1 /*
2  * Copyright 2004-2010 Analog Devices Inc.
3  *
4  * Licensed under the GPL-2 or later.
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
16 
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
23 
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
32 
33 u16 _bfin_swrst;
34 EXPORT_SYMBOL(_bfin_swrst);
35 
36 unsigned long memory_start, memory_end, physical_mem_end;
37 unsigned long _rambase, _ramstart, _ramend;
38 unsigned long reserved_mem_dcache_on;
39 unsigned long reserved_mem_icache_on;
40 EXPORT_SYMBOL(memory_start);
41 EXPORT_SYMBOL(memory_end);
42 EXPORT_SYMBOL(physical_mem_end);
43 EXPORT_SYMBOL(_ramend);
44 EXPORT_SYMBOL(reserved_mem_dcache_on);
45 
46 #ifdef CONFIG_MTD_UCLINUX
47 extern struct map_info uclinux_ram_map;
48 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49 unsigned long _ebss;
50 EXPORT_SYMBOL(memory_mtd_end);
51 EXPORT_SYMBOL(memory_mtd_start);
52 EXPORT_SYMBOL(mtd_size);
53 #endif
54 
55 char __initdata command_line[COMMAND_LINE_SIZE];
56 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57 	*init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
58 
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX		128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM		1
62 #define BFIN_MEMMAP_RESERVED	2
63 static struct bfin_memmap {
64 	int nr_map;
65 	struct bfin_memmap_entry {
66 		unsigned long long addr; /* start of memory segment */
67 		unsigned long long size;
68 		unsigned long type;
69 	} map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
71 
72 /* for memmap sanitization */
73 struct change_member {
74 	struct bfin_memmap_entry *pentry; /* pointer to original entry */
75 	unsigned long long addr; /* address for this change point */
76 };
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
81 
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
83 
84 static int early_init_clkin_hz(char *buf);
85 
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
generate_cplb_tables(void)87 void __init generate_cplb_tables(void)
88 {
89 	unsigned int cpu;
90 
91 	generate_cplb_tables_all();
92 	/* Generate per-CPU I&D CPLB tables */
93 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94 		generate_cplb_tables_cpu(cpu);
95 }
96 #endif
97 
bfin_setup_caches(unsigned int cpu)98 void __cpuinit bfin_setup_caches(unsigned int cpu)
99 {
100 #ifdef CONFIG_BFIN_ICACHE
101 	bfin_icache_init(icplb_tbl[cpu]);
102 #endif
103 
104 #ifdef CONFIG_BFIN_DCACHE
105 	bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
107 
108 	/*
109 	 * In cache coherence emulation mode, we need to have the
110 	 * D-cache enabled before running any atomic operation which
111 	 * might involve cache invalidation (i.e. spinlock, rwlock).
112 	 * So printk's are deferred until then.
113 	 */
114 #ifdef CONFIG_BFIN_ICACHE
115 	printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
116 	printk(KERN_INFO "  External memory:"
117 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
118 	       " cacheable"
119 # else
120 	       " uncacheable"
121 # endif
122 	       " in instruction cache\n");
123 	if (L2_LENGTH)
124 		printk(KERN_INFO "  L2 SRAM        :"
125 # ifdef CONFIG_BFIN_L2_ICACHEABLE
126 		       " cacheable"
127 # else
128 		       " uncacheable"
129 # endif
130 		       " in instruction cache\n");
131 
132 #else
133 	printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
134 #endif
135 
136 #ifdef CONFIG_BFIN_DCACHE
137 	printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
138 	printk(KERN_INFO "  External memory:"
139 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
140 	       " cacheable (write-back)"
141 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
142 	       " cacheable (write-through)"
143 # else
144 	       " uncacheable"
145 # endif
146 	       " in data cache\n");
147 	if (L2_LENGTH)
148 		printk(KERN_INFO "  L2 SRAM        :"
149 # if defined CONFIG_BFIN_L2_WRITEBACK
150 		       " cacheable (write-back)"
151 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
152 		       " cacheable (write-through)"
153 # else
154 		       " uncacheable"
155 # endif
156 		       " in data cache\n");
157 #else
158 	printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
159 #endif
160 }
161 
bfin_setup_cpudata(unsigned int cpu)162 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
163 {
164 	struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
165 
166 	cpudata->idle = current;
167 	cpudata->imemctl = bfin_read_IMEM_CONTROL();
168 	cpudata->dmemctl = bfin_read_DMEM_CONTROL();
169 }
170 
bfin_cache_init(void)171 void __init bfin_cache_init(void)
172 {
173 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
174 	generate_cplb_tables();
175 #endif
176 	bfin_setup_caches(0);
177 }
178 
bfin_relocate_l1_mem(void)179 void __init bfin_relocate_l1_mem(void)
180 {
181 	unsigned long text_l1_len = (unsigned long)_text_l1_len;
182 	unsigned long data_l1_len = (unsigned long)_data_l1_len;
183 	unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
184 	unsigned long l2_len = (unsigned long)_l2_len;
185 
186 	early_shadow_stamp();
187 
188 	/*
189 	 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
190 	 * we know that everything about l1 text/data is nice and aligned,
191 	 * so copy by 4 byte chunks, and don't worry about overlapping
192 	 * src/dest.
