1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <scsi/sg.h>		/* for struct sg_iovec */
29 
30 #include <trace/events/block.h>
31 
32 /*
33  * Test patch to inline a certain number of bi_io_vec's inside the bio
34  * itself, to shrink a bio data allocation from two mempool calls to one
35  */
36 #define BIO_INLINE_VECS		4
37 
38 static mempool_t *bio_split_pool __read_mostly;
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 
57 /*
58  * Our slab pool management
59  */
60 struct bio_slab {
61 	struct kmem_cache *slab;
62 	unsigned int slab_ref;
63 	unsigned int slab_size;
64 	char name[8];
65 };
66 static DEFINE_MUTEX(bio_slab_lock);
67 static struct bio_slab *bio_slabs;
68 static unsigned int bio_slab_nr, bio_slab_max;
69 
bio_find_or_create_slab(unsigned int extra_size)70 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
71 {
72 	unsigned int sz = sizeof(struct bio) + extra_size;
73 	struct kmem_cache *slab = NULL;
74 	struct bio_slab *bslab;
75 	unsigned int i, entry = -1;
76 
77 	mutex_lock(&bio_slab_lock);
78 
79 	i = 0;
80 	while (i < bio_slab_nr) {
81 		bslab = &bio_slabs[i];
82 
83 		if (!bslab->slab && entry == -1)
84 			entry = i;
85 		else if (bslab->slab_size == sz) {
86 			slab = bslab->slab;
87 			bslab->slab_ref++;
88 			break;
89 		}
90 		i++;
91 	}
92 
93 	if (slab)
94 		goto out_unlock;
95 
96 	if (bio_slab_nr == bio_slab_max && entry == -1) {
97 		bio_slab_max <<= 1;
98 		bio_slabs = krealloc(bio_slabs,
99 				     bio_slab_max * sizeof(struct bio_slab),
100 				     GFP_KERNEL);
101 		if (!bio_slabs)
102 			goto out_unlock;
103 	}
104 	if (entry == -1)
105 		entry = bio_slab_nr++;
106 
107 	bslab = &bio_slabs[entry];
108 
109 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110 	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111 	if (!slab)
112 		goto out_unlock;
113 
114 	printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
115 	bslab->slab = slab;
116 	bslab->slab_ref = 1;
117 	bslab->slab_size = sz;
118 out_unlock:
119 	mutex_unlock(&bio_slab_lock);
120 	return slab;
121 }
122 
bio_put_slab(struct bio_set * bs)123 static void bio_put_slab(struct bio_set *bs)
124 {
125 	struct bio_slab *bslab = NULL;
126 	unsigned int i;
127 
128 	mutex_lock(&bio_slab_lock);
129 
130 	for (i = 0; i < bio_slab_nr; i++) {
131 		if (bs->bio_slab == bio_slabs[i].slab) {
132 			bslab = &bio_slabs[i];
133 			break;
134 		}
135 	}
136 
137 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138 		goto out;
139 
140 	WARN_ON(!bslab->slab_ref);
141 
142 	if (--bslab->slab_ref)
143 		goto out;
144 
145 	kmem_cache_destroy(bslab->slab);
146 	bslab->slab = NULL;
147 
148 out:
149 	mutex_unlock(&bio_slab_lock);
150 }
151 
bvec_nr_vecs(unsigned short idx)152 unsigned int bvec_nr_vecs(unsigned short idx)
153 {
154 	return bvec_slabs[idx].nr_vecs;
155 }
156 
bvec_free_bs(struct bio_set * bs,struct bio_vec * bv,unsigned int idx)157 void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
158 {
159 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
160 
161 	if (idx == BIOVEC_MAX_IDX)
162 		mempool_free(bv, bs->bvec_pool);
163 	else {
164 		struct biovec_slab *bvs = bvec_slabs + idx;
165 
166 		kmem_cache_free(bvs->slab, bv);
167 	}
168 }
169 
bvec_alloc_bs(gfp_t gfp_mask,int nr,unsigned long * idx,struct bio_set * bs)170 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171 			      struct bio_set *bs)
172 {
173 	struct bio_vec *bvl;
174 
175 	/*
176 	 * see comment near bvec_array define!
177 	 */
178 	switch (nr) {
179 	case 1:
180 		*idx = 0;
181 		break;
182 	case 2 ... 4:
183 		*idx = 1;
184 		break;
185 	case 5 ... 16:
186 		*idx = 2;
187 		break;
188 	case 17 ... 64:
189 		*idx = 3;
190 		break;
191 	case 65 ... 128:
192 		*idx = 4;
193 		break;
194 	case 129 ... BIO_MAX_PAGES:
195 		*idx = 5;
196 		break;
197 	default:
198 		return NULL;
199 	}
200 
201 	/*
202 	 * idx now points to the pool we want to allocate from. only the
203 	 * 1-vec entry pool is mempool backed.
204 	 */
205 	if (*idx == BIOVEC_MAX_IDX) {
206 fallback:
207 		bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208 	} else {
209 		struct biovec_slab *bvs = bvec_slabs + *idx;
210 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
211 
212 		/*
213 		 * Make this allocation restricted and don't dump info on
214 		 * allocation failures, since we'll fallback to the mempool
215 		 * in case of failure.
216 		 */
217 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218 
219 		/*
220 		 * Try a slab allocation. If this fails and __GFP_WAIT
221 		 * is set, retry with the 1-entry mempool
222 		 */
223 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225 			*idx = BIOVEC_MAX_IDX;
226 			goto fallback;
227 		}
228 	}
229 
230 	return bvl;
231 }
232 
bio_free(struct bio * bio,struct bio_set * bs)233 void bio_free(struct bio *bio, struct bio_set *bs)
234 {
235 	void *p;
236 
237 	if (bio_has_allocated_vec(bio))
238 		bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
239 
240 	if (bio_integrity(bio))
241 		bio_integrity_free(bio, bs);
242 
243 	/*
244 	 * If we have front padding, adjust the bio pointer before freeing
245 	 */
246 	p = bio;
247 	if (bs->front_pad)
248 		p -= bs->front_pad;
249 
250 	mempool_free(p, bs->bio_pool);
251 }
252 EXPORT_SYMBOL(bio_free);
253 
bio_init(struct bio * bio)254 void bio_init(struct bio *bio)
255 {
256 	memset(bio, 0, sizeof(*bio));
257 	bio->bi_flags = 1 << BIO_UPTODATE;
258 	atomic_set(&bio->bi_cnt, 1);
259 }
260 EXPORT_SYMBOL(bio_init);
261 
262 /**
263  * bio_alloc_bioset - allocate a bio for I/O
264  * @gfp_mask:   the GFP_ mask given to the slab allocator
265  * @nr_iovecs:	number of iovecs to pre-allocate
266  * @bs:		the bio_set to allocate from.
