1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
34 
35 #include "blk.h"
36 
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 
41 static int __make_request(struct request_queue *q, struct bio *bio);
42 
43 /*
44  * For the allocated request tables
45  */
46 static struct kmem_cache *request_cachep;
47 
48 /*
49  * For queue allocation
50  */
51 struct kmem_cache *blk_requestq_cachep;
52 
53 /*
54  * Controlling structure to kblockd
55  */
56 static struct workqueue_struct *kblockd_workqueue;
57 
drive_stat_acct(struct request * rq,int new_io)58 static void drive_stat_acct(struct request *rq, int new_io)
59 {
60 	struct hd_struct *part;
61 	int rw = rq_data_dir(rq);
62 	int cpu;
63 
64 	if (!blk_do_io_stat(rq))
65 		return;
66 
67 	cpu = part_stat_lock();
68 
69 	if (!new_io) {
70 		part = rq->part;
71 		part_stat_inc(cpu, part, merges[rw]);
72 	} else {
73 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
74 		if (!hd_struct_try_get(part)) {
75 			/*
76 			 * The partition is already being removed,
77 			 * the request will be accounted on the disk only
78 			 *
79 			 * We take a reference on disk->part0 although that
80 			 * partition will never be deleted, so we can treat
81 			 * it as any other partition.
82 			 */
83 			part = &rq->rq_disk->part0;
84 			hd_struct_get(part);
85 		}
86 		part_round_stats(cpu, part);
87 		part_inc_in_flight(part, rw);
88 		rq->part = part;
89 	}
90 
91 	part_stat_unlock();
92 }
93 
blk_queue_congestion_threshold(struct request_queue * q)94 void blk_queue_congestion_threshold(struct request_queue *q)
95 {
96 	int nr;
97 
98 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 	if (nr > q->nr_requests)
100 		nr = q->nr_requests;
101 	q->nr_congestion_on = nr;
102 
103 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 	if (nr < 1)
105 		nr = 1;
106 	q->nr_congestion_off = nr;
107 }
108 
109 /**
110  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111  * @bdev:	device
112  *
113  * Locates the passed device's request queue and returns the address of its
114  * backing_dev_info
115  *
116  * Will return NULL if the request queue cannot be located.
117  */
blk_get_backing_dev_info(struct block_device * bdev)118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119 {
120 	struct backing_dev_info *ret = NULL;
121 	struct request_queue *q = bdev_get_queue(bdev);
122 
123 	if (q)
124 		ret = &q->backing_dev_info;
125 	return ret;
126 }
127 EXPORT_SYMBOL(blk_get_backing_dev_info);
128 
blk_rq_init(struct request_queue * q,struct request * rq)129 void blk_rq_init(struct request_queue *q, struct request *rq)
130 {
131 	memset(rq, 0, sizeof(*rq));
132 
133 	INIT_LIST_HEAD(&rq->queuelist);
134 	INIT_LIST_HEAD(&rq->timeout_list);
135 	rq->cpu = -1;
136 	rq->q = q;
137 	rq->__sector = (sector_t) -1;
138 	INIT_HLIST_NODE(&rq->hash);
139 	RB_CLEAR_NODE(&rq->rb_node);
140 	rq->cmd = rq->__cmd;
141 	rq->cmd_len = BLK_MAX_CDB;
142 	rq->tag = -1;
143 	rq->ref_count = 1;
144 	rq->start_time = jiffies;
145 	set_start_time_ns(rq);
146 	rq->part = NULL;
147 }
148 EXPORT_SYMBOL(blk_rq_init);
149 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,int error)150 static void req_bio_endio(struct request *rq, struct bio *bio,
151 			  unsigned int nbytes, int error)
152 {
153 	if (error)
154 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 		error = -EIO;
157 
158 	if (unlikely(nbytes > bio->bi_size)) {
159 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 		       __func__, nbytes, bio->bi_size);
161 		nbytes = bio->bi_size;
162 	}
163 
164 	if (unlikely(rq->cmd_flags & REQ_QUIET))
165 		set_bit(BIO_QUIET, &bio->bi_flags);
166 
167 	bio->bi_size -= nbytes;
168 	bio->bi_sector += (nbytes >> 9);
169 
170 	if (bio_integrity(bio))
171 		bio_integrity_advance(bio, nbytes);
172 
173 	/* don't actually finish bio if it's part of flush sequence */
174 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 		bio_endio(bio, error);
176 }
177 
blk_dump_rq_flags(struct request * rq,char * msg)178 void blk_dump_rq_flags(struct request *rq, char *msg)
179 {
180 	int bit;
181 
182 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
183 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 		rq->cmd_flags);
185 
186 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
187 	       (unsigned long long)blk_rq_pos(rq),
188 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
189 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
190 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
191 
192 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
193 		printk(KERN_INFO "  cdb: ");
194 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
195 			printk("%02x ", rq->cmd[bit]);
196 		printk("\n");
197 	}
198 }
199 EXPORT_SYMBOL(blk_dump_rq_flags);
200 
blk_delay_work(struct work_struct * work)201 static void blk_delay_work(struct work_struct *work)
202 {
203 	struct request_queue *q;
204 
205 	q = container_of(work, struct request_queue, delay_work.work);
206 	spin_lock_irq(q->queue_lock);
207 	__blk_run_queue(q);
208 	spin_unlock_irq(q->queue_lock);
209 }
210 
211 /**
212  * blk_delay_queue - restart queueing after defined interval
213  * @q:		The &struct request_queue in question
214  * @msecs:	Delay in msecs
215  *
216  * Description:
217  *   Sometimes queueing needs to be postponed for a little while, to allow
218  *   resources to come back. This function will make sure that queueing is
219  *   restarted around the specified time.
220  */
blk_delay_queue(struct request_queue * q,unsigned long msecs)221 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
222 {
223 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
224 				msecs_to_jiffies(msecs));
225 }
226 EXPORT_SYMBOL(blk_delay_queue);
227 
228 /**
229  * blk_start_queue - restart a previously stopped queue
230  * @q:    The &struct request_queue in question
231  *
232  * Description:
233  *   blk_start_queue() will clear the stop flag on the queue, and call
234  *   the request_fn for the queue if it was in a stopped state when
235  *   entered. Also see blk_stop_queue(). Queue lock must be held.
236  **/
blk_start_queue(struct request_queue * q)237 void blk_start_queue(struct request_queue *q)
238 {
239 	WARN_ON(!irqs_disabled());
240 
241 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
242 	__blk_run_queue(q);
243 }
244 EXPORT_SYMBOL(blk_start_queue);
245 
246 /**
247  * blk_stop_queue - stop a queue
248  * @q:    The &struct request_queue in question
249  *
250  * Description:
251  *   The Linux block layer assumes that a block driver will consume all
252  *   entries on the request queue when the request_fn strategy is called.
253  *   Often this will not happen, because of hardware limitations (queue
254  *   depth settings). If a device driver gets a 'queue full' response,
255  *   or if it simply chooses not to queue more I/O at one point, it can
256  *   call this function to prevent the request_fn from being called until
257  *   the driver has signalled it's ready to go again. This happens by calling
258  *   blk_start_queue() to restart queue operations. Queue lock must be held.
259  **/
blk_stop_queue(struct request_queue * q)260 void blk_stop_queue(struct request_queue *q)
261 {
262 	__cancel_delayed_work(&q->delay_work);
263 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
264 }
265 EXPORT_SYMBOL(blk_stop_queue);
266 
267 /**
268  * blk_sync_queue - cancel any pending callbacks on a queue
269  * @q: the queue
270  *
271  * Description:
272  *     The block layer may perform asynchronous callback activity
273  *     on a queue, such as calling the unplug function after a timeout.
274  *     A block device may call blk_sync_queue to ensure that any
275  *     such activity is cancelled, thus allowing it to release resources
276  *     that the callbacks might use. The caller must already have made sure
277  *     that its ->make_request_fn will not re-add plugging prior to calling
278  *     this function.
279  *
280  *     This function does not cancel any asynchronous activity arising
281  *     out of elevator or throttling code. That would require elevaotor_exit()
282  *     and blk_throtl_exit() to be called with queue lock initialized.
283  *
284  */
blk_sync_queue(struct request_queue * q)285 void blk_sync_queue(struct request_queue *q)
286 {
287 	del_timer_sync(&q->timeout);
288 	cancel_delayed_work_sync(&q->delay_work);
289 }
290 EXPORT_SYMBOL(blk_sync_queue);
291 
292 /**
293  * __blk_run_queue - run a single device queue
294  * @q:	The queue to run
295  *
296  * Description:
297  *    See @blk_run_queue. This variant must be called with the queue lock
298  *    held and interrupts disabled.
299  */
__blk_run_queue(struct request_queue * q)300 void __blk_run_queue(struct request_queue *q)
301 {
302 	if (unlikely(blk_queue_stopped(q)))
303 		return;
304 
305 	q->request_fn(q);
306 }
307 EXPORT_SYMBOL(__blk_run_queue);
308 
309 /**
310  * blk_run_queue_async - run a single device queue in workqueue context
311  * @q:	The queue to run
312  *
313  * Description:
314  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
315  *    of us.
316  */
blk_run_queue_async(struct request_queue * q)317 void blk_run_queue_async(struct request_queue *q)
318 {
319 	if (likely(!blk_queue_stopped(q))) {
320 		__cancel_delayed_work(&q->delay_work);
321 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
322 	}
323 }
324 EXPORT_SYMBOL(blk_run_queue_async);
325 
326 /**
327  * blk_run_queue - run a single device queue
328  * @q: The queue to run
329  *
330  * Description:
331  *    Invoke request handling on this queue, if it has pending work to do.
332  *    May be used to restart queueing when a request has completed.
333  */
blk_run_queue(struct request_queue * q)334 void blk_run_queue(struct request_queue *q)
335 {
336 	unsigned long flags;
337 
338 	spin_lock_irqsave(q->queue_lock, flags);
339 	__blk_run_queue(q);
340 	spin_unlock_irqrestore(q->queue_lock, flags);
341 }
342 EXPORT_SYMBOL(blk_run_queue);
343 
blk_put_queue(struct request_queue * q)344 void blk_put_queue(struct request_queue *q)
345 {
346 	kobject_put(&q->kobj);
347 }
348 
349 /*
350  * Note: If a driver supplied the queue lock, it should not zap that lock
351  * unexpectedly as some queue cleanup components like elevator_exit() and
352  * blk_throtl_exit() need queue lock.
353  */
blk_cleanup_queue(struct request_queue * q)354 void blk_cleanup_queue(struct request_queue *q)
355 {
356 	/*
357 	 * We know we have process context here, so we can be a little
358 	 * cautious and ensure that pending block actions on this device
359 	 * are done before moving on. Going into this function, we should
360 	 * not have processes doing IO to this device.