193 	 *
194 	 * We can't use the dma_memcpy functions, since they can call
195 	 * scheduler functions which might be in L1 :( and core writes
196 	 * into L1 instruction cause bad access errors, so we are stuck,
197 	 * we are required to use DMA, but can't use the common dma
198 	 * functions. We can't use memcpy either - since that might be
199 	 * going to be in the relocated L1
200 	 */
201 
202 	blackfin_dma_early_init();
203 
204 	/* if necessary, copy L1 text to L1 instruction SRAM */
205 	if (L1_CODE_LENGTH && text_l1_len)
206 		early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
207 
208 	/* if necessary, copy L1 data to L1 data bank A SRAM */
209 	if (L1_DATA_A_LENGTH && data_l1_len)
210 		early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
211 
212 	/* if necessary, copy L1 data B to L1 data bank B SRAM */
213 	if (L1_DATA_B_LENGTH && data_b_l1_len)
214 		early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
215 
216 	early_dma_memcpy_done();
217 
218 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
219 	blackfin_iflush_l1_entry[0] = (unsigned long)blackfin_icache_flush_range_l1;
220 #endif
221 
222 	/* if necessary, copy L2 text/data to L2 SRAM */
223 	if (L2_LENGTH && l2_len)
224 		memcpy(_stext_l2, _l2_lma, l2_len);
225 }
226 
227 #ifdef CONFIG_SMP
bfin_relocate_coreb_l1_mem(void)228 void __init bfin_relocate_coreb_l1_mem(void)
229 {
230 	unsigned long text_l1_len = (unsigned long)_text_l1_len;
231 	unsigned long data_l1_len = (unsigned long)_data_l1_len;
232 	unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
233 
234 	blackfin_dma_early_init();
235 
236 	/* if necessary, copy L1 text to L1 instruction SRAM */
237 	if (L1_CODE_LENGTH && text_l1_len)
238 		early_dma_memcpy((void *)COREB_L1_CODE_START, _text_l1_lma,
239 				text_l1_len);
240 
241 	/* if necessary, copy L1 data to L1 data bank A SRAM */
242 	if (L1_DATA_A_LENGTH && data_l1_len)
243 		early_dma_memcpy((void *)COREB_L1_DATA_A_START, _data_l1_lma,
244 				data_l1_len);
245 
246 	/* if necessary, copy L1 data B to L1 data bank B SRAM */
247 	if (L1_DATA_B_LENGTH && data_b_l1_len)
248 		early_dma_memcpy((void *)COREB_L1_DATA_B_START, _data_b_l1_lma,
249 				data_b_l1_len);
250 
251 	early_dma_memcpy_done();
252 
253 #ifdef CONFIG_ICACHE_FLUSH_L1
254 	blackfin_iflush_l1_entry[1] = (unsigned long)blackfin_icache_flush_range_l1 -
255 			(unsigned long)_stext_l1 + COREB_L1_CODE_START;
256 #endif
257 }
258 #endif
259 
260 #ifdef CONFIG_ROMKERNEL
bfin_relocate_xip_data(void)261 void __init bfin_relocate_xip_data(void)
262 {
263 	early_shadow_stamp();
264 
265 	memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
266 	memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
267 }
268 #endif
269 
270 /* add_memory_region to memmap */
add_memory_region(unsigned long long start,unsigned long long size,int type)271 static void __init add_memory_region(unsigned long long start,
272 			      unsigned long long size, int type)
273 {
274 	int i;
275 
276 	i = bfin_memmap.nr_map;
277 
278 	if (i == BFIN_MEMMAP_MAX) {
279 		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
280 		return;
281 	}
282 
283 	bfin_memmap.map[i].addr = start;
284 	bfin_memmap.map[i].size = size;
285 	bfin_memmap.map[i].type = type;
286 	bfin_memmap.nr_map++;
287 }
288 
289 /*
290  * Sanitize the boot memmap, removing overlaps.
