1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
init_buffer(struct buffer_head * bh,bh_end_io_t * handler,void * private)50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 bh->b_end_io = handler;
53 bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
sleep_on_buffer(void * word)57 static int sleep_on_buffer(void *word)
58 {
59 io_schedule();
60 return 0;
61 }
62
__lock_buffer(struct buffer_head * bh)63 void __lock_buffer(struct buffer_head *bh)
64 {
65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
66 TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
unlock_buffer(struct buffer_head * bh)70 void unlock_buffer(struct buffer_head *bh)
71 {
72 clear_bit_unlock(BH_Lock, &bh->b_state);
73 smp_mb__after_clear_bit();
74 wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79 * Block until a buffer comes unlocked. This doesn't stop it
80 * from becoming locked again - you have to lock it yourself
81 * if you want to preserve its state.
82 */
__wait_on_buffer(struct buffer_head * bh)83 void __wait_on_buffer(struct buffer_head * bh)
84 {
85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
86 }
87 EXPORT_SYMBOL(__wait_on_buffer);
88
89 static void
__clear_page_buffers(struct page * page)90 __clear_page_buffers(struct page *page)
91 {
92 ClearPagePrivate(page);
93 set_page_private(page, 0);
94 page_cache_release(page);
95 }
96
97
quiet_error(struct buffer_head * bh)98 static int quiet_error(struct buffer_head *bh)
99 {
100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
101 return 0;
102 return 1;
103 }
104
105
buffer_io_error(struct buffer_head * bh)106 static void buffer_io_error(struct buffer_head *bh)
107 {
108 char b[BDEVNAME_SIZE];
109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 bdevname(bh->b_bdev, b),
111 (unsigned long long)bh->b_blocknr);
112 }
113
114 /*
115 * End-of-IO handler helper function which does not touch the bh after
116 * unlocking it.
117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118 * a race there is benign: unlock_buffer() only use the bh's address for
119 * hashing after unlocking the buffer, so it doesn't actually touch the bh
120 * itself.
121 */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
123 {
124 if (uptodate) {
125 set_buffer_uptodate(bh);
126 } else {
127 /* This happens, due to failed READA attempts. */
128 clear_buffer_uptodate(bh);
129 }
130 unlock_buffer(bh);
131 }
132
133 /*
134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
135 * unlock the buffer. This is what ll_rw_block uses too.
136 */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
138 {
139 __end_buffer_read_notouch(bh, uptodate);
140 put_bh(bh);
141 }
142 EXPORT_SYMBOL(end_buffer_read_sync);
143
end_buffer_write_sync(struct buffer_head * bh,int uptodate)144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
145 {
146 char b[BDEVNAME_SIZE];
147
148 if (uptodate) {
149 set_buffer_uptodate(bh);
150 } else {
151 if (!quiet_error(bh)) {
152 buffer_io_error(bh);
153 printk(KERN_WARNING "lost page write due to "
154 "I/O error on %s\n",
155 bdevname(bh->b_bdev, b));
156 }
157 set_buffer_write_io_error(bh);
158 clear_buffer_uptodate(bh);
159 }
160 unlock_buffer(bh);
161 put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_write_sync);
164
165 /*
166 * Various filesystems appear to want __find_get_block to be non-blocking.
167 * But it's the page lock which protects the buffers. To get around this,
168 * we get exclusion from try_to_free_buffers with the blockdev mapping's
169 * private_lock.
170 *
171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172 * may be quite high. This code could TryLock the page, and if that
173 * succeeds, there is no need to take private_lock. (But if
174 * private_lock is contended then so is mapping->tree_lock).
175 */
176 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block)177 __find_get_block_slow(struct block_device *bdev, sector_t block)
178 {
179 struct inode *bd_inode = bdev->bd_inode;
180 struct address_space *bd_mapping = bd_inode->i_mapping;
181 struct buffer_head *ret = NULL;
182 pgoff_t index;
183 struct buffer_head *bh;
184 struct buffer_head *head;
185 struct page *page;
186 int all_mapped = 1;
187
188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
189 page = find_get_page(bd_mapping, index);
190 if (!page)
191 goto out;
192
193 spin_lock(&bd_mapping->private_lock);
194 if (!page_has_buffers(page))
195 goto out_unlock;
196 head = page_buffers(page);
197 bh = head;
198 do {
199 if (!buffer_mapped(bh))
200 all_mapped = 0;
201 else if (bh->b_blocknr == block) {
202 ret = bh;
203 get_bh(bh);
204 goto out_unlock;
205 }
206 bh = bh->b_this_page;
207 } while (bh != head);
208
209 /* we might be here because some of the buffers on this page are
210 * not mapped. This is due to various races between
211 * file io on the block device and getblk. It gets dealt with
212 * elsewhere, don't buffer_error if we had some unmapped buffers
213 */
214 if (all_mapped) {
215 printk("__find_get_block_slow() failed. "
216 "block=%llu, b_blocknr=%llu\n",
217 (unsigned long long)block,
218 (unsigned long long)bh->b_blocknr);
219 printk("b_state=0x%08lx, b_size=%zu\n",
220 bh->b_state, bh->b_size);
221 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
222 }
223 out_unlock:
224 spin_unlock(&bd_mapping->private_lock);
225 page_cache_release(page);
226 out:
227 return ret;
228 }
229
230 /* If invalidate_buffers() will trash dirty buffers, it means some kind
231 of fs corruption is going on. Trashing dirty data always imply losing
232 information that was supposed to be just stored on the physical layer
233 by the user.
234
235 Thus invalidate_buffers in general usage is not allwowed to trash
236 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
237 be preserved. These buffers are simply skipped.
238
239 We also skip buffers which are still in use. For example this can
240 happen if a userspace program is reading the block device.
241
242 NOTE: In the case where the user removed a removable-media-disk even if
243 there's still dirty data not synced on disk (due a bug in the device driver
244 or due an error of the user), by not destroying the dirty buffers we could
245 generate corruption also on the next media inserted, thus a parameter is
246 necessary to handle this case in the most safe way possible (trying
247 to not corrupt also the new disk inserted with the data belonging to
248 the old now corrupted disk). Also for the ramdisk the natural thing
249 to do in order to release the ramdisk memory is to destroy dirty buffers.
250
251 These are two special cases. Normal usage imply the device driver
252 to issue a sync on the device (without waiting I/O completion) and
253 then an invalidate_buffers call that doesn't trash dirty buffers.
254
255 For handling cache coherency with the blkdev pagecache the 'update' case
256 is been introduced. It is needed to re-read from disk any pinned
257 buffer. NOTE: re-reading from disk is destructive so we can do it only
258 when we assume nobody is changing the buffercache under our I/O and when
259 we think the disk contains more recent information than the buffercache.
260 The update == 1 pass marks the buffers we need to update, the update == 2
261 pass does the actual I/O. */
invalidate_bdev(struct block_device * bdev)262 void invalidate_bdev(struct block_device *bdev)
263 {
264 struct address_space *mapping = bdev->bd_inode->i_mapping;
265
266 if (mapping->nrpages == 0)
267 return;
268
269 invalidate_bh_lrus();
270 lru_add_drain_all(); /* make sure all lru add caches are flushed */
271 invalidate_mapping_pages(mapping, 0, -1);
272 }
273 EXPORT_SYMBOL(invalidate_bdev);
274
275 /*
276 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
277 */
free_more_memory(void)278 static void free_more_memory(void)
279 {
280 struct zone *zone;
281 int nid;
282
283 wakeup_flusher_threads(1024);
284 yield();
285
286 for_each_online_node(nid) {
287 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
288 gfp_zone(GFP_NOFS), NULL,
289 &zone);
290 if (zone)
291 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
292 GFP_NOFS, NULL);
293 }
294 }
295
296 /*
297 * I/O completion handler for block_read_full_page() - pages
298 * which come unlocked at the end of I/O.
299 */
end_buffer_async_read(struct buffer_head * bh,int uptodate)300 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
301 {
302 unsigned long flags;
303 struct buffer_head *first;
304 struct buffer_head *tmp;
305 struct page *page;
306 int page_uptodate = 1;
307
308 BUG_ON(!buffer_async_read(bh));
309
310 page = bh->b_page;
311 if (uptodate) {
312 set_buffer_uptodate(bh);
313 } else {
314 clear_buffer_uptodate(bh);
315 if (!quiet_error(bh))
316 buffer_io_error(bh);
317 SetPageError(page);
318 }
319
320 /*
321 * Be _very_ careful from here on. Bad things can happen if
322 * two buffer heads end IO at almost the same time and both
323 * decide that the page is now completely done.
324 */
325 first = page_buffers(page);
326 local_irq_save(flags);
327 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
328 clear_buffer_async_read(bh);
329 unlock_buffer(bh);
330 tmp = bh;
331 do {
332 if (!buffer_uptodate(tmp))
333 page_uptodate = 0;
334 if (buffer_async_read(tmp)) {
335 BUG_ON(!buffer_locked(tmp));
336 goto still_busy;
337 }
338 tmp = tmp->b_this_page;
339 } while (tmp != bh);
340 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
341 local_irq_restore(flags);
342
343 /*
344 * If none of the buffers had errors and they are all
345 * uptodate then we can set the page uptodate.
346 */
347 if (page_uptodate && !PageError(page))
348 SetPageUptodate(page);
349 unlock_page(page);
350 return;
351
352 still_busy:
353 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
354 local_irq_restore(flags);
355 return;
356 }
357
358 /*
359 * Completion handler for block_write_full_page() - pages which are unlocked
360 * during I/O, and which have PageWriteback cleared upon I/O completion.
361 */
end_buffer_async_write(struct buffer_head * bh,int uptodate)362 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
363 {
364 char b[BDEVNAME_SIZE];
365 unsigned long flags;
366 struct buffer_head *first;
367 struct buffer_head *tmp;
368 struct page *page;
369
370 BUG_ON(!buffer_async_write(bh));
371
372 page = bh->b_page;
373 if (uptodate) {
374 set_buffer_uptodate(bh);
375 } else {
376 if (!quiet_error(bh)) {
377 buffer_io_error(bh);
378 printk(KERN_WARNING "lost page write due to "
379 "I/O error on %s\n",
380 bdevname(bh->b_bdev, b));
381 }
382 set_bit(AS_EIO, &page->mapping->flags);
383 set_buffer_write_io_error(bh);
384 clear_buffer_uptodate(bh);
385 SetPageError(page);
386 }
387
388 first = page_buffers(page);
389 local_irq_save(flags);
390 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
391
392 clear_buffer_async_write(bh);
393 unlock_buffer(bh);
394 tmp = bh->b_this_page;
395 while (tmp != bh) {
396 if (buffer_async_write(tmp)) {
397 BUG_ON(!buffer_locked(tmp));
398 goto still_busy;
399 }
400 tmp = tmp->b_this_page;
401 }
402 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
403 local_irq_restore(flags);
404 end_page_writeback(page);
405 return;
406
407 still_busy:
408 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
409 local_irq_restore(flags);
410 return;
411 }
412 EXPORT_SYMBOL(end_buffer_async_write);
413
414 /*
415 * If a page's buffers are under async readin (end_buffer_async_read
416 * completion) then there is a possibility that another thread of
417 * control could lock one of the buffers after it has completed
418 * but while some of the other buffers have not completed. This
419 * locked buffer would confuse end_buffer_async_read() into not unlocking
420 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
421 * that this buffer is not under async I/O.
422 *
423 * The page comes unlocked when it has no locked buffer_async buffers
424 * left.
425 *
426 * PageLocked prevents anyone starting new async I/O reads any of
427 * the buffers.
428 *
429 * PageWriteback is used to prevent simultaneous writeout of the same
430 * page.
431 *
432 * PageLocked prevents anyone from starting writeback of a page which is
433 * under read I/O (PageWriteback is only ever set against a locked page).
434 */
mark_buffer_async_read(struct buffer_head * bh)435 static void mark_buffer_async_read(struct buffer_head *bh)
436 {
437 bh->b_end_io = end_buffer_async_read;
438 set_buffer_async_read(bh);
439 }
440
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)441 static void mark_buffer_async_write_endio(struct buffer_head *bh,
442 bh_end_io_t *handler)
443 {
444 bh->b_end_io = handler;
445 set_buffer_async_write(bh);
446 }
447
mark_buffer_async_write(struct buffer_head * bh)448 void mark_buffer_async_write(struct buffer_head *bh)
449 {
450 mark_buffer_async_write_endio(bh, end_buffer_async_write);
451 }
452 EXPORT_SYMBOL(mark_buffer_async_write);
453
454
455 /*
456 * fs/buffer.c contains helper functions for buffer-backed address space's
457 * fsync functions. A common requirement for buffer-based filesystems is
458 * that certain data from the backing blockdev needs to be written out for
459 * a successful fsync(). For example, ext2 indirect blocks need to be
460 * written back and waited upon before fsync() returns.
461 *
462 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
463 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
464 * management of a list of dependent buffers at ->i_mapping->private_list.
465 *
466 * Locking is a little subtle: try_to_free_buffers() will remove buffers
467 * from their controlling inode's queue when they are being freed. But
468 * try_to_free_buffers() will be operating against the *blockdev* mapping
469 * at the time, not against the S_ISREG file which depends on those buffers.
