1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
35
36 #include "blk.h"
37
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
41
42 DEFINE_IDA(blk_queue_ida);
43
44 /*
45 * For the allocated request tables
46 */
47 static struct kmem_cache *request_cachep;
48
49 /*
50 * For queue allocation
51 */
52 struct kmem_cache *blk_requestq_cachep;
53
54 /*
55 * Controlling structure to kblockd
56 */
57 static struct workqueue_struct *kblockd_workqueue;
58
drive_stat_acct(struct request * rq,int new_io)59 static void drive_stat_acct(struct request *rq, int new_io)
60 {
61 struct hd_struct *part;
62 int rw = rq_data_dir(rq);
63 int cpu;
64
65 if (!blk_do_io_stat(rq))
66 return;
67
68 cpu = part_stat_lock();
69
70 if (!new_io) {
71 part = rq->part;
72 part_stat_inc(cpu, part, merges[rw]);
73 } else {
74 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
75 if (!hd_struct_try_get(part)) {
76 /*
77 * The partition is already being removed,
78 * the request will be accounted on the disk only
79 *
80 * We take a reference on disk->part0 although that
81 * partition will never be deleted, so we can treat
82 * it as any other partition.
83 */
84 part = &rq->rq_disk->part0;
85 hd_struct_get(part);
86 }
87 part_round_stats(cpu, part);
88 part_inc_in_flight(part, rw);
89 rq->part = part;
90 }
91
92 part_stat_unlock();
93 }
94
blk_queue_congestion_threshold(struct request_queue * q)95 void blk_queue_congestion_threshold(struct request_queue *q)
96 {
97 int nr;
98
99 nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 if (nr > q->nr_requests)
101 nr = q->nr_requests;
102 q->nr_congestion_on = nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 if (nr < 1)
106 nr = 1;
107 q->nr_congestion_off = nr;
108 }
109
110 /**
111 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
112 * @bdev: device
113 *
114 * Locates the passed device's request queue and returns the address of its
115 * backing_dev_info
116 *
117 * Will return NULL if the request queue cannot be located.
118 */
blk_get_backing_dev_info(struct block_device * bdev)119 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
120 {
121 struct backing_dev_info *ret = NULL;
122 struct request_queue *q = bdev_get_queue(bdev);
123
124 if (q)
125 ret = &q->backing_dev_info;
126 return ret;
127 }
128 EXPORT_SYMBOL(blk_get_backing_dev_info);
129
blk_rq_init(struct request_queue * q,struct request * rq)130 void blk_rq_init(struct request_queue *q, struct request *rq)
131 {
132 memset(rq, 0, sizeof(*rq));
133
134 INIT_LIST_HEAD(&rq->queuelist);
135 INIT_LIST_HEAD(&rq->timeout_list);
136 rq->cpu = -1;
137 rq->q = q;
138 rq->__sector = (sector_t) -1;
139 INIT_HLIST_NODE(&rq->hash);
140 RB_CLEAR_NODE(&rq->rb_node);
141 rq->cmd = rq->__cmd;
142 rq->cmd_len = BLK_MAX_CDB;
143 rq->tag = -1;
144 rq->ref_count = 1;
145 rq->start_time = jiffies;
146 set_start_time_ns(rq);
147 rq->part = NULL;
148 }
149 EXPORT_SYMBOL(blk_rq_init);
150
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,int error)151 static void req_bio_endio(struct request *rq, struct bio *bio,
152 unsigned int nbytes, int error)
153 {
154 if (error)
155 clear_bit(BIO_UPTODATE, &bio->bi_flags);
156 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
157 error = -EIO;
158
159 if (unlikely(nbytes > bio->bi_size)) {
160 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
161 __func__, nbytes, bio->bi_size);
162 nbytes = bio->bi_size;
163 }
164
165 if (unlikely(rq->cmd_flags & REQ_QUIET))
166 set_bit(BIO_QUIET, &bio->bi_flags);
167
168 bio->bi_size -= nbytes;
169 bio->bi_sector += (nbytes >> 9);
170
171 if (bio_integrity(bio))
172 bio_integrity_advance(bio, nbytes);
173
174 /* don't actually finish bio if it's part of flush sequence */
175 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
176 bio_endio(bio, error);
177 }
178
blk_dump_rq_flags(struct request * rq,char * msg)179 void blk_dump_rq_flags(struct request *rq, char *msg)
180 {
181 int bit;
182
183 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
184 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 rq->cmd_flags);
186
187 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
188 (unsigned long long)blk_rq_pos(rq),
189 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
190 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
191 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
192
193 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
194 printk(KERN_INFO " cdb: ");
195 for (bit = 0; bit < BLK_MAX_CDB; bit++)
196 printk("%02x ", rq->cmd[bit]);
197 printk("\n");
198 }
199 }
200 EXPORT_SYMBOL(blk_dump_rq_flags);
201
blk_delay_work(struct work_struct * work)202 static void blk_delay_work(struct work_struct *work)
203 {
204 struct request_queue *q;
205
206 q = container_of(work, struct request_queue, delay_work.work);
207 spin_lock_irq(q->queue_lock);
208 __blk_run_queue(q);
209 spin_unlock_irq(q->queue_lock);
210 }
211
212 /**
213 * blk_delay_queue - restart queueing after defined interval
214 * @q: The &struct request_queue in question
215 * @msecs: Delay in msecs
216 *
217 * Description:
218 * Sometimes queueing needs to be postponed for a little while, to allow
219 * resources to come back. This function will make sure that queueing is
220 * restarted around the specified time.
221 */
blk_delay_queue(struct request_queue * q,unsigned long msecs)222 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
223 {
224 queue_delayed_work(kblockd_workqueue, &q->delay_work,
225 msecs_to_jiffies(msecs));
226 }
227 EXPORT_SYMBOL(blk_delay_queue);
228
229 /**
230 * blk_start_queue - restart a previously stopped queue
231 * @q: The &struct request_queue in question
232 *
233 * Description:
234 * blk_start_queue() will clear the stop flag on the queue, and call
235 * the request_fn for the queue if it was in a stopped state when
236 * entered. Also see blk_stop_queue(). Queue lock must be held.
237 **/
blk_start_queue(struct request_queue * q)238 void blk_start_queue(struct request_queue *q)
239 {
240 WARN_ON(!irqs_disabled());
241
242 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
243 __blk_run_queue(q);
244 }
245 EXPORT_SYMBOL(blk_start_queue);
246
247 /**
248 * blk_stop_queue - stop a queue
249 * @q: The &struct request_queue in question
250 *
251 * Description:
252 * The Linux block layer assumes that a block driver will consume all
253 * entries on the request queue when the request_fn strategy is called.
254 * Often this will not happen, because of hardware limitations (queue
255 * depth settings). If a device driver gets a 'queue full' response,
256 * or if it simply chooses not to queue more I/O at one point, it can
257 * call this function to prevent the request_fn from being called until
258 * the driver has signalled it's ready to go again. This happens by calling
259 * blk_start_queue() to restart queue operations. Queue lock must be held.
260 **/
blk_stop_queue(struct request_queue * q)261 void blk_stop_queue(struct request_queue *q)
262 {
263 __cancel_delayed_work(&q->delay_work);
264 queue_flag_set(QUEUE_FLAG_STOPPED, q);
265 }
266 EXPORT_SYMBOL(blk_stop_queue);
267
268 /**
269 * blk_sync_queue - cancel any pending callbacks on a queue
270 * @q: the queue
271 *
272 * Description:
273 * The block layer may perform asynchronous callback activity
274 * on a queue, such as calling the unplug function after a timeout.
275 * A block device may call blk_sync_queue to ensure that any
276 * such activity is cancelled, thus allowing it to release resources
277 * that the callbacks might use. The caller must already have made sure
278 * that its ->make_request_fn will not re-add plugging prior to calling
279 * this function.
280 *
281 * This function does not cancel any asynchronous activity arising
282 * out of elevator or throttling code. That would require elevaotor_exit()
283 * and blk_throtl_exit() to be called with queue lock initialized.
284 *
285 */
blk_sync_queue(struct request_queue * q)286 void blk_sync_queue(struct request_queue *q)
287 {
288 del_timer_sync(&q->timeout);
289 cancel_delayed_work_sync(&q->delay_work);
290 }
291 EXPORT_SYMBOL(blk_sync_queue);
292
293 /**
294 * __blk_run_queue - run a single device queue
295 * @q: The queue to run
296 *
297 * Description:
298 * See @blk_run_queue. This variant must be called with the queue lock
299 * held and interrupts disabled.
300 */
__blk_run_queue(struct request_queue * q)301 void __blk_run_queue(struct request_queue *q)
302 {
303 if (unlikely(blk_queue_stopped(q)))
304 return;
305
306 q->request_fn(q);
307 }
308 EXPORT_SYMBOL(__blk_run_queue);
309
310 /**
311 * blk_run_queue_async - run a single device queue in workqueue context
312 * @q: The queue to run
313 *
314 * Description:
315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316 * of us.
317 */
blk_run_queue_async(struct request_queue * q)318 void blk_run_queue_async(struct request_queue *q)
319 {
320 if (likely(!blk_queue_stopped(q))) {
321 __cancel_delayed_work(&q->delay_work);
322 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
323 }
324 }
325 EXPORT_SYMBOL(blk_run_queue_async);
326
327 /**
328 * blk_run_queue - run a single device queue
329 * @q: The queue to run
330 *
331 * Description:
332 * Invoke request handling on this queue, if it has pending work to do.
333 * May be used to restart queueing when a request has completed.
334 */
blk_run_queue(struct request_queue * q)335 void blk_run_queue(struct request_queue *q)
336 {
337 unsigned long flags;
338
339 spin_lock_irqsave(q->queue_lock, flags);
340 __blk_run_queue(q);
341 spin_unlock_irqrestore(q->queue_lock, flags);
342 }
343 EXPORT_SYMBOL(blk_run_queue);
344
blk_put_queue(struct request_queue * q)345 void blk_put_queue(struct request_queue *q)
346 {
347 kobject_put(&q->kobj);
348 }
349 EXPORT_SYMBOL(blk_put_queue);
350
351 /**
352 * blk_drain_queue - drain requests from request_queue
353 * @q: queue to drain
354 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
355 *
356 * Drain requests from @q. If @drain_all is set, all requests are drained.
357 * If not, only ELVPRIV requests are drained. The caller is responsible
358 * for ensuring that no new requests which need to be drained are queued.
359 */
blk_drain_queue(struct request_queue * q,bool drain_all)360 void blk_drain_queue(struct request_queue *q, bool drain_all)
361 {
362 while (true) {
363 bool drain = false;
364 int i;
365
366 spin_lock_irq(q->queue_lock);
367
368 elv_drain_elevator(q);
369 if (drain_all)
370 blk_throtl_drain(q);
371
372 /*
373 * This function might be called on a queue which failed
374 * driver init after queue creation. Some drivers
375 * (e.g. fd) get unhappy in such cases. Kick queue iff
376 * dispatch queue has something on it.
377 */
378 if (!list_empty(&q->queue_head))
379 __blk_run_queue(q);
380
381 drain |= q->rq.elvpriv;
382
383 /*
384 * Unfortunately, requests are queued at and tracked from
385 * multiple places and there's no single counter which can
386 * be drained. Check all the queues and counters.