291  */
sanitize_memmap(struct bfin_memmap_entry * map,int * pnr_map)292 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
293 {
294 	struct change_member *change_tmp;
295 	unsigned long current_type, last_type;
296 	unsigned long long last_addr;
297 	int chgidx, still_changing;
298 	int overlap_entries;
299 	int new_entry;
300 	int old_nr, new_nr, chg_nr;
301 	int i;
302 
303 	/*
304 		Visually we're performing the following (1,2,3,4 = memory types)
305 
306 		Sample memory map (w/overlaps):
307 		   ____22__________________
308 		   ______________________4_
309 		   ____1111________________
310 		   _44_____________________
311 		   11111111________________
312 		   ____________________33__
313 		   ___________44___________
314 		   __________33333_________
315 		   ______________22________
316 		   ___________________2222_
317 		   _________111111111______
318 		   _____________________11_
319 		   _________________4______
320 
321 		Sanitized equivalent (no overlap):
322 		   1_______________________
323 		   _44_____________________
324 		   ___1____________________
325 		   ____22__________________
326 		   ______11________________
327 		   _________1______________
328 		   __________3_____________
329 		   ___________44___________
330 		   _____________33_________
331 		   _______________2________
332 		   ________________1_______
333 		   _________________4______
334 		   ___________________2____
335 		   ____________________33__
336 		   ______________________4_
337 	*/
338 	/* if there's only one memory region, don't bother */
339 	if (*pnr_map < 2)
340 		return -1;
341 
342 	old_nr = *pnr_map;
343 
344 	/* bail out if we find any unreasonable addresses in memmap */
345 	for (i = 0; i < old_nr; i++)
346 		if (map[i].addr + map[i].size < map[i].addr)
347 			return -1;
348 
349 	/* create pointers for initial change-point information (for sorting) */
350 	for (i = 0; i < 2*old_nr; i++)
351 		change_point[i] = &change_point_list[i];
352 
353 	/* record all known change-points (starting and ending addresses),
354 	   omitting those that are for empty memory regions */
355 	chgidx = 0;
356 	for (i = 0; i < old_nr; i++) {
357 		if (map[i].size != 0) {
358 			change_point[chgidx]->addr = map[i].addr;
359 			change_point[chgidx++]->pentry = &map[i];
360 			change_point[chgidx]->addr = map[i].addr + map[i].size;
361 			change_point[chgidx++]->pentry = &map[i];
362 		}
363 	}
364 	chg_nr = chgidx;	/* true number of change-points */
365 
366 	/* sort change-point list by memory addresses (low -> high) */
367 	still_changing = 1;
368 	while (still_changing) {
369 		still_changing = 0;
370 		for (i = 1; i < chg_nr; i++) {
371 			/* if <current_addr> > <last_addr>, swap */
372 			/* or, if current=<start_addr> & last=<end_addr>, swap */
373 			if ((change_point[i]->addr < change_point[i-1]->addr) ||
374 				((change_point[i]->addr == change_point[i-1]->addr) &&
375 				 (change_point[i]->addr == change_point[i]->pentry->addr) &&
376 				 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
377 			   ) {
378 				change_tmp = change_point[i];
379 				change_point[i] = change_point[i-1];
380 				change_point[i-1] = change_tmp;
381 				still_changing = 1;
382 			}
383 		}
384 	}
385 
386 	/* create a new memmap, removing overlaps */
387 	overlap_entries = 0;	/* number of entries in the overlap table */
388 	new_entry = 0;		/* index for creating new memmap entries */
389 	last_type = 0;		/* start with undefined memory type */
390 	last_addr = 0;		/* start with 0 as last starting address */
391 	/* loop through change-points, determining affect on the new memmap */
392 	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
393 		/* keep track of all overlapping memmap entries */
394 		if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
395 			/* add map entry to overlap list (> 1 entry implies an overlap) */
396 			overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
397 		} else {
398 			/* remove entry from list (order independent, so swap with last) */
399 			for (i = 0; i < overlap_entries; i++) {
400 				if (overