1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
35 
36 #include "blk.h"
37 
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
41 
42 DEFINE_IDA(blk_queue_ida);
43 
44 /*
45  * For the allocated request tables
46  */
47 static struct kmem_cache *request_cachep;
48 
49 /*
50  * For queue allocation
51  */
52 struct kmem_cache *blk_requestq_cachep;
53 
54 /*
55  * Controlling structure to kblockd
56  */
57 static struct workqueue_struct *kblockd_workqueue;
58 
drive_stat_acct(struct request * rq,int new_io)59 static void drive_stat_acct(struct request *rq, int new_io)
60 {
61 	struct hd_struct *part;
62 	int rw = rq_data_dir(rq);
63 	int cpu;
64 
65 	if (!blk_do_io_stat(rq))
66 		return;
67 
68 	cpu = part_stat_lock();
69 
70 	if (!new_io) {
71 		part = rq->part;
72 		part_stat_inc(cpu, part, merges[rw]);
73 	} else {
74 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
75 		if (!hd_struct_try_get(part)) {
76 			/*
77 			 * The partition is already being removed,
78 			 * the request will be accounted on the disk only
79 			 *
80 			 * We take a reference on disk->part0 although that
81 			 * partition will never be deleted, so we can treat
82 			 * it as any other partition.
83 			 */
84 			part = &rq->rq_disk->part0;
85 			hd_struct_get(part);
86 		}
87 		part_round_stats(cpu, part);
88 		part_inc_in_flight(part, rw);
89 		rq->part = part;
90 	}
91 
92 	part_stat_unlock();
93 }
94 
blk_queue_congestion_threshold(struct request_queue * q)95 void blk_queue_congestion_threshold(struct request_queue *q)
96 {
97 	int nr;
98 
99 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 	if (nr > q->nr_requests)
101 		nr = q->nr_requests;
102 	q->nr_congestion_on = nr;
103 
104 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 	if (nr < 1)
106 		nr = 1;
107 	q->nr_congestion_off = nr;
108 }
109 
110 /**
111  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
112  * @bdev:	device
113  *
114  * Locates the passed device's request queue and returns the address of its
115  * backing_dev_info
116  *
117  * Will return NULL if the request queue cannot be located.
118  */
blk_get_backing_dev_info(struct block_device * bdev)119 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
120 {
121 	struct backing_dev_info *ret = NULL;
122 	struct request_queue *q = bdev_get_queue(bdev);
123 
124 	if (q)
125 		ret = &q->backing_dev_info;
126 	return ret;
127 }
128 EXPORT_SYMBOL(blk_get_backing_dev_info);
129 
blk_rq_init(struct request_queue * q,struct request * rq)130 void blk_rq_init(struct request_queue *q, struct request *rq)
131 {
132 	memset(rq, 0, sizeof(*rq));
133 
134 	INIT_LIST_HEAD(&rq->queuelist);
135 	INIT_LIST_HEAD(&rq->timeout_list);
136 	rq->cpu = -1;
137 	rq->q = q;
138 	rq->__sector = (sector_t) -1;
139 	INIT_HLIST_NODE(&rq->hash);
140 	RB_CLEAR_NODE(&rq->rb_node);
141 	rq->cmd = rq->__cmd;
142 	rq->cmd_len = BLK_MAX_CDB;
143 	rq->tag = -1;
144 	rq->ref_count = 1;
145 	rq->start_time = jiffies;
146 	set_start_time_ns(rq);
147 	rq->part = NULL;
148 }
149 EXPORT_SYMBOL(blk_rq_init);
150 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,int error)151 static void req_bio_endio(struct request *rq, struct bio *bio,
152 			  unsigned int nbytes, int error)
153 {
154 	if (error)
155 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
156 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
157 		error = -EIO;
158 
159 	if (unlikely(nbytes > bio->bi_size)) {
160 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
161 		       __func__, nbytes, bio->bi_size);
162 		nbytes = bio->bi_size;
163 	}
164 
165 	if (unlikely(rq->cmd_flags & REQ_QUIET))
166 		set_bit(BIO_QUIET, &bio->bi_flags);
167 
168 	bio->bi_size -= nbytes;
169 	bio->bi_sector += (nbytes >> 9);
170 
171 	if (bio_integrity(bio))
172 		bio_integrity_advance(bio, nbytes);
173 
174 	/* don't actually finish bio if it's part of flush sequence */
175 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
176 		bio_endio(bio, error);
177 }
178 
blk_dump_rq_flags(struct request * rq,char * msg)179 void blk_dump_rq_flags(struct request *rq, char *msg)
180 {
181 	int bit;
182 
183 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
184 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 		rq->cmd_flags);
186 
187 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
188 	       (unsigned long long)blk_rq_pos(rq),
189 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
190 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
191 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
192 
193 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
194 		printk(KERN_INFO "  cdb: ");
195 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
196 			printk("%02x ", rq->cmd[bit]);
197 		printk("\n");
198 	}
199 }
200 EXPORT_SYMBOL(blk_dump_rq_flags);
201 
blk_delay_work(struct work_struct * work)202 static void blk_delay_work(struct work_struct *work)
203 {
204 	struct request_queue *q;
205 
206 	q = container_of(work, struct request_queue, delay_work.work);
207 	spin_lock_irq(q->queue_lock);
208 	__blk_run_queue(q);
209 	spin_unlock_irq(q->queue_lock);
210 }
211 
212 /**
213  * blk_delay_queue - restart queueing after defined interval
214  * @q:		The &struct request_queue in question
215  * @msecs:	Delay in msecs
216  *
217  * Description:
218  *   Sometimes queueing needs to be postponed for a little while, to allow
219  *   resources to come back. This function will make sure that queueing is
220  *   restarted around the specified time.
221  */
blk_delay_queue(struct request_queue * q,unsigned long msecs)222 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
223 {
224 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
225 				msecs_to_jiffies(msecs));
226 }
227 EXPORT_SYMBOL(blk_delay_queue);
228 
229 /**
230  * blk_start_queue - restart a previously stopped queue
231  * @q:    The &struct request_queue in question
232  *
233  * Description:
234  *   blk_start_queue() will clear the stop flag on the queue, and call
235  *   the request_fn for the queue if it was in a stopped state when
236  *   entered. Also see blk_stop_queue(). Queue lock must be held.
237  **/
blk_start_queue(struct request_queue * q)238 void blk_start_queue(struct request_queue *q)
239 {
240 	WARN_ON(!irqs_disabled());
241 
242 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
243 	__blk_run_queue(q);
244 }
245 EXPORT_SYMBOL(blk_start_queue);
246 
247 /**
248  * blk_stop_queue - stop a queue
249  * @q:    The &struct request_queue in question
250  *
251  * Description:
252  *   The Linux block layer assumes that a block driver will consume all
253  *   entries on the request queue when the request_fn strategy is called.
254  *   Often this will not happen, because of hardware limitations (queue
255  *   depth settings). If a device driver gets a 'queue full' response,
256  *   or if it simply chooses not to queue more I/O at one point, it can
257  *   call this function to prevent the request_fn from being called until
258  *   the driver has signalled it's ready to go again. This happens by calling
259  *   blk_start_queue() to restart queue operations. Queue lock must be held.
260  **/
blk_stop_queue(struct request_queue * q)261 void blk_stop_queue(struct request_queue *q)
262 {
263 	__cancel_delayed_work(&q->delay_work);
264 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
265 }
266 EXPORT_SYMBOL(blk_stop_queue);
267 
268 /**
269  * blk_sync_queue - cancel any pending callbacks on a queue
270  * @q: the queue
271  *
272  * Description:
273  *     The block layer may perform asynchronous callback activity
274  *     on a queue, such as calling the unplug function after a timeout.
275  *     A block device may call blk_sync_queue to ensure that any
276  *     such activity is cancelled, thus allowing it to release resources
277  *     that the callbacks might use. The caller must already have made sure
278  *     that its ->make_request_fn will not re-add plugging prior to calling
279  *     this function.
280  *
281  *     This function does not cancel any asynchronous activity arising
282  *     out of elevator or throttling code. That would require elevaotor_exit()
283  *     and blk_throtl_exit() to be called with queue lock initialized.
284  *
285  */
blk_sync_queue(struct request_queue * q)286 void blk_sync_queue(struct request_queue *q)
287 {
288 	del_timer_sync(&q->timeout);
289 	cancel_delayed_work_sync(&q->delay_work);
290 }
291 EXPORT_SYMBOL(blk_sync_queue);
292 
293 /**
294  * __blk_run_queue - run a single device queue
295  * @q:	The queue to run
296  *
297  * Description:
298  *    See @blk_run_queue. This variant must be called with the queue lock
299  *    held and interrupts disabled.
300  */
__blk_run_queue(struct request_queue * q)301 void __blk_run_queue(struct request_queue *q)
302 {
303 	if (unlikely(blk_queue_stopped(q)))
304 		return;
305 
306 	q->request_fn(q);
307 }
308 EXPORT_SYMBOL(__blk_run_queue);
309 
310 /**
311  * blk_run_queue_async - run a single device queue in workqueue context
312  * @q:	The queue to run
313  *
314  * Description:
315  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316  *    of us.
317  */
blk_run_queue_async(struct request_queue * q)318 void blk_run_queue_async(struct request_queue *q)
319 {
320 	if (likely(!blk_queue_stopped(q))) {
321 		__cancel_delayed_work(&q->delay_work);
322 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
323 	}
324 }
325 EXPORT_SYMBOL(blk_run_queue_async);
326 
327 /**
328  * blk_run_queue - run a single device queue
329  * @q: The queue to run
330  *
331  * Description:
332  *    Invoke request handling on this queue, if it has pending work to do.
333  *    May be used to restart queueing when a request has completed.
334  */
blk_run_queue(struct request_queue * q)335 void blk_run_queue(struct request_queue *q)
336 {
337 	unsigned long flags;
338 
339 	spin_lock_irqsave(q->queue_lock, flags);
340 	__blk_run_queue(q);
341 	spin_unlock_irqrestore(q->queue_lock, flags);
342 }
343 EXPORT_SYMBOL(blk_run_queue);
344 
blk_put_queue(struct request_queue * q)345 void blk_put_queue(struct request_queue *q)
346 {
347 	kobject_put(&q->kobj);
348 }
349 EXPORT_SYMBOL(blk_put_queue);
350 
351 /**
352  * blk_drain_queue - drain requests from request_queue
353  * @q: queue to drain
354  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
355  *
356  * Drain requests from @q.  If @drain_all is set, all requests are drained.
357  * If not, only ELVPRIV requests are drained.  The caller is responsible
358  * for ensuring that no new requests which need to be drained are queued.
359  */
blk_drain_queue(struct request_queue * q,bool drain_all)360 void blk_drain_queue(struct request_queue *q, bool drain_all)
361 {
362 	while (true) {
363 		bool drain = false;
364 		int i;
365 
366 		spin_lock_irq(q->queue_lock);
367 
368 		elv_drain_elevator(q);
369 		if (drain_all)
370 			blk_throtl_drain(q);
371 
372 		/*
373 		 * This function might be called on a queue which failed
374 		 * driver init after queue creation.  Some drivers
375 		 * (e.g. fd) get unhappy in such cases.  Kick queue iff
376 		 * dispatch queue has something on it.
377 		 */
378 		if (!list_empty(&q->queue_head))
379 			__blk_run_queue(q);
380 
381 		drain |= q->rq.elvpriv;
382 
383 		/*
384 		 * Unfortunately, requests are queued at and tracked from
385 		 * multiple places and there's no single counter which can
386 		 * be drained.  Check all the queues and counters.
387 		 */
388 		if (drain_all) {
389 			drain |= !list_empty(&q->queue_head);
390 			for (i = 0; i < 2; i++) {
391 				drain |= q->rq.count[i];
392 				drain |= q->in_flight[i];
393 				drain |= !list_empty(&q->flush_queue[i]);
394 			}
395 		}
396 
397 		spin_unlock_irq(q->queue_lock);
398 
399 		if (!drain)
400 			break;
401 		msleep(10);
402 	}
403 }
404 
405 /**
406  * blk_cleanup_queue - shutdown a request queue
407  * @q: request queue to shutdown
408  *
409  * Mark @q DEAD, drain all pending requests, destroy and put it.  All
410  * future requests will be failed immediately with -ENODEV.
