1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
blk_mq_poll_stats_bkt(const struct request * rq)51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 int ddir, sectors, bucket;
54
55 ddir = rq_data_dir(rq);
56 sectors = blk_rq_stats_sectors(rq);
57
58 bucket = ddir + 2 * ilog2(sectors);
59
60 if (bucket < 0)
61 return -1;
62 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65 return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT 16
69 #define BLK_QC_T_INTERNAL (1U << 31)
70
blk_qc_to_hctx(struct request_queue * q,blk_qc_t qc)71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 blk_qc_t qc)
73 {
74 return xa_load(&q->hctx_table,
75 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77
blk_qc_to_rq(struct blk_mq_hw_ctx * hctx,blk_qc_t qc)78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79 blk_qc_t qc)
80 {
81 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82
83 if (qc & BLK_QC_T_INTERNAL)
84 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85 return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87
blk_rq_to_qc(struct request * rq)88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91 (rq->tag != -1 ?
92 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94
95 /*
96 * Check if any of the ctx, dispatch list or elevator
97 * have pending work in this hardware queue.
98 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101 return !list_empty_careful(&hctx->dispatch) ||
102 sbitmap_any_bit_set(&hctx->ctx_map) ||
103 blk_mq_sched_has_work(hctx);
104 }
105
106 /*
107 * Mark this ctx as having pending work in this hardware queue
108 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110 struct blk_mq_ctx *ctx)
111 {
112 const int bit = ctx->index_hw[hctx->type];
113
114 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115 sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119 struct blk_mq_ctx *ctx)
120 {
121 const int bit = ctx->index_hw[hctx->type];
122
123 sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125
126 struct mq_inflight {
127 struct block_device *part;
128 unsigned int inflight[2];
129 };
130
blk_mq_check_inflight(struct request * rq,void * priv,bool reserved)131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132 bool reserved)
133 {
134 struct mq_inflight *mi = priv;
135
136 if (rq->part && blk_do_io_stat(rq) &&
137 (!mi->part->bd_partno || rq->part == mi->part) &&
138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 mi->inflight[rq_data_dir(rq)]++;
140
141 return true;
142 }
143
blk_mq_in_flight(struct request_queue * q,struct block_device * part)144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 struct block_device *part)
146 {
147 struct mq_inflight mi = { .part = part };
148
149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151 return mi.inflight[0] + mi.inflight[1];
152 }
153
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 unsigned int inflight[2])
156 {
157 struct mq_inflight mi = { .part = part };
158
159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 inflight[0] = mi.inflight[0];
161 inflight[1] = mi.inflight[1];
162 }
163
blk_freeze_queue_start(struct request_queue * q)164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 mutex_lock(&q->mq_freeze_lock);
167 if (++q->mq_freeze_depth == 1) {
168 percpu_ref_kill(&q->q_usage_counter);
169 mutex_unlock(&q->mq_freeze_lock);
170 if (queue_is_mq(q))
171 blk_mq_run_hw_queues(q, false);
172 } else {
173 mutex_unlock(&q->mq_freeze_lock);
174 }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
blk_mq_freeze_queue_wait(struct request_queue * q)178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 unsigned long timeout)
186 {
187 return wait_event_timeout(q->mq_freeze_wq,
188 percpu_ref_is_zero(&q->q_usage_counter),
189 timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194 * Guarantee no request is in use, so we can change any data structure of
195 * the queue afterward.
196 */
blk_freeze_queue(struct request_queue * q)197 void blk_freeze_queue(struct request_queue *q)
198 {
199 /*
200 * In the !blk_mq case we are only calling this to kill the
201 * q_usage_counter, otherwise this increases the freeze depth
202 * and waits for it to return to zero. For this reason there is
203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 * exported to drivers as the only user for unfreeze is blk_mq.
205 */
206 blk_freeze_queue_start(q);
207 blk_mq_freeze_queue_wait(q);
208 }
209
blk_mq_freeze_queue(struct request_queue * q)210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 /*
213 * ...just an alias to keep freeze and unfreeze actions balanced
214 * in the blk_mq_* namespace
215 */
216 blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 mutex_lock(&q->mq_freeze_lock);
223 if (force_atomic)
224 q->q_usage_counter.data->force_atomic = true;
225 q->mq_freeze_depth--;
226 WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 if (!q->mq_freeze_depth) {
228 percpu_ref_resurrect(&q->q_usage_counter);
229 wake_up_all(&q->mq_freeze_wq);
230 }
231 mutex_unlock(&q->mq_freeze_lock);
232 }
233
blk_mq_unfreeze_queue(struct request_queue * q)234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242 * mpt3sas driver such that this function can be removed.
243 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 unsigned long flags;
247
248 spin_lock_irqsave(&q->queue_lock, flags);
249 if (!q->quiesce_depth++)
250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257 * @q: request queue.
258 *
259 * Note: it is driver's responsibility for making sure that quiesce has
260 * been started.
261 */
blk_mq_wait_quiesce_done(struct request_queue * q)262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264 if (blk_queue_has_srcu(q))
265 synchronize_srcu(q->srcu);
266 else
267 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273 * @q: request queue.
274 *
275 * Note: this function does not prevent that the struct request end_io()
276 * callback function is invoked. Once this function is returned, we make
277 * sure no dispatch can happen until the queue is unquiesced via
278 * blk_mq_unquiesce_queue().
279 */
blk_mq_quiesce_queue(struct request_queue * q)280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282 blk_mq_quiesce_queue_nowait(q);
283 blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289 * @q: request queue.
290 *
291 * This function recovers queue into the state before quiescing
292 * which is done by blk_mq_quiesce_queue.
293 */
blk_mq_unquiesce_queue(struct request_queue * q)294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296 unsigned long flags;
297 bool run_queue = false;
298
299 spin_lock_irqsave(&q->queue_lock, flags);
300 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301 ;
302 } else if (!--q->quiesce_depth) {
303 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304 run_queue = true;
305 }
306 spin_unlock_irqrestore(&q->queue_lock, flags);
307
308 /* dispatch requests which are inserted during quiescing */
309 if (run_queue)
310 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
blk_mq_wake_waiters(struct request_queue * q)314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316 struct blk_mq_hw_ctx *hctx;
317 unsigned long i;
318
319 queue_for_each_hw_ctx(q, hctx, i)
320 if (blk_mq_hw_queue_mapped(hctx))
321 blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
blk_rq_init(struct request_queue * q,struct request * rq)324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326 memset(rq, 0, sizeof(*rq));
327
328 INIT_LIST_HEAD(&rq->queuelist);
329 rq->q = q;
330 rq->__sector = (sector_t) -1;
331 INIT_HLIST_NODE(&rq->hash);
332 RB_CLEAR_NODE(&rq->rb_node);
333 rq->tag = BLK_MQ_NO_TAG;
334 rq->internal_tag = BLK_MQ_NO_TAG;
335 rq->start_time_ns = ktime_get_ns();
336 rq->part = NULL;
337 blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag,u64 alloc_time_ns)341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344 struct blk_mq_ctx *ctx = data->ctx;
345 struct blk_mq_hw_ctx *hctx = data->hctx;
346 struct request_queue *q = data->q;
347 struct request *rq = tags->static_rqs[tag];
348
349 rq->q = q;
350 rq->mq_ctx = ctx;
351 rq->mq_hctx = hctx;
352 rq->cmd_flags = data->cmd_flags;
353
354 if (data->flags & BLK_MQ_REQ_PM)
355 data->rq_flags |= RQF_PM;
356 if (blk_queue_io_stat(q))
357 data->rq_flags |= RQF_IO_STAT;
358 rq->rq_flags = data->rq_flags;
359
360 if (!(data->rq_flags & RQF_ELV)) {
361 rq->tag = tag;
362 rq->internal_tag = BLK_MQ_NO_TAG;
363 } else {
364 rq->tag = BLK_MQ_NO_TAG;
365 rq->internal_tag = tag;
366 }
367 rq->timeout = 0;
368
369 if (blk_mq_need_time_stamp(rq))
370 rq->start_time_ns = ktime_get_ns();
371 else
372 rq->start_time_ns = 0;
373 rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375 rq->alloc_time_ns = alloc_time_ns;
376 #endif
377 rq->io_start_time_ns = 0;
378 rq->stats_sectors = 0;
379 rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 rq->nr_integrity_segments = 0;
382 #endif
383 rq->end_io = NULL;
384 rq->end_io_data = NULL;
385
386 blk_crypto_rq_set_defaults(rq);
387 INIT_LIST_HEAD(&rq->queuelist);
388 /* tag was already set */
389 WRITE_ONCE(rq->deadline, 0);
390 req_ref_set(rq, 1);
391
392 if (rq->rq_flags & RQF_ELV) {
393 struct elevator_queue *e = data->q->elevator;
394
395 INIT_HLIST_NODE(&rq->hash);
396 RB_CLEAR_NODE(&rq->rb_node);
397
398 if (!op_is_flush(data->cmd_flags) &&
399 e->type->ops.prepare_request) {
400 e->type->ops.prepare_request(rq);
401 rq->rq_flags |= RQF_ELVPRIV;
402 }
403 }
404
405 return rq;
406 }
407
408 static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data,u64 alloc_time_ns)409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410 u64 alloc_time_ns)
411 {
412 unsigned int tag, tag_offset;
413 struct blk_mq_tags *tags;
414 struct request *rq;
415 unsigned long tag_mask;
416 int i, nr = 0;
417
418 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419 if (unlikely(!tag_mask))
420 return NULL;
421
422 tags = blk_mq_tags_from_data(data);
423 for (i = 0; tag_mask; i++) {
424 if (!(tag_mask & (1UL << i)))
425 continue;
426 tag = tag_offset + i;
427 prefetch(tags->static_rqs[tag]);
428 tag_mask &= ~(1UL << i);
429 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430 rq_list_add(data->cached_rq, rq);
431 nr++;
432 }
433 /* caller already holds a reference, add for remainder */
434 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435 data->nr_tags -= nr;
436
437 return rq_list_pop(data->cached_rq);
438 }
439
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442 struct request_queue *q = data->q;
443 u64 alloc_time_ns = 0;
444 struct request *rq;
445 unsigned int tag;
446
447 /* alloc_time includes depth and tag waits */
448 if (blk_queue_rq_alloc_time(q))
449 alloc_time_ns = ktime_get_ns();
450
451 if (data->cmd_flags & REQ_NOWAIT)
452 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454 if (q->elevator) {
455 struct elevator_queue *e = q->elevator;
456
457 data->rq_flags |= RQF_ELV;
458
459 /*
460 * Flush/passthrough requests are special and go directly to the
461 * dispatch list. Don't include reserved tags in the
462 * limiting, as it isn't useful.
463 */
464 if (!op_is_flush(data->cmd_flags) &&
465 !blk_op_is_passthrough(data->cmd_flags) &&
466 e->type->ops.limit_depth &&
467 !(data->flags & BLK_MQ_REQ_RESERVED))
468 e->type->ops.limit_depth(data->cmd_flags, data);
469 }
470
471 retry:
472 data->ctx = blk_mq_get_ctx(q);
473 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474 if (!(data->rq_flags & RQF_ELV))
475 blk_mq_tag_busy(data->hctx);
476
477 /*
478 * Try batched alloc if we want more than 1 tag.
479 */
480 if (data->nr_tags > 1) {
481 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
482 if (rq)
483 return rq;
484 data->nr_tags = 1;
485 }
486
487 /*
488 * Waiting allocations only fail because of an inactive hctx. In that
489 * case just retry the hctx assignment and tag allocation as CPU hotplug
490 * should have migrated us to an online CPU by now.
491 */
492 tag = blk_mq_get_tag(data);
493 if (tag == BLK_MQ_NO_TAG) {
494 if (data->flags & BLK_MQ_REQ_NOWAIT)
495 return NULL;
496 /*
497 * Give up the CPU and sleep for a random short time to
498 * ensure that thread using a realtime scheduling class
499 * are migrated off the CPU, and thus off the hctx that
500 * is going away.
501 */
502 msleep(3);
503 goto retry;
504 }
505
506 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
507 alloc_time_ns);
508 }
509
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)510 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
511 blk_mq_req_flags_t flags)
512 {
513 struct blk_mq_alloc_data data = {
514 .q = q,
515 .flags = flags,
516 .cmd_flags = op,
517 .nr_tags = 1,
518 };
519 struct request *rq;
520 int ret;
521
522 ret = blk_queue_enter(q, flags);
523 if (ret)
524 return ERR_PTR(ret);
525
526 rq = __blk_mq_alloc_requests(&data);
527 if (!rq)
528 goto out_queue_exit;
529 rq->__data_len = 0;
530 rq->__sector = (sector_t) -1;
531 rq->bio = rq->biotail = NULL;
532 return rq;
533 out_queue_exit:
534 blk_queue_exit(q);
535 return ERR_PTR(-EWOULDBLOCK);
536 }
537 EXPORT_SYMBOL(blk_mq_alloc_request);
538
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)539 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
540 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
541 {
542 struct blk_mq_alloc_data data = {
543 .q = q,
544 .flags = flags,
545 .cmd_flags = op,
546 .nr_tags = 1,
547 };
548 u64 alloc_time_ns = 0;
549 unsigned int cpu;
550 unsigned int tag;
551 int ret;
552
553 /* alloc_time includes depth and tag waits */
554 if (blk_queue_rq_alloc_time(q))
555 alloc_time_ns = ktime_get_ns();
556
557 /*
558 * If the tag allocator sleeps we could get an allocation for a
559 * different hardware context. No need to complicate the low level
560 * allocator for this for the rare use case of a command tied to
561 * a specific queue.
562 */
563 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
564 return ERR_PTR(-EINVAL);
565
566 if (hctx_idx >= q->nr_hw_queues)
567 return ERR_PTR(-EIO);
568
569 ret = blk_queue_enter(q, flags);
570 if (ret)
571 return ERR_PTR(ret);
572
573 /*
574 * Check if the hardware context is actually mapped to anything.
575 * If not tell the caller that it should skip this queue.
576 */
577 ret = -EXDEV;
578 data.hctx = xa_load(&q->hctx_table, hctx_idx);
579 if (!blk_mq_hw_queue_mapped(data.hctx))
580 goto out_queue_exit;
581 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
582 if (cpu >= nr_cpu_ids)
583 goto out_queue_exit;
584 data.ctx = __blk_mq_get_ctx(q, cpu);
585
586 if (!q->elevator)
587 blk_mq_tag_busy(data.hctx);
588 else
589 data.rq_flags |= RQF_ELV;
590
591 ret = -EWOULDBLOCK;
592 tag = blk_mq_get_tag(&data);
593 if (tag == BLK_MQ_NO_TAG)
594 goto out_queue_exit;
595 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
596 alloc_time_ns);
597
598 out_queue_exit:
599 blk_queue_exit(q);
600 return ERR_PTR(ret);
601 }
602 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
603
__blk_mq_free_request(struct request * rq)604 static void __blk_mq_free_request(struct request *rq)
605 {
606 struct request_queue *q = rq->q;
607 struct blk_mq_ctx *ctx = rq->mq_ctx;
608 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
609 const int sched_tag = rq->internal_tag;
610
611 blk_crypto_free_request(rq);
612 blk_pm_mark_last_busy(rq);
613 rq->mq_hctx = NULL;
614 if (rq->tag != BLK_MQ_NO_TAG)
615 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
616 if (sched_tag != BLK_MQ_NO_TAG)
617 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
618 blk_mq_sched_restart(hctx);
619 blk_queue_exit(q);
620 }
621
blk_mq_free_request(struct request * rq)622 void blk_mq_free_request(struct request *rq)
623 {
624 struct request_queue *q = rq->q;
625 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
626
627 if ((rq->rq_flags & RQF_ELVPRIV) &&
628 q->elevator->type->ops.finish_request)
629 q->elevator->type->ops.finish_request(rq);
630
631 if (rq->rq_flags & RQF_MQ_INFLIGHT)
632 __blk_mq_dec_active_requests(hctx);
633
634 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
635 laptop_io_completion(q->disk->bdi);
636
637 rq_qos_done(q, rq);
638
639 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
640 if (req_ref_put_and_test(rq))
641 __blk_mq_free_request(rq);
642 }
643 EXPORT_SYMBOL_GPL(blk_mq_free_request);
644
blk_mq_free_plug_rqs(struct blk_plug * plug)645 void blk_mq_free_plug_rqs(struct blk_plug *plug)
646 {
647 struct request *rq;
648
649 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
650 blk_mq_free_request(rq);
651 }
652
blk_dump_rq_flags(struct request * rq,char * msg)653 void blk_dump_rq_flags(struct request *rq, char *msg)
654 {
655 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
656 rq->q->disk ? rq->q->disk->disk_name : "?",
657 (unsigned long long) rq->cmd_flags);
658
659 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
660 (unsigned long long)blk_rq_pos(rq),
661 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
662 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
663 rq->bio, rq->biotail, blk_rq_bytes(rq));
664 }
665 EXPORT_SYMBOL(blk_dump_rq_flags);
666
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)667 static void req_bio_endio(struct request *rq, struct bio *bio,
668 unsigned int nbytes, blk_status_t error)
669 {
670 if (unlikely(error)) {
671 bio->bi_status = error;
672 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
673 /*
674 * Partial zone append completions cannot be supported as the
675 * BIO fragments may end up not being written sequentially.