470 * So the locking for private_list is via the private_lock in the address_space
471 * which backs the buffers. Which is different from the address_space
472 * against which the buffers are listed. So for a particular address_space,
473 * mapping->private_lock does *not* protect mapping->private_list! In fact,
474 * mapping->private_list will always be protected by the backing blockdev's
475 * ->private_lock.
476 *
477 * Which introduces a requirement: all buffers on an address_space's
478 * ->private_list must be from the same address_space: the blockdev's.
479 *
480 * address_spaces which do not place buffers at ->private_list via these
481 * utility functions are free to use private_lock and private_list for
482 * whatever they want. The only requirement is that list_empty(private_list)
483 * be true at clear_inode() time.
484 *
485 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
486 * filesystems should do that. invalidate_inode_buffers() should just go
487 * BUG_ON(!list_empty).
488 *
489 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
490 * take an address_space, not an inode. And it should be called
491 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
492 * queued up.
493 *
494 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
495 * list if it is already on a list. Because if the buffer is on a list,
496 * it *must* already be on the right one. If not, the filesystem is being
497 * silly. This will save a ton of locking. But first we have to ensure
498 * that buffers are taken *off* the old inode's list when they are freed
499 * (presumably in truncate). That requires careful auditing of all
500 * filesystems (do it inside bforget()). It could also be done by bringing
501 * b_inode back.
502 */
503
504 /*
505 * The buffer's backing address_space's private_lock must be held
506 */
__remove_assoc_queue(struct buffer_head * bh)507 static void __remove_assoc_queue(struct buffer_head *bh)
508 {
509 list_del_init(&bh->b_assoc_buffers);
510 WARN_ON(!bh->b_assoc_map);
511 if (buffer_write_io_error(bh))
512 set_bit(AS_EIO, &bh->b_assoc_map->flags);
513 bh->b_assoc_map = NULL;
514 }
515
inode_has_buffers(struct inode * inode)516 int inode_has_buffers(struct inode *inode)
517 {
518 return !list_empty(&inode->i_data.private_list);
519 }
520
521 /*
522 * osync is designed to support O_SYNC io. It waits synchronously for
523 * all already-submitted IO to complete, but does not queue any new
524 * writes to the disk.
525 *
526 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
527 * you dirty the buffers, and then use osync_inode_buffers to wait for
528 * completion. Any other dirty buffers which are not yet queued for
529 * write will not be flushed to disk by the osync.
530 */
osync_buffers_list(spinlock_t * lock,struct list_head * list)531 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
532 {
533 struct buffer_head *bh;
534 struct list_head *p;
535 int err = 0;
536
537 spin_lock(lock);
538 repeat:
539 list_for_each_prev(p, list) {
540 bh = BH_ENTRY(p);
541 if (buffer_locked(bh)) {
542 get_bh(bh);
543 spin_unlock(lock);
544 wait_on_buffer(bh);
545 if (!buffer_uptodate(bh))
546 err = -EIO;
547 brelse(bh);
548 spin_lock(lock);
549 goto repeat;
550 }
551 }
552 spin_unlock(lock);
553 return err;
554 }
555
do_thaw_one(struct super_block * sb,void * unused)556 static void do_thaw_one(struct super_block *sb, void *unused)
557 {
558 char b[BDEVNAME_SIZE];
559 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
560 printk(KERN_WARNING "Emergency Thaw on %s\n",
561 bdevname(sb->s_bdev, b));
562 }
563
do_thaw_all(struct work_struct * work)564 static void do_thaw_all(struct work_struct *work)
565 {
566 iterate_supers(do_thaw_one, NULL);
567 kfree(work);
568 printk(KERN_WARNING "Emergency Thaw complete\n");
569 }
570
571 /**
572 * emergency_thaw_all -- forcibly thaw every frozen filesystem
573 *
574 * Used for emergency unfreeze of all filesystems via SysRq
575 */
emergency_thaw_all(void)576 void emergency_thaw_all(void)
577 {
578 struct work_struct *work;
579
580 work = kmalloc(sizeof(*work), GFP_ATOMIC);
581 if (work) {
582 INIT_WORK(work, do_thaw_all);
583 schedule_work(work);
584 }
585 }
586
587 /**
588 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
589 * @mapping: the mapping which wants those buffers written
590 *
591 * Starts I/O against the buffers at mapping->private_list, and waits upon
592 * that I/O.
593 *
594 * Basically, this is a convenience function for fsync().
595 * @mapping is a file or directory which needs those buffers to be written for
596 * a successful fsync().
597 */
sync_mapping_buffers(struct address_space * mapping)598 int sync_mapping_buffers(struct address_space *mapping)
599 {
600 struct address_space *buffer_mapping = mapping->assoc_mapping;
601
602 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
603 return 0;
604
605 return fsync_buffers_list(&buffer_mapping->private_lock,
606 &mapping->private_list);
607 }
608 EXPORT_SYMBOL(sync_mapping_buffers);
609
610 /*
611 * Called when we've recently written block `bblock', and it is known that
612 * `bblock' was for a buffer_boundary() buffer. This means that the block at
613 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
614 * dirty, schedule it for IO. So that indirects merge nicely with their data.
615 */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)616 void write_boundary_block(struct block_device *bdev,
617 sector_t bblock, unsigned blocksize)
618 {
619 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
620 if (bh) {
621 if (buffer_dirty(bh))
622 ll_rw_block(WRITE, 1, &bh);
623 put_bh(bh);
624 }
625 }
626
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)627 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
628 {
629 struct address_space *mapping = inode->i_mapping;
630 struct address_space *buffer_mapping = bh->b_page->mapping;
631
632 mark_buffer_dirty(bh);
633 if (!mapping->assoc_mapping) {
634 mapping->assoc_mapping = buffer_mapping;
635 } else {
636 BUG_ON(mapping->assoc_mapping != buffer_mapping);
637 }
638 if (!bh->b_assoc_map) {
639 spin_lock(&buffer_mapping->private_lock);
640 list_move_tail(&bh->b_assoc_buffers,
641 &mapping->private_list);
642 bh->b_assoc_map = mapping;
643 spin_unlock(&buffer_mapping->private_lock);
644 }
645 }
646 EXPORT_SYMBOL(mark_buffer_dirty_inode);
647
648 /*
649 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
650 * dirty.
651 *
652 * If warn is true, then emit a warning if the page is not uptodate and has
653 * not been truncated.
654 */
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)655 static void __set_page_dirty(struct page *page,
656 struct address_space *mapping, int warn)
657 {
658 spin_lock_irq(&mapping->tree_lock);
659 if (page->mapping) { /* Race with truncate? */
660 WARN_ON_ONCE(warn && !PageUptodate(page));
661 account_page_dirtied(page, mapping);
662 radix_tree_tag_set(&mapping->page_tree,
663 page_index(page), PAGECACHE_TAG_DIRTY);
664 }
665 spin_unlock_irq(&mapping->tree_lock);
666 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
667 }
668
669 /*
670 * Add a page to the dirty page list.
671 *
672 * It is a sad fact of life that this function is called from several places
673 * deeply under spinlocking. It may not sleep.
674 *
675 * If the page has buffers, the uptodate buffers are set dirty, to preserve
676 * dirty-state coherency between the page and the buffers. It the page does
677 * not have buffers then when they are later attached they will all be set
678 * dirty.
679 *
680 * The buffers are dirtied before the page is dirtied. There's a small race
681 * window in which a writepage caller may see the page cleanness but not the
682 * buffer dirtiness. That's fine. If this code were to set the page dirty
683 * before the buffers, a concurrent writepage caller could clear the page dirty
684 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
685 * page on the dirty page list.
686 *
687 * We use private_lock to lock against try_to_free_buffers while using the
688 * page's buffer list. Also use this to protect against clean buffers being
689 * added to the page after it was set dirty.
690 *
691 * FIXME: may need to call ->reservepage here as well. That's rather up to the
692 * address_space though.
693 */
__set_page_dirty_buffers(struct page * page)694 int __set_page_dirty_buffers(struct page *page)
695 {
696 int newly_dirty;
697 struct address_space *mapping = page_mapping(page);
698
699 if (unlikely(!mapping))
700 return !TestSetPageDirty(page);
701
702 spin_lock(&mapping->private_lock);
703 if (page_has_buffers(page)) {
704 struct buffer_head *head = page_buffers(page);
705 struct buffer_head *bh = head;
706
707 do {
708 set_buffer_dirty(bh);
709 bh = bh->b_this_page;
710 } while (bh != head);
711 }
712 newly_dirty = !TestSetPageDirty(page);
713 spin_unlock(&mapping->private_lock);
714
715 if (newly_dirty)
716 __set_page_dirty(page, mapping, 1);
717 return newly_dirty;
718 }
719 EXPORT_SYMBOL(__set_page_dirty_buffers);
720
721 /*
722 * Write out and wait upon a list of buffers.
723 *
724 * We have conflicting pressures: we want to make sure that all
725 * initially dirty buffers get waited on, but that any subsequently
726 * dirtied buffers don't. After all, we don't want fsync to last
727 * forever if somebody is actively writing to the file.
728 *
729 * Do this in two main stages: first we copy dirty buffers to a
730 * temporary inode list, queueing the writes as we go. Then we clean
731 * up, waiting for those writes to complete.
732 *
733 * During this second stage, any subsequent updates to the file may end
734 * up refiling the buffer on the original inode's dirty list again, so
735 * there is a chance we will end up with a buffer queued for write but
736 * not yet completed on that list. So, as a final cleanup we go through
737 * the osync code to catch these locked, dirty buffers without requeuing
738 * any newly dirty buffers for write.
739 */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)740 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
741 {
742 struct buffer_head *bh;
743 struct list_head tmp;
744 struct address_space *mapping;
745 int err = 0, err2;
746 struct blk_plug plug;
747
748 INIT_LIST_HEAD(&tmp);
749 blk_start_plug(&plug);
750
751 spin_lock(lock);
752 while (!list_empty(list)) {
753 bh = BH_ENTRY(list->next);
754 mapping = bh->b_assoc_map;
755 __remove_assoc_queue(bh);
756 /* Avoid race with mark_buffer_dirty_inode() which does
757 * a lockless check and we rely on seeing the dirty bit */
758 smp_mb();
759 if (buffer_dirty(bh) || buffer_locked(bh)) {
760 list_add(&bh->b_assoc_buffers, &tmp);
761 bh->b_assoc_map = mapping;
762 if (buffer_dirty(bh)) {
763 get_bh(bh);
764 spin_unlock(lock);
765 /*
766 * Ensure any pending I/O completes so that
767 * write_dirty_buffer() actually writes the
768 * current contents - it is a noop if I/O is
769 * still in flight on potentially older
770 * contents.
771 */
772 write_dirty_buffer(bh, WRITE_SYNC);
773
774 /*
775 * Kick off IO for the previous mapping. Note
776 * that we will not run the very last mapping,
777 * wait_on_buffer() will do that for us
778 * through sync_buffer().
779 */
780 brelse(bh);
781 spin_lock(lock);
782 }
783 }
784 }
785
786 spin_unlock(lock);
787 blk_finish_plug(&plug);
788 spin_lock(lock);
789
790 while (!list_empty(&tmp)) {
791 bh = BH_ENTRY(tmp.prev);
792 get_bh(bh);
793 mapping = bh->b_assoc_map;
794 __remove_assoc_queue(bh);
795 /* Avoid race with mark_buffer_dirty_inode() which does
796 * a lockless check and we rely on seeing the dirty bit */
797 smp_mb();
798 if (buffer_dirty(bh)) {
799 list_add(&bh->b_assoc_buffers,
800 &mapping->private_list);
801 bh->b_assoc_map = mapping;
802 }
803 spin_unlock(lock);
804 wait_on_buffer(bh);
805 if (!buffer_uptodate(bh))
806 err = -EIO;
807 brelse(bh);
808 spin_lock(lock);
809 }
810
811 spin_unlock(lock);
812 err2 = osync_buffers_list(lock, list);
813 if (err)
814 return err;
815 else
816 return err2;
817 }
818
819 /*
820 * Invalidate any and all dirty buffers on a given inode. We are
821 * probably unmounting the fs, but that doesn't mean we have already
822 * done a sync(). Just drop the buffers from the inode list.
823 *
824 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
825 * assumes that all the buffers are against the blockdev. Not true
826 * for reiserfs.
827 */
invalidate_inode_buffers(struct inode * inode)828 void invalidate_inode_buffers(struct inode *inode)
829 {
830 if (inode_has_buffers(inode)) {
831 struct address_space *mapping = &inode->i_data;
832 struct list_head *list = &mapping->private_list;
833 struct address_space *buffer_mapping = mapping->assoc_mapping;
834
835 spin_lock(&buffer_mapping->private_lock);
836 while (!list_empty(list))
837 __remove_assoc_queue(BH_ENTRY(list->next));
838 spin_unlock(&buffer_mapping->private_lock);
839 }
840 }
841 EXPORT_SYMBOL(invalidate_inode_buffers);
842
843 /*
844 * Remove any clean buffers from the inode's buffer list. This is called
845 * when we're trying to free the inode itself. Those buffers can pin it.
846 *
847 * Returns true if all buffers were removed.