411  */
blk_cleanup_queue(struct request_queue * q)412 void blk_cleanup_queue(struct request_queue *q)
413 {
414 	spinlock_t *lock = q->queue_lock;
415 
416 	/* mark @q DEAD, no new request or merges will be allowed afterwards */
417 	mutex_lock(&q->sysfs_lock);
418 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
419 
420 	spin_lock_irq(lock);
421 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
422 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
423 	queue_flag_set(QUEUE_FLAG_DEAD, q);
424 
425 	if (q->queue_lock != &q->__queue_lock)
426 		q->queue_lock = &q->__queue_lock;
427 
428 	spin_unlock_irq(lock);
429 	mutex_unlock(&q->sysfs_lock);
430 
431 	/*
432 	 * Drain all requests queued before DEAD marking.  The caller might
433 	 * be trying to tear down @q before its elevator is initialized, in
434 	 * which case we don't want to call into draining.
435 	 */
436 	if (q->elevator)
437 		blk_drain_queue(q, true);
438 
439 	/* @q won't process any more request, flush async actions */
440 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
441 	blk_sync_queue(q);
442 
443 	/* @q is and will stay empty, shutdown and put */
444 	blk_put_queue(q);
445 }
446 EXPORT_SYMBOL(blk_cleanup_queue);
447 
blk_init_free_list(struct request_queue * q)448 static int blk_init_free_list(struct request_queue *q)
449 {
450 	struct request_list *rl = &q->rq;
451 
452 	if (unlikely(rl->rq_pool))
453 		return 0;
454 
455 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
456 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
457 	rl->elvpriv = 0;
458 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
459 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
460 
461 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
462 				mempool_free_slab, request_cachep, q->node);
463 
464 	if (!rl->rq_pool)
465 		return -ENOMEM;
466 
467 	return 0;
468 }
469 
blk_alloc_queue(gfp_t gfp_mask)470 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
471 {
472 	return blk_alloc_queue_node(gfp_mask, -1);
473 }
474 EXPORT_SYMBOL(blk_alloc_queue);
475 
blk_alloc_queue_node(gfp_t gfp_mask,int node_id)476 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
477 {
478 	struct request_queue *q;
479 	int err;
480 
481 	q = kmem_cache_alloc_node(blk_requestq_cachep,
482 				gfp_mask | __GFP_ZERO, node_id);
483 	if (!q)
484 		return NULL;
485 
486 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
487 	if (q->id < 0)
488 		goto fail_q;
489 
490 	q->backing_dev_info.ra_pages =
491 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
492 	q->backing_dev_info.state = 0;
493 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
494 	q->backing_dev_info.name = "block";
495 	q->node = node_id;
496 
497 	err = bdi_init(&q->backing_dev_info);
498 	if (err)
499 		goto fail_id;
500 
501 	if (blk_throtl_init(q))
502 		goto fail_bdi;
503 
504 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
505 		    laptop_mode_timer_fn, (unsigned long) q);
506 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
507 	INIT_LIST_HEAD(&q->timeout_list);
508 	INIT_LIST_HEAD(&q->icq_list);
509 	INIT_LIST_HEAD(&q->flush_queue[0]);
510 	INIT_LIST_HEAD(&q->flush_queue[1]);
511 	INIT_LIST_HEAD(&q->flush_data_in_flight);
512 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
513 
514 	kobject_init(&q->kobj, &blk_queue_ktype);
515 
516 	mutex_init(&q->sysfs_lock);
517 	spin_lock_init(&q->__queue_lock);
518 
519 	/*
520 	 * By default initialize queue_lock to internal lock and driver can
521 	 * override it later if need be.
522 	 */
523 	q->queue_lock = &q->__queue_lock;
524 
525 	return q;
526 
527 fail_bdi:
528 	bdi_destroy(&q->backing_dev_info);
529 fail_id:
530 	ida_simple_remove(&blk_queue_ida, q->id);
531 fail_q:
532 	kmem_cache_free(blk_requestq_cachep, q);
533 	return NULL;
534 }
535 EXPORT_SYMBOL(blk_alloc_queue_node);
536 
537 /**
538  * blk_init_queue  - prepare a request queue for use with a block device
539  * @rfn:  The function to be called to process requests that have been
540  *        placed on the queue.
541  * @lock: Request queue spin lock
542  *
543  * Description:
544  *    If a block device wishes to use the standard request handling procedures,
545  *    which sorts requests and coalesces adjacent requests, then it must
546  *    call blk_init_queue().  The function @rfn will be called when there
547  *    are requests on the queue that need to be processed.  If the device
548  *    supports plugging, then @rfn may not be called immediately when requests
549  *    are available on the queue, but may be called at some time later instead.
550  *    Plugged queues are generally unplugged when a buffer belonging to one
551  *    of the requests on the queue is needed, or due to memory pressure.
552  *
553  *    @rfn is not required, or even expected, to remove all requests off the
554  *    queue, but only as many as it can handle at a time.  If it does leave
555  *    requests on the queue, it is responsible for arranging that the requests
556  *    get dealt with eventually.
557  *
558  *    The queue spin lock must be held while manipulating the requests on the
559  *    request queue; this lock will be taken also from interrupt context, so irq
560  *    disabling is needed for it.
561  *
562  *    Function returns a pointer to the initialized request queue, or %NULL if
563  *    it didn't succeed.
564  *
565  * Note:
566  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
567  *    when the block device is deactivated (such as at module unload).
568  **/
569 
blk_init_queue(request_fn_proc * rfn,spinlock_t * lock)570 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
571 {
572 	return blk_init_queue_node(rfn, lock, -1);
573 }
574 EXPORT_SYMBOL(blk_init_queue);
575 
576 struct request_queue *
blk_init_queue_node(request_fn_proc * rfn,spinlock_t * lock,int node_id)577 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
578 {
579 	struct request_queue *uninit_q, *q;
580 
581 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
582 	if (!uninit_q)
583 		return NULL;
584 
585 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
586 	if (!q)
587 		blk_cleanup_queue(uninit_q);
588 
589 	return q;
590 }
591 EXPORT_SYMBOL(blk_init_queue_node);
592 
593 struct request_queue *
blk_init_allocated_queue(struct request_queue * q,request_fn_proc * rfn,spinlock_t * lock)594 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
595 			 spinlock_t *lock)
596 {
597 	if (!q)
598 		return NULL;
599 
600 	if (blk_init_free_list(q))
601 		return NULL;
602 
603 	q->request_fn		= rfn;
604 	q->prep_rq_fn		= NULL;
605 	q->unprep_rq_fn		= NULL;
606 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
607 
608 	/* Override internal queue lock with supplied lock pointer */
609 	if (lock)
610 		q->queue_lock		= lock;
611 
612 	/*
613 	 * This also sets hw/phys segments, boundary and size
614 	 */
615 	blk_queue_make_request(q, blk_queue_bio);
616 
617 	q->sg_reserved_size = INT_MAX;
618 
619 	/*
620 	 * all done
621 	 */
622 	if (!elevator_init(q, NULL)) {
623 		blk_queue_congestion_threshold(q);
624 		return q;
625 	}
626 
627 	return NULL;
628 }
629 EXPORT_SYMBOL(blk_init_allocated_queue);
630 
blk_get_queue(struct request_queue * q)631 bool blk_get_queue(struct request_queue *q)
632 {
633 	if (likely(!blk_queue_dead(q))) {
634 		__blk_get_queue(q);
635 		return true;
636 	}
637 
638 	return false;
639 }
640 EXPORT_SYMBOL(blk_get_queue);
641 
blk_free_request(struct request_queue * q,struct request * rq)642 static inline void blk_free_request(struct request_queue *q, struct request *rq)
643 {
644 	if (rq->cmd_flags & REQ_ELVPRIV) {
645 		elv_put_request(q, rq);
646 		if (rq->elv.icq)
647 			put_io_context(rq->elv.icq->ioc);
648 	}
649 
650 	mempool_free(rq, q->rq.rq_pool);
651 }
652 
653 static struct request *
blk_alloc_request(struct request_queue * q,struct io_cq * icq,unsigned int flags,gfp_t gfp_mask)654 blk_alloc_request(struct request_queue *q, struct io_cq *icq,
655 		  unsigned int flags, gfp_t gfp_mask)
656 {
657 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
658 
659 	if (!rq)
660 		return NULL;
661 
662 	blk_rq_init(q, rq);
663 
664 	rq->cmd_flags = flags | REQ_ALLOCED;
665 
666 	if (flags & REQ_ELVPRIV) {
667 		rq->elv.icq = icq;
668 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
669 			mempool_free(rq, q->rq.rq_pool);
670 			return NULL;
671 		}
672 		/* @rq->elv.icq holds on to io_context until @rq is freed */
673 		if (icq)
674 			get_io_context(icq->ioc);
675 	}
676 
677 	return rq;
678 }
679 
680 /*
681  * ioc_batching returns true if the ioc is a valid batching request and
682  * should be given priority access to a request.
683  */
ioc_batching(struct request_queue * q,struct io_context * ioc)684 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
685 {
686 	if (!ioc)
687 		return 0;
688 
689 	/*
690 	 * Make sure the process is able to allocate at least 1 request
691 	 * even if the batch times out, otherwise we could theoretically
692 	 * lose wakeups.
693 	 */
694 	return ioc->nr_batch_requests == q->nr_batching ||
695 		(ioc->nr_batch_requests > 0
696 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
697 }
698 
699 /*
700  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
701  * will cause the process to be a "batcher" on all queues in the system. This
702  * is the behaviour we want though - once it gets a wakeup it should be given
703  * a nice run.
704  */
ioc_set_batching(struct request_queue * q,struct io_context * ioc)705 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
706 {
707 	if (!ioc || ioc_batching(q, ioc))
708 		return;
709 
710 	ioc->nr_batch_requests = q->nr_batching;
711 	ioc->last_waited = jiffies;
712 }
713 
__freed_request(struct request_queue * q,int sync)714 static void __freed_request(struct request_queue *q, int sync)
715 {
716 	struct request_list *rl = &q->rq;
717 
718 	if (rl->count[sync] < queue_congestion_off_threshold(q))
719 		blk_clear_queue_congested(q, sync);
720 
721 	if (rl->count[sync] + 1 <= q->nr_requests) {
722 		if (waitqueue_active(&rl->wait[sync]))
723 			wake_up(&rl->wait[sync]);
724 
725 		blk_clear_queue_full(q, sync);
726 	}
727 }
728 
729 /*
730  * A request has just been released.  Account for it, update the full and
731  * congestion status, wake up any waiters.   Called under q->queue_lock.
732  */
freed_request(struct request_queue * q,unsigned int flags)733 static void freed_request(struct request_queue *q, unsigned int flags)
734 {
735 	struct request_list *rl = &q->rq;
736 	int sync = rw_is_sync(flags);
737 
738 	rl->count[sync]--;
739 	if (flags & REQ_ELVPRIV)
740 		rl->elvpriv--;
741 
742 	__freed_request(q, sync);
743 
744 	if (unlikely(rl->starved[sync ^ 1]))
745 		__freed_request(q, sync ^ 1);
746 }
747 
748 /*
749  * Determine if elevator data should be initialized when allocating the
750  * request associated with @bio.
751  */
blk_rq_should_init_elevator(struct bio * bio)752 static bool blk_rq_should_init_elevator(struct bio *bio)
753 {
754 	if (!bio)
755 		return true;
756 
757 	/*
758 	 * Flush requests do not use the elevator so skip initialization.
759 	 * This allows a request to share the flush and elevator data.