361 	 */
362 	blk_sync_queue(q);
363 
364 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
365 	mutex_lock(&q->sysfs_lock);
366 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
367 	mutex_unlock(&q->sysfs_lock);
368 
369 	if (q->elevator)
370 		elevator_exit(q->elevator);
371 
372 	blk_throtl_exit(q);
373 
374 	blk_put_queue(q);
375 }
376 EXPORT_SYMBOL(blk_cleanup_queue);
377 
blk_init_free_list(struct request_queue * q)378 static int blk_init_free_list(struct request_queue *q)
379 {
380 	struct request_list *rl = &q->rq;
381 
382 	if (unlikely(rl->rq_pool))
383 		return 0;
384 
385 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
386 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
387 	rl->elvpriv = 0;
388 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
389 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
390 
391 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
392 				mempool_free_slab, request_cachep, q->node);
393 
394 	if (!rl->rq_pool)
395 		return -ENOMEM;
396 
397 	return 0;
398 }
399 
blk_alloc_queue(gfp_t gfp_mask)400 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
401 {
402 	return blk_alloc_queue_node(gfp_mask, -1);
403 }
404 EXPORT_SYMBOL(blk_alloc_queue);
405 
blk_alloc_queue_node(gfp_t gfp_mask,int node_id)406 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
407 {
408 	struct request_queue *q;
409 	int err;
410 
411 	q = kmem_cache_alloc_node(blk_requestq_cachep,
412 				gfp_mask | __GFP_ZERO, node_id);
413 	if (!q)
414 		return NULL;
415 
416 	q->backing_dev_info.ra_pages =
417 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
418 	q->backing_dev_info.state = 0;
419 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
420 	q->backing_dev_info.name = "block";
421 
422 	err = bdi_init(&q->backing_dev_info);
423 	if (err) {
424 		kmem_cache_free(blk_requestq_cachep, q);
425 		return NULL;
426 	}
427 
428 	if (blk_throtl_init(q)) {
429 		kmem_cache_free(blk_requestq_cachep, q);
430 		return NULL;
431 	}
432 
433 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
434 		    laptop_mode_timer_fn, (unsigned long) q);
435 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
436 	INIT_LIST_HEAD(&q->timeout_list);
437 	INIT_LIST_HEAD(&q->flush_queue[0]);
438 	INIT_LIST_HEAD(&q->flush_queue[1]);
439 	INIT_LIST_HEAD(&q->flush_data_in_flight);
440 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
441 
442 	kobject_init(&q->kobj, &blk_queue_ktype);
443 
444 	mutex_init(&q->sysfs_lock);
445 	spin_lock_init(&q->__queue_lock);
446 
447 	/*
448 	 * By default initialize queue_lock to internal lock and driver can
449 	 * override it later if need be.
450 	 */
451 	q->queue_lock = &q->__queue_lock;
452 
453 	return q;
454 }
455 EXPORT_SYMBOL(blk_alloc_queue_node);
456 
457 /**
458  * blk_init_queue  - prepare a request queue for use with a block device
459  * @rfn:  The function to be called to process requests that have been
460  *        placed on the queue.
461  * @lock: Request queue spin lock
462  *
463  * Description:
464  *    If a block device wishes to use the standard request handling procedures,
465  *    which sorts requests and coalesces adjacent requests, then it must
466  *    call blk_init_queue().  The function @rfn will be called when there
467  *    are requests on the queue that need to be processed.  If the device
468  *    supports plugging, then @rfn may not be called immediately when requests
469  *    are available on the queue, but may be called at some time later instead.
470  *    Plugged queues are generally unplugged when a buffer belonging to one
471  *    of the requests on the queue is needed, or due to memory pressure.
472  *
473  *    @rfn is not required, or even expected, to remove all requests off the
474  *    queue, but only as many as it can handle at a time.  If it does leave
475  *    requests on the queue, it is responsible for arranging that the requests
476  *    get dealt with eventually.
477  *
478  *    The queue spin lock must be held while manipulating the requests on the
479  *    request queue; this lock will be taken also from interrupt context, so irq
480  *    disabling is needed for it.
481  *
482  *    Function returns a pointer to the initialized request queue, or %NULL if
483  *    it didn't succeed.
484  *
485  * Note:
486  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
487  *    when the block device is deactivated (such as at module unload).
488  **/
489 
blk_init_queue(request_fn_proc * rfn,spinlock_t * lock)490 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
491 {
492 	return blk_init_queue_node(rfn, lock, -1);
493 }
494 EXPORT_SYMBOL(blk_init_queue);
495 
496 struct request_queue *
blk_init_queue_node(request_fn_proc * rfn,spinlock_t * lock,int node_id)497 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
498 {
499 	struct request_queue *uninit_q, *q;
500 
501 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
502 	if (!uninit_q)
503 		return NULL;
504 
505 	q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
506 	if (!q)
507 		blk_cleanup_queue(uninit_q);
508 
509 	return q;
510 }
511 EXPORT_SYMBOL(blk_init_queue_node);
512 
513 struct request_queue *
blk_init_allocated_queue(struct request_queue * q,request_fn_proc * rfn,spinlock_t * lock)514 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
515 			 spinlock_t *lock)
516 {
517 	return blk_init_allocated_queue_node(q, rfn, lock, -1);
518 }
519 EXPORT_SYMBOL(blk_init_allocated_queue);
520 
521 struct request_queue *
blk_init_allocated_queue_node(struct request_queue * q,request_fn_proc * rfn,spinlock_t * lock,int node_id)522 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
523 			      spinlock_t *lock, int node_id)
524 {
525 	if (!q)
526 		return NULL;
527 
528 	q->node = node_id;
529 	if (blk_init_free_list(q))
530 		return NULL;
531 
532 	q->request_fn		= rfn;
533 	q->prep_rq_fn		= NULL;
534 	q->unprep_rq_fn		= NULL;
535 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
536 
537 	/* Override internal queue lock with supplied lock pointer */
538 	if (lock)
539 		q->queue_lock		= lock;
540 
541 	/*
542 	 * This also sets hw/phys segments, boundary and size
543 	 */
544 	blk_queue_make_request(q, __make_request);
545 
546 	q->sg_reserved_size = INT_MAX;
547 
548 	/*
549 	 * all done
550 	 */
551 	if (!elevator_init(q, NULL)) {
552 		blk_queue_congestion_threshold(q);
553 		return q;
554 	}
555 
556 	return NULL;
557 }
558 EXPORT_SYMBOL(blk_init_allocated_queue_node);
559 
blk_get_queue(struct request_queue * q)560 int blk_get_queue(struct request_queue *q)
561 {
562 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
563 		kobject_get(&q->kobj);
564 		return 0;
565 	}
566 
567 	return 1;
568 }
569 
blk_free_request(struct request_queue * q,struct request * rq)570 static inline void blk_free_request(struct request_queue *q, struct request *rq)
571 {
572 	BUG_ON(rq->cmd_flags & REQ_ON_PLUG);
573 
574 	if (rq->cmd_flags & REQ_ELVPRIV)
575 		elv_put_request(q, rq);
576 	mempool_free(rq, q->rq.rq_pool);
577 }
578 
579 static struct request *
blk_alloc_request(struct request_queue * q,int flags,int priv,gfp_t gfp_mask)580 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
581 {
582 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
583 
584 	if (!rq)
585 		return NULL;
586 
587 	blk_rq_init(q, rq);
588 
589 	rq->cmd_flags = flags | REQ_ALLOCED;
590 
591 	if (priv) {
592 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
593 			mempool_free(rq, q->rq.rq_pool);
594 			return NULL;
595 		}
596 		rq->cmd_flags |= REQ_ELVPRIV;
597 	}
598 
599 	return rq;
600 }
601 
602 /*
603  * ioc_batching returns true if the ioc is a valid batching request and
604  * should be given priority access to a request.
605  */
ioc_batching(struct request_queue * q,struct io_context * ioc)606 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
607 {
608 	if (!ioc)
609 		return 0;
610 
611 	/*
612 	 * Make sure the process is able to allocate at least 1 request
613 	 * even if the batch times out, otherwise we could theoretically
614 	 * lose wakeups.
615 	 */
616 	return ioc->nr_batch_requests == q->nr_batching ||
617 		(ioc->nr_batch_requests > 0
618 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
619 }
620 
621 /*
622  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
623  * will cause the process to be a "batcher" on all queues in the system. This
624  * is the behaviour we want though - once it gets a wakeup it should be given
625  * a nice run.
626  */
ioc_set_batching(struct request_queue * q,struct io_context * ioc)627 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
628 {
629 	if (!ioc || ioc_batching(q, ioc))
630 		return;
631 
632 	ioc->nr_batch_requests = q->nr_batching;
633 	ioc->last_waited = jiffies;
634 }
635 
__freed_request(struct request_queue * q,int sync)636 static void __freed_request(struct request_queue *q, int sync)
637 {
638 	struct request_list *rl = &q->rq;
639 
640 	if (rl->count[sync] < queue_congestion_off_threshold(q))
641 		blk_clear_queue_congested(q, sync);
642 
643 	if (rl->count[sync] + 1 <= q->nr_requests) {
644 		if (waitqueue_active(&rl->wait[sync]))
645 			wake_up(&rl->wait[sync]);
646 
647 		blk_clear_queue_full(q, sync);
648 	}
649 }
650 
651 /*
652  * A request has just been released.  Account for it, update the full and
653  * congestion status, wake up any waiters.   Called under q->queue_lock.
654  */
freed_request(struct request_queue * q,int sync,int priv)655 static void freed_request(struct request_queue *q, int sync, int priv)
656 {
657 	struct request_list *rl = &q->rq;
658 
659 	rl->count[sync]--;
660 	if (priv)
661 		rl->elvpriv--;
662 
663 	__freed_request(q, sync);
664 
665 	if (unlikely(rl->starved[sync ^ 1]))
666 		__freed_request(q, sync ^ 1);
667 }
668 
669 /*
670  * Determine if elevator data should be initialized when allocating the
671  * request associated with @bio.
672  */
blk_rq_should_init_elevator(struct bio * bio)673 static bool blk_rq_should_init_elevator(struct bio *bio)
674 {
675 	if (!bio)
676 		return true;
677 
678 	/*
679 	 * Flush requests do not use the elevator so skip initialization.
680 	 * This allows a request to share the flush and elevator data.
681 	 */
682 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
683 		return false;
684 
685 	return true;
686 }
687 
688 /*
689  * Get a free request, queue_lock must be held.
690  * Returns NULL on failure, with queue_lock held.
691  * Returns !NULL on success, with queue_lock *not held*.
692  */
get_request(struct request_queue * q,int rw_flags,struct bio * bio,gfp_t gfp_mask)693 static struct request *get_request(struct request_queue *q, int rw_flags,
694 				   struct bio *bio, gfp_t gfp_mask)
695 {
696 	struct request *rq = NULL;
697 	struct request_list *rl = &q->rq;
698 	struct io_context *ioc = NULL;
699 	const bool is_sync = rw_is_sync(rw_flags) != 0;
700 	int may_queue, priv = 0;
701 
702 	may_queue = elv_may_queue(q, rw_flags);
703 	if (may_queue == ELV_MQUEUE_NO)
704 		goto rq_starved;
705 
706 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
707 		if (rl->count[is_sync]+1 >= q->nr_requests) {
708 			ioc = current_io_context(GFP_ATOMIC, q->node);
709 			/*
710 			 * The queue will fill after this allocation, so set
711 			 * it as full, and mark this process as "batching".
712 			 * This process will be allowed to complete a batch of
713 			 * requests, others will be blocked.
714 			 */
715 			if (!blk_queue_full(q, is_sync)) {
716 				ioc_set_batching(q, ioc);
717 				blk_set_queue_full(q, is_sync);
718 			} else {
719 				if (may_queue != ELV_MQUEUE_MUST
720 						&& !ioc_batching(q, ioc)) {
721 					/*
722 					 * The queue is full and the allocating
723 					 * process is not a "batcher", and not
724 					 * exempted by the IO scheduler
725 					 */
726 					goto out;
727 				}
728 			}
729 		}
730 		blk_set_queue_congested(q, is_sync);
731 	}
732 
733 	/*
734 	 * Only allow batching queuers to allocate up to 50% over the defined
735 	 * limit of requests, otherwise we could have thousands of requests
736 	 * allocated with any setting of ->nr_requests
737 	 */
738 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
739 		goto out;
740 
741 	rl->count[is_sync]++;
742 	rl->starved[is_sync] = 0;
743 
744 	if (blk_rq_should_init_elevator(bio)) {
745 		priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
746 		if (priv)
747 			rl->elvpriv++;
748 	}
749 
750 	if (blk_queue_io_stat(q))
751 		rw_flags |= REQ_IO_STAT;
752 	spin_unlock_irq(q->queue_lock);
753 
754 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
755 	if (unlikely(!rq)) {
756 		/*
757 		 * Allocation failed presumably due to memory. Undo anything
758 		 * we might have messed up.