848 */
remove_inode_buffers(struct inode * inode)849 int remove_inode_buffers(struct inode *inode)
850 {
851 int ret = 1;
852
853 if (inode_has_buffers(inode)) {
854 struct address_space *mapping = &inode->i_data;
855 struct list_head *list = &mapping->private_list;
856 struct address_space *buffer_mapping = mapping->assoc_mapping;
857
858 spin_lock(&buffer_mapping->private_lock);
859 while (!list_empty(list)) {
860 struct buffer_head *bh = BH_ENTRY(list->next);
861 if (buffer_dirty(bh)) {
862 ret = 0;
863 break;
864 }
865 __remove_assoc_queue(bh);
866 }
867 spin_unlock(&buffer_mapping->private_lock);
868 }
869 return ret;
870 }
871
872 /*
873 * Create the appropriate buffers when given a page for data area and
874 * the size of each buffer.. Use the bh->b_this_page linked list to
875 * follow the buffers created. Return NULL if unable to create more
876 * buffers.
877 *
878 * The retry flag is used to differentiate async IO (paging, swapping)
879 * which may not fail from ordinary buffer allocations.
880 */
alloc_page_buffers(struct page * page,unsigned long size,int retry)881 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
882 int retry)
883 {
884 struct buffer_head *bh, *head;
885 long offset;
886
887 try_again:
888 head = NULL;
889 offset = PAGE_SIZE;
890 while ((offset -= size) >= 0) {
891 bh = alloc_buffer_head(GFP_NOFS);
892 if (!bh)
893 goto no_grow;
894
895 bh->b_bdev = NULL;
896 bh->b_this_page = head;
897 bh->b_blocknr = -1;
898 head = bh;
899
900 bh->b_state = 0;
901 atomic_set(&bh->b_count, 0);
902 bh->b_size = size;
903
904 /* Link the buffer to its page */
905 set_bh_page(bh, page, offset);
906
907 init_buffer(bh, NULL, NULL);
908 }
909 return head;
910 /*
911 * In case anything failed, we just free everything we got.
912 */
913 no_grow:
914 if (head) {
915 do {
916 bh = head;
917 head = head->b_this_page;
918 free_buffer_head(bh);
919 } while (head);
920 }
921
922 /*
923 * Return failure for non-async IO requests. Async IO requests
924 * are not allowed to fail, so we have to wait until buffer heads
925 * become available. But we don't want tasks sleeping with
926 * partially complete buffers, so all were released above.
927 */
928 if (!retry)
929 return NULL;
930
931 /* We're _really_ low on memory. Now we just
932 * wait for old buffer heads to become free due to
933 * finishing IO. Since this is an async request and
934 * the reserve list is empty, we're sure there are
935 * async buffer heads in use.
936 */
937 free_more_memory();
938 goto try_again;
939 }
940 EXPORT_SYMBOL_GPL(alloc_page_buffers);
941
942 static inline void
link_dev_buffers(struct page * page,struct buffer_head * head)943 link_dev_buffers(struct page *page, struct buffer_head *head)
944 {
945 struct buffer_head *bh, *tail;
946
947 bh = head;
948 do {
949 tail = bh;
950 bh = bh->b_this_page;
951 } while (bh);
952 tail->b_this_page = head;
953 attach_page_buffers(page, head);
954 }
955
956 /*
957 * Initialise the state of a blockdev page's buffers.
958 */
959 static void
init_page_buffers(struct page * page,struct block_device * bdev,sector_t block,int size)960 init_page_buffers(struct page *page, struct block_device *bdev,
961 sector_t block, int size)
962 {
963 struct buffer_head *head = page_buffers(page);
964 struct buffer_head *bh = head;
965 int uptodate = PageUptodate(page);
966
967 do {
968 if (!buffer_mapped(bh)) {
969 init_buffer(bh, NULL, NULL);
970 bh->b_bdev = bdev;
971 bh->b_blocknr = block;
972 if (uptodate)
973 set_buffer_uptodate(bh);
974 set_buffer_mapped(bh);
975 }
976 block++;
977 bh = bh->b_this_page;
978 } while (bh != head);
979 }
980
981 /*
982 * Create the page-cache page that contains the requested block.
983 *
984 * This is user purely for blockdev mappings.
985 */
986 static struct page *
grow_dev_page(struct block_device * bdev,sector_t block,pgoff_t index,int size)987 grow_dev_page(struct block_device *bdev, sector_t block,
988 pgoff_t index, int size)
989 {
990 struct inode *inode = bdev->bd_inode;
991 struct page *page;
992 struct buffer_head *bh;
993
994 page = find_or_create_page(inode->i_mapping, index,
995 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
996 if (!page)
997 return NULL;
998
999 BUG_ON(!PageLocked(page));
1000
1001 if (page_has_buffers(page)) {
1002 bh = page_buffers(page);
1003 if (bh->b_size == size) {
1004 init_page_buffers(page, bdev, block, size);
1005 return page;
1006 }
1007 if (!try_to_free_buffers(page))
1008 goto failed;
1009 }
1010
1011 /*
1012 * Allocate some buffers for this page
1013 */
1014 bh = alloc_page_buffers(page, size, 0);
1015 if (!bh)
1016 goto failed;
1017
1018 /*
1019 * Link the page to the buffers and initialise them. Take the
1020 * lock to be atomic wrt __find_get_block(), which does not
1021 * run under the page lock.
1022 */
1023 spin_lock(&inode->i_mapping->private_lock);
1024 link_dev_buffers(page, bh);
1025 init_page_buffers(page, bdev, block, size);
1026 spin_unlock(&inode->i_mapping->private_lock);
1027 return page;
1028
1029 failed:
1030 BUG();
1031 unlock_page(page);
1032 page_cache_release(page);
1033 return NULL;
1034 }
1035
1036 /*
1037 * Create buffers for the specified block device block's page. If
1038 * that page was dirty, the buffers are set dirty also.
1039 */
1040 static int
grow_buffers(struct block_device * bdev,sector_t block,int size)1041 grow_buffers(struct block_device *bdev, sector_t block, int size)
1042 {
1043 struct page *page;
1044 pgoff_t index;
1045 int sizebits;
1046
1047 sizebits = -1;
1048 do {
1049 sizebits++;
1050 } while ((size << sizebits) < PAGE_SIZE);
1051
1052 index = block >> sizebits;
1053
1054 /*
1055 * Check for a block which wants to lie outside our maximum possible
1056 * pagecache index. (this comparison is done using sector_t types).
1057 */
1058 if (unlikely(index != block >> sizebits)) {
1059 char b[BDEVNAME_SIZE];
1060
1061 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1062 "device %s\n",
1063 __func__, (unsigned long long)block,
1064 bdevname(bdev, b));
1065 return -EIO;
1066 }
1067 block = index << sizebits;
1068 /* Create a page with the proper size buffers.. */
1069 page = grow_dev_page(bdev, block, index, size);
1070 if (!page)
1071 return 0;
1072 unlock_page(page);
1073 page_cache_release(page);
1074 return 1;
1075 }
1076
1077 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,int size)1078 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1079 {
1080 /* Size must be multiple of hard sectorsize */
1081 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1082 (size < 512 || size > PAGE_SIZE))) {
1083 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1084 size);
1085 printk(KERN_ERR "logical block size: %d\n",
1086 bdev_logical_block_size(bdev));
1087
1088 dump_stack();
1089 return NULL;
1090 }
1091
1092 for (;;) {
1093 struct buffer_head * bh;
1094 int ret;
1095
1096 bh = __find_get_block(bdev, block, size);
1097 if (bh)
1098 return bh;
1099
1100 ret = grow_buffers(bdev, block, size);
1101 if (ret < 0)
1102 return NULL;
1103 if (ret == 0)
1104 free_more_memory();
1105 }
1106 }
1107
1108 /*
1109 * The relationship between dirty buffers and dirty pages:
1110 *
1111 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1112 * the page is tagged dirty in its radix tree.
1113 *
1114 * At all times, the dirtiness of the buffers represents the dirtiness of
1115 * subsections of the page. If the page has buffers, the page dirty bit is
1116 * merely a hint about the true dirty state.
1117 *
1118 * When a page is set dirty in its entirety, all its buffers are marked dirty
1119 * (if the page has buffers).
1120 *
1121 * When a buffer is marked dirty, its page is dirtied, but the page's other
1122 * buffers are not.
1123 *
1124 * Also. When blockdev buffers are explicitly read with bread(), they
1125 * individually become uptodate. But their backing page remains not
1126 * uptodate - even if all of its buffers are uptodate. A subsequent
1127 * block_read_full_page() against that page will discover all the uptodate
1128 * buffers, will set the page uptodate and will perform no I/O.
1129 */
1130
1131 /**
1132 * mark_buffer_dirty - mark a buffer_head as needing writeout
1133 * @bh: the buffer_head to mark dirty
1134 *
1135 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1136 * backing page dirty, then tag the page as dirty in its address_space's radix
1137 * tree and then attach the address_space's inode to its superblock's dirty
1138 * inode list.
1139 *
1140 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1141 * mapping->tree_lock and mapping->host->i_lock.
1142 */
mark_buffer_dirty(struct buffer_head * bh)1143 void mark_buffer_dirty(struct buffer_head *bh)
1144 {
1145 WARN_ON_ONCE(!buffer_uptodate(bh));
1146
1147 /*
1148 * Very *carefully* optimize the it-is-already-dirty case.
1149 *
1150 * Don't let the final "is it dirty" escape to before we
1151 * perhaps modified the buffer.
1152 */
1153 if (buffer_dirty(bh)) {
1154 smp_mb();
1155 if (buffer_dirty(bh))
1156 return;
1157 }
1158
1159 if (!test_set_buffer_dirty(bh)) {
1160 struct page *page = bh->b_page;
1161 if (!TestSetPageDirty(page)) {
1162 struct address_space *mapping = page_mapping(page);
1163 if (mapping)
1164 __set_page_dirty(page, mapping, 0);
1165 }
1166 }
1167 }
1168 EXPORT_SYMBOL(mark_buffer_dirty);
1169
1170 /*
1171 * Decrement a buffer_head's reference count. If all buffers against a page
1172 * have zero reference count, are clean and unlocked, and if the page is clean
1173 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1174 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1175 * a page but it ends up not being freed, and buffers may later be reattached).
1176 */
__brelse(struct buffer_head * buf)1177 void __brelse(struct buffer_head * buf)
1178 {
1179 if (atomic_read(&buf->b_count)) {
1180 put_bh(buf);
1181 return;
1182 }
1183 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1184 }
1185 EXPORT_SYMBOL(__brelse);
1186
1187 /*
1188 * bforget() is like brelse(), except it discards any
1189 * potentially dirty data.
1190 */
__bforget(struct buffer_head * bh)1191 void __bforget(struct buffer_head *bh)
1192 {
1193 clear_buffer_dirty(bh);
1194 if (bh->b_assoc_map) {
1195 struct address_space *buffer_mapping = bh->b_page->mapping;
1196
1197 spin_lock(&buffer_mapping->private_lock);
1198 list_del_init(&bh->b_assoc_buffers);
1199 bh->b_assoc_map = NULL;
1200 spin_unlock(&buffer_mapping->private_lock);
1201 }
1202 __brelse(bh);
1203 }
1204 EXPORT_SYMBOL(__bforget);
1205
__bread_slow(struct buffer_head * bh)1206 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1207 {
1208 lock_buffer(bh);
1209 if (buffer_uptodate(bh)) {
1210 unlock_buffer(bh);
1211 return bh;
1212 } else {
1213 get_bh(bh);
1214 bh->b_end_io = end_buffer_read_sync;
1215 submit_bh(READ, bh);
1216 wait_on_buffer(bh);
1217 if (buffer_uptodate(bh))
1218 return bh;
1219 }
1220 brelse(bh);
1221 return NULL;
1222 }
1223
1224 /*
1225 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1226 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1227 * refcount elevated by one when they're in an LRU. A buffer can only appear
1228 * once in a particular CPU's LRU. A single buffer can be present in multiple
1229 * CPU's LRUs at the same time.
1230 *
1231 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1232 * sb_find_get_block().
1233 *
1234 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1235 * a local interrupt disable for that.
1236 */
1237
1238 #define BH_LRU_SIZE 8
1239
1240 struct bh_lru {
1241 struct buffer_head *bhs[BH_LRU_SIZE];
1242 };
1243
1244 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1245
1246 #ifdef CONFIG_SMP
1247 #define bh_lru_lock() local_irq_disable()
1248 #define bh_lru_unlock() local_irq_enable()
1249 #else
1250 #define bh_lru_lock() preempt_disable()
1251 #define bh_lru_unlock() preempt_enable()
1252 #endif
1253
check_irqs_on(void)1254 static inline void check_irqs_on(void)
1255 {
1256 #ifdef irqs_disabled
1257 BUG_ON(irqs_disabled());
1258 #endif
1259 }
1260
1261 /*
1262 * The LRU management algorithm is dopey-but-simple. Sorry.