760 	 */
761 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
762 		return false;
763 
764 	return true;
765 }
766 
767 /**
768  * get_request - get a free request
769  * @q: request_queue to allocate request from
770  * @rw_flags: RW and SYNC flags
771  * @bio: bio to allocate request for (can be %NULL)
772  * @gfp_mask: allocation mask
773  *
774  * Get a free request from @q.  This function may fail under memory
775  * pressure or if @q is dead.
776  *
777  * Must be callled with @q->queue_lock held and,
778  * Returns %NULL on failure, with @q->queue_lock held.
779  * Returns !%NULL on success, with @q->queue_lock *not held*.
780  */
get_request(struct request_queue * q,int rw_flags,struct bio * bio,gfp_t gfp_mask)781 static struct request *get_request(struct request_queue *q, int rw_flags,
782 				   struct bio *bio, gfp_t gfp_mask)
783 {
784 	struct request *rq = NULL;
785 	struct request_list *rl = &q->rq;
786 	struct elevator_type *et;
787 	struct io_context *ioc;
788 	struct io_cq *icq = NULL;
789 	const bool is_sync = rw_is_sync(rw_flags) != 0;
790 	bool retried = false;
791 	int may_queue;
792 retry:
793 	et = q->elevator->type;
794 	ioc = current->io_context;
795 
796 	if (unlikely(blk_queue_dead(q)))
797 		return NULL;
798 
799 	may_queue = elv_may_queue(q, rw_flags);
800 	if (may_queue == ELV_MQUEUE_NO)
801 		goto rq_starved;
802 
803 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
804 		if (rl->count[is_sync]+1 >= q->nr_requests) {
805 			/*
806 			 * We want ioc to record batching state.  If it's
807 			 * not already there, creating a new one requires
808 			 * dropping queue_lock, which in turn requires
809 			 * retesting conditions to avoid queue hang.
810 			 */
811 			if (!ioc && !retried) {
812 				spin_unlock_irq(q->queue_lock);
813 				create_io_context(current, gfp_mask, q->node);
814 				spin_lock_irq(q->queue_lock);
815 				retried = true;
816 				goto retry;
817 			}
818 
819 			/*
820 			 * The queue will fill after this allocation, so set
821 			 * it as full, and mark this process as "batching".
822 			 * This process will be allowed to complete a batch of
823 			 * requests, others will be blocked.
824 			 */
825 			if (!blk_queue_full(q, is_sync)) {
826 				ioc_set_batching(q, ioc);
827 				blk_set_queue_full(q, is_sync);
828 			} else {
829 				if (may_queue != ELV_MQUEUE_MUST
830 						&& !ioc_batching(q, ioc)) {
831 					/*
832 					 * The queue is full and the allocating
833 					 * process is not a "batcher", and not
834 					 * exempted by the IO scheduler
835 					 */
836 					goto out;
837 				}
838 			}
839 		}
840 		blk_set_queue_congested(q, is_sync);
841 	}
842 
843 	/*
844 	 * Only allow batching queuers to allocate up to 50% over the defined
845 	 * limit of requests, otherwise we could have thousands of requests
846 	 * allocated with any setting of ->nr_requests
847 	 */
848 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
849 		goto out;
850 
851 	rl->count[is_sync]++;
852 	rl->starved[is_sync] = 0;
853 
854 	/*
855 	 * Decide whether the new request will be managed by elevator.  If
856 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
857 	 * prevent the current elevator from being destroyed until the new
858 	 * request is freed.  This guarantees icq's won't be destroyed and
859 	 * makes creating new ones safe.
860 	 *
861 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
862 	 * it will be created after releasing queue_lock.
863 	 */
864 	if (blk_rq_should_init_elevator(bio) &&
865 	    !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
866 		rw_flags |= REQ_ELVPRIV;
867 		rl->elvpriv++;
868 		if (et->icq_cache && ioc)
869 			icq = ioc_lookup_icq(ioc, q);
870 	}
871 
872 	if (blk_queue_io_stat(q))
873 		rw_flags |= REQ_IO_STAT;
874 	spin_unlock_irq(q->queue_lock);
875 
876 	/* create icq if missing */
877 	if ((rw_flags & REQ_ELVPRIV) && unlikely(et->icq_cache && !icq)) {
878 		icq = ioc_create_icq(q, gfp_mask);
879 		if (!icq)
880 			goto fail_icq;
881 	}
882 
883 	rq = blk_alloc_request(q, icq, rw_flags, gfp_mask);
884 
885 fail_icq:
886 	if (unlikely(!rq)) {
887 		/*
888 		 * Allocation failed presumably due to memory. Undo anything
889 		 * we might have messed up.
890 		 *
891 		 * Allocating task should really be put onto the front of the
892 		 * wait queue, but this is pretty rare.
893 		 */
894 		spin_lock_irq(q->queue_lock);
895 		freed_request(q, rw_flags);
896 
897 		/*
898 		 * in the very unlikely event that allocation failed and no
899 		 * requests for this direction was pending, mark us starved
900 		 * so that freeing of a request in the other direction will
901 		 * notice us. another possible fix would be to split the
902 		 * rq mempool into READ and WRITE
903 		 */
904 rq_starved:
905 		if (unlikely(rl->count[is_sync] == 0))
906 			rl->starved[is_sync] = 1;
907 
908 		goto out;
909 	}
910 
911 	/*
912 	 * ioc may be NULL here, and ioc_batching will be false. That's
913 	 * OK, if the queue is under the request limit then requests need
914 	 * not count toward the nr_batch_requests limit. There will always
915 	 * be some limit enforced by BLK_BATCH_TIME.
916 	 */
917 	if (ioc_batching(q, ioc))
918 		ioc->nr_batch_requests--;
919 
920 	trace_block_getrq(q, bio, rw_flags & 1);
921 out:
922 	return rq;
923 }
924 
925 /**
926  * get_request_wait - get a free request with retry
927  * @q: request_queue to allocate request from
928  * @rw_flags: RW and SYNC flags
929  * @bio: bio to allocate request for (can be %NULL)
930  *
931  * Get a free request from @q.  This function keeps retrying under memory
932  * pressure and fails iff @q is dead.
933  *
934  * Must be callled with @q->queue_lock held and,
935  * Returns %NULL on failure, with @q->queue_lock held.
936  * Returns !%NULL on success, with @q->queue_lock *not held*.
937  */
get_request_wait(struct request_queue * q,int rw_flags,struct bio * bio)938 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
939 					struct bio *bio)
940 {
941 	const bool is_sync = rw_is_sync(rw_flags) != 0;
942 	struct request *rq;
943 
944 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
945 	while (!rq) {
946 		DEFINE_WAIT(wait);
947 		struct request_list *rl = &q->rq;
948 
949 		if (unlikely(blk_queue_dead(q)))
950 			return NULL;
951 
952 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
953 				TASK_UNINTERRUPTIBLE);
954 
955 		trace_block_sleeprq(q, bio, rw_flags & 1);
956 
957 		spin_unlock_irq(q->queue_lock);
958 		io_schedule();
959 
960 		/*
961 		 * After sleeping, we become a "batching" process and
962 		 * will be able to allocate at least one request, and
963 		 * up to a big batch of them for a small period time.
964 		 * See ioc_batching, ioc_set_batching
965 		 */
966 		create_io_context(current, GFP_NOIO, q->node);
967 		ioc_set_batching(q, current->io_context);
968 
969 		spin_lock_irq(q->queue_lock);
970 		finish_wait(&rl->wait[is_sync], &wait);
971 
972 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
973 	};
974 
975 	return rq;
976 }
977 
blk_get_request(struct request_queue * q,int rw,gfp_t gfp_mask)978 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
979 {
980 	struct request *rq;
981 
982 	BUG_ON(rw != READ && rw != WRITE);
983 
984 	spin_lock_irq(q->queue_lock);
985 	if (gfp_mask & __GFP_WAIT)
986 		rq = get_request_wait(q, rw, NULL);
987 	else
988 		rq = get_request(q, rw, NULL, gfp_mask);
989 	if (!rq)
990 		spin_unlock_irq(q->queue_lock);
991 	/* q->queue_lock is unlocked at this point */
992 
993 	return rq;
994 }
995 EXPORT_SYMBOL(blk_get_request);
996 
997 /**
998  * blk_make_request - given a bio, allocate a corresponding struct request.
999  * @q: target request queue
1000  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1001  *        It may be a chained-bio properly constructed by block/bio layer.
1002  * @gfp_mask: gfp flags to be used for memory allocation
1003  *
1004  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1005  * type commands. Where the struct request needs to be farther initialized by
1006  * the caller. It is passed a &struct bio, which describes the memory info of
1007  * the I/O transfer.
1008  *
1009  * The caller of blk_make_request must make sure that bi_io_vec
1010  * are set to describe the memory buffers. That bio_data_dir() will return
1011  * the needed direction of the request. (And all bio's in the passed bio-chain
1012  * are properly set accordingly)
1013  *
1014  * If called under none-sleepable conditions, mapped bio buffers must not
1015  * need bouncing, by calling the appropriate masked or flagged allocator,
1016  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1017  * BUG.
1018  *
1019  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1020  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1021  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1022  * completion of a bio that hasn't been submitted yet, thus resulting in a
1023  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1024  * of bio_alloc(), as that avoids the mempool deadlock.
1025  * If possible a big IO should be split into smaller parts when allocation
1026  * fails. Partial allocation should not be an error, or you risk a live-lock.
1027  */
blk_make_request(struct request_queue * q,struct bio * bio,gfp_t gfp_mask)1028 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1029 				 gfp_t gfp_mask)
1030 {
1031 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1032 
1033 	if (unlikely(!rq))
1034 		return ERR_PTR(-ENOMEM);
1035 
1036 	for_each_bio(bio) {
1037 		struct bio *bounce_bio = bio;
1038 		int ret;
1039 
1040 		blk_queue_bounce(q, &bounce_bio);
1041 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1042 		if (unlikely(ret)) {
1043 			blk_put_request(rq);
1044 			return ERR_PTR(ret);
1045 		}
1046 	}
1047 
1048 	return rq;
1049 }
1050 EXPORT_SYMBOL(blk_make_request);
1051 
1052 /**
1053  * blk_requeue_request - put a request back on queue
1054  * @q:		request queue where request should be inserted
1055  * @rq:		request to be inserted
1056  *
1057  * Description:
1058  *    Drivers often keep queueing requests until the hardware cannot accept
1059  *    more, when that condition happens we need to put the request back
1060  *    on the queue. Must be called with queue lock held.
1061  */
blk_requeue_request(struct request_queue * q,struct request * rq)1062 void blk_requeue_request(struct request_queue *q, struct request *rq)
1063 {
1064 	blk_delete_timer(rq);
1065 	blk_clear_rq_complete(rq);
1066 	trace_block_rq_requeue(q, rq);
1067 
1068 	if (blk_rq_tagged(rq))
1069 		blk_queue_end_tag(q, rq);
1070 
1071 	BUG_ON(blk_queued_rq(rq));
1072 
1073 	elv_requeue_request(q, rq);
1074 }
1075 EXPORT_SYMBOL(blk_requeue_request);
1076 
add_acct_request(struct request_queue * q,struct request * rq,int where)1077 static void add_acct_request(struct request_queue *q, struct request *rq,
1078 			     int where)
1079 {
1080 	drive_stat_acct(rq, 1);
1081 	__elv_add_request(q, rq, where);
1082 }
1083 
part_round_stats_single(int cpu,struct hd_struct * part,unsigned long now)1084 static void part_round_stats_single(int cpu, struct hd_struct *part,
1085 				    unsigned long now)
1086 {
1087 	if (now == part->stamp)
1088 		return;
1089 
1090 	if (part_in_flight(part)) {
1091 		__part_stat_add(cpu, part, time_in_queue,
1092 				part_in_flight(part) * (now - part->stamp));
1093 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1094 	}
1095 	part->stamp = now;
1096 }
1097 
1098 /**
1099  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1100  * @cpu: cpu number for stats access
1101  * @part: target partition
1102  *
1103  * The average IO queue length and utilisation statistics are maintained
1104  * by observing the current state of the queue length and the amount of
1105  * time it has been in this state for.