387 */
388 if (drain_all) {
389 drain |= !list_empty(&q->queue_head);
390 for (i = 0; i < 2; i++) {
391 drain |= q->rq.count[i];
392 drain |= q->in_flight[i];
393 drain |= !list_empty(&q->flush_queue[i]);
394 }
395 }
396
397 spin_unlock_irq(q->queue_lock);
398
399 if (!drain)
400 break;
401 msleep(10);
402 }
403 }
404
405 /**
406 * blk_cleanup_queue - shutdown a request queue
407 * @q: request queue to shutdown
408 *
409 * Mark @q DEAD, drain all pending requests, destroy and put it. All
410 * future requests will be failed immediately with -ENODEV.
411 */
blk_cleanup_queue(struct request_queue * q)412 void blk_cleanup_queue(struct request_queue *q)
413 {
414 spinlock_t *lock = q->queue_lock;
415
416 /* mark @q DEAD, no new request or merges will be allowed afterwards */
417 mutex_lock(&q->sysfs_lock);
418 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
419
420 spin_lock_irq(lock);
421 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
422 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
423 queue_flag_set(QUEUE_FLAG_DEAD, q);
424
425 if (q->queue_lock != &q->__queue_lock)
426 q->queue_lock = &q->__queue_lock;
427
428 spin_unlock_irq(lock);
429 mutex_unlock(&q->sysfs_lock);
430
431 /*
432 * Drain all requests queued before DEAD marking. The caller might
433 * be trying to tear down @q before its elevator is initialized, in
434 * which case we don't want to call into draining.
435 */
436 if (q->elevator)
437 blk_drain_queue(q, true);
438
439 /* @q won't process any more request, flush async actions */
440 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
441 blk_sync_queue(q);
442
443 /* @q is and will stay empty, shutdown and put */
444 blk_put_queue(q);
445 }
446 EXPORT_SYMBOL(blk_cleanup_queue);
447
blk_init_free_list(struct request_queue * q)448 static int blk_init_free_list(struct request_queue *q)
449 {
450 struct request_list *rl = &q->rq;
451
452 if (unlikely(rl->rq_pool))
453 return 0;
454
455 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
456 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
457 rl->elvpriv = 0;
458 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
459 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
460
461 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
462 mempool_free_slab, request_cachep, q->node);
463
464 if (!rl->rq_pool)
465 return -ENOMEM;
466
467 return 0;
468 }
469
blk_alloc_queue(gfp_t gfp_mask)470 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
471 {
472 return blk_alloc_queue_node(gfp_mask, -1);
473 }
474 EXPORT_SYMBOL(blk_alloc_queue);
475
blk_alloc_queue_node(gfp_t gfp_mask,int node_id)476 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
477 {
478 struct request_queue *q;
479 int err;
480
481 q = kmem_cache_alloc_node(blk_requestq_cachep,
482 gfp_mask | __GFP_ZERO, node_id);
483 if (!q)
484 return NULL;
485
486 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
487 if (q->id < 0)
488 goto fail_q;
489
490 q->backing_dev_info.ra_pages =
491 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
492 q->backing_dev_info.state = 0;
493 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
494 q->backing_dev_info.name = "block";
495 q->node = node_id;
496
497 err = bdi_init(&q->backing_dev_info);
498 if (err)
499 goto fail_id;
500
501 if (blk_throtl_init(q))
502 goto fail_bdi;
503
504 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
505 laptop_mode_timer_fn, (unsigned long) q);
506 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
507 INIT_LIST_HEAD(&q->timeout_list);
508 INIT_LIST_HEAD(&q->icq_list);
509 INIT_LIST_HEAD(&q->flush_queue[0]);
510 INIT_LIST_HEAD(&q->flush_queue[1]);
511 INIT_LIST_HEAD(&q->flush_data_in_flight);
512 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
513
514 kobject_init(&q->kobj, &blk_queue_ktype);
515
516 mutex_init(&q->sysfs_lock);
517 spin_lock_init(&q->__queue_lock);
518
519 /*
520 * By default initialize queue_lock to internal lock and driver can
521 * override it later if need be.
522 */
523 q->queue_lock = &q->__queue_lock;
524
525 return q;
526
527 fail_bdi:
528 bdi_destroy(&q->backing_dev_info);
529 fail_id:
530 ida_simple_remove(&blk_queue_ida, q->id);
531 fail_q:
532 kmem_cache_free(blk_requestq_cachep, q);
533 return NULL;
534 }
535 EXPORT_SYMBOL(blk_alloc_queue_node);
536
537 /**
538 * blk_init_queue - prepare a request queue for use with a block device
539 * @rfn: The function to be called to process requests that have been
540 * placed on the queue.
541 * @lock: Request queue spin lock
542 *
543 * Description:
544 * If a block device wishes to use the standard request handling procedures,
545 * which sorts requests and coalesces adjacent requests, then it must
546 * call blk_init_queue(). The function @rfn will be called when there
547 * are requests on the queue that need to be processed. If the device
548 * supports plugging, then @rfn may not be called immediately when requests
549 * are available on the queue, but may be called at some time later instead.
550 * Plugged queues are generally unplugged when a buffer belonging to one
551 * of the requests on the queue is needed, or due to memory pressure.
552 *
553 * @rfn is not required, or even expected, to remove all requests off the
554 * queue, but only as many as it can handle at a time. If it does leave
555 * requests on the queue, it is responsible for arranging that the requests
556 * get dealt with eventually.
557 *
558 * The queue spin lock must be held while manipulating the requests on the
559 * request queue; this lock will be taken also from interrupt context, so irq
560 * disabling is needed for it.
561 *
562 * Function returns a pointer to the initialized request queue, or %NULL if
563 * it didn't succeed.
564 *
565 * Note:
566 * blk_init_queue() must be paired with a blk_cleanup_queue() call
567 * when the block device is deactivated (such as at module unload).
568 **/
569
blk_init_queue(request_fn_proc * rfn,spinlock_t * lock)570 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
571 {
572 return blk_init_queue_node(rfn, lock, -1);
573 }
574 EXPORT_SYMBOL(blk_init_queue);
575
576 struct request_queue *
blk_init_queue_node(request_fn_proc * rfn,spinlock_t * lock,int node_id)577 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
578 {
579 struct request_queue *uninit_q, *q;
580
581 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
582 if (!uninit_q)
583 return NULL;
584
585 q = blk_init_allocated_queue(uninit_q, rfn, lock);
586 if (!q)
587 blk_cleanup_queue(uninit_q);
588
589 return q;
590 }
591 EXPORT_SYMBOL(blk_init_queue_node);
592
593 struct request_queue *
blk_init_allocated_queue(struct request_queue * q,request_fn_proc * rfn,spinlock_t * lock)594 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
595 spinlock_t *lock)
596 {
597 if (!q)
598 return NULL;
599
600 if (blk_init_free_list(q))
601 return NULL;
602
603 q->request_fn = rfn;
604 q->prep_rq_fn = NULL;
605 q->unprep_rq_fn = NULL;
606 q->queue_flags |= QUEUE_FLAG_DEFAULT;
607
608 /* Override internal queue lock with supplied lock pointer */
609 if (lock)
610 q->queue_lock = lock;
611
612 /*
613 * This also sets hw/phys segments, boundary and size
614 */
615 blk_queue_make_request(q, blk_queue_bio);
616
617 q->sg_reserved_size = INT_MAX;
618
619 /*
620 * all done
621 */
622 if (!elevator_init(q, NULL)) {
623 blk_queue_congestion_threshold(q);
624 return q;
625 }
626
627 return NULL;
628 }
629 EXPORT_SYMBOL(blk_init_allocated_queue);
630
blk_get_queue(struct request_queue * q)631 bool blk_get_queue(struct request_queue *q)
632 {
633 if (likely(!blk_queue_dead(q))) {
634 __blk_get_queue(q);
635 return true;
636 }
637
638 return false;
639 }
640 EXPORT_SYMBOL(blk_get_queue);
641
blk_free_request(struct request_queue * q,struct request * rq)642 static inline void blk_free_request(struct request_queue *q, struct request *rq)
643 {
644 if (rq->cmd_flags & REQ_ELVPRIV) {
645 elv_put_request(q, rq);
646 if (rq->elv.icq)
647 put_io_context(rq->elv.icq->ioc);
648 }
649
650 mempool_free(rq, q->rq.rq_pool);
651 }
652
653 static struct request *
blk_alloc_request(struct request_queue * q,struct io_cq * icq,unsigned int flags,gfp_t gfp_mask)654 blk_alloc_request(struct request_queue *q, struct io_cq *icq,
655 unsigned int flags, gfp_t gfp_mask)
656 {
657 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
658
659 if (!rq)
660 return NULL;
661
662 blk_rq_init(q, rq);
663
664 rq->cmd_flags = flags | REQ_ALLOCED;
665
666 if (flags & REQ_ELVPRIV) {
667 rq->elv.icq = icq;
668 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
669 mempool_free(rq, q->rq.rq_pool);
670 return NULL;
671 }
672 /* @rq->elv.icq holds on to io_context until @rq is freed */
673 if (icq)
674 get_io_context(icq->ioc);
675 }
676
677 return rq;
678 }
679
680 /*
681 * ioc_batching returns true if the ioc is a valid batching request and
682 * should be given priority access to a request.
683 */
ioc_batching(struct request_queue * q,struct io_context * ioc)684 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
685 {
686 if (!ioc)
687 return 0;
688
689 /*
690 * Make sure the process is able to allocate at least 1 request
691 * even if the batch times out, otherwise we could theoretically
692 * lose wakeups.
693 */
694 return ioc->nr_batch_requests == q->nr_batching ||
695 (ioc->nr_batch_requests > 0
696 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
697 }
698
699 /*
700 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
701 * will cause the process to be a "batcher" on all queues in the system. This
702 * is the behaviour we want though - once it gets a wakeup it should be given
703 * a nice run.
704 */
ioc_set_batching(struct request_queue * q,struct io_context * ioc)705 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
706 {
707 if (!ioc || ioc_batching(q, ioc))
708 return;
709
710 ioc->nr_batch_requests = q->nr_batching;
711 ioc->last_waited = jiffies;
712 }
713
__freed_request(struct request_queue * q,int sync)714 static void __freed_request(struct request_queue *q, int sync)
715 {
716 struct request_list *rl = &q->rq;
717
718 if (rl->count[sync] < queue_congestion_off_threshold(q))
719 blk_clear_queue_congested(q, sync);
720
721 if (rl->count[sync] + 1 <= q->nr_requests) {
722 if (waitqueue_active(&rl->wait[sync]))
723 wake_up(&rl->wait[sync]);
724
725 blk_clear_queue_full(q, sync);
726 }
727 }
728
729 /*
730 * A request has just been released. Account for it, update the full and
731 * congestion status, wake up any waiters. Called under q->queue_lock.
732 */
freed_request(struct request_queue * q,unsigned int flags)733 static void freed_request(struct request_queue *q, unsigned int flags)
734 {
735 struct request_list *rl = &q->rq;
736 int sync = rw_is_sync(flags);
737
738 rl->count[sync]--;
739 if (flags & REQ_ELVPRIV)
740 rl->elvpriv--;
741
742 __freed_request(q, sync);
743
744 if (unlikely(rl->starved[sync ^ 1]))
745 __freed_request(q, sync ^ 1);
746 }
747
748 /*
749 * Determine if elevator data should be initialized when allocating the
750 * request associated with @bio.
751 */
blk_rq_should_init_elevator(struct bio * bio)752 static bool blk_rq_should_init_elevator(struct bio *bio)
753 {
754 if (!bio)
755 return true;
756
757 /*
758 * Flush requests do not use the elevator so skip initialization.
759 * This allows a request to share the flush and elevator data.