676 */
677 if (bio->bi_iter.bi_size != nbytes)
678 bio->bi_status = BLK_STS_IOERR;
679 else
680 bio->bi_iter.bi_sector = rq->__sector;
681 }
682
683 bio_advance(bio, nbytes);
684
685 if (unlikely(rq->rq_flags & RQF_QUIET))
686 bio_set_flag(bio, BIO_QUIET);
687 /* don't actually finish bio if it's part of flush sequence */
688 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
689 bio_endio(bio);
690 }
691
blk_account_io_completion(struct request * req,unsigned int bytes)692 static void blk_account_io_completion(struct request *req, unsigned int bytes)
693 {
694 if (req->part && blk_do_io_stat(req)) {
695 const int sgrp = op_stat_group(req_op(req));
696
697 part_stat_lock();
698 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
699 part_stat_unlock();
700 }
701 }
702
blk_print_req_error(struct request * req,blk_status_t status)703 static void blk_print_req_error(struct request *req, blk_status_t status)
704 {
705 printk_ratelimited(KERN_ERR
706 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
707 "phys_seg %u prio class %u\n",
708 blk_status_to_str(status),
709 req->q->disk ? req->q->disk->disk_name : "?",
710 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
711 req->cmd_flags & ~REQ_OP_MASK,
712 req->nr_phys_segments,
713 IOPRIO_PRIO_CLASS(req->ioprio));
714 }
715
716 /*
717 * Fully end IO on a request. Does not support partial completions, or
718 * errors.
719 */
blk_complete_request(struct request * req)720 static void blk_complete_request(struct request *req)
721 {
722 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
723 int total_bytes = blk_rq_bytes(req);
724 struct bio *bio = req->bio;
725
726 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
727
728 if (!bio)
729 return;
730
731 #ifdef CONFIG_BLK_DEV_INTEGRITY
732 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
733 req->q->integrity.profile->complete_fn(req, total_bytes);
734 #endif
735
736 blk_account_io_completion(req, total_bytes);
737
738 do {
739 struct bio *next = bio->bi_next;
740
741 /* Completion has already been traced */
742 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
743
744 if (req_op(req) == REQ_OP_ZONE_APPEND)
745 bio->bi_iter.bi_sector = req->__sector;
746
747 if (!is_flush)
748 bio_endio(bio);
749 bio = next;
750 } while (bio);
751
752 /*
753 * Reset counters so that the request stacking driver
754 * can find how many bytes remain in the request
755 * later.
756 */
757 req->bio = NULL;
758 req->__data_len = 0;
759 }
760
761 /**
762 * blk_update_request - Complete multiple bytes without completing the request
763 * @req: the request being processed
764 * @error: block status code
765 * @nr_bytes: number of bytes to complete for @req
766 *
767 * Description:
768 * Ends I/O on a number of bytes attached to @req, but doesn't complete
769 * the request structure even if @req doesn't have leftover.
770 * If @req has leftover, sets it up for the next range of segments.
771 *
772 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
773 * %false return from this function.
774 *
775 * Note:
776 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
777 * except in the consistency check at the end of this function.
778 *
779 * Return:
780 * %false - this request doesn't have any more data
781 * %true - this request has more data
782 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)783 bool blk_update_request(struct request *req, blk_status_t error,
784 unsigned int nr_bytes)
785 {
786 int total_bytes;
787
788 trace_block_rq_complete(req, error, nr_bytes);
789
790 if (!req->bio)
791 return false;
792
793 #ifdef CONFIG_BLK_DEV_INTEGRITY
794 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
795 error == BLK_STS_OK)
796 req->q->integrity.profile->complete_fn(req, nr_bytes);
797 #endif
798
799 if (unlikely(error && !blk_rq_is_passthrough(req) &&
800 !(req->rq_flags & RQF_QUIET)) &&
801 !test_bit(GD_DEAD, &req->q->disk->state)) {
802 blk_print_req_error(req, error);
803 trace_block_rq_error(req, error, nr_bytes);
804 }
805
806 blk_account_io_completion(req, nr_bytes);
807
808 total_bytes = 0;
809 while (req->bio) {
810 struct bio *bio = req->bio;
811 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
812
813 if (bio_bytes == bio->bi_iter.bi_size)
814 req->bio = bio->bi_next;
815
816 /* Completion has already been traced */
817 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
818 req_bio_endio(req, bio, bio_bytes, error);
819
820 total_bytes += bio_bytes;
821 nr_bytes -= bio_bytes;
822
823 if (!nr_bytes)
824 break;
825 }
826
827 /*
828 * completely done
829 */
830 if (!req->bio) {
831 /*
832 * Reset counters so that the request stacking driver
833 * can find how many bytes remain in the request
834 * later.
835 */
836 req->__data_len = 0;
837 return false;
838 }
839
840 req->__data_len -= total_bytes;
841
842 /* update sector only for requests with clear definition of sector */
843 if (!blk_rq_is_passthrough(req))
844 req->__sector += total_bytes >> 9;
845
846 /* mixed attributes always follow the first bio */
847 if (req->rq_flags & RQF_MIXED_MERGE) {
848 req->cmd_flags &= ~REQ_FAILFAST_MASK;
849 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
850 }
851
852 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
853 /*
854 * If total number of sectors is less than the first segment
855 * size, something has gone terribly wrong.
856 */
857 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
858 blk_dump_rq_flags(req, "request botched");
859 req->__data_len = blk_rq_cur_bytes(req);
860 }
861
862 /* recalculate the number of segments */
863 req->nr_phys_segments = blk_recalc_rq_segments(req);
864 }
865
866 return true;
867 }
868 EXPORT_SYMBOL_GPL(blk_update_request);
869
__blk_account_io_done(struct request * req,u64 now)870 static void __blk_account_io_done(struct request *req, u64 now)
871 {
872 const int sgrp = op_stat_group(req_op(req));
873
874 part_stat_lock();
875 update_io_ticks(req->part, jiffies, true);
876 part_stat_inc(req->part, ios[sgrp]);
877 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
878 part_stat_unlock();
879 }
880
blk_account_io_done(struct request * req,u64 now)881 static inline void blk_account_io_done(struct request *req, u64 now)
882 {
883 /*
884 * Account IO completion. flush_rq isn't accounted as a
885 * normal IO on queueing nor completion. Accounting the
886 * containing request is enough.
887 */
888 if (blk_do_io_stat(req) && req->part &&
889 !(req->rq_flags & RQF_FLUSH_SEQ))
890 __blk_account_io_done(req, now);
891 }
892
__blk_account_io_start(struct request * rq)893 static void __blk_account_io_start(struct request *rq)
894 {
895 /*
896 * All non-passthrough requests are created from a bio with one
897 * exception: when a flush command that is part of a flush sequence
898 * generated by the state machine in blk-flush.c is cloned onto the
899 * lower device by dm-multipath we can get here without a bio.
900 */
901 if (rq->bio)
902 rq->part = rq->bio->bi_bdev;
903 else
904 rq->part = rq->q->disk->part0;
905
906 part_stat_lock();
907 update_io_ticks(rq->part, jiffies, false);
908 part_stat_unlock();
909 }
910
blk_account_io_start(struct request * req)911 static inline void blk_account_io_start(struct request *req)
912 {
913 if (blk_do_io_stat(req))
914 __blk_account_io_start(req);
915 }
916
__blk_mq_end_request_acct(struct request * rq,u64 now)917 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
918 {
919 if (rq->rq_flags & RQF_STATS) {
920 blk_mq_poll_stats_start(rq->q);
921 blk_stat_add(rq, now);
922 }
923
924 blk_mq_sched_completed_request(rq, now);
925 blk_account_io_done(rq, now);
926 }
927
__blk_mq_end_request(struct request * rq,blk_status_t error)928 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
929 {
930 if (blk_mq_need_time_stamp(rq))
931 __blk_mq_end_request_acct(rq, ktime_get_ns());
932
933 if (rq->end_io) {
934 rq_qos_done(rq->q, rq);
935 rq->end_io(rq, error);
936 } else {
937 blk_mq_free_request(rq);
938 }
939 }
940 EXPORT_SYMBOL(__blk_mq_end_request);
941
blk_mq_end_request(struct request * rq,blk_status_t error)942 void blk_mq_end_request(struct request *rq, blk_status_t error)
943 {
944 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
945 BUG();
946 __blk_mq_end_request(rq, error);
947 }
948 EXPORT_SYMBOL(blk_mq_end_request);
949
950 #define TAG_COMP_BATCH 32
951
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)952 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
953 int *tag_array, int nr_tags)
954 {
955 struct request_queue *q = hctx->queue;
956
957 /*
958 * All requests should have been marked as RQF_MQ_INFLIGHT, so
959 * update hctx->nr_active in batch
960 */
961 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
962 __blk_mq_sub_active_requests(hctx, nr_tags);
963
964 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
965 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
966 }
967
blk_mq_end_request_batch(struct io_comp_batch * iob)968 void blk_mq_end_request_batch(struct io_comp_batch *iob)
969 {
970 int tags[TAG_COMP_BATCH], nr_tags = 0;
971 struct blk_mq_hw_ctx *cur_hctx = NULL;
972 struct request *rq;
973 u64 now = 0;
974
975 if (iob->need_ts)
976 now = ktime_get_ns();
977
978 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
979 prefetch(rq->bio);
980 prefetch(rq->rq_next);
981
982 blk_complete_request(rq);
983 if (iob->need_ts)
984 __blk_mq_end_request_acct(rq, now);
985
986 rq_qos_done(rq->q, rq);
987
988 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
989 if (!req_ref_put_and_test(rq))
990 continue;
991
992 blk_crypto_free_request(rq);
993 blk_pm_mark_last_busy(rq);
994
995 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
996 if (cur_hctx)
997 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
998 nr_tags = 0;
999 cur_hctx = rq->mq_hctx;
1000 }
1001 tags[nr_tags++] = rq->tag;
1002 }
1003
1004 if (nr_tags)
1005 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1006 }
1007 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1008
blk_complete_reqs(struct llist_head * list)1009 static void blk_complete_reqs(struct llist_head *list)
1010 {
1011 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1012 struct request *rq, *next;
1013
1014 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1015 rq->q->mq_ops->complete(rq);
1016 }
1017
blk_done_softirq(struct softirq_action * h)1018 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1019 {
1020 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1021 }
1022
blk_softirq_cpu_dead(unsigned int cpu)1023 static int blk_softirq_cpu_dead(unsigned int cpu)
1024 {
1025 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1026 return 0;
1027 }
1028
__blk_mq_complete_request_remote(void * data)1029 static void __blk_mq_complete_request_remote(void *data)
1030 {
1031 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1032 }
1033
blk_mq_complete_need_ipi(struct request * rq)1034 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1035 {
1036 int cpu = raw_smp_processor_id();
1037
1038 if (!IS_ENABLED(CONFIG_SMP) ||
1039 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1040 return false;
1041 /*
1042 * With force threaded interrupts enabled, raising softirq from an SMP
1043 * function call will always result in waking the ksoftirqd thread.
1044 * This is probably worse than completing the request on a different
1045 * cache domain.
1046 */
1047 if (force_irqthreads())
1048 return false;
1049
1050 /* same CPU or cache domain? Complete locally */
1051 if (cpu == rq->mq_ctx->cpu ||
1052 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1053 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1054 return false;
1055
1056 /* don't try to IPI to an offline CPU */
1057 return cpu_online(rq->mq_ctx->cpu);
1058 }
1059
blk_mq_complete_send_ipi(struct request * rq)1060 static void blk_mq_complete_send_ipi(struct request *rq)
1061 {
1062 struct llist_head *list;
1063 unsigned int cpu;
1064
1065 cpu = rq->mq_ctx->cpu;
1066 list = &per_cpu(blk_cpu_done, cpu);
1067 if (llist_add(&rq->ipi_list, list)) {
1068 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1069 smp_call_function_single_async(cpu, &rq->csd);
1070 }
1071 }
1072
blk_mq_raise_softirq(struct request * rq)1073 static void blk_mq_raise_softirq(struct request *rq)
1074 {
1075 struct llist_head *list;
1076
1077 preempt_disable();
1078 list = this_cpu_ptr(&blk_cpu_done);
1079 if (llist_add(&rq->ipi_list, list))
1080 raise_softirq(BLOCK_SOFTIRQ);
1081 preempt_enable();
1082 }
1083
blk_mq_complete_request_remote(struct request * rq)1084 bool blk_mq_complete_request_remote(struct request *rq)
1085 {
1086 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1087
1088 /*
1089 * For a polled request, always complete locally, it's pointless
1090 * to redirect the completion.
1091 */
1092 if (rq->cmd_flags & REQ_POLLED)
1093 return false;
1094
1095 if (blk_mq_complete_need_ipi(rq)) {
1096 blk_mq_complete_send_ipi(rq);
1097 return true;
1098 }
1099
1100 if (rq->q->nr_hw_queues == 1) {
1101 blk_mq_raise_softirq(rq);
1102 return true;
1103 }
1104 return false;
1105 }
1106 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1107
1108 /**
1109 * blk_mq_complete_request - end I/O on a request
1110 * @rq: the request being processed
1111 *
1112 * Description:
1113 * Complete a request by scheduling the ->complete_rq operation.
1114 **/
blk_mq_complete_request(struct request * rq)1115 void blk_mq_complete_request(struct request *rq)
1116 {
1117 if (!blk_mq_complete_request_remote(rq))
1118 rq->q->mq_ops->complete(rq);
1119 }
1120 EXPORT_SYMBOL(blk_mq_complete_request);
1121
1122 /**
1123 * blk_mq_start_request - Start processing a request
1124 * @rq: Pointer to request to be started
1125 *
1126 * Function used by device drivers to notify the block layer that a request
1127 * is going to be processed now, so blk layer can do proper initializations
1128 * such as starting the timeout timer.
1129 */
blk_mq_start_request(struct request * rq)1130 void blk_mq_start_request(struct request *rq)
1131 {
1132 struct request_queue *q = rq->q;
1133
1134 trace_block_rq_issue(rq);
1135
1136 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1137 rq->io_start_time_ns = ktime_get_ns();
1138 rq->stats_sectors = blk_rq_sectors(rq);
1139 rq->rq_flags |= RQF_STATS;
1140 rq_qos_issue(q, rq);
1141 }
1142
1143 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1144
1145 blk_add_timer(rq);
1146 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1147
1148 #ifdef CONFIG_BLK_DEV_INTEGRITY
1149 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1150 q->integrity.profile->prepare_fn(rq);
1151 #endif
1152 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1153 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1154 }
1155 EXPORT_SYMBOL(blk_mq_start_request);
1156
1157 /*
1158 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1159 * queues. This is important for md arrays to benefit from merging
1160 * requests.
1161 */
blk_plug_max_rq_count(struct blk_plug * plug)1162 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1163 {
1164 if (plug->multiple_queues)
1165 return BLK_MAX_REQUEST_COUNT * 2;
1166 return BLK_MAX_REQUEST_COUNT;
1167 }
1168
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1169 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1170 {
1171 struct request *last = rq_list_peek(&plug->mq_list);
1172
1173 if (!plug->rq_count) {
1174 trace_block_plug(rq->q);
1175 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1176 (!blk_queue_nomerges(rq->q) &&
1177 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1178 blk_mq_flush_plug_list(plug, false);
1179 trace_block_plug(rq->q);
1180 }
1181
1182 if (!plug->multiple_queues && last && last->q != rq->q)
1183 plug->multiple_queues = true;
1184 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1185 plug->has_elevator = true;
1186 rq->rq_next = NULL;
1187 rq_list_add(&plug->mq_list, rq);
1188 plug->rq_count++;
1189 }
1190
1191 /**
1192 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1193 * @rq: request to insert
1194 * @at_head: insert request at head or tail of queue
1195 *
1196 * Description:
1197 * Insert a fully prepared request at the back of the I/O scheduler queue
1198 * for execution. Don't wait for completion.
1199 *
1200 * Note:
1201 * This function will invoke @done directly if the queue is dead.
1202 */
blk_execute_rq_nowait(struct request * rq,bool at_head)1203 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1204 {
1205 WARN_ON(irqs_disabled());
1206 WARN_ON(!blk_rq_is_passthrough(rq));
1207
1208 blk_account_io_start(rq);
1209 if (current->plug)
1210 blk_add_rq_to_plug(current->plug, rq);
1211 else
1212 blk_mq_sched_insert_request(rq, at_head, true, false);
1213 }
1214 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1215
1216 struct blk_rq_wait {
1217 struct completion done;
1218 blk_status_t ret;
1219 };
1220
blk_end_sync_rq(struct request * rq,blk_status_t ret)1221 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1222 {
1223 struct blk_rq_wait *wait = rq->end_io_data;
1224
1225 wait->ret = ret;
1226 complete(&wait->done);
1227 }
1228
blk_rq_is_poll(struct request * rq)1229 static bool blk_rq_is_poll(struct request *rq)
1230 {
1231 if (!rq->mq_hctx)
1232 return false;
1233 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1234 return false;
1235 if (WARN_ON_ONCE(!rq->bio))
1236 return false;
1237 return true;
1238 }
1239
blk_rq_poll_completion(struct request * rq,struct completion * wait)1240 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1241 {
1242 do {
1243 bio_poll(rq->bio, NULL, 0);
1244 cond_resched();
1245 } while (!completion_done(wait));
1246 }
1247
1248 /**
1249 * blk_execute_rq - insert a request into queue for execution
1250 * @rq: request to insert
1251 * @at_head: insert request at head or tail of queue
1252 *
1253 * Description:
1254 * Insert a fully prepared request at the back of the I/O scheduler queue
1255 * for execution and wait for completion.
1256 * Return: The blk_status_t result provided to blk_mq_end_request().