267  *
268  * Description:
269  *   bio_alloc_bioset will try its own mempool to satisfy the allocation.
270  *   If %__GFP_WAIT is set then we will block on the internal pool waiting
271  *   for a &struct bio to become free.
272  *
273  *   Note that the caller must set ->bi_destructor on successful return
274  *   of a bio, to do the appropriate freeing of the bio once the reference
275  *   count drops to zero.
276  **/
bio_alloc_bioset(gfp_t gfp_mask,int nr_iovecs,struct bio_set * bs)277 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
278 {
279 	unsigned long idx = BIO_POOL_NONE;
280 	struct bio_vec *bvl = NULL;
281 	struct bio *bio;
282 	void *p;
283 
284 	p = mempool_alloc(bs->bio_pool, gfp_mask);
285 	if (unlikely(!p))
286 		return NULL;
287 	bio = p + bs->front_pad;
288 
289 	bio_init(bio);
290 
291 	if (unlikely(!nr_iovecs))
292 		goto out_set;
293 
294 	if (nr_iovecs <= BIO_INLINE_VECS) {
295 		bvl = bio->bi_inline_vecs;
296 		nr_iovecs = BIO_INLINE_VECS;
297 	} else {
298 		bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
299 		if (unlikely(!bvl))
300 			goto err_free;
301 
302 		nr_iovecs = bvec_nr_vecs(idx);
303 	}
304 out_set:
305 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
306 	bio->bi_max_vecs = nr_iovecs;
307 	bio->bi_io_vec = bvl;
308 	return bio;
309 
310 err_free:
311 	mempool_free(p, bs->bio_pool);
312 	return NULL;
313 }
314 EXPORT_SYMBOL(bio_alloc_bioset);
315 
bio_fs_destructor(struct bio * bio)316 static void bio_fs_destructor(struct bio *bio)
317 {
318 	bio_free(bio, fs_bio_set);
319 }
320 
321 /**
322  *	bio_alloc - allocate a new bio, memory pool backed
323  *	@gfp_mask: allocation mask to use
324  *	@nr_iovecs: number of iovecs
325  *
326  *	bio_alloc will allocate a bio and associated bio_vec array that can hold
327  *	at least @nr_iovecs entries. Allocations will be done from the
328  *	fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
329  *
330  *	If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
331  *	a bio. This is due to the mempool guarantees. To make this work, callers
332  *	must never allocate more than 1 bio at a time from this pool. Callers
333  *	that need to allocate more than 1 bio must always submit the previously
334  *	allocated bio for IO before attempting to allocate a new one. Failure to
335  *	do so can cause livelocks under memory pressure.
336  *
337  *	RETURNS:
338  *	Pointer to new bio on success, NULL on failure.
339  */
bio_alloc(gfp_t gfp_mask,unsigned int nr_iovecs)340 struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
341 {
342 	struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
343 
344 	if (bio)
345 		bio->bi_destructor = bio_fs_destructor;
346 
347 	return bio;
348 }
349 EXPORT_SYMBOL(bio_alloc);
350 
bio_kmalloc_destructor(struct bio * bio)351 static void bio_kmalloc_destructor(struct bio *bio)
352 {
353 	if (bio_integrity(bio))
354 		bio_integrity_free(bio, fs_bio_set);
355 	kfree(bio);
356 }
357 
358 /**
359  * bio_kmalloc - allocate a bio for I/O using kmalloc()
360  * @gfp_mask:   the GFP_ mask given to the slab allocator
361  * @nr_iovecs:	number of iovecs to pre-allocate
362  *
363  * Description:
364  *   Allocate a new bio with @nr_iovecs bvecs.  If @gfp_mask contains
365  *   %__GFP_WAIT, the allocation is guaranteed to succeed.
366  *
367  **/
bio_kmalloc(gfp_t gfp_mask,unsigned int nr_iovecs)368 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
369 {
370 	struct bio *bio;
371 
372 	if (nr_iovecs > UIO_MAXIOV)
373 		return NULL;
374 
375 	bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
376 		      gfp_mask);
377 	if (unlikely(!bio))
378 		return NULL;
379 
380 	bio_init(bio);
381 	bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
382 	bio->bi_max_vecs = nr_iovecs;
383 	bio->bi_io_vec = bio->bi_inline_vecs;
384 	bio->bi_destructor = bio_kmalloc_destructor;
385 
386 	return bio;
387 }
388 EXPORT_SYMBOL(bio_kmalloc);
389 
zero_fill_bio(struct bio * bio)390 void zero_fill_bio(struct bio *bio)
391 {
392 	unsigned long flags;
393 	struct bio_vec *bv;
394 	int i;
395 
396 	bio_for_each_segment(bv, bio, i) {
397 		char *data = bvec_kmap_irq(bv, &flags);
398 		memset(data, 0, bv->bv_len);
399 		flush_dcache_page(bv->bv_page);
400 		bvec_kunmap_irq(data, &flags);
401 	}
402 }
403 EXPORT_SYMBOL(zero_fill_bio);
404 
405 /**
406  * bio_put - release a reference to a bio
407  * @bio:   bio to release reference to
408  *
409  * Description:
410  *   Put a reference to a &struct bio, either one you have gotten with
411  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
412  **/
bio_put(struct bio * bio)413 void bio_put(struct bio *bio)
414 {
415 	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
416 
417 	/*
418 	 * last put frees it
419 	 */
420 	if (atomic_dec_and_test(&bio->bi_cnt)) {
421 		bio->bi_next = NULL;
422 		bio->bi_destructor(bio);
423 	}
424 }
425 EXPORT_SYMBOL(bio_put);
426 
bio_phys_segments(struct request_queue * q,struct bio * bio)427 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
428 {
429 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
430 		blk_recount_segments(q, bio);
431 
432 	return bio->bi_phys_segments;
433 }
434 EXPORT_SYMBOL(bio_phys_segments);
435 
436 /**
437  * 	__bio_clone	-	clone a bio
438  * 	@bio: destination bio
439  * 	@bio_src: bio to clone
440  *
441  *	Clone a &bio. Caller will own the returned bio, but not
442  *	the actual data it points to. Reference count of returned
443  * 	bio will be one.