760 */
761 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
762 return false;
763
764 return true;
765 }
766
767 /**
768 * get_request - get a free request
769 * @q: request_queue to allocate request from
770 * @rw_flags: RW and SYNC flags
771 * @bio: bio to allocate request for (can be %NULL)
772 * @gfp_mask: allocation mask
773 *
774 * Get a free request from @q. This function may fail under memory
775 * pressure or if @q is dead.
776 *
777 * Must be callled with @q->queue_lock held and,
778 * Returns %NULL on failure, with @q->queue_lock held.
779 * Returns !%NULL on success, with @q->queue_lock *not held*.
780 */
get_request(struct request_queue * q,int rw_flags,struct bio * bio,gfp_t gfp_mask)781 static struct request *get_request(struct request_queue *q, int rw_flags,
782 struct bio *bio, gfp_t gfp_mask)
783 {
784 struct request *rq = NULL;
785 struct request_list *rl = &q->rq;
786 struct elevator_type *et;
787 struct io_context *ioc;
788 struct io_cq *icq = NULL;
789 const bool is_sync = rw_is_sync(rw_flags) != 0;
790 bool retried = false;
791 int may_queue;
792 retry:
793 et = q->elevator->type;
794 ioc = current->io_context;
795
796 if (unlikely(blk_queue_dead(q)))
797 return NULL;
798
799 may_queue = elv_may_queue(q, rw_flags);
800 if (may_queue == ELV_MQUEUE_NO)
801 goto rq_starved;
802
803 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
804 if (rl->count[is_sync]+1 >= q->nr_requests) {
805 /*
806 * We want ioc to record batching state. If it's
807 * not already there, creating a new one requires
808 * dropping queue_lock, which in turn requires
809 * retesting conditions to avoid queue hang.
810 */
811 if (!ioc && !retried) {
812 spin_unlock_irq(q->queue_lock);
813 create_io_context(current, gfp_mask, q->node);
814 spin_lock_irq(q->queue_lock);
815 retried = true;
816 goto retry;
817 }
818
819 /*
820 * The queue will fill after this allocation, so set
821 * it as full, and mark this process as "batching".
822 * This process will be allowed to complete a batch of
823 * requests, others will be blocked.
824 */
825 if (!blk_queue_full(q, is_sync)) {
826 ioc_set_batching(q, ioc);
827 blk_set_queue_full(q, is_sync);
828 } else {
829 if (may_queue != ELV_MQUEUE_MUST
830 && !ioc_batching(q, ioc)) {
831 /*
832 * The queue is full and the allocating
833 * process is not a "batcher", and not
834 * exempted by the IO scheduler
835 */
836 goto out;
837 }
838 }
839 }
840 blk_set_queue_congested(q, is_sync);
841 }
842
843 /*
844 * Only allow batching queuers to allocate up to 50% over the defined
845 * limit of requests, otherwise we could have thousands of requests
846 * allocated with any setting of ->nr_requests
847 */
848 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
849 goto out;
850
851 rl->count[is_sync]++;
852 rl->starved[is_sync] = 0;
853
854 /*
855 * Decide whether the new request will be managed by elevator. If
856 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
857 * prevent the current elevator from being destroyed until the new
858 * request is freed. This guarantees icq's won't be destroyed and
859 * makes creating new ones safe.
860 *
861 * Also, lookup icq while holding queue_lock. If it doesn't exist,
862 * it will be created after releasing queue_lock.
863 */
864 if (blk_rq_should_init_elevator(bio) &&
865 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
866 rw_flags |= REQ_ELVPRIV;
867 rl->elvpriv++;
868 if (et->icq_cache && ioc)
869 icq = ioc_lookup_icq(ioc, q);
870 }
871
872 if (blk_queue_io_stat(q))
873 rw_flags |= REQ_IO_STAT;
874 spin_unlock_irq(q->queue_lock);
875
876 /* create icq if missing */
877 if ((rw_flags & REQ_ELVPRIV) && unlikely(et->icq_cache && !icq)) {
878 icq = ioc_create_icq(q, gfp_mask);
879 if (!icq)
880 goto fail_icq;
881 }
882
883 rq = blk_alloc_request(q, icq, rw_flags, gfp_mask);
884
885 fail_icq:
886 if (unlikely(!rq)) {
887 /*
888 * Allocation failed presumably due to memory. Undo anything
889 * we might have messed up.
890 *
891 * Allocating task should really be put onto the front of the
892 * wait queue, but this is pretty rare.
893 */
894 spin_lock_irq(q->queue_lock);
895 freed_request(q, rw_flags);
896
897 /*
898 * in the very unlikely event that allocation failed and no
899 * requests for this direction was pending, mark us starved
900 * so that freeing of a request in the other direction will
901 * notice us. another possible fix would be to split the
902 * rq mempool into READ and WRITE
903 */
904 rq_starved:
905 if (unlikely(rl->count[is_sync] == 0))
906 rl->starved[is_sync] = 1;
907
908 goto out;
909 }
910
911 /*
912 * ioc may be NULL here, and ioc_batching will be false. That's
913 * OK, if the queue is under the request limit then requests need
914 * not count toward the nr_batch_requests limit. There will always
915 * be some limit enforced by BLK_BATCH_TIME.
916 */
917 if (ioc_batching(q, ioc))
918 ioc->nr_batch_requests--;
919
920 trace_block_getrq(q, bio, rw_flags & 1);
921 out:
922 return rq;
923 }
924
925 /**
926 * get_request_wait - get a free request with retry
927 * @q: request_queue to allocate request from
928 * @rw_flags: RW and SYNC flags
929 * @bio: bio to allocate request for (can be %NULL)
930 *
931 * Get a free request from @q. This function keeps retrying under memory
932 * pressure and fails iff @q is dead.
933 *
934 * Must be callled with @q->queue_lock held and,
935 * Returns %NULL on failure, with @q->queue_lock held.
936 * Returns !%NULL on success, with @q->queue_lock *not held*.
937 */
get_request_wait(struct request_queue * q,int rw_flags,struct bio * bio)938 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
939 struct bio *bio)
940 {
941 const bool is_sync = rw_is_sync(rw_flags) != 0;
942 struct request *rq;
943
944 rq = get_request(q, rw_flags, bio, GFP_NOIO);
945 while (!rq) {
946 DEFINE_WAIT(wait);
947 struct request_list *rl = &q->rq;
948
949 if (unlikely(blk_queue_dead(q)))
950 return NULL;
951
952 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
953 TASK_UNINTERRUPTIBLE);
954
955 trace_block_sleeprq(q, bio, rw_flags & 1);
956
957 spin_unlock_irq(q->queue_lock);
958 io_schedule();
959
960 /*
961 * After sleeping, we become a "batching" process and
962 * will be able to allocate at least one request, and
963 * up to a big batch of them for a small period time.
964 * See ioc_batching, ioc_set_batching
965 */
966 create_io_context(current, GFP_NOIO, q->node);
967 ioc_set_batching(q, current->io_context);
968
969 spin_lock_irq(q->queue_lock);
970 finish_wait(&rl->wait[is_sync], &wait);
971
972 rq = get_request(q, rw_flags, bio, GFP_NOIO);
973 };
974
975 return rq;
976 }
977
blk_get_request(struct request_queue * q,int rw,gfp_t gfp_mask)978 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
979 {
980 struct request *rq;
981
982 BUG_ON(rw != READ && rw != WRITE);
983
984 spin_lock_irq(q->queue_lock);
985 if (gfp_mask & __GFP_WAIT)
986 rq = get_request_wait(q, rw, NULL);
987 else
988 rq = get_request(q, rw, NULL, gfp_mask);
989 if (!rq)
990 spin_unlock_irq(q->queue_lock);
991 /* q->queue_lock is unlocked at this point */
992
993 return rq;
994 }
995 EXPORT_SYMBOL(blk_get_request);
996
997 /**
998 * blk_make_request - given a bio, allocate a corresponding struct request.
999 * @q: target request queue
1000 * @bio: The bio describing the memory mappings that will be submitted for IO.
1001 * It may be a chained-bio properly constructed by block/bio layer.
1002 * @gfp_mask: gfp flags to be used for memory allocation
1003 *
1004 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1005 * type commands. Where the struct request needs to be farther initialized by
1006 * the caller. It is passed a &struct bio, which describes the memory info of
1007 * the I/O transfer.
1008 *
1009 * The caller of blk_make_request must make sure that bi_io_vec
1010 * are set to describe the memory buffers. That bio_data_dir() will return
1011 * the needed direction of the request. (And all bio's in the passed bio-chain
1012 * are properly set accordingly)
1013 *
1014 * If called under none-sleepable conditions, mapped bio buffers must not
1015 * need bouncing, by calling the appropriate masked or flagged allocator,
1016 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1017 * BUG.
1018 *
1019 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1020 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1021 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1022 * completion of a bio that hasn't been submitted yet, thus resulting in a
1023 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1024 * of bio_alloc(), as that avoids the mempool deadlock.
1025 * If possible a big IO should be split into smaller parts when allocation
1026 * fails. Partial allocation should not be an error, or you risk a live-lock.
1027 */
blk_make_request(struct request_queue * q,struct bio * bio,gfp_t gfp_mask)1028 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1029 gfp_t gfp_mask)
1030 {
1031 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1032
1033 if (unlikely(!rq))
1034 return ERR_PTR(-ENOMEM);
1035
1036 for_each_bio(bio) {
1037 struct bio *bounce_bio = bio;
1038 int ret;
1039
1040 blk_queue_bounce(q, &bounce_bio);
1041 ret = blk_rq_append_bio(q, rq, bounce_bio);
1042 if (unlikely(ret)) {
1043 blk_put_request(rq);
1044 return ERR_PTR(ret);
1045 }
1046 }
1047
1048 return rq;
1049 }
1050 EXPORT_SYMBOL(blk_make_request);
1051
1052 /**
1053 * blk_requeue_request - put a request back on queue
1054 * @q: request queue where request should be inserted
1055 * @rq: request to be inserted
1056 *
1057 * Description:
1058 * Drivers often keep queueing requests until the hardware cannot accept
1059 * more, when that condition happens we need to put the request back
1060 * on the queue. Must be called with queue lock held.
1061 */
blk_requeue_request(struct request_queue * q,struct request * rq)1062 void blk_requeue_request(struct request_queue *q, struct request *rq)
1063 {
1064 blk_delete_timer(rq);
1065 blk_clear_rq_complete(rq);
1066 trace_block_rq_requeue(q, rq);
1067
1068 if (blk_rq_tagged(rq))
1069 blk_queue_end_tag(q, rq);
1070
1071 BUG_ON(blk_queued_rq(rq));
1072
1073 elv_requeue_request(q, rq);
1074 }
1075 EXPORT_SYMBOL(blk_requeue_request);
1076
add_acct_request(struct request_queue * q,struct request * rq,int where)1077 static void add_acct_request(struct request_queue *q, struct request *rq,
1078 int where)
1079 {
1080 drive_stat_acct(rq, 1);
1081 __elv_add_request(q, rq, where);
1082 }
1083
part_round_stats_single(int cpu,struct hd_struct * part,unsigned long now)1084 static void part_round_stats_single(int cpu, struct hd_struct *part,
1085 unsigned long now)
1086 {
1087 if (now == part->stamp)
1088 return;
1089
1090 if (part_in_flight(part)) {
1091 __part_stat_add(cpu, part, time_in_queue,
1092 part_in_flight(part) * (now - part->stamp));
1093 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1094 }
1095 part->stamp = now;
1096 }
1097
1098 /**
1099 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1100 * @cpu: cpu number for stats access
1101 * @part: target partition
1102 *
1103 * The average IO queue length and utilisation statistics are maintained
1104 * by observing the current state of the queue length and the amount of
1105 * time it has been in this state for.