1257 */
blk_execute_rq(struct request * rq,bool at_head)1258 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1259 {
1260 struct blk_rq_wait wait = {
1261 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1262 };
1263
1264 WARN_ON(irqs_disabled());
1265 WARN_ON(!blk_rq_is_passthrough(rq));
1266
1267 rq->end_io_data = &wait;
1268 rq->end_io = blk_end_sync_rq;
1269
1270 blk_account_io_start(rq);
1271 blk_mq_sched_insert_request(rq, at_head, true, false);
1272
1273 if (blk_rq_is_poll(rq)) {
1274 blk_rq_poll_completion(rq, &wait.done);
1275 } else {
1276 /*
1277 * Prevent hang_check timer from firing at us during very long
1278 * I/O
1279 */
1280 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1281
1282 if (hang_check)
1283 while (!wait_for_completion_io_timeout(&wait.done,
1284 hang_check * (HZ/2)))
1285 ;
1286 else
1287 wait_for_completion_io(&wait.done);
1288 }
1289
1290 return wait.ret;
1291 }
1292 EXPORT_SYMBOL(blk_execute_rq);
1293
__blk_mq_requeue_request(struct request * rq)1294 static void __blk_mq_requeue_request(struct request *rq)
1295 {
1296 struct request_queue *q = rq->q;
1297
1298 blk_mq_put_driver_tag(rq);
1299
1300 trace_block_rq_requeue(rq);
1301 rq_qos_requeue(q, rq);
1302
1303 if (blk_mq_request_started(rq)) {
1304 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1305 rq->rq_flags &= ~RQF_TIMED_OUT;
1306 }
1307 }
1308
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1309 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1310 {
1311 __blk_mq_requeue_request(rq);
1312
1313 /* this request will be re-inserted to io scheduler queue */
1314 blk_mq_sched_requeue_request(rq);
1315
1316 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1317 }
1318 EXPORT_SYMBOL(blk_mq_requeue_request);
1319
blk_mq_requeue_work(struct work_struct * work)1320 static void blk_mq_requeue_work(struct work_struct *work)
1321 {
1322 struct request_queue *q =
1323 container_of(work, struct request_queue, requeue_work.work);
1324 LIST_HEAD(rq_list);
1325 struct request *rq, *next;
1326
1327 spin_lock_irq(&q->requeue_lock);
1328 list_splice_init(&q->requeue_list, &rq_list);
1329 spin_unlock_irq(&q->requeue_lock);
1330
1331 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1332 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1333 continue;
1334
1335 rq->rq_flags &= ~RQF_SOFTBARRIER;
1336 list_del_init(&rq->queuelist);
1337 /*
1338 * If RQF_DONTPREP, rq has contained some driver specific
1339 * data, so insert it to hctx dispatch list to avoid any
1340 * merge.
1341 */
1342 if (rq->rq_flags & RQF_DONTPREP)
1343 blk_mq_request_bypass_insert(rq, false, false);
1344 else
1345 blk_mq_sched_insert_request(rq, true, false, false);
1346 }
1347
1348 while (!list_empty(&rq_list)) {
1349 rq = list_entry(rq_list.next, struct request, queuelist);
1350 list_del_init(&rq->queuelist);
1351 blk_mq_sched_insert_request(rq, false, false, false);
1352 }
1353
1354 blk_mq_run_hw_queues(q, false);
1355 }
1356
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)1357 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1358 bool kick_requeue_list)
1359 {
1360 struct request_queue *q = rq->q;
1361 unsigned long flags;
1362
1363 /*
1364 * We abuse this flag that is otherwise used by the I/O scheduler to
1365 * request head insertion from the workqueue.
1366 */
1367 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1368
1369 spin_lock_irqsave(&q->requeue_lock, flags);
1370 if (at_head) {
1371 rq->rq_flags |= RQF_SOFTBARRIER;
1372 list_add(&rq->queuelist, &q->requeue_list);
1373 } else {
1374 list_add_tail(&rq->queuelist, &q->requeue_list);
1375 }
1376 spin_unlock_irqrestore(&q->requeue_lock, flags);
1377
1378 if (kick_requeue_list)
1379 blk_mq_kick_requeue_list(q);
1380 }
1381
blk_mq_kick_requeue_list(struct request_queue * q)1382 void blk_mq_kick_requeue_list(struct request_queue *q)
1383 {
1384 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1385 }
1386 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1387
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1388 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1389 unsigned long msecs)
1390 {
1391 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1392 msecs_to_jiffies(msecs));
1393 }
1394 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1395
blk_mq_rq_inflight(struct request * rq,void * priv,bool reserved)1396 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1397 bool reserved)
1398 {
1399 /*
1400 * If we find a request that isn't idle we know the queue is busy
1401 * as it's checked in the iter.
1402 * Return false to stop the iteration.
1403 */
1404 if (blk_mq_request_started(rq)) {
1405 bool *busy = priv;
1406
1407 *busy = true;
1408 return false;
1409 }
1410
1411 return true;
1412 }
1413
blk_mq_queue_inflight(struct request_queue * q)1414 bool blk_mq_queue_inflight(struct request_queue *q)
1415 {
1416 bool busy = false;
1417
1418 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1419 return busy;
1420 }
1421 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1422
blk_mq_rq_timed_out(struct request * req,bool reserved)1423 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1424 {
1425 req->rq_flags |= RQF_TIMED_OUT;
1426 if (req->q->mq_ops->timeout) {
1427 enum blk_eh_timer_return ret;
1428
1429 ret = req->q->mq_ops->timeout(req, reserved);
1430 if (ret == BLK_EH_DONE)
1431 return;
1432 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1433 }
1434
1435 blk_add_timer(req);
1436 }
1437
blk_mq_req_expired(struct request * rq,unsigned long * next)1438 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1439 {
1440 unsigned long deadline;
1441
1442 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1443 return false;
1444 if (rq->rq_flags & RQF_TIMED_OUT)
1445 return false;
1446
1447 deadline = READ_ONCE(rq->deadline);
1448 if (time_after_eq(jiffies, deadline))
1449 return true;
1450
1451 if (*next == 0)
1452 *next = deadline;
1453 else if (time_after(*next, deadline))
1454 *next = deadline;
1455 return false;
1456 }
1457
blk_mq_put_rq_ref(struct request * rq)1458 void blk_mq_put_rq_ref(struct request *rq)
1459 {
1460 if (is_flush_rq(rq))
1461 rq->end_io(rq, 0);
1462 else if (req_ref_put_and_test(rq))
1463 __blk_mq_free_request(rq);
1464 }
1465
blk_mq_check_expired(struct request * rq,void * priv,bool reserved)1466 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1467 {
1468 unsigned long *next = priv;
1469
1470 /*
1471 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1472 * be reallocated underneath the timeout handler's processing, then
1473 * the expire check is reliable. If the request is not expired, then
1474 * it was completed and reallocated as a new request after returning
1475 * from blk_mq_check_expired().
1476 */
1477 if (blk_mq_req_expired(rq, next))
1478 blk_mq_rq_timed_out(rq, reserved);
1479 return true;
1480 }
1481
blk_mq_timeout_work(struct work_struct * work)1482 static void blk_mq_timeout_work(struct work_struct *work)
1483 {
1484 struct request_queue *q =
1485 container_of(work, struct request_queue, timeout_work);
1486 unsigned long next = 0;
1487 struct blk_mq_hw_ctx *hctx;
1488 unsigned long i;
1489
1490 /* A deadlock might occur if a request is stuck requiring a
1491 * timeout at the same time a queue freeze is waiting
1492 * completion, since the timeout code would not be able to
1493 * acquire the queue reference here.
1494 *
1495 * That's why we don't use blk_queue_enter here; instead, we use
1496 * percpu_ref_tryget directly, because we need to be able to
1497 * obtain a reference even in the short window between the queue
1498 * starting to freeze, by dropping the first reference in
1499 * blk_freeze_queue_start, and the moment the last request is
1500 * consumed, marked by the instant q_usage_counter reaches
1501 * zero.
1502 */
1503 if (!percpu_ref_tryget(&q->q_usage_counter))
1504 return;
1505
1506 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1507
1508 if (next != 0) {
1509 mod_timer(&q->timeout, next);
1510 } else {
1511 /*
1512 * Request timeouts are handled as a forward rolling timer. If
1513 * we end up here it means that no requests are pending and
1514 * also that no request has been pending for a while. Mark
1515 * each hctx as idle.
1516 */
1517 queue_for_each_hw_ctx(q, hctx, i) {
1518 /* the hctx may be unmapped, so check it here */
1519 if (blk_mq_hw_queue_mapped(hctx))
1520 blk_mq_tag_idle(hctx);
1521 }
1522 }
1523 blk_queue_exit(q);
1524 }
1525
1526 struct flush_busy_ctx_data {
1527 struct blk_mq_hw_ctx *hctx;
1528 struct list_head *list;
1529 };
1530
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1531 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1532 {
1533 struct flush_busy_ctx_data *flush_data = data;
1534 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1535 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1536 enum hctx_type type = hctx->type;
1537
1538 spin_lock(&ctx->lock);
1539 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1540 sbitmap_clear_bit(sb, bitnr);
1541 spin_unlock(&ctx->lock);
1542 return true;
1543 }
1544
1545 /*
1546 * Process software queues that have been marked busy, splicing them
1547 * to the for-dispatch
1548 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1549 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1550 {
1551 struct flush_busy_ctx_data data = {
1552 .hctx = hctx,
1553 .list = list,
1554 };
1555
1556 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1557 }
1558 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1559
1560 struct dispatch_rq_data {
1561 struct blk_mq_hw_ctx *hctx;
1562 struct request *rq;
1563 };
1564
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1565 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1566 void *data)
1567 {
1568 struct dispatch_rq_data *dispatch_data = data;
1569 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1570 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1571 enum hctx_type type = hctx->type;
1572
1573 spin_lock(&ctx->lock);
1574 if (!list_empty(&ctx->rq_lists[type])) {
1575 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1576 list_del_init(&dispatch_data->rq->queuelist);
1577 if (list_empty(&ctx->rq_lists[type]))
1578 sbitmap_clear_bit(sb, bitnr);
1579 }
1580 spin_unlock(&ctx->lock);
1581
1582 return !dispatch_data->rq;
1583 }
1584
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1585 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1586 struct blk_mq_ctx *start)
1587 {
1588 unsigned off = start ? start->index_hw[hctx->type] : 0;
1589 struct dispatch_rq_data data = {
1590 .hctx = hctx,
1591 .rq = NULL,
1592 };
1593
1594 __sbitmap_for_each_set(&hctx->ctx_map, off,
1595 dispatch_rq_from_ctx, &data);
1596
1597 return data.rq;
1598 }
1599
__blk_mq_alloc_driver_tag(struct request * rq)1600 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1601 {
1602 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1603 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1604 int tag;
1605
1606 blk_mq_tag_busy(rq->mq_hctx);
1607
1608 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1609 bt = &rq->mq_hctx->tags->breserved_tags;
1610 tag_offset = 0;
1611 } else {
1612 if (!hctx_may_queue(rq->mq_hctx, bt))
1613 return false;
1614 }
1615
1616 tag = __sbitmap_queue_get(bt);
1617 if (tag == BLK_MQ_NO_TAG)
1618 return false;
1619
1620 rq->tag = tag + tag_offset;
1621 return true;
1622 }
1623
__blk_mq_get_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)1624 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1625 {
1626 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1627 return false;
1628
1629 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1630 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1631 rq->rq_flags |= RQF_MQ_INFLIGHT;
1632 __blk_mq_inc_active_requests(hctx);
1633 }
1634 hctx->tags->rqs[rq->tag] = rq;
1635 return true;
1636 }
1637
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1638 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1639 int flags, void *key)
1640 {
1641 struct blk_mq_hw_ctx *hctx;
1642
1643 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1644
1645 spin_lock(&hctx->dispatch_wait_lock);
1646 if (!list_empty(&wait->entry)) {
1647 struct sbitmap_queue *sbq;
1648
1649 list_del_init(&wait->entry);
1650 sbq = &hctx->tags->bitmap_tags;
1651 atomic_dec(&sbq->ws_active);
1652 }
1653 spin_unlock(&hctx->dispatch_wait_lock);
1654
1655 blk_mq_run_hw_queue(hctx, true);
1656 return 1;
1657 }
1658
1659 /*
1660 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1661 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1662 * restart. For both cases, take care to check the condition again after
1663 * marking us as waiting.
1664 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1665 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1666 struct request *rq)
1667 {
1668 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1669 struct wait_queue_head *wq;
1670 wait_queue_entry_t *wait;
1671 bool ret;
1672
1673 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1674 blk_mq_sched_mark_restart_hctx(hctx);
1675
1676 /*
1677 * It's possible that a tag was freed in the window between the
1678 * allocation failure and adding the hardware queue to the wait
1679 * queue.
1680 *
1681 * Don't clear RESTART here, someone else could have set it.
1682 * At most this will cost an extra queue run.
1683 */
1684 return blk_mq_get_driver_tag(rq);
1685 }
1686
1687 wait = &hctx->dispatch_wait;
1688 if (!list_empty_careful(&wait->entry))
1689 return false;
1690
1691 wq = &bt_wait_ptr(sbq, hctx)->wait;
1692
1693 spin_lock_irq(&wq->lock);
1694 spin_lock(&hctx->dispatch_wait_lock);
1695 if (!list_empty(&wait->entry)) {
1696 spin_unlock(&hctx->dispatch_wait_lock);
1697 spin_unlock_irq(&wq->lock);
1698 return false;
1699 }
1700
1701 atomic_inc(&sbq->ws_active);
1702 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1703 __add_wait_queue(wq, wait);
1704
1705 /*
1706 * It's possible that a tag was freed in the window between the
1707 * allocation failure and adding the hardware queue to the wait
1708 * queue.
1709 */
1710 ret = blk_mq_get_driver_tag(rq);
1711 if (!ret) {
1712 spin_unlock(&hctx->dispatch_wait_lock);
1713 spin_unlock_irq(&wq->lock);
1714 return false;
1715 }
1716
1717 /*
1718 * We got a tag, remove ourselves from the wait queue to ensure
1719 * someone else gets the wakeup.
1720 */
1721 list_del_init(&wait->entry);
1722 atomic_dec(&sbq->ws_active);
1723 spin_unlock(&hctx->dispatch_wait_lock);
1724 spin_unlock_irq(&wq->lock);
1725
1726 return true;
1727 }
1728
1729 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1730 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1731 /*
1732 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1733 * - EWMA is one simple way to compute running average value
1734 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1735 * - take 4 as factor for avoiding to get too small(0) result, and this
1736 * factor doesn't matter because EWMA decreases exponentially
1737 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1738 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1739 {
1740 unsigned int ewma;
1741
1742 ewma = hctx->dispatch_busy;
1743
1744 if (!ewma && !busy)
1745 return;
1746
1747 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1748 if (busy)
1749 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1750 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1751
1752 hctx->dispatch_busy = ewma;
1753 }
1754
1755 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1756
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1757 static void blk_mq_handle_dev_resource(struct request *rq,
1758 struct list_head *list)
1759 {
1760 struct request *next =
1761 list_first_entry_or_null(list, struct request, queuelist);
1762
1763 /*
1764 * If an I/O scheduler has been configured and we got a driver tag for
1765 * the next request already, free it.
1766 */
1767 if (next)
1768 blk_mq_put_driver_tag(next);
1769
1770 list_add(&rq->queuelist, list);
1771 __blk_mq_requeue_request(rq);
1772 }
1773
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1774 static void blk_mq_handle_zone_resource(struct request *rq,
1775 struct list_head *zone_list)
1776 {
1777 /*
1778 * If we end up here it is because we cannot dispatch a request to a
1779 * specific zone due to LLD level zone-write locking or other zone
1780 * related resource not being available. In this case, set the request
1781 * aside in zone_list for retrying it later.
1782 */
1783 list_add(&rq->queuelist, zone_list);
1784 __blk_mq_requeue_request(rq);
1785 }
1786
1787 enum prep_dispatch {
1788 PREP_DISPATCH_OK,
1789 PREP_DISPATCH_NO_TAG,
1790 PREP_DISPATCH_NO_BUDGET,
1791 };
1792
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1793 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1794 bool need_budget)
1795 {
1796 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1797 int budget_token = -1;
1798
1799 if (need_budget) {
1800 budget_token = blk_mq_get_dispatch_budget(rq->q);
1801 if (budget_token < 0) {
1802 blk_mq_put_driver_tag(rq);
1803 return PREP_DISPATCH_NO_BUDGET;
1804 }
1805 blk_mq_set_rq_budget_token(rq, budget_token);
1806 }
1807
1808 if (!blk_mq_get_driver_tag(rq)) {
1809 /*
1810 * The initial allocation attempt failed, so we need to
1811 * rerun the hardware queue when a tag is freed. The
1812 * waitqueue takes care of that. If the queue is run
1813 * before we add this entry back on the dispatch list,
1814 * we'll re-run it below.
1815 */
1816 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1817 /*
1818 * All budgets not got from this function will be put
1819 * together during handling partial dispatch
1820 */
1821 if (need_budget)
1822 blk_mq_put_dispatch_budget(rq->q, budget_token);
1823 return PREP_DISPATCH_NO_TAG;
1824 }
1825 }
1826
1827 return PREP_DISPATCH_OK;
1828 }
1829
1830 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)1831 static void blk_mq_release_budgets(struct request_queue *q,
1832 struct list_head *list)
1833 {
1834 struct request *rq;
1835
1836 list_for_each_entry(rq, list, queuelist) {
1837 int budget_token = blk_mq_get_rq_budget_token(rq);
1838
1839 if (budget_token >= 0)
1840 blk_mq_put_dispatch_budget(q, budget_token);
1841 }
1842 }
1843
1844 /*
1845 * Returns true if we did some work AND can potentially do more.