444  */
__bio_clone(struct bio * bio,struct bio * bio_src)445 void __bio_clone(struct bio *bio, struct bio *bio_src)
446 {
447 	memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
448 		bio_src->bi_max_vecs * sizeof(struct bio_vec));
449 
450 	/*
451 	 * most users will be overriding ->bi_bdev with a new target,
452 	 * so we don't set nor calculate new physical/hw segment counts here
453 	 */
454 	bio->bi_sector = bio_src->bi_sector;
455 	bio->bi_bdev = bio_src->bi_bdev;
456 	bio->bi_flags |= 1 << BIO_CLONED;
457 	bio->bi_rw = bio_src->bi_rw;
458 	bio->bi_vcnt = bio_src->bi_vcnt;
459 	bio->bi_size = bio_src->bi_size;
460 	bio->bi_idx = bio_src->bi_idx;
461 }
462 EXPORT_SYMBOL(__bio_clone);
463 
464 /**
465  *	bio_clone	-	clone a bio
466  *	@bio: bio to clone
467  *	@gfp_mask: allocation priority
468  *
469  * 	Like __bio_clone, only also allocates the returned bio
470  */
bio_clone(struct bio * bio,gfp_t gfp_mask)471 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
472 {
473 	struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
474 
475 	if (!b)
476 		return NULL;
477 
478 	b->bi_destructor = bio_fs_destructor;
479 	__bio_clone(b, bio);
480 
481 	if (bio_integrity(bio)) {
482 		int ret;
483 
484 		ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
485 
486 		if (ret < 0) {
487 			bio_put(b);
488 			return NULL;
489 		}
490 	}
491 
492 	return b;
493 }
494 EXPORT_SYMBOL(bio_clone);
495 
496 /**
497  *	bio_get_nr_vecs		- return approx number of vecs
498  *	@bdev:  I/O target
499  *
500  *	Return the approximate number of pages we can send to this target.
501  *	There's no guarantee that you will be able to fit this number of pages
502  *	into a bio, it does not account for dynamic restrictions that vary
503  *	on offset.
504  */
bio_get_nr_vecs(struct block_device * bdev)505 int bio_get_nr_vecs(struct block_device *bdev)
506 {
507 	struct request_queue *q = bdev_get_queue(bdev);
508 	int nr_pages;
509 
510 	nr_pages = min_t(unsigned,
511 		     queue_max_segments(q),
512 		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
513 
514 	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
515 
516 }
517 EXPORT_SYMBOL(bio_get_nr_vecs);
518 
__bio_add_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned short max_sectors)519 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
520 			  *page, unsigned int len, unsigned int offset,
521 			  unsigned short max_sectors)
522 {
523 	int retried_segments = 0;
524 	struct bio_vec *bvec;
525 
526 	/*
527 	 * cloned bio must not modify vec list
528 	 */
529 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
530 		return 0;
531 
532 	if (((bio->bi_size + len) >> 9) > max_sectors)
533 		return 0;
534 
535 	/*
536 	 * For filesystems with a blocksize smaller than the pagesize
537 	 * we will often be called with the same page as last time and
538 	 * a consecutive offset.  Optimize this special case.
539 	 */
540 	if (bio->bi_vcnt > 0) {
541 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
542 
543 		if (page == prev->bv_page &&
544 		    offset == prev->bv_offset + prev->bv_len) {
545 			unsigned int prev_bv_len = prev->bv_len;
546 			prev->bv_len += len;
547 
548 			if (q->merge_bvec_fn) {
549 				struct bvec_merge_data bvm = {
550 					/* prev_bvec is already charged in
551 					   bi_size, discharge it in order to
552 					   simulate merging updated prev_bvec
553 					   as new bvec. */
554 					.bi_bdev = bio->bi_bdev,
555 					.bi_sector = bio->bi_sector,
556 					.bi_size = bio->bi_size - prev_bv_len,
557 					.bi_rw = bio->bi_rw,
558 				};
559 
560 				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
561 					prev->bv_len -= len;
562 					return 0;
563 				}
564 			}
565 
566 			goto done;
567 		}
568 	}
569 
570 	if (bio->bi_vcnt >= bio->bi_max_vecs)
571 		return 0;
572 
573 	/*
574 	 * we might lose a segment or two here, but rather that than
575 	 * make this too complex.
576 	 */
577 
578 	while (bio->bi_phys_segments >= queue_max_segments(q)) {
579 
580 		if (retried_segments)
581 			return 0;
582 
583 		retried_segments = 1;
584 		blk_recount_segments(q, bio);
585 	}
586 
587 	/*
588 	 * setup the new entry, we might clear it again later if we
589 	 * cannot add the page
590 	 */
591 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
592 	bvec->bv_page = page;
593 	bvec->bv_len = len;
594 	bvec->bv_offset = offset;
595 
596 	/*
597 	 * if queue has other restrictions (eg varying max sector size
598 	 * depending on offset), it can specify a merge_bvec_fn in the
599 	 * queue to get further control
600 	 */
601 	if (q->merge_bvec_fn) {
602 		struct bvec_merge_data bvm = {
603 			.bi_bdev = bio->bi_bdev,
604 			.bi_sector = bio->bi_sector,
605 			.bi_size = bio->bi_size,
606 			.bi_rw = bio->bi_rw,
607 		};
608 
609 		/*
610 		 * merge_bvec_fn() returns number of bytes it can accept
611 		 * at this offset
612 		 */
613 		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
614 			bvec->bv_page = NULL;
615 			bvec->bv_len = 0;
616 			bvec->bv_offset = 0;
617 			return 0;
618 		}
619 	}
620 
621 	/* If we may be able to merge these biovecs, force a recount */
622 	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
623 		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
624 
625 	bio->bi_vcnt++;
626 	bio->bi_phys_segments++;
627  done:
628 	bio->bi_size += len;
629 	return len;
630 }
631 
632 /**
633  *	bio_add_pc_page	-	attempt to add page to bio
634  *	@q: the target queue
635  *	@bio: destination bio
636  *	@page: page to add
637  *	@len: vec entry length
638  *	@offset: vec entry offset
639  *
640  *	Attempt to add a page to the bio_vec maplist. This can fail for a
641  *	number of reasons, such as the bio being full or target block device
642  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
643  *	so it is always possible to add a single page to an empty bio.
644  *
645  *	This should only be used by REQ_PC bios.
646  */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)647 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
648 		    unsigned int len, unsigned int offset)
649 {
650 	return __bio_add_page(q, bio, page, len, offset,
651 			      queue_max_hw_sectors(q));
652 }
653 EXPORT_SYMBOL(bio_add_pc_page);
654 
655 /**
656  *	bio_add_page	-	attempt to add page to bio
657  *	@bio: destination bio
658  *	@page: page to add
659  *	@len: vec entry length
660  *	@offset: vec entry offset
661  *
662  *	Attempt to add a page to the bio_vec maplist. This can fail for a
663  *	number of reasons, such as the bio being full or target block device
664  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
665  *	so it is always possible to add a single page to an empty bio.
