpumask);
3924 hctx->type = j;
3925 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3926 hctx->ctxs[hctx->nr_ctx++] = ctx;
3927
3928 /*
3929 * If the nr_ctx type overflows, we have exceeded the
3930 * amount of sw queues we can support.
3931 */
3932 BUG_ON(!hctx->nr_ctx);
3933 }
3934
3935 for (; j < HCTX_MAX_TYPES; j++)
3936 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3937 HCTX_TYPE_DEFAULT, i);
3938 }
3939
3940 queue_for_each_hw_ctx(q, hctx, i) {
3941 /*
3942 * If no software queues are mapped to this hardware queue,
3943 * disable it and free the request entries.
3944 */
3945 if (!hctx->nr_ctx) {
3946 /* Never unmap queue 0. We need it as a
3947 * fallback in case of a new remap fails
3948 * allocation
3949 */
3950 if (i)
3951 __blk_mq_free_map_and_rqs(set, i);
3952
3953 hctx->tags = NULL;
3954 continue;
3955 }
3956
3957 hctx->tags = set->tags[i];
3958 WARN_ON(!hctx->tags);
3959
3960 /*
3961 * Set the map size to the number of mapped software queues.
3962 * This is more accurate and more efficient than looping
3963 * over all possibly mapped software queues.
3964 */
3965 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3966
3967 /*
3968 * Initialize batch roundrobin counts
3969 */
3970 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3971 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3972 }
3973 }
3974
3975 /*
3976 * Caller needs to ensure that we're either frozen/quiesced, or that
3977 * the queue isn't live yet.
3978 */
queue_set_hctx_shared(struct request_queue * q,bool shared)3979 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3980 {
3981 struct blk_mq_hw_ctx *hctx;
3982 unsigned long i;
3983
3984 queue_for_each_hw_ctx(q, hctx, i) {
3985 if (shared) {
3986 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3987 } else {
3988 blk_mq_tag_idle(hctx);
3989 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3990 }
3991 }
3992 }
3993
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)3994 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3995 bool shared)
3996 {
3997 struct request_queue *q;
3998
3999 lockdep_assert_held(&set->tag_list_lock);
4000
4001 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4002 blk_mq_freeze_queue(q);
4003 queue_set_hctx_shared(q, shared);
4004 blk_mq_unfreeze_queue(q);
4005 }
4006 }
4007
blk_mq_del_queue_tag_set(struct request_queue * q)4008 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4009 {
4010 struct blk_mq_tag_set *set = q->tag_set;
4011
4012 mutex_lock(&set->tag_list_lock);
4013 list_del(&q->tag_set_list);
4014 if (list_is_singular(&set->tag_list)) {
4015 /* just transitioned to unshared */
4016 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4017 /* update existing queue */
4018 blk_mq_update_tag_set_shared(set, false);
4019 }
4020 mutex_unlock(&set->tag_list_lock);
4021 INIT_LIST_HEAD(&q->tag_set_list);
4022 }
4023
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)4024 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4025 struct request_queue *q)
4026 {
4027 mutex_lock(&set->tag_list_lock);
4028
4029 /*
4030 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4031 */
4032 if (!list_empty(&set->tag_list) &&
4033 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4034 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4035 /* update existing queue */
4036 blk_mq_update_tag_set_shared(set, true);
4037 }
4038 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4039 queue_set_hctx_shared(q, true);
4040 list_add_tail(&q->tag_set_list, &set->tag_list);
4041
4042 mutex_unlock(&set->tag_list_lock);
4043 }
4044
4045 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)4046 static int blk_mq_alloc_ctxs(struct request_queue *q)
4047 {
4048 struct blk_mq_ctxs *ctxs;
4049 int cpu;
4050
4051 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4052 if (!ctxs)
4053 return -ENOMEM;
4054
4055 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4056 if (!ctxs->queue_ctx)
4057 goto fail;
4058
4059 for_each_possible_cpu(cpu) {
4060 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4061 ctx->ctxs = ctxs;
4062 }
4063
4064 q->mq_kobj = &ctxs->kobj;
4065 q->queue_ctx = ctxs->queue_ctx;
4066
4067 return 0;
4068 fail:
4069 kfree(ctxs);
4070 return -ENOMEM;
4071 }
4072
4073 /*
4074 * It is the actual release handler for mq, but we do it from
4075 * request queue's release handler for avoiding use-after-free
4076 * and headache because q->mq_kobj shouldn't have been introduced,
4077 * but we can't group ctx/kctx kobj without it.