1846 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1847 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1848 unsigned int nr_budgets)
1849 {
1850 enum prep_dispatch prep;
1851 struct request_queue *q = hctx->queue;
1852 struct request *rq, *nxt;
1853 int errors, queued;
1854 blk_status_t ret = BLK_STS_OK;
1855 LIST_HEAD(zone_list);
1856 bool needs_resource = false;
1857
1858 if (list_empty(list))
1859 return false;
1860
1861 /*
1862 * Now process all the entries, sending them to the driver.
1863 */
1864 errors = queued = 0;
1865 do {
1866 struct blk_mq_queue_data bd;
1867
1868 rq = list_first_entry(list, struct request, queuelist);
1869
1870 WARN_ON_ONCE(hctx != rq->mq_hctx);
1871 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1872 if (prep != PREP_DISPATCH_OK)
1873 break;
1874
1875 list_del_init(&rq->queuelist);
1876
1877 bd.rq = rq;
1878
1879 /*
1880 * Flag last if we have no more requests, or if we have more
1881 * but can't assign a driver tag to it.
1882 */
1883 if (list_empty(list))
1884 bd.last = true;
1885 else {
1886 nxt = list_first_entry(list, struct request, queuelist);
1887 bd.last = !blk_mq_get_driver_tag(nxt);
1888 }
1889
1890 /*
1891 * once the request is queued to lld, no need to cover the
1892 * budget any more
1893 */
1894 if (nr_budgets)
1895 nr_budgets--;
1896 ret = q->mq_ops->queue_rq(hctx, &bd);
1897 switch (ret) {
1898 case BLK_STS_OK:
1899 queued++;
1900 break;
1901 case BLK_STS_RESOURCE:
1902 needs_resource = true;
1903 fallthrough;
1904 case BLK_STS_DEV_RESOURCE:
1905 blk_mq_handle_dev_resource(rq, list);
1906 goto out;
1907 case BLK_STS_ZONE_RESOURCE:
1908 /*
1909 * Move the request to zone_list and keep going through
1910 * the dispatch list to find more requests the drive can
1911 * accept.
1912 */
1913 blk_mq_handle_zone_resource(rq, &zone_list);
1914 needs_resource = true;
1915 break;
1916 default:
1917 errors++;
1918 blk_mq_end_request(rq, ret);
1919 }
1920 } while (!list_empty(list));
1921 out:
1922 if (!list_empty(&zone_list))
1923 list_splice_tail_init(&zone_list, list);
1924
1925 /* If we didn't flush the entire list, we could have told the driver
1926 * there was more coming, but that turned out to be a lie.
1927 */
1928 if ((!list_empty(list) || errors || needs_resource ||
1929 ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1930 q->mq_ops->commit_rqs(hctx);
1931 /*
1932 * Any items that need requeuing? Stuff them into hctx->dispatch,
1933 * that is where we will continue on next queue run.
1934 */
1935 if (!list_empty(list)) {
1936 bool needs_restart;
1937 /* For non-shared tags, the RESTART check will suffice */
1938 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1939 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1940
1941 if (nr_budgets)
1942 blk_mq_release_budgets(q, list);
1943
1944 spin_lock(&hctx->lock);
1945 list_splice_tail_init(list, &hctx->dispatch);
1946 spin_unlock(&hctx->lock);
1947
1948 /*
1949 * Order adding requests to hctx->dispatch and checking
1950 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1951 * in blk_mq_sched_restart(). Avoid restart code path to
1952 * miss the new added requests to hctx->dispatch, meantime
1953 * SCHED_RESTART is observed here.
1954 */
1955 smp_mb();
1956
1957 /*
1958 * If SCHED_RESTART was set by the caller of this function and
1959 * it is no longer set that means that it was cleared by another
1960 * thread and hence that a queue rerun is needed.
1961 *
1962 * If 'no_tag' is set, that means that we failed getting
1963 * a driver tag with an I/O scheduler attached. If our dispatch
1964 * waitqueue is no longer active, ensure that we run the queue
1965 * AFTER adding our entries back to the list.
1966 *
1967 * If no I/O scheduler has been configured it is possible that
1968 * the hardware queue got stopped and restarted before requests
1969 * were pushed back onto the dispatch list. Rerun the queue to
1970 * avoid starvation. Notes:
1971 * - blk_mq_run_hw_queue() checks whether or not a queue has
1972 * been stopped before rerunning a queue.
1973 * - Some but not all block drivers stop a queue before
1974 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1975 * and dm-rq.
1976 *
1977 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1978 * bit is set, run queue after a delay to avoid IO stalls
1979 * that could otherwise occur if the queue is idle. We'll do
1980 * similar if we couldn't get budget or couldn't lock a zone
1981 * and SCHED_RESTART is set.
1982 */
1983 needs_restart = blk_mq_sched_needs_restart(hctx);
1984 if (prep == PREP_DISPATCH_NO_BUDGET)
1985 needs_resource = true;
1986 if (!needs_restart ||
1987 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1988 blk_mq_run_hw_queue(hctx, true);
1989 else if (needs_restart && needs_resource)
1990 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1991
1992 blk_mq_update_dispatch_busy(hctx, true);
1993 return false;
1994 } else
1995 blk_mq_update_dispatch_busy(hctx, false);
1996
1997 return (queued + errors) != 0;
1998 }
1999
2000 /**
2001 * __blk_mq_run_hw_queue - Run a hardware queue.
2002 * @hctx: Pointer to the hardware queue to run.
2003 *
2004 * Send pending requests to the hardware.
2005 */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)2006 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2007 {
2008 /*
2009 * We can't run the queue inline with ints disabled. Ensure that
2010 * we catch bad users of this early.
2011 */
2012 WARN_ON_ONCE(in_interrupt());
2013
2014 blk_mq_run_dispatch_ops(hctx->queue,
2015 blk_mq_sched_dispatch_requests(hctx));
2016 }
2017
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2018 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2019 {
2020 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2021
2022 if (cpu >= nr_cpu_ids)
2023 cpu = cpumask_first(hctx->cpumask);
2024 return cpu;
2025 }
2026
2027 /*
2028 * It'd be great if the workqueue API had a way to pass
2029 * in a mask and had some smarts for more clever placement.
2030 * For now we just round-robin here, switching for every
2031 * BLK_MQ_CPU_WORK_BATCH queued items.
2032 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2033 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2034 {
2035 bool tried = false;
2036 int next_cpu = hctx->next_cpu;
2037
2038 if (hctx->queue->nr_hw_queues == 1)
2039 return WORK_CPU_UNBOUND;
2040
2041 if (--hctx->next_cpu_batch <= 0) {
2042 select_cpu:
2043 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2044 cpu_online_mask);
2045 if (next_cpu >= nr_cpu_ids)
2046 next_cpu = blk_mq_first_mapped_cpu(hctx);
2047 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2048 }
2049
2050 /*
2051 * Do unbound schedule if we can't find a online CPU for this hctx,
2052 * and it should only happen in the path of handling CPU DEAD.
2053 */
2054 if (!cpu_online(next_cpu)) {
2055 if (!tried) {
2056 tried = true;
2057 goto select_cpu;
2058 }
2059
2060 /*
2061 * Make sure to re-select CPU next time once after CPUs
2062 * in hctx->cpumask become online again.
2063 */
2064 hctx->next_cpu = next_cpu;
2065 hctx->next_cpu_batch = 1;
2066 return WORK_CPU_UNBOUND;
2067 }
2068
2069 hctx->next_cpu = next_cpu;
2070 return next_cpu;
2071 }
2072
2073 /**
2074 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2075 * @hctx: Pointer to the hardware queue to run.
2076 * @async: If we want to run the queue asynchronously.
2077 * @msecs: Milliseconds of delay to wait before running the queue.
2078 *
2079 * If !@async, try to run the queue now. Else, run the queue asynchronously and
2080 * with a delay of @msecs.
2081 */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)2082 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2083 unsigned long msecs)
2084 {
2085 if (unlikely(blk_mq_hctx_stopped(hctx)))
2086 return;
2087
2088 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2089 int cpu = get_cpu();
2090 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2091 __blk_mq_run_hw_queue(hctx);
2092 put_cpu();
2093 return;
2094 }
2095
2096 put_cpu();
2097 }
2098
2099 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2100 msecs_to_jiffies(msecs));
2101 }
2102
2103 /**
2104 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2105 * @hctx: Pointer to the hardware queue to run.
2106 * @msecs: Milliseconds of delay to wait before running the queue.
2107 *
2108 * Run a hardware queue asynchronously with a delay of @msecs.
2109 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2110 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2111 {
2112 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2113 }
2114 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2115
2116 /**
2117 * blk_mq_run_hw_queue - Start to run a hardware queue.
2118 * @hctx: Pointer to the hardware queue to run.
2119 * @async: If we want to run the queue asynchronously.
2120 *
2121 * Check if the request queue is not in a quiesced state and if there are
2122 * pending requests to be sent. If this is true, run the queue to send requests
2123 * to hardware.
2124 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2125 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2126 {
2127 bool need_run;
2128
2129 /*
2130 * When queue is quiesced, we may be switching io scheduler, or
2131 * updating nr_hw_queues, or other things, and we can't run queue
2132 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2133 *
2134 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2135 * quiesced.
2136 */
2137 __blk_mq_run_dispatch_ops(hctx->queue, false,
2138 need_run = !blk_queue_quiesced(hctx->queue) &&
2139 blk_mq_hctx_has_pending(hctx));
2140
2141 if (need_run)
2142 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2143 }
2144 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2145
2146 /*
2147 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2148 * scheduler.
2149 */
blk_mq_get_sq_hctx(struct request_queue * q)2150 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2151 {
2152 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2153 /*
2154 * If the IO scheduler does not respect hardware queues when
2155 * dispatching, we just don't bother with multiple HW queues and
2156 * dispatch from hctx for the current CPU since running multiple queues
2157 * just causes lock contention inside the scheduler and pointless cache
2158 * bouncing.
2159 */
2160 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
2161
2162 if (!blk_mq_hctx_stopped(hctx))
2163 return hctx;
2164 return NULL;
2165 }
2166
2167 /**
2168 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2169 * @q: Pointer to the request queue to run.
2170 * @async: If we want to run the queue asynchronously.
2171 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)2172 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2173 {
2174 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2175 unsigned long i;
2176
2177 sq_hctx = NULL;
2178 if (blk_queue_sq_sched(q))
2179 sq_hctx = blk_mq_get_sq_hctx(q);
2180 queue_for_each_hw_ctx(q, hctx, i) {
2181 if (blk_mq_hctx_stopped(hctx))
2182 continue;
2183 /*
2184 * Dispatch from this hctx either if there's no hctx preferred
2185 * by IO scheduler or if it has requests that bypass the
2186 * scheduler.
2187 */
2188 if (!sq_hctx || sq_hctx == hctx ||
2189 !list_empty_careful(&hctx->dispatch))
2190 blk_mq_run_hw_queue(hctx, async);
2191 }
2192 }
2193 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2194
2195 /**
2196 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2197 * @q: Pointer to the request queue to run.
2198 * @msecs: Milliseconds of delay to wait before running the queues.
2199 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2200 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2201 {
2202 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2203 unsigned long i;
2204
2205 sq_hctx = NULL;
2206 if (blk_queue_sq_sched(q))
2207 sq_hctx = blk_mq_get_sq_hctx(q);
2208 queue_for_each_hw_ctx(q, hctx, i) {
2209 if (blk_mq_hctx_stopped(hctx))
2210 continue;
2211 /*
2212 * If there is already a run_work pending, leave the
2213 * pending delay untouched. Otherwise, a hctx can stall
2214 * if another hctx is re-delaying the other's work
2215 * before the work executes.
2216 */
2217 if (delayed_work_pending(&hctx->run_work))
2218 continue;
2219 /*
2220 * Dispatch from this hctx either if there's no hctx preferred
2221 * by IO scheduler or if it has requests that bypass the
2222 * scheduler.
2223 */
2224 if (!sq_hctx || sq_hctx == hctx ||
2225 !list_empty_careful(&hctx->dispatch))
2226 blk_mq_delay_run_hw_queue(hctx, msecs);
2227 }
2228 }
2229 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2230
2231 /**
2232 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2233 * @q: request queue.
2234 *
2235 * The caller is responsible for serializing this function against
2236 * blk_mq_{start,stop}_hw_queue().
2237 */
blk_mq_queue_stopped(struct request_queue * q)2238 bool blk_mq_queue_stopped(struct request_queue *q)
2239 {
2240 struct blk_mq_hw_ctx *hctx;
2241 unsigned long i;
2242
2243 queue_for_each_hw_ctx(q, hctx, i)
2244 if (blk_mq_hctx_stopped(hctx))
2245 return true;
2246
2247 return false;
2248 }
2249 EXPORT_SYMBOL(blk_mq_queue_stopped);
2250
2251 /*
2252 * This function is often used for pausing .queue_rq() by driver when
2253 * there isn't enough resource or some conditions aren't satisfied, and
2254 * BLK_STS_RESOURCE is usually returned.
2255 *
2256 * We do not guarantee that dispatch can be drained or blocked
2257 * after blk_mq_stop_hw_queue() returns. Please use
2258 * blk_mq_quiesce_queue() for that requirement.
2259 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2260 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2261 {
2262 cancel_delayed_work(&hctx->run_work);
2263
2264 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2265 }
2266 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2267
2268 /*
2269 * This function is often used for pausing .queue_rq() by driver when
2270 * there isn't enough resource or some conditions aren't satisfied, and
2271 * BLK_STS_RESOURCE is usually returned.
2272 *
2273 * We do not guarantee that dispatch can be drained or blocked
2274 * after blk_mq_stop_hw_queues() returns. Please use
2275 * blk_mq_quiesce_queue() for that requirement.
2276 */
blk_mq_stop_hw_queues(struct request_queue * q)2277 void blk_mq_stop_hw_queues(struct request_queue *q)
2278 {
2279 struct blk_mq_hw_ctx *hctx;
2280 unsigned long i;
2281
2282 queue_for_each_hw_ctx(q, hctx, i)
2283 blk_mq_stop_hw_queue(hctx);
2284 }
2285 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2286
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2287 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2288 {
2289 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2290
2291 blk_mq_run_hw_queue(hctx, false);
2292 }
2293 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2294
blk_mq_start_hw_queues(struct request_queue * q)2295 void blk_mq_start_hw_queues(struct request_queue *q)
2296 {
2297 struct blk_mq_hw_ctx *hctx;
2298 unsigned long i;
2299
2300 queue_for_each_hw_ctx(q, hctx, i)
2301 blk_mq_start_hw_queue(hctx);
2302 }
2303 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2304
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2305 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2306 {
2307 if (!blk_mq_hctx_stopped(hctx))
2308 return;
2309
2310 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2311 blk_mq_run_hw_queue(hctx, async);
2312 }
2313 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2314
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2315 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2316 {
2317 struct blk_mq_hw_ctx *hctx;
2318 unsigned long i;
2319
2320 queue_for_each_hw_ctx(q, hctx, i)
2321 blk_mq_start_stopped_hw_queue(hctx, async);
2322 }
2323 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2324
blk_mq_run_work_fn(struct work_struct * work)2325 static void blk_mq_run_work_fn(struct work_struct *work)
2326 {
2327 struct blk_mq_hw_ctx *hctx;
2328
2329 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2330
2331 /*
2332 * If we are stopped, don't run the queue.
2333 */
2334 if (blk_mq_hctx_stopped(hctx))
2335 return;
2336
2337 __blk_mq_run_hw_queue(hctx);
2338 }
2339
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)2340 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2341 struct request *rq,
2342 bool at_head)
2343 {
2344 struct blk_mq_ctx *ctx = rq->mq_ctx;
2345 enum hctx_type type = hctx->type;
2346
2347 lockdep_assert_held(&ctx->lock);
2348
2349 trace_block_rq_insert(rq);
2350
2351 if (at_head)
2352 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2353 else
2354 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2355 }
2356
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)2357 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2358 bool at_head)
2359 {
2360 struct blk_mq_ctx *ctx = rq->mq_ctx;
2361
2362 lockdep_assert_held(&ctx->lock);
2363
2364 __blk_mq_insert_req_list(hctx, rq, at_head);
2365 blk_mq_hctx_mark_pending(hctx, ctx);
2366 }
2367
2368 /**
2369 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2370 * @rq: Pointer to request to be inserted.
2371 * @at_head: true if the request should be inserted at the head of the list.
2372 * @run_queue: If we should run the hardware queue after inserting the request.
2373 *
2374 * Should only be used carefully, when the caller knows we want to
2375 * bypass a potential IO scheduler on the target device.