1106  *
1107  * Normally, that accounting is done on IO completion, but that can result
1108  * in more than a second's worth of IO being accounted for within any one
1109  * second, leading to >100% utilisation.  To deal with that, we call this
1110  * function to do a round-off before returning the results when reading
1111  * /proc/diskstats.  This accounts immediately for all queue usage up to
1112  * the current jiffies and restarts the counters again.
1113  */
part_round_stats(int cpu,struct hd_struct * part)1114 void part_round_stats(int cpu, struct hd_struct *part)
1115 {
1116 	unsigned long now = jiffies;
1117 
1118 	if (part->partno)
1119 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1120 	part_round_stats_single(cpu, part, now);
1121 }
1122 EXPORT_SYMBOL_GPL(part_round_stats);
1123 
1124 /*
1125  * queue lock must be held
1126  */
__blk_put_request(struct request_queue * q,struct request * req)1127 void __blk_put_request(struct request_queue *q, struct request *req)
1128 {
1129 	if (unlikely(!q))
1130 		return;
1131 	if (unlikely(--req->ref_count))
1132 		return;
1133 
1134 	elv_completed_request(q, req);
1135 
1136 	/* this is a bio leak */
1137 	WARN_ON(req->bio != NULL);
1138 
1139 	/*
1140 	 * Request may not have originated from ll_rw_blk. if not,
1141 	 * it didn't come out of our reserved rq pools
1142 	 */
1143 	if (req->cmd_flags & REQ_ALLOCED) {
1144 		unsigned int flags = req->cmd_flags;
1145 
1146 		BUG_ON(!list_empty(&req->queuelist));
1147 		BUG_ON(!hlist_unhashed(&req->hash));
1148 
1149 		blk_free_request(q, req);
1150 		freed_request(q, flags);
1151 	}
1152 }
1153 EXPORT_SYMBOL_GPL(__blk_put_request);
1154 
blk_put_request(struct request * req)1155 void blk_put_request(struct request *req)
1156 {
1157 	unsigned long flags;
1158 	struct request_queue *q = req->q;
1159 
1160 	spin_lock_irqsave(q->queue_lock, flags);
1161 	__blk_put_request(q, req);
1162 	spin_unlock_irqrestore(q->queue_lock, flags);
1163 }
1164 EXPORT_SYMBOL(blk_put_request);
1165 
1166 /**
1167  * blk_add_request_payload - add a payload to a request
1168  * @rq: request to update
1169  * @page: page backing the payload
1170  * @len: length of the payload.
1171  *
1172  * This allows to later add a payload to an already submitted request by
1173  * a block driver.  The driver needs to take care of freeing the payload
1174  * itself.
1175  *
1176  * Note that this is a quite horrible hack and nothing but handling of
1177  * discard requests should ever use it.
1178  */
blk_add_request_payload(struct request * rq,struct page * page,unsigned int len)1179 void blk_add_request_payload(struct request *rq, struct page *page,
1180 		unsigned int len)
1181 {
1182 	struct bio *bio = rq->bio;
1183 
1184 	bio->bi_io_vec->bv_page = page;
1185 	bio->bi_io_vec->bv_offset = 0;
1186 	bio->bi_io_vec->bv_len = len;
1187 
1188 	bio->bi_size = len;
1189 	bio->bi_vcnt = 1;
1190 	bio->bi_phys_segments = 1;
1191 
1192 	rq->__data_len = rq->resid_len = len;
1193 	rq->nr_phys_segments = 1;
1194 	rq->buffer = bio_data(bio);
1195 }
1196 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1197 
bio_attempt_back_merge(struct request_queue * q,struct request * req,struct bio * bio)1198 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1199 				   struct bio *bio)
1200 {
1201 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1202 
1203 	if (!ll_back_merge_fn(q, req, bio))
1204 		return false;
1205 
1206 	trace_block_bio_backmerge(q, bio);
1207 
1208 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1209 		blk_rq_set_mixed_merge(req);
1210 
1211 	req->biotail->bi_next = bio;
1212 	req->biotail = bio;
1213 	req->__data_len += bio->bi_size;
1214 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1215 
1216 	drive_stat_acct(req, 0);
1217 	return true;
1218 }
1219 
bio_attempt_front_merge(struct request_queue * q,struct request * req,struct bio * bio)1220 static bool bio_attempt_front_merge(struct request_queue *q,
1221 				    struct request *req, struct bio *bio)
1222 {
1223 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1224 
1225 	if (!ll_front_merge_fn(q, req, bio))
1226 		return false;
1227 
1228 	trace_block_bio_frontmerge(q, bio);
1229 
1230 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1231 		blk_rq_set_mixed_merge(req);
1232 
1233 	bio->bi_next = req->bio;
1234 	req->bio = bio;
1235 
1236 	/*
1237 	 * may not be valid. if the low level driver said
1238 	 * it didn't need a bounce buffer then it better
1239 	 * not touch req->buffer either...
1240 	 */
1241 	req->buffer = bio_data(bio);
1242 	req->__sector = bio->bi_sector;
1243 	req->__data_len += bio->bi_size;
1244 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1245 
1246 	drive_stat_acct(req, 0);
1247 	return true;
1248 }
1249 
1250 /**
1251  * attempt_plug_merge - try to merge with %current's plugged list
1252  * @q: request_queue new bio is being queued at
1253  * @bio: new bio being queued
1254  * @request_count: out parameter for number of traversed plugged requests
1255  *
1256  * Determine whether @bio being queued on @q can be merged with a request
1257  * on %current's plugged list.  Returns %true if merge was successful,
1258  * otherwise %false.
1259  *
1260  * Plugging coalesces IOs from the same issuer for the same purpose without
1261  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1262  * than scheduling, and the request, while may have elvpriv data, is not
1263  * added on the elevator at this point.  In addition, we don't have
1264  * reliable access to the elevator outside queue lock.  Only check basic
1265  * merging parameters without querying the elevator.
1266  */
attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int * request_count)1267 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1268 			       unsigned int *request_count)
1269 {
1270 	struct blk_plug *plug;
1271 	struct request *rq;
1272 	bool ret = false;
1273 
1274 	plug = current->plug;
1275 	if (!plug)
1276 		goto out;
1277 	*request_count = 0;
1278 
1279 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1280 		int el_ret;
1281 
1282 		if (rq->q == q)
1283 			(*request_count)++;
1284 
1285 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1286 			continue;
1287 
1288 		el_ret = blk_try_merge(rq, bio);
1289 		if (el_ret == ELEVATOR_BACK_MERGE) {
1290 			ret = bio_attempt_back_merge(q, rq, bio);
1291 			if (ret)
1292 				break;
1293 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1294 			ret = bio_attempt_front_merge(q, rq, bio);
1295 			if (ret)
1296 				break;
1297 		}
1298 	}
1299 out:
1300 	return ret;
1301 }
1302 
init_request_from_bio(struct request * req,struct bio * bio)1303 void init_request_from_bio(struct request *req, struct bio *bio)
1304 {
1305 	req->cmd_type = REQ_TYPE_FS;
1306 
1307 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1308 	if (bio->bi_rw & REQ_RAHEAD)
1309 		req->cmd_flags |= REQ_FAILFAST_MASK;
1310 
1311 	req->errors = 0;
1312 	req->__sector = bio->bi_sector;
1313 	req->ioprio = bio_prio(bio);
1314 	blk_rq_bio_prep(req->q, req, bio);
1315 }
1316 
blk_queue_bio(struct request_queue * q,struct bio * bio)1317 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1318 {
1319 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1320 	struct blk_plug *plug;
1321 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1322 	struct request *req;
1323 	unsigned int request_count = 0;
1324 
1325 	/*
1326 	 * low level driver can indicate that it wants pages above a
1327 	 * certain limit bounced to low memory (ie for highmem, or even
1328 	 * ISA dma in theory)
1329 	 */
1330 	blk_queue_bounce(q, &bio);
1331 
1332 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1333 		spin_lock_irq(q->queue_lock);
1334 		where = ELEVATOR_INSERT_FLUSH;
1335 		goto get_rq;
1336 	}
1337 
1338 	/*
1339 	 * Check if we can merge with the plugged list before grabbing
1340 	 * any locks.
1341 	 */
1342 	if (attempt_plug_merge(q, bio, &request_count))
1343 		return;
1344 
1345 	spin_lock_irq(q->queue_lock);
1346 
1347 	el_ret = elv_merge(q, &req, bio);
1348 	if (el_ret == ELEVATOR_BACK_MERGE) {
1349 		if (bio_attempt_back_merge(q, req, bio)) {
1350 			elv_bio_merged(q, req, bio);
1351 			if (!attempt_back_merge(q, req))
1352 				elv_merged_request(q, req, el_ret);
1353 			goto out_unlock;
1354 		}
1355 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1356 		if (bio_attempt_front_merge(q, req, bio)) {
1357 			elv_bio_merged(q, req, bio);
1358 			if (!attempt_front_merge(q, req))
1359 				elv_merged_request(q, req, el_ret);
1360 			goto out_unlock;
1361 		}
1362 	}
1363 
1364 get_rq:
1365 	/*
1366 	 * This sync check and mask will be re-done in init_request_from_bio(),
1367 	 * but we need to set it earlier to expose the sync flag to the
1368 	 * rq allocator and io schedulers.
1369 	 */
1370 	rw_flags = bio_data_dir(bio);
1371 	if (sync)
1372 		rw_flags |= REQ_SYNC;
1373 
1374 	/*
1375 	 * Grab a free request. This is might sleep but can not fail.
1376 	 * Returns with the queue unlocked.
1377 	 */
1378 	req = get_request_wait(q, rw_flags, bio);
1379 	if (unlikely(!req)) {
1380 		bio_endio(bio, -ENODEV);	/* @q is dead */
1381 		goto out_unlock;
1382 	}
1383 
1384 	/*
1385 	 * After dropping the lock and possibly sleeping here, our request
1386 	 * may now be mergeable after it had proven unmergeable (above).
1387 	 * We don't worry about that case for efficiency. It won't happen
1388 	 * often, and the elevators are able to handle it.
1389 	 */
1390 	init_request_from_bio(req, bio);
1391 
1392 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1393 		req->cpu = raw_smp_processor_id();
1394 
1395 	plug = current->plug;
1396 	if (plug) {
1397 		/*
1398 		 * If this is the first request added after a plug, fire
1399 		 * of a plug trace. If others have been added before, check
1400 		 * if we have multiple devices in this plug. If so, make a
1401 		 * note to sort the list before dispatch.