1106 *
1107 * Normally, that accounting is done on IO completion, but that can result
1108 * in more than a second's worth of IO being accounted for within any one
1109 * second, leading to >100% utilisation. To deal with that, we call this
1110 * function to do a round-off before returning the results when reading
1111 * /proc/diskstats. This accounts immediately for all queue usage up to
1112 * the current jiffies and restarts the counters again.
1113 */
part_round_stats(int cpu,struct hd_struct * part)1114 void part_round_stats(int cpu, struct hd_struct *part)
1115 {
1116 unsigned long now = jiffies;
1117
1118 if (part->partno)
1119 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1120 part_round_stats_single(cpu, part, now);
1121 }
1122 EXPORT_SYMBOL_GPL(part_round_stats);
1123
1124 /*
1125 * queue lock must be held
1126 */
__blk_put_request(struct request_queue * q,struct request * req)1127 void __blk_put_request(struct request_queue *q, struct request *req)
1128 {
1129 if (unlikely(!q))
1130 return;
1131 if (unlikely(--req->ref_count))
1132 return;
1133
1134 elv_completed_request(q, req);
1135
1136 /* this is a bio leak */
1137 WARN_ON(req->bio != NULL);
1138
1139 /*
1140 * Request may not have originated from ll_rw_blk. if not,
1141 * it didn't come out of our reserved rq pools
1142 */
1143 if (req->cmd_flags & REQ_ALLOCED) {
1144 unsigned int flags = req->cmd_flags;
1145
1146 BUG_ON(!list_empty(&req->queuelist));
1147 BUG_ON(!hlist_unhashed(&req->hash));
1148
1149 blk_free_request(q, req);
1150 freed_request(q, flags);
1151 }
1152 }
1153 EXPORT_SYMBOL_GPL(__blk_put_request);
1154
blk_put_request(struct request * req)1155 void blk_put_request(struct request *req)
1156 {
1157 unsigned long flags;
1158 struct request_queue *q = req->q;
1159
1160 spin_lock_irqsave(q->queue_lock, flags);
1161 __blk_put_request(q, req);
1162 spin_unlock_irqrestore(q->queue_lock, flags);
1163 }
1164 EXPORT_SYMBOL(blk_put_request);
1165
1166 /**
1167 * blk_add_request_payload - add a payload to a request
1168 * @rq: request to update
1169 * @page: page backing the payload
1170 * @len: length of the payload.
1171 *
1172 * This allows to later add a payload to an already submitted request by
1173 * a block driver. The driver needs to take care of freeing the payload
1174 * itself.
1175 *
1176 * Note that this is a quite horrible hack and nothing but handling of
1177 * discard requests should ever use it.
1178 */
blk_add_request_payload(struct request * rq,struct page * page,unsigned int len)1179 void blk_add_request_payload(struct request *rq, struct page *page,
1180 unsigned int len)
1181 {
1182 struct bio *bio = rq->bio;
1183
1184 bio->bi_io_vec->bv_page = page;
1185 bio->bi_io_vec->bv_offset = 0;
1186 bio->bi_io_vec->bv_len = len;
1187
1188 bio->bi_size = len;
1189 bio->bi_vcnt = 1;
1190 bio->bi_phys_segments = 1;
1191
1192 rq->__data_len = rq->resid_len = len;
1193 rq->nr_phys_segments = 1;
1194 rq->buffer = bio_data(bio);
1195 }
1196 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1197
bio_attempt_back_merge(struct request_queue * q,struct request * req,struct bio * bio)1198 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1199 struct bio *bio)
1200 {
1201 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1202
1203 if (!ll_back_merge_fn(q, req, bio))
1204 return false;
1205
1206 trace_block_bio_backmerge(q, bio);
1207
1208 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1209 blk_rq_set_mixed_merge(req);
1210
1211 req->biotail->bi_next = bio;
1212 req->biotail = bio;
1213 req->__data_len += bio->bi_size;
1214 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1215
1216 drive_stat_acct(req, 0);
1217 return true;
1218 }
1219
bio_attempt_front_merge(struct request_queue * q,struct request * req,struct bio * bio)1220 static bool bio_attempt_front_merge(struct request_queue *q,
1221 struct request *req, struct bio *bio)
1222 {
1223 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1224
1225 if (!ll_front_merge_fn(q, req, bio))
1226 return false;
1227
1228 trace_block_bio_frontmerge(q, bio);
1229
1230 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1231 blk_rq_set_mixed_merge(req);
1232
1233 bio->bi_next = req->bio;
1234 req->bio = bio;
1235
1236 /*
1237 * may not be valid. if the low level driver said
1238 * it didn't need a bounce buffer then it better
1239 * not touch req->buffer either...
1240 */
1241 req->buffer = bio_data(bio);
1242 req->__sector = bio->bi_sector;
1243 req->__data_len += bio->bi_size;
1244 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1245
1246 drive_stat_acct(req, 0);
1247 return true;
1248 }
1249
1250 /**
1251 * attempt_plug_merge - try to merge with %current's plugged list
1252 * @q: request_queue new bio is being queued at
1253 * @bio: new bio being queued
1254 * @request_count: out parameter for number of traversed plugged requests
1255 *
1256 * Determine whether @bio being queued on @q can be merged with a request
1257 * on %current's plugged list. Returns %true if merge was successful,
1258 * otherwise %false.
1259 *
1260 * Plugging coalesces IOs from the same issuer for the same purpose without
1261 * going through @q->queue_lock. As such it's more of an issuing mechanism
1262 * than scheduling, and the request, while may have elvpriv data, is not
1263 * added on the elevator at this point. In addition, we don't have
1264 * reliable access to the elevator outside queue lock. Only check basic
1265 * merging parameters without querying the elevator.
1266 */
attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int * request_count)1267 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1268 unsigned int *request_count)
1269 {
1270 struct blk_plug *plug;
1271 struct request *rq;
1272 bool ret = false;
1273
1274 plug = current->plug;
1275 if (!plug)
1276 goto out;
1277 *request_count = 0;
1278
1279 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1280 int el_ret;
1281
1282 if (rq->q == q)
1283 (*request_count)++;
1284
1285 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1286 continue;
1287
1288 el_ret = blk_try_merge(rq, bio);
1289 if (el_ret == ELEVATOR_BACK_MERGE) {
1290 ret = bio_attempt_back_merge(q, rq, bio);
1291 if (ret)
1292 break;
1293 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1294 ret = bio_attempt_front_merge(q, rq, bio);
1295 if (ret)
1296 break;
1297 }
1298 }
1299 out:
1300 return ret;
1301 }
1302
init_request_from_bio(struct request * req,struct bio * bio)1303 void init_request_from_bio(struct request *req, struct bio *bio)
1304 {
1305 req->cmd_type = REQ_TYPE_FS;
1306
1307 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1308 if (bio->bi_rw & REQ_RAHEAD)
1309 req->cmd_flags |= REQ_FAILFAST_MASK;
1310
1311 req->errors = 0;
1312 req->__sector = bio->bi_sector;
1313 req->ioprio = bio_prio(bio);
1314 blk_rq_bio_prep(req->q, req, bio);
1315 }
1316
blk_queue_bio(struct request_queue * q,struct bio * bio)1317 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1318 {
1319 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1320 struct blk_plug *plug;
1321 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1322 struct request *req;
1323 unsigned int request_count = 0;
1324
1325 /*
1326 * low level driver can indicate that it wants pages above a
1327 * certain limit bounced to low memory (ie for highmem, or even
1328 * ISA dma in theory)
1329 */
1330 blk_queue_bounce(q, &bio);
1331
1332 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1333 spin_lock_irq(q->queue_lock);
1334 where = ELEVATOR_INSERT_FLUSH;
1335 goto get_rq;
1336 }
1337
1338 /*
1339 * Check if we can merge with the plugged list before grabbing
1340 * any locks.
1341 */
1342 if (attempt_plug_merge(q, bio, &request_count))
1343 return;
1344
1345 spin_lock_irq(q->queue_lock);
1346
1347 el_ret = elv_merge(q, &req, bio);
1348 if (el_ret == ELEVATOR_BACK_MERGE) {
1349 if (bio_attempt_back_merge(q, req, bio)) {
1350 elv_bio_merged(q, req, bio);
1351 if (!attempt_back_merge(q, req))
1352 elv_merged_request(q, req, el_ret);
1353 goto out_unlock;
1354 }
1355 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1356 if (bio_attempt_front_merge(q, req, bio)) {
1357 elv_bio_merged(q, req, bio);
1358 if (!attempt_front_merge(q, req))
1359 elv_merged_request(q, req, el_ret);
1360 goto out_unlock;
1361 }
1362 }
1363
1364 get_rq:
1365 /*
1366 * This sync check and mask will be re-done in init_request_from_bio(),
1367 * but we need to set it earlier to expose the sync flag to the
1368 * rq allocator and io schedulers.
1369 */
1370 rw_flags = bio_data_dir(bio);
1371 if (sync)
1372 rw_flags |= REQ_SYNC;
1373
1374 /*
1375 * Grab a free request. This is might sleep but can not fail.
1376 * Returns with the queue unlocked.
1377 */
1378 req = get_request_wait(q, rw_flags, bio);
1379 if (unlikely(!req)) {
1380 bio_endio(bio, -ENODEV); /* @q is dead */
1381 goto out_unlock;
1382 }
1383
1384 /*
1385 * After dropping the lock and possibly sleeping here, our request
1386 * may now be mergeable after it had proven unmergeable (above).
1387 * We don't worry about that case for efficiency. It won't happen
1388 * often, and the elevators are able to handle it.
1389 */
1390 init_request_from_bio(req, bio);
1391
1392 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1393 req->cpu = raw_smp_processor_id();
1394
1395 plug = current->plug;
1396 if (plug) {
1397 /*
1398 * If this is the first request added after a plug, fire
1399 * of a plug trace. If others have been added before, check
1400 * if we have multiple devices in this plug. If so, make a
1401 * note to sort the list before dispatch.
1402 */
1403 if (list_empty(&plug->list))
1404 trace_block_plug(q);
1405 else {
1406 if (!plug->should_sort) {
1407 struct request *__rq;
1408
1409 __rq = list_entry_rq(plug->list.prev);
1410 if (__rq->q != q)
1411 plug->should_sort = 1;
1412 }
1413 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1414 blk_flush_plug_list(plug, false);
1415 trace_block_plug(q);
1416 }
1417 }
1418 list_add_tail(&req->queuelist, &plug->list);
1419 drive_stat_acct(req, 1);
1420 } else {
1421 spin_lock_irq(q->queue_lock);
1422 add_acct_request(q, req, where);
1423 __blk_run_queue(q);
1424 out_unlock:
1425 spin_unlock_irq(q->queue_lock);
1426 }
1427 }
1428 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1429
1430 /*
1431 * If bio->bi_dev is a partition, remap the location
1432 */
blk_partition_remap(struct bio * bio)1433 static inline void blk_partition_remap(struct bio *bio)
1434 {
1435 struct block_device *bdev = bio->bi_bdev;
1436
1437 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1438 struct hd_struct *p = bdev->bd_part;
1439
1440 bio->bi_sector += p->start_sect;
1441 bio->bi_bdev = bdev->bd_contains;
1442
1443 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1444 bdev->bd_dev,
1445 bio->bi_sector - p->start_sect);
1446 }
1447 }
1448
handle_bad_sector(struct bio * bio)1449 static void handle_bad_sector(struct bio *bio)
1450 {
1451 char b[BDEVNAME_SIZE];
1452
1453 printk(KERN_INFO "attempt to access beyond end of device\n");
1454 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1455 bdevname(bio->bi_bdev, b),
1456 bio->bi_rw,
1457 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1458 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1459
1460 set_bit(BIO_EOF, &bio->bi_flags);
1461 }
1462
1463 #ifdef CONFIG_FAIL_MAKE_REQUEST
1464
1465 static DECLARE_FAULT_ATTR(fail_make_request);
1466
setup_fail_make_request(char * str)1467 static int __init setup_fail_make_request(char *str)
1468 {
1469 return setup_fault_attr(&fail_make_request, str);
1470 }
1471 __setup("fail_make_request=", setup_fail_make_request);
1472
should_fail_request(struct hd_struct * part,unsigned int bytes)1473 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1474 {
1475 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1476 }
1477
fail_make_request_debugfs(void)1478 static int __init fail_make_request_debugfs(void)
1479 {
1480 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1481 NULL, &fail_make_request);
1482
1483 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1484 }
1485
1486 late_initcall(fail_make_request_debugfs);
1487
1488 #else /* CONFIG_FAIL_MAKE_REQUEST */
1489
should_fail_request(struct hd_struct * part,unsigned int bytes)1490 static inline bool should_fail_request(struct hd_struct *part,
1491 unsigned int bytes)
1492 {
1493 return false;
1494 }
1495
1496 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1497
1498 /*
1499 * Check whether this bio extends beyond the end of the device.