4078 */
blk_mq_release(struct request_queue * q)4079 void blk_mq_release(struct request_queue *q)
4080 {
4081 struct blk_mq_hw_ctx *hctx, *next;
4082 unsigned long i;
4083
4084 queue_for_each_hw_ctx(q, hctx, i)
4085 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4086
4087 /* all hctx are in .unused_hctx_list now */
4088 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4089 list_del_init(&hctx->hctx_list);
4090 kobject_put(&hctx->kobj);
4091 }
4092
4093 xa_destroy(&q->hctx_table);
4094
4095 /*
4096 * release .mq_kobj and sw queue's kobject now because
4097 * both share lifetime with request queue.
4098 */
4099 blk_mq_sysfs_deinit(q);
4100 }
4101
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)4102 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4103 void *queuedata)
4104 {
4105 struct request_queue *q;
4106 int ret;
4107
4108 q = blk_alloc_queue(set->numa_node);
4109 if (!q)
4110 return ERR_PTR(-ENOMEM);
4111 q->queuedata = queuedata;
4112 ret = blk_mq_init_allocated_queue(set, q);
4113 if (ret) {
4114 blk_put_queue(q);
4115 return ERR_PTR(ret);
4116 }
4117 return q;
4118 }
4119
blk_mq_init_queue(struct blk_mq_tag_set * set)4120 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4121 {
4122 return blk_mq_init_queue_data(set, NULL);
4123 }
4124 EXPORT_SYMBOL(blk_mq_init_queue);
4125
4126 /**
4127 * blk_mq_destroy_queue - shutdown a request queue
4128 * @q: request queue to shutdown
4129 *
4130 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4131 * requests will be failed with -ENODEV. The caller is responsible for dropping
4132 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4133 *
4134 * Context: can sleep
4135 */
blk_mq_destroy_queue(struct request_queue * q)4136 void blk_mq_destroy_queue(struct request_queue *q)
4137 {
4138 WARN_ON_ONCE(!queue_is_mq(q));
4139 WARN_ON_ONCE(blk_queue_registered(q));
4140
4141 might_sleep();
4142
4143 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4144 blk_queue_start_drain(q);
4145 blk_mq_freeze_queue_wait(q);
4146
4147 blk_sync_queue(q);
4148 blk_mq_cancel_work_sync(q);
4149 blk_mq_exit_queue(q);
4150 }
4151 EXPORT_SYMBOL(blk_mq_destroy_queue);
4152
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,void * queuedata,struct lock_class_key * lkclass)4153 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4154 struct lock_class_key *lkclass)
4155 {
4156 struct request_queue *q;
4157 struct gendisk *disk;
4158
4159 q = blk_mq_init_queue_data(set, queuedata);
4160 if (IS_ERR(q))
4161 return ERR_CAST(q);
4162
4163 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4164 if (!disk) {
4165 blk_mq_destroy_queue(q);
4166 blk_put_queue(q);
4167 return ERR_PTR(-ENOMEM);
4168 }
4169 set_bit(GD_OWNS_QUEUE, &disk->state);
4170 return disk;
4171 }
4172 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4173
blk_mq_alloc_disk_for_queue(struct request_queue * q,struct lock_class_key * lkclass)4174 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4175 struct lock_class_key *lkclass)
4176 {
4177 struct gendisk *disk;
4178
4179 if (!blk_get_queue(q))
4180 return NULL;
4181 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4182 if (!disk)
4183 blk_put_queue(q);
4184 return disk;
4185 }
4186 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4187
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)4188 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4189 struct blk_mq_tag_set *set, struct request_queue *q,
4190 int hctx_idx, int node)
4191 {
4192 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4193
4194 /* reuse dead hctx first */
4195 spin_lock(&q->unused_hctx_lock);
4196 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4197 if (tmp->numa_node == node) {
4198 hctx = tmp;
4199 break;
4200 }
4201 }
4202 if (hctx)
4203 list_del_init(&hctx->hctx_list);
4204 spin_unlock(&q->unused_hctx_lock);
4205
4206 if (!hctx)
4207 hctx = blk_mq_alloc_hctx(q, set, node);
4208 if (!hctx)
4209 goto fail;
4210
4211 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4212 goto free_hctx;
4213
4214 return hctx;
4215
4216 free_hctx:
4217 kobject_put(&hctx->kobj);
4218 fail:
4219 return NULL;
4220 }
4221
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4222 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4223 struct request_queue *q)
4224 {
4225 struct blk_mq_hw_ctx *hctx;
4226 unsigned long i, j;
4227
4228 /* protect against switching io scheduler */
4229 mutex_lock(&q->sysfs_lock);
4230 for (i = 0; i < set->nr_hw_queues; i++) {
4231 int old_node;
4232 int node = blk_mq_get_hctx_node(set, i);
4233 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4234
4235 if (old_hctx) {
4236 old_node = old_hctx->numa_node;
4237 blk_mq_exit_hctx(q, set, old_hctx, i);
4238 }
4239
4240 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4241 if (!old_hctx)
4242 break;
4243 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4244 node, old_node);
4245 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4246 WARN_ON_ONCE(!hctx);
4247 }
4248 }
4249 /*
4250 * Increasing nr_hw_queues fails. Free the newly allocated
4251 * hctxs and keep the previous q->nr_hw_queues.
4252 */
4253 if (i != set->nr_hw_queues) {
4254 j = q->nr_hw_queues;
4255 } else {
4256 j = i;
4257 q->nr_hw_queues = set->nr_hw_queues;
4258 }
4259
4260 xa_for_each_start(&q->hctx_table, j, hctx, j)
4261 blk_mq_exit_hctx(q, set, hctx, j);
4262 mutex_unlock(&q->sysfs_lock);
4263 }
4264
blk_mq_update_poll_flag(struct request_queue * q)4265 static void blk_mq_update_poll_flag(struct request_queue *q)
4266 {
4267 struct blk_mq_tag_set *set = q->tag_set;
4268
4269 if (set->nr_maps > HCTX_TYPE_POLL &&
4270 set->map[HCTX_TYPE_POLL].nr_queues)
4271 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4272 else
4273 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4274 }
4275
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4276 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4277 struct request_queue *q)
4278 {
4279 /* mark the queue as mq asap */
4280 q->mq_ops = set->ops;
4281
4282 if (blk_mq_alloc_ctxs(q))
4283 goto err_exit;
4284
4285 /* init q->mq_kobj and sw queues' kobjects */
4286 blk_mq_sysfs_init(q);
4287
4288 INIT_LIST_HEAD(&q->unused_hctx_list);
4289 spin_lock_init(&q->unused_hctx_lock);
4290
4291 xa_init(&q->hctx_table);
4292
4293 blk_mq_realloc_hw_ctxs(set, q);
4294 if (!q->nr_hw_queues)
4295 goto err_hctxs;
4296
4297 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4298 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4299
4300 q->tag_set = set;
4301
4302 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4303 blk_mq_update_poll_flag(q);
4304
4305 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4306 INIT_LIST_HEAD(&q->flush_list);
4307 INIT_LIST_HEAD(&q->requeue_list);