1402 		 */
1403 		if (list_empty(&plug->list))
1404 			trace_block_plug(q);
1405 		else {
1406 			if (!plug->should_sort) {
1407 				struct request *__rq;
1408 
1409 				__rq = list_entry_rq(plug->list.prev);
1410 				if (__rq->q != q)
1411 					plug->should_sort = 1;
1412 			}
1413 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1414 				blk_flush_plug_list(plug, false);
1415 				trace_block_plug(q);
1416 			}
1417 		}
1418 		list_add_tail(&req->queuelist, &plug->list);
1419 		drive_stat_acct(req, 1);
1420 	} else {
1421 		spin_lock_irq(q->queue_lock);
1422 		add_acct_request(q, req, where);
1423 		__blk_run_queue(q);
1424 out_unlock:
1425 		spin_unlock_irq(q->queue_lock);
1426 	}
1427 }
1428 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1429 
1430 /*
1431  * If bio->bi_dev is a partition, remap the location
1432  */
blk_partition_remap(struct bio * bio)1433 static inline void blk_partition_remap(struct bio *bio)
1434 {
1435 	struct block_device *bdev = bio->bi_bdev;
1436 
1437 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1438 		struct hd_struct *p = bdev->bd_part;
1439 
1440 		bio->bi_sector += p->start_sect;
1441 		bio->bi_bdev = bdev->bd_contains;
1442 
1443 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1444 				      bdev->bd_dev,
1445 				      bio->bi_sector - p->start_sect);
1446 	}
1447 }
1448 
handle_bad_sector(struct bio * bio)1449 static void handle_bad_sector(struct bio *bio)
1450 {
1451 	char b[BDEVNAME_SIZE];
1452 
1453 	printk(KERN_INFO "attempt to access beyond end of device\n");
1454 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1455 			bdevname(bio->bi_bdev, b),
1456 			bio->bi_rw,
1457 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1458 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1459 
1460 	set_bit(BIO_EOF, &bio->bi_flags);
1461 }
1462 
1463 #ifdef CONFIG_FAIL_MAKE_REQUEST
1464 
1465 static DECLARE_FAULT_ATTR(fail_make_request);
1466 
setup_fail_make_request(char * str)1467 static int __init setup_fail_make_request(char *str)
1468 {
1469 	return setup_fault_attr(&fail_make_request, str);
1470 }
1471 __setup("fail_make_request=", setup_fail_make_request);
1472 
should_fail_request(struct hd_struct * part,unsigned int bytes)1473 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1474 {
1475 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1476 }
1477 
fail_make_request_debugfs(void)1478 static int __init fail_make_request_debugfs(void)
1479 {
1480 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1481 						NULL, &fail_make_request);
1482 
1483 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1484 }
1485 
1486 late_initcall(fail_make_request_debugfs);
1487 
1488 #else /* CONFIG_FAIL_MAKE_REQUEST */
1489 
should_fail_request(struct hd_struct * part,unsigned int bytes)1490 static inline bool should_fail_request(struct hd_struct *part,
1491 					unsigned int bytes)
1492 {
1493 	return false;
1494 }
1495 
1496 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1497 
1498 /*
1499  * Check whether this bio extends beyond the end of the device.
1500  */
bio_check_eod(struct bio * bio,unsigned int nr_sectors)1501 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1502 {
1503 	sector_t maxsector;
1504 
1505 	if (!nr_sectors)
1506 		return 0;
1507 
1508 	/* Test device or partition size, when known. */
1509 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1510 	if (maxsector) {
1511 		sector_t sector = bio->bi_sector;
1512 
1513 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1514 			/*
1515 			 * This may well happen - the kernel calls bread()
1516 			 * without checking the size of the device, e.g., when
1517 			 * mounting a device.
1518 			 */
1519 			handle_bad_sector(bio);
1520 			return 1;
1521 		}
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 static noinline_for_stack bool
generic_make_request_checks(struct bio * bio)1528 generic_make_request_checks(struct bio *bio)
1529 {
1530 	struct request_queue *q;
1531 	int nr_sectors = bio_sectors(bio);
1532 	int err = -EIO;
1533 	char b[BDEVNAME_SIZE];
1534 	struct hd_struct *part;
1535 
1536 	might_sleep();
1537 
1538 	if (bio_check_eod(bio, nr_sectors))
1539 		goto end_io;
1540 
1541 	q = bdev_get_queue(bio->bi_bdev);
1542 	if (unlikely(!q)) {
1543 		printk(KERN_ERR
1544 		       "generic_make_request: Trying to access "
1545 			"nonexistent block-device %s (%Lu)\n",
1546 			bdevname(bio->bi_bdev, b),
1547 			(long long) bio->bi_sector);
1548 		goto end_io;
1549 	}
1550 
1551 	if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1552 		     nr_sectors > queue_max_hw_sectors(q))) {
1553 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1554 		       bdevname(bio->bi_bdev, b),
1555 		       bio_sectors(bio),
1556 		       queue_max_hw_sectors(q));
1557 		goto end_io;
1558 	}
1559 
1560 	part = bio->bi_bdev->bd_part;
1561 	if (should_fail_request(part, bio->bi_size) ||
1562 	    should_fail_request(&part_to_disk(part)->part0,
1563 				bio->bi_size))
1564 		goto end_io;
1565 
1566 	/*
1567 	 * If this device has partitions, remap block n
1568 	 * of partition p to block n+start(p) of the disk.
1569 	 */
1570 	blk_partition_remap(bio);
1571 
1572 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1573 		goto end_io;
1574 
1575 	if (bio_check_eod(bio, nr_sectors))
1576 		goto end_io;
1577 
1578 	/*
1579 	 * Filter flush bio's early so that make_request based
1580 	 * drivers without flush support don't have to worry
1581 	 * about them.
1582 	 */
1583 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1584 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1585 		if (!nr_sectors) {
1586 			err = 0;
1587 			goto end_io;
1588 		}
1589 	}
1590 
1591 	if ((bio->bi_rw & REQ_DISCARD) &&
1592 	    (!blk_queue_discard(q) ||
1593 	     ((bio->bi_rw & REQ_SECURE) &&
1594 	      !blk_queue_secdiscard(q)))) {
1595 		err = -EOPNOTSUPP;
1596 		goto end_io;
1597 	}
1598 
1599 	if (blk_throtl_bio(q, bio))
1600 		return false;	/* throttled, will be resubmitted later */
1601 
1602 	trace_block_bio_queue(q, bio);
1603 	return true;
1604 
1605 end_io:
1606 	bio_endio(bio, err);
1607 	return false;
1608 }
1609 
1610 /**
1611  * generic_make_request - hand a buffer to its device driver for I/O
1612  * @bio:  The bio describing the location in memory and on the device.
1613  *
1614  * generic_make_request() is used to make I/O requests of block
1615  * devices. It is passed a &struct bio, which describes the I/O that needs
1616  * to be done.
1617  *
1618  * generic_make_request() does not return any status.  The
1619  * success/failure status of the request, along with notification of
1620  * completion, is delivered asynchronously through the bio->bi_end_io
1621  * function described (one day) else where.
1622  *
1623  * The caller of generic_make_request must make sure that bi_io_vec
1624  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1625  * set to describe the device address, and the
1626  * bi_end_io and optionally bi_private are set to describe how
1627  * completion notification should be signaled.
1628  *
1629  * generic_make_request and the drivers it calls may use bi_next if this
1630  * bio happens to be merged with someone else, and may resubmit the bio to
1631  * a lower device by calling into generic_make_request recursively, which
1632  * means the bio should NOT be touched after the call to ->make_request_fn.
1633  */
generic_make_request(struct bio * bio)1634 void generic_make_request(struct bio *bio)
1635 {
1636 	struct bio_list bio_list_on_stack;
1637 
1638 	if (!generic_make_request_checks(bio))
1639 		return;
1640 
1641 	/*
1642 	 * We only want one ->make_request_fn to be active at a time, else
1643 	 * stack usage with stacked devices could be a problem.  So use
1644 	 * current->bio_list to keep a list of requests submited by a
1645 	 * make_request_fn function.  current->bio_list is also used as a
1646 	 * flag to say if generic_make_request is currently active in this
1647 	 * task or not.  If it is NULL, then no make_request is active.  If
1648 	 * it is non-NULL, then a make_request is active, and new requests
1649 	 * should be added at the tail
1650 	 */
1651 	if (current->bio_list) {
1652 		bio_list_add(current->bio_list, bio);
1653 		return;
1654 	}
1655 
1656 	/* following loop may be a bit non-obvious, and so deserves some
1657 	 * explanation.
1658 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1659 	 * ensure that) so we have a list with a single bio.
1660 	 * We pretend that we have just taken it off a longer list, so
1661 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1662 	 * thus initialising the bio_list of new bios to be
1663 	 * added.  ->make_request() may indeed add some more bios
1664 	 * through a recursive call to generic_make_request.  If it
1665 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1666 	 * from the top.  In this case we really did just take the bio
1667 	 * of the top of the list (no pretending) and so remove it from
1668 	 * bio_list, and call into ->make_request() again.
1669 	 */
1670 	BUG_ON(bio->bi_next);
1671 	bio_list_init(&bio_list_on_stack);
1672 	current->bio_list = &bio_list_on_stack;
1673 	do {
1674 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1675 
1676 		q->make_request_fn(q, bio);
1677 
1678 		bio = bio_list_pop(current->bio_list);
1679 	} while (bio);
1680 	current->bio_list = NULL; /* deactivate */
1681 }
1682 EXPORT_SYMBOL(generic_make_request);
1683 
1684 /**
1685  * submit_bio - submit a bio to the block device layer for I/O
1686  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1687  * @bio: The &struct bio which describes the I/O
1688  *
1689  * submit_bio() is very similar in purpose to generic_make_request(), and
1690  * uses that function to do most of the work. Both are fairly rough
1691  * interfaces; @bio must be presetup and ready for I/O.
1692  *
1693  */
submit_bio(int rw,struct bio * bio)1694 void submit_bio(int rw, struct bio *bio)
1695 {
1696 	int count = bio_sectors(bio);
1697 
1698 	bio->bi_rw |= rw;
1699 
1700 	/*
1701 	 * If it's a regular read/write or a barrier with data attached,
1702 	 * go through the normal accounting stuff before submission.
1703 	 */
1704 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1705 		if (rw & WRITE) {
1706 			count_vm_events(PGPGOUT, count);
1707 		} else {
1708 			task_io_account_read(bio->bi_size);
1709 			count_vm_events(PGPGIN, count);
1710 		}
1711 
1712 		if (unlikely(block_dump)) {
1713 			char b[BDEVNAME_SIZE];
1714 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1715 			current->comm, task_pid_nr(current),
1716 				(rw & WRITE) ? "WRITE" : "READ",
1717 				(unsigned long long)bio->bi_sector,
1718 				bdevname(bio->bi_bdev, b),
1719 				count);
1720 		}
1721 	}
1722 
1723 	generic_make_request(bio);
1724 }
1725 EXPORT_SYMBOL(submit_bio);
1726 
1727 /**
1728  * blk_rq_check_limits - Helper function to check a request for the queue limit
1729  * @q:  the queue
1730  * @rq: the request being checked
1731  *
1732  * Description:
1733  *    @rq may have been made based on weaker limitations of upper-level queues
1734  *    in request stacking drivers, and it may violate the limitation of @q.
1735  *    Since the block layer and the underlying device driver trust @rq
1736  *    after it is inserted to @q, it should be checked against @q before
1737  *    the insertion using this generic function.
1738  *
1739  *    This function should also be useful for request stacking drivers
1740  *    in some cases below, so export this function.
1741  *    Request stacking drivers like request-based dm may change the queue
1742  *    limits while requests are in the queue (e.g. dm's table swapping).
1743  *    Such request stacking drivers should check those requests agaist
1744  *    the new queue limits again when they dispatch those requests,
1745  *    although such checkings are also done against the old queue limits
1746  *    when submitting requests.
1747  */
blk_rq_check_limits(struct request_queue * q,struct request * rq)1748 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1749 {
1750 	if (rq->cmd_flags & REQ_DISCARD)
1751 		return 0;
1752 
1753 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1754 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1755 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1756 		return -EIO;
1757 	}
1758 
1759 	/*
1760 	 * queue's settings related to segment counting like q->bounce_pfn
1761 	 * may differ from that of other stacking queues.
1762 	 * Recalculate it to check the request correctly on this queue's
1763 	 * limitation.
1764 	 */
1765 	blk_recalc_rq_segments(rq);
1766 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1767 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1768 		return -EIO;
1769 	}
1770 
1771 	return 0;
1772 }
1773 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1774 
1775 /**
1776  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1777  * @q:  the queue to submit the request
1778  * @rq: the request being queued
1779  */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1780 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1781 {
1782 	unsigned long flags;
1783 	int where = ELEVATOR_INSERT_BACK;
1784 
1785 	if (blk_rq_check_limits(q, rq))
1786 		return -EIO;
1787 
1788 	if (rq->rq_disk &&
1789 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1790 		return -EIO;
1791 
1792 	spin_lock_irqsave(q->queue_lock, flags);
1793 	if (unlikely(blk_queue_dead(q))) {
1794 		spin_unlock_irqrestore(q->queue_lock, flags);
1795 		return -ENODEV;
1796 	}
1797 
1798 	/*
1799 	 * Submitting request must be dequeued before calling this function
1800 	 * because it will be linked to another request_queue
1801 	 */
1802 	BUG_ON(blk_queued_rq(rq));
1803 
1804 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1805 		where = ELEVATOR_INSERT_FLUSH;
1806 
1807 	add_acct_request(q, rq, where);
1808 	if (where == ELEVATOR_INSERT_FLUSH)
1809 		__blk_run_queue(q);
1810 	spin_unlock_irqrestore(q->queue_lock, flags);
1811 
1812 	return 0;
1813 }
1814 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1815 
1816 /**
1817  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1818  * @rq: request to examine
1819  *
1820  * Description:
1821  *     A request could be merge of IOs which require different failure
1822  *     handling.  This function determines the number of bytes which
1823  *     can be failed from the beginning of the request without
1824  *     crossing into area which need to be retried further.