666  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)667 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
668 		 unsigned int offset)
669 {
670 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
671 	return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
672 }
673 EXPORT_SYMBOL(bio_add_page);
674 
675 struct bio_map_data {
676 	struct bio_vec *iovecs;
677 	struct sg_iovec *sgvecs;
678 	int nr_sgvecs;
679 	int is_our_pages;
680 };
681 
bio_set_map_data(struct bio_map_data * bmd,struct bio * bio,struct sg_iovec * iov,int iov_count,int is_our_pages)682 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
683 			     struct sg_iovec *iov, int iov_count,
684 			     int is_our_pages)
685 {
686 	memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
687 	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
688 	bmd->nr_sgvecs = iov_count;
689 	bmd->is_our_pages = is_our_pages;
690 	bio->bi_private = bmd;
691 }
692 
bio_free_map_data(struct bio_map_data * bmd)693 static void bio_free_map_data(struct bio_map_data *bmd)
694 {
695 	kfree(bmd->iovecs);
696 	kfree(bmd->sgvecs);
697 	kfree(bmd);
698 }
699 
bio_alloc_map_data(int nr_segs,unsigned int iov_count,gfp_t gfp_mask)700 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
701 					       unsigned int iov_count,
702 					       gfp_t gfp_mask)
703 {
704 	struct bio_map_data *bmd;
705 
706 	if (iov_count > UIO_MAXIOV)
707 		return NULL;
708 
709 	bmd = kmalloc(sizeof(*bmd), gfp_mask);
710 	if (!bmd)
711 		return NULL;
712 
713 	bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
714 	if (!bmd->iovecs) {
715 		kfree(bmd);
716 		return NULL;
717 	}
718 
719 	bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
720 	if (bmd->sgvecs)
721 		return bmd;
722 
723 	kfree(bmd->iovecs);
724 	kfree(bmd);
725 	return NULL;
726 }
727 
__bio_copy_iov(struct bio * bio,struct bio_vec * iovecs,struct sg_iovec * iov,int iov_count,int to_user,int from_user,int do_free_page)728 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
729 			  struct sg_iovec *iov, int iov_count,
730 			  int to_user, int from_user, int do_free_page)
731 {
732 	int ret = 0, i;
733 	struct bio_vec *bvec;
734 	int iov_idx = 0;
735 	unsigned int iov_off = 0;
736 
737 	__bio_for_each_segment(bvec, bio, i, 0) {
738 		char *bv_addr = page_address(bvec->bv_page);
739 		unsigned int bv_len = iovecs[i].bv_len;
740 
741 		while (bv_len && iov_idx < iov_count) {
742 			unsigned int bytes;
743 			char __user *iov_addr;
744 
745 			bytes = min_t(unsigned int,
746 				      iov[iov_idx].iov_len - iov_off, bv_len);
747 			iov_addr = iov[iov_idx].iov_base + iov_off;
748 
749 			if (!ret) {
750 				if (to_user)
751 					ret = copy_to_user(iov_addr, bv_addr,
752 							   bytes);
753 
754 				if (from_user)
755 					ret = copy_from_user(bv_addr, iov_addr,
756 							     bytes);
757 
758 				if (ret)
759 					ret = -EFAULT;
760 			}
761 
762 			bv_len -= bytes;
763 			bv_addr += bytes;
764 			iov_addr += bytes;
765 			iov_off += bytes;
766 
767 			if (iov[iov_idx].iov_len == iov_off) {
768 				iov_idx++;
769 				iov_off = 0;
770 			}
771 		}
772 
773 		if (do_free_page)
774 			__free_page(bvec->bv_page);
775 	}
776 
777 	return ret;
778 }
779 
780 /**
781  *	bio_uncopy_user	-	finish previously mapped bio
782  *	@bio: bio being terminated
783  *
784  *	Free pages allocated from bio_copy_user() and write back data
785  *	to user space in case of a read.
786  */
bio_uncopy_user(struct bio * bio)787 int bio_uncopy_user(struct bio *bio)
788 {
789 	struct bio_map_data *bmd = bio->bi_private;
790 	struct bio_vec *bvec;
791 	int ret = 0, i;
792 
793 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
794 		/*
795 		 * if we're in a workqueue, the request is orphaned, so
796 		 * don't copy into a random user address space, just free.
797 		 */
798 		if (current->mm)
799 			ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
800 					     bmd->nr_sgvecs, bio_data_dir(bio) == READ,
801 					     0, bmd->is_our_pages);
802 		else if (bmd->is_our_pages)
803 			__bio_for_each_segment(bvec, bio, i, 0)
804 				__free_page(bvec->bv_page);
805 	}
806 	bio_free_map_data(bmd);
807 	bio_put(bio);
808 	return ret;
809 }
810 EXPORT_SYMBOL(bio_uncopy_user);
811 
812 /**
813  *	bio_copy_user_iov	-	copy user data to bio
814  *	@q: destination block queue
815  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
816  *	@iov:	the iovec.
817  *	@iov_count: number of elements in the iovec
818  *	@write_to_vm: bool indicating writing to pages or not
819  *	@gfp_mask: memory allocation flags
820  *
821  *	Prepares and returns a bio for indirect user io, bouncing data
822  *	to/from kernel pages as necessary. Must be paired with
823  *	call bio_uncopy_user() on io completion.