4308 spin_lock_init(&q->requeue_lock);
4309
4310 q->nr_requests = set->queue_depth;
4311
4312 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4313 blk_mq_add_queue_tag_set(set, q);
4314 blk_mq_map_swqueue(q);
4315 return 0;
4316
4317 err_hctxs:
4318 blk_mq_release(q);
4319 err_exit:
4320 q->mq_ops = NULL;
4321 return -ENOMEM;
4322 }
4323 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4324
4325 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)4326 void blk_mq_exit_queue(struct request_queue *q)
4327 {
4328 struct blk_mq_tag_set *set = q->tag_set;
4329
4330 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4331 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4332 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4333 blk_mq_del_queue_tag_set(q);
4334 }
4335
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4336 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4337 {
4338 int i;
4339
4340 if (blk_mq_is_shared_tags(set->flags)) {
4341 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4342 BLK_MQ_NO_HCTX_IDX,
4343 set->queue_depth);
4344 if (!set->shared_tags)
4345 return -ENOMEM;
4346 }
4347
4348 for (i = 0; i < set->nr_hw_queues; i++) {
4349 if (!__blk_mq_alloc_map_and_rqs(set, i))
4350 goto out_unwind;
4351 cond_resched();
4352 }
4353
4354 return 0;
4355
4356 out_unwind:
4357 while (--i >= 0)
4358 __blk_mq_free_map_and_rqs(set, i);
4359
4360 if (blk_mq_is_shared_tags(set->flags)) {
4361 blk_mq_free_map_and_rqs(set, set->shared_tags,
4362 BLK_MQ_NO_HCTX_IDX);
4363 }
4364
4365 return -ENOMEM;
4366 }
4367
4368 /*
4369 * Allocate the request maps associated with this tag_set. Note that this
4370 * may reduce the depth asked for, if memory is tight. set->queue_depth
4371 * will be updated to reflect the allocated depth.
4372 */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4373 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4374 {
4375 unsigned int depth;
4376 int err;
4377
4378 depth = set->queue_depth;
4379 do {
4380 err = __blk_mq_alloc_rq_maps(set);
4381 if (!err)
4382 break;
4383
4384 set->queue_depth >>= 1;
4385 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4386 err = -ENOMEM;
4387 break;
4388 }
4389 } while (set->queue_depth);
4390
4391 if (!set->queue_depth || err) {
4392 pr_err("blk-mq: failed to allocate request map\n");
4393 return -ENOMEM;
4394 }
4395
4396 if (depth != set->queue_depth)
4397 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4398 depth, set->queue_depth);
4399
4400 return 0;
4401 }
4402
blk_mq_update_queue_map(struct blk_mq_tag_set * set)4403 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4404 {
4405 /*
4406 * blk_mq_map_queues() and multiple .map_queues() implementations
4407 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4408 * number of hardware queues.
4409 */
4410 if (set->nr_maps == 1)
4411 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4412
4413 if (set->ops->map_queues && !is_kdump_kernel()) {
4414 int i;
4415
4416 /*
4417 * transport .map_queues is usually done in the following
4418 * way:
4419 *
4420 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4421 * mask = get_cpu_mask(queue)
4422 * for_each_cpu(cpu, mask)
4423 * set->map[x].mq_map[cpu] = queue;
4424 * }
4425 *
4426 * When we need to remap, the table has to be cleared for
4427 * killing stale mapping since one CPU may not be mapped
4428 * to any hw queue.