1263 */
bh_lru_install(struct buffer_head * bh)1264 static void bh_lru_install(struct buffer_head *bh)
1265 {
1266 struct buffer_head *evictee = NULL;
1267
1268 check_irqs_on();
1269 bh_lru_lock();
1270 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1271 struct buffer_head *bhs[BH_LRU_SIZE];
1272 int in;
1273 int out = 0;
1274
1275 get_bh(bh);
1276 bhs[out++] = bh;
1277 for (in = 0; in < BH_LRU_SIZE; in++) {
1278 struct buffer_head *bh2 =
1279 __this_cpu_read(bh_lrus.bhs[in]);
1280
1281 if (bh2 == bh) {
1282 __brelse(bh2);
1283 } else {
1284 if (out >= BH_LRU_SIZE) {
1285 BUG_ON(evictee != NULL);
1286 evictee = bh2;
1287 } else {
1288 bhs[out++] = bh2;
1289 }
1290 }
1291 }
1292 while (out < BH_LRU_SIZE)
1293 bhs[out++] = NULL;
1294 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1295 }
1296 bh_lru_unlock();
1297
1298 if (evictee)
1299 __brelse(evictee);
1300 }
1301
1302 /*
1303 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1304 */
1305 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1306 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1307 {
1308 struct buffer_head *ret = NULL;
1309 unsigned int i;
1310
1311 check_irqs_on();
1312 bh_lru_lock();
1313 for (i = 0; i < BH_LRU_SIZE; i++) {
1314 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1315
1316 if (bh && bh->b_bdev == bdev &&
1317 bh->b_blocknr == block && bh->b_size == size) {
1318 if (i) {
1319 while (i) {
1320 __this_cpu_write(bh_lrus.bhs[i],
1321 __this_cpu_read(bh_lrus.bhs[i - 1]));
1322 i--;
1323 }
1324 __this_cpu_write(bh_lrus.bhs[0], bh);
1325 }
1326 get_bh(bh);
1327 ret = bh;
1328 break;
1329 }
1330 }
1331 bh_lru_unlock();
1332 return ret;
1333 }
1334
1335 /*
1336 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1337 * it in the LRU and mark it as accessed. If it is not present then return
1338 * NULL
1339 */
1340 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1341 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1342 {
1343 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1344
1345 if (bh == NULL) {
1346 bh = __find_get_block_slow(bdev, block);
1347 if (bh)
1348 bh_lru_install(bh);
1349 }
1350 if (bh)
1351 touch_buffer(bh);
1352 return bh;
1353 }
1354 EXPORT_SYMBOL(__find_get_block);
1355
1356 /*
1357 * __getblk will locate (and, if necessary, create) the buffer_head
1358 * which corresponds to the passed block_device, block and size. The
1359 * returned buffer has its reference count incremented.
1360 *
1361 * __getblk() cannot fail - it just keeps trying. If you pass it an
1362 * illegal block number, __getblk() will happily return a buffer_head
1363 * which represents the non-existent block. Very weird.
1364 *
1365 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1366 * attempt is failing. FIXME, perhaps?
1367 */
1368 struct buffer_head *
__getblk(struct block_device * bdev,sector_t block,unsigned size)1369 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1370 {
1371 struct buffer_head *bh = __find_get_block(bdev, block, size);
1372
1373 might_sleep();
1374 if (bh == NULL)
1375 bh = __getblk_slow(bdev, block, size);
1376 return bh;
1377 }
1378 EXPORT_SYMBOL(__getblk);
1379
1380 /*
1381 * Do async read-ahead on a buffer..
1382 */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1383 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1384 {
1385 struct buffer_head *bh = __getblk(bdev, block, size);
1386 if (likely(bh)) {
1387 ll_rw_block(READA, 1, &bh);
1388 brelse(bh);
1389 }
1390 }
1391 EXPORT_SYMBOL(__breadahead);
1392
1393 /**
1394 * __bread() - reads a specified block and returns the bh
1395 * @bdev: the block_device to read from
1396 * @block: number of block
1397 * @size: size (in bytes) to read
1398 *
1399 * Reads a specified block, and returns buffer head that contains it.
1400 * It returns NULL if the block was unreadable.
1401 */
1402 struct buffer_head *
__bread(struct block_device * bdev,sector_t block,unsigned size)1403 __bread(struct block_device *bdev, sector_t block, unsigned size)
1404 {
1405 struct buffer_head *bh = __getblk(bdev, block, size);
1406
1407 if (likely(bh) && !buffer_uptodate(bh))
1408 bh = __bread_slow(bh);
1409 return bh;
1410 }
1411 EXPORT_SYMBOL(__bread);
1412
1413 /*
1414 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1415 * This doesn't race because it runs in each cpu either in irq
1416 * or with preempt disabled.
1417 */
invalidate_bh_lru(void * arg)1418 static void invalidate_bh_lru(void *arg)
1419 {
1420 struct bh_lru *b = &get_cpu_var(bh_lrus);
1421 int i;
1422
1423 for (i = 0; i < BH_LRU_SIZE; i++) {
1424 brelse(b->bhs[i]);
1425 b->bhs[i] = NULL;
1426 }
1427 put_cpu_var(bh_lrus);
1428 }
1429
invalidate_bh_lrus(void)1430 void invalidate_bh_lrus(void)
1431 {
1432 on_each_cpu(invalidate_bh_lru, NULL, 1);
1433 }
1434 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1435
set_bh_page(struct buffer_head * bh,struct page * page,unsigned long offset)1436 void set_bh_page(struct buffer_head *bh,
1437 struct page *page, unsigned long offset)
1438 {
1439 bh->b_page = page;
1440 BUG_ON(offset >= PAGE_SIZE);
1441 if (PageHighMem(page))
1442 /*
1443 * This catches illegal uses and preserves the offset:
1444 */
1445 bh->b_data = (char *)(0 + offset);
1446 else
1447 bh->b_data = page_address(page) + offset;
1448 }
1449 EXPORT_SYMBOL(set_bh_page);
1450
1451 /*
1452 * Called when truncating a buffer on a page completely.
1453 */
discard_buffer(struct buffer_head * bh)1454 static void discard_buffer(struct buffer_head * bh)
1455 {
1456 lock_buffer(bh);
1457 clear_buffer_dirty(bh);
1458 bh->b_bdev = NULL;
1459 clear_buffer_mapped(bh);
1460 clear_buffer_req(bh);
1461 clear_buffer_new(bh);
1462 clear_buffer_delay(bh);
1463 clear_buffer_unwritten(bh);
1464 unlock_buffer(bh);
1465 }
1466
1467 /**
1468 * block_invalidatepage - invalidate part of all of a buffer-backed page
1469 *
1470 * @page: the page which is affected
1471 * @offset: the index of the truncation point
1472 *
1473 * block_invalidatepage() is called when all or part of the page has become
1474 * invalidatedby a truncate operation.
1475 *
1476 * block_invalidatepage() does not have to release all buffers, but it must
1477 * ensure that no dirty buffer is left outside @offset and that no I/O
1478 * is underway against any of the blocks which are outside the truncation
1479 * point. Because the caller is about to free (and possibly reuse) those
1480 * blocks on-disk.
1481 */
block_invalidatepage(struct page * page,unsigned long offset)1482 void block_invalidatepage(struct page *page, unsigned long offset)
1483 {
1484 struct buffer_head *head, *bh, *next;
1485 unsigned int curr_off = 0;
1486
1487 BUG_ON(!PageLocked(page));
1488 if (!page_has_buffers(page))
1489 goto out;
1490
1491 head = page_buffers(page);
1492 bh = head;
1493 do {
1494 unsigned int next_off = curr_off + bh->b_size;
1495 next = bh->b_this_page;
1496
1497 /*
1498 * is this block fully invalidated?
1499 */
1500 if (offset <= curr_off)
1501 discard_buffer(bh);
1502 curr_off = next_off;
1503 bh = next;
1504 } while (bh != head);
1505
1506 /*
1507 * We release buffers only if the entire page is being invalidated.
1508 * The get_block cached value has been unconditionally invalidated,
1509 * so real IO is not possible anymore.
1510 */
1511 if (offset == 0)
1512 try_to_release_page(page, 0);
1513 out:
1514 return;
1515 }
1516 EXPORT_SYMBOL(block_invalidatepage);
1517
1518 /*
1519 * We attach and possibly dirty the buffers atomically wrt
1520 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1521 * is already excluded via the page lock.
1522 */
create_empty_buffers(struct page * page,unsigned long blocksize,unsigned long b_state)1523 void create_empty_buffers(struct page *page,
1524 unsigned long blocksize, unsigned long b_state)
1525 {
1526 struct buffer_head *bh, *head, *tail;
1527
1528 head = alloc_page_buffers(page, blocksize, 1);
1529 bh = head;
1530 do {
1531 bh->b_state |= b_state;
1532 tail = bh;
1533 bh = bh->b_this_page;
1534 } while (bh);
1535 tail->b_this_page = head;
1536
1537 spin_lock(&page->mapping->private_lock);
1538 if (PageUptodate(page) || PageDirty(page)) {
1539 bh = head;
1540 do {
1541 if (PageDirty(page))
1542 set_buffer_dirty(bh);
1543 if (PageUptodate(page))
1544 set_buffer_uptodate(bh);
1545 bh = bh->b_this_page;
1546 } while (bh != head);
1547 }
1548 attach_page_buffers(page, head);
1549 spin_unlock(&page->mapping->private_lock);
1550 }
1551 EXPORT_SYMBOL(create_empty_buffers);
1552
1553 /*
1554 * We are taking a block for data and we don't want any output from any
1555 * buffer-cache aliases starting from return from that function and
1556 * until the moment when something will explicitly mark the buffer
1557 * dirty (hopefully that will not happen until we will free that block ;-)
1558 * We don't even need to mark it not-uptodate - nobody can expect
1559 * anything from a newly allocated buffer anyway. We used to used
1560 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1561 * don't want to mark the alias unmapped, for example - it would confuse
1562 * anyone who might pick it with bread() afterwards...
1563 *
1564 * Also.. Note that bforget() doesn't lock the buffer. So there can
1565 * be writeout I/O going on against recently-freed buffers. We don't
1566 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1567 * only if we really need to. That happens here.
1568 */
unmap_underlying_metadata(struct block_device * bdev,sector_t block)1569 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1570 {
1571 struct buffer_head *old_bh;
1572
1573 might_sleep();
1574
1575 old_bh = __find_get_block_slow(bdev, block);
1576 if (old_bh) {
1577 clear_buffer_dirty(old_bh);
1578 wait_on_buffer(old_bh);
1579 clear_buffer_req(old_bh);
1580 __brelse(old_bh);
1581 }
1582 }
1583 EXPORT_SYMBOL(unmap_underlying_metadata);
1584
1585 /*
1586 * NOTE! All mapped/uptodate combinations are valid:
1587 *
1588 * Mapped Uptodate Meaning
1589 *
1590 * No No "unknown" - must do get_block()
1591 * No Yes "hole" - zero-filled
1592 * Yes No "allocated" - allocated on disk, not read in
1593 * Yes Yes "valid" - allocated and up-to-date in memory.
1594 *
1595 * "Dirty" is valid only with the last case (mapped+uptodate).
1596 */
1597
1598 /*
1599 * While block_write_full_page is writing back the dirty buffers under
1600 * the page lock, whoever dirtied the buffers may decide to clean them
1601 * again at any time. We handle that by only looking at the buffer
1602 * state inside lock_buffer().
1603 *
1604 * If block_write_full_page() is called for regular writeback
1605 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1606 * locked buffer. This only can happen if someone has written the buffer
1607 * directly, with submit_bh(). At the address_space level PageWriteback
1608 * prevents this contention from occurring.
1609 *
1610 * If block_write_full_page() is called with wbc->sync_mode ==
1611 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1612 * causes the writes to be flagged as synchronous writes.
1613 */
__block_write_full_page(struct inode * inode,struct page * page,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)1614 static int __block_write_full_page(struct inode *inode, struct page *page,
1615 get_block_t *get_block, struct writeback_control *wbc,
1616 bh_end_io_t *handler)
1617 {
1618 int err;
1619 sector_t block;
1620 sector_t last_block;
1621 struct buffer_head *bh, *head;
1622 const unsigned blocksize = 1 << inode->i_blkbits;
1623 int nr_underway = 0;
1624 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1625 WRITE_SYNC : WRITE);
1626
1627 BUG_ON(!PageLocked(page));
1628
1629 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1630
1631 if (!page_has_buffers(page)) {
1632 create_empty_buffers(page, blocksize,
1633 (1 << BH_Dirty)|(1 << BH_Uptodate));
1634 }
1635
1636 /*
1637 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1638 * here, and the (potentially unmapped) buffers may become dirty at
1639 * any time. If a buffer becomes dirty here after we've inspected it
1640 * then we just miss that fact, and the page stays dirty.
1641 *
1642 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1643 * handle that here by just cleaning them.
1644 */
1645
1646 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1647 head = page_buffers(page);
1648 bh = head;
1649
1650 /*
1651 * Get all the dirty buffers mapped to disk addresses and
1652 * handle any aliases from the underlying blockdev's mapping.
1653 */
1654 do {
1655 if (block > last_block) {
1656 /*
1657 * mapped buffers outside i_size will occur, because
1658 * this page can be outside i_size when there is a
1659 * truncate in progress.