2376 */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)2377 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2378 bool run_queue)
2379 {
2380 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2381
2382 spin_lock(&hctx->lock);
2383 if (at_head)
2384 list_add(&rq->queuelist, &hctx->dispatch);
2385 else
2386 list_add_tail(&rq->queuelist, &hctx->dispatch);
2387 spin_unlock(&hctx->lock);
2388
2389 if (run_queue)
2390 blk_mq_run_hw_queue(hctx, false);
2391 }
2392
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)2393 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2394 struct list_head *list)
2395
2396 {
2397 struct request *rq;
2398 enum hctx_type type = hctx->type;
2399
2400 /*
2401 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2402 * offline now
2403 */
2404 list_for_each_entry(rq, list, queuelist) {
2405 BUG_ON(rq->mq_ctx != ctx);
2406 trace_block_rq_insert(rq);
2407 }
2408
2409 spin_lock(&ctx->lock);
2410 list_splice_tail_init(list, &ctx->rq_lists[type]);
2411 blk_mq_hctx_mark_pending(hctx, ctx);
2412 spin_unlock(&ctx->lock);
2413 }
2414
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int * queued,bool from_schedule)2415 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2416 bool from_schedule)
2417 {
2418 if (hctx->queue->mq_ops->commit_rqs) {
2419 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2420 hctx->queue->mq_ops->commit_rqs(hctx);
2421 }
2422 *queued = 0;
2423 }
2424
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2425 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2426 unsigned int nr_segs)
2427 {
2428 int err;
2429
2430 if (bio->bi_opf & REQ_RAHEAD)
2431 rq->cmd_flags |= REQ_FAILFAST_MASK;
2432
2433 rq->__sector = bio->bi_iter.bi_sector;
2434 blk_rq_bio_prep(rq, bio, nr_segs);
2435
2436 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2437 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2438 WARN_ON_ONCE(err);
2439
2440 blk_account_io_start(rq);
2441 }
2442
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2443 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2444 struct request *rq, bool last)
2445 {
2446 struct request_queue *q = rq->q;
2447 struct blk_mq_queue_data bd = {
2448 .rq = rq,
2449 .last = last,
2450 };
2451 blk_status_t ret;
2452
2453 /*
2454 * For OK queue, we are done. For error, caller may kill it.
2455 * Any other error (busy), just add it to our list as we
2456 * previously would have done.
2457 */
2458 ret = q->mq_ops->queue_rq(hctx, &bd);
2459 switch (ret) {
2460 case BLK_STS_OK:
2461 blk_mq_update_dispatch_busy(hctx, false);
2462 break;
2463 case BLK_STS_RESOURCE:
2464 case BLK_STS_DEV_RESOURCE:
2465 blk_mq_update_dispatch_busy(hctx, true);
2466 __blk_mq_requeue_request(rq);
2467 break;
2468 default:
2469 blk_mq_update_dispatch_busy(hctx, false);
2470 break;
2471 }
2472
2473 return ret;
2474 }
2475
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool bypass_insert,bool last)2476 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2477 struct request *rq,
2478 bool bypass_insert, bool last)
2479 {
2480 struct request_queue *q = rq->q;
2481 bool run_queue = true;
2482 int budget_token;
2483
2484 /*
2485 * RCU or SRCU read lock is needed before checking quiesced flag.
2486 *
2487 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2488 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2489 * and avoid driver to try to dispatch again.
2490 */
2491 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2492 run_queue = false;
2493 bypass_insert = false;
2494 goto insert;
2495 }
2496
2497 if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2498 goto insert;
2499
2500 budget_token = blk_mq_get_dispatch_budget(q);
2501 if (budget_token < 0)
2502 goto insert;
2503
2504 blk_mq_set_rq_budget_token(rq, budget_token);
2505
2506 if (!blk_mq_get_driver_tag(rq)) {
2507 blk_mq_put_dispatch_budget(q, budget_token);
2508 goto insert;
2509 }
2510
2511 return __blk_mq_issue_directly(hctx, rq, last);
2512 insert:
2513 if (bypass_insert)
2514 return BLK_STS_RESOURCE;
2515
2516 blk_mq_sched_insert_request(rq, false, run_queue, false);
2517
2518 return BLK_STS_OK;
2519 }
2520
2521 /**
2522 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2523 * @hctx: Pointer of the associated hardware queue.
2524 * @rq: Pointer to request to be sent.
2525 *
2526 * If the device has enough resources to accept a new request now, send the
2527 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2528 * we can try send it another time in the future. Requests inserted at this
2529 * queue have higher priority.
2530 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2531 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2532 struct request *rq)
2533 {
2534 blk_status_t ret =
2535 __blk_mq_try_issue_directly(hctx, rq, false, true);
2536
2537 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2538 blk_mq_request_bypass_insert(rq, false, true);
2539 else if (ret != BLK_STS_OK)
2540 blk_mq_end_request(rq, ret);
2541 }
2542
blk_mq_request_issue_directly(struct request * rq,bool last)2543 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2544 {
2545 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2546 }
2547
blk_mq_plug_issue_direct(struct blk_plug * plug,bool from_schedule)2548 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2549 {
2550 struct blk_mq_hw_ctx *hctx = NULL;
2551 struct request *rq;
2552 int queued = 0;
2553 int errors = 0;
2554
2555 while ((rq = rq_list_pop(&plug->mq_list))) {
2556 bool last = rq_list_empty(plug->mq_list);
2557 blk_status_t ret;
2558
2559 if (hctx != rq->mq_hctx) {
2560 if (hctx)
2561 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2562 hctx = rq->mq_hctx;
2563 }
2564
2565 ret = blk_mq_request_issue_directly(rq, last);
2566 switch (ret) {
2567 case BLK_STS_OK:
2568 queued++;
2569 break;
2570 case BLK_STS_RESOURCE:
2571 case BLK_STS_DEV_RESOURCE:
2572 blk_mq_request_bypass_insert(rq, false, true);
2573 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2574 return;
2575 default:
2576 blk_mq_end_request(rq, ret);
2577 errors++;
2578 break;
2579 }
2580 }
2581
2582 /*
2583 * If we didn't flush the entire list, we could have told the driver
2584 * there was more coming, but that turned out to be a lie.
2585 */
2586 if (errors)
2587 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2588 }
2589
__blk_mq_flush_plug_list(struct request_queue * q,struct blk_plug * plug)2590 static void __blk_mq_flush_plug_list(struct request_queue *q,
2591 struct blk_plug *plug)
2592 {
2593 if (blk_queue_quiesced(q))
2594 return;
2595 q->mq_ops->queue_rqs(&plug->mq_list);
2596 }
2597
blk_mq_dispatch_plug_list(struct blk_plug * plug,bool from_sched)2598 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2599 {
2600 struct blk_mq_hw_ctx *this_hctx = NULL;
2601 struct blk_mq_ctx *this_ctx = NULL;
2602 struct request *requeue_list = NULL;
2603 unsigned int depth = 0;
2604 LIST_HEAD(list);
2605
2606 do {
2607 struct request *rq = rq_list_pop(&plug->mq_list);
2608
2609 if (!this_hctx) {
2610 this_hctx = rq->mq_hctx;
2611 this_ctx = rq->mq_ctx;
2612 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2613 rq_list_add(&requeue_list, rq);
2614 continue;
2615 }
2616 list_add_tail(&rq->queuelist, &list);
2617 depth++;
2618 } while (!rq_list_empty(plug->mq_list));
2619
2620 plug->mq_list = requeue_list;
2621 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2622 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2623 }
2624
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2625 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2626 {
2627 struct request *rq;
2628
2629 if (rq_list_empty(plug->mq_list))
2630 return;
2631 plug->rq_count = 0;
2632
2633 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2634 struct request_queue *q;
2635
2636 rq = rq_list_peek(&plug->mq_list);
2637 q = rq->q;
2638
2639 /*
2640 * Peek first request and see if we have a ->queue_rqs() hook.
2641 * If we do, we can dispatch the whole plug list in one go. We
2642 * already know at this point that all requests belong to the
2643 * same queue, caller must ensure that's the case.
2644 *
2645 * Since we pass off the full list to the driver at this point,
2646 * we do not increment the active request count for the queue.
2647 * Bypass shared tags for now because of that.
2648 */
2649 if (q->mq_ops->queue_rqs &&
2650 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2651 blk_mq_run_dispatch_ops(q,
2652 __blk_mq_flush_plug_list(q, plug));
2653 if (rq_list_empty(plug->mq_list))
2654 return;
2655 }
2656
2657 blk_mq_run_dispatch_ops(q,
2658 blk_mq_plug_issue_direct(plug, false));
2659 if (rq_list_empty(plug->mq_list))
2660 return;
2661 }
2662
2663 do {
2664 blk_mq_dispatch_plug_list(plug, from_schedule);
2665 } while (!rq_list_empty(plug->mq_list));
2666 }
2667
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2668 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2669 struct list_head *list)
2670 {
2671 int queued = 0;
2672 int errors = 0;
2673
2674 while (!list_empty(list)) {
2675 blk_status_t ret;
2676 struct request *rq = list_first_entry(list, struct request,
2677 queuelist);
2678
2679 list_del_init(&rq->queuelist);
2680 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2681 if (ret != BLK_STS_OK) {
2682 errors++;
2683 if (ret == BLK_STS_RESOURCE ||
2684 ret == BLK_STS_DEV_RESOURCE) {
2685 blk_mq_request_bypass_insert(rq, false,
2686 list_empty(list));
2687 break;
2688 }
2689 blk_mq_end_request(rq, ret);
2690 } else
2691 queued++;
2692 }
2693
2694 /*
2695 * If we didn't flush the entire list, we could have told
2696 * the driver there was more coming, but that turned out to
2697 * be a lie.
2698 */
2699 if ((!list_empty(list) || errors) &&
2700 hctx->queue->mq_ops->commit_rqs && queued)
2701 hctx->queue->mq_ops->commit_rqs(hctx);
2702 }
2703
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2704 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2705 struct bio *bio, unsigned int nr_segs)
2706 {
2707 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2708 if (blk_attempt_plug_merge(q, bio, nr_segs))
2709 return true;
2710 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2711 return true;
2712 }
2713 return false;
2714 }
2715
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs)2716 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2717 struct blk_plug *plug,
2718 struct bio *bio,
2719 unsigned int nsegs)
2720 {
2721 struct blk_mq_alloc_data data = {
2722 .q = q,
2723 .nr_tags = 1,
2724 .cmd_flags = bio->bi_opf,
2725 };
2726 struct request *rq;
2727
2728 if (unlikely(bio_queue_enter(bio)))
2729 return NULL;
2730
2731 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2732 goto queue_exit;
2733
2734 rq_qos_throttle(q, bio);
2735
2736 if (plug) {
2737 data.nr_tags = plug->nr_ios;
2738 plug->nr_ios = 1;
2739 data.cached_rq = &plug->cached_rq;
2740 }
2741
2742 rq = __blk_mq_alloc_requests(&data);
2743 if (rq)
2744 return rq;
2745 rq_qos_cleanup(q, bio);
2746 if (bio->bi_opf & REQ_NOWAIT)
2747 bio_wouldblock_error(bio);
2748 queue_exit:
2749 blk_queue_exit(q);
2750 return NULL;
2751 }
2752
blk_mq_get_cached_request(struct request_queue * q,struct blk_plug * plug,struct bio ** bio,unsigned int nsegs)2753 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2754 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2755 {
2756 struct request *rq;
2757
2758 if (!plug)
2759 return NULL;
2760 rq = rq_list_peek(&plug->cached_rq);
2761 if (!rq || rq->q != q)
2762 return NULL;
2763
2764 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2765 *bio = NULL;
2766 return NULL;
2767 }
2768
2769 if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2770 return NULL;
2771 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2772 return NULL;
2773
2774 /*
2775 * If any qos ->throttle() end up blocking, we will have flushed the
2776 * plug and hence killed the cached_rq list as well. Pop this entry
2777 * before we throttle.
2778 */
2779 plug->cached_rq = rq_list_next(rq);
2780 rq_qos_throttle(q, *bio);
2781
2782 rq->cmd_flags = (*bio)->bi_opf;
2783 INIT_LIST_HEAD(&rq->queuelist);
2784 return rq;
2785 }
2786
2787 /**
2788 * blk_mq_submit_bio - Create and send a request to block device.
2789 * @bio: Bio pointer.
2790 *
2791 * Builds up a request structure from @q and @bio and send to the device. The
2792 * request may not be queued directly to hardware if:
2793 * * This request can be merged with another one
2794 * * We want to place request at plug queue for possible future merging
2795 * * There is an IO scheduler active at this queue
2796 *
2797 * It will not queue the request if there is an error with the bio, or at the
2798 * request creation.
2799 */
blk_mq_submit_bio(struct bio * bio)2800 void blk_mq_submit_bio(struct bio *bio)
2801 {
2802 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2803 struct blk_plug *plug = blk_mq_plug(q, bio);
2804 const int is_sync = op_is_sync(bio->bi_opf);
2805 struct request *rq;
2806 unsigned int nr_segs = 1;
2807 blk_status_t ret;
2808
2809 blk_queue_bounce(q, &bio);
2810 if (blk_may_split(q, bio))
2811 __blk_queue_split(q, &bio, &nr_segs);
2812
2813 if (!bio_integrity_prep(bio))
2814 return;
2815
2816 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2817 if (!rq) {
2818 if (!bio)
2819 return;
2820 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2821 if (unlikely(!rq))
2822 return;
2823 }
2824
2825 trace_block_getrq(bio);
2826
2827 rq_qos_track(q, rq, bio);
2828
2829 blk_mq_bio_to_request(rq, bio, nr_segs);
2830
2831 ret = blk_crypto_init_request(rq);
2832 if (ret != BLK_STS_OK) {
2833 bio->bi_status = ret;
2834 bio_endio(bio);
2835 blk_mq_free_request(rq);
2836 return;
2837 }
2838
2839 if (op_is_flush(bio->bi_opf)) {
2840 blk_insert_flush(rq);
2841 return;
2842 }
2843
2844 if (plug)
2845 blk_add_rq_to_plug(plug, rq);
2846 else if ((rq->rq_flags & RQF_ELV) ||
2847 (rq->mq_hctx->dispatch_busy &&
2848 (q->nr_hw_queues == 1 || !is_sync)))
2849 blk_mq_sched_insert_request(rq, false, true, true);
2850 else
2851 blk_mq_run_dispatch_ops(rq->q,
2852 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2853 }
2854
2855 #ifdef CONFIG_BLK_MQ_STACKING
2856 /**
2857 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2858 * @rq: the request being queued
2859 */
blk_insert_cloned_request(struct request * rq)2860 blk_status_t blk_insert_cloned_request(struct request *rq)
2861 {
2862 struct request_queue *q = rq->q;
2863 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2864 blk_status_t ret;
2865
2866 if (blk_rq_sectors(rq) > max_sectors) {
2867 /*
2868 * SCSI device does not have a good way to return if
2869 * Write Same/Zero is actually supported. If a device rejects
2870 * a non-read/write command (discard, write same,etc.) the
2871 * low-level device driver will set the relevant queue limit to
2872 * 0 to prevent blk-lib from issuing more of the offending
2873 * operations. Commands queued prior to the queue limit being
2874 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2875 * errors being propagated to upper layers.
2876 */
2877 if (max_sectors == 0)
2878 return BLK_STS_NOTSUPP;
2879
2880 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2881 __func__, blk_rq_sectors(rq), max_sectors);
2882 return BLK_STS_IOERR;
2883 }
2884
2885 /*
2886 * The queue settings related to segment counting may differ from the
2887 * original queue.
2888 */
2889 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2890 if (rq->nr_phys_segments > queue_max_segments(q)) {
2891 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2892 __func__, rq->nr_phys_segments, queue_max_segments(q));
2893 return BLK_STS_IOERR;
2894 }
2895
2896 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2897 return BLK_STS_IOERR;
2898
2899 if (blk_crypto_insert_cloned_request(rq))
2900 return BLK_STS_IOERR;
2901
2902 blk_account_io_start(rq);
2903
2904 /*
2905 * Since we have a scheduler attached on the top device,
2906 * bypass a potential scheduler on the bottom device for
2907 * insert.
2908 */
2909 blk_mq_run_dispatch_ops(q,
2910 ret = blk_mq_request_issue_directly(rq, true));
2911 if (ret)
2912 blk_account_io_done(rq, ktime_get_ns());
2913 return ret;
2914 }
2915 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2916
2917 /**
2918 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2919 * @rq: the clone request to be cleaned up
2920 *
2921 * Description:
2922 * Free all bios in @rq for a cloned request.
2923 */
blk_rq_unprep_clone(struct request * rq)2924 void blk_rq_unprep_clone(struct request *rq)
2925 {
2926 struct bio *bio;
2927
2928 while ((bio = rq->bio) != NULL) {
2929 rq->bio = bio->bi_next;
2930
2931 bio_put(bio);
2932 }
2933 }
2934 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2935
2936 /**
2937 * blk_rq_prep_clone - Helper function to setup clone request
2938 * @rq: the request to be setup
2939 * @rq_src: original request to be cloned
2940 * @bs: bio_set that bios for clone are allocated from
2941 * @gfp_mask: memory allocation mask for bio
2942 * @bio_ctr: setup function to be called for each clone bio.
2943 * Returns %0 for success, non %0 for failure.
2944 * @data: private data to be passed to @bio_ctr
2945 *
2946 * Description:
2947 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2948 * Also, pages which the original bios are pointing to are not copied
2949 * and the cloned bios just point same pages.
2950 * So cloned bios must be completed before original bios, which means
2951 * the caller must complete @rq before @rq_src.
2952 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)2953 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2954 struct bio_set *bs, gfp_t gfp_mask,
2955 int (*bio_ctr)(struct bio *, struct bio *, void *),
2956 void *data)
2957 {
2958 struct bio *bio, *bio_src;
2959
2960 if (!bs)
2961 bs = &fs_bio_set;
2962
2963 __rq_for_each_bio(bio_src, rq_src) {
2964 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2965 bs);
2966 if (!bio)
2967 goto free_and_out;
2968
2969 if (bio_ctr && bio_ctr(bio, bio_src, data))
2970 goto free_and_out;
2971
2972 if (rq->bio) {
2973 rq->biotail->bi_next = bio;
2974 rq->biotail = bio;
2975 } else {
2976 rq->bio = rq->biotail = bio;
2977 }
2978 bio = NULL;
2979 }
2980
2981 /* Copy attributes of the original request to the clone request. */
2982 rq->__sector = blk_rq_pos(rq_src);
2983 rq->__data_len = blk_rq_bytes(rq_src);
2984 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2985 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2986 rq->special_vec = rq_src->special_vec;
2987 }
2988 rq->nr_phys_segments = rq_src->nr_phys_segments;
2989 rq->ioprio = rq_src->ioprio;
2990
2991 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2992 goto free_and_out;
2993
2994 return 0;
2995
2996 free_and_out:
2997 if (bio)
2998 bio_put(bio);
2999 blk_rq_unprep_clone(rq);
3000
3001 return -ENOMEM;
3002 }
3003 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3004 #endif /* CONFIG_BLK_MQ_STACKING */
3005
3006 /*
3007 * Steal bios from a request and add them to a bio list.
3008 * The request must not have been partially completed before.
3009 */
blk_steal_bios(struct bio_list * list,struct request * rq)3010 void blk_steal_bios(struct bio_list *list, struct request *rq)
3011 {
3012 if (rq->bio) {
3013 if (list->tail)
3014 list->tail->bi_next = rq->bio;
3015 else
3016 list->head = rq->bio;
3017 list->tail = rq->biotail;
3018
3019 rq->bio = NULL;
3020 rq->biotail = NULL;
3021 }
3022
3023 rq->__data_len = 0;
3024 }
3025 EXPORT_SYMBOL_GPL(blk_steal_bios);
3026
order_to_size(unsigned int order)3027 static size_t order_to_size(unsigned int order)
3028 {
3029 return (size_t)PAGE_SIZE << order;
3030 }
3031
3032 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3033 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3034 struct blk_mq_tags *tags)
3035 {
3036 struct page *page;
3037 unsigned long flags;
3038
3039 /* There is no need to clear a driver tags own mapping */
3040 if (drv_tags == tags)
3041 return;
3042
3043 list_for_each_entry(page, &tags->page_list, lru) {
3044 unsigned long start = (unsigned long)page_address(page);
3045 unsigned long end = start + order_to_size(page->private);
3046 int i;
3047
3048 for (i = 0; i < drv_tags->nr_tags; i++) {
3049 struct request *rq = drv_tags->rqs[i];
3050 unsigned long rq_addr = (unsigned long)rq;
3051
3052 if (rq_addr >= start && rq_addr < end) {
3053 WARN_ON_ONCE(req_ref_read(rq) != 0);
3054 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3055 }
3056 }
3057 }
3058
3059 /*
3060 * Wait until all pending iteration is done.
3061 *
3062 * Request reference is cleared and it is guaranteed to be observed
3063 * after the ->lock is released.
3064 */
3065 spin_lock_irqsave(&drv_tags->lock, flags);
3066 spin_unlock_irqrestore(&drv_tags->lock, flags);
3067 }
3068
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3069 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3070 unsigned int hctx_idx)
3071 {
3072 struct blk_mq_tags *drv_tags;
3073 struct page *page;
3074
3075 if (list_empty(&tags->page_list))
3076 return;
3077
3078 if (blk_mq_is_shared_tags(set->flags))
3079 drv_tags = set->shared_tags;
3080 else
3081 drv_tags = set->tags[hctx_idx];
3082
3083 if (tags->static_rqs && set->ops->exit_request) {
3084 int i;
3085
3086 for (i = 0; i < tags->nr_tags; i++) {
3087 struct request *rq = tags->static_rqs[i];
3088
3089 if (!rq)
3090 continue;
3091 set->ops->exit_request(set, rq, hctx_idx);
3092 tags->static_rqs[i] = NULL;
3093 }
3094 }
3095
3096 blk_mq_clear_rq_mapping(drv_tags, tags);
3097
3098 while (!list_empty(&tags->page_list)) {
3099 page = list_first_entry(&tags->page_list, struct page, lru);
3100 list_del_init(&page->lru);
3101 /*
3102 * Remove kmemleak object previously allocated in
3103 * blk_mq_alloc_rqs().
3104 */
3105 kmemleak_free(page_address(page));
3106 __free_pages(page, page->private);
3107 }
3108 }
3109
blk_mq_free_rq_map(struct blk_mq_tags * tags)3110 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3111 {
3112 kfree(tags->rqs);
3113 tags->rqs = NULL;
3114 kfree(tags->static_rqs);
3115 tags->static_rqs = NULL;
3116
3117 blk_mq_free_tags(tags);
3118 }
3119
hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3120 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3121 unsigned int hctx_idx)
3122 {
3123 int i;
3124
3125 for (i = 0; i < set->nr_maps; i++) {
3126 unsigned int start = set->map[i].queue_offset;
3127 unsigned int end = start + set->map[i].nr_queues;
3128
3129 if (hctx_idx >= start && hctx_idx < end)
3130 break;
3131 }
3132
3133 if (i >= set->nr_maps)
3134 i = HCTX_TYPE_DEFAULT;
3135
3136 return i;
3137 }
3138
blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3139 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3140 unsigned int hctx_idx)
3141 {
3142 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3143
3144 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3145 }
3146
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3147 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3148 unsigned int hctx_idx,
3149 unsigned int nr_tags,
3150 unsigned int reserved_tags)
3151 {
3152 int node = blk_mq_get_hctx_node(set, hctx_idx);
3153 struct blk_mq_tags *tags;
3154
3155 if (node == NUMA_NO_NODE)
3156 node = set->numa_node;
3157
3158 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3159 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3160 if (!tags)
3161 return NULL;
3162
3163 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3164 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3165 node);
3166 if (!tags->rqs) {
3167 blk_mq_free_tags(tags);
3168 return NULL;
3169 }
3170
3171 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3172 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3173 node);
3174 if (!tags->static_rqs) {
3175 kfree(tags->rqs);
3176 blk_mq_free_tags(tags);
3177 return NULL;
3178 }
3179
3180 return tags;
3181 }
3182
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3183 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3184 unsigned int hctx_idx, int node)
3185 {
3186 int ret;
3187
3188 if (set->ops->init_request) {
3189 ret = set->ops->init_request(set, rq, hctx_idx, node);
3190 if (ret)
3191 return ret;
3192 }
3193
3194 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3195 return 0;
3196 }
3197
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3198 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3199 struct blk_mq_tags *tags,
3200 unsigned int hctx_idx, unsigned int depth)
3201 {
3202 unsigned int i, j, entries_per_page, max_order = 4;
3203 int node = blk_mq_get_hctx_node(set, hctx_idx);
3204 size_t rq_size, left;
3205
3206 if (node == NUMA_NO_NODE)
3207 node = set->numa_node;
3208
3209 INIT_LIST_HEAD(&tags->page_list);
3210
3211 /*
3212 * rq_size is the size of the request plus driver payload, rounded
3213 * to the cacheline size
3214 */
3215 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3216 cache_line_size());
3217 left = rq_size * depth;
3218
3219 for (i = 0; i < depth; ) {
3220 int this_order = max_order;
3221 struct page *page;
3222 int to_do;
3223 void *p;
3224
3225 while (this_order && left < order_to_size(this_order - 1))
3226 this_order--;
3227
3228 do {
3229 page = alloc_pages_node(node,
3230 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3231 this_order);
3232 if (page)
3233 break;
3234 if (!this_order--)
3235 break;
3236 if (order_to_size(this_order) < rq_size)
3237 break;
3238 } while (1);
3239
3240 if (!page)
3241 goto fail;
3242
3243 page->private = this_order;
3244 list_add_tail(&page->lru, &tags->page_list);
3245
3246 p = page_address(page);
3247 /*
3248 * Allow kmemleak to scan these pages as they contain pointers
3249 * to additional allocations like via ops->init_request().
3250 */
3251 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3252 entries_per_page = order_to_size(this_order) / rq_size;
3253 to_do = min(entries_per_page, depth - i);
3254 left -= to_do * rq_size;
3255 for (j = 0; j < to_do; j++) {
3256 struct request *rq = p;
3257
3258 tags->static_rqs[i] = rq;
3259 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3260 tags->static_rqs[i] = NULL;
3261 goto fail;
3262 }
3263
3264 p += rq_size;
3265 i++;
3266 }
3267 }
3268 return 0;
3269
3270 fail:
3271 blk_mq_free_rqs(set, tags, hctx_idx);
3272 return -ENOMEM;
3273 }
3274
3275 struct rq_iter_data {
3276 struct blk_mq_hw_ctx *hctx;
3277 bool has_rq;
3278 };
3279
blk_mq_has_request(struct request * rq,void * data,bool reserved)3280 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3281 {
3282 struct rq_iter_data *iter_data = data;
3283
3284 if (rq->mq_hctx != iter_data->hctx)
3285 return true;
3286 iter_data->has_rq = true;
3287 return false;
3288 }
3289
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3290 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3291 {
3292 struct blk_mq_tags *tags = hctx->sched_tags ?
3293 hctx->sched_tags : hctx->tags;
3294 struct rq_iter_data data = {
3295 .hctx = hctx,
3296 };
3297
3298 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3299 return data.has_rq;
3300 }
3301
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)3302 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3303 struct blk_mq_hw_ctx *hctx)
3304 {
3305 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3306 return false;
3307 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3308 return false;
3309 return true;
3310 }
3311
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3312 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3313 {
3314 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3315 struct blk_mq_hw_ctx, cpuhp_online);
3316
3317 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3318 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3319 return 0;
3320
3321 /*
3322 * Prevent new request from being allocated on the current hctx.
3323 *
3324 * The smp_mb__after_atomic() Pairs with the implied barrier in
3325 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3326 * seen once we return from the tag allocator.
3327 */
3328 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3329 smp_mb__after_atomic();
3330
3331 /*
3332 * Try to grab a reference to the queue and wait for any outstanding
3333 * requests. If we could not grab a reference the queue has been
3334 * frozen and there are no requests.
3335 */
3336 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3337 while (blk_mq_hctx_has_requests(hctx))
3338 msleep(5);
3339 percpu_ref_put(&hctx->queue->q_usage_counter);
3340 }
3341
3342 return 0;
3343 }
3344
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3345 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3346 {
3347 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3348 struct blk_mq_hw_ctx, cpuhp_online);
3349
3350 if (cpumask_test_cpu(cpu, hctx->cpumask))
3351 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3352 return 0;
3353 }
3354
3355 /*
3356 * 'cpu' is going away. splice any existing rq_list entries from this
3357 * software queue to the hw queue dispatch list, and ensure that it
3358 * gets run.
3359 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3360 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3361 {
3362 struct blk_mq_hw_ctx *hctx;
3363 struct blk_mq_ctx *ctx;
3364 LIST_HEAD(tmp);
3365 enum hctx_type type;
3366
3367 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3368 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3369 return 0;
3370
3371 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3372 type = hctx->type;
3373
3374 spin_lock(&ctx->lock);
3375 if (!list_empty(&ctx->rq_lists[type])) {
3376 list_splice_init(&ctx->rq_lists[type], &tmp);
3377 blk_mq_hctx_clear_pending(hctx, ctx);
3378 }
3379 spin_unlock(&ctx->lock);
3380
3381 if (list_empty(&tmp))
3382 return 0;
3383
3384 spin_lock(&hctx->lock);
3385 list_splice_tail_init(&tmp, &hctx->dispatch);
3386 spin_unlock(&hctx->lock);
3387
3388 blk_mq_run_hw_queue(hctx, true);
3389 return 0;
3390 }
3391
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3392 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3393 {
3394 if (!(hctx->flags & BLK_MQ_F_STACKING))
3395 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3396 &hctx->cpuhp_online);
3397 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3398 &hctx->cpuhp_dead);
3399 }
3400
3401 /*
3402 * Before freeing hw queue, clearing the flush request reference in
3403 * tags->rqs[] for avoiding potential UAF.
3404 */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3405 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3406 unsigned int queue_depth, struct request *flush_rq)
3407 {
3408 int i;
3409 unsigned long flags;
3410
3411 /* The hw queue may not be mapped yet */
3412 if (!tags)
3413 return;
3414
3415 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3416
3417 for (i = 0; i < queue_depth; i++)
3418 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3419
3420 /*
3421 * Wait until all pending iteration is done.
3422 *
3423 * Request reference is cleared and it is guaranteed to be observed
3424 * after the ->lock is released.
3425 */
3426 spin_lock_irqsave(&tags->lock, flags);
3427 spin_unlock_irqrestore(&tags->lock, flags);
3428 }
3429
3430 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3431 static void blk_mq_exit_hctx(struct request_queue *q,
3432 struct blk_mq_tag_set *set,
3433 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3434 {
3435 struct request *flush_rq = hctx->fq->flush_rq;
3436
3437 if (blk_mq_hw_queue_mapped(hctx))
3438 blk_mq_tag_idle(hctx);
3439
3440 if (blk_queue_init_done(q))
3441 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3442 set->queue_depth, flush_rq);
3443 if (set->ops->exit_request)
3444 set->ops->exit_request(set, flush_rq, hctx_idx);
3445
3446 if (set->ops->exit_hctx)
3447 set->ops->exit_hctx(hctx, hctx_idx);
3448
3449 blk_mq_remove_cpuhp(hctx);
3450
3451 xa_erase(&q->hctx_table, hctx_idx);
3452
3453 spin_lock(&q->unused_hctx_lock);
3454 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3455 spin_unlock(&q->unused_hctx_lock);
3456 }
3457
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3458 static void blk_mq_exit_hw_queues(struct request_queue *q,
3459 struct blk_mq_tag_set *set, int nr_queue)
3460 {
3461 struct blk_mq_hw_ctx *hctx;
3462 unsigned long i;
3463
3464 queue_for_each_hw_ctx(q, hctx, i) {
3465 if (i == nr_queue)
3466 break;
3467 blk_mq_exit_hctx(q, set, hctx, i);
3468 }
3469 }
3470
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3471 static int blk_mq_init_hctx(struct request_queue *q,
3472 struct blk_mq_tag_set *set,
3473 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3474 {
3475 hctx->queue_num = hctx_idx;
3476
3477 if (!(hctx->flags & BLK_MQ_F_STACKING))
3478 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3479 &hctx->cpuhp_online);
3480 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3481
3482 hctx->tags = set->tags[hctx_idx];
3483
3484 if (set->ops->init_hctx &&
3485 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3486 goto unregister_cpu_notifier;
3487
3488 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3489 hctx->numa_node))
3490 goto exit_hctx;
3491
3492 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3493 goto exit_flush_rq;
3494
3495 return 0;
3496
3497 exit_flush_rq:
3498 if (set->ops->exit_request)
3499 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3500 exit_hctx:
3501 if (set->ops->exit_hctx)
3502 set->ops->exit_hctx(hctx, hctx_idx);
3503 unregister_cpu_notifier:
3504 blk_mq_remove_cpuhp(hctx);
3505 return -1;
3506 }
3507
3508 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)3509 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3510 int node)
3511 {
3512 struct blk_mq_hw_ctx *hctx;
3513 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3514
3515 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3516 if (!hctx)
3517 goto fail_alloc_hctx;
3518
3519 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3520 goto free_hctx;
3521
3522 atomic_set(&hctx->nr_active, 0);
3523 if (node == NUMA_NO_NODE)
3524 node = set->numa_node;
3525 hctx->numa_node = node;
3526
3527 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3528 spin_lock_init(&hctx->lock);
3529 INIT_LIST_HEAD(&hctx->dispatch);
3530 hctx->queue = q;
3531 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3532
3533 INIT_LIST_HEAD(&hctx->hctx_list);
3534
3535 /*
3536 * Allocate space for all possible cpus to avoid allocation at
3537 * runtime
3538 */
3539 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3540 gfp, node);
3541 if (!hctx->ctxs)
3542 goto free_cpumask;
3543
3544 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3545 gfp, node, false, false))
3546 goto free_ctxs;
3547 hctx->nr_ctx = 0;
3548
3549 spin_lock_init(&hctx->dispatch_wait_lock);
3550 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3551 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3552
3553 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3554 if (!hctx->fq)
3555 goto free_bitmap;
3556
3557 blk_mq_hctx_kobj_init(hctx);
3558
3559 return hctx;
3560
3561 free_bitmap:
3562 sbitmap_free(&hctx->ctx_map);
3563 free_ctxs:
3564 kfree(hctx->ctxs);
3565 free_cpumask:
3566 free_cpumask_var(hctx->cpumask);
3567 free_hctx:
3568 kfree(hctx);
3569 fail_alloc_hctx:
3570 return NULL;
3571 }
3572
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)3573 static void blk_mq_init_cpu_queues(struct request_queue *q,
3574 unsigned int nr_hw_queues)
3575 {
3576 struct blk_mq_tag_set *set = q->tag_set;
3577 unsigned int i, j;
3578
3579 for_each_possible_cpu(i) {
3580 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3581 struct blk_mq_hw_ctx *hctx;
3582 int k;
3583
3584 __ctx->cpu = i;
3585 spin_lock_init(&__ctx->lock);
3586 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3587 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3588
3589 __ctx->queue = q;
3590
3591 /*
3592 * Set local node, IFF we have more than one hw queue. If
3593 * not, we remain on the home node of the device
3594 */
3595 for (j = 0; j < set->nr_maps; j++) {
3596 hctx = blk_mq_map_queue_type(q, j, i);
3597 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3598 hctx->numa_node = cpu_to_node(i);
3599 }
3600 }
3601 }
3602
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)3603 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3604 unsigned int hctx_idx,
3605 unsigned int depth)
3606 {
3607 struct blk_mq_tags *tags;
3608 int ret;
3609
3610 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3611 if (!tags)
3612 return NULL;
3613
3614 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3615 if (ret) {
3616 blk_mq_free_rq_map(tags);
3617 return NULL;
3618 }
3619
3620 return tags;
3621 }
3622
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)3623 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3624 int hctx_idx)
3625 {
3626 if (blk_mq_is_shared_tags(set->flags)) {
3627 set->tags[hctx_idx] = set->shared_tags;
3628
3629 return true;
3630 }
3631
3632 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3633 set->queue_depth);
3634
3635 return set->tags[hctx_idx];
3636 }
3637
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3638 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3639 struct blk_mq_tags *tags,
3640 unsigned int hctx_idx)
3641 {
3642 if (tags) {
3643 blk_mq_free_rqs(set, tags, hctx_idx);
3644 blk_mq_free_rq_map(tags);
3645 }
3646 }
3647
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)3648 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3649 unsigned int hctx_idx)
3650 {
3651 if (!blk_mq_is_shared_tags(set->flags))
3652 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3653
3654 set->tags[hctx_idx] = NULL;
3655 }
3656
blk_mq_map_swqueue(struct request_queue * q)3657 static void blk_mq_map_swqueue(struct request_queue *q)
3658 {
3659 unsigned int j, hctx_idx;
3660 unsigned long i;
3661 struct blk_mq_hw_ctx *hctx;
3662 struct blk_mq_ctx *ctx;
3663 struct blk_mq_tag_set *set = q->tag_set;
3664
3665 queue_for_each_hw_ctx(q, hctx, i) {
3666 cpumask_clear(hctx->cpumask);
3667 hctx->nr_ctx = 0;
3668 hctx->dispatch_from = NULL;
3669 }
3670
3671 /*
3672 * Map software to hardware queues.