759 		 *
760 		 * Allocating task should really be put onto the front of the
761 		 * wait queue, but this is pretty rare.
762 		 */
763 		spin_lock_irq(q->queue_lock);
764 		freed_request(q, is_sync, priv);
765 
766 		/*
767 		 * in the very unlikely event that allocation failed and no
768 		 * requests for this direction was pending, mark us starved
769 		 * so that freeing of a request in the other direction will
770 		 * notice us. another possible fix would be to split the
771 		 * rq mempool into READ and WRITE
772 		 */
773 rq_starved:
774 		if (unlikely(rl->count[is_sync] == 0))
775 			rl->starved[is_sync] = 1;
776 
777 		goto out;
778 	}
779 
780 	/*
781 	 * ioc may be NULL here, and ioc_batching will be false. That's
782 	 * OK, if the queue is under the request limit then requests need
783 	 * not count toward the nr_batch_requests limit. There will always
784 	 * be some limit enforced by BLK_BATCH_TIME.
785 	 */
786 	if (ioc_batching(q, ioc))
787 		ioc->nr_batch_requests--;
788 
789 	trace_block_getrq(q, bio, rw_flags & 1);
790 out:
791 	return rq;
792 }
793 
794 /*
795  * No available requests for this queue, wait for some requests to become
796  * available.
797  *
798  * Called with q->queue_lock held, and returns with it unlocked.
799  */
get_request_wait(struct request_queue * q,int rw_flags,struct bio * bio)800 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
801 					struct bio *bio)
802 {
803 	const bool is_sync = rw_is_sync(rw_flags) != 0;
804 	struct request *rq;
805 
806 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
807 	while (!rq) {
808 		DEFINE_WAIT(wait);
809 		struct io_context *ioc;
810 		struct request_list *rl = &q->rq;
811 
812 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
813 				TASK_UNINTERRUPTIBLE);
814 
815 		trace_block_sleeprq(q, bio, rw_flags & 1);
816 
817 		spin_unlock_irq(q->queue_lock);
818 		io_schedule();
819 
820 		/*
821 		 * After sleeping, we become a "batching" process and
822 		 * will be able to allocate at least one request, and
823 		 * up to a big batch of them for a small period time.
824 		 * See ioc_batching, ioc_set_batching
825 		 */
826 		ioc = current_io_context(GFP_NOIO, q->node);
827 		ioc_set_batching(q, ioc);
828 
829 		spin_lock_irq(q->queue_lock);
830 		finish_wait(&rl->wait[is_sync], &wait);
831 
832 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
833 	};
834 
835 	return rq;
836 }
837 
blk_get_request(struct request_queue * q,int rw,gfp_t gfp_mask)838 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
839 {
840 	struct request *rq;
841 
842 	BUG_ON(rw != READ && rw != WRITE);
843 
844 	spin_lock_irq(q->queue_lock);
845 	if (gfp_mask & __GFP_WAIT) {
846 		rq = get_request_wait(q, rw, NULL);
847 	} else {
848 		rq = get_request(q, rw, NULL, gfp_mask);
849 		if (!rq)
850 			spin_unlock_irq(q->queue_lock);
851 	}
852 	/* q->queue_lock is unlocked at this point */
853 
854 	return rq;
855 }
856 EXPORT_SYMBOL(blk_get_request);
857 
858 /**
859  * blk_make_request - given a bio, allocate a corresponding struct request.
860  * @q: target request queue
861  * @bio:  The bio describing the memory mappings that will be submitted for IO.
862  *        It may be a chained-bio properly constructed by block/bio layer.
863  * @gfp_mask: gfp flags to be used for memory allocation
864  *
865  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
866  * type commands. Where the struct request needs to be farther initialized by
867  * the caller. It is passed a &struct bio, which describes the memory info of
868  * the I/O transfer.
869  *
870  * The caller of blk_make_request must make sure that bi_io_vec
871  * are set to describe the memory buffers. That bio_data_dir() will return
872  * the needed direction of the request. (And all bio's in the passed bio-chain
873  * are properly set accordingly)
874  *
875  * If called under none-sleepable conditions, mapped bio buffers must not
876  * need bouncing, by calling the appropriate masked or flagged allocator,
877  * suitable for the target device. Otherwise the call to blk_queue_bounce will
878  * BUG.
879  *
880  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
881  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
882  * anything but the first bio in the chain. Otherwise you risk waiting for IO
883  * completion of a bio that hasn't been submitted yet, thus resulting in a
884  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
885  * of bio_alloc(), as that avoids the mempool deadlock.
886  * If possible a big IO should be split into smaller parts when allocation
887  * fails. Partial allocation should not be an error, or you risk a live-lock.
888  */
blk_make_request(struct request_queue * q,struct bio * bio,gfp_t gfp_mask)889 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
890 				 gfp_t gfp_mask)
891 {
892 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
893 
894 	if (unlikely(!rq))
895 		return ERR_PTR(-ENOMEM);
896 
897 	for_each_bio(bio) {
898 		struct bio *bounce_bio = bio;
899 		int ret;
900 
901 		blk_queue_bounce(q, &bounce_bio);
902 		ret = blk_rq_append_bio(q, rq, bounce_bio);
903 		if (unlikely(ret)) {
904 			blk_put_request(rq);
905 			return ERR_PTR(ret);
906 		}
907 	}
908 
909 	return rq;
910 }
911 EXPORT_SYMBOL(blk_make_request);
912 
913 /**
914  * blk_requeue_request - put a request back on queue
915  * @q:		request queue where request should be inserted
916  * @rq:		request to be inserted
917  *
918  * Description:
919  *    Drivers often keep queueing requests until the hardware cannot accept
920  *    more, when that condition happens we need to put the request back
921  *    on the queue. Must be called with queue lock held.
922  */
blk_requeue_request(struct request_queue * q,struct request * rq)923 void blk_requeue_request(struct request_queue *q, struct request *rq)
924 {
925 	blk_delete_timer(rq);
926 	blk_clear_rq_complete(rq);
927 	trace_block_rq_requeue(q, rq);
928 
929 	if (blk_rq_tagged(rq))
930 		blk_queue_end_tag(q, rq);
931 
932 	BUG_ON(blk_queued_rq(rq));
933 
934 	elv_requeue_request(q, rq);
935 }
936 EXPORT_SYMBOL(blk_requeue_request);
937 
add_acct_request(struct request_queue * q,struct request * rq,int where)938 static void add_acct_request(struct request_queue *q, struct request *rq,
939 			     int where)
940 {
941 	drive_stat_acct(rq, 1);
942 	__elv_add_request(q, rq, where);
943 }
944 
945 /**
946  * blk_insert_request - insert a special request into a request queue
947  * @q:		request queue where request should be inserted
948  * @rq:		request to be inserted
949  * @at_head:	insert request at head or tail of queue
950  * @data:	private data
951  *
952  * Description:
953  *    Many block devices need to execute commands asynchronously, so they don't
954  *    block the whole kernel from preemption during request execution.  This is
955  *    accomplished normally by inserting aritficial requests tagged as
956  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
957  *    be scheduled for actual execution by the request queue.
958  *
959  *    We have the option of inserting the head or the tail of the queue.
960  *    Typically we use the tail for new ioctls and so forth.  We use the head
961  *    of the queue for things like a QUEUE_FULL message from a device, or a
962  *    host that is unable to accept a particular command.
963  */
blk_insert_request(struct request_queue * q,struct request * rq,int at_head,void * data)964 void blk_insert_request(struct request_queue *q, struct request *rq,
965 			int at_head, void *data)
966 {
967 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
968 	unsigned long flags;
969 
970 	/*
971 	 * tell I/O scheduler that this isn't a regular read/write (ie it
972 	 * must not attempt merges on this) and that it acts as a soft
973 	 * barrier
974 	 */
975 	rq->cmd_type = REQ_TYPE_SPECIAL;
976 
977 	rq->special = data;
978 
979 	spin_lock_irqsave(q->queue_lock, flags);
980 
981 	/*
982 	 * If command is tagged, release the tag
983 	 */
984 	if (blk_rq_tagged(rq))
985 		blk_queue_end_tag(q, rq);
986 
987 	add_acct_request(q, rq, where);
988 	__blk_run_queue(q);
989 	spin_unlock_irqrestore(q->queue_lock, flags);
990 }
991 EXPORT_SYMBOL(blk_insert_request);
992 
part_round_stats_single(int cpu,struct hd_struct * part,unsigned long now)993 static void part_round_stats_single(int cpu, struct hd_struct *part,
994 				    unsigned long now)
995 {
996 	if (now == part->stamp)
997 		return;
998 
999 	if (part_in_flight(part)) {
1000 		__part_stat_add(cpu, part, time_in_queue,
1001 				part_in_flight(part) * (now - part->stamp));
1002 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1003 	}
1004 	part->stamp = now;
1005 }
1006 
1007 /**
1008  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1009  * @cpu: cpu number for stats access
1010  * @part: target partition
1011  *
1012  * The average IO queue length and utilisation statistics are maintained
1013  * by observing the current state of the queue length and the amount of
1014  * time it has been in this state for.
1015  *
1016  * Normally, that accounting is done on IO completion, but that can result
1017  * in more than a second's worth of IO being accounted for within any one
1018  * second, leading to >100% utilisation.  To deal with that, we call this
1019  * function to do a round-off before returning the results when reading
1020  * /proc/diskstats.  This accounts immediately for all queue usage up to
1021  * the current jiffies and restarts the counters again.
1022  */
part_round_stats(int cpu,struct hd_struct * part)1023 void part_round_stats(int cpu, struct hd_struct *part)
1024 {
1025 	unsigned long now = jiffies;
1026 
1027 	if (part->partno)
1028 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1029 	part_round_stats_single(cpu, part, now);
1030 }
1031 EXPORT_SYMBOL_GPL(part_round_stats);
1032 
1033 /*
1034  * queue lock must be held
1035  */
__blk_put_request(struct request_queue * q,struct request * req)1036 void __blk_put_request(struct request_queue *q, struct request *req)
1037 {
1038 	if (unlikely(!q))
1039 		return;
1040 	if (unlikely(--req->ref_count))
1041 		return;
1042 
1043 	elv_completed_request(q, req);
1044 
1045 	/* this is a bio leak */
1046 	WARN_ON(req->bio != NULL);
1047 
1048 	/*
1049 	 * Request may not have originated from ll_rw_blk. if not,
1050 	 * it didn't come out of our reserved rq pools
1051 	 */
1052 	if (req->cmd_flags & REQ_ALLOCED) {
1053 		int is_sync = rq_is_sync(req) != 0;
1054 		int priv = req->cmd_flags & REQ_ELVPRIV;
1055 
1056 		BUG_ON(!list_empty(&req->queuelist));
1057 		BUG_ON(!hlist_unhashed(&req->hash));
1058 
1059 		blk_free_request(q, req);
1060 		freed_request(q, is_sync, priv);
1061 	}
1062 }
1063 EXPORT_SYMBOL_GPL(__blk_put_request);
1064 
blk_put_request(struct request * req)1065 void blk_put_request(struct request *req)
1066 {
1067 	unsigned long flags;
1068 	struct request_queue *q = req->q;
1069 
1070 	spin_lock_irqsave(q->queue_lock, flags);
1071 	__blk_put_request(q, req);
1072 	spin_unlock_irqrestore(q->queue_lock, flags);
1073 }
1074 EXPORT_SYMBOL(blk_put_request);
1075 
1076 /**
1077  * blk_add_request_payload - add a payload to a request
1078  * @rq: request to update
1079  * @page: page backing the payload
1080  * @len: length of the payload.
1081  *
1082  * This allows to later add a payload to an already submitted request by
1083  * a block driver.  The driver needs to take care of freeing the payload
1084  * itself.
1085  *
1086  * Note that this is a quite horrible hack and nothing but handling of
1087  * discard requests should ever use it.
1088  */
blk_add_request_payload(struct request * rq,struct page * page,unsigned int len)1089 void blk_add_request_payload(struct request *rq, struct page *page,
1090 		unsigned int len)
1091 {
1092 	struct bio *bio = rq->bio;
1093 
1094 	bio->bi_io_vec->bv_page = page;
1095 	bio->bi_io_vec->bv_offset = 0;
1096 	bio->bi_io_vec->bv_len = len;
1097 
1098 	bio->bi_size = len;
1099 	bio->bi_vcnt = 1;
1100 	bio->bi_phys_segments = 1;
1101 
1102 	rq->__data_len = rq->resid_len = len;
1103 	rq->nr_phys_segments = 1;
1104 	rq->buffer = bio_data(bio);
1105 }
1106 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1107 
bio_attempt_back_merge(struct request_queue * q,struct request * req,struct bio * bio)1108 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1109 				   struct bio *bio)
1110 {
1111 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1112 
1113 	/*
1114 	 * Debug stuff, kill later
1115 	 */
1116 	if (!rq_mergeable(req)) {
1117 		blk_dump_rq_flags(req, "back");
1118 		return false;
1119 	}
1120 
1121 	if (!ll_back_merge_fn(q, req, bio))
1122 		return false;
1123 
1124 	trace_block_bio_backmerge(q, bio);
1125 
1126 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1127 		blk_rq_set_mixed_merge(req);
1128 
1129 	req->biotail->bi_next = bio;
1130 	req->biotail = bio;
1131 	req->__data_len += bio->bi_size;
1132 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1133 
1134 	drive_stat_acct(req, 0);
1135 	return true;
1136 }
1137 
bio_attempt_front_merge(struct request_queue * q,struct request * req,struct bio * bio)1138 static bool bio_attempt_front_merge(struct request_queue *q,
1139 				    struct request *req, struct bio *bio)
1140 {
1141 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1142 	sector_t sector;
1143 
1144 	/*
1145 	 * Debug stuff, kill later
1146 	 */
1147 	if (!rq_mergeable(req)) {
1148 		blk_dump_rq_flags(req, "front");
1149 		return false;
1150 	}
1151 
1152 	if (!ll_front_merge_fn(q, req, bio))
1153 		return false;
1154 
1155 	trace_block_bio_frontmerge(q, bio);
1156 
1157 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1158 		blk_rq_set_mixed_merge(req);
1159 
1160 	sector = bio->bi_sector;
1161 
1162 	bio->bi_next = req->bio;
1163 	req->bio = bio;
1164 
1165 	/*
1166 	 * may not be valid. if the low level driver said
1167 	 * it didn't need a bounce buffer then it better
1168 	 * not touch req->buffer either...
1169 	 */
1170 	req->buffer = bio_data(bio);
1171 	req->__sector = bio->bi_sector;
1172 	req->__data_len += bio->bi_size;
1173 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1174 
1175 	drive_stat_acct(req, 0);
1176 	return true;
1177 }
1178 
1179 /*
1180  * Attempts to merge with the plugged list in the current process. Returns
1181  * true if merge was successful, otherwise false.
1182  */
attempt_plug_merge(struct task_struct * tsk,struct request_queue * q,struct bio * bio)1183 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1184 			       struct bio *bio)
1185 {
1186 	struct blk_plug *plug;
1187 	struct request *rq;
1188 	bool ret = false;
1189 
1190 	plug = tsk->plug;
1191 	if (!plug)
1192 		goto out;
1193 
1194 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1195 		int el_ret;
1196 
1197 		if (rq->q != q)
1198 			continue;
1199 
1200 		el_ret = elv_try_merge(rq, bio);
1201 		if (el_ret == ELEVATOR_BACK_MERGE) {
1202 			ret = bio_attempt_back_merge(q, rq, bio);
1203 			if (ret)
1204 				break;
1205 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1206 			ret = bio_attempt_front_merge(q, rq, bio);
1207 			if (ret)
1208 				break;
1209 		}
1210 	}
1211 out:
1212 	return ret;
1213 }
1214 
init_request_from_bio(struct request * req,struct bio * bio)1215 void init_request_from_bio(struct request *req, struct bio *bio)
1216 {
1217 	req->cpu = bio->bi_comp_cpu;
1218 	req->cmd_type = REQ_TYPE_FS;
1219 
1220 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1221 	if (bio->bi_rw & REQ_RAHEAD)
1222 		req->cmd_flags |= REQ_FAILFAST_MASK;
1223 
1224 	req->errors = 0;
1225 	req->__sector = bio->bi_sector;
1226 	req->ioprio = bio_prio(bio);
1227 	blk_rq_bio_prep(req->q, req, bio);
1228 }
1229 
__make_request(struct request_queue * q,struct bio * bio)1230 static int __make_request(struct request_queue *q, struct bio *bio)
1231 {
1232 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1233 	struct blk_plug *plug;
1234 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1235 	struct request *req;
1236 
1237 	/*
1238 	 * low level driver can indicate that it wants pages above a
1239 	 * certain limit bounced to low memory (ie for highmem, or even
1240 	 * ISA dma in theory)
1241 	 */
1242 	blk_queue_bounce(q, &bio);
1243 
1244 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1245 		spin_lock_irq(q->queue_lock);
1246 		where = ELEVATOR_INSERT_FLUSH;
1247 		goto get_rq;
1248 	}
1249 
1250 	/*
1251 	 * Check if we can merge with the plugged list before grabbing
1252 	 * any locks.
1253 	 */
1254 	if (attempt_plug_merge(current, q, bio))
1255 		goto out;
1256 
1257 	spin_lock_irq(q->queue_lock);
1258 
1259 	el_ret = elv_merge(q, &req, bio);
1260 	if (el_ret == ELEVATOR_BACK_MERGE) {
1261 		BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1262 		if (bio_attempt_back_merge(q, req, bio)) {
1263 			if (!attempt_back_merge(q, req))
1264 				elv_merged_request(q, req, el_ret);
1265 			goto out_unlock;
1266 		}
1267 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1268 		BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1269 		if (bio_attempt_front_merge(q, req, bio)) {
1270 			if (!attempt_front_merge(q, req))
1271 				elv_merged_request(q, req, el_ret);
1272 			goto out_unlock;
1273 		}
1274 	}
1275 
1276 get_rq:
1277 	/*
1278 	 * This sync check and mask will be re-done in init_request_from_bio(),
1279 	 * but we need to set it earlier to expose the sync flag to the
1280 	 * rq allocator and io schedulers.
1281 	 */
1282 	rw_flags = bio_data_dir(bio);
1283 	if (sync)
1284 		rw_flags |= REQ_SYNC;
1285 
1286 	/*
1287 	 * Grab a free request. This is might sleep but can not fail.
1288 	 * Returns with the queue unlocked.
1289 	 */
1290 	req = get_request_wait(q, rw_flags, bio);
1291 
1292 	/*
1293 	 * After dropping the lock and possibly sleeping here, our request
1294 	 * may now be mergeable after it had proven unmergeable (above).
1295 	 * We don't worry about that case for efficiency. It won't happen
1296 	 * often, and the elevators are able to handle it.
1297 	 */
1298 	init_request_from_bio(req, bio);
1299 
1300 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1301 	    bio_flagged(bio, BIO_CPU_AFFINE)) {
1302 		req->cpu = blk_cpu_to_group(get_cpu());
1303 		put_cpu();
1304 	}
1305 
1306 	plug = current->plug;
1307 	if (plug) {
1308 		/*
1309 		 * If this is the first request added after a plug, fire
1310 		 * of a plug trace. If others have been added before, check
1311 		 * if we have multiple devices in this plug. If so, make a
1312 		 * note to sort the list before dispatch.
1313 		 */
1314 		if (list_empty(&plug->list))
1315 			trace_block_plug(q);
1316 		else if (!plug->should_sort) {
1317 			struct request *__rq;
1318 
1319 			__rq = list_entry_rq(plug->list.prev);
1320 			if (__rq->q != q)
1321 				plug->should_sort = 1;
1322 		}
1323 		/*
1324 		 * Debug flag, kill later
1325 		 */
1326 		req->cmd_flags |= REQ_ON_PLUG;
1327 		list_add_tail(&req->queuelist, &plug->list);
1328 		drive_stat_acct(req, 1);
1329 	} else {
1330 		spin_lock_irq(q->queue_lock);
1331 		add_acct_request(q, req, where);
1332 		__blk_run_queue(q);
1333 out_unlock:
1334 		spin_unlock_irq(q->queue_lock);
1335 	}
1336 out:
1337 	return 0;
1338 }
1339 
1340 /*
1341  * If bio->bi_dev is a partition, remap the location
1342  */
blk_partition_remap(struct bio * bio)1343 static inline void blk_partition_remap(struct bio *bio)
1344 {
1345 	struct block_device *bdev = bio->bi_bdev;
1346 
1347 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1348 		struct hd_struct *p = bdev->bd_part;
1349 
1350 		bio->bi_sector += p->start_sect;
1351 		bio->bi_bdev = bdev->bd_contains;
1352 
1353 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1354 				      bdev->bd_dev,
1355 				      bio->bi_sector - p->start_sect);
1356 	}
1357 }
1358 
handle_bad_sector(struct bio * bio)1359 static void handle_bad_sector(struct bio *bio)
1360 {
1361 	char b[BDEVNAME_SIZE];
1362 
1363 	printk(KERN_INFO "attempt to access beyond end of device\n");
1364 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1365 			bdevname(bio->bi_bdev, b),
1366 			bio->bi_rw,
1367 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1368 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1369 
1370 	set_bit(BIO_EOF, &bio->bi_flags);
1371 }
1372 
1373 #ifdef CONFIG_FAIL_MAKE_REQUEST
1374 
1375 static DECLARE_FAULT_ATTR(fail_make_request);
1376 
setup_fail_make_request(char * str)1377 static int __init setup_fail_make_request(char *str)
1378 {
1379 	return setup_fault_attr(&fail_make_request, str);
1380 }
1381 __setup("fail_make_request=", setup_fail_make_request);
1382 
should_fail_request(struct bio * bio)1383 static int should_fail_request(struct bio *bio)
1384 {
1385 	struct hd_struct *part = bio->bi_bdev->bd_part;
1386 
1387 	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1388 		return should_fail(&fail_make_request, bio->bi_size);
1389 
1390 	return 0;
1391 }
1392 
fail_make_request_debugfs(void)1393 static int __init fail_make_request_debugfs(void)
1394 {
1395 	return init_fault_attr_dentries(&fail_make_request,
1396 					"fail_make_request");
1397 }
1398 
1399 late_initcall(fail_make_request_debugfs);
1400 
1401 #else /* CONFIG_FAIL_MAKE_REQUEST */
1402 
should_fail_request(struct bio * bio)1403 static inline int should_fail_request(struct bio *bio)
1404 {
1405 	return 0;
1406 }
1407 
1408 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1409 
1410 /*
1411  * Check whether this bio extends beyond the end of the device.
1412  */
bio_check_eod(struct bio * bio,unsigned int nr_sectors)1413 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1414 {
1415 	sector_t maxsector;
1416 
1417 	if (!nr_sectors)
1418 		return 0;
1419 
1420 	/* Test device or partition size, when known. */
1421 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1422 	if (maxsector) {
1423 		sector_t sector = bio->bi_sector;
1424 
1425 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1426 			/*
1427 			 * This may well happen - the kernel calls bread()
1428 			 * without checking the size of the device, e.g., when
1429 			 * mounting a device.
1430 			 */
1431 			handle_bad_sector(bio);
1432 			return 1;
1433 		}
1434 	}
1435 
1436 	return 0;
1437 }
1438 
1439 /**
1440  * generic_make_request - hand a buffer to its device driver for I/O
1441  * @bio:  The bio describing the location in memory and on the device.
1442  *
1443  * generic_make_request() is used to make I/O requests of block
1444  * devices. It is passed a &struct bio, which describes the I/O that needs
1445  * to be done.
1446  *
1447  * generic_make_request() does not return any status.  The
1448  * success/failure status of the request, along with notification of
1449  * completion, is delivered asynchronously through the bio->bi_end_io
1450  * function described (one day) else where.
1451  *
1452  * The caller of generic_make_request must make sure that bi_io_vec
1453  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1454  * set to describe the device address, and the
1455  * bi_end_io and optionally bi_private are set to describe how
1456  * completion notification should be signaled.
1457  *
1458  * generic_make_request and the drivers it calls may use bi_next if this
1459  * bio happens to be merged with someone else, and may change bi_dev and
1460  * bi_sector for remaps as it sees fit.  So the values of these fields
1461  * should NOT be depended on after the call to generic_make_request.
1462  */
__generic_make_request(struct bio * bio)1463 static inline void __generic_make_request(struct bio *bio)
1464 {
1465 	struct request_queue *q;
1466 	sector_t old_sector;
1467 	int ret, nr_sectors = bio_sectors(bio);
1468 	dev_t old_dev;
1469 	int err = -EIO;
1470 
1471 	might_sleep();
1472 
1473 	if (bio_check_eod(bio, nr_sectors))
1474 		goto end_io;
1475 
1476 	/*
1477 	 * Resolve the mapping until finished. (drivers are
1478 	 * still free to implement/resolve their own stacking
1479 	 * by explicitly returning 0)
1480 	 *
1481 	 * NOTE: we don't repeat the blk_size check for each new device.
1482 	 * Stacking drivers are expected to know what they are doing.
1483 	 */
1484 	old_sector = -1;
1485 	old_dev = 0;
1486 	do {
1487 		char b[BDEVNAME_SIZE];
1488 
1489 		q = bdev_get_queue(bio->bi_bdev);
1490 		if (unlikely(!q)) {
1491 			printk(KERN_ERR
1492 			       "generic_make_request: Trying to access "
1493 				"nonexistent block-device %s (%Lu)\n",
1494 				bdevname(bio->bi_bdev, b),
1495 				(long long) bio->bi_sector);
1496 			goto end_io;
1497 		}
1498 
1499 		if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1500 			     nr_sectors > queue_max_hw_sectors(q))) {
1501 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1502 			       bdevname(bio->bi_bdev, b),
1503 			       bio_sectors(bio),
1504 			       queue_max_hw_sectors(q));
1505 			goto end_io;
1506 		}
1507 
1508 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1509 			goto end_io;
1510 
1511 		if (should_fail_request(bio))
1512 			goto end_io;
1513 
1514 		/*
1515 		 * If this device has partitions, remap block n
1516 		 * of partition p to block n+start(p) of the disk.
1517 		 */
1518 		blk_partition_remap(bio);
1519 
1520 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1521 			goto end_io;
1522 
1523 		if (old_sector != -1)
1524 			trace_block_bio_remap(q, bio, old_dev, old_sector);
1525 
1526 		old_sector = bio->bi_sector;
1527 		old_dev = bio->bi_bdev->bd_dev;
1528 
1529 		if (bio_check_eod(bio, nr_sectors))
1530 			goto end_io;
1531 
1532 		/*
1533 		 * Filter flush bio's early so that make_request based
1534 		 * drivers without flush support don't have to worry
1535 		 * about them.
1536 		 */
1537 		if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1538 			bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1539 			if (!nr_sectors) {
1540 				err = 0;
1541 				goto end_io;
1542 			}
1543 		}
1544 
1545 		if ((bio->bi_rw & REQ_DISCARD) &&
1546 		    (!blk_queue_discard(q) ||
1547 		     ((bio->bi_rw & REQ_SECURE) &&
1548 		      !blk_queue_secdiscard(q)))) {
1549 			err = -EOPNOTSUPP;
1550 			goto end_io;
1551 		}
1552 
1553 		blk_throtl_bio(q, &bio);
1554 
1555 		/*
1556 		 * If bio = NULL, bio has been throttled and will be submitted
1557 		 * later.
1558 		 */
1559 		if (!bio)
1560 			break;
1561 
1562 		trace_block_bio_queue(q, bio);
1563 
1564 		ret = q->make_request_fn(q, bio);
1565 	} while (ret);
1566 
1567 	return;
1568 
1569 end_io:
1570 	bio_endio(bio, err);
1571 }
1572 
1573 /*
1574  * We only want one ->make_request_fn to be active at a time,
1575  * else stack usage with stacked devices could be a problem.
1576  * So use current->bio_list to keep a list of requests
1577  * submited by a make_request_fn function.
1578  * current->bio_list is also used as a flag to say if
1579  * generic_make_request is currently active in this task or not.
1580  * If it is NULL, then no make_request is active.  If it is non-NULL,
1581  * then a make_request is active, and new requests should be added
1582  * at the tail
1583  */
generic_make_request(struct bio * bio)1584 void generic_make_request(struct bio *bio)
1585 {
1586 	struct bio_list bio_list_on_stack;
1587 
1588 	if (current->bio_list) {
1589 		/* make_request is active */
1590 		bio_list_add(current->bio_list, bio);
1591 		return;
1592 	}
1593 	/* following loop may be a bit non-obvious, and so deserves some
1594 	 * explanation.
1595 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1596 	 * ensure that) so we have a list with a single bio.
1597 	 * We pretend that we have just taken it off a longer list, so
1598 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1599 	 * thus initialising the bio_list of new bios to be
1600 	 * added.  __generic_make_request may indeed add some more bios
1601 	 * through a recursive call to generic_make_request.  If it
1602 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1603 	 * from the top.  In this case we really did just take the bio
1604 	 * of the top of the list (no pretending) and so remove it from
1605 	 * bio_list, and call into __generic_make_request again.
1606 	 *
1607 	 * The loop was structured like this to make only one call to
1608 	 * __generic_make_request (which is important as it is large and
1609 	 * inlined) and to keep the structure simple.
1610 	 */
1611 	BUG_ON(bio->bi_next);
1612 	bio_list_init(&bio_list_on_stack);
1613 	current->bio_list = &bio_list_on_stack;
1614 	do {
1615 		__generic_make_request(bio);
1616 		bio = bio_list_pop(current->bio_list);
1617 	} while (bio);
1618 	current->bio_list = NULL; /* deactivate */
1619 }
1620 EXPORT_SYMBOL(generic_make_request);
1621 
1622 /**
1623  * submit_bio - submit a bio to the block device layer for I/O
1624  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1625  * @bio: The &struct bio which describes the I/O
1626  *
1627  * submit_bio() is very similar in purpose to generic_make_request(), and
1628  * uses that function to do most of the work. Both are fairly rough
1629  * interfaces; @bio must be presetup and ready for I/O.
1630  *
1631  */
submit_bio(int rw,struct bio * bio)1632 void submit_bio(int rw, struct bio *bio)
1633 {
1634 	int count = bio_sectors(bio);
1635 
1636 	bio->bi_rw |= rw;
1637 
1638 	/*
1639 	 * If it's a regular read/write or a barrier with data attached,
1640 	 * go through the normal accounting stuff before submission.
1641 	 */
1642 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1643 		if (rw & WRITE) {
1644 			count_vm_events(PGPGOUT, count);
1645 		} else {
1646 			task_io_account_read(bio->bi_size);
1647 			count_vm_events(PGPGIN, count);
1648 		}
1649 
1650 		if (unlikely(block_dump)) {
1651 			char b[BDEVNAME_SIZE];
1652 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1653 			current->comm, task_pid_nr(current),
1654 				(rw & WRITE) ? "WRITE" : "READ",
1655 				(unsigned long long)bio->bi_sector,
1656 				bdevname(bio->bi_bdev, b),
1657 				count);
1658 		}
1659 	}
1660 
1661 	generic_make_request(bio);
1662 }
1663 EXPORT_SYMBOL(submit_bio);
1664 
1665 /**
1666  * blk_rq_check_limits - Helper function to check a request for the queue limit
1667  * @q:  the queue
1668  * @rq: the request being checked
1669  *
1670  * Description:
1671  *    @rq may have been made based on weaker limitations of upper-level queues
1672  *    in request stacking drivers, and it may violate the limitation of @q.
1673  *    Since the block layer and the underlying device driver trust @rq
1674  *    after it is inserted to @q, it should be checked against @q before
1675  *    the insertion using this generic function.
1676  *
1677  *    This function should also be useful for request stacking drivers
1678  *    in some cases below, so export this function.
1679  *    Request stacking drivers like request-based dm may change the queue
1680  *    limits while requests are in the queue (e.g. dm's table swapping).
1681  *    Such request stacking drivers should check those requests agaist
1682  *    the new queue limits again when they dispatch those requests,
1683  *    although such checkings are also done against the old queue limits
1684  *    when submitting requests.
1685  */
blk_rq_check_limits(struct request_queue * q,struct request * rq)1686 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1687 {
1688 	if (rq->cmd_flags & REQ_DISCARD)
1689 		return 0;
1690 
1691 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1692 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1693 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1694 		return -EIO;
1695 	}
1696 
1697 	/*
1698 	 * queue's settings related to segment counting like q->bounce_pfn
1699 	 * may differ from that of other stacking queues.
1700 	 * Recalculate it to check the request correctly on this queue's
1701 	 * limitation.
1702 	 */
1703 	blk_recalc_rq_segments(rq);
1704 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1705 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1706 		return -EIO;
1707 	}
1708 
1709 	return 0;
1710 }
1711 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1712 
1713 /**
1714  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1715  * @q:  the queue to submit the request
1716  * @rq: the request being queued
1717  */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1718 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1719 {
1720 	unsigned long flags;
1721 
1722 	if (blk_rq_check_limits(q, rq))
1723 		return -EIO;
1724 
1725 #ifdef CONFIG_FAIL_MAKE_REQUEST
1726 	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1727 	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
1728 		return -EIO;
1729 #endif
1730 
1731 	spin_lock_irqsave(q->queue_lock, flags);
1732 
1733 	/*
1734 	 * Submitting request must be dequeued before calling this function
1735 	 * because it will be linked to another request_queue
1736 	 */
1737 	BUG_ON(blk_queued_rq(rq));
1738 
1739 	add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
1740 	spin_unlock_irqrestore(q->queue_lock, flags);
1741 
1742 	return 0;
1743 }
1744 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1745 
1746 /**
1747  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1748  * @rq: request to examine
1749  *
1750  * Description:
1751  *     A request could be merge of IOs which require different failure
1752  *     handling.  This function determines the number of bytes which
1753  *     can be failed from the beginning of the request without
1754  *     crossing into area which need to be retried further.
1755  *
1756  * Return:
1757  *     The number of bytes to fail.
1758  *
1759  * Context:
1760  *     queue_lock must be held.
1761  */
blk_rq_err_bytes(const struct request * rq)1762 unsigned int blk_rq_err_bytes(const struct request *rq)
1763 {
1764 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1765 	unsigned int bytes = 0;
1766 	struct bio *bio;
1767 
1768 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1769 		return blk_rq_bytes(rq);
1770 
1771 	/*
1772 	 * Currently the only 'mixing' which can happen is between
1773 	 * different fastfail types.  We can safely fail portions
1774 	 * which have all the failfast bits that the first one has -
1775 	 * the ones which are at least as eager to fail as the first
1776 	 * one.
1777 	 */
1778 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1779 		if ((bio->bi_rw & ff) != ff)
1780 			break;
1781 		bytes += bio->bi_size;
1782 	}
1783 
1784 	/* this could lead to infinite loop */
1785 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1786 	return bytes;
1787 }
1788 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1789 
blk_account_io_completion(struct request * req,unsigned int bytes)1790 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1791 {
1792 	if (blk_do_io_stat(req)) {
1793 		const int rw = rq_data_dir(req);
1794 		struct hd_struct *part;
1795 		int cpu;
1796 
1797 		cpu = part_stat_lock();
1798 		part = req->part;
1799 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1800 		part_stat_unlock();
1801 	}
1802 }
1803 
blk_account_io_done(struct request * req)1804 static void blk_account_io_done(struct request *req)
1805 {
1806 	/*
1807 	 * Account IO completion.  flush_rq isn't accounted as a
1808 	 * normal IO on queueing nor completion.  Accounting the
1809 	 * containing request is enough.
1810 	 */
1811 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1812 		unsigned long duration = jiffies - req->start_time;
1813 		const int rw = rq_data_dir(req);
1814 		struct hd_struct *part;
1815 		int cpu;
1816 
1817 		cpu = part_stat_lock();
1818 		part = req->part;
1819 
1820 		part_stat_inc(cpu, part, ios[rw]);
1821 		part_stat_add(cpu, part, ticks[rw], duration);
1822 		part_round_stats(cpu, part);
1823 		part_dec_in_flight(part, rw);
1824 
1825 		hd_struct_put(part);
1826 		part_stat_unlock();
1827 	}
1828 }
1829 
1830 /**
1831  * blk_peek_request - peek at the top of a request queue
1832  * @q: request queue to peek at
1833  *
1834  * Description:
1835  *     Return the request at the top of @q.  The returned request
1836  *     should be started using blk_start_request() before LLD starts
1837  *     processing it.
1838  *
1839  * Return:
1840  *     Pointer to the request at the top of @q if available.  Null
1841  *     otherwise.
1842  *
1843  * Context:
1844  *     queue_lock must be held.
1845  */
blk_peek_request(struct request_queue * q)1846 struct request *blk_peek_request(struct request_queue *q)
1847 {
1848 	struct request *rq;
1849 	int ret;
1850 
1851 	while ((rq = __elv_next_request(q)) != NULL) {
1852 		if (!(rq->cmd_flags & REQ_STARTED)) {
1853 			/*
1854 			 * This is the first time the device driver
1855 			 * sees this request (possibly after
1856 			 * requeueing).  Notify IO scheduler.
1857 			 */
1858 			if (rq->cmd_flags & REQ_SORTED)
1859 				elv_activate_rq(q, rq);
1860 
1861 			/*
1862 			 * just mark as started even if we don't start
1863 			 * it, a request that has been delayed should
1864 			 * not be passed by new incoming requests
1865 			 */
1866 			rq->cmd_flags |= REQ_STARTED;
1867 			trace_block_rq_issue(q, rq);
1868 		}
1869 
1870 		if (!q->boundary_rq || q->boundary_rq == rq) {
1871 			q->end_sector = rq_end_sector(rq);
1872 			q->boundary_rq = NULL;
1873 		}
1874 
1875 		if (rq->cmd_flags & REQ_DONTPREP)
1876 			break;
1877 
1878 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1879 			/*
1880 			 * make sure space for the drain appears we
1881 			 * know we can do this because max_hw_segments
1882 			 * has been adjusted to be one fewer than the
1883 			 * device can handle
1884 			 */
1885 			rq->nr_phys_segments++;
1886 		}
1887 
1888 		if (!q->prep_rq_fn)
1889 			break;
1890 
1891 		ret = q->prep_rq_fn(q, rq);
1892 		if (ret == BLKPREP_OK) {
1893 			break;
1894 		} else if (ret == BLKPREP_DEFER) {
1895 			/*
1896 			 * the request may have been (partially) prepped.
1897 			 * we need to keep this request in the front to
1898 			 * avoid resource deadlock.  REQ_STARTED will
1899 			 * prevent other fs requests from passing this one.
1900 			 */
1901 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1902 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1903 				/*
1904 				 * remove the space for the drain we added
1905 				 * so that we don't add it again
1906 				 */
1907 				--rq->nr_phys_segments;
1908 			}
1909 
1910 			rq = NULL;
1911 			break;
1912 		} else if (ret == BLKPREP_KILL) {
1913 			rq->cmd_flags |= REQ_QUIET;
1914 			/*
1915 			 * Mark this request as started so we don't trigger
1916 			 * any debug logic in the end I/O path.
1917 			 */
1918 			blk_start_request(rq);
1919 			__blk_end_request_all(rq, -EIO);
1920 		} else {
1921 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1922 			break;
1923 		}
1924 	}
1925 
1926 	return rq;
1927 }
1928 EXPORT_SYMBOL(blk_peek_request);
1929 
blk_dequeue_request(struct request * rq)1930 void blk_dequeue_request(struct request *rq)
1931 {
1932 	struct request_queue *q = rq->q;
1933 
1934 	BUG_ON(list_empty(&rq->queuelist));
1935 	BUG_ON(ELV_ON_HASH(rq));
1936 
1937 	list_del_init(&rq->queuelist);
1938 
1939 	/*
1940 	 * the time frame between a request being removed from the lists
1941 	 * and to it is freed is accounted as io that is in progress at
1942 	 * the driver side.
1943 	 */
1944 	if (blk_account_rq(rq)) {
1945 		q->in_flight[rq_is_sync(rq)]++;
1946 		set_io_start_time_ns(rq);
1947 	}
1948 }
1949 
1950 /**
1951  * blk_start_request - start request processing on the driver
1952  * @req: request to dequeue
1953  *
1954  * Description:
1955  *     Dequeue @req and start timeout timer on it.  This hands off the
1956  *     request to the driver.
1957  *
1958  *     Block internal functions which don't want to start timer should
1959  *     call blk_dequeue_request().
1960  *
1961  * Context:
1962  *     queue_lock must be held.
1963  */
blk_start_request(struct request * req)1964 void blk_start_request(struct request *req)
1965 {
1966 	blk_dequeue_request(req);
1967 
1968 	/*
1969 	 * We are now handing the request to the hardware, initialize
1970 	 * resid_len to full count and add the timeout handler.
1971 	 */
1972 	req->resid_len = blk_rq_bytes(req);
1973 	if (unlikely(blk_bidi_rq(req)))
1974 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1975 
1976 	blk_add_timer(req);
1977 }
1978 EXPORT_SYMBOL(blk_start_request);
1979 
1980 /**
1981  * blk_fetch_request - fetch a request from a request queue
1982  * @q: request queue to fetch a request from
1983  *
1984  * Description:
1985  *     Return the request at the top of @q.  The request is started on
1986  *     return and LLD can start processing it immediately.
1987  *
1988  * Return:
1989  *     Pointer to the request at the top of @q if available.  Null
1990  *     otherwise.
1991  *
1992  * Context:
1993  *     queue_lock must be held.
1994  */
blk_fetch_request(struct request_queue * q)1995 struct request *blk_fetch_request(struct request_queue *q)
1996 {
1997 	struct request *rq;
1998 
1999 	rq = blk_peek_request(q);
2000 	if (rq)
2001 		blk_start_request(rq);
2002 	return rq;
2003 }
2004 EXPORT_SYMBOL(blk_fetch_request);
2005 
2006 /**
2007  * blk_update_request - Special helper function for request stacking drivers
2008  * @req:      the request being processed
2009  * @error:    %0 for success, < %0 for error
2010  * @nr_bytes: number of bytes to complete @req
2011  *
2012  * Description:
2013  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2014  *     the request structure even if @req doesn't have leftover.
2015  *     If @req has leftover, sets it up for the next range of segments.
2016  *
2017  *     This special helper function is only for request stacking drivers
2018  *     (e.g. request-based dm) so that they can handle partial completion.
2019  *     Actual device drivers should use blk_end_request instead.
2020  *
2021  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2022  *     %false return from this function.
2023  *
2024  * Return:
2025  *     %false - this request doesn't have any more data
2026  *     %true  - this request has more data
2027  **/
blk_update_request(struct request * req,int error,unsigned int nr_bytes)2028 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2029 {
2030 	int total_bytes, bio_nbytes, next_idx = 0;
2031 	struct bio *bio;
2032 
2033 	if (!req->bio)
2034 		return false;
2035 
2036 	trace_block_rq_complete(req->q, req);
2037 
2038 	/*
2039 	 * For fs requests, rq is just carrier of independent bio's
2040 	 * and each partial completion should be handled separately.
2041 	 * Reset per-request error on each partial completion.
2042 	 *
2043 	 * TODO: tj: This is too subtle.  It would be better to let
2044 	 * low level drivers do what they see fit.
2045 	 */
2046 	if (req->cmd_type == REQ_TYPE_FS)
2047 		req->errors = 0;
2048 
2049 	if (error && req->cmd_type == REQ_TYPE_FS &&
2050 	    !(req->cmd_flags & REQ_QUIET)) {
2051 		char *error_type;
2052 
2053 		switch (error) {
2054 		case -ENOLINK:
2055 			error_type = "recoverable transport";
2056 			break;
2057 		case -EREMOTEIO:
2058 			error_type = "critical target";
2059 			break;
2060 		case -EBADE:
2061 			error_type = "critical nexus";
2062 			break;
2063 		case -EIO:
2064 		default:
2065 			error_type = "I/O";
2066 			break;
2067 		}
2068 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2069 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2070 		       (unsigned long long)blk_rq_pos(req));
2071 	}
2072 
2073 	blk_account_io_completion(req, nr_bytes);
2074 
2075 	total_bytes = bio_nbytes = 0;
2076 	while ((bio = req->bio) != NULL) {
2077 		int nbytes;
2078 
2079 		if (nr_bytes >= bio->bi_size) {
2080 			req->bio = bio->bi_next;
2081 			nbytes = bio->bi_size;
2082 			req_bio_endio(req, bio, nbytes, error);
2083 			next_idx = 0;
2084 			bio_nbytes = 0;
2085 		} else {
2086 			int idx = bio->bi_idx + next_idx;
2087 
2088 			if (unlikely(idx >= bio->bi_vcnt)) {
2089 				blk_dump_rq_flags(req, "__end_that");
2090 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2091 				       __func__, idx, bio->bi_vcnt);
2092 				break;
2093 			}
2094 
2095 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2096 			BIO_BUG_ON(nbytes > bio->bi_size);
2097 
2098 			/*
2099 			 * not a complete bvec done
2100 			 */
2101 			if (unlikely(nbytes > nr_bytes)) {
2102 				bio_nbytes += nr_bytes;
2103 				total_bytes += nr_bytes;
2104 				break;
2105 			}
2106 
2107 			/*
2108 			 * advance to the next vector
2109 			 */
2110 			next_idx++;
2111 			bio_nbytes += nbytes;
2112 		}
2113 
2114 		total_bytes += nbytes;
2115 		nr_bytes -= nbytes;
2116 
2117 		bio = req->bio;
2118 		if (bio) {
2119 			/*
2120 			 * end more in this run, or just return 'not-done'
2121 			 */
2122 			if (unlikely(nr_bytes <= 0))
2123 				break;
2124 		}
2125 	}
2126 
2127 	/*
2128 	 * completely done
2129 	 */
2130 	if (!req->bio) {
2131 		/*
2132 		 * Reset counters so that the request stacking driver
2133 		 * can find how many bytes remain in the request
2134 		 * later.