1660 */
1661 /*
1662 * The buffer was zeroed by block_write_full_page()
1663 */
1664 clear_buffer_dirty(bh);
1665 set_buffer_uptodate(bh);
1666 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1667 buffer_dirty(bh)) {
1668 WARN_ON(bh->b_size != blocksize);
1669 err = get_block(inode, block, bh, 1);
1670 if (err)
1671 goto recover;
1672 clear_buffer_delay(bh);
1673 if (buffer_new(bh)) {
1674 /* blockdev mappings never come here */
1675 clear_buffer_new(bh);
1676 unmap_underlying_metadata(bh->b_bdev,
1677 bh->b_blocknr);
1678 }
1679 }
1680 bh = bh->b_this_page;
1681 block++;
1682 } while (bh != head);
1683
1684 do {
1685 if (!buffer_mapped(bh))
1686 continue;
1687 /*
1688 * If it's a fully non-blocking write attempt and we cannot
1689 * lock the buffer then redirty the page. Note that this can
1690 * potentially cause a busy-wait loop from writeback threads
1691 * and kswapd activity, but those code paths have their own
1692 * higher-level throttling.
1693 */
1694 if (wbc->sync_mode != WB_SYNC_NONE) {
1695 lock_buffer(bh);
1696 } else if (!trylock_buffer(bh)) {
1697 redirty_page_for_writepage(wbc, page);
1698 continue;
1699 }
1700 if (test_clear_buffer_dirty(bh)) {
1701 mark_buffer_async_write_endio(bh, handler);
1702 } else {
1703 unlock_buffer(bh);
1704 }
1705 } while ((bh = bh->b_this_page) != head);
1706
1707 /*
1708 * The page and its buffers are protected by PageWriteback(), so we can
1709 * drop the bh refcounts early.
1710 */
1711 BUG_ON(PageWriteback(page));
1712 set_page_writeback(page);
1713
1714 do {
1715 struct buffer_head *next = bh->b_this_page;
1716 if (buffer_async_write(bh)) {
1717 submit_bh(write_op, bh);
1718 nr_underway++;
1719 }
1720 bh = next;
1721 } while (bh != head);
1722 unlock_page(page);
1723
1724 err = 0;
1725 done:
1726 if (nr_underway == 0) {
1727 /*
1728 * The page was marked dirty, but the buffers were
1729 * clean. Someone wrote them back by hand with
1730 * ll_rw_block/submit_bh. A rare case.
1731 */
1732 end_page_writeback(page);
1733
1734 /*
1735 * The page and buffer_heads can be released at any time from
1736 * here on.
1737 */
1738 }
1739 return err;
1740
1741 recover:
1742 /*
1743 * ENOSPC, or some other error. We may already have added some
1744 * blocks to the file, so we need to write these out to avoid
1745 * exposing stale data.
1746 * The page is currently locked and not marked for writeback
1747 */
1748 bh = head;
1749 /* Recovery: lock and submit the mapped buffers */
1750 do {
1751 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1752 !buffer_delay(bh)) {
1753 lock_buffer(bh);
1754 mark_buffer_async_write_endio(bh, handler);
1755 } else {
1756 /*
1757 * The buffer may have been set dirty during
1758 * attachment to a dirty page.
1759 */
1760 clear_buffer_dirty(bh);
1761 }
1762 } while ((bh = bh->b_this_page) != head);
1763 SetPageError(page);
1764 BUG_ON(PageWriteback(page));
1765 mapping_set_error(page->mapping, err);
1766 set_page_writeback(page);
1767 do {
1768 struct buffer_head *next = bh->b_this_page;
1769 if (buffer_async_write(bh)) {
1770 clear_buffer_dirty(bh);
1771 submit_bh(write_op, bh);
1772 nr_underway++;
1773 }
1774 bh = next;
1775 } while (bh != head);
1776 unlock_page(page);
1777 goto done;
1778 }
1779
1780 /*
1781 * If a page has any new buffers, zero them out here, and mark them uptodate
1782 * and dirty so they'll be written out (in order to prevent uninitialised
1783 * block data from leaking). And clear the new bit.
1784 */
page_zero_new_buffers(struct page * page,unsigned from,unsigned to)1785 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1786 {
1787 unsigned int block_start, block_end;
1788 struct buffer_head *head, *bh;
1789
1790 BUG_ON(!PageLocked(page));
1791 if (!page_has_buffers(page))
1792 return;
1793
1794 bh = head = page_buffers(page);
1795 block_start = 0;
1796 do {
1797 block_end = block_start + bh->b_size;
1798
1799 if (buffer_new(bh)) {
1800 if (block_end > from && block_start < to) {
1801 if (!PageUptodate(page)) {
1802 unsigned start, size;
1803
1804 start = max(from, block_start);
1805 size = min(to, block_end) - start;
1806
1807 zero_user(page, start, size);
1808 set_buffer_uptodate(bh);
1809 }
1810
1811 clear_buffer_new(bh);
1812 mark_buffer_dirty(bh);
1813 }
1814 }
1815
1816 block_start = block_end;
1817 bh = bh->b_this_page;
1818 } while (bh != head);
1819 }
1820 EXPORT_SYMBOL(page_zero_new_buffers);
1821
__block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1822 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1823 get_block_t *get_block)
1824 {
1825 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1826 unsigned to = from + len;
1827 struct inode *inode = page->mapping->host;
1828 unsigned block_start, block_end;
1829 sector_t block;
1830 int err = 0;
1831 unsigned blocksize, bbits;
1832 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1833
1834 BUG_ON(!PageLocked(page));
1835 BUG_ON(from > PAGE_CACHE_SIZE);
1836 BUG_ON(to > PAGE_CACHE_SIZE);
1837 BUG_ON(from > to);
1838
1839 blocksize = 1 << inode->i_blkbits;
1840 if (!page_has_buffers(page))
1841 create_empty_buffers(page, blocksize, 0);
1842 head = page_buffers(page);
1843
1844 bbits = inode->i_blkbits;
1845 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1846
1847 for(bh = head, block_start = 0; bh != head || !block_start;
1848 block++, block_start=block_end, bh = bh->b_this_page) {
1849 block_end = block_start + blocksize;
1850 if (block_end <= from || block_start >= to) {
1851 if (PageUptodate(page)) {
1852 if (!buffer_uptodate(bh))
1853 set_buffer_uptodate(bh);
1854 }
1855 continue;
1856 }
1857 if (buffer_new(bh))
1858 clear_buffer_new(bh);
1859 if (!buffer_mapped(bh)) {
1860 WARN_ON(bh->b_size != blocksize);
1861 err = get_block(inode, block, bh, 1);
1862 if (err)
1863 break;
1864 if (buffer_new(bh)) {
1865 unmap_underlying_metadata(bh->b_bdev,
1866 bh->b_blocknr);
1867 if (PageUptodate(page)) {
1868 clear_buffer_new(bh);
1869 set_buffer_uptodate(bh);
1870 mark_buffer_dirty(bh);
1871 continue;
1872 }
1873 if (block_end > to || block_start < from)
1874 zero_user_segments(page,
1875 to, block_end,
1876 block_start, from);
1877 continue;
1878 }
1879 }
1880 if (PageUptodate(page)) {
1881 if (!buffer_uptodate(bh))
1882 set_buffer_uptodate(bh);
1883 continue;
1884 }
1885 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1886 !buffer_unwritten(bh) &&
1887 (block_start < from || block_end > to)) {
1888 ll_rw_block(READ, 1, &bh);
1889 *wait_bh++=bh;
1890 }
1891 }
1892 /*
1893 * If we issued read requests - let them complete.
1894 */
1895 while(wait_bh > wait) {
1896 wait_on_buffer(*--wait_bh);
1897 if (!buffer_uptodate(*wait_bh))
1898 err = -EIO;
1899 }
1900 if (unlikely(err)) {
1901 page_zero_new_buffers(page, from, to);
1902 ClearPageUptodate(page);
1903 }
1904 return err;
1905 }
1906 EXPORT_SYMBOL(__block_write_begin);
1907
__block_commit_write(struct inode * inode,struct page * page,unsigned from,unsigned to)1908 static int __block_commit_write(struct inode *inode, struct page *page,
1909 unsigned from, unsigned to)
1910 {
1911 unsigned block_start, block_end;
1912 int partial = 0;
1913 unsigned blocksize;
1914 struct buffer_head *bh, *head;
1915
1916 blocksize = 1 << inode->i_blkbits;
1917
1918 for(bh = head = page_buffers(page), block_start = 0;
1919 bh != head || !block_start;
1920 block_start=block_end, bh = bh->b_this_page) {
1921 block_end = block_start + blocksize;
1922 if (block_end <= from || block_start >= to) {
1923 if (!buffer_uptodate(bh))
1924 partial = 1;
1925 } else {
1926 set_buffer_uptodate(bh);
1927 mark_buffer_dirty(bh);
1928 }
1929 clear_buffer_new(bh);
1930 }
1931
1932 /*
1933 * If this is a partial write which happened to make all buffers
1934 * uptodate then we can optimize away a bogus readpage() for
1935 * the next read(). Here we 'discover' whether the page went
1936 * uptodate as a result of this (potentially partial) write.
1937 */
1938 if (!partial)
1939 SetPageUptodate(page);
1940 return 0;
1941 }
1942
1943 /*
1944 * block_write_begin takes care of the basic task of block allocation and
1945 * bringing partial write blocks uptodate first.
1946 *
1947 * The filesystem needs to handle block truncation upon failure.
1948 */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,get_block_t * get_block)1949 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1950 unsigned flags, struct page **pagep, get_block_t *get_block)
1951 {
1952 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1953 struct page *page;
1954 int status;
1955
1956 page = grab_cache_page_write_begin(mapping, index, flags);
1957 if (!page)
1958 return -ENOMEM;
1959
1960 status = __block_write_begin(page, pos, len, get_block);
1961 if (unlikely(status)) {
1962 unlock_page(page);
1963 page_cache_release(page);
1964 page = NULL;
1965 }
1966
1967 *pagep = page;
1968 return status;
1969 }
1970 EXPORT_SYMBOL(block_write_begin);
1971
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1972 int block_write_end(struct file *file, struct address_space *mapping,
1973 loff_t pos, unsigned len, unsigned copied,
1974 struct page *page, void *fsdata)
1975 {
1976 struct inode *inode = mapping->host;
1977 unsigned start;
1978
1979 start = pos & (PAGE_CACHE_SIZE - 1);
1980
1981 if (unlikely(copied < len)) {
1982 /*
1983 * The buffers that were written will now be uptodate, so we
1984 * don't have to worry about a readpage reading them and
1985 * overwriting a partial write. However if we have encountered
1986 * a short write and only partially written into a buffer, it
1987 * will not be marked uptodate, so a readpage might come in and
1988 * destroy our partial write.
1989 *
1990 * Do the simplest thing, and just treat any short write to a
1991 * non uptodate page as a zero-length write, and force the
1992 * caller to redo the whole thing.
1993 */
1994 if (!PageUptodate(page))
1995 copied = 0;
1996
1997 page_zero_new_buffers(page, start+copied, start+len);
1998 }
1999 flush_dcache_page(page);
2000
2001 /* This could be a short (even 0-length) commit */
2002 __block_commit_write(inode, page, start, start+copied);
2003
2004 return copied;
2005 }
2006 EXPORT_SYMBOL(block_write_end);
2007
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2008 int generic_write_end(struct file *file, struct address_space *mapping,
2009 loff_t pos, unsigned len, unsigned copied,
2010 struct page *page, void *fsdata)
2011 {
2012 struct inode *inode = mapping->host;
2013 int i_size_changed = 0;
2014
2015 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2016
2017 /*
2018 * No need to use i_size_read() here, the i_size
2019 * cannot change under us because we hold i_mutex.
2020 *
2021 * But it's important to update i_size while still holding page lock:
2022 * page writeout could otherwise come in and zero beyond i_size.
2023 */
2024 if (pos+copied > inode->i_size) {
2025 i_size_write(inode, pos+copied);
2026 i_size_changed = 1;
2027 }
2028
2029 unlock_page(page);
2030 page_cache_release(page);
2031
2032 /*
2033 * Don't mark the inode dirty under page lock. First, it unnecessarily
2034 * makes the holding time of page lock longer. Second, it forces lock
2035 * ordering of page lock and transaction start for journaling
2036 * filesystems.
2037 */
2038 if (i_size_changed)
2039 mark_inode_dirty(inode);
2040
2041 return copied;
2042 }
2043 EXPORT_SYMBOL(generic_write_end);
2044
2045 /*
2046 * block_is_partially_uptodate checks whether buffers within a page are
2047 * uptodate or not.
2048 *
2049 * Returns true if all buffers which correspond to a file portion
2050 * we want to read are uptodate.
2051 */
block_is_partially_uptodate(struct page * page,read_descriptor_t * desc,unsigned long from)2052 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2053 unsigned long from)
2054 {
2055 struct inode *inode = page->mapping->host;
2056 unsigned block_start, block_end, blocksize;
2057 unsigned to;
2058 struct buffer_head *bh, *head;
2059 int ret = 1;
2060
2061 if (!page_has_buffers(page))
2062 return 0;
2063
2064 blocksize = 1 << inode->i_blkbits;
2065 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2066 to = from + to;
2067 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2068 return 0;
2069
2070 head = page_buffers(page);
2071 bh = head;
2072 block_start = 0;
2073 do {
2074 block_end = block_start + blocksize;
2075 if (block_end > from && block_start < to) {
2076 if (!buffer_uptodate(bh)) {
2077 ret = 0;
2078 break;
2079 }
2080 if (block_end >= to)
2081 break;
2082 }
2083 block_start = block_end;
2084 bh = bh->b_this_page;
2085 } while (bh != head);
2086
2087 return ret;
2088 }
2089 EXPORT_SYMBOL(block_is_partially_uptodate);
2090
2091 /*
2092 * Generic "read page" function for block devices that have the normal
2093 * get_block functionality. This is most of the block device filesystems.