4429 */
4430 for (i = 0; i < set->nr_maps; i++)
4431 blk_mq_clear_mq_map(&set->map[i]);
4432
4433 set->ops->map_queues(set);
4434 } else {
4435 BUG_ON(set->nr_maps > 1);
4436 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4437 }
4438 }
4439
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4440 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4441 int new_nr_hw_queues)
4442 {
4443 struct blk_mq_tags **new_tags;
4444 int i;
4445
4446 if (set->nr_hw_queues >= new_nr_hw_queues)
4447 goto done;
4448
4449 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4450 GFP_KERNEL, set->numa_node);
4451 if (!new_tags)
4452 return -ENOMEM;
4453
4454 if (set->tags)
4455 memcpy(new_tags, set->tags, set->nr_hw_queues *
4456 sizeof(*set->tags));
4457 kfree(set->tags);
4458 set->tags = new_tags;
4459
4460 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4461 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4462 while (--i >= set->nr_hw_queues)
4463 __blk_mq_free_map_and_rqs(set, i);
4464 return -ENOMEM;
4465 }
4466 cond_resched();
4467 }
4468
4469 done:
4470 set->nr_hw_queues = new_nr_hw_queues;
4471 return 0;
4472 }
4473
4474 /*
4475 * Alloc a tag set to be associated with one or more request queues.
4476 * May fail with EINVAL for various error conditions. May adjust the
4477 * requested depth down, if it's too large. In that case, the set
4478 * value will be stored in set->queue_depth.
4479 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4480 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4481 {
4482 int i, ret;
4483
4484 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4485
4486 if (!set->nr_hw_queues)
4487 return -EINVAL;
4488 if (!set->queue_depth)
4489 return -EINVAL;
4490 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4491 return -EINVAL;
4492
4493 if (!set->ops->queue_rq)
4494 return -EINVAL;
4495
4496 if (!set->ops->get_budget ^ !set->ops->put_budget)
4497 return -EINVAL;
4498
4499 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4500 pr_info("blk-mq: reduced tag depth to %u\n",
4501 BLK_MQ_MAX_DEPTH);
4502 set->queue_depth = BLK_MQ_MAX_DEPTH;
4503 }
4504
4505 if (!set->nr_maps)
4506 set->nr_maps = 1;
4507 else if (set->nr_maps > HCTX_MAX_TYPES)
4508 return -EINVAL;
4509
4510 /*
4511 * If a crashdump is active, then we are potentially in a very
4512 * memory constrained environment. Limit us to 1 queue and
4513 * 64 tags to prevent using too much memory.
4514 */
4515 if (is_kdump_kernel()) {
4516 set->nr_hw_queues = 1;
4517 set->nr_maps = 1;
4518 set->queue_depth = min(64U, set->queue_depth);
4519 }
4520 /*
4521 * There is no use for more h/w queues than cpus if we just have
4522 * a single map
4523 */
4524 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4525 set->nr_hw_queues = nr_cpu_ids;
4526
4527 if (set->flags & BLK_MQ_F_BLOCKING) {
4528 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4529 if (!set->srcu)
4530 return -ENOMEM;
4531 ret = init_srcu_struct(set->srcu);
4532 if (ret)
4533 goto out_free_srcu;
4534 }
4535
4536 ret = -ENOMEM;
4537 set->tags = kcalloc_node(set->nr_hw_queues,
4538 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4539 set->numa_node);
4540 if (!set->tags)
4541 goto out_cleanup_srcu;
4542
4543 for (i = 0; i < set->nr_maps; i++) {
4544 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4545 sizeof(set->map[i].mq_map[0]),
4546 GFP_KERNEL, set->numa_node);
4547 if (!set->map[i].mq_map)
4548 goto out_free_mq_map;
4549 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4550 }
4551
4552 blk_mq_update_queue_map(set);
4553
4554 ret = blk_mq_alloc_set_map_and_rqs(set);
4555 if (ret)
4556 goto out_free_mq_map;
4557
4558 mutex_init(&set->tag_list_lock);
4559 INIT_LIST_HEAD(&set->tag_list);
4560
4561 return 0;
4562
4563 out_free_mq_map:
4564 for (i = 0; i < set->nr_maps; i++) {
4565 kfree(set->map[i].mq_map);
4566 set->map[i].mq_map = NULL;
4567 }
4568 kfree(set->tags);
4569 set->tags = NULL;
4570 out_cleanup_srcu:
4571 if (set->flags & BLK_MQ_F_BLOCKING)
4572 cleanup_srcu_struct(set->srcu);
4573 out_free_srcu:
4574 if (set->flags & BLK_MQ_F_BLOCKING)
4575 kfree(set->srcu);
4576 return ret;
4577 }
4578 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4579
4580 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4581 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4582 const struct blk_mq_ops *ops, unsigned int queue_depth,
4583 unsigned int set_flags)
4584 {
4585 memset(set, 0, sizeof(*set));
4586 set->ops = ops;
4587 set->nr_hw_queues = 1;
4588 set->nr_maps = 1;
4589 set->queue_depth = queue_depth;
4590 set->numa_node = NUMA_NO_NODE;
4591 set->flags = set_flags;
4592 return blk_mq_alloc_tag_set(set);
4593 }
4594 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4595
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4596 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4597 {
4598 int i, j;
4599
4600 for (i = 0; i < set->nr_hw_queues; i++)
4601 __blk_mq_free_map_and_rqs(set, i);
4602
4603 if (blk_mq_is_shared_tags(set->flags)) {
4604 blk_mq_free_map_and_rqs(set, set->shared_tags,
4605 BLK_MQ_NO_HCTX_IDX);
4606 }
4607
4608 for (j = 0; j < set->nr_maps; j++) {
4609 kfree(set->map[j].mq_map);
4610 set->map[j].mq_map = NULL;
4611 }
4612
4613 kfree(set->tags);
4614 set->tags = NULL;
4615 if (set->flags & BLK_MQ_F_BLOCKING) {
4616 cleanup_srcu_struct(set->srcu);
4617 kfree(set->srcu);
4618 }
4619 }
4620 EXPORT_SYMBOL(blk_mq_free_tag_set);
4621
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)4622 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4623 {
4624 struct blk_mq_tag_set *set = q->tag_set;
4625 struct blk_mq_hw_ctx *hctx;
4626 int ret;
4627 unsigned long i;
4628
4629 if (!set)
4630 return -EINVAL;
4631
4632 if (q->nr_requests == nr)
4633 return 0;
4634
4635 blk_mq_freeze_queue(q);
4636 blk_mq_quiesce_queue(q);
4637
4638 ret = 0;
4639 queue_for_each_hw_ctx(q, hctx, i) {
4640 if (!hctx->tags)
4641 continue;
4642 /*
4643 * If we're using an MQ scheduler, just update the scheduler
4644 * queue depth. This is similar to what the old code would do.
4645 */
4646 if (hctx->sched_tags) {
4647 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4648 nr, true);
4649 } else {
4650 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4651 false);
4652 }
4653 if (ret)
4654 break;
4655 if (q->elevator && q->elevator->type->ops.depth_updated)
4656 q->elevator->type->ops.depth_updated(hctx);
4657 }
4658 if (!ret) {
4659 q->nr_requests = nr;
4660 if (blk_mq_is_shared_tags(set->flags)) {
4661 if (q->elevator)
4662 blk_mq_tag_update_sched_shared_tags(q);
4663 else
4664 blk_mq_tag_resize_shared_tags(set, nr);
4665 }
4666 }
4667
4668 blk_mq_unquiesce_queue(q);
4669 blk_mq_unfreeze_queue(q);
4670
4671 return ret;
4672 }
4673
4674 /*
4675 * request_queue and elevator_type pair.
4676 * It is just used by __blk_mq_update_nr_hw_queues to cache
4677 * the elevator_type associated with a request_queue.
4678 */
4679 struct blk_mq_qe_pair {
4680 struct list_head node;
4681 struct request_queue *q;
4682 struct elevator_type *type;
4683 };
4684
4685 /*
4686 * Cache the elevator_type in qe pair list and switch the
4687 * io scheduler to 'none'
4688 */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)4689 static bool blk_mq_elv_switch_none(struct list_head *head,
4690 struct request_queue *q)
4691 {
4692 struct blk_mq_qe_pair *qe;
4693
4694 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4695 if (!qe)
4696 return false;
4697
4698 /* q->elevator needs protection from ->sysfs_lock */
4699 mutex_lock(&q->sysfs_lock);
4700
4701 /* the check has to be done with holding sysfs_lock */
4702 if (!q->elevator) {
4703 kfree(qe);
4704 goto unlock;
4705 }
4706
4707 INIT_LIST_HEAD(&qe->node);
4708 qe->q = q;
4709 qe->type = q->elevator->type;
4710 /* keep a reference to the elevator module as we'll switch back */
4711 __elevator_get(qe->type);
4712 list_add(&qe->node, head);
4713 elevator_disable(q);
4714 unlock:
4715 mutex_unlock(&q->sysfs_lock);
4716
4717 return true;
4718 }
4719
blk_lookup_qe_pair(struct list_head * head,struct request_queue * q)4720 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4721 struct request_queue *q)
4722 {
4723 struct blk_mq_qe_pair *qe;
4724
4725 list_for_each_entry(qe, head, node)
4726 if (qe->q == q)
4727 return qe;
4728
4729 return NULL;
4730 }
4731
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)4732 static void blk_mq_elv_switch_back(struct list_head *head,
4733 struct request_queue *q)
4734 {
4735 struct blk_mq_qe_pair *qe;
4736 struct elevator_type *t;
4737
4738 qe = blk_lookup_qe_pair(head, q);
4739 if (!qe)
4740 return;
4741 t = qe->type;
4742 list_del(&qe->node);
4743 kfree(qe);
4744
4745 mutex_lock(&q->sysfs_lock);
4746 elevator_switch(q, t);
4747 /* drop the reference acquired in blk_mq_elv_switch_none */
4748 elevator_put(t);
4749 mutex_unlock(&q->sysfs_lock);
4750 }
4751
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4752 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4753 int nr_hw_queues)
4754 {
4755 struct request_queue *q;
4756 LIST_HEAD(head);
4757 int prev_nr_hw_queues = set->nr_hw_queues;
4758 int i;
4759
4760 lockdep_assert_held(&set->tag_list_lock);
4761
4762 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4763 nr_hw_queues = nr_cpu_ids;
4764 if (nr_hw_queues < 1)
4765 return;
4766 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4767 return;
4768
4769 list_for_each_entry(q, &set->tag_list, tag_set_list)
4770 blk_mq_freeze_queue(q);
4771 /*
4772 * Switch IO scheduler to 'none', cleaning up the data associated
4773 * with the previous scheduler. We will switch back once we are done
4774 * updating the new sw to hw queue mappings.