3673 *
3674 * If the cpu isn't present, the cpu is mapped to first hctx.
3675 */
3676 for_each_possible_cpu(i) {
3677
3678 ctx = per_cpu_ptr(q->queue_ctx, i);
3679 for (j = 0; j < set->nr_maps; j++) {
3680 if (!set->map[j].nr_queues) {
3681 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3682 HCTX_TYPE_DEFAULT, i);
3683 continue;
3684 }
3685 hctx_idx = set->map[j].mq_map[i];
3686 /* unmapped hw queue can be remapped after CPU topo changed */
3687 if (!set->tags[hctx_idx] &&
3688 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3689 /*
3690 * If tags initialization fail for some hctx,
3691 * that hctx won't be brought online. In this
3692 * case, remap the current ctx to hctx[0] which
3693 * is guaranteed to always have tags allocated
3694 */
3695 set->map[j].mq_map[i] = 0;
3696 }
3697
3698 hctx = blk_mq_map_queue_type(q, j, i);
3699 ctx->hctxs[j] = hctx;
3700 /*
3701 * If the CPU is already set in the mask, then we've
3702 * mapped this one already. This can happen if
3703 * devices share queues across queue maps.
3704 */
3705 if (cpumask_test_cpu(i, hctx->cpumask))
3706 continue;
3707
3708 cpumask_set_cpu(i, hctx->cpumask);
3709 hctx->type = j;
3710 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3711 hctx->ctxs[hctx->nr_ctx++] = ctx;
3712
3713 /*
3714 * If the nr_ctx type overflows, we have exceeded the
3715 * amount of sw queues we can support.
3716 */
3717 BUG_ON(!hctx->nr_ctx);
3718 }
3719
3720 for (; j < HCTX_MAX_TYPES; j++)
3721 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3722 HCTX_TYPE_DEFAULT, i);
3723 }
3724
3725 queue_for_each_hw_ctx(q, hctx, i) {
3726 /*
3727 * If no software queues are mapped to this hardware queue,
3728 * disable it and free the request entries.
3729 */
3730 if (!hctx->nr_ctx) {
3731 /* Never unmap queue 0. We need it as a
3732 * fallback in case of a new remap fails
3733 * allocation
3734 */
3735 if (i)
3736 __blk_mq_free_map_and_rqs(set, i);
3737
3738 hctx->tags = NULL;
3739 continue;
3740 }
3741
3742 hctx->tags = set->tags[i];
3743 WARN_ON(!hctx->tags);
3744
3745 /*
3746 * Set the map size to the number of mapped software queues.
3747 * This is more accurate and more efficient than looping
3748 * over all possibly mapped software queues.
3749 */
3750 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3751
3752 /*
3753 * Initialize batch roundrobin counts
3754 */
3755 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3756 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3757 }
3758 }
3759
3760 /*
3761 * Caller needs to ensure that we're either frozen/quiesced, or that
3762 * the queue isn't live yet.
3763 */
queue_set_hctx_shared(struct request_queue * q,bool shared)3764 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3765 {
3766 struct blk_mq_hw_ctx *hctx;
3767 unsigned long i;
3768
3769 queue_for_each_hw_ctx(q, hctx, i) {
3770 if (shared) {
3771 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3772 } else {
3773 blk_mq_tag_idle(hctx);
3774 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3775 }
3776 }
3777 }
3778
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)3779 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3780 bool shared)
3781 {
3782 struct request_queue *q;
3783
3784 lockdep_assert_held(&set->tag_list_lock);
3785
3786 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3787 blk_mq_freeze_queue(q);
3788 queue_set_hctx_shared(q, shared);
3789 blk_mq_unfreeze_queue(q);
3790 }
3791 }
3792
blk_mq_del_queue_tag_set(struct request_queue * q)3793 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3794 {
3795 struct blk_mq_tag_set *set = q->tag_set;
3796
3797 mutex_lock(&set->tag_list_lock);
3798 list_del(&q->tag_set_list);
3799 if (list_is_singular(&set->tag_list)) {
3800 /* just transitioned to unshared */
3801 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3802 /* update existing queue */
3803 blk_mq_update_tag_set_shared(set, false);
3804 }
3805 mutex_unlock(&set->tag_list_lock);
3806 INIT_LIST_HEAD(&q->tag_set_list);
3807 }
3808
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3809 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3810 struct request_queue *q)
3811 {
3812 mutex_lock(&set->tag_list_lock);
3813
3814 /*
3815 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3816 */
3817 if (!list_empty(&set->tag_list) &&
3818 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3819 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3820 /* update existing queue */
3821 blk_mq_update_tag_set_shared(set, true);
3822 }
3823 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3824 queue_set_hctx_shared(q, true);
3825 list_add_tail(&q->tag_set_list, &set->tag_list);
3826
3827 mutex_unlock(&set->tag_list_lock);
3828 }
3829
3830 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3831 static int blk_mq_alloc_ctxs(struct request_queue *q)
3832 {
3833 struct blk_mq_ctxs *ctxs;
3834 int cpu;
3835
3836 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3837 if (!ctxs)
3838 return -ENOMEM;
3839
3840 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3841 if (!ctxs->queue_ctx)
3842 goto fail;
3843
3844 for_each_possible_cpu(cpu) {
3845 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3846 ctx->ctxs = ctxs;
3847 }
3848
3849 q->mq_kobj = &ctxs->kobj;
3850 q->queue_ctx = ctxs->queue_ctx;
3851
3852 return 0;
3853 fail:
3854 kfree(ctxs);
3855 return -ENOMEM;
3856 }
3857
3858 /*
3859 * It is the actual release handler for mq, but we do it from
3860 * request queue's release handler for avoiding use-after-free
3861 * and headache because q->mq_kobj shouldn't have been introduced,
3862 * but we can't group ctx/kctx kobj without it.
3863 */
blk_mq_release(struct request_queue * q)3864 void blk_mq_release(struct request_queue *q)
3865 {
3866 struct blk_mq_hw_ctx *hctx, *next;
3867 unsigned long i;
3868
3869 queue_for_each_hw_ctx(q, hctx, i)
3870 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3871
3872 /* all hctx are in .unused_hctx_list now */
3873 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3874 list_del_init(&hctx->hctx_list);
3875 kobject_put(&hctx->kobj);
3876 }
3877
3878 xa_destroy(&q->hctx_table);
3879
3880 /*
3881 * release .mq_kobj and sw queue's kobject now because
3882 * both share lifetime with request queue.
3883 */
3884 blk_mq_sysfs_deinit(q);
3885 }
3886
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3887 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3888 void *queuedata)
3889 {
3890 struct request_queue *q;
3891 int ret;
3892
3893 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3894 if (!q)
3895 return ERR_PTR(-ENOMEM);
3896 q->queuedata = queuedata;
3897 ret = blk_mq_init_allocated_queue(set, q);
3898 if (ret) {
3899 blk_cleanup_queue(q);
3900 return ERR_PTR(ret);
3901 }
3902 return q;
3903 }
3904
blk_mq_init_queue(struct blk_mq_tag_set * set)3905 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3906 {
3907 return blk_mq_init_queue_data(set, NULL);
3908 }
3909 EXPORT_SYMBOL(blk_mq_init_queue);
3910
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,void * queuedata,struct lock_class_key * lkclass)3911 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3912 struct lock_class_key *lkclass)
3913 {
3914 struct request_queue *q;
3915 struct gendisk *disk;
3916
3917 q = blk_mq_init_queue_data(set, queuedata);
3918 if (IS_ERR(q))
3919 return ERR_CAST(q);
3920
3921 disk = __alloc_disk_node(q, set->numa_node, lkclass);
3922 if (!disk) {
3923 blk_cleanup_queue(q);
3924 return ERR_PTR(-ENOMEM);
3925 }
3926 return disk;
3927 }
3928 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3929
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3930 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3931 struct blk_mq_tag_set *set, struct request_queue *q,
3932 int hctx_idx, int node)
3933 {
3934 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3935
3936 /* reuse dead hctx first */
3937 spin_lock(&q->unused_hctx_lock);
3938 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3939 if (tmp->numa_node == node) {
3940 hctx = tmp;
3941 break;
3942 }
3943 }
3944 if (hctx)
3945 list_del_init(&hctx->hctx_list);
3946 spin_unlock(&q->unused_hctx_lock);
3947
3948 if (!hctx)
3949 hctx = blk_mq_alloc_hctx(q, set, node);
3950 if (!hctx)
3951 goto fail;
3952
3953 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3954 goto free_hctx;
3955
3956 return hctx;
3957
3958 free_hctx:
3959 kobject_put(&hctx->kobj);
3960 fail:
3961 return NULL;
3962 }
3963
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3964 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3965 struct request_queue *q)
3966 {
3967 struct blk_mq_hw_ctx *hctx;
3968 unsigned long i, j;
3969
3970 /* protect against switching io scheduler */
3971 mutex_lock(&q->sysfs_lock);
3972 for (i = 0; i < set->nr_hw_queues; i++) {
3973 int old_node;
3974 int node = blk_mq_get_hctx_node(set, i);
3975 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3976
3977 if (old_hctx) {
3978 old_node = old_hctx->numa_node;
3979 blk_mq_exit_hctx(q, set, old_hctx, i);
3980 }
3981
3982 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3983 if (!old_hctx)
3984 break;
3985 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3986 node, old_node);
3987 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3988 WARN_ON_ONCE(!hctx);
3989 }
3990 }
3991 /*
3992 * Increasing nr_hw_queues fails. Free the newly allocated
3993 * hctxs and keep the previous q->nr_hw_queues.
3994 */
3995 if (i != set->nr_hw_queues) {
3996 j = q->nr_hw_queues;
3997 } else {
3998 j = i;
3999 q->nr_hw_queues = set->nr_hw_queues;
4000 }
4001
4002 xa_for_each_start(&q->hctx_table, j, hctx, j)
4003 blk_mq_exit_hctx(q, set, hctx, j);
4004 mutex_unlock(&q->sysfs_lock);
4005 }
4006
blk_mq_update_poll_flag(struct request_queue * q)4007 static void blk_mq_update_poll_flag(struct request_queue *q)
4008 {
4009 struct blk_mq_tag_set *set = q->tag_set;
4010
4011 if (set->nr_maps > HCTX_TYPE_POLL &&
4012 set->map[HCTX_TYPE_POLL].nr_queues)
4013 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4014 else
4015 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4016 }
4017
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4018 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4019 struct request_queue *q)
4020 {
4021 WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4022 !!(set->flags & BLK_MQ_F_BLOCKING));
4023
4024 /* mark the queue as mq asap */
4025 q->mq_ops = set->ops;
4026
4027 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4028 blk_mq_poll_stats_bkt,
4029 BLK_MQ_POLL_STATS_BKTS, q);
4030 if (!q->poll_cb)
4031 goto err_exit;
4032
4033 if (blk_mq_alloc_ctxs(q))
4034 goto err_poll;
4035
4036 /* init q->mq_kobj and sw queues' kobjects */
4037 blk_mq_sysfs_init(q);
4038
4039 INIT_LIST_HEAD(&q->unused_hctx_list);
4040 spin_lock_init(&q->unused_hctx_lock);
4041
4042 xa_init(&q->hctx_table);
4043
4044 blk_mq_realloc_hw_ctxs(set, q);
4045 if (!q->nr_hw_queues)
4046 goto err_hctxs;
4047
4048 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4049 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4050
4051 q->tag_set = set;
4052
4053 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4054 blk_mq_update_poll_flag(q);
4055
4056 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4057 INIT_LIST_HEAD(&q->requeue_list);
4058 spin_lock_init(&q->requeue_lock);
4059
4060 q->nr_requests = set->queue_depth;
4061
4062 /*
4063 * Default to classic polling
4064 */
4065 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4066
4067 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4068 blk_mq_add_queue_tag_set(set, q);
4069 blk_mq_map_swqueue(q);
4070 return 0;
4071
4072 err_hctxs:
4073 xa_destroy(&q->hctx_table);
4074 q->nr_hw_queues = 0;
4075 blk_mq_sysfs_deinit(q);
4076 err_poll:
4077 blk_stat_free_callback(q->poll_cb);
4078 q->poll_cb = NULL;
4079 err_exit:
4080 q->mq_ops = NULL;
4081 return -ENOMEM;
4082 }
4083 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4084
4085 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)4086 void blk_mq_exit_queue(struct request_queue *q)
4087 {
4088 struct blk_mq_tag_set *set = q->tag_set;
4089
4090 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4091 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4092 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4093 blk_mq_del_queue_tag_set(q);
4094 }
4095
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4096 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4097 {
4098 int i;
4099
4100 if (blk_mq_is_shared_tags(set->flags)) {
4101 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4102 BLK_MQ_NO_HCTX_IDX,
4103 set->queue_depth);
4104 if (!set->shared_tags)
4105 return -ENOMEM;
4106 }
4107
4108 for (i = 0; i < set->nr_hw_queues; i++) {
4109 if (!__blk_mq_alloc_map_and_rqs(set, i))
4110 goto out_unwind;
4111 cond_resched();
4112 }
4113
4114 return 0;
4115
4116 out_unwind:
4117 while (--i >= 0)
4118 __blk_mq_free_map_and_rqs(set, i);
4119
4120 if (blk_mq_is_shared_tags(set->flags)) {
4121 blk_mq_free_map_and_rqs(set, set->shared_tags,
4122 BLK_MQ_NO_HCTX_IDX);
4123 }
4124
4125 return -ENOMEM;
4126 }
4127
4128 /*
4129 * Allocate the request maps associated with this tag_set. Note that this
4130 * may reduce the depth asked for, if memory is tight. set->queue_depth
4131 * will be updated to reflect the allocated depth.
4132 */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4133 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4134 {
4135 unsigned int depth;
4136 int err;
4137
4138 depth = set->queue_depth;
4139 do {
4140 err = __blk_mq_alloc_rq_maps(set);
4141 if (!err)
4142 break;
4143
4144 set->queue_depth >>= 1;
4145 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4146 err = -ENOMEM;
4147 break;
4148 }
4149 } while (set->queue_depth);
4150
4151 if (!set->queue_depth || err) {
4152 pr_err("blk-mq: failed to allocate request map\n");
4153 return -ENOMEM;
4154 }
4155
4156 if (depth != set->queue_depth)
4157 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4158 depth, set->queue_depth);
4159
4160 return 0;
4161 }
4162
blk_mq_update_queue_map(struct blk_mq_tag_set * set)4163 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4164 {
4165 /*
4166 * blk_mq_map_queues() and multiple .map_queues() implementations
4167 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4168 * number of hardware queues.
4169 */
4170 if (set->nr_maps == 1)
4171 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4172
4173 if (set->ops->map_queues && !is_kdump_kernel()) {
4174 int i;
4175
4176 /*
4177 * transport .map_queues is usually done in the following
4178 * way:
4179 *
4180 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4181 * mask = get_cpu_mask(queue)
4182 * for_each_cpu(cpu, mask)
4183 * set->map[x].mq_map[cpu] = queue;
4184 * }
4185 *
4186 * When we need to remap, the table has to be cleared for
4187 * killing stale mapping since one CPU may not be mapped
4188 * to any hw queue.