2135 		 */
2136 		req->__data_len = 0;
2137 		return false;
2138 	}
2139 
2140 	/*
2141 	 * if the request wasn't completed, update state
2142 	 */
2143 	if (bio_nbytes) {
2144 		req_bio_endio(req, bio, bio_nbytes, error);
2145 		bio->bi_idx += next_idx;
2146 		bio_iovec(bio)->bv_offset += nr_bytes;
2147 		bio_iovec(bio)->bv_len -= nr_bytes;
2148 	}
2149 
2150 	req->__data_len -= total_bytes;
2151 	req->buffer = bio_data(req->bio);
2152 
2153 	/* update sector only for requests with clear definition of sector */
2154 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2155 		req->__sector += total_bytes >> 9;
2156 
2157 	/* mixed attributes always follow the first bio */
2158 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2159 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2160 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2161 	}
2162 
2163 	/*
2164 	 * If total number of sectors is less than the first segment
2165 	 * size, something has gone terribly wrong.
2166 	 */
2167 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2168 		blk_dump_rq_flags(req, "request botched");
2169 		req->__data_len = blk_rq_cur_bytes(req);
2170 	}
2171 
2172 	/* recalculate the number of segments */
2173 	blk_recalc_rq_segments(req);
2174 
2175 	return true;
2176 }
2177 EXPORT_SYMBOL_GPL(blk_update_request);
2178 
blk_update_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2179 static bool blk_update_bidi_request(struct request *rq, int error,
2180 				    unsigned int nr_bytes,
2181 				    unsigned int bidi_bytes)
2182 {
2183 	if (blk_update_request(rq, error, nr_bytes))
2184 		return true;
2185 
2186 	/* Bidi request must be completed as a whole */
2187 	if (unlikely(blk_bidi_rq(rq)) &&
2188 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2189 		return true;
2190 
2191 	if (blk_queue_add_random(rq->q))
2192 		add_disk_randomness(rq->rq_disk);
2193 
2194 	return false;
2195 }
2196 
2197 /**
2198  * blk_unprep_request - unprepare a request
2199  * @req:	the request
2200  *
2201  * This function makes a request ready for complete resubmission (or
2202  * completion).  It happens only after all error handling is complete,
2203  * so represents the appropriate moment to deallocate any resources
2204  * that were allocated to the request in the prep_rq_fn.  The queue
2205  * lock is held when calling this.
2206  */
blk_unprep_request(struct request * req)2207 void blk_unprep_request(struct request *req)
2208 {
2209 	struct request_queue *q = req->q;
2210 
2211 	req->cmd_flags &= ~REQ_DONTPREP;
2212 	if (q->unprep_rq_fn)
2213 		q->unprep_rq_fn(q, req);
2214 }
2215 EXPORT_SYMBOL_GPL(blk_unprep_request);
2216 
2217 /*
2218  * queue lock must be held
2219  */
blk_finish_request(struct request * req,int error)2220 static void blk_finish_request(struct request *req, int error)
2221 {
2222 	if (blk_rq_tagged(req))
2223 		blk_queue_end_tag(req->q, req);
2224 
2225 	BUG_ON(blk_queued_rq(req));
2226 
2227 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2228 		laptop_io_completion(&req->q->backing_dev_info);
2229 
2230 	blk_delete_timer(req);
2231 
2232 	if (req->cmd_flags & REQ_DONTPREP)
2233 		blk_unprep_request(req);
2234 
2235 
2236 	blk_account_io_done(req);
2237 
2238 	if (req->end_io)
2239 		req->end_io(req, error);
2240 	else {
2241 		if (blk_bidi_rq(req))
2242 			__blk_put_request(req->next_rq->q, req->next_rq);
2243 
2244 		__blk_put_request(req->q, req);
2245 	}
2246 }
2247 
2248 /**
2249  * blk_end_bidi_request - Complete a bidi request
2250  * @rq:         the request to complete
2251  * @error:      %0 for success, < %0 for error
2252  * @nr_bytes:   number of bytes to complete @rq
2253  * @bidi_bytes: number of bytes to complete @rq->next_rq
2254  *
2255  * Description:
2256  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2257  *     Drivers that supports bidi can safely call this member for any
2258  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2259  *     just ignored.
2260  *
2261  * Return:
2262  *     %false - we are done with this request
2263  *     %true  - still buffers pending for this request
2264  **/
blk_end_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2265 static bool blk_end_bidi_request(struct request *rq, int error,
2266 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2267 {
2268 	struct request_queue *q = rq->q;
2269 	unsigned long flags;
2270 
2271 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2272 		return true;
2273 
2274 	spin_lock_irqsave(q->queue_lock, flags);
2275 	blk_finish_request(rq, error);
2276 	spin_unlock_irqrestore(q->queue_lock, flags);
2277 
2278 	return false;
2279 }
2280 
2281 /**
2282  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2283  * @rq:         the request to complete
2284  * @error:      %0 for success, < %0 for error
2285  * @nr_bytes:   number of bytes to complete @rq
2286  * @bidi_bytes: number of bytes to complete @rq->next_rq
2287  *
2288  * Description:
2289  *     Identical to blk_end_bidi_request() except that queue lock is
2290  *     assumed to be locked on entry and remains so on return.
2291  *
2292  * Return:
2293  *     %false - we are done with this request
2294  *     %true  - still buffers pending for this request
2295  **/
__blk_end_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2296 static bool __blk_end_bidi_request(struct request *rq, int error,
2297 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2298 {
2299 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2300 		return true;
2301 
2302 	blk_finish_request(rq, error);
2303 
2304 	return false;
2305 }
2306 
2307 /**
2308  * blk_end_request - Helper function for drivers to complete the request.
2309  * @rq:       the request being processed
2310  * @error:    %0 for success, < %0 for error
2311  * @nr_bytes: number of bytes to complete
2312  *
2313  * Description:
2314  *     Ends I/O on a number of bytes attached to @rq.
2315  *     If @rq has leftover, sets it up for the next range of segments.
2316  *
2317  * Return:
2318  *     %false - we are done with this request
2319  *     %true  - still buffers pending for this request
2320  **/
blk_end_request(struct request * rq,int error,unsigned int nr_bytes)2321 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2322 {
2323 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2324 }
2325 EXPORT_SYMBOL(blk_end_request);
2326 
2327 /**
2328  * blk_end_request_all - Helper function for drives to finish the request.
2329  * @rq: the request to finish
2330  * @error: %0 for success, < %0 for error
2331  *
2332  * Description:
2333  *     Completely finish @rq.
2334  */
blk_end_request_all(struct request * rq,int error)2335 void blk_end_request_all(struct request *rq, int error)
2336 {
2337 	bool pending;
2338 	unsigned int bidi_bytes = 0;
2339 
2340 	if (unlikely(blk_bidi_rq(rq)))
2341 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2342 
2343 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2344 	BUG_ON(pending);
2345 }
2346 EXPORT_SYMBOL(blk_end_request_all);
2347 
2348 /**
2349  * blk_end_request_cur - Helper function to finish the current request chunk.
2350  * @rq: the request to finish the current chunk for
2351  * @error: %0 for success, < %0 for error
2352  *
2353  * Description:
2354  *     Complete the current consecutively mapped chunk from @rq.
2355  *
2356  * Return:
2357  *     %false - we are done with this request
2358  *     %true  - still buffers pending for this request
2359  */
blk_end_request_cur(struct request * rq,int error)2360 bool blk_end_request_cur(struct request *rq, int error)
2361 {
2362 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2363 }
2364 EXPORT_SYMBOL(blk_end_request_cur);
2365 
2366 /**
2367  * blk_end_request_err - Finish a request till the next failure boundary.
2368  * @rq: the request to finish till the next failure boundary for
2369  * @error: must be negative errno
2370  *
2371  * Description:
2372  *     Complete @rq till the next failure boundary.
2373  *
2374  * Return:
2375  *     %false - we are done with this request
2376  *     %true  - still buffers pending for this request
2377  */
blk_end_request_err(struct request * rq,int error)2378 bool blk_end_request_err(struct request *rq, int error)
2379 {
2380 	WARN_ON(error >= 0);
2381 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2382 }
2383 EXPORT_SYMBOL_GPL(blk_end_request_err);
2384 
2385 /**
2386  * __blk_end_request - Helper function for drivers to complete the request.
2387  * @rq:       the request being processed
2388  * @error:    %0 for success, < %0 for error
2389  * @nr_bytes: number of bytes to complete
2390  *
2391  * Description:
2392  *     Must be called with queue lock held unlike blk_end_request().
2393  *
2394  * Return:
2395  *     %false - we are done with this request
2396  *     %true  - still buffers pending for this request
2397  **/
__blk_end_request(struct request * rq,int error,unsigned int nr_bytes)2398 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2399 {
2400 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2401 }
2402 EXPORT_SYMBOL(__blk_end_request);
2403 
2404 /**
2405  * __blk_end_request_all - Helper function for drives to finish the request.
2406  * @rq: the request to finish
2407  * @error: %0 for success, < %0 for error
2408  *
2409  * Description:
2410  *     Completely finish @rq.  Must be called with queue lock held.
2411  */
__blk_end_request_all(struct request * rq,int error)2412 void __blk_end_request_all(struct request *rq, int error)
2413 {
2414 	bool pending;
2415 	unsigned int bidi_bytes = 0;
2416 
2417 	if (unlikely(blk_bidi_rq(rq)))
2418 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2419 
2420 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2421 	BUG_ON(pending);
2422 }
2423 EXPORT_SYMBOL(__blk_end_request_all);
2424 
2425 /**
2426  * __blk_end_request_cur - Helper function to finish the current request chunk.
2427  * @rq: the request to finish the current chunk for
2428  * @error: %0 for success, < %0 for error
2429  *
2430  * Description:
2431  *     Complete the current consecutively mapped chunk from @rq.  Must
2432  *     be called with queue lock held.
2433  *
2434  * Return:
2435  *     %false - we are done with this request
2436  *     %true  - still buffers pending for this request
2437  */
__blk_end_request_cur(struct request * rq,int error)2438 bool __blk_end_request_cur(struct request *rq, int error)
2439 {
2440 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2441 }
2442 EXPORT_SYMBOL(__blk_end_request_cur);
2443 
2444 /**
2445  * __blk_end_request_err - Finish a request till the next failure boundary.
2446  * @rq: the request to finish till the next failure boundary for
2447  * @error: must be negative errno
2448  *
2449  * Description:
2450  *     Complete @rq till the next failure boundary.  Must be called
2451  *     with queue lock held.