824  */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)825 struct bio *bio_copy_user_iov(struct request_queue *q,
826 			      struct rq_map_data *map_data,
827 			      struct sg_iovec *iov, int iov_count,
828 			      int write_to_vm, gfp_t gfp_mask)
829 {
830 	struct bio_map_data *bmd;
831 	struct bio_vec *bvec;
832 	struct page *page;
833 	struct bio *bio;
834 	int i, ret;
835 	int nr_pages = 0;
836 	unsigned int len = 0;
837 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
838 
839 	for (i = 0; i < iov_count; i++) {
840 		unsigned long uaddr;
841 		unsigned long end;
842 		unsigned long start;
843 
844 		uaddr = (unsigned long)iov[i].iov_base;
845 		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
846 		start = uaddr >> PAGE_SHIFT;
847 
848 		/*
849 		 * Overflow, abort
850 		 */
851 		if (end < start)
852 			return ERR_PTR(-EINVAL);
853 
854 		nr_pages += end - start;
855 		len += iov[i].iov_len;
856 	}
857 
858 	if (offset)
859 		nr_pages++;
860 
861 	bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
862 	if (!bmd)
863 		return ERR_PTR(-ENOMEM);
864 
865 	ret = -ENOMEM;
866 	bio = bio_kmalloc(gfp_mask, nr_pages);
867 	if (!bio)
868 		goto out_bmd;
869 
870 	if (!write_to_vm)
871 		bio->bi_rw |= REQ_WRITE;
872 
873 	ret = 0;
874 
875 	if (map_data) {
876 		nr_pages = 1 << map_data->page_order;
877 		i = map_data->offset / PAGE_SIZE;
878 	}
879 	while (len) {
880 		unsigned int bytes = PAGE_SIZE;
881 
882 		bytes -= offset;
883 
884 		if (bytes > len)
885 			bytes = len;
886 
887 		if (map_data) {
888 			if (i == map_data->nr_entries * nr_pages) {
889 				ret = -ENOMEM;
890 				break;
891 			}
892 
893 			page = map_data->pages[i / nr_pages];
894 			page += (i % nr_pages);
895 
896 			i++;
897 		} else {
898 			page = alloc_page(q->bounce_gfp | gfp_mask);
899 			if (!page) {
900 				ret = -ENOMEM;
901 				break;
902 			}
903 		}
904 
905 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
906 			break;
907 
908 		len -= bytes;
909 		offset = 0;
910 	}
911 
912 	if (ret)
913 		goto cleanup;
914 
915 	/*
916 	 * success
917 	 */
918 	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
919 	    (map_data && map_data->from_user)) {
920 		ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
921 		if (ret)
922 			goto cleanup;
923 	}
924 
925 	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
926 	return bio;
927 cleanup:
928 	if (!map_data)
929 		bio_for_each_segment(bvec, bio, i)
930 			__free_page(bvec->bv_page);
931 
932 	bio_put(bio);
933 out_bmd:
934 	bio_free_map_data(bmd);
935 	return ERR_PTR(ret);
936 }
937 
938 /**
939  *	bio_copy_user	-	copy user data to bio
940  *	@q: destination block queue
941  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
942  *	@uaddr: start of user address
943  *	@len: length in bytes
944  *	@write_to_vm: bool indicating writing to pages or not
945  *	@gfp_mask: memory allocation flags
946  *
947  *	Prepares and returns a bio for indirect user io, bouncing data
948  *	to/from kernel pages as necessary. Must be paired with
949  *	call bio_uncopy_user() on io completion.
950  */
bio_copy_user(struct request_queue * q,struct rq_map_data * map_data,unsigned long uaddr,unsigned int len,int write_to_vm,gfp_t gfp_mask)951 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
952 			  unsigned long uaddr, unsigned int len,
953 			  int write_to_vm, gfp_t gfp_mask)
954 {
955 	struct sg_iovec iov;
956 
957 	iov.iov_base = (void __user *)uaddr;
958 	iov.iov_len = len;
959 
960 	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
961 }
962 EXPORT_SYMBOL(bio_copy_user);
963 
__bio_map_user_iov(struct request_queue * q,struct block_device * bdev,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)964 static struct bio *__bio_map_user_iov(struct request_queue *q,
965 				      struct block_device *bdev,
966 				      struct sg_iovec *iov, int iov_count,
967 				      int write_to_vm, gfp_t gfp_mask)
968 {
969 	int i, j;
970 	int nr_pages = 0;
971 	struct page **pages;
972 	struct bio *bio;
973 	int cur_page = 0;
974 	int ret, offset;
975 
976 	for (i = 0; i < iov_count; i++) {
977 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
978 		unsigned long len = iov[i].iov_len;
979 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
980 		unsigned long start = uaddr >> PAGE_SHIFT;
981 
982 		/*
983 		 * Overflow, abort
984 		 */
985 		if (end < start)
986 			return ERR_PTR(-EINVAL);
987 
988 		nr_pages += end - start;
989 		/*
990 		 * buffer must be aligned to at least hardsector size for now
991 		 */
992 		if (uaddr & queue_dma_alignment(q))
993 			return ERR_PTR(-EINVAL);
994 	}
995 
996 	if (!nr_pages)
997 		return ERR_PTR(-EINVAL);
998 
999 	bio = bio_kmalloc(gfp_mask, nr_pages);
1000 	if (!bio)
1001 		return ERR_PTR(-ENOMEM);
1002 
1003 	ret = -ENOMEM;
1004 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1005 	if (!pages)
1006 		goto out;
1007 
1008 	for (i = 0; i < iov_count; i++) {
1009 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
1010 		unsigned long len = iov[i].iov_len;
1011 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1012 		unsigned long start = uaddr >> PAGE_SHIFT;
1013 		const int local_nr_pages = end - start;
1014 		const int page_limit = cur_page + local_nr_pages;
1015 
1016 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1017 				write_to_vm, &pages[cur_page]);
1018 		if (ret < local_nr_pages) {
1019 			ret = -EFAULT;
1020 			goto out_unmap;
1021 		}
1022 
1023 		offset = uaddr & ~PAGE_MASK;
1024 		for (j = cur_page; j < page_limit; j++) {
1025 			unsigned int bytes = PAGE_SIZE - offset;
1026 
1027 			if (len <= 0)
1028 				break;
1029 
1030 			if (bytes > len)
1031 				bytes = len;
1032 
1033 			/*
1034 			 * sorry...
1035 			 */
1036 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1037 					    bytes)
1038 				break;
1039 
1040 			len -= bytes;
1041 			offset = 0;
1042 		}
1043 
1044 		cur_page = j;
1045 		/*
1046 		 * release the pages we didn't map into the bio, if any
1047 		 */
1048 		while (j < page_limit)
1049 			page_cache_release(pages[j++]);
1050 	}
1051 
1052 	kfree(pages);
1053 
1054 	/*
1055 	 * set data direction, and check if mapped pages need bouncing
1056 	 */
1057 	if (!write_to_vm)
1058 		bio->bi_rw |= REQ_WRITE;
1059 
1060 	bio->bi_bdev = bdev;
1061 	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1062 	return bio;
1063 
1064  out_unmap:
1065 	for (i = 0; i < nr_pages; i++) {
1066 		if(!pages[i])
1067 			break;
1068 		page_cache_release(pages[i]);
1069 	}
1070  out:
1071 	kfree(pages);
1072 	bio_put(bio);
1073 	return ERR_PTR(ret);
1074 }
1075 
1076 /**
1077  *	bio_map_user	-	map user address into bio
1078  *	@q: the struct request_queue for the bio
1079  *	@bdev: destination block device
1080  *	@uaddr: start of user address
1081  *	@len: length in bytes
1082  *	@write_to_vm: bool indicating writing to pages or not
1083  *	@gfp_mask: memory allocation flags
1084  *
1085  *	Map the user space address into a bio suitable for io to a block
1086  *	device. Returns an error pointer in case of error.
1087  */
bio_map_user(struct request_queue * q,struct block_device * bdev,unsigned long uaddr,unsigned int len,int write_to_vm,gfp_t gfp_mask)1088 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1089 			 unsigned long uaddr, unsigned int len, int write_to_vm,
1090 			 gfp_t gfp_mask)
1091 {
1092 	struct sg_iovec iov;
1093 
1094 	iov.iov_base = (void __user *)uaddr;
1095 	iov.iov_len = len;
1096 
1097 	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1098 }
1099 EXPORT_SYMBOL(bio_map_user);
1100 
1101 /**
1102  *	bio_map_user_iov - map user sg_iovec table into bio
1103  *	@q: the struct request_queue for the bio
1104  *	@bdev: destination block device
1105  *	@iov:	the iovec.