4189 */
4190 for (i = 0; i < set->nr_maps; i++)
4191 blk_mq_clear_mq_map(&set->map[i]);
4192
4193 return set->ops->map_queues(set);
4194 } else {
4195 BUG_ON(set->nr_maps > 1);
4196 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4197 }
4198 }
4199
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)4200 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4201 int cur_nr_hw_queues, int new_nr_hw_queues)
4202 {
4203 struct blk_mq_tags **new_tags;
4204
4205 if (cur_nr_hw_queues >= new_nr_hw_queues)
4206 return 0;
4207
4208 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4209 GFP_KERNEL, set->numa_node);
4210 if (!new_tags)
4211 return -ENOMEM;
4212
4213 if (set->tags)
4214 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4215 sizeof(*set->tags));
4216 kfree(set->tags);
4217 set->tags = new_tags;
4218 set->nr_hw_queues = new_nr_hw_queues;
4219
4220 return 0;
4221 }
4222
blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4223 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4224 int new_nr_hw_queues)
4225 {
4226 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4227 }
4228
4229 /*
4230 * Alloc a tag set to be associated with one or more request queues.
4231 * May fail with EINVAL for various error conditions. May adjust the
4232 * requested depth down, if it's too large. In that case, the set
4233 * value will be stored in set->queue_depth.
4234 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4235 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4236 {
4237 int i, ret;
4238
4239 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4240
4241 if (!set->nr_hw_queues)
4242 return -EINVAL;
4243 if (!set->queue_depth)
4244 return -EINVAL;
4245 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4246 return -EINVAL;
4247
4248 if (!set->ops->queue_rq)
4249 return -EINVAL;
4250
4251 if (!set->ops->get_budget ^ !set->ops->put_budget)
4252 return -EINVAL;
4253
4254 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4255 pr_info("blk-mq: reduced tag depth to %u\n",
4256 BLK_MQ_MAX_DEPTH);
4257 set->queue_depth = BLK_MQ_MAX_DEPTH;
4258 }
4259
4260 if (!set->nr_maps)
4261 set->nr_maps = 1;
4262 else if (set->nr_maps > HCTX_MAX_TYPES)
4263 return -EINVAL;
4264
4265 /*
4266 * If a crashdump is active, then we are potentially in a very
4267 * memory constrained environment. Limit us to 1 queue and
4268 * 64 tags to prevent using too much memory.
4269 */
4270 if (is_kdump_kernel()) {
4271 set->nr_hw_queues = 1;
4272 set->nr_maps = 1;
4273 set->queue_depth = min(64U, set->queue_depth);
4274 }
4275 /*
4276 * There is no use for more h/w queues than cpus if we just have
4277 * a single map
4278 */
4279 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4280 set->nr_hw_queues = nr_cpu_ids;
4281
4282 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4283 return -ENOMEM;
4284
4285 ret = -ENOMEM;
4286 for (i = 0; i < set->nr_maps; i++) {
4287 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4288 sizeof(set->map[i].mq_map[0]),
4289 GFP_KERNEL, set->numa_node);
4290 if (!set->map[i].mq_map)
4291 goto out_free_mq_map;
4292 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4293 }
4294
4295 ret = blk_mq_update_queue_map(set);
4296 if (ret)
4297 goto out_free_mq_map;
4298
4299 ret = blk_mq_alloc_set_map_and_rqs(set);
4300 if (ret)
4301 goto out_free_mq_map;
4302
4303 mutex_init(&set->tag_list_lock);
4304 INIT_LIST_HEAD(&set->tag_list);
4305
4306 return 0;
4307
4308 out_free_mq_map:
4309 for (i = 0; i < set->nr_maps; i++) {
4310 kfree(set->map[i].mq_map);
4311 set->map[i].mq_map = NULL;
4312 }
4313 kfree(set->tags);
4314 set->tags = NULL;
4315 return ret;
4316 }
4317 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4318
4319 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4320 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4321 const struct blk_mq_ops *ops, unsigned int queue_depth,
4322 unsigned int set_flags)
4323 {
4324 memset(set, 0, sizeof(*set));
4325 set->ops = ops;
4326 set->nr_hw_queues = 1;
4327 set->nr_maps = 1;
4328 set->queue_depth = queue_depth;
4329 set->numa_node = NUMA_NO_NODE;
4330 set->flags = set_flags;
4331 return blk_mq_alloc_tag_set(set);
4332 }
4333 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4334
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4335 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4336 {
4337 int i, j;
4338
4339 for (i = 0; i < set->nr_hw_queues; i++)
4340 __blk_mq_free_map_and_rqs(set, i);
4341
4342 if (blk_mq_is_shared_tags(set->flags)) {
4343 blk_mq_free_map_and_rqs(set, set->shared_tags,
4344 BLK_MQ_NO_HCTX_IDX);
4345 }
4346
4347 for (j = 0; j < set->nr_maps; j++) {
4348 kfree(set->map[j].mq_map);
4349 set->map[j].mq_map = NULL;
4350 }
4351
4352 kfree(set->tags);
4353 set->tags = NULL;
4354 }
4355 EXPORT_SYMBOL(blk_mq_free_tag_set);
4356
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)4357 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4358 {
4359 struct blk_mq_tag_set *set = q->tag_set;
4360 struct blk_mq_hw_ctx *hctx;
4361 int ret;
4362 unsigned long i;
4363
4364 if (!set)
4365 return -EINVAL;
4366
4367 if (q->nr_requests == nr)
4368 return 0;
4369
4370 blk_mq_freeze_queue(q);
4371 blk_mq_quiesce_queue(q);
4372
4373 ret = 0;
4374 queue_for_each_hw_ctx(q, hctx, i) {
4375 if (!hctx->tags)
4376 continue;
4377 /*
4378 * If we're using an MQ scheduler, just update the scheduler
4379 * queue depth. This is similar to what the old code would do.
4380 */
4381 if (hctx->sched_tags) {
4382 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4383 nr, true);
4384 } else {
4385 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4386 false);
4387 }
4388 if (ret)
4389 break;
4390 if (q->elevator && q->elevator->type->ops.depth_updated)
4391 q->elevator->type->ops.depth_updated(hctx);
4392 }
4393 if (!ret) {
4394 q->nr_requests = nr;
4395 if (blk_mq_is_shared_tags(set->flags)) {
4396 if (q->elevator)
4397 blk_mq_tag_update_sched_shared_tags(q);
4398 else
4399 blk_mq_tag_resize_shared_tags(set, nr);
4400 }
4401 }
4402
4403 blk_mq_unquiesce_queue(q);
4404 blk_mq_unfreeze_queue(q);
4405
4406 return ret;
4407 }
4408
4409 /*
4410 * request_queue and elevator_type pair.
4411 * It is just used by __blk_mq_update_nr_hw_queues to cache
4412 * the elevator_type associated with a request_queue.
4413 */
4414 struct blk_mq_qe_pair {
4415 struct list_head node;
4416 struct request_queue *q;
4417 struct elevator_type *type;
4418 };
4419
4420 /*
4421 * Cache the elevator_type in qe pair list and switch the
4422 * io scheduler to 'none'
4423 */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)4424 static bool blk_mq_elv_switch_none(struct list_head *head,
4425 struct request_queue *q)
4426 {
4427 struct blk_mq_qe_pair *qe;
4428
4429 if (!q->elevator)
4430 return true;
4431
4432 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4433 if (!qe)
4434 return false;
4435
4436 /* q->elevator needs protection from ->sysfs_lock */
4437 mutex_lock(&q->sysfs_lock);
4438
4439 INIT_LIST_HEAD(&qe->node);
4440 qe->q = q;
4441 qe->type = q->elevator->type;
4442 list_add(&qe->node, head);
4443
4444 /*
4445 * After elevator_switch_mq, the previous elevator_queue will be
4446 * released by elevator_release. The reference of the io scheduler
4447 * module get by elevator_get will also be put. So we need to get
4448 * a reference of the io scheduler module here to prevent it to be
4449 * removed.
4450 */
4451 __module_get(qe->type->elevator_owner);
4452 elevator_switch_mq(q, NULL);
4453 mutex_unlock(&q->sysfs_lock);
4454
4455 return true;
4456 }
4457
blk_lookup_qe_pair(struct list_head * head,struct request_queue * q)4458 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4459 struct request_queue *q)
4460 {
4461 struct blk_mq_qe_pair *qe;
4462
4463 list_for_each_entry(qe, head, node)
4464 if (qe->q == q)
4465 return qe;
4466
4467 return NULL;
4468 }
4469
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)4470 static void blk_mq_elv_switch_back(struct list_head *head,
4471 struct request_queue *q)
4472 {
4473 struct blk_mq_qe_pair *qe;
4474 struct elevator_type *t;
4475
4476 qe = blk_lookup_qe_pair(head, q);
4477 if (!qe)
4478 return;
4479 t = qe->type;
4480 list_del(&qe->node);
4481 kfree(qe);
4482
4483 mutex_lock(&q->sysfs_lock);
4484 elevator_switch_mq(q, t);
4485 mutex_unlock(&q->sysfs_lock);
4486 }
4487
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4488 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4489 int nr_hw_queues)
4490 {
4491 struct request_queue *q;
4492 LIST_HEAD(head);
4493 int prev_nr_hw_queues;
4494
4495 lockdep_assert_held(&set->tag_list_lock);
4496
4497 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4498 nr_hw_queues = nr_cpu_ids;
4499 if (nr_hw_queues < 1)
4500 return;
4501 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4502 return;
4503
4504 list_for_each_entry(q, &set->tag_list, tag_set_list)
4505 blk_mq_freeze_queue(q);
4506 /*
4507 * Switch IO scheduler to 'none', cleaning up the data associated
4508 * with the previous scheduler. We will switch back once we are done
4509 * updating the new sw to hw queue mappings.
4510 */
4511 list_for_each_entry(q, &set->tag_list, tag_set_list)
4512 if (!blk_mq_elv_switch_none(&head, q))
4513 goto switch_back;
4514
4515 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4516 blk_mq_debugfs_unregister_hctxs(q);
4517 blk_mq_sysfs_unregister(q);
4518 }
4519
4520 prev_nr_hw_queues = set->nr_hw_queues;
4521 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4522 0)
4523 goto reregister;
4524
4525 set->nr_hw_queues = nr_hw_queues;
4526 fallback:
4527 blk_mq_update_queue_map(set);
4528 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4529 blk_mq_realloc_hw_ctxs(set, q);
4530 blk_mq_update_poll_flag(q);
4531 if (q->nr_hw_queues != set->nr_hw_queues) {
4532 int i = prev_nr_hw_queues;
4533
4534 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4535 nr_hw_queues, prev_nr_hw_queues);
4536 for (; i < set->nr_hw_queues; i++)
4537 __blk_mq_free_map_and_rqs(set, i);
4538
4539 set->nr_hw_queues = prev_nr_hw_queues;
4540 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4541 goto fallback;
4542 }
4543 blk_mq_map_swqueue(q);
4544 }
4545
4546 reregister:
4547 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4548 blk_mq_sysfs_register(q);
4549 blk_mq_debugfs_register_hctxs(q);
4550 }
4551
4552 switch_back:
4553 list_for_each_entry(q, &set->tag_list, tag_set_list)
4554 blk_mq_elv_switch_back(&head, q);
4555
4556 list_for_each_entry(q, &set->tag_list, tag_set_list)
4557 blk_mq_unfreeze_queue(q);
4558 }
4559
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)4560 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4561 {
4562 mutex_lock(&set->tag_list_lock);
4563 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4564 mutex_unlock(&set->tag_list_lock);
4565 }
4566 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4567
4568 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)4569 static bool blk_poll_stats_enable(struct request_queue *q)
4570 {
4571 if (q->poll_stat)
4572 return true;
4573
4574 return blk_stats_alloc_enable(q);
4575 }
4576
blk_mq_poll_stats_start(struct request_queue * q)4577 static void blk_mq_poll_stats_start(struct request_queue *q)
4578 {
4579 /*
4580 * We don't arm the callback if polling stats are not enabled or the
4581 * callback is already active.
4582 */
4583 if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4584 return;
4585
4586 blk_stat_activate_msecs(q->poll_cb, 100);
4587 }
4588
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)4589 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4590 {
4591 struct request_queue *q = cb->data;
4592 int bucket;
4593
4594 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4595 if (cb->stat[bucket].nr_samples)
4596 q->poll_stat[bucket] = cb->stat[bucket];
4597 }
4598 }
4599
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)4600 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4601 struct request *rq)
4602 {
4603 unsigned long ret = 0;
4604 int bucket;
4605
4606 /*
4607 * If stats collection isn't on, don't sleep but turn it on for
4608 * future users
4609 */
4610 if (!blk_poll_stats_enable(q))
4611 return 0;
4612
4613 /*
4614 * As an optimistic guess, use half of the mean service time
4615 * for this type of request. We can (and should) make this smarter.
4616 * For instance, if the completion latencies are tight, we can
4617 * get closer than just half the mean. This is especially
4618 * important on devices where the completion latencies are longer
4619 * than ~10 usec. We do use the stats for the relevant IO size
4620 * if available which does lead to better estimates.
4621 */
4622 bucket = blk_mq_poll_stats_bkt(rq);
4623 if (bucket < 0)
4624 return ret;
4625
4626 if (q->poll_stat[bucket].nr_samples)
4627 ret = (q->poll_stat[bucket].mean + 1) / 2;
4628
4629 return ret;
4630 }
4631
blk_mq_poll_hybrid(struct request_queue * q,blk_qc_t qc)4632 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4633 {
4634 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4635 struct request *rq = blk_qc_to_rq(hctx, qc);
4636 struct hrtimer_sleeper hs;
4637 enum hrtimer_mode mode;
4638 unsigned int nsecs;
4639 ktime_t kt;
4640
4641 /*
4642 * If a request has completed on queue that uses an I/O scheduler, we
4643 * won't get back a request from blk_qc_to_rq.
4644 */
4645 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4646 return false;
4647
4648 /*
4649 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4650 *
4651 * 0: use half of prev avg
4652 * >0: use this specific value
4653 */
4654 if (q->poll_nsec > 0)
4655 nsecs = q->poll_nsec;
4656 else
4657 nsecs = blk_mq_poll_nsecs(q, rq);
4658
4659 if (!nsecs)
4660 return false;
4661
4662 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4663
4664 /*
4665 * This will be replaced with the stats tracking code, using
4666 * 'avg_completion_time / 2' as the pre-sleep target.
4667 */
4668 kt = nsecs;
4669
4670 mode = HRTIMER_MODE_REL;
4671 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4672 hrtimer_set_expires(&hs.timer, kt);
4673
4674 do {
4675 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4676 break;
4677 set_current_state(TASK_UNINTERRUPTIBLE);
4678 hrtimer_sleeper_start_expires(&hs, mode);
4679 if (hs.task)
4680 io_schedule();
4681 hrtimer_cancel(&hs.timer);
4682 mode = HRTIMER_MODE_ABS;
4683 } while (hs.task && !signal_pending(current));
4684
4685 __set_current_state(TASK_RUNNING);
4686 destroy_hrtimer_on_stack(&hs.timer);
4687
4688 /*
4689 * If we sleep, have the caller restart the poll loop to reset the
4690 * state. Like for the other success return cases, the caller is
4691 * responsible for checking if the IO completed. If the IO isn't
4692 * complete, we'll get called again and will go straight to the busy
4693 * poll loop.
4694 */
4695 return true;
4696 }
4697
blk_mq_poll_classic(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4698 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4699 struct io_comp_batch *iob, unsigned int flags)
4700 {
4701 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4702 long state = get_current_state();
4703 int ret;
4704
4705 do {
4706 ret = q->mq_ops->poll(hctx, iob);
4707 if (ret > 0) {
4708 __set_current_state(TASK_RUNNING);
4709 return ret;
4710 }
4711
4712 if (signal_pending_state(state, current))
4713 __set_current_state(TASK_RUNNING);
4714 if (task_is_running(current))
4715 return 1;
4716
4717 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4718 break;
4719 cpu_relax();
4720 } while (!need_resched());
4721
4722 __set_current_state(TASK_RUNNING);
4723 return 0;
4724 }
4725
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)4726 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4727 unsigned int flags)
4728 {
4729 if (!(flags & BLK_POLL_NOSLEEP) &&
4730 q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4731 if (blk_mq_poll_hybrid(q, cookie))
4732 return 1;
4733 }
4734 return blk_mq_poll_classic(q, cookie, iob, flags);
4735 }
4736
blk_mq_rq_cpu(struct request * rq)4737 unsigned int blk_mq_rq_cpu(struct request *rq)
4738 {
4739 return rq->mq_ctx->cpu;
4740 }
4741 EXPORT_SYMBOL(blk_mq_rq_cpu);
4742
blk_mq_cancel_work_sync(struct request_queue * q)4743 void blk_mq_cancel_work_sync(struct request_queue *q)
4744 {
4745 if (queue_is_mq(q)) {
4746 struct blk_mq_hw_ctx *hctx;
4747 unsigned long i;
4748
4749 cancel_delayed_work_sync(&q->requeue_work);
4750
4751 queue_for_each_hw_ctx(q, hctx, i)
4752 cancel_delayed_work_sync(&hctx->run_work);
4753 }
4754 }
4755
blk_mq_init(void)4756 static int __init blk_mq_init(void)
4757 {
4758 int i;
4759
4760 for_each_possible_cpu(i)
4761 init_llist_head(&per_cpu(blk_cpu_done, i));
4762 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4763
4764 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4765 "block/softirq:dead", NULL,
4766 blk_softirq_cpu_dead);
4767 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4768 blk_mq_hctx_notify_dead);
4769 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4770 blk_mq_hctx_notify_online,
4771 blk_mq_hctx_notify_offline);
4772 return 0;
4773 }
4774 subsys_initcall(blk_mq_init);
4775