2094 * Reads the page asynchronously --- the unlock_buffer() and
2095 * set/clear_buffer_uptodate() functions propagate buffer state into the
2096 * page struct once IO has completed.
2097 */
block_read_full_page(struct page * page,get_block_t * get_block)2098 int block_read_full_page(struct page *page, get_block_t *get_block)
2099 {
2100 struct inode *inode = page->mapping->host;
2101 sector_t iblock, lblock;
2102 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2103 unsigned int blocksize;
2104 int nr, i;
2105 int fully_mapped = 1;
2106
2107 BUG_ON(!PageLocked(page));
2108 blocksize = 1 << inode->i_blkbits;
2109 if (!page_has_buffers(page))
2110 create_empty_buffers(page, blocksize, 0);
2111 head = page_buffers(page);
2112
2113 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2114 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2115 bh = head;
2116 nr = 0;
2117 i = 0;
2118
2119 do {
2120 if (buffer_uptodate(bh))
2121 continue;
2122
2123 if (!buffer_mapped(bh)) {
2124 int err = 0;
2125
2126 fully_mapped = 0;
2127 if (iblock < lblock) {
2128 WARN_ON(bh->b_size != blocksize);
2129 err = get_block(inode, iblock, bh, 0);
2130 if (err)
2131 SetPageError(page);
2132 }
2133 if (!buffer_mapped(bh)) {
2134 zero_user(page, i * blocksize, blocksize);
2135 if (!err)
2136 set_buffer_uptodate(bh);
2137 continue;
2138 }
2139 /*
2140 * get_block() might have updated the buffer
2141 * synchronously
2142 */
2143 if (buffer_uptodate(bh))
2144 continue;
2145 }
2146 arr[nr++] = bh;
2147 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2148
2149 if (fully_mapped)
2150 SetPageMappedToDisk(page);
2151
2152 if (!nr) {
2153 /*
2154 * All buffers are uptodate - we can set the page uptodate
2155 * as well. But not if get_block() returned an error.
2156 */
2157 if (!PageError(page))
2158 SetPageUptodate(page);
2159 unlock_page(page);
2160 return 0;
2161 }
2162
2163 /* Stage two: lock the buffers */
2164 for (i = 0; i < nr; i++) {
2165 bh = arr[i];
2166 lock_buffer(bh);
2167 mark_buffer_async_read(bh);
2168 }
2169
2170 /*
2171 * Stage 3: start the IO. Check for uptodateness
2172 * inside the buffer lock in case another process reading
2173 * the underlying blockdev brought it uptodate (the sct fix).
2174 */
2175 for (i = 0; i < nr; i++) {
2176 bh = arr[i];
2177 if (buffer_uptodate(bh))
2178 end_buffer_async_read(bh, 1);
2179 else
2180 submit_bh(READ, bh);
2181 }
2182 return 0;
2183 }
2184 EXPORT_SYMBOL(block_read_full_page);
2185
2186 /* utility function for filesystems that need to do work on expanding
2187 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2188 * deal with the hole.
2189 */
generic_cont_expand_simple(struct inode * inode,loff_t size)2190 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2191 {
2192 struct address_space *mapping = inode->i_mapping;
2193 struct page *page;
2194 void *fsdata;
2195 int err;
2196
2197 err = inode_newsize_ok(inode, size);
2198 if (err)
2199 goto out;
2200
2201 err = pagecache_write_begin(NULL, mapping, size, 0,
2202 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2203 &page, &fsdata);
2204 if (err)
2205 goto out;
2206
2207 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2208 BUG_ON(err > 0);
2209
2210 out:
2211 return err;
2212 }
2213 EXPORT_SYMBOL(generic_cont_expand_simple);
2214
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2215 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2216 loff_t pos, loff_t *bytes)
2217 {
2218 struct inode *inode = mapping->host;
2219 unsigned blocksize = 1 << inode->i_blkbits;
2220 struct page *page;
2221 void *fsdata;
2222 pgoff_t index, curidx;
2223 loff_t curpos;
2224 unsigned zerofrom, offset, len;
2225 int err = 0;
2226
2227 index = pos >> PAGE_CACHE_SHIFT;
2228 offset = pos & ~PAGE_CACHE_MASK;
2229
2230 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2231 zerofrom = curpos & ~PAGE_CACHE_MASK;
2232 if (zerofrom & (blocksize-1)) {
2233 *bytes |= (blocksize-1);
2234 (*bytes)++;
2235 }
2236 len = PAGE_CACHE_SIZE - zerofrom;
2237
2238 err = pagecache_write_begin(file, mapping, curpos, len,
2239 AOP_FLAG_UNINTERRUPTIBLE,
2240 &page, &fsdata);
2241 if (err)
2242 goto out;
2243 zero_user(page, zerofrom, len);
2244 err = pagecache_write_end(file, mapping, curpos, len, len,
2245 page, fsdata);
2246 if (err < 0)
2247 goto out;
2248 BUG_ON(err != len);
2249 err = 0;
2250
2251 balance_dirty_pages_ratelimited(mapping);
2252 }
2253
2254 /* page covers the boundary, find the boundary offset */
2255 if (index == curidx) {
2256 zerofrom = curpos & ~PAGE_CACHE_MASK;
2257 /* if we will expand the thing last block will be filled */
2258 if (offset <= zerofrom) {
2259 goto out;
2260 }
2261 if (zerofrom & (blocksize-1)) {
2262 *bytes |= (blocksize-1);
2263 (*bytes)++;
2264 }
2265 len = offset - zerofrom;
2266
2267 err = pagecache_write_begin(file, mapping, curpos, len,
2268 AOP_FLAG_UNINTERRUPTIBLE,
2269 &page, &fsdata);
2270 if (err)
2271 goto out;
2272 zero_user(page, zerofrom, len);
2273 err = pagecache_write_end(file, mapping, curpos, len, len,
2274 page, fsdata);
2275 if (err < 0)
2276 goto out;
2277 BUG_ON(err != len);
2278 err = 0;
2279 }
2280 out:
2281 return err;
2282 }
2283
2284 /*
2285 * For moronic filesystems that do not allow holes in file.
2286 * We may have to extend the file.
2287 */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block,loff_t * bytes)2288 int cont_write_begin(struct file *file, struct address_space *mapping,
2289 loff_t pos, unsigned len, unsigned flags,
2290 struct page **pagep, void **fsdata,
2291 get_block_t *get_block, loff_t *bytes)
2292 {
2293 struct inode *inode = mapping->host;
2294 unsigned blocksize = 1 << inode->i_blkbits;
2295 unsigned zerofrom;
2296 int err;
2297
2298 err = cont_expand_zero(file, mapping, pos, bytes);
2299 if (err)
2300 return err;
2301
2302 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2303 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2304 *bytes |= (blocksize-1);
2305 (*bytes)++;
2306 }
2307
2308 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2309 }
2310 EXPORT_SYMBOL(cont_write_begin);
2311
block_commit_write(struct page * page,unsigned from,unsigned to)2312 int block_commit_write(struct page *page, unsigned from, unsigned to)
2313 {
2314 struct inode *inode = page->mapping->host;
2315 __block_commit_write(inode,page,from,to);
2316 return 0;
2317 }
2318 EXPORT_SYMBOL(block_commit_write);
2319
2320 /*
2321 * block_page_mkwrite() is not allowed to change the file size as it gets
2322 * called from a page fault handler when a page is first dirtied. Hence we must
2323 * be careful to check for EOF conditions here. We set the page up correctly
2324 * for a written page which means we get ENOSPC checking when writing into
2325 * holes and correct delalloc and unwritten extent mapping on filesystems that
2326 * support these features.
2327 *
2328 * We are not allowed to take the i_mutex here so we have to play games to
2329 * protect against truncate races as the page could now be beyond EOF. Because
2330 * truncate writes the inode size before removing pages, once we have the
2331 * page lock we can determine safely if the page is beyond EOF. If it is not
2332 * beyond EOF, then the page is guaranteed safe against truncation until we
2333 * unlock the page.
2334 */
2335 int
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2336 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2337 get_block_t get_block)
2338 {
2339 struct page *page = vmf->page;
2340 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2341 unsigned long end;
2342 loff_t size;
2343 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2344
2345 lock_page(page);
2346 size = i_size_read(inode);
2347 if ((page->mapping != inode->i_mapping) ||
2348 (page_offset(page) > size)) {
2349 /* page got truncated out from underneath us */
2350 unlock_page(page);
2351 goto out;
2352 }
2353
2354 /* page is wholly or partially inside EOF */
2355 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2356 end = size & ~PAGE_CACHE_MASK;
2357 else
2358 end = PAGE_CACHE_SIZE;
2359
2360 ret = __block_write_begin(page, 0, end, get_block);
2361 if (!ret)
2362 ret = block_commit_write(page, 0, end);
2363
2364 if (unlikely(ret)) {
2365 unlock_page(page);
2366 if (ret == -ENOMEM)
2367 ret = VM_FAULT_OOM;
2368 else /* -ENOSPC, -EIO, etc */
2369 ret = VM_FAULT_SIGBUS;
2370 } else
2371 ret = VM_FAULT_LOCKED;
2372
2373 out:
2374 return ret;
2375 }
2376 EXPORT_SYMBOL(block_page_mkwrite);
2377
2378 /*
2379 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2380 * immediately, while under the page lock. So it needs a special end_io
2381 * handler which does not touch the bh after unlocking it.
2382 */
end_buffer_read_nobh(struct buffer_head * bh,int uptodate)2383 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2384 {
2385 __end_buffer_read_notouch(bh, uptodate);
2386 }
2387
2388 /*
2389 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2390 * the page (converting it to circular linked list and taking care of page
2391 * dirty races).
2392 */
attach_nobh_buffers(struct page * page,struct buffer_head * head)2393 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2394 {
2395 struct buffer_head *bh;
2396
2397 BUG_ON(!PageLocked(page));
2398
2399 spin_lock(&page->mapping->private_lock);
2400 bh = head;
2401 do {
2402 if (PageDirty(page))
2403 set_buffer_dirty(bh);
2404 if (!bh->b_this_page)
2405 bh->b_this_page = head;
2406 bh = bh->b_this_page;
2407 } while (bh != head);
2408 attach_page_buffers(page, head);
2409 spin_unlock(&page->mapping->private_lock);
2410 }
2411
2412 /*
2413 * On entry, the page is fully not uptodate.
2414 * On exit the page is fully uptodate in the areas outside (from,to)
2415 * The filesystem needs to handle block truncation upon failure.
2416 */
nobh_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block)2417 int nobh_write_begin(struct address_space *mapping,
2418 loff_t pos, unsigned len, unsigned flags,
2419 struct page **pagep, void **fsdata,
2420 get_block_t *get_block)
2421 {
2422 struct inode *inode = mapping->host;
2423 const unsigned blkbits = inode->i_blkbits;
2424 const unsigned blocksize = 1 << blkbits;
2425 struct buffer_head *head, *bh;
2426 struct page *page;
2427 pgoff_t index;
2428 unsigned from, to;
2429 unsigned block_in_page;
2430 unsigned block_start, block_end;
2431 sector_t block_in_file;
2432 int nr_reads = 0;
2433 int ret = 0;
2434 int is_mapped_to_disk = 1;
2435
2436 index = pos >> PAGE_CACHE_SHIFT;
2437 from = pos & (PAGE_CACHE_SIZE - 1);
2438 to = from + len;
2439
2440 page = grab_cache_page_write_begin(mapping, index, flags);
2441 if (!page)
2442 return -ENOMEM;
2443 *pagep = page;
2444 *fsdata = NULL;
2445
2446 if (page_has_buffers(page)) {
2447 ret = __block_write_begin(page, pos, len, get_block);
2448 if (unlikely(ret))
2449 goto out_release;
2450 return ret;
2451 }
2452
2453 if (PageMappedToDisk(page))
2454 return 0;
2455
2456 /*
2457 * Allocate buffers so that we can keep track of state, and potentially
2458 * attach them to the page if an error occurs. In the common case of
2459 * no error, they will just be freed again without ever being attached
2460 * to the page (which is all OK, because we're under the page lock).
2461 *
2462 * Be careful: the buffer linked list is a NULL terminated one, rather
2463 * than the circular one we're used to.
2464 */
2465 head = alloc_page_buffers(page, blocksize, 0);
2466 if (!head) {
2467 ret = -ENOMEM;
2468 goto out_release;
2469 }
2470
2471 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2472
2473 /*
2474 * We loop across all blocks in the page, whether or not they are
2475 * part of the affected region. This is so we can discover if the
2476 * page is fully mapped-to-disk.