1825  *
1826  * Return:
1827  *     The number of bytes to fail.
1828  *
1829  * Context:
1830  *     queue_lock must be held.
1831  */
blk_rq_err_bytes(const struct request * rq)1832 unsigned int blk_rq_err_bytes(const struct request *rq)
1833 {
1834 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1835 	unsigned int bytes = 0;
1836 	struct bio *bio;
1837 
1838 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1839 		return blk_rq_bytes(rq);
1840 
1841 	/*
1842 	 * Currently the only 'mixing' which can happen is between
1843 	 * different fastfail types.  We can safely fail portions
1844 	 * which have all the failfast bits that the first one has -
1845 	 * the ones which are at least as eager to fail as the first
1846 	 * one.
1847 	 */
1848 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1849 		if ((bio->bi_rw & ff) != ff)
1850 			break;
1851 		bytes += bio->bi_size;
1852 	}
1853 
1854 	/* this could lead to infinite loop */
1855 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1856 	return bytes;
1857 }
1858 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1859 
blk_account_io_completion(struct request * req,unsigned int bytes)1860 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1861 {
1862 	if (blk_do_io_stat(req)) {
1863 		const int rw = rq_data_dir(req);
1864 		struct hd_struct *part;
1865 		int cpu;
1866 
1867 		cpu = part_stat_lock();
1868 		part = req->part;
1869 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1870 		part_stat_unlock();
1871 	}
1872 }
1873 
blk_account_io_done(struct request * req)1874 static void blk_account_io_done(struct request *req)
1875 {
1876 	/*
1877 	 * Account IO completion.  flush_rq isn't accounted as a
1878 	 * normal IO on queueing nor completion.  Accounting the
1879 	 * containing request is enough.
1880 	 */
1881 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1882 		unsigned long duration = jiffies - req->start_time;
1883 		const int rw = rq_data_dir(req);
1884 		struct hd_struct *part;
1885 		int cpu;
1886 
1887 		cpu = part_stat_lock();
1888 		part = req->part;
1889 
1890 		part_stat_inc(cpu, part, ios[rw]);
1891 		part_stat_add(cpu, part, ticks[rw], duration);
1892 		part_round_stats(cpu, part);
1893 		part_dec_in_flight(part, rw);
1894 
1895 		hd_struct_put(part);
1896 		part_stat_unlock();
1897 	}
1898 }
1899 
1900 /**
1901  * blk_peek_request - peek at the top of a request queue
1902  * @q: request queue to peek at
1903  *
1904  * Description:
1905  *     Return the request at the top of @q.  The returned request
1906  *     should be started using blk_start_request() before LLD starts
1907  *     processing it.
1908  *
1909  * Return:
1910  *     Pointer to the request at the top of @q if available.  Null
1911  *     otherwise.
1912  *
1913  * Context:
1914  *     queue_lock must be held.
1915  */
blk_peek_request(struct request_queue * q)1916 struct request *blk_peek_request(struct request_queue *q)
1917 {
1918 	struct request *rq;
1919 	int ret;
1920 
1921 	while ((rq = __elv_next_request(q)) != NULL) {
1922 		if (!(rq->cmd_flags & REQ_STARTED)) {
1923 			/*
1924 			 * This is the first time the device driver
1925 			 * sees this request (possibly after
1926 			 * requeueing).  Notify IO scheduler.
1927 			 */
1928 			if (rq->cmd_flags & REQ_SORTED)
1929 				elv_activate_rq(q, rq);
1930 
1931 			/*
1932 			 * just mark as started even if we don't start
1933 			 * it, a request that has been delayed should
1934 			 * not be passed by new incoming requests
1935 			 */
1936 			rq->cmd_flags |= REQ_STARTED;
1937 			trace_block_rq_issue(q, rq);
1938 		}
1939 
1940 		if (!q->boundary_rq || q->boundary_rq == rq) {
1941 			q->end_sector = rq_end_sector(rq);
1942 			q->boundary_rq = NULL;
1943 		}
1944 
1945 		if (rq->cmd_flags & REQ_DONTPREP)
1946 			break;
1947 
1948 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1949 			/*
1950 			 * make sure space for the drain appears we
1951 			 * know we can do this because max_hw_segments
1952 			 * has been adjusted to be one fewer than the
1953 			 * device can handle
1954 			 */
1955 			rq->nr_phys_segments++;
1956 		}
1957 
1958 		if (!q->prep_rq_fn)
1959 			break;
1960 
1961 		ret = q->prep_rq_fn(q, rq);
1962 		if (ret == BLKPREP_OK) {
1963 			break;
1964 		} else if (ret == BLKPREP_DEFER) {
1965 			/*
1966 			 * the request may have been (partially) prepped.
1967 			 * we need to keep this request in the front to
1968 			 * avoid resource deadlock.  REQ_STARTED will
1969 			 * prevent other fs requests from passing this one.
1970 			 */
1971 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1972 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1973 				/*
1974 				 * remove the space for the drain we added
1975 				 * so that we don't add it again
1976 				 */
1977 				--rq->nr_phys_segments;
1978 			}
1979 
1980 			rq = NULL;
1981 			break;
1982 		} else if (ret == BLKPREP_KILL) {
1983 			rq->cmd_flags |= REQ_QUIET;
1984 			/*
1985 			 * Mark this request as started so we don't trigger
1986 			 * any debug logic in the end I/O path.
1987 			 */
1988 			blk_start_request(rq);
1989 			__blk_end_request_all(rq, -EIO);
1990 		} else {
1991 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1992 			break;
1993 		}
1994 	}
1995 
1996 	return rq;
1997 }
1998 EXPORT_SYMBOL(blk_peek_request);
1999 
blk_dequeue_request(struct request * rq)2000 void blk_dequeue_request(struct request *rq)
2001 {
2002 	struct request_queue *q = rq->q;
2003 
2004 	BUG_ON(list_empty(&rq->queuelist));
2005 	BUG_ON(ELV_ON_HASH(rq));
2006 
2007 	list_del_init(&rq->queuelist);
2008 
2009 	/*
2010 	 * the time frame between a request being removed from the lists
2011 	 * and to it is freed is accounted as io that is in progress at
2012 	 * the driver side.
2013 	 */
2014 	if (blk_account_rq(rq)) {
2015 		q->in_flight[rq_is_sync(rq)]++;
2016 		set_io_start_time_ns(rq);
2017 	}
2018 }
2019 
2020 /**
2021  * blk_start_request - start request processing on the driver
2022  * @req: request to dequeue
2023  *
2024  * Description:
2025  *     Dequeue @req and start timeout timer on it.  This hands off the
2026  *     request to the driver.
2027  *
2028  *     Block internal functions which don't want to start timer should
2029  *     call blk_dequeue_request().
2030  *
2031  * Context:
2032  *     queue_lock must be held.
2033  */
blk_start_request(struct request * req)2034 void blk_start_request(struct request *req)
2035 {
2036 	blk_dequeue_request(req);
2037 
2038 	/*
2039 	 * We are now handing the request to the hardware, initialize
2040 	 * resid_len to full count and add the timeout handler.
2041 	 */
2042 	req->resid_len = blk_rq_bytes(req);
2043 	if (unlikely(blk_bidi_rq(req)))
2044 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2045 
2046 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2047 	blk_add_timer(req);
2048 }
2049 EXPORT_SYMBOL(blk_start_request);
2050 
2051 /**
2052  * blk_fetch_request - fetch a request from a request queue
2053  * @q: request queue to fetch a request from
2054  *
2055  * Description:
2056  *     Return the request at the top of @q.  The request is started on
2057  *     return and LLD can start processing it immediately.
2058  *
2059  * Return:
2060  *     Pointer to the request at the top of @q if available.  Null
2061  *     otherwise.
2062  *
2063  * Context:
2064  *     queue_lock must be held.
2065  */
blk_fetch_request(struct request_queue * q)2066 struct request *blk_fetch_request(struct request_queue *q)
2067 {
2068 	struct request *rq;
2069 
2070 	rq = blk_peek_request(q);
2071 	if (rq)
2072 		blk_start_request(rq);
2073 	return rq;
2074 }
2075 EXPORT_SYMBOL(blk_fetch_request);
2076 
2077 /**
2078  * blk_update_request - Special helper function for request stacking drivers
2079  * @req:      the request being processed
2080  * @error:    %0 for success, < %0 for error
2081  * @nr_bytes: number of bytes to complete @req
2082  *
2083  * Description:
2084  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2085  *     the request structure even if @req doesn't have leftover.
2086  *     If @req has leftover, sets it up for the next range of segments.
2087  *
2088  *     This special helper function is only for request stacking drivers
2089  *     (e.g. request-based dm) so that they can handle partial completion.
2090  *     Actual device drivers should use blk_end_request instead.
2091  *
2092  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2093  *     %false return from this function.
2094  *
2095  * Return:
2096  *     %false - this request doesn't have any more data
2097  *     %true  - this request has more data
2098  **/
blk_update_request(struct request * req,int error,unsigned int nr_bytes)2099 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2100 {
2101 	int total_bytes, bio_nbytes, next_idx = 0;
2102 	struct bio *bio;
2103 
2104 	if (!req->bio)
2105 		return false;
2106 
2107 	trace_block_rq_complete(req->q, req, nr_bytes);
2108 
2109 	/*
2110 	 * For fs requests, rq is just carrier of independent bio's
2111 	 * and each partial completion should be handled separately.
2112 	 * Reset per-request error on each partial completion.
2113 	 *
2114 	 * TODO: tj: This is too subtle.  It would be better to let
2115 	 * low level drivers do what they see fit.
2116 	 */
2117 	if (req->cmd_type == REQ_TYPE_FS)
2118 		req->errors = 0;
2119 
2120 	if (error && req->cmd_type == REQ_TYPE_FS &&
2121 	    !(req->cmd_flags & REQ_QUIET)) {
2122 		char *error_type;
2123 
2124 		switch (error) {
2125 		case -ENOLINK:
2126 			error_type = "recoverable transport";
2127 			break;
2128 		case -EREMOTEIO:
2129 			error_type = "critical target";
2130 			break;
2131 		case -EBADE:
2132 			error_type = "critical nexus";
2133 			break;
2134 		case -EIO:
2135 		default:
2136 			error_type = "I/O";
2137 			break;
2138 		}
2139 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2140 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2141 		       (unsigned long long)blk_rq_pos(req));
2142 	}
2143 
2144 	blk_account_io_completion(req, nr_bytes);
2145 
2146 	total_bytes = bio_nbytes = 0;
2147 	while ((bio = req->bio) != NULL) {
2148 		int nbytes;
2149 
2150 		if (nr_bytes >= bio->bi_size) {
2151 			req->bio = bio->bi_next;
2152 			nbytes = bio->bi_size;
2153 			req_bio_endio(req, bio, nbytes, error);
2154 			next_idx = 0;
2155 			bio_nbytes = 0;
2156 		} else {
2157 			int idx = bio->bi_idx + next_idx;
2158 
2159 			if (unlikely(idx >= bio->bi_vcnt)) {
2160 				blk_dump_rq_flags(req, "__end_that");
2161 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2162 				       __func__, idx, bio->bi_vcnt);
2163 				break;
2164 			}
2165 
2166 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2167 			BIO_BUG_ON(nbytes > bio->bi_size);
2168 
2169 			/*
2170 			 * not a complete bvec done
2171 			 */
2172 			if (unlikely(nbytes > nr_bytes)) {
2173 				bio_nbytes += nr_bytes;
2174 				total_bytes += nr_bytes;
2175 				break;
2176 			}
2177 
2178 			/*
2179 			 * advance to the next vector
2180 			 */
2181 			next_idx++;
2182 			bio_nbytes += nbytes;
2183 		}
2184 
2185 		total_bytes += nbytes;
2186 		nr_bytes -= nbytes;
2187 
2188 		bio = req->bio;
2189 		if (bio) {
2190 			/*
2191 			 * end more in this run, or just return 'not-done'
2192 			 */
2193 			if (unlikely(nr_bytes <= 0))
2194 				break;
2195 		}
2196 	}
2197 
2198 	/*
2199 	 * completely done
2200 	 */
2201 	if (!req->bio) {
2202 		/*
2203 		 * Reset counters so that the request stacking driver
2204 		 * can find how many bytes remain in the request
2205 		 * later.
2206 		 */
2207 		req->__data_len = 0;
2208 		return false;
2209 	}
2210 
2211 	/*
2212 	 * if the request wasn't completed, update state
2213 	 */
2214 	if (bio_nbytes) {
2215 		req_bio_endio(req, bio, bio_nbytes, error);
2216 		bio->bi_idx += next_idx;
2217 		bio_iovec(bio)->bv_offset += nr_bytes;
2218 		bio_iovec(bio)->bv_len -= nr_bytes;
2219 	}
2220 
2221 	req->__data_len -= total_bytes;
2222 	req->buffer = bio_data(req->bio);
2223 
2224 	/* update sector only for requests with clear definition of sector */
2225 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2226 		req->__sector += total_bytes >> 9;
2227 
2228 	/* mixed attributes always follow the first bio */
2229 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2230 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2231 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2232 	}
2233 
2234 	/*
2235 	 * If total number of sectors is less than the first segment
2236 	 * size, something has gone terribly wrong.
2237 	 */
2238 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2239 		blk_dump_rq_flags(req, "request botched");
2240 		req->__data_len = blk_rq_cur_bytes(req);
2241 	}
2242 
2243 	/* recalculate the number of segments */
2244 	blk_recalc_rq_segments(req);
2245 
2246 	return true;
2247 }
2248 EXPORT_SYMBOL_GPL(blk_update_request);
2249 
blk_update_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2250 static bool blk_update_bidi_request(struct request *rq, int error,
2251 				    unsigned int nr_bytes,
2252 				    unsigned int bidi_bytes)
2253 {
2254 	if (blk_update_request(rq, error, nr_bytes))
2255 		return true;
2256 
2257 	/* Bidi request must be completed as a whole */
2258 	if (unlikely(blk_bidi_rq(rq)) &&
2259 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2260 		return true;
2261 
2262 	if (blk_queue_add_random(rq->q))
2263 		add_disk_randomness(rq->rq_disk);
2264 
2265 	return false;
2266 }
2267 
2268 /**
2269  * blk_unprep_request - unprepare a request
2270  * @req:	the request
2271  *
2272  * This function makes a request ready for complete resubmission (or
2273  * completion).  It happens only after all error handling is complete,
2274  * so represents the appropriate moment to deallocate any resources
2275  * that were allocated to the request in the prep_rq_fn.  The queue
2276  * lock is held when calling this.
2277  */
blk_unprep_request(struct request * req)2278 void blk_unprep_request(struct request *req)
2279 {
2280 	struct request_queue *q = req->q;
2281 
2282 	req->cmd_flags &= ~REQ_DONTPREP;
2283 	if (q->unprep_rq_fn)
2284 		q->unprep_rq_fn(q, req);
2285 }
2286 EXPORT_SYMBOL_GPL(blk_unprep_request);
2287 
2288 /*
2289  * queue lock must be held
2290  */
blk_finish_request(struct request * req,int error)2291 static void blk_finish_request(struct request *req, int error)
2292 {
2293 	if (blk_rq_tagged(req))
2294 		blk_queue_end_tag(req->q, req);
2295 
2296 	BUG_ON(blk_queued_rq(req));
2297 
2298 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2299 		laptop_io_completion(&req->q->backing_dev_info);
2300 
2301 	blk_delete_timer(req);
2302 
2303 	if (req->cmd_flags & REQ_DONTPREP)
2304 		blk_unprep_request(req);
2305 
2306 
2307 	blk_account_io_done(req);
2308 
2309 	if (req->end_io)
2310 		req->end_io(req, error);
2311 	else {
2312 		if (blk_bidi_rq(req))
2313 			__blk_put_request(req->next_rq->q, req->next_rq);
2314 
2315 		__blk_put_request(req->q, req);
2316 	}
2317 }
2318 
2319 /**
2320  * blk_end_bidi_request - Complete a bidi request
2321  * @rq:         the request to complete
2322  * @error:      %0 for success, < %0 for error
2323  * @nr_bytes:   number of bytes to complete @rq
2324  * @bidi_bytes: number of bytes to complete @rq->next_rq
2325  *
2326  * Description:
2327  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2328  *     Drivers that supports bidi can safely call this member for any
2329  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2330  *     just ignored.
2331  *
2332  * Return:
2333  *     %false - we are done with this request
2334  *     %true  - still buffers pending for this request
2335  **/
blk_end_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2336 static bool blk_end_bidi_request(struct request *rq, int error,
2337 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2338 {
2339 	struct request_queue *q = rq->q;
2340 	unsigned long flags;
2341 
2342 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2343 		return true;
2344 
2345 	spin_lock_irqsave(q->queue_lock, flags);
2346 	blk_finish_request(rq, error);
2347 	spin_unlock_irqrestore(q->queue_lock, flags);
2348 
2349 	return false;
2350 }
2351 
2352 /**
2353  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2354  * @rq:         the request to complete
2355  * @error:      %0 for success, < %0 for error
2356  * @nr_bytes:   number of bytes to complete @rq
2357  * @bidi_bytes: number of bytes to complete @rq->next_rq
2358  *
2359  * Description:
2360  *     Identical to blk_end_bidi_request() except that queue lock is
2361  *     assumed to be locked on entry and remains so on return.
2362  *
2363  * Return:
2364  *     %false - we are done with this request
2365  *     %true  - still buffers pending for this request
2366  **/
__blk_end_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2367 bool __blk_end_bidi_request(struct request *rq, int error,
2368 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2369 {
2370 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2371 		return true;
2372 
2373 	blk_finish_request(rq, error);
2374 
2375 	return false;
2376 }
2377 
2378 /**
2379  * blk_end_request - Helper function for drivers to complete the request.
2380  * @rq:       the request being processed
2381  * @error:    %0 for success, < %0 for error
2382  * @nr_bytes: number of bytes to complete
2383  *
2384  * Description:
2385  *     Ends I/O on a number of bytes attached to @rq.
2386  *     If @rq has leftover, sets it up for the next range of segments.
2387  *
2388  * Return:
2389  *     %false - we are done with this request
2390  *     %true  - still buffers pending for this request
2391  **/
blk_end_request(struct request * rq,int error,unsigned int nr_bytes)2392 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2393 {
2394 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2395 }
2396 EXPORT_SYMBOL(blk_end_request);
2397 
2398 /**
2399  * blk_end_request_all - Helper function for drives to finish the request.
2400  * @rq: the request to finish
2401  * @error: %0 for success, < %0 for error
2402  *
2403  * Description:
2404  *     Completely finish @rq.
2405  */
blk_end_request_all(struct request * rq,int error)2406 void blk_end_request_all(struct request *rq, int error)
2407 {
2408 	bool pending;
2409 	unsigned int bidi_bytes = 0;
2410 
2411 	if (unlikely(blk_bidi_rq(rq)))
2412 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2413 
2414 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2415 	BUG_ON(pending);
2416 }
2417 EXPORT_SYMBOL(blk_end_request_all);
2418 
2419 /**
2420  * blk_end_request_cur - Helper function to finish the current request chunk.
2421  * @rq: the request to finish the current chunk for
2422  * @error: %0 for success, < %0 for error
2423  *
2424  * Description:
2425  *     Complete the current consecutively mapped chunk from @rq.
2426  *
2427  * Return:
2428  *     %false - we are done with this request
2429  *     %true  - still buffers pending for this request
2430  */
blk_end_request_cur(struct request * rq,int error)2431 bool blk_end_request_cur(struct request *rq, int error)
2432 {
2433 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2434 }
2435 EXPORT_SYMBOL(blk_end_request_cur);
2436 
2437 /**
2438  * blk_end_request_err - Finish a request till the next failure boundary.
2439  * @rq: the request to finish till the next failure boundary for
2440  * @error: must be negative errno
2441  *
2442  * Description:
2443  *     Complete @rq till the next failure boundary.
2444  *
2445  * Return:
2446  *     %false - we are done with this request
2447  *     %true  - still buffers pending for this request
2448  */
blk_end_request_err(struct request * rq,int error)2449 bool blk_end_request_err(struct request *rq, int error)
2450 {
2451 	WARN_ON(error >= 0);
2452 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2453 }
2454 EXPORT_SYMBOL_GPL(blk_end_request_err);
2455 
2456 /**
2457  * __blk_end_request - Helper function for drivers to complete the request.
2458  * @rq:       the request being processed
2459  * @error:    %0 for success, < %0 for error
2460  * @nr_bytes: number of bytes to complete
2461  *
2462  * Description:
2463  *     Must be called with queue lock held unlike blk_end_request().
2464  *
2465  * Return:
2466  *     %false - we are done with this request
2467  *     %true  - still buffers pending for this request
2468  **/
__blk_end_request(struct request * rq,int error,unsigned int nr_bytes)2469 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2470 {
2471 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2472 }
2473 EXPORT_SYMBOL(__blk_end_request);
2474 
2475 /**
2476  * __blk_end_request_all - Helper function for drives to finish the request.
2477  * @rq: the request to finish
2478  * @error: %0 for success, < %0 for error
2479  *
2480  * Description:
2481  *     Completely finish @rq.  Must be called with queue lock held.
2482  */
__blk_end_request_all(struct request * rq,int error)2483 void __blk_end_request_all(struct request *rq, int error)
2484 {
2485 	bool pending;
2486 	unsigned int bidi_bytes = 0;
2487 
2488 	if (unlikely(blk_bidi_rq(rq)))
2489 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2490 
2491 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2492 	BUG_ON(pending);
2493 }
2494 EXPORT_SYMBOL(__blk_end_request_all);
2495 
2496 /**
2497  * __blk_end_request_cur - Helper function to finish the current request chunk.
2498  * @rq: the request to finish the current chunk for
2499  * @error: %0 for success, < %0 for error
2500  *
2501  * Description:
2502  *     Complete the current consecutively mapped chunk from @rq.  Must
2503  *     be called with queue lock held.
2504  *
2505  * Return:
2506  *     %false - we are done with this request
2507  *     %true  - still buffers pending for this request
2508  */
__blk_end_request_cur(struct request * rq,int error)2509 bool __blk_end_request_cur(struct request *rq, int error)
2510 {
2511 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2512 }
2513 EXPORT_SYMBOL(__blk_end_request_cur);
2514 
2515 /**
2516  * __blk_end_request_err - Finish a request till the next failure boundary.
2517  * @rq: the request to finish till the next failure boundary for
2518  * @error: must be negative errno
2519  *
2520  * Description:
2521  *     Complete @rq till the next failure boundary.  Must be called
2522  *     with queue lock held.
2523  *
2524  * Return:
2525  *     %false - we are done with this request
2526  *     %true  - still buffers pending for this request
2527  */
__blk_end_request_err(struct request * rq,int error)2528 bool __blk_end_request_err(struct request *rq, int error)
2529 {
2530 	WARN_ON(error >= 0);
2531 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2532 }
2533 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2534 
blk_rq_bio_prep(struct request_queue * q,struct request * rq,struct bio * bio)2535 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2536 		     struct bio *bio)
2537 {
2538 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2539 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2540 
2541 	if (bio_has_data(bio)) {
2542 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2543 		rq->buffer = bio_data(bio);
2544 	}
2545 	rq->__data_len = bio->bi_size;
2546 	rq->bio = rq->biotail = bio;
2547 
2548 	if (bio->bi_bdev)
2549 		rq->rq_disk = bio->bi_bdev->bd_disk;
2550 }
2551 
2552 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2553 /**
2554  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2555  * @rq: the request to be flushed
2556  *
2557  * Description:
2558  *     Flush all pages in @rq.