1500 */
bio_check_eod(struct bio * bio,unsigned int nr_sectors)1501 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1502 {
1503 sector_t maxsector;
1504
1505 if (!nr_sectors)
1506 return 0;
1507
1508 /* Test device or partition size, when known. */
1509 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1510 if (maxsector) {
1511 sector_t sector = bio->bi_sector;
1512
1513 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1514 /*
1515 * This may well happen - the kernel calls bread()
1516 * without checking the size of the device, e.g., when
1517 * mounting a device.
1518 */
1519 handle_bad_sector(bio);
1520 return 1;
1521 }
1522 }
1523
1524 return 0;
1525 }
1526
1527 static noinline_for_stack bool
generic_make_request_checks(struct bio * bio)1528 generic_make_request_checks(struct bio *bio)
1529 {
1530 struct request_queue *q;
1531 int nr_sectors = bio_sectors(bio);
1532 int err = -EIO;
1533 char b[BDEVNAME_SIZE];
1534 struct hd_struct *part;
1535
1536 might_sleep();
1537
1538 if (bio_check_eod(bio, nr_sectors))
1539 goto end_io;
1540
1541 q = bdev_get_queue(bio->bi_bdev);
1542 if (unlikely(!q)) {
1543 printk(KERN_ERR
1544 "generic_make_request: Trying to access "
1545 "nonexistent block-device %s (%Lu)\n",
1546 bdevname(bio->bi_bdev, b),
1547 (long long) bio->bi_sector);
1548 goto end_io;
1549 }
1550
1551 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1552 nr_sectors > queue_max_hw_sectors(q))) {
1553 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1554 bdevname(bio->bi_bdev, b),
1555 bio_sectors(bio),
1556 queue_max_hw_sectors(q));
1557 goto end_io;
1558 }
1559
1560 part = bio->bi_bdev->bd_part;
1561 if (should_fail_request(part, bio->bi_size) ||
1562 should_fail_request(&part_to_disk(part)->part0,
1563 bio->bi_size))
1564 goto end_io;
1565
1566 /*
1567 * If this device has partitions, remap block n
1568 * of partition p to block n+start(p) of the disk.
1569 */
1570 blk_partition_remap(bio);
1571
1572 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1573 goto end_io;
1574
1575 if (bio_check_eod(bio, nr_sectors))
1576 goto end_io;
1577
1578 /*
1579 * Filter flush bio's early so that make_request based
1580 * drivers without flush support don't have to worry
1581 * about them.
1582 */
1583 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1584 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1585 if (!nr_sectors) {
1586 err = 0;
1587 goto end_io;
1588 }
1589 }
1590
1591 if ((bio->bi_rw & REQ_DISCARD) &&
1592 (!blk_queue_discard(q) ||
1593 ((bio->bi_rw & REQ_SECURE) &&
1594 !blk_queue_secdiscard(q)))) {
1595 err = -EOPNOTSUPP;
1596 goto end_io;
1597 }
1598
1599 if (blk_throtl_bio(q, bio))
1600 return false; /* throttled, will be resubmitted later */
1601
1602 trace_block_bio_queue(q, bio);
1603 return true;
1604
1605 end_io:
1606 bio_endio(bio, err);
1607 return false;
1608 }
1609
1610 /**
1611 * generic_make_request - hand a buffer to its device driver for I/O
1612 * @bio: The bio describing the location in memory and on the device.
1613 *
1614 * generic_make_request() is used to make I/O requests of block
1615 * devices. It is passed a &struct bio, which describes the I/O that needs
1616 * to be done.
1617 *
1618 * generic_make_request() does not return any status. The
1619 * success/failure status of the request, along with notification of
1620 * completion, is delivered asynchronously through the bio->bi_end_io
1621 * function described (one day) else where.
1622 *
1623 * The caller of generic_make_request must make sure that bi_io_vec
1624 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1625 * set to describe the device address, and the
1626 * bi_end_io and optionally bi_private are set to describe how
1627 * completion notification should be signaled.
1628 *
1629 * generic_make_request and the drivers it calls may use bi_next if this
1630 * bio happens to be merged with someone else, and may resubmit the bio to
1631 * a lower device by calling into generic_make_request recursively, which
1632 * means the bio should NOT be touched after the call to ->make_request_fn.
1633 */
generic_make_request(struct bio * bio)1634 void generic_make_request(struct bio *bio)
1635 {
1636 struct bio_list bio_list_on_stack;
1637
1638 if (!generic_make_request_checks(bio))
1639 return;
1640
1641 /*
1642 * We only want one ->make_request_fn to be active at a time, else
1643 * stack usage with stacked devices could be a problem. So use
1644 * current->bio_list to keep a list of requests submited by a
1645 * make_request_fn function. current->bio_list is also used as a
1646 * flag to say if generic_make_request is currently active in this
1647 * task or not. If it is NULL, then no make_request is active. If
1648 * it is non-NULL, then a make_request is active, and new requests
1649 * should be added at the tail
1650 */
1651 if (current->bio_list) {
1652 bio_list_add(current->bio_list, bio);
1653 return;
1654 }
1655
1656 /* following loop may be a bit non-obvious, and so deserves some
1657 * explanation.
1658 * Before entering the loop, bio->bi_next is NULL (as all callers
1659 * ensure that) so we have a list with a single bio.
1660 * We pretend that we have just taken it off a longer list, so
1661 * we assign bio_list to a pointer to the bio_list_on_stack,
1662 * thus initialising the bio_list of new bios to be
1663 * added. ->make_request() may indeed add some more bios
1664 * through a recursive call to generic_make_request. If it
1665 * did, we find a non-NULL value in bio_list and re-enter the loop
1666 * from the top. In this case we really did just take the bio
1667 * of the top of the list (no pretending) and so remove it from
1668 * bio_list, and call into ->make_request() again.
1669 */
1670 BUG_ON(bio->bi_next);
1671 bio_list_init(&bio_list_on_stack);
1672 current->bio_list = &bio_list_on_stack;
1673 do {
1674 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1675
1676 q->make_request_fn(q, bio);
1677
1678 bio = bio_list_pop(current->bio_list);
1679 } while (bio);
1680 current->bio_list = NULL; /* deactivate */
1681 }
1682 EXPORT_SYMBOL(generic_make_request);
1683
1684 /**
1685 * submit_bio - submit a bio to the block device layer for I/O
1686 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1687 * @bio: The &struct bio which describes the I/O
1688 *
1689 * submit_bio() is very similar in purpose to generic_make_request(), and
1690 * uses that function to do most of the work. Both are fairly rough
1691 * interfaces; @bio must be presetup and ready for I/O.
1692 *
1693 */
submit_bio(int rw,struct bio * bio)1694 void submit_bio(int rw, struct bio *bio)
1695 {
1696 int count = bio_sectors(bio);
1697
1698 bio->bi_rw |= rw;
1699
1700 /*
1701 * If it's a regular read/write or a barrier with data attached,
1702 * go through the normal accounting stuff before submission.
1703 */
1704 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1705 if (rw & WRITE) {
1706 count_vm_events(PGPGOUT, count);
1707 } else {
1708 task_io_account_read(bio->bi_size);
1709 count_vm_events(PGPGIN, count);
1710 }
1711
1712 if (unlikely(block_dump)) {
1713 char b[BDEVNAME_SIZE];
1714 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1715 current->comm, task_pid_nr(current),
1716 (rw & WRITE) ? "WRITE" : "READ",
1717 (unsigned long long)bio->bi_sector,
1718 bdevname(bio->bi_bdev, b),
1719 count);
1720 }
1721 }
1722
1723 generic_make_request(bio);
1724 }
1725 EXPORT_SYMBOL(submit_bio);
1726
1727 /**
1728 * blk_rq_check_limits - Helper function to check a request for the queue limit
1729 * @q: the queue
1730 * @rq: the request being checked
1731 *
1732 * Description:
1733 * @rq may have been made based on weaker limitations of upper-level queues
1734 * in request stacking drivers, and it may violate the limitation of @q.
1735 * Since the block layer and the underlying device driver trust @rq
1736 * after it is inserted to @q, it should be checked against @q before
1737 * the insertion using this generic function.
1738 *
1739 * This function should also be useful for request stacking drivers
1740 * in some cases below, so export this function.
1741 * Request stacking drivers like request-based dm may change the queue
1742 * limits while requests are in the queue (e.g. dm's table swapping).
1743 * Such request stacking drivers should check those requests agaist
1744 * the new queue limits again when they dispatch those requests,
1745 * although such checkings are also done against the old queue limits
1746 * when submitting requests.
1747 */
blk_rq_check_limits(struct request_queue * q,struct request * rq)1748 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1749 {
1750 if (rq->cmd_flags & REQ_DISCARD)
1751 return 0;
1752
1753 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1754 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1755 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1756 return -EIO;
1757 }
1758
1759 /*
1760 * queue's settings related to segment counting like q->bounce_pfn
1761 * may differ from that of other stacking queues.
1762 * Recalculate it to check the request correctly on this queue's
1763 * limitation.
1764 */
1765 blk_recalc_rq_segments(rq);
1766 if (rq->nr_phys_segments > queue_max_segments(q)) {
1767 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1768 return -EIO;
1769 }
1770
1771 return 0;
1772 }
1773 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1774
1775 /**
1776 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1777 * @q: the queue to submit the request
1778 * @rq: the request being queued
1779 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1780 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1781 {
1782 unsigned long flags;
1783 int where = ELEVATOR_INSERT_BACK;
1784
1785 if (blk_rq_check_limits(q, rq))
1786 return -EIO;
1787
1788 if (rq->rq_disk &&
1789 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1790 return -EIO;
1791
1792 spin_lock_irqsave(q->queue_lock, flags);
1793 if (unlikely(blk_queue_dead(q))) {
1794 spin_unlock_irqrestore(q->queue_lock, flags);
1795 return -ENODEV;
1796 }
1797
1798 /*
1799 * Submitting request must be dequeued before calling this function
1800 * because it will be linked to another request_queue
1801 */
1802 BUG_ON(blk_queued_rq(rq));
1803
1804 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1805 where = ELEVATOR_INSERT_FLUSH;
1806
1807 add_acct_request(q, rq, where);
1808 if (where == ELEVATOR_INSERT_FLUSH)
1809 __blk_run_queue(q);
1810 spin_unlock_irqrestore(q->queue_lock, flags);
1811
1812 return 0;
1813 }
1814 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1815
1816 /**
1817 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1818 * @rq: request to examine
1819 *
1820 * Description:
1821 * A request could be merge of IOs which require different failure
1822 * handling. This function determines the number of bytes which
1823 * can be failed from the beginning of the request without
1824 * crossing into area which need to be retried further.