2477 */
2478 for (block_start = 0, block_in_page = 0, bh = head;
2479 block_start < PAGE_CACHE_SIZE;
2480 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2481 int create;
2482
2483 block_end = block_start + blocksize;
2484 bh->b_state = 0;
2485 create = 1;
2486 if (block_start >= to)
2487 create = 0;
2488 ret = get_block(inode, block_in_file + block_in_page,
2489 bh, create);
2490 if (ret)
2491 goto failed;
2492 if (!buffer_mapped(bh))
2493 is_mapped_to_disk = 0;
2494 if (buffer_new(bh))
2495 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2496 if (PageUptodate(page)) {
2497 set_buffer_uptodate(bh);
2498 continue;
2499 }
2500 if (buffer_new(bh) || !buffer_mapped(bh)) {
2501 zero_user_segments(page, block_start, from,
2502 to, block_end);
2503 continue;
2504 }
2505 if (buffer_uptodate(bh))
2506 continue; /* reiserfs does this */
2507 if (block_start < from || block_end > to) {
2508 lock_buffer(bh);
2509 bh->b_end_io = end_buffer_read_nobh;
2510 submit_bh(READ, bh);
2511 nr_reads++;
2512 }
2513 }
2514
2515 if (nr_reads) {
2516 /*
2517 * The page is locked, so these buffers are protected from
2518 * any VM or truncate activity. Hence we don't need to care
2519 * for the buffer_head refcounts.
2520 */
2521 for (bh = head; bh; bh = bh->b_this_page) {
2522 wait_on_buffer(bh);
2523 if (!buffer_uptodate(bh))
2524 ret = -EIO;
2525 }
2526 if (ret)
2527 goto failed;
2528 }
2529
2530 if (is_mapped_to_disk)
2531 SetPageMappedToDisk(page);
2532
2533 *fsdata = head; /* to be released by nobh_write_end */
2534
2535 return 0;
2536
2537 failed:
2538 BUG_ON(!ret);
2539 /*
2540 * Error recovery is a bit difficult. We need to zero out blocks that
2541 * were newly allocated, and dirty them to ensure they get written out.
2542 * Buffers need to be attached to the page at this point, otherwise
2543 * the handling of potential IO errors during writeout would be hard
2544 * (could try doing synchronous writeout, but what if that fails too?)
2545 */
2546 attach_nobh_buffers(page, head);
2547 page_zero_new_buffers(page, from, to);
2548
2549 out_release:
2550 unlock_page(page);
2551 page_cache_release(page);
2552 *pagep = NULL;
2553
2554 return ret;
2555 }
2556 EXPORT_SYMBOL(nobh_write_begin);
2557
nobh_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2558 int nobh_write_end(struct file *file, struct address_space *mapping,
2559 loff_t pos, unsigned len, unsigned copied,
2560 struct page *page, void *fsdata)
2561 {
2562 struct inode *inode = page->mapping->host;
2563 struct buffer_head *head = fsdata;
2564 struct buffer_head *bh;
2565 BUG_ON(fsdata != NULL && page_has_buffers(page));
2566
2567 if (unlikely(copied < len) && head)
2568 attach_nobh_buffers(page, head);
2569 if (page_has_buffers(page))
2570 return generic_write_end(file, mapping, pos, len,
2571 copied, page, fsdata);
2572
2573 SetPageUptodate(page);
2574 set_page_dirty(page);
2575 if (pos+copied > inode->i_size) {
2576 i_size_write(inode, pos+copied);
2577 mark_inode_dirty(inode);
2578 }
2579
2580 unlock_page(page);
2581 page_cache_release(page);
2582
2583 while (head) {
2584 bh = head;
2585 head = head->b_this_page;
2586 free_buffer_head(bh);
2587 }
2588
2589 return copied;
2590 }
2591 EXPORT_SYMBOL(nobh_write_end);
2592
2593 /*
2594 * nobh_writepage() - based on block_full_write_page() except
2595 * that it tries to operate without attaching bufferheads to
2596 * the page.
2597 */
nobh_writepage(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2598 int nobh_writepage(struct page *page, get_block_t *get_block,
2599 struct writeback_control *wbc)
2600 {
2601 struct inode * const inode = page->mapping->host;
2602 loff_t i_size = i_size_read(inode);
2603 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2604 unsigned offset;
2605 int ret;
2606
2607 /* Is the page fully inside i_size? */
2608 if (page->index < end_index)
2609 goto out;
2610
2611 /* Is the page fully outside i_size? (truncate in progress) */
2612 offset = i_size & (PAGE_CACHE_SIZE-1);
2613 if (page->index >= end_index+1 || !offset) {
2614 /*
2615 * The page may have dirty, unmapped buffers. For example,
2616 * they may have been added in ext3_writepage(). Make them
2617 * freeable here, so the page does not leak.
2618 */
2619 #if 0
2620 /* Not really sure about this - do we need this ? */
2621 if (page->mapping->a_ops->invalidatepage)
2622 page->mapping->a_ops->invalidatepage(page, offset);
2623 #endif
2624 unlock_page(page);
2625 return 0; /* don't care */
2626 }
2627
2628 /*
2629 * The page straddles i_size. It must be zeroed out on each and every
2630 * writepage invocation because it may be mmapped. "A file is mapped
2631 * in multiples of the page size. For a file that is not a multiple of
2632 * the page size, the remaining memory is zeroed when mapped, and
2633 * writes to that region are not written out to the file."
2634 */
2635 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2636 out:
2637 ret = mpage_writepage(page, get_block, wbc);
2638 if (ret == -EAGAIN)
2639 ret = __block_write_full_page(inode, page, get_block, wbc,
2640 end_buffer_async_write);
2641 return ret;
2642 }
2643 EXPORT_SYMBOL(nobh_writepage);
2644
nobh_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2645 int nobh_truncate_page(struct address_space *mapping,
2646 loff_t from, get_block_t *get_block)
2647 {
2648 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2649 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2650 unsigned blocksize;
2651 sector_t iblock;
2652 unsigned length, pos;
2653 struct inode *inode = mapping->host;
2654 struct page *page;
2655 struct buffer_head map_bh;
2656 int err;
2657
2658 blocksize = 1 << inode->i_blkbits;
2659 length = offset & (blocksize - 1);
2660
2661 /* Block boundary? Nothing to do */
2662 if (!length)
2663 return 0;
2664
2665 length = blocksize - length;
2666 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2667
2668 page = grab_cache_page(mapping, index);
2669 err = -ENOMEM;
2670 if (!page)
2671 goto out;
2672
2673 if (page_has_buffers(page)) {
2674 has_buffers:
2675 unlock_page(page);
2676 page_cache_release(page);
2677 return block_truncate_page(mapping, from, get_block);
2678 }
2679
2680 /* Find the buffer that contains "offset" */
2681 pos = blocksize;
2682 while (offset >= pos) {
2683 iblock++;
2684 pos += blocksize;
2685 }
2686
2687 map_bh.b_size = blocksize;
2688 map_bh.b_state = 0;
2689 err = get_block(inode, iblock, &map_bh, 0);
2690 if (err)
2691 goto unlock;
2692 /* unmapped? It's a hole - nothing to do */
2693 if (!buffer_mapped(&map_bh))
2694 goto unlock;
2695
2696 /* Ok, it's mapped. Make sure it's up-to-date */
2697 if (!PageUptodate(page)) {
2698 err = mapping->a_ops->readpage(NULL, page);
2699 if (err) {
2700 page_cache_release(page);
2701 goto out;
2702 }
2703 lock_page(page);
2704 if (!PageUptodate(page)) {
2705 err = -EIO;
2706 goto unlock;
2707 }
2708 if (page_has_buffers(page))
2709 goto has_buffers;
2710 }
2711 zero_user(page, offset, length);
2712 set_page_dirty(page);
2713 err = 0;
2714
2715 unlock:
2716 unlock_page(page);
2717 page_cache_release(page);
2718 out:
2719 return err;
2720 }
2721 EXPORT_SYMBOL(nobh_truncate_page);
2722
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2723 int block_truncate_page(struct address_space *mapping,
2724 loff_t from, get_block_t *get_block)
2725 {
2726 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2727 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2728 unsigned blocksize;
2729 sector_t iblock;
2730 unsigned length, pos;
2731 struct inode *inode = mapping->host;
2732 struct page *page;
2733 struct buffer_head *bh;
2734 int err;
2735
2736 blocksize = 1 << inode->i_blkbits;
2737 length = offset & (blocksize - 1);
2738
2739 /* Block boundary? Nothing to do */
2740 if (!length)
2741 return 0;
2742
2743 length = blocksize - length;
2744 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2745
2746 page = grab_cache_page(mapping, index);
2747 err = -ENOMEM;
2748 if (!page)
2749 goto out;
2750
2751 if (!page_has_buffers(page))
2752 create_empty_buffers(page, blocksize, 0);
2753
2754 /* Find the buffer that contains "offset" */
2755 bh = page_buffers(page);
2756 pos = blocksize;
2757 while (offset >= pos) {
2758 bh = bh->b_this_page;
2759 iblock++;
2760 pos += blocksize;
2761 }
2762
2763 err = 0;
2764 if (!buffer_mapped(bh)) {
2765 WARN_ON(bh->b_size != blocksize);
2766 err = get_block(inode, iblock, bh, 0);
2767 if (err)
2768 goto unlock;
2769 /* unmapped? It's a hole - nothing to do */
2770 if (!buffer_mapped(bh))
2771 goto unlock;
2772 }
2773
2774 /* Ok, it's mapped. Make sure it's up-to-date */
2775 if (PageUptodate(page))
2776 set_buffer_uptodate(bh);
2777
2778 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2779 err = -EIO;
2780 ll_rw_block(READ, 1, &bh);
2781 wait_on_buffer(bh);
2782 /* Uhhuh. Read error. Complain and punt. */
2783 if (!buffer_uptodate(bh))
2784 goto unlock;
2785 }
2786
2787 zero_user(page, offset, length);
2788 mark_buffer_dirty(bh);
2789 err = 0;
2790
2791 unlock:
2792 unlock_page(page);
2793 page_cache_release(page);
2794 out:
2795 return err;
2796 }
2797 EXPORT_SYMBOL(block_truncate_page);
2798
2799 /*
2800 * The generic ->writepage function for buffer-backed address_spaces
2801 * this form passes in the end_io handler used to finish the IO.
2802 */
block_write_full_page_endio(struct page * page,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)2803 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2804 struct writeback_control *wbc, bh_end_io_t *handler)
2805 {
2806 struct inode * const inode = page->mapping->host;
2807 loff_t i_size = i_size_read(inode);
2808 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2809 unsigned offset;
2810
2811 /* Is the page fully inside i_size? */
2812 if (page->index < end_index)
2813 return __block_write_full_page(inode, page, get_block, wbc,
2814 handler);
2815
2816 /* Is the page fully outside i_size? (truncate in progress) */
2817 offset = i_size & (PAGE_CACHE_SIZE-1);
2818 if (page->index >= end_index+1 || !offset) {
2819 /*
2820 * The page may have dirty, unmapped buffers. For example,
2821 * they may have been added in ext3_writepage(). Make them
2822 * freeable here, so the page does not leak.
2823 */
2824 do_invalidatepage(page, 0);
2825 unlock_page(page);
2826 return 0; /* don't care */
2827 }
2828
2829 /*
2830 * The page straddles i_size. It must be zeroed out on each and every
2831 * writepage invocation because it may be mmapped. "A file is mapped
2832 * in multiples of the page size. For a file that is not a multiple of
2833 * the page size, the remaining memory is zeroed when mapped, and
2834 * writes to that region are not written out to the file."
2835 */
2836 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2837 return __block_write_full_page(inode, page, get_block, wbc, handler);
2838 }
2839 EXPORT_SYMBOL(block_write_full_page_endio);
2840
2841 /*
2842 * The generic ->writepage function for buffer-backed address_spaces
2843 */
block_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2844 int block_write_full_page(struct page *page, get_block_t *get_block,
2845 struct writeback_control *wbc)
2846 {
2847 return block_write_full_page_endio(page, get_block, wbc,
2848 end_buffer_async_write);
2849 }
2850 EXPORT_SYMBOL(block_write_full_page);
2851
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)2852 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2853 get_block_t *get_block)
2854 {
2855 struct buffer_head tmp;
2856 struct inode *inode = mapping->host;
2857 tmp.b_state = 0;
2858 tmp.b_blocknr = 0;
2859 tmp.b_size = 1 << inode->i_blkbits;
2860 get_block(inode, block, &tmp, 0);
2861 return tmp.b_blocknr;
2862 }
2863 EXPORT_SYMBOL(generic_block_bmap);
2864
end_bio_bh_io_sync(struct bio * bio,int err)2865 static void end_bio_bh_io_sync(struct bio *bio, int err)
2866 {
2867 struct buffer_head *bh = bio->bi_private;
2868
2869 if (err == -EOPNOTSUPP) {
2870 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2871 }
2872
2873 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2874 set_bit(BH_Quiet, &bh->b_state);
2875
2876 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2877 bio_put(bio);
2878 }
2879
submit_bh(int rw,struct buffer_head * bh)2880 int submit_bh(int rw, struct buffer_head * bh)
2881 {
2882 struct bio *bio;
2883 int ret = 0;
2884
2885 BUG_ON(!buffer_locked(bh));
2886 BUG_ON(!buffer_mapped(bh));
2887 BUG_ON(!bh->b_end_io);
2888 BUG_ON(buffer_delay(bh));
2889 BUG_ON(buffer_unwritten(bh));
2890
2891 /*
2892 * Only clear out a write error when rewriting
2893 */
2894 if (test_set_buffer_req(bh) && (rw & WRITE))
2895 clear_buffer_write_io_error(bh);
2896
2897 /*
2898 * from here on down, it's all bio -- do the initial mapping,
2899 * submit_bio -> generic_make_request may further map this bio around
2900 */
2901 bio = bio_alloc(GFP_NOIO, 1);
2902
2903 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2904 bio->bi_bdev = bh->b_bdev;
2905 bio->bi_io_vec[0].bv_page = bh->b_page;
2906 bio->bi_io_vec[0].bv_len = bh->b_size;
2907 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2908
2909 bio->bi_vcnt = 1;
2910 bio->bi_idx = 0;
2911 bio->bi_size = bh->b_size;
2912
2913 bio->bi_end_io = end_bio_bh_io_sync;
2914 bio->bi_private = bh;
2915
2916 bio_get(bio);
2917 submit_bio(rw, bio);
2918
2919 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2920 ret = -EOPNOTSUPP;
2921
2922 bio_put(bio);
2923 return ret;
2924 }
2925 EXPORT_SYMBOL(submit_bh);
2926
2927 /**
2928 * ll_rw_block: low-level access to block devices (DEPRECATED)
2929 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2930 * @nr: number of &struct buffer_heads in the array
2931 * @bhs: array of pointers to &struct buffer_head
2932 *
2933 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2934 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2935 * %READA option is described in the documentation for generic_make_request()
2936 * which ll_rw_block() calls.
