1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_BITMAP_H
3 #define __LINUX_BITMAP_H
4 
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/align.h>
8 #include <linux/bitops.h>
9 #include <linux/find.h>
10 #include <linux/limits.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 
14 struct device;
15 
16 /*
17  * bitmaps provide bit arrays that consume one or more unsigned
18  * longs.  The bitmap interface and available operations are listed
19  * here, in bitmap.h
20  *
21  * Function implementations generic to all architectures are in
22  * lib/bitmap.c.  Functions implementations that are architecture
23  * specific are in various include/asm-<arch>/bitops.h headers
24  * and other arch/<arch> specific files.
25  *
26  * See lib/bitmap.c for more details.
27  */
28 
29 /**
30  * DOC: bitmap overview
31  *
32  * The available bitmap operations and their rough meaning in the
33  * case that the bitmap is a single unsigned long are thus:
34  *
35  * The generated code is more efficient when nbits is known at
36  * compile-time and at most BITS_PER_LONG.
37  *
38  * ::
39  *
40  *  bitmap_zero(dst, nbits)                     *dst = 0UL
41  *  bitmap_fill(dst, nbits)                     *dst = ~0UL
42  *  bitmap_copy(dst, src, nbits)                *dst = *src
43  *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
44  *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
45  *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
46  *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
47  *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
48  *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
49  *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
50  *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
51  *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
52  *  bitmap_full(src, nbits)                     Are all bits set in *src?
53  *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
54  *  bitmap_set(dst, pos, nbits)                 Set specified bit area
55  *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
56  *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
57  *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above
58  *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
59  *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
60  *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
61  *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
62  *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
63  *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
64  *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
65  *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
66  *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
67  *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
68  *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
69  *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
70  *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
71  *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
72  *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
73  *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
74  *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
75  *  bitmap_to_arr64(buf, src, nbits)            Copy nbits from buf to u64[] dst
76  *  bitmap_to_arr64(buf, src, nbits)            Copy nbits from buf to u64[] dst
77  *  bitmap_get_value8(map, start)               Get 8bit value from map at start
78  *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
79  *
80  * Note, bitmap_zero() and bitmap_fill() operate over the region of
81  * unsigned longs, that is, bits behind bitmap till the unsigned long
82  * boundary will be zeroed or filled as well. Consider to use
83  * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
84  * respectively.
85  */
86 
87 /**
88  * DOC: bitmap bitops
89  *
90  * Also the following operations in asm/bitops.h apply to bitmaps.::
91  *
92  *  set_bit(bit, addr)                  *addr |= bit
93  *  clear_bit(bit, addr)                *addr &= ~bit
94  *  change_bit(bit, addr)               *addr ^= bit
95  *  test_bit(bit, addr)                 Is bit set in *addr?
96  *  test_and_set_bit(bit, addr)         Set bit and return old value
97  *  test_and_clear_bit(bit, addr)       Clear bit and return old value
98  *  test_and_change_bit(bit, addr)      Change bit and return old value
99  *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
100  *  find_first_bit(addr, nbits)         Position first set bit in *addr
101  *  find_next_zero_bit(addr, nbits, bit)
102  *                                      Position next zero bit in *addr >= bit
103  *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
104  *  find_next_and_bit(addr1, addr2, nbits, bit)
105  *                                      Same as find_next_bit, but in
106  *                                      (*addr1 & *addr2)
107  *
108  */
109 
110 /**
111  * DOC: declare bitmap
112  * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
113  * to declare an array named 'name' of just enough unsigned longs to
114  * contain all bit positions from 0 to 'bits' - 1.
115  */
116 
117 /*
118  * Allocation and deallocation of bitmap.
119  * Provided in lib/bitmap.c to avoid circular dependency.