1825 *
1826 * Return:
1827 * The number of bytes to fail.
1828 *
1829 * Context:
1830 * queue_lock must be held.
1831 */
blk_rq_err_bytes(const struct request * rq)1832 unsigned int blk_rq_err_bytes(const struct request *rq)
1833 {
1834 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1835 unsigned int bytes = 0;
1836 struct bio *bio;
1837
1838 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1839 return blk_rq_bytes(rq);
1840
1841 /*
1842 * Currently the only 'mixing' which can happen is between
1843 * different fastfail types. We can safely fail portions
1844 * which have all the failfast bits that the first one has -
1845 * the ones which are at least as eager to fail as the first
1846 * one.
1847 */
1848 for (bio = rq->bio; bio; bio = bio->bi_next) {
1849 if ((bio->bi_rw & ff) != ff)
1850 break;
1851 bytes += bio->bi_size;
1852 }
1853
1854 /* this could lead to infinite loop */
1855 BUG_ON(blk_rq_bytes(rq) && !bytes);
1856 return bytes;
1857 }
1858 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1859
blk_account_io_completion(struct request * req,unsigned int bytes)1860 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1861 {
1862 if (blk_do_io_stat(req)) {
1863 const int rw = rq_data_dir(req);
1864 struct hd_struct *part;
1865 int cpu;
1866
1867 cpu = part_stat_lock();
1868 part = req->part;
1869 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1870 part_stat_unlock();
1871 }
1872 }
1873
blk_account_io_done(struct request * req)1874 static void blk_account_io_done(struct request *req)
1875 {
1876 /*
1877 * Account IO completion. flush_rq isn't accounted as a
1878 * normal IO on queueing nor completion. Accounting the
1879 * containing request is enough.
1880 */
1881 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1882 unsigned long duration = jiffies - req->start_time;
1883 const int rw = rq_data_dir(req);
1884 struct hd_struct *part;
1885 int cpu;
1886
1887 cpu = part_stat_lock();
1888 part = req->part;
1889
1890 part_stat_inc(cpu, part, ios[rw]);
1891 part_stat_add(cpu, part, ticks[rw], duration);
1892 part_round_stats(cpu, part);
1893 part_dec_in_flight(part, rw);
1894
1895 hd_struct_put(part);
1896 part_stat_unlock();
1897 }
1898 }
1899
1900 /**
1901 * blk_peek_request - peek at the top of a request queue
1902 * @q: request queue to peek at
1903 *
1904 * Description:
1905 * Return the request at the top of @q. The returned request
1906 * should be started using blk_start_request() before LLD starts
1907 * processing it.
1908 *
1909 * Return:
1910 * Pointer to the request at the top of @q if available. Null
1911 * otherwise.
1912 *
1913 * Context:
1914 * queue_lock must be held.
1915 */
blk_peek_request(struct request_queue * q)1916 struct request *blk_peek_request(struct request_queue *q)
1917 {
1918 struct request *rq;
1919 int ret;
1920
1921 while ((rq = __elv_next_request(q)) != NULL) {
1922 if (!(rq->cmd_flags & REQ_STARTED)) {
1923 /*
1924 * This is the first time the device driver
1925 * sees this request (possibly after
1926 * requeueing). Notify IO scheduler.
1927 */
1928 if (rq->cmd_flags & REQ_SORTED)
1929 elv_activate_rq(q, rq);
1930
1931 /*
1932 * just mark as started even if we don't start
1933 * it, a request that has been delayed should
1934 * not be passed by new incoming requests
1935 */
1936 rq->cmd_flags |= REQ_STARTED;
1937 trace_block_rq_issue(q, rq);
1938 }
1939
1940 if (!q->boundary_rq || q->boundary_rq == rq) {
1941 q->end_sector = rq_end_sector(rq);
1942 q->boundary_rq = NULL;
1943 }
1944
1945 if (rq->cmd_flags & REQ_DONTPREP)
1946 break;
1947
1948 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1949 /*
1950 * make sure space for the drain appears we
1951 * know we can do this because max_hw_segments
1952 * has been adjusted to be one fewer than the
1953 * device can handle
1954 */
1955 rq->nr_phys_segments++;
1956 }
1957
1958 if (!q->prep_rq_fn)
1959 break;
1960
1961 ret = q->prep_rq_fn(q, rq);
1962 if (ret == BLKPREP_OK) {
1963 break;
1964 } else if (ret == BLKPREP_DEFER) {
1965 /*
1966 * the request may have been (partially) prepped.
1967 * we need to keep this request in the front to
1968 * avoid resource deadlock. REQ_STARTED will
1969 * prevent other fs requests from passing this one.
1970 */
1971 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1972 !(rq->cmd_flags & REQ_DONTPREP)) {
1973 /*
1974 * remove the space for the drain we added
1975 * so that we don't add it again
1976 */
1977 --rq->nr_phys_segments;
1978 }
1979
1980 rq = NULL;
1981 break;
1982 } else if (ret == BLKPREP_KILL) {
1983 rq->cmd_flags |= REQ_QUIET;
1984 /*
1985 * Mark this request as started so we don't trigger
1986 * any debug logic in the end I/O path.
1987 */
1988 blk_start_request(rq);
1989 __blk_end_request_all(rq, -EIO);
1990 } else {
1991 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1992 break;
1993 }
1994 }
1995
1996 return rq;
1997 }
1998 EXPORT_SYMBOL(blk_peek_request);
1999
blk_dequeue_request(struct request * rq)2000 void blk_dequeue_request(struct request *rq)
2001 {
2002 struct request_queue *q = rq->q;
2003
2004 BUG_ON(list_empty(&rq->queuelist));
2005 BUG_ON(ELV_ON_HASH(rq));
2006
2007 list_del_init(&rq->queuelist);
2008
2009 /*
2010 * the time frame between a request being removed from the lists
2011 * and to it is freed is accounted as io that is in progress at
2012 * the driver side.
2013 */
2014 if (blk_account_rq(rq)) {
2015 q->in_flight[rq_is_sync(rq)]++;
2016 set_io_start_time_ns(rq);
2017 }
2018 }
2019
2020 /**
2021 * blk_start_request - start request processing on the driver
2022 * @req: request to dequeue
2023 *
2024 * Description:
2025 * Dequeue @req and start timeout timer on it. This hands off the
2026 * request to the driver.
2027 *
2028 * Block internal functions which don't want to start timer should
2029 * call blk_dequeue_request().
2030 *
2031 * Context:
2032 * queue_lock must be held.
2033 */
blk_start_request(struct request * req)2034 void blk_start_request(struct request *req)
2035 {
2036 blk_dequeue_request(req);
2037
2038 /*
2039 * We are now handing the request to the hardware, initialize
2040 * resid_len to full count and add the timeout handler.
2041 */
2042 req->resid_len = blk_rq_bytes(req);
2043 if (unlikely(blk_bidi_rq(req)))
2044 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2045
2046 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2047 blk_add_timer(req);
2048 }
2049 EXPORT_SYMBOL(blk_start_request);
2050
2051 /**
2052 * blk_fetch_request - fetch a request from a request queue
2053 * @q: request queue to fetch a request from
2054 *
2055 * Description:
2056 * Return the request at the top of @q. The request is started on
2057 * return and LLD can start processing it immediately.
2058 *
2059 * Return:
2060 * Pointer to the request at the top of @q if available. Null
2061 * otherwise.
2062 *
2063 * Context:
2064 * queue_lock must be held.
2065 */
blk_fetch_request(struct request_queue * q)2066 struct request *blk_fetch_request(struct request_queue *q)
2067 {
2068 struct request *rq;
2069
2070 rq = blk_peek_request(q);
2071 if (rq)
2072 blk_start_request(rq);
2073 return rq;
2074 }
2075 EXPORT_SYMBOL(blk_fetch_request);
2076
2077 /**
2078 * blk_update_request - Special helper function for request stacking drivers
2079 * @req: the request being processed
2080 * @error: %0 for success, < %0 for error
2081 * @nr_bytes: number of bytes to complete @req
2082 *
2083 * Description:
2084 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2085 * the request structure even if @req doesn't have leftover.
2086 * If @req has leftover, sets it up for the next range of segments.
2087 *
2088 * This special helper function is only for request stacking drivers
2089 * (e.g. request-based dm) so that they can handle partial completion.
2090 * Actual device drivers should use blk_end_request instead.
2091 *
2092 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2093 * %false return from this function.
2094 *
2095 * Return:
2096 * %false - this request doesn't have any more data
2097 * %true - this request has more data
2098 **/
blk_update_request(struct request * req,int error,unsigned int nr_bytes)2099 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2100 {
2101 int total_bytes, bio_nbytes, next_idx = 0;
2102 struct bio *bio;
2103
2104 if (!req->bio)
2105 return false;
2106
2107 trace_block_rq_complete(req->q, req, nr_bytes);
2108
2109 /*
2110 * For fs requests, rq is just carrier of independent bio's
2111 * and each partial completion should be handled separately.
2112 * Reset per-request error on each partial completion.
2113 *
2114 * TODO: tj: This is too subtle. It would be better to let
2115 * low level drivers do what they see fit.
2116 */
2117 if (req->cmd_type == REQ_TYPE_FS)
2118 req->errors = 0;
2119
2120 if (error && req->cmd_type == REQ_TYPE_FS &&
2121 !(req->cmd_flags & REQ_QUIET)) {
2122 char *error_type;
2123
2124 switch (error) {
2125 case -ENOLINK:
2126 error_type = "recoverable transport";
2127 break;
2128 case -EREMOTEIO:
2129 error_type = "critical target";
2130 break;
2131 case -EBADE:
2132 error_type = "critical nexus";
2133 break;
2134 case -EIO:
2135 default:
2136 error_type = "I/O";
2137 break;
2138 }
2139 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2140 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2141 (unsigned long long)blk_rq_pos(req));
2142 }
2143
2144 blk_account_io_completion(req, nr_bytes);
2145
2146 total_bytes = bio_nbytes = 0;
2147 while ((bio = req->bio) != NULL) {
2148 int nbytes;
2149
2150 if (nr_bytes >= bio->bi_size) {
2151 req->bio = bio->bi_next;
2152 nbytes = bio->bi_size;
2153 req_bio_endio(req, bio, nbytes, error);
2154 next_idx = 0;
2155 bio_nbytes = 0;
2156 } else {
2157 int idx = bio->bi_idx + next_idx;
2158
2159 if (unlikely(idx >= bio->bi_vcnt)) {
2160 blk_dump_rq_flags(req, "__end_that");
2161 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2162 __func__, idx, bio->bi_vcnt);
2163 break;
2164 }
2165
2166 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2167 BIO_BUG_ON(nbytes > bio->bi_size);
2168
2169 /*
2170 * not a complete bvec done
2171 */
2172 if (unlikely(nbytes > nr_bytes)) {
2173 bio_nbytes += nr_bytes;
2174 total_bytes += nr_bytes;
2175 break;
2176 }
2177
2178 /*
2179 * advance to the next vector
2180 */
2181 next_idx++;
2182 bio_nbytes += nbytes;
2183 }
2184
2185 total_bytes += nbytes;
2186 nr_bytes -= nbytes;
2187
2188 bio = req->bio;
2189 if (bio) {
2190 /*
2191 * end more in this run, or just return 'not-done'
2192 */
2193 if (unlikely(nr_bytes <= 0))
2194 break;
2195 }
2196 }
2197
2198 /*
2199 * completely done
2200 */
2201 if (!req->bio) {
2202 /*
2203 * Reset counters so that the request stacking driver
2204 * can find how many bytes remain in the request
2205 * later.