2452  *
2453  * Return:
2454  *     %false - we are done with this request
2455  *     %true  - still buffers pending for this request
2456  */
__blk_end_request_err(struct request * rq,int error)2457 bool __blk_end_request_err(struct request *rq, int error)
2458 {
2459 	WARN_ON(error >= 0);
2460 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2461 }
2462 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2463 
blk_rq_bio_prep(struct request_queue * q,struct request * rq,struct bio * bio)2464 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2465 		     struct bio *bio)
2466 {
2467 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2468 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2469 
2470 	if (bio_has_data(bio)) {
2471 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2472 		rq->buffer = bio_data(bio);
2473 	}
2474 	rq->__data_len = bio->bi_size;
2475 	rq->bio = rq->biotail = bio;
2476 
2477 	if (bio->bi_bdev)
2478 		rq->rq_disk = bio->bi_bdev->bd_disk;
2479 }
2480 
2481 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2482 /**
2483  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2484  * @rq: the request to be flushed
2485  *
2486  * Description:
2487  *     Flush all pages in @rq.
2488  */
rq_flush_dcache_pages(struct request * rq)2489 void rq_flush_dcache_pages(struct request *rq)
2490 {
2491 	struct req_iterator iter;
2492 	struct bio_vec *bvec;
2493 
2494 	rq_for_each_segment(bvec, rq, iter)
2495 		flush_dcache_page(bvec->bv_page);
2496 }
2497 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2498 #endif
2499 
2500 /**
2501  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2502  * @q : the queue of the device being checked
2503  *
2504  * Description:
2505  *    Check if underlying low-level drivers of a device are busy.
2506  *    If the drivers want to export their busy state, they must set own
2507  *    exporting function using blk_queue_lld_busy() first.
2508  *
2509  *    Basically, this function is used only by request stacking drivers
2510  *    to stop dispatching requests to underlying devices when underlying
2511  *    devices are busy.  This behavior helps more I/O merging on the queue
2512  *    of the request stacking driver and prevents I/O throughput regression
2513  *    on burst I/O load.
2514  *
2515  * Return:
2516  *    0 - Not busy (The request stacking driver should dispatch request)
2517  *    1 - Busy (The request stacking driver should stop dispatching request)
2518  */
blk_lld_busy(struct request_queue * q)2519 int blk_lld_busy(struct request_queue *q)
2520 {
2521 	if (q->lld_busy_fn)
2522 		return q->lld_busy_fn(q);
2523 
2524 	return 0;
2525 }
2526 EXPORT_SYMBOL_GPL(blk_lld_busy);
2527 
2528 /**
2529  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2530  * @rq: the clone request to be cleaned up
2531  *
2532  * Description:
2533  *     Free all bios in @rq for a cloned request.
2534  */
blk_rq_unprep_clone(struct request * rq)2535 void blk_rq_unprep_clone(struct request *rq)
2536 {
2537 	struct bio *bio;
2538 
2539 	while ((bio = rq->bio) != NULL) {
2540 		rq->bio = bio->bi_next;
2541 
2542 		bio_put(bio);
2543 	}
2544 }
2545 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2546 
2547 /*
2548  * Copy attributes of the original request to the clone request.
2549  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2550  */
__blk_rq_prep_clone(struct request * dst,struct request * src)2551 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2552 {
2553 	dst->cpu = src->cpu;
2554 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2555 	dst->cmd_type = src->cmd_type;
2556 	dst->__sector = blk_rq_pos(src);
2557 	dst->__data_len = blk_rq_bytes(src);
2558 	dst->nr_phys_segments = src->nr_phys_segments;
2559 	dst->ioprio = src->ioprio;
2560 	dst->extra_len = src->extra_len;
2561 }
2562 
2563 /**
2564  * blk_rq_prep_clone - Helper function to setup clone request
2565  * @rq: the request to be setup
2566  * @rq_src: original request to be cloned
2567  * @bs: bio_set that bios for clone are allocated from
2568  * @gfp_mask: memory allocation mask for bio
2569  * @bio_ctr: setup function to be called for each clone bio.
2570  *           Returns %0 for success, non %0 for failure.
2571  * @data: private data to be passed to @bio_ctr
2572  *
2573  * Description:
2574  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2575  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2576  *     are not copied, and copying such parts is the caller's responsibility.
2577  *     Also, pages which the original bios are pointing to are not copied
2578  *     and the cloned bios just point same pages.
2579  *     So cloned bios must be completed before original bios, which means
2580  *     the caller must complete @rq before @rq_src.
2581  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)2582 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2583 		      struct bio_set *bs, gfp_t gfp_mask,
2584 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2585 		      void *data)
2586 {
2587 	struct bio *bio, *bio_src;
2588 
2589 	if (!bs)
2590 		bs = fs_bio_set;
2591 
2592 	blk_rq_init(NULL, rq);
2593 
2594 	__rq_for_each_bio(bio_src, rq_src) {
2595 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2596 		if (!bio)
2597 			goto free_and_out;
2598 
2599 		__bio_clone(bio, bio_src);
2600 
2601 		if (bio_integrity(bio_src) &&
2602 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2603 			goto free_and_out;
2604 
2605 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2606 			goto free_and_out;
2607 
2608 		if (rq->bio) {
2609 			rq->biotail->bi_next = bio;
2610 			rq->biotail = bio;
2611 		} else
2612 			rq->bio = rq->biotail = bio;
2613 	}
2614 
2615 	__blk_rq_prep_clone(rq, rq_src);
2616 
2617 	return 0;
2618 
2619 free_and_out:
2620 	if (bio)
2621 		bio_free(bio, bs);
2622 	blk_rq_unprep_clone(rq);
2623 
2624 	return -ENOMEM;
2625 }
2626 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2627 
kblockd_schedule_work(struct request_queue * q,struct work_struct * work)2628 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2629 {
2630 	return queue_work(kblockd_workqueue, work);
2631 }
2632 EXPORT_SYMBOL(kblockd_schedule_work);
2633 
kblockd_schedule_delayed_work(struct request_queue * q,struct delayed_work * dwork,unsigned long delay)2634 int kblockd_schedule_delayed_work(struct request_queue *q,
2635 			struct delayed_work *dwork, unsigned long delay)
2636 {
2637 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2638 }
2639 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2640 
2641 #define PLUG_MAGIC	0x91827364
2642 
blk_start_plug(struct blk_plug * plug)2643 void blk_start_plug(struct blk_plug *plug)
2644 {
2645 	struct task_struct *tsk = current;
2646 
2647 	plug->magic = PLUG_MAGIC;
2648 	INIT_LIST_HEAD(&plug->list);
2649 	INIT_LIST_HEAD(&plug->cb_list);
2650 	plug->should_sort = 0;
2651 
2652 	/*
2653 	 * If this is a nested plug, don't actually assign it. It will be
2654 	 * flushed on its own.
2655 	 */
2656 	if (!tsk->plug) {
2657 		/*
2658 		 * Store ordering should not be needed here, since a potential
2659 		 * preempt will imply a full memory barrier
2660 		 */
2661 		tsk->plug = plug;
2662 	}
2663 }
2664 EXPORT_SYMBOL(blk_start_plug);
2665 
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)2666 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2667 {
2668 	struct request *rqa = container_of(a, struct request, queuelist);
2669 	struct request *rqb = container_of(b, struct request, queuelist);
2670 
2671 	return !(rqa->q <= rqb->q);
2672 }
2673 
2674 /*
2675  * If 'from_schedule' is true, then postpone the dispatch of requests
2676  * until a safe kblockd context. We due this to avoid accidental big
2677  * additional stack usage in driver dispatch, in places where the originally
2678  * plugger did not intend it.
2679  */
queue_unplugged(struct request_queue * q,unsigned int depth,bool from_schedule)2680 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2681 			    bool from_schedule)
2682 	__releases(q->queue_lock)
2683 {
2684 	trace_block_unplug(q, depth, !from_schedule);
2685 
2686 	/*
2687 	 * If we are punting this to kblockd, then we can safely drop
2688 	 * the queue_lock before waking kblockd (which needs to take
2689 	 * this lock).
2690 	 */
2691 	if (from_schedule) {
2692 		spin_unlock(q->queue_lock);
2693 		blk_run_queue_async(q);
2694 	} else {
2695 		__blk_run_queue(q);
2696 		spin_unlock(q->queue_lock);
2697 	}
2698 
2699 }
2700 
flush_plug_callbacks(struct blk_plug * plug)2701 static void flush_plug_callbacks(struct blk_plug *plug)
2702 {
2703 	LIST_HEAD(callbacks);
2704 
2705 	if (list_empty(&plug->cb_list))
2706 		return;
2707 
2708 	list_splice_init(&plug->cb_list, &callbacks);
2709 
2710 	while (!list_empty(&callbacks)) {
2711 		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2712 							  struct blk_plug_cb,
2713 							  list);
2714 		list_del(&cb->list);
2715 		cb->callback(cb);
2716 	}
2717 }
2718 
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)2719 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2720 {
2721 	struct request_queue *q;
2722 	unsigned long flags;
2723 	struct request *rq;
2724 	LIST_HEAD(list);
2725 	unsigned int depth;
2726 
2727 	BUG_ON(plug->magic != PLUG_MAGIC);
2728 
2729 	flush_plug_callbacks(plug);
2730 	if (list_empty(&plug->list))
2731 		return;
2732 
2733 	list_splice_init(&plug->list, &list);
2734 
2735 	if (plug->should_sort) {
2736 		list_sort(NULL, &list, plug_rq_cmp);
2737 		plug->should_sort = 0;
2738 	}
2739 
2740 	q = NULL;
2741 	depth = 0;
2742 
2743 	/*
2744 	 * Save and disable interrupts here, to avoid doing it for every
2745 	 * queue lock we have to take.
2746 	 */
2747 	local_irq_save(flags);
2748 	while (!list_empty(&list)) {
2749 		rq = list_entry_rq(list.next);
2750 		list_del_init(&rq->queuelist);
2751 		BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG));
2752 		BUG_ON(!rq->q);
2753 		if (rq->q != q) {
2754 			/*
2755 			 * This drops the queue lock
2756 			 */
2757 			if (q)
2758 				queue_unplugged(q, depth, from_schedule);
2759 			q = rq->q;
2760 			depth = 0;
2761 			spin_lock(q->queue_lock);
2762 		}
2763 		rq->cmd_flags &= ~REQ_ON_PLUG;
2764 
2765 		/*
2766 		 * rq is already accounted, so use raw insert
2767 		 */
2768 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2769 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2770 		else
2771 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2772 
2773 		depth++;
2774 	}
2775 
2776 	/*
2777 	 * This drops the queue lock
2778 	 */
2779 	if (q)
2780 		queue_unplugged(q, depth, from_schedule);
2781 
2782 	local_irq_restore(flags);
2783 }
2784 
blk_finish_plug(struct blk_plug * plug)2785 void blk_finish_plug(struct blk_plug *plug)
2786 {
2787 	blk_flush_plug_list(plug, false);
2788 
2789 	if (plug == current->plug)
2790 		current->plug = NULL;
2791 }
2792 EXPORT_SYMBOL(blk_finish_plug);
2793 
blk_dev_init(void)2794 int __init blk_dev_init(void)
2795 {
2796 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2797 			sizeof(((struct request *)0)->cmd_flags));
2798 
2799 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2800 	kblockd_workqueue = alloc_workqueue("kblockd",
2801 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2802 	if (!kblockd_workqueue)
2803 		panic("Failed to create kblockd\n");
2804 
2805 	request_cachep = kmem_cache_create("blkdev_requests",
2806 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2807 
2808 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2809 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2810 
2811 	return 0;
2812 }
2813