120  */
121 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
122 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
123 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
124 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
125 void bitmap_free(const unsigned long *bitmap);
126 
127 /* Managed variants of the above. */
128 unsigned long *devm_bitmap_alloc(struct device *dev,
129 				 unsigned int nbits, gfp_t flags);
130 unsigned long *devm_bitmap_zalloc(struct device *dev,
131 				  unsigned int nbits, gfp_t flags);
132 
133 /*
134  * lib/bitmap.c provides these functions:
135  */
136 
137 bool __bitmap_equal(const unsigned long *bitmap1,
138 		    const unsigned long *bitmap2, unsigned int nbits);
139 bool __pure __bitmap_or_equal(const unsigned long *src1,
140 			      const unsigned long *src2,
141 			      const unsigned long *src3,
142 			      unsigned int nbits);
143 void __bitmap_complement(unsigned long *dst, const unsigned long *src,
144 			 unsigned int nbits);
145 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
146 			  unsigned int shift, unsigned int nbits);
147 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
148 			 unsigned int shift, unsigned int nbits);
149 void bitmap_cut(unsigned long *dst, const unsigned long *src,
150 		unsigned int first, unsigned int cut, unsigned int nbits);
151 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
152 		 const unsigned long *bitmap2, unsigned int nbits);
153 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
154 		 const unsigned long *bitmap2, unsigned int nbits);
155 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
156 		  const unsigned long *bitmap2, unsigned int nbits);
157 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
158 		    const unsigned long *bitmap2, unsigned int nbits);
159 void __bitmap_replace(unsigned long *dst,
160 		      const unsigned long *old, const unsigned long *new,
161 		      const unsigned long *mask, unsigned int nbits);
162 bool __bitmap_intersects(const unsigned long *bitmap1,
163 			 const unsigned long *bitmap2, unsigned int nbits);
164 bool __bitmap_subset(const unsigned long *bitmap1,
165 		     const unsigned long *bitmap2, unsigned int nbits);
166 int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
167 void __bitmap_set(unsigned long *map, unsigned int start, int len);
168 void __bitmap_clear(unsigned long *map, unsigned int start, int len);
169 
170 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
171 					     unsigned long size,
172 					     unsigned long start,
173 					     unsigned int nr,
174 					     unsigned long align_mask,
175 					     unsigned long align_offset);
176 
177 /**
178  * bitmap_find_next_zero_area - find a contiguous aligned zero area
179  * @map: The address to base the search on
180  * @size: The bitmap size in bits
181  * @start: The bitnumber to start searching at
182  * @nr: The number of zeroed bits we're looking for
183  * @align_mask: Alignment mask for zero area
184  *
185  * The @align_mask should be one less than a power of 2; the effect is that
186  * the bit offset of all zero areas this function finds is multiples of that
187  * power of 2. A @align_mask of 0 means no alignment is required.
188  */
189 static inline unsigned long
bitmap_find_next_zero_area(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,unsigned long align_mask)190 bitmap_find_next_zero_area(unsigned long *map,
191 			   unsigned long size,
192 			   unsigned long start,
193 			   unsigned int nr,
194 			   unsigned long align_mask)
195 {
196 	return bitmap_find_next_zero_area_off(map, size, start, nr,
197 					      align_mask, 0);
198 }
199 
200 int bitmap_parse(const char *buf, unsigned int buflen,
201 			unsigned long *dst, int nbits);
202 int bitmap_parse_user(const char __user *ubuf, unsigned int ulen,
203 			unsigned long *dst, int nbits);
204 int bitmap_parselist(const char *buf, unsigned long *maskp,
205 			int nmaskbits);
206 int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen,
207 			unsigned long *dst, int nbits);
208 void bitmap_remap(unsigned long *dst, const unsigned long *src,
209 		const unsigned long *old, const unsigned long *new, unsigned int nbits);
210 int bitmap_bitremap(int oldbit,
211 		const unsigned long *old, const unsigned long *new, int bits);
212 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
213 		const unsigned long *relmap, unsigned int bits);
214 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
215 		unsigned int sz, unsigned int nbits);
216 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order);
217 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order);
218 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order);
219 
220 #ifdef __BIG_ENDIAN
221 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits);
222 #else
223 #define bitmap_copy_le bitmap_copy
224 #endif
225 unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits);
226 int bitmap_print_to_pagebuf(bool list, char *buf,
227 				   const unsigned long *maskp, int nmaskbits);
228 
229 extern int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp,
230 				      int nmaskbits, loff_t off, size_t count);
231 
232 extern int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp,
233 				      int nmaskbits, loff_t off, size_t count);
234 
235 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
236 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
237 
bitmap_zero(unsigned long * dst,unsigned int nbits)238 static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
239 {
240 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
241 	memset(dst, 0, len);
242 }
243 
bitmap_fill(unsigned long * dst,unsigned int nbits)244 static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
245 {
246 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
247 	memset(dst, 0xff, len);
248 }
249 
bitmap_copy(unsigned long * dst,const unsigned long * src,unsigned int nbits)250 static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
251 			unsigned int nbits)
252 {
253 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
254 	memcpy(dst, src, len);
255 }
256 
257 /*
258  * Copy bitmap and clear tail bits in last word.
259  */
bitmap_copy_clear_tail(unsigned long * dst,const unsigned long * src,unsigned int nbits)260 static inline void bitmap_copy_clear_tail(unsigned long *dst,
261 		const unsigned long *src, unsigned int nbits)
262 {
263 	bitmap_copy(dst, src, nbits);
264 	if (nbits % BITS_PER_LONG)
265 		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
266 }
267 
268 /*
269  * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
270  * machines the order of hi and lo parts of numbers match the bitmap structure.
271  * In both cases conversion is not needed when copying data from/to arrays of
272  * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
273  * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
274  * architectures are not using bitmap_copy_clear_tail().
275  */
276 #if BITS_PER_LONG == 64
277 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
278 							unsigned int nbits);
279 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
280 							unsigned int nbits);
281 #else
282 #define bitmap_from_arr32(bitmap, buf, nbits)			\
283 	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
284 			(const unsigned long *) (buf), (nbits))
285 #define bitmap_to_arr32(buf, bitmap, nbits)			\
286 	bitmap_copy_clear_tail((unsigned long *) (buf),		\
287 			(const unsigned long *) (bitmap), (nbits))
288 #endif
289 
290 /*
291  * On 64-bit systems bitmaps are represented as u64 arrays internally. On LE32
292  * machines the order of hi and lo parts of numbers match the bitmap structure.
293  * In both cases conversion is not needed when copying data from/to arrays of
294  * u64.
295  */
296 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
297 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
298 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
299 #else
300 #define bitmap_from_arr64(bitmap, buf, nbits)			\
301 	bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
302 #define bitmap_to_arr64(buf, bitmap, nbits)			\
303 	bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
304 #endif
305 
bitmap_and(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)306 static inline int bitmap_and(unsigned long *dst, const unsigned long *src1,
307 			const unsigned long *src2, unsigned int nbits)
308 {
309 	if (small_const_nbits(nbits))
310 		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
311 	return __bitmap_and(dst, src1, src2, nbits);
312 }
313 
bitmap_or(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)314 static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
315 			const unsigned long *src2, unsigned int nbits)
316 {
317 	if (small_const_nbits(nbits))
318 		*dst = *src1 | *src2;
319 	else
320 		__bitmap_or(dst, src1, src2, nbits);
321 }
322 
bitmap_xor(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)323 static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
324 			const unsigned long *src2, unsigned int nbits)
325 {
326 	if (small_const_nbits(nbits))
327 		*dst = *src1 ^ *src2;
328 	else
329 		__bitmap_xor(dst, src1, src2, nbits);
330 }
331 
bitmap_andnot(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)332 static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1,
333 			const unsigned long *src2, unsigned int nbits)
334 {
335 	if (small_const_nbits(nbits))
336 		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
337 	return __bitmap_andnot(dst, src1, src2, nbits);
338 }
339 
bitmap_complement(unsigned long * dst,const unsigned long * src,unsigned int nbits)340 static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
341 			unsigned int nbits)
342 {
343 	if (small_const_nbits(nbits))
344 		*dst = ~(*src);
345 	else
346 		__bitmap_complement(dst, src, nbits);
347 }
348 
349 #ifdef __LITTLE_ENDIAN
350 #define BITMAP_MEM_ALIGNMENT 8
351 #else
352 #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
353 #endif
354 #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
355 
bitmap_equal(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)356 static inline bool bitmap_equal(const unsigned long *src1,
357 				const unsigned long *src2, unsigned int nbits)
358 {
359 	if (small_const_nbits(nbits))
360 		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
361 	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
362 	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
363 		return !memcmp(src1, src2, nbits / 8);
364 	return __bitmap_equal(src1, src2, nbits);
365 }
366 
367 /**
368  * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
369  * @src1:	Pointer to bitmap 1
370  * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1
371  * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
372  * @nbits:	number of bits in each of these bitmaps
373  *
374  * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
375  */
bitmap_or_equal(const unsigned long * src1,const unsigned long * src2,const unsigned long * src3,unsigned int nbits)376 static inline bool bitmap_or_equal(const unsigned long *src1,
377 				   const unsigned long *src2,
378 				   const unsigned long *src3,
379 				   unsigned int nbits)
380 {
381 	if (!small_const_nbits(nbits))
382 		return __bitmap_or_equal(src1, src2, src3, nbits);
383 
384 	return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
385 }
386 
bitmap_intersects(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)387 static inline bool bitmap_intersects(const unsigned long *src1,
388 				     const unsigned long *src2,
389 				     unsigned int nbits)
390 {
391 	if (small_const_nbits(nbits))
392 		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
393 	else
394 		return __bitmap_intersects(src1, src2, nbits);
395 }
396 
bitmap_subset(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)397 static inline bool bitmap_subset(const unsigned long *src1,
398 				 const unsigned long *src2, unsigned int nbits)
399 {
400 	if (small_const_nbits(nbits))
401 		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
402 	else
403 		return __bitmap_subset(src1, src2, nbits);
404 }
405 
bitmap_empty(const unsigned long * src,unsigned nbits)406 static inline bool bitmap_empty(const unsigned long *src, unsigned nbits)
407 {
408 	if (small_const_nbits(nbits))
409 		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
410 
411 	return find_first_bit(src, nbits) == nbits;
412 }
413 
bitmap_full(const unsigned long * src,unsigned int nbits)414 static inline bool bitmap_full(const unsigned long *src, unsigned int nbits)
415 {
416 	if (small_const_nbits(nbits))
417 		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
418 
419 	return find_first_zero_bit(src, nbits) == nbits;
420 }
421 
bitmap_weight(const unsigned long * src,unsigned int nbits)422 static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits)
423 {
424 	if (small_const_nbits(nbits))
425 		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
426 	return __bitmap_weight(src, nbits);
427 }
428 
bitmap_set(unsigned long * map,unsigned int start,unsigned int nbits)429 static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
430 		unsigned int nbits)
431 {
432 	if (__builtin_constant_p(nbits) && nbits == 1)
433 		__set_bit(start, map);
434 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
435 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
436 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
437 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
438 		memset((char *)map + start / 8, 0xff, nbits / 8);
439 	else
440 		__bitmap_set(map, start, nbits);
441 }
442 
bitmap_clear(unsigned long * map,unsigned int start,unsigned int nbits)443 static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
444 		unsigned int nbits)
445 {
446 	if (__builtin_constant_p(nbits) && nbits == 1)
447 		__clear_bit(start, map);
448 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
449 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
450 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
451 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
452 		memset((char *)map + start / 8, 0, nbits / 8);
453 	else
454 		__bitmap_clear(map, start, nbits);
455 }
456 
bitmap_shift_right(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)457 static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
458 				unsigned int shift, unsigned int nbits)
459 {
460 	if (small_const_nbits(nbits))
461 		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
462 	else
463 		__bitmap_shift_right(dst, src, shift, nbits);
464 }
465 
bitmap_shift_left(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)466 static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
467 				unsigned int shift, unsigned int nbits)
468 {
469 	if (small_const_nbits(nbits))
470 		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
471 	else
472 		__bitmap_shift_left(dst, src, shift, nbits);
473 }
474 
bitmap_replace(unsigned long * dst,const unsigned long * old,const unsigned long * new,const unsigned long * mask,unsigned int nbits)475 static inline void bitmap_replace(unsigned long *dst,
476 				  const unsigned long *old,
477 				  const unsigned long *new,
478 				  const unsigned long *mask,
479 				  unsigned int nbits)
480 {
481 	if (small_const_nbits(nbits))
482 		*dst = (*old & ~(*mask)) | (*new & *mask);
483 	else
484 		__bitmap_replace(dst, old, new, mask, nbits);
485 }
486 
bitmap_next_set_region(unsigned long * bitmap,unsigned int * rs,unsigned int * re,unsigned int end)487 static inline void bitmap_next_set_region(unsigned long *bitmap,
488 					  unsigned int *rs, unsigned int *re,
489 					  unsigned int end)
490 {
491 	*rs = find_next_bit(bitmap, end, *rs);
492 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
493 }
494 
495 /**
496  * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
497  * @n: u64 value
498  *
499  * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
500  * integers in 32-bit environment, and 64-bit integers in 64-bit one.
501  *
502  * There are four combinations of endianness and length of the word in linux
503  * ABIs: LE64, BE64, LE32 and BE32.
504  *
505  * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
506  * bitmaps and therefore don't require any special handling.
507  *
508  * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
509  * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
510  * other hand is represented as an array of 32-bit words and the position of
511  * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
512  * word.  For example, bit #42 is located at 10th position of 2nd word.
513  * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
514  * values in memory as it usually does. But for BE we need to swap hi and lo
515  * words manually.
516  *
517  * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
518  * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
519  * hi and lo words, as is expected by bitmap.
520  */
521 #if __BITS_PER_LONG == 64
522 #define BITMAP_FROM_U64(n) (n)
523 #else
524 #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
525 				((unsigned long) ((u64)(n) >> 32))
526 #endif
527 
528 /**
529  * bitmap_from_u64 - Check and swap words within u64.
530  *  @mask: source bitmap
531  *  @dst:  destination bitmap
532  *
533  * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
534  * to read u64 mask, we will get the wrong word.
535  * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
536  * but we expect the lower 32-bits of u64.
537  */
bitmap_from_u64(unsigned long * dst,u64 mask)538 static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
539 {
540 	bitmap_from_arr64(dst, &mask, 64);
541 }
542 
543 /**
544  * bitmap_get_value8 - get an 8-bit value within a memory region
545  * @map: address to the bitmap memory region
546  * @start: bit offset of the 8-bit value; must be a multiple of 8
547  *
548  * Returns the 8-bit value located at the @start bit offset within the @src
549  * memory region.
550  */
bitmap_get_value8(const unsigned long * map,unsigned long start)551 static inline unsigned long bitmap_get_value8(const unsigned long *map,
552 					      unsigned long start)
553 {
554 	const size_t index = BIT_WORD(start);
555 	const unsigned long offset = start % BITS_PER_LONG;
556 
557 	return (map[index] >> offset) & 0xFF;
558 }
559 
560 /**
561  * bitmap_set_value8 - set an 8-bit value within a memory region
562  * @map: address to the bitmap memory region
563  * @value: the 8-bit value; values wider than 8 bits may clobber bitmap
564  * @start: bit offset of the 8-bit value; must be a multiple of 8
565  */
bitmap_set_value8(unsigned long * map,unsigned long value,unsigned long start)566 static inline void bitmap_set_value8(unsigned long *map, unsigned long value,
567 				     unsigned long start)
568 {
569 	const size_t index = BIT_WORD(start);
570 	const unsigned long offset = start % BITS_PER_LONG;
571 
572 	map[index] &= ~(0xFFUL << offset);
573 	map[index] |= value << offset;
574 }
575 
576 #endif /* __ASSEMBLY__ */
577 
578 #endif /* __LINUX_BITMAP_H */
579