2559  */
rq_flush_dcache_pages(struct request * rq)2560 void rq_flush_dcache_pages(struct request *rq)
2561 {
2562 	struct req_iterator iter;
2563 	struct bio_vec *bvec;
2564 
2565 	rq_for_each_segment(bvec, rq, iter)
2566 		flush_dcache_page(bvec->bv_page);
2567 }
2568 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2569 #endif
2570 
2571 /**
2572  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2573  * @q : the queue of the device being checked
2574  *
2575  * Description:
2576  *    Check if underlying low-level drivers of a device are busy.
2577  *    If the drivers want to export their busy state, they must set own
2578  *    exporting function using blk_queue_lld_busy() first.
2579  *
2580  *    Basically, this function is used only by request stacking drivers
2581  *    to stop dispatching requests to underlying devices when underlying
2582  *    devices are busy.  This behavior helps more I/O merging on the queue
2583  *    of the request stacking driver and prevents I/O throughput regression
2584  *    on burst I/O load.
2585  *
2586  * Return:
2587  *    0 - Not busy (The request stacking driver should dispatch request)
2588  *    1 - Busy (The request stacking driver should stop dispatching request)
2589  */
blk_lld_busy(struct request_queue * q)2590 int blk_lld_busy(struct request_queue *q)
2591 {
2592 	if (q->lld_busy_fn)
2593 		return q->lld_busy_fn(q);
2594 
2595 	return 0;
2596 }
2597 EXPORT_SYMBOL_GPL(blk_lld_busy);
2598 
2599 /**
2600  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2601  * @rq: the clone request to be cleaned up
2602  *
2603  * Description:
2604  *     Free all bios in @rq for a cloned request.
2605  */
blk_rq_unprep_clone(struct request * rq)2606 void blk_rq_unprep_clone(struct request *rq)
2607 {
2608 	struct bio *bio;
2609 
2610 	while ((bio = rq->bio) != NULL) {
2611 		rq->bio = bio->bi_next;
2612 
2613 		bio_put(bio);
2614 	}
2615 }
2616 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2617 
2618 /*
2619  * Copy attributes of the original request to the clone request.
2620  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2621  */
__blk_rq_prep_clone(struct request * dst,struct request * src)2622 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2623 {
2624 	dst->cpu = src->cpu;
2625 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2626 	dst->cmd_type = src->cmd_type;
2627 	dst->__sector = blk_rq_pos(src);
2628 	dst->__data_len = blk_rq_bytes(src);
2629 	dst->nr_phys_segments = src->nr_phys_segments;
2630 	dst->ioprio = src->ioprio;
2631 	dst->extra_len = src->extra_len;
2632 }
2633 
2634 /**
2635  * blk_rq_prep_clone - Helper function to setup clone request
2636  * @rq: the request to be setup
2637  * @rq_src: original request to be cloned
2638  * @bs: bio_set that bios for clone are allocated from
2639  * @gfp_mask: memory allocation mask for bio
2640  * @bio_ctr: setup function to be called for each clone bio.
2641  *           Returns %0 for success, non %0 for failure.
2642  * @data: private data to be passed to @bio_ctr
2643  *
2644  * Description:
2645  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2646  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2647  *     are not copied, and copying such parts is the caller's responsibility.
2648  *     Also, pages which the original bios are pointing to are not copied
2649  *     and the cloned bios just point same pages.
2650  *     So cloned bios must be completed before original bios, which means
2651  *     the caller must complete @rq before @rq_src.
2652  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)2653 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2654 		      struct bio_set *bs, gfp_t gfp_mask,
2655 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2656 		      void *data)
2657 {
2658 	struct bio *bio, *bio_src;
2659 
2660 	if (!bs)
2661 		bs = fs_bio_set;
2662 
2663 	blk_rq_init(NULL, rq);
2664 
2665 	__rq_for_each_bio(bio_src, rq_src) {
2666 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2667 		if (!bio)
2668 			goto free_and_out;
2669 
2670 		__bio_clone(bio, bio_src);
2671 
2672 		if (bio_integrity(bio_src) &&
2673 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2674 			goto free_and_out;
2675 
2676 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2677 			goto free_and_out;
2678 
2679 		if (rq->bio) {
2680 			rq->biotail->bi_next = bio;
2681 			rq->biotail = bio;
2682 		} else
2683 			rq->bio = rq->biotail = bio;
2684 	}
2685 
2686 	__blk_rq_prep_clone(rq, rq_src);
2687 
2688 	return 0;
2689 
2690 free_and_out:
2691 	if (bio)
2692 		bio_free(bio, bs);
2693 	blk_rq_unprep_clone(rq);
2694 
2695 	return -ENOMEM;
2696 }
2697 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2698 
kblockd_schedule_work(struct request_queue * q,struct work_struct * work)2699 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2700 {
2701 	return queue_work(kblockd_workqueue, work);
2702 }
2703 EXPORT_SYMBOL(kblockd_schedule_work);
2704 
kblockd_schedule_delayed_work(struct request_queue * q,struct delayed_work * dwork,unsigned long delay)2705 int kblockd_schedule_delayed_work(struct request_queue *q,
2706 			struct delayed_work *dwork, unsigned long delay)
2707 {
2708 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2709 }
2710 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2711 
2712 #define PLUG_MAGIC	0x91827364
2713 
2714 /**
2715  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2716  * @plug:	The &struct blk_plug that needs to be initialized
2717  *
2718  * Description:
2719  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2720  *   pending I/O should the task end up blocking between blk_start_plug() and
2721  *   blk_finish_plug(). This is important from a performance perspective, but
2722  *   also ensures that we don't deadlock. For instance, if the task is blocking
2723  *   for a memory allocation, memory reclaim could end up wanting to free a
2724  *   page belonging to that request that is currently residing in our private
2725  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2726  *   this kind of deadlock.
2727  */
blk_start_plug(struct blk_plug * plug)2728 void blk_start_plug(struct blk_plug *plug)
2729 {
2730 	struct task_struct *tsk = current;
2731 
2732 	plug->magic = PLUG_MAGIC;
2733 	INIT_LIST_HEAD(&plug->list);
2734 	INIT_LIST_HEAD(&plug->cb_list);
2735 	plug->should_sort = 0;
2736 
2737 	/*
2738 	 * If this is a nested plug, don't actually assign it. It will be
2739 	 * flushed on its own.
2740 	 */
2741 	if (!tsk->plug) {
2742 		/*
2743 		 * Store ordering should not be needed here, since a potential
2744 		 * preempt will imply a full memory barrier
2745 		 */
2746 		tsk->plug = plug;
2747 	}
2748 }
2749 EXPORT_SYMBOL(blk_start_plug);
2750 
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)2751 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2752 {
2753 	struct request *rqa = container_of(a, struct request, queuelist);
2754 	struct request *rqb = container_of(b, struct request, queuelist);
2755 
2756 	return !(rqa->q <= rqb->q);
2757 }
2758 
2759 /*
2760  * If 'from_schedule' is true, then postpone the dispatch of requests
2761  * until a safe kblockd context. We due this to avoid accidental big
2762  * additional stack usage in driver dispatch, in places where the originally
2763  * plugger did not intend it.
2764  */
queue_unplugged(struct request_queue * q,unsigned int depth,bool from_schedule)2765 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2766 			    bool from_schedule)
2767 	__releases(q->queue_lock)
2768 {
2769 	trace_block_unplug(q, depth, !from_schedule);
2770 
2771 	/*
2772 	 * Don't mess with dead queue.
2773 	 */
2774 	if (unlikely(blk_queue_dead(q))) {
2775 		spin_unlock(q->queue_lock);
2776 		return;
2777 	}
2778 
2779 	/*
2780 	 * If we are punting this to kblockd, then we can safely drop
2781 	 * the queue_lock before waking kblockd (which needs to take
2782 	 * this lock).
2783 	 */
2784 	if (from_schedule) {
2785 		spin_unlock(q->queue_lock);
2786 		blk_run_queue_async(q);
2787 	} else {
2788 		__blk_run_queue(q);
2789 		spin_unlock(q->queue_lock);
2790 	}
2791 
2792 }
2793 
flush_plug_callbacks(struct blk_plug * plug)2794 static void flush_plug_callbacks(struct blk_plug *plug)
2795 {
2796 	LIST_HEAD(callbacks);
2797 
2798 	if (list_empty(&plug->cb_list))
2799 		return;
2800 
2801 	list_splice_init(&plug->cb_list, &callbacks);
2802 
2803 	while (!list_empty(&callbacks)) {
2804 		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2805 							  struct blk_plug_cb,
2806 							  list);
2807 		list_del(&cb->list);
2808 		cb->callback(cb);
2809 	}
2810 }
2811 
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)2812 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2813 {
2814 	struct request_queue *q;
2815 	unsigned long flags;
2816 	struct request *rq;
2817 	LIST_HEAD(list);
2818 	unsigned int depth;
2819 
2820 	BUG_ON(plug->magic != PLUG_MAGIC);
2821 
2822 	flush_plug_callbacks(plug);
2823 	if (list_empty(&plug->list))
2824 		return;
2825 
2826 	list_splice_init(&plug->list, &list);
2827 
2828 	if (plug->should_sort) {
2829 		list_sort(NULL, &list, plug_rq_cmp);
2830 		plug->should_sort = 0;
2831 	}
2832 
2833 	q = NULL;
2834 	depth = 0;
2835 
2836 	/*
2837 	 * Save and disable interrupts here, to avoid doing it for every
2838 	 * queue lock we have to take.
2839 	 */
2840 	local_irq_save(flags);
2841 	while (!list_empty(&list)) {
2842 		rq = list_entry_rq(list.next);
2843 		list_del_init(&rq->queuelist);
2844 		BUG_ON(!rq->q);
2845 		if (rq->q != q) {
2846 			/*
2847 			 * This drops the queue lock
2848 			 */
2849 			if (q)
2850 				queue_unplugged(q, depth, from_schedule);
2851 			q = rq->q;
2852 			depth = 0;
2853 			spin_lock(q->queue_lock);
2854 		}
2855 
2856 		/*
2857 		 * Short-circuit if @q is dead
2858 		 */
2859 		if (unlikely(blk_queue_dead(q))) {
2860 			__blk_end_request_all(rq, -ENODEV);
2861 			continue;
2862 		}
2863 
2864 		/*
2865 		 * rq is already accounted, so use raw insert
2866 		 */
2867 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2868 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2869 		else
2870 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2871 
2872 		depth++;
2873 	}
2874 
2875 	/*
2876 	 * This drops the queue lock
2877 	 */
2878 	if (q)
2879 		queue_unplugged(q, depth, from_schedule);
2880 
2881 	local_irq_restore(flags);
2882 }
2883 
blk_finish_plug(struct blk_plug * plug)2884 void blk_finish_plug(struct blk_plug *plug)
2885 {
2886 	blk_flush_plug_list(plug, false);
2887 
2888 	if (plug == current->plug)
2889 		current->plug = NULL;
2890 }
2891 EXPORT_SYMBOL(blk_finish_plug);
2892 
blk_dev_init(void)2893 int __init blk_dev_init(void)
2894 {
2895 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2896 			sizeof(((struct request *)0)->cmd_flags));
2897 
2898 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2899 	kblockd_workqueue = alloc_workqueue("kblockd",
2900 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2901 	if (!kblockd_workqueue)
2902 		panic("Failed to create kblockd\n");
2903 
2904 	request_cachep = kmem_cache_create("blkdev_requests",
2905 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2906 
2907 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2908 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2909 
2910 	return 0;
2911 }
2912