2206 */
2207 req->__data_len = 0;
2208 return false;
2209 }
2210
2211 /*
2212 * if the request wasn't completed, update state
2213 */
2214 if (bio_nbytes) {
2215 req_bio_endio(req, bio, bio_nbytes, error);
2216 bio->bi_idx += next_idx;
2217 bio_iovec(bio)->bv_offset += nr_bytes;
2218 bio_iovec(bio)->bv_len -= nr_bytes;
2219 }
2220
2221 req->__data_len -= total_bytes;
2222 req->buffer = bio_data(req->bio);
2223
2224 /* update sector only for requests with clear definition of sector */
2225 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2226 req->__sector += total_bytes >> 9;
2227
2228 /* mixed attributes always follow the first bio */
2229 if (req->cmd_flags & REQ_MIXED_MERGE) {
2230 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2231 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2232 }
2233
2234 /*
2235 * If total number of sectors is less than the first segment
2236 * size, something has gone terribly wrong.
2237 */
2238 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2239 blk_dump_rq_flags(req, "request botched");
2240 req->__data_len = blk_rq_cur_bytes(req);
2241 }
2242
2243 /* recalculate the number of segments */
2244 blk_recalc_rq_segments(req);
2245
2246 return true;
2247 }
2248 EXPORT_SYMBOL_GPL(blk_update_request);
2249
blk_update_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2250 static bool blk_update_bidi_request(struct request *rq, int error,
2251 unsigned int nr_bytes,
2252 unsigned int bidi_bytes)
2253 {
2254 if (blk_update_request(rq, error, nr_bytes))
2255 return true;
2256
2257 /* Bidi request must be completed as a whole */
2258 if (unlikely(blk_bidi_rq(rq)) &&
2259 blk_update_request(rq->next_rq, error, bidi_bytes))
2260 return true;
2261
2262 if (blk_queue_add_random(rq->q))
2263 add_disk_randomness(rq->rq_disk);
2264
2265 return false;
2266 }
2267
2268 /**
2269 * blk_unprep_request - unprepare a request
2270 * @req: the request
2271 *
2272 * This function makes a request ready for complete resubmission (or
2273 * completion). It happens only after all error handling is complete,
2274 * so represents the appropriate moment to deallocate any resources
2275 * that were allocated to the request in the prep_rq_fn. The queue
2276 * lock is held when calling this.
2277 */
blk_unprep_request(struct request * req)2278 void blk_unprep_request(struct request *req)
2279 {
2280 struct request_queue *q = req->q;
2281
2282 req->cmd_flags &= ~REQ_DONTPREP;
2283 if (q->unprep_rq_fn)
2284 q->unprep_rq_fn(q, req);
2285 }
2286 EXPORT_SYMBOL_GPL(blk_unprep_request);
2287
2288 /*
2289 * queue lock must be held
2290 */
blk_finish_request(struct request * req,int error)2291 static void blk_finish_request(struct request *req, int error)
2292 {
2293 if (blk_rq_tagged(req))
2294 blk_queue_end_tag(req->q, req);
2295
2296 BUG_ON(blk_queued_rq(req));
2297
2298 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2299 laptop_io_completion(&req->q->backing_dev_info);
2300
2301 blk_delete_timer(req);
2302
2303 if (req->cmd_flags & REQ_DONTPREP)
2304 blk_unprep_request(req);
2305
2306
2307 blk_account_io_done(req);
2308
2309 if (req->end_io)
2310 req->end_io(req, error);
2311 else {
2312 if (blk_bidi_rq(req))
2313 __blk_put_request(req->next_rq->q, req->next_rq);
2314
2315 __blk_put_request(req->q, req);
2316 }
2317 }
2318
2319 /**
2320 * blk_end_bidi_request - Complete a bidi request
2321 * @rq: the request to complete
2322 * @error: %0 for success, < %0 for error
2323 * @nr_bytes: number of bytes to complete @rq
2324 * @bidi_bytes: number of bytes to complete @rq->next_rq
2325 *
2326 * Description:
2327 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2328 * Drivers that supports bidi can safely call this member for any
2329 * type of request, bidi or uni. In the later case @bidi_bytes is
2330 * just ignored.
2331 *
2332 * Return:
2333 * %false - we are done with this request
2334 * %true - still buffers pending for this request
2335 **/
blk_end_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2336 static bool blk_end_bidi_request(struct request *rq, int error,
2337 unsigned int nr_bytes, unsigned int bidi_bytes)
2338 {
2339 struct request_queue *q = rq->q;
2340 unsigned long flags;
2341
2342 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2343 return true;
2344
2345 spin_lock_irqsave(q->queue_lock, flags);
2346 blk_finish_request(rq, error);
2347 spin_unlock_irqrestore(q->queue_lock, flags);
2348
2349 return false;
2350 }
2351
2352 /**
2353 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2354 * @rq: the request to complete
2355 * @error: %0 for success, < %0 for error
2356 * @nr_bytes: number of bytes to complete @rq
2357 * @bidi_bytes: number of bytes to complete @rq->next_rq
2358 *
2359 * Description:
2360 * Identical to blk_end_bidi_request() except that queue lock is
2361 * assumed to be locked on entry and remains so on return.
2362 *
2363 * Return:
2364 * %false - we are done with this request
2365 * %true - still buffers pending for this request
2366 **/
__blk_end_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2367 bool __blk_end_bidi_request(struct request *rq, int error,
2368 unsigned int nr_bytes, unsigned int bidi_bytes)
2369 {
2370 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2371 return true;
2372
2373 blk_finish_request(rq, error);
2374
2375 return false;
2376 }
2377
2378 /**
2379 * blk_end_request - Helper function for drivers to complete the request.
2380 * @rq: the request being processed
2381 * @error: %0 for success, < %0 for error
2382 * @nr_bytes: number of bytes to complete
2383 *
2384 * Description:
2385 * Ends I/O on a number of bytes attached to @rq.
2386 * If @rq has leftover, sets it up for the next range of segments.
2387 *
2388 * Return:
2389 * %false - we are done with this request
2390 * %true - still buffers pending for this request
2391 **/
blk_end_request(struct request * rq,int error,unsigned int nr_bytes)2392 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2393 {
2394 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2395 }
2396 EXPORT_SYMBOL(blk_end_request);
2397
2398 /**
2399 * blk_end_request_all - Helper function for drives to finish the request.
2400 * @rq: the request to finish
2401 * @error: %0 for success, < %0 for error
2402 *
2403 * Description:
2404 * Completely finish @rq.
2405 */
blk_end_request_all(struct request * rq,int error)2406 void blk_end_request_all(struct request *rq, int error)
2407 {
2408 bool pending;
2409 unsigned int bidi_bytes = 0;
2410
2411 if (unlikely(blk_bidi_rq(rq)))
2412 bidi_bytes = blk_rq_bytes(rq->next_rq);
2413
2414 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2415 BUG_ON(pending);
2416 }
2417 EXPORT_SYMBOL(blk_end_request_all);
2418
2419 /**
2420 * blk_end_request_cur - Helper function to finish the current request chunk.
2421 * @rq: the request to finish the current chunk for
2422 * @error: %0 for success, < %0 for error
2423 *
2424 * Description:
2425 * Complete the current consecutively mapped chunk from @rq.
2426 *
2427 * Return:
2428 * %false - we are done with this request
2429 * %true - still buffers pending for this request
2430 */
blk_end_request_cur(struct request * rq,int error)2431 bool blk_end_request_cur(struct request *rq, int error)
2432 {
2433 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2434 }
2435 EXPORT_SYMBOL(blk_end_request_cur);
2436
2437 /**
2438 * blk_end_request_err - Finish a request till the next failure boundary.
2439 * @rq: the request to finish till the next failure boundary for
2440 * @error: must be negative errno
2441 *
2442 * Description:
2443 * Complete @rq till the next failure boundary.
2444 *
2445 * Return:
2446 * %false - we are done with this request
2447 * %true - still buffers pending for this request
2448 */
blk_end_request_err(struct request * rq,int error)2449 bool blk_end_request_err(struct request *rq, int error)
2450 {
2451 WARN_ON(error >= 0);
2452 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2453 }
2454 EXPORT_SYMBOL_GPL(blk_end_request_err);
2455
2456 /**
2457 * __blk_end_request - Helper function for drivers to complete the request.
2458 * @rq: the request being processed
2459 * @error: %0 for success, < %0 for error
2460 * @nr_bytes: number of bytes to complete
2461 *
2462 * Description:
2463 * Must be called with queue lock held unlike blk_end_request().
2464 *
2465 * Return:
2466 * %false - we are done with this request
2467 * %true - still buffers pending for this request
2468 **/
__blk_end_request(struct request * rq,int error,unsigned int nr_bytes)2469 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2470 {
2471 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2472 }
2473 EXPORT_SYMBOL(__blk_end_request);
2474
2475 /**
2476 * __blk_end_request_all - Helper function for drives to finish the request.
2477 * @rq: the request to finish
2478 * @error: %0 for success, < %0 for error
2479 *
2480 * Description:
2481 * Completely finish @rq. Must be called with queue lock held.
2482 */
__blk_end_request_all(struct request * rq,int error)2483 void __blk_end_request_all(struct request *rq, int error)
2484 {
2485 bool pending;
2486 unsigned int bidi_bytes = 0;
2487
2488 if (unlikely(blk_bidi_rq(rq)))
2489 bidi_bytes = blk_rq_bytes(rq->next_rq);
2490
2491 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2492 BUG_ON(pending);
2493 }
2494 EXPORT_SYMBOL(__blk_end_request_all);
2495
2496 /**
2497 * __blk_end_request_cur - Helper function to finish the current request chunk.
2498 * @rq: the request to finish the current chunk for
2499 * @error: %0 for success, < %0 for error
2500 *
2501 * Description:
2502 * Complete the current consecutively mapped chunk from @rq. Must
2503 * be called with queue lock held.
2504 *
2505 * Return:
2506 * %false - we are done with this request
2507 * %true - still buffers pending for this request
2508 */
__blk_end_request_cur(struct request * rq,int error)2509 bool __blk_end_request_cur(struct request *rq, int error)
2510 {
2511 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2512 }
2513 EXPORT_SYMBOL(__blk_end_request_cur);
2514
2515 /**
2516 * __blk_end_request_err - Finish a request till the next failure boundary.
2517 * @rq: the request to finish till the next failure boundary for
2518 * @error: must be negative errno
2519 *
2520 * Description:
2521 * Complete @rq till the next failure boundary. Must be called
2522 * with queue lock held.
2523 *
2524 * Return:
2525 * %false - we are done with this request
2526 * %true - still buffers pending for this request
2527 */
__blk_end_request_err(struct request * rq,int error)2528 bool __blk_end_request_err(struct request *rq, int error)
2529 {
2530 WARN_ON(error >= 0);
2531 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2532 }
2533 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2534
blk_rq_bio_prep(struct request_queue * q,struct request * rq,struct bio * bio)2535 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2536 struct bio *bio)
2537 {
2538 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2539 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2540
2541 if (bio_has_data(bio)) {
2542 rq->nr_phys_segments = bio_phys_segments(q, bio);
2543 rq->buffer = bio_data(bio);
2544 }
2545 rq->__data_len = bio->bi_size;
2546 rq->bio = rq->biotail = bio;
2547
2548 if (bio->bi_bdev)
2549 rq->rq_disk = bio->bi_bdev->bd_disk;
2550 }
2551
2552 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2553 /**
2554 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2555 * @rq: the request to be flushed
2556 *
2557 * Description:
2558 * Flush all pages in @rq.