1106  *	@iov_count: number of elements in the iovec
1107  *	@write_to_vm: bool indicating writing to pages or not
1108  *	@gfp_mask: memory allocation flags
1109  *
1110  *	Map the user space address into a bio suitable for io to a block
1111  *	device. Returns an error pointer in case of error.
1112  */
bio_map_user_iov(struct request_queue * q,struct block_device * bdev,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)1113 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1114 			     struct sg_iovec *iov, int iov_count,
1115 			     int write_to_vm, gfp_t gfp_mask)
1116 {
1117 	struct bio *bio;
1118 
1119 	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1120 				 gfp_mask);
1121 	if (IS_ERR(bio))
1122 		return bio;
1123 
1124 	/*
1125 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1126 	 * it would normally disappear when its bi_end_io is run.
1127 	 * however, we need it for the unmap, so grab an extra
1128 	 * reference to it
1129 	 */
1130 	bio_get(bio);
1131 
1132 	return bio;
1133 }
1134 
__bio_unmap_user(struct bio * bio)1135 static void __bio_unmap_user(struct bio *bio)
1136 {
1137 	struct bio_vec *bvec;
1138 	int i;
1139 
1140 	/*
1141 	 * make sure we dirty pages we wrote to
1142 	 */
1143 	__bio_for_each_segment(bvec, bio, i, 0) {
1144 		if (bio_data_dir(bio) == READ)
1145 			set_page_dirty_lock(bvec->bv_page);
1146 
1147 		page_cache_release(bvec->bv_page);
1148 	}
1149 
1150 	bio_put(bio);
1151 }
1152 
1153 /**
1154  *	bio_unmap_user	-	unmap a bio
1155  *	@bio:		the bio being unmapped
1156  *
1157  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1158  *	a process context.
1159  *
1160  *	bio_unmap_user() may sleep.
1161  */
bio_unmap_user(struct bio * bio)1162 void bio_unmap_user(struct bio *bio)
1163 {
1164 	__bio_unmap_user(bio);
1165 	bio_put(bio);
1166 }
1167 EXPORT_SYMBOL(bio_unmap_user);
1168 
bio_map_kern_endio(struct bio * bio,int err)1169 static void bio_map_kern_endio(struct bio *bio, int err)
1170 {
1171 	bio_put(bio);
1172 }
1173 
__bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1174 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1175 				  unsigned int len, gfp_t gfp_mask)
1176 {
1177 	unsigned long kaddr = (unsigned long)data;
1178 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1179 	unsigned long start = kaddr >> PAGE_SHIFT;
1180 	const int nr_pages = end - start;
1181 	int offset, i;
1182 	struct bio *bio;
1183 
1184 	bio = bio_kmalloc(gfp_mask, nr_pages);
1185 	if (!bio)
1186 		return ERR_PTR(-ENOMEM);
1187 
1188 	offset = offset_in_page(kaddr);
1189 	for (i = 0; i < nr_pages; i++) {
1190 		unsigned int bytes = PAGE_SIZE - offset;
1191 
1192 		if (len <= 0)
1193 			break;
1194 
1195 		if (bytes > len)
1196 			bytes = len;
1197 
1198 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1199 				    offset) < bytes)
1200 			break;
1201 
1202 		data += bytes;
1203 		len -= bytes;
1204 		offset = 0;
1205 	}
1206 
1207 	bio->bi_end_io = bio_map_kern_endio;
1208 	return bio;
1209 }
1210 
1211 /**
1212  *	bio_map_kern	-	map kernel address into bio
1213  *	@q: the struct request_queue for the bio
1214  *	@data: pointer to buffer to map
1215  *	@len: length in bytes
1216  *	@gfp_mask: allocation flags for bio allocation
1217  *
1218  *	Map the kernel address into a bio suitable for io to a block
1219  *	device. Returns an error pointer in case of error.
1220  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1221 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1222 			 gfp_t gfp_mask)
1223 {
1224 	struct bio *bio;
1225 
1226 	bio = __bio_map_kern(q, data, len, gfp_mask);
1227 	if (IS_ERR(bio))
1228 		return bio;
1229 
1230 	if (bio->bi_size == len)
1231 		return bio;
1232 
1233 	/*
1234 	 * Don't support partial mappings.
1235 	 */
1236 	bio_put(bio);
1237 	return ERR_PTR(-EINVAL);
1238 }
1239 EXPORT_SYMBOL(bio_map_kern);
1240 
bio_copy_kern_endio(struct bio * bio,int err)1241 static void bio_copy_kern_endio(struct bio *bio, int err)
1242 {
1243 	struct bio_vec *bvec;
1244 	const int read = bio_data_dir(bio) == READ;
1245 	struct bio_map_data *bmd = bio->bi_private;
1246 	int i;
1247 	char *p = bmd->sgvecs[0].iov_base;
1248 
1249 	__bio_for_each_segment(bvec, bio, i, 0) {
1250 		char *addr = page_address(bvec->bv_page);
1251 		int len = bmd->iovecs[i].bv_len;
1252 
1253 		if (read)
1254 			memcpy(p, addr, len);
1255 
1256 		__free_page(bvec->bv_page);
1257 		p += len;
1258 	}
1259 
1260 	bio_free_map_data(bmd);
1261 	bio_put(bio);
1262 }
1263 
1264 /**
1265  *	bio_copy_kern	-	copy kernel address into bio
1266  *	@q: the struct request_queue for the bio
1267  *	@data: pointer to buffer to copy
1268  *	@len: length in bytes
1269  *	@gfp_mask: allocation flags for bio and page allocation
1270  *	@reading: data direction is READ
1271  *
1272  *	copy the kernel address into a bio suitable for io to a block
1273  *	device. Returns an error pointer in case of error.
1274  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1275 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1276 			  gfp_t gfp_mask, int reading)
1277 {
1278 	struct bio *bio;
1279 	struct bio_vec *bvec;
1280 	int i;
1281 
1282 	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1283 	if (IS_ERR(bio))
1284 		return bio;
1285 
1286 	if (!reading) {
1287 		void *p = data;
1288 
1289 		bio_for_each_segment(bvec, bio, i) {
1290 			char *addr = page_address(bvec->bv_page);
1291 
1292 			memcpy(addr, p, bvec->bv_len);
1293 			p += bvec->bv_len;
1294 		}
1295 	}
1296 
1297 	bio->bi_end_io = bio_copy_kern_endio;
1298 
1299 	return bio;
1300 }
1301 EXPORT_SYMBOL(bio_copy_kern);
1302 
1303 /*
1304  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1305  * for performing direct-IO in BIOs.
1306  *
1307  * The problem is that we cannot run set_page_dirty() from interrupt context
1308  * because the required locks are not interrupt-safe.  So what we can do is to
1309  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1310  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1311  * in process context.
1312  *
1313  * We special-case compound pages here: normally this means reads into hugetlb
1314  * pages.  The logic in here doesn't really work right for compound pages
1315  * because the VM does not uniformly chase down the head page in all cases.
1316  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1317  * handle them at all.  So we skip compound pages here at an early stage.
1318  *
1319  * Note that this code is very hard to test under normal circumstances because
1320  * direct-io pins the pages with get_user_pages().  This makes
1321  * is_page_cache_freeable return false, and the VM will not clean the pages.
1322  * But other code (eg, pdflush) could clean the pages if they are mapped
1323  * pagecache.
1324  *
1325  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1326  * deferred bio dirtying paths.
1327  */
1328 
1329 /*
1330  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1331  */
bio_set_pages_dirty(struct bio * bio)1332 void bio_set_pages_dirty(struct bio *bio)
1333 {
1334 	struct bio_vec *bvec = bio->bi_io_vec;
1335 	int i;
1336 
1337 	for (i = 0; i < bio->bi_vcnt; i++) {
1338 		struct page *page = bvec[i].bv_page;
1339 
1340 		if (page && !PageCompound(page))
1341 			set_page_dirty_lock(page);
1342 	}
1343 }
1344 
bio_release_pages(struct bio * bio)1345 static void bio_release_pages(struct bio *bio)
1346 {
1347 	struct bio_vec *bvec = bio->bi_io_vec;
1348 	int i;
1349 
1350 	for (i = 0; i < bio->bi_vcnt; i++) {
1351 		struct page *page = bvec[i].bv_page;
1352 
1353 		if (page)
1354 			put_page(page);
1355 	}
1356 }
1357 
1358 /*
1359  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1360  * If they are, then fine.  If, however, some pages are clean then they must
1361  * have been written out during the direct-IO read.  So we take another ref on
1362  * the BIO and the offending pages and re-dirty the pages in process context.
1363  *
1364  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1365  * here on.  It will run one page_cache_release() against each page and will
1366  * run one bio_put() against the BIO.
1367  */
1368 
1369 static void bio_dirty_fn(struct work_struct *work);
1370 
1371 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1372 static DEFINE_SPINLOCK(bio_dirty_lock);
1373 static struct bio *bio_dirty_list;
1374 
1375 /*
1376  * This runs in process context
1377  */
bio_dirty_fn(struct work_struct * work)1378 static void bio_dirty_fn(struct work_struct *work)
1379 {
1380 	unsigned long flags;
1381 	struct bio *bio;
1382 
1383 	spin_lock_irqsave(&bio_dirty_lock, flags);
1384 	bio = bio_dirty_list;
1385 	bio_dirty_list = NULL;
1386 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1387 
1388 	while (bio) {
1389 		struct bio *next = bio->bi_private;
1390 
1391 		bio_set_pages_dirty(bio);
1392 		bio_release_pages(bio);
1393 		bio_put(bio);
1394 		bio = next;
1395 	}
1396 }
1397 
bio_check_pages_dirty(struct bio * bio)1398 void bio_check_pages_dirty(struct bio *bio)
1399 {
1400 	struct bio_vec *bvec = bio->bi_io_vec;
1401 	int nr_clean_pages = 0;
1402 	int i;
1403 
1404 	for (i = 0; i < bio->bi_vcnt; i++) {
1405 		struct page *page = bvec[i].bv_page;
1406 
1407 		if (PageDirty(page) || PageCompound(page)) {
1408 			page_cache_release(page);
1409 			bvec[i].bv_page = NULL;
1410 		} else {
1411 			nr_clean_pages++;
1412 		}
1413 	}
1414 
1415 	if (nr_clean_pages) {
1416 		unsigned long flags;
1417 
1418 		spin_lock_irqsave(&bio_dirty_lock, flags);
1419 		bio->bi_private = bio_dirty_list;
1420 		bio_dirty_list = bio;
1421 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1422 		schedule_work(&bio_dirty_work);
1423 	} else {
1424 		bio_put(bio);
1425 	}
1426 }
1427 
1428 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
bio_flush_dcache_pages(struct bio * bi)1429 void bio_flush_dcache_pages(struct bio *bi)
1430 {
1431 	int i;
1432 	struct bio_vec *bvec;
1433 
1434 	bio_for_each_segment(bvec, bi, i)
1435 		flush_dcache_page(bvec->bv_page);
1436 }
1437 EXPORT_SYMBOL(bio_flush_dcache_pages);
1438 #endif
1439 
1440 /**
1441  * bio_endio - end I/O on a bio
1442  * @bio:	bio
1443  * @error:	error, if any
1444  *
1445  * Description:
1446  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1447  *   preferred way to end I/O on a bio, it takes care of clearing
1448  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1449  *   established -Exxxx (-EIO, for instance) error values in case
1450  *   something went wrong. No one should call bi_end_io() directly on a
1451  *   bio unless they own it and thus know that it has an end_io
1452  *   function.