4775 */
4776 list_for_each_entry(q, &set->tag_list, tag_set_list)
4777 if (!blk_mq_elv_switch_none(&head, q))
4778 goto switch_back;
4779
4780 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4781 blk_mq_debugfs_unregister_hctxs(q);
4782 blk_mq_sysfs_unregister_hctxs(q);
4783 }
4784
4785 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4786 goto reregister;
4787
4788 fallback:
4789 blk_mq_update_queue_map(set);
4790 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4791 blk_mq_realloc_hw_ctxs(set, q);
4792 blk_mq_update_poll_flag(q);
4793 if (q->nr_hw_queues != set->nr_hw_queues) {
4794 int i = prev_nr_hw_queues;
4795
4796 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4797 nr_hw_queues, prev_nr_hw_queues);
4798 for (; i < set->nr_hw_queues; i++)
4799 __blk_mq_free_map_and_rqs(set, i);
4800
4801 set->nr_hw_queues = prev_nr_hw_queues;
4802 goto fallback;
4803 }
4804 blk_mq_map_swqueue(q);
4805 }
4806
4807 reregister:
4808 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4809 blk_mq_sysfs_register_hctxs(q);
4810 blk_mq_debugfs_register_hctxs(q);
4811 }
4812
4813 switch_back:
4814 list_for_each_entry(q, &set->tag_list, tag_set_list)
4815 blk_mq_elv_switch_back(&head, q);
4816
4817 list_for_each_entry(q, &set->tag_list, tag_set_list)
4818 blk_mq_unfreeze_queue(q);
4819
4820 /* Free the excess tags when nr_hw_queues shrink. */
4821 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4822 __blk_mq_free_map_and_rqs(set, i);
4823 }
4824
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4825 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4826 {
4827 mutex_lock(&set->tag_list_lock);
4828 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4829 mutex_unlock(&set->tag_list_lock);
4830 }
4831 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4832
blk_hctx_poll(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob,unsigned int flags)4833 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4834 struct io_comp_batch *iob, unsigned int flags)
4835 {
4836 long state = get_current_state();
4837 int ret;
4838
4839 do {
4840 ret = q->mq_ops->poll(hctx, iob);
4841 if (ret > 0) {
4842 __set_current_state(TASK_RUNNING);
4843 return ret;
4844 }
4845
4846 if (signal_pending_state(state, current))
4847 __set_current_state(TASK_RUNNING);
4848 if (task_is_running(current))
4849 return 1;
4850
4851 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4852 break;
4853 cpu_relax();
4854 } while (!need_resched());
4855
4856 __set_current_state(TASK_RUNNING);
4857 return 0;
4858 }
4859
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4860 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4861 struct io_comp_batch *iob, unsigned int flags)
4862 {
4863 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4864
4865 return blk_hctx_poll(q, hctx, iob, flags);
4866 }
4867
blk_rq_poll(struct request * rq,struct io_comp_batch * iob,unsigned int poll_flags)4868 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4869 unsigned int poll_flags)
4870 {
4871 struct request_queue *q = rq->q;
4872 int ret;
4873
4874 if (!blk_rq_is_poll(rq))
4875 return 0;
4876 if (!percpu_ref_tryget(&q->q_usage_counter))
4877 return 0;
4878
4879 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4880 blk_queue_exit(q);
4881
4882 return ret;
4883 }
4884 EXPORT_SYMBOL_GPL(blk_rq_poll);
4885
blk_mq_rq_cpu(struct request * rq)4886 unsigned int blk_mq_rq_cpu(struct request *rq)
4887 {
4888 return rq->mq_ctx->cpu;
4889 }
4890 EXPORT_SYMBOL(blk_mq_rq_cpu);
4891
blk_mq_cancel_work_sync(struct request_queue * q)4892 void blk_mq_cancel_work_sync(struct request_queue *q)
4893 {
4894 struct blk_mq_hw_ctx *hctx;
4895 unsigned long i;
4896
4897 cancel_delayed_work_sync(&q->requeue_work);
4898
4899 queue_for_each_hw_ctx(q, hctx, i)
4900 cancel_delayed_work_sync(&hctx->run_work);
4901 }
4902
blk_mq_init(void)4903 static int __init blk_mq_init(void)
4904 {
4905 int i;
4906
4907 for_each_possible_cpu(i)
4908 init_llist_head(&per_cpu(blk_cpu_done, i));
4909 for_each_possible_cpu(i)
4910 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4911 __blk_mq_complete_request_remote, NULL);
4912 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4913
4914 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4915 "block/softirq:dead", NULL,
4916 blk_softirq_cpu_dead);
4917 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4918 blk_mq_hctx_notify_dead);
4919 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4920 blk_mq_hctx_notify_online,
4921 blk_mq_hctx_notify_offline);
4922 return 0;
4923 }
4924 subsys_initcall(blk_mq_init);
4925