2559 */
rq_flush_dcache_pages(struct request * rq)2560 void rq_flush_dcache_pages(struct request *rq)
2561 {
2562 struct req_iterator iter;
2563 struct bio_vec *bvec;
2564
2565 rq_for_each_segment(bvec, rq, iter)
2566 flush_dcache_page(bvec->bv_page);
2567 }
2568 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2569 #endif
2570
2571 /**
2572 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2573 * @q : the queue of the device being checked
2574 *
2575 * Description:
2576 * Check if underlying low-level drivers of a device are busy.
2577 * If the drivers want to export their busy state, they must set own
2578 * exporting function using blk_queue_lld_busy() first.
2579 *
2580 * Basically, this function is used only by request stacking drivers
2581 * to stop dispatching requests to underlying devices when underlying
2582 * devices are busy. This behavior helps more I/O merging on the queue
2583 * of the request stacking driver and prevents I/O throughput regression
2584 * on burst I/O load.
2585 *
2586 * Return:
2587 * 0 - Not busy (The request stacking driver should dispatch request)
2588 * 1 - Busy (The request stacking driver should stop dispatching request)
2589 */
blk_lld_busy(struct request_queue * q)2590 int blk_lld_busy(struct request_queue *q)
2591 {
2592 if (q->lld_busy_fn)
2593 return q->lld_busy_fn(q);
2594
2595 return 0;
2596 }
2597 EXPORT_SYMBOL_GPL(blk_lld_busy);
2598
2599 /**
2600 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2601 * @rq: the clone request to be cleaned up
2602 *
2603 * Description:
2604 * Free all bios in @rq for a cloned request.
2605 */
blk_rq_unprep_clone(struct request * rq)2606 void blk_rq_unprep_clone(struct request *rq)
2607 {
2608 struct bio *bio;
2609
2610 while ((bio = rq->bio) != NULL) {
2611 rq->bio = bio->bi_next;
2612
2613 bio_put(bio);
2614 }
2615 }
2616 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2617
2618 /*
2619 * Copy attributes of the original request to the clone request.
2620 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2621 */
__blk_rq_prep_clone(struct request * dst,struct request * src)2622 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2623 {
2624 dst->cpu = src->cpu;
2625 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2626 dst->cmd_type = src->cmd_type;
2627 dst->__sector = blk_rq_pos(src);
2628 dst->__data_len = blk_rq_bytes(src);
2629 dst->nr_phys_segments = src->nr_phys_segments;
2630 dst->ioprio = src->ioprio;
2631 dst->extra_len = src->extra_len;
2632 }
2633
2634 /**
2635 * blk_rq_prep_clone - Helper function to setup clone request
2636 * @rq: the request to be setup
2637 * @rq_src: original request to be cloned
2638 * @bs: bio_set that bios for clone are allocated from
2639 * @gfp_mask: memory allocation mask for bio
2640 * @bio_ctr: setup function to be called for each clone bio.
2641 * Returns %0 for success, non %0 for failure.
2642 * @data: private data to be passed to @bio_ctr
2643 *
2644 * Description:
2645 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2646 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2647 * are not copied, and copying such parts is the caller's responsibility.
2648 * Also, pages which the original bios are pointing to are not copied
2649 * and the cloned bios just point same pages.
2650 * So cloned bios must be completed before original bios, which means
2651 * the caller must complete @rq before @rq_src.
2652 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)2653 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2654 struct bio_set *bs, gfp_t gfp_mask,
2655 int (*bio_ctr)(struct bio *, struct bio *, void *),
2656 void *data)
2657 {
2658 struct bio *bio, *bio_src;
2659
2660 if (!bs)
2661 bs = fs_bio_set;
2662
2663 blk_rq_init(NULL, rq);
2664
2665 __rq_for_each_bio(bio_src, rq_src) {
2666 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2667 if (!bio)
2668 goto free_and_out;
2669
2670 __bio_clone(bio, bio_src);
2671
2672 if (bio_integrity(bio_src) &&
2673 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2674 goto free_and_out;
2675
2676 if (bio_ctr && bio_ctr(bio, bio_src, data))
2677 goto free_and_out;
2678
2679 if (rq->bio) {
2680 rq->biotail->bi_next = bio;
2681 rq->biotail = bio;
2682 } else
2683 rq->bio = rq->biotail = bio;
2684 }
2685
2686 __blk_rq_prep_clone(rq, rq_src);
2687
2688 return 0;
2689
2690 free_and_out:
2691 if (bio)
2692 bio_free(bio, bs);
2693 blk_rq_unprep_clone(rq);
2694
2695 return -ENOMEM;
2696 }
2697 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2698
kblockd_schedule_work(struct request_queue * q,struct work_struct * work)2699 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2700 {
2701 return queue_work(kblockd_workqueue, work);
2702 }
2703 EXPORT_SYMBOL(kblockd_schedule_work);
2704
kblockd_schedule_delayed_work(struct request_queue * q,struct delayed_work * dwork,unsigned long delay)2705 int kblockd_schedule_delayed_work(struct request_queue *q,
2706 struct delayed_work *dwork, unsigned long delay)
2707 {
2708 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2709 }
2710 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2711
2712 #define PLUG_MAGIC 0x91827364
2713
2714 /**
2715 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2716 * @plug: The &struct blk_plug that needs to be initialized
2717 *
2718 * Description:
2719 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2720 * pending I/O should the task end up blocking between blk_start_plug() and
2721 * blk_finish_plug(). This is important from a performance perspective, but
2722 * also ensures that we don't deadlock. For instance, if the task is blocking
2723 * for a memory allocation, memory reclaim could end up wanting to free a
2724 * page belonging to that request that is currently residing in our private
2725 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2726 * this kind of deadlock.
2727 */
blk_start_plug(struct blk_plug * plug)2728 void blk_start_plug(struct blk_plug *plug)
2729 {
2730 struct task_struct *tsk = current;
2731
2732 plug->magic = PLUG_MAGIC;
2733 INIT_LIST_HEAD(&plug->list);
2734 INIT_LIST_HEAD(&plug->cb_list);
2735 plug->should_sort = 0;
2736
2737 /*
2738 * If this is a nested plug, don't actually assign it. It will be
2739 * flushed on its own.
2740 */
2741 if (!tsk->plug) {
2742 /*
2743 * Store ordering should not be needed here, since a potential
2744 * preempt will imply a full memory barrier
2745 */
2746 tsk->plug = plug;
2747 }
2748 }
2749 EXPORT_SYMBOL(blk_start_plug);
2750
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)2751 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2752 {
2753 struct request *rqa = container_of(a, struct request, queuelist);
2754 struct request *rqb = container_of(b, struct request, queuelist);
2755
2756 return !(rqa->q <= rqb->q);
2757 }
2758
2759 /*
2760 * If 'from_schedule' is true, then postpone the dispatch of requests
2761 * until a safe kblockd context. We due this to avoid accidental big
2762 * additional stack usage in driver dispatch, in places where the originally
2763 * plugger did not intend it.
2764 */
queue_unplugged(struct request_queue * q,unsigned int depth,bool from_schedule)2765 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2766 bool from_schedule)
2767 __releases(q->queue_lock)
2768 {
2769 trace_block_unplug(q, depth, !from_schedule);
2770
2771 /*
2772 * Don't mess with dead queue.
2773 */
2774 if (unlikely(blk_queue_dead(q))) {
2775 spin_unlock(q->queue_lock);
2776 return;
2777 }
2778
2779 /*
2780 * If we are punting this to kblockd, then we can safely drop
2781 * the queue_lock before waking kblockd (which needs to take
2782 * this lock).
2783 */
2784 if (from_schedule) {
2785 spin_unlock(q->queue_lock);
2786 blk_run_queue_async(q);
2787 } else {
2788 __blk_run_queue(q);
2789 spin_unlock(q->queue_lock);
2790 }
2791
2792 }
2793
flush_plug_callbacks(struct blk_plug * plug)2794 static void flush_plug_callbacks(struct blk_plug *plug)
2795 {
2796 LIST_HEAD(callbacks);
2797
2798 if (list_empty(&plug->cb_list))
2799 return;
2800
2801 list_splice_init(&plug->cb_list, &callbacks);
2802
2803 while (!list_empty(&callbacks)) {
2804 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2805 struct blk_plug_cb,
2806 list);
2807 list_del(&cb->list);
2808 cb->callback(cb);
2809 }
2810 }
2811
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)2812 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2813 {
2814 struct request_queue *q;
2815 unsigned long flags;
2816 struct request *rq;
2817 LIST_HEAD(list);
2818 unsigned int depth;
2819
2820 BUG_ON(plug->magic != PLUG_MAGIC);
2821
2822 flush_plug_callbacks(plug);
2823 if (list_empty(&plug->list))
2824 return;
2825
2826 list_splice_init(&plug->list, &list);
2827
2828 if (plug->should_sort) {
2829 list_sort(NULL, &list, plug_rq_cmp);
2830 plug->should_sort = 0;
2831 }
2832
2833 q = NULL;
2834 depth = 0;
2835
2836 /*
2837 * Save and disable interrupts here, to avoid doing it for every
2838 * queue lock we have to take.
2839 */
2840 local_irq_save(flags);
2841 while (!list_empty(&list)) {
2842 rq = list_entry_rq(list.next);
2843 list_del_init(&rq->queuelist);
2844 BUG_ON(!rq->q);
2845 if (rq->q != q) {
2846 /*
2847 * This drops the queue lock
2848 */
2849 if (q)
2850 queue_unplugged(q, depth, from_schedule);
2851 q = rq->q;
2852 depth = 0;
2853 spin_lock(q->queue_lock);
2854 }
2855
2856 /*
2857 * Short-circuit if @q is dead
2858 */
2859 if (unlikely(blk_queue_dead(q))) {
2860 __blk_end_request_all(rq, -ENODEV);
2861 continue;
2862 }
2863
2864 /*
2865 * rq is already accounted, so use raw insert
2866 */
2867 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2868 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2869 else
2870 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2871
2872 depth++;
2873 }
2874
2875 /*
2876 * This drops the queue lock
2877 */
2878 if (q)
2879 queue_unplugged(q, depth, from_schedule);
2880
2881 local_irq_restore(flags);
2882 }
2883
blk_finish_plug(struct blk_plug * plug)2884 void blk_finish_plug(struct blk_plug *plug)
2885 {
2886 blk_flush_plug_list(plug, false);
2887
2888 if (plug == current->plug)
2889 current->plug = NULL;
2890 }
2891 EXPORT_SYMBOL(blk_finish_plug);
2892
blk_dev_init(void)2893 int __init blk_dev_init(void)
2894 {
2895 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2896 sizeof(((struct request *)0)->cmd_flags));
2897
2898 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2899 kblockd_workqueue = alloc_workqueue("kblockd",
2900 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2901 if (!kblockd_workqueue)
2902 panic("Failed to create kblockd\n");
2903
2904 request_cachep = kmem_cache_create("blkdev_requests",
2905 sizeof(struct request), 0, SLAB_PANIC, NULL);
2906
2907 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2908 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2909
2910 return 0;
2911 }
2912