2937 *
2938 * This function drops any buffer that it cannot get a lock on (with the
2939 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2940 * request, and any buffer that appears to be up-to-date when doing read
2941 * request. Further it marks as clean buffers that are processed for
2942 * writing (the buffer cache won't assume that they are actually clean
2943 * until the buffer gets unlocked).
2944 *
2945 * ll_rw_block sets b_end_io to simple completion handler that marks
2946 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2947 * any waiters.
2948 *
2949 * All of the buffers must be for the same device, and must also be a
2950 * multiple of the current approved size for the device.
2951 */
ll_rw_block(int rw,int nr,struct buffer_head * bhs[])2952 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2953 {
2954 int i;
2955
2956 for (i = 0; i < nr; i++) {
2957 struct buffer_head *bh = bhs[i];
2958
2959 if (!trylock_buffer(bh))
2960 continue;
2961 if (rw == WRITE) {
2962 if (test_clear_buffer_dirty(bh)) {
2963 bh->b_end_io = end_buffer_write_sync;
2964 get_bh(bh);
2965 submit_bh(WRITE, bh);
2966 continue;
2967 }
2968 } else {
2969 if (!buffer_uptodate(bh)) {
2970 bh->b_end_io = end_buffer_read_sync;
2971 get_bh(bh);
2972 submit_bh(rw, bh);
2973 continue;
2974 }
2975 }
2976 unlock_buffer(bh);
2977 }
2978 }
2979 EXPORT_SYMBOL(ll_rw_block);
2980
write_dirty_buffer(struct buffer_head * bh,int rw)2981 void write_dirty_buffer(struct buffer_head *bh, int rw)
2982 {
2983 lock_buffer(bh);
2984 if (!test_clear_buffer_dirty(bh)) {
2985 unlock_buffer(bh);
2986 return;
2987 }
2988 bh->b_end_io = end_buffer_write_sync;
2989 get_bh(bh);
2990 submit_bh(rw, bh);
2991 }
2992 EXPORT_SYMBOL(write_dirty_buffer);
2993
2994 /*
2995 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2996 * and then start new I/O and then wait upon it. The caller must have a ref on
2997 * the buffer_head.
2998 */
__sync_dirty_buffer(struct buffer_head * bh,int rw)2999 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3000 {
3001 int ret = 0;
3002
3003 WARN_ON(atomic_read(&bh->b_count) < 1);
3004 lock_buffer(bh);
3005 if (test_clear_buffer_dirty(bh)) {
3006 get_bh(bh);
3007 bh->b_end_io = end_buffer_write_sync;
3008 ret = submit_bh(rw, bh);
3009 wait_on_buffer(bh);
3010 if (!ret && !buffer_uptodate(bh))
3011 ret = -EIO;
3012 } else {
3013 unlock_buffer(bh);
3014 }
3015 return ret;
3016 }
3017 EXPORT_SYMBOL(__sync_dirty_buffer);
3018
sync_dirty_buffer(struct buffer_head * bh)3019 int sync_dirty_buffer(struct buffer_head *bh)
3020 {
3021 return __sync_dirty_buffer(bh, WRITE_SYNC);
3022 }
3023 EXPORT_SYMBOL(sync_dirty_buffer);
3024
3025 /*
3026 * try_to_free_buffers() checks if all the buffers on this particular page
3027 * are unused, and releases them if so.
3028 *
3029 * Exclusion against try_to_free_buffers may be obtained by either
3030 * locking the page or by holding its mapping's private_lock.
3031 *
3032 * If the page is dirty but all the buffers are clean then we need to
3033 * be sure to mark the page clean as well. This is because the page
3034 * may be against a block device, and a later reattachment of buffers
3035 * to a dirty page will set *all* buffers dirty. Which would corrupt
3036 * filesystem data on the same device.
3037 *
3038 * The same applies to regular filesystem pages: if all the buffers are
3039 * clean then we set the page clean and proceed. To do that, we require
3040 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3041 * private_lock.
3042 *
3043 * try_to_free_buffers() is non-blocking.
3044 */
buffer_busy(struct buffer_head * bh)3045 static inline int buffer_busy(struct buffer_head *bh)
3046 {
3047 return atomic_read(&bh->b_count) |
3048 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3049 }
3050
3051 static int
drop_buffers(struct page * page,struct buffer_head ** buffers_to_free)3052 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3053 {
3054 struct buffer_head *head = page_buffers(page);
3055 struct buffer_head *bh;
3056
3057 bh = head;
3058 do {
3059 if (buffer_write_io_error(bh) && page->mapping)
3060 set_bit(AS_EIO, &page->mapping->flags);
3061 if (buffer_busy(bh))
3062 goto failed;
3063 bh = bh->b_this_page;
3064 } while (bh != head);
3065
3066 do {
3067 struct buffer_head *next = bh->b_this_page;
3068
3069 if (bh->b_assoc_map)
3070 __remove_assoc_queue(bh);
3071 bh = next;
3072 } while (bh != head);
3073 *buffers_to_free = head;
3074 __clear_page_buffers(page);
3075 return 1;
3076 failed:
3077 return 0;
3078 }
3079
try_to_free_buffers(struct page * page)3080 int try_to_free_buffers(struct page *page)
3081 {
3082 struct address_space * const mapping = page->mapping;
3083 struct buffer_head *buffers_to_free = NULL;
3084 int ret = 0;
3085
3086 BUG_ON(!PageLocked(page));
3087 if (PageWriteback(page))
3088 return 0;
3089
3090 if (mapping == NULL) { /* can this still happen? */
3091 ret = drop_buffers(page, &buffers_to_free);
3092 goto out;
3093 }
3094
3095 spin_lock(&mapping->private_lock);
3096 ret = drop_buffers(page, &buffers_to_free);
3097
3098 /*
3099 * If the filesystem writes its buffers by hand (eg ext3)
3100 * then we can have clean buffers against a dirty page. We
3101 * clean the page here; otherwise the VM will never notice
3102 * that the filesystem did any IO at all.
3103 *
3104 * Also, during truncate, discard_buffer will have marked all
3105 * the page's buffers clean. We discover that here and clean
3106 * the page also.
3107 *
3108 * private_lock must be held over this entire operation in order
3109 * to synchronise against __set_page_dirty_buffers and prevent the
3110 * dirty bit from being lost.
3111 */
3112 if (ret)
3113 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3114 spin_unlock(&mapping->private_lock);
3115 out:
3116 if (buffers_to_free) {
3117 struct buffer_head *bh = buffers_to_free;
3118
3119 do {
3120 struct buffer_head *next = bh->b_this_page;
3121 free_buffer_head(bh);
3122 bh = next;
3123 } while (bh != buffers_to_free);
3124 }
3125 return ret;
3126 }
3127 EXPORT_SYMBOL(try_to_free_buffers);
3128
3129 /*
3130 * There are no bdflush tunables left. But distributions are
3131 * still running obsolete flush daemons, so we terminate them here.
3132 *
3133 * Use of bdflush() is deprecated and will be removed in a future kernel.
3134 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3135 */
SYSCALL_DEFINE2(bdflush,int,func,long,data)3136 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3137 {
3138 static int msg_count;
3139
3140 if (!capable(CAP_SYS_ADMIN))
3141 return -EPERM;
3142
3143 if (msg_count < 5) {
3144 msg_count++;
3145 printk(KERN_INFO
3146 "warning: process `%s' used the obsolete bdflush"
3147 " system call\n", current->comm);
3148 printk(KERN_INFO "Fix your initscripts?\n");
3149 }
3150
3151 if (func == 1)
3152 do_exit(0);
3153 return 0;
3154 }
3155
3156 /*
3157 * Buffer-head allocation
3158 */
3159 static struct kmem_cache *bh_cachep;
3160
3161 /*
3162 * Once the number of bh's in the machine exceeds this level, we start
3163 * stripping them in writeback.
3164 */
3165 static int max_buffer_heads;
3166
3167 int buffer_heads_over_limit;
3168
3169 struct bh_accounting {
3170 int nr; /* Number of live bh's */
3171 int ratelimit; /* Limit cacheline bouncing */
3172 };
3173
3174 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3175
recalc_bh_state(void)3176 static void recalc_bh_state(void)
3177 {
3178 int i;
3179 int tot = 0;
3180
3181 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3182 return;
3183 __this_cpu_write(bh_accounting.ratelimit, 0);
3184 for_each_online_cpu(i)
3185 tot += per_cpu(bh_accounting, i).nr;
3186 buffer_heads_over_limit = (tot > max_buffer_heads);
3187 }
3188
alloc_buffer_head(gfp_t gfp_flags)3189 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3190 {
3191 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3192 if (ret) {
3193 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3194 preempt_disable();
3195 __this_cpu_inc(bh_accounting.nr);
3196 recalc_bh_state();
3197 preempt_enable();
3198 }
3199 return ret;
3200 }
3201 EXPORT_SYMBOL(alloc_buffer_head);
3202
free_buffer_head(struct buffer_head * bh)3203 void free_buffer_head(struct buffer_head *bh)
3204 {
3205 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3206 kmem_cache_free(bh_cachep, bh);
3207 preempt_disable();
3208 __this_cpu_dec(bh_accounting.nr);
3209 recalc_bh_state();
3210 preempt_enable();
3211 }
3212 EXPORT_SYMBOL(free_buffer_head);
3213
buffer_exit_cpu(int cpu)3214 static void buffer_exit_cpu(int cpu)
3215 {
3216 int i;
3217 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3218
3219 for (i = 0; i < BH_LRU_SIZE; i++) {
3220 brelse(b->bhs[i]);
3221 b->bhs[i] = NULL;
3222 }
3223 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3224 per_cpu(bh_accounting, cpu).nr = 0;
3225 }
3226
buffer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)3227 static int buffer_cpu_notify(struct notifier_block *self,
3228 unsigned long action, void *hcpu)
3229 {
3230 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3231 buffer_exit_cpu((unsigned long)hcpu);
3232 return NOTIFY_OK;
3233 }
3234
3235 /**
3236 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3237 * @bh: struct buffer_head
3238 *
3239 * Return true if the buffer is up-to-date and false,
3240 * with the buffer locked, if not.
3241 */
bh_uptodate_or_lock(struct buffer_head * bh)3242 int bh_uptodate_or_lock(struct buffer_head *bh)
3243 {
3244 if (!buffer_uptodate(bh)) {
3245 lock_buffer(bh);
3246 if (!buffer_uptodate(bh))
3247 return 0;
3248 unlock_buffer(bh);
3249 }
3250 return 1;
3251 }
3252 EXPORT_SYMBOL(bh_uptodate_or_lock);
3253
3254 /**
3255 * bh_submit_read - Submit a locked buffer for reading
3256 * @bh: struct buffer_head
3257 *
3258 * Returns zero on success and -EIO on error.
3259 */
bh_submit_read(struct buffer_head * bh)3260 int bh_submit_read(struct buffer_head *bh)
3261 {
3262 BUG_ON(!buffer_locked(bh));
3263
3264 if (buffer_uptodate(bh)) {
3265 unlock_buffer(bh);
3266 return 0;
3267 }
3268
3269 get_bh(bh);
3270 bh->b_end_io = end_buffer_read_sync;
3271 submit_bh(READ, bh);
3272 wait_on_buffer(bh);
3273 if (buffer_uptodate(bh))
3274 return 0;
3275 return -EIO;
3276 }
3277 EXPORT_SYMBOL(bh_submit_read);
3278
buffer_init(void)3279 void __init buffer_init(void)
3280 {
3281 int nrpages;
3282
3283 bh_cachep = kmem_cache_create("buffer_head",
3284 sizeof(struct buffer_head), 0,
3285 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3286 SLAB_MEM_SPREAD),
3287 NULL);
3288
3289 /*
3290 * Limit the bh occupancy to 10% of ZONE_NORMAL
3291 */
3292 nrpages = (nr_free_buffer_pages() * 10) / 100;
3293 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3294 hotcpu_notifier(buffer_cpu_notify, 0);
3295 }
3296