1453  **/
bio_endio(struct bio * bio,int error)1454 void bio_endio(struct bio *bio, int error)
1455 {
1456 	if (error)
1457 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
1458 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1459 		error = -EIO;
1460 
1461 	if (bio->bi_end_io)
1462 		bio->bi_end_io(bio, error);
1463 }
1464 EXPORT_SYMBOL(bio_endio);
1465 
bio_pair_release(struct bio_pair * bp)1466 void bio_pair_release(struct bio_pair *bp)
1467 {
1468 	if (atomic_dec_and_test(&bp->cnt)) {
1469 		struct bio *master = bp->bio1.bi_private;
1470 
1471 		bio_endio(master, bp->error);
1472 		mempool_free(bp, bp->bio2.bi_private);
1473 	}
1474 }
1475 EXPORT_SYMBOL(bio_pair_release);
1476 
bio_pair_end_1(struct bio * bi,int err)1477 static void bio_pair_end_1(struct bio *bi, int err)
1478 {
1479 	struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1480 
1481 	if (err)
1482 		bp->error = err;
1483 
1484 	bio_pair_release(bp);
1485 }
1486 
bio_pair_end_2(struct bio * bi,int err)1487 static void bio_pair_end_2(struct bio *bi, int err)
1488 {
1489 	struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1490 
1491 	if (err)
1492 		bp->error = err;
1493 
1494 	bio_pair_release(bp);
1495 }
1496 
1497 /*
1498  * split a bio - only worry about a bio with a single page in its iovec
1499  */
bio_split(struct bio * bi,int first_sectors)1500 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1501 {
1502 	struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1503 
1504 	if (!bp)
1505 		return bp;
1506 
1507 	trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1508 				bi->bi_sector + first_sectors);
1509 
1510 	BUG_ON(bi->bi_vcnt != 1);
1511 	BUG_ON(bi->bi_idx != 0);
1512 	atomic_set(&bp->cnt, 3);
1513 	bp->error = 0;
1514 	bp->bio1 = *bi;
1515 	bp->bio2 = *bi;
1516 	bp->bio2.bi_sector += first_sectors;
1517 	bp->bio2.bi_size -= first_sectors << 9;
1518 	bp->bio1.bi_size = first_sectors << 9;
1519 
1520 	bp->bv1 = bi->bi_io_vec[0];
1521 	bp->bv2 = bi->bi_io_vec[0];
1522 	bp->bv2.bv_offset += first_sectors << 9;
1523 	bp->bv2.bv_len -= first_sectors << 9;
1524 	bp->bv1.bv_len = first_sectors << 9;
1525 
1526 	bp->bio1.bi_io_vec = &bp->bv1;
1527 	bp->bio2.bi_io_vec = &bp->bv2;
1528 
1529 	bp->bio1.bi_max_vecs = 1;
1530 	bp->bio2.bi_max_vecs = 1;
1531 
1532 	bp->bio1.bi_end_io = bio_pair_end_1;
1533 	bp->bio2.bi_end_io = bio_pair_end_2;
1534 
1535 	bp->bio1.bi_private = bi;
1536 	bp->bio2.bi_private = bio_split_pool;
1537 
1538 	if (bio_integrity(bi))
1539 		bio_integrity_split(bi, bp, first_sectors);
1540 
1541 	return bp;
1542 }
1543 EXPORT_SYMBOL(bio_split);
1544 
1545 /**
1546  *      bio_sector_offset - Find hardware sector offset in bio
1547  *      @bio:           bio to inspect
1548  *      @index:         bio_vec index
1549  *      @offset:        offset in bv_page
1550  *
1551  *      Return the number of hardware sectors between beginning of bio
1552  *      and an end point indicated by a bio_vec index and an offset
1553  *      within that vector's page.
1554  */
bio_sector_offset(struct bio * bio,unsigned short index,unsigned int offset)1555 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1556 			   unsigned int offset)
1557 {
1558 	unsigned int sector_sz;
1559 	struct bio_vec *bv;
1560 	sector_t sectors;
1561 	int i;
1562 
1563 	sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1564 	sectors = 0;
1565 
1566 	if (index >= bio->bi_idx)
1567 		index = bio->bi_vcnt - 1;
1568 
1569 	__bio_for_each_segment(bv, bio, i, 0) {
1570 		if (i == index) {
1571 			if (offset > bv->bv_offset)
1572 				sectors += (offset - bv->bv_offset) / sector_sz;
1573 			break;
1574 		}
1575 
1576 		sectors += bv->bv_len / sector_sz;
1577 	}
1578 
1579 	return sectors;
1580 }
1581 EXPORT_SYMBOL(bio_sector_offset);
1582 
1583 /*
1584  * create memory pools for biovec's in a bio_set.
1585  * use the global biovec slabs created for general use.
1586  */
biovec_create_pools(struct bio_set * bs,int pool_entries)1587 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1588 {
1589 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1590 
1591 	bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1592 	if (!bs->bvec_pool)
1593 		return -ENOMEM;
1594 
1595 	return 0;
1596 }
1597 
biovec_free_pools(struct bio_set * bs)1598 static void biovec_free_pools(struct bio_set *bs)
1599 {
1600 	mempool_destroy(bs->bvec_pool);
1601 }
1602 
bioset_free(struct bio_set * bs)1603 void bioset_free(struct bio_set *bs)
1604 {
1605 	if (bs->bio_pool)
1606 		mempool_destroy(bs->bio_pool);
1607 
1608 	bioset_integrity_free(bs);
1609 	biovec_free_pools(bs);
1610 	bio_put_slab(bs);
1611 
1612 	kfree(bs);
1613 }
1614 EXPORT_SYMBOL(bioset_free);
1615 
1616 /**
1617  * bioset_create  - Create a bio_set
1618  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1619  * @front_pad:	Number of bytes to allocate in front of the returned bio
1620  *
1621  * Description:
1622  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1623  *    to ask for a number of bytes to be allocated in front of the bio.
1624  *    Front pad allocation is useful for embedding the bio inside
1625  *    another structure, to avoid allocating extra data to go with the bio.
1626  *    Note that the bio must be embedded at the END of that structure always,
1627  *    or things will break badly.
1628  */
bioset_create(unsigned int pool_size,unsigned int front_pad)1629 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1630 {
1631 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1632 	struct bio_set *bs;
1633 
1634 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1635 	if (!bs)
1636 		return NULL;
1637 
1638 	bs->front_pad = front_pad;
1639 
1640 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1641 	if (!bs->bio_slab) {
1642 		kfree(bs);
1643 		return NULL;
1644 	}
1645 
1646 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1647 	if (!bs->bio_pool)
1648 		goto bad;
1649 
1650 	if (!biovec_create_pools(bs, pool_size))
1651 		return bs;
1652 
1653 bad:
1654 	bioset_free(bs);
1655 	return NULL;
1656 }
1657 EXPORT_SYMBOL(bioset_create);
1658 
biovec_init_slabs(void)1659 static void __init biovec_init_slabs(void)
1660 {
1661 	int i;
1662 
1663 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1664 		int size;
1665 		struct biovec_slab *bvs = bvec_slabs + i;
1666 
1667 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1668 			bvs->slab = NULL;
1669 			continue;
1670 		}
1671 
1672 		size = bvs->nr_vecs * sizeof(struct bio_vec);
1673 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1674                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1675 	}
1676 }
1677 
init_bio(void)1678 static int __init init_bio(void)
1679 {
1680 	bio_slab_max = 2;
1681 	bio_slab_nr = 0;
1682 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1683 	if (!bio_slabs)
1684 		panic("bio: can't allocate bios\n");
1685 
1686 	bio_integrity_init();
1687 	biovec_init_slabs();
1688 
1689 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1690 	if (!fs_bio_set)
1691 		panic("bio: can't allocate bios\n");
1692 
1693 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1694 		panic("bio: can't create integrity pool\n");
1695 
1696 	bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1697 						     sizeof(struct bio_pair));
1698 	if (!bio_split_pool)
1699 		panic("bio: can't create split pool\n");
1700 
1701 	return 0;
1702 }
1703 subsys_initcall(init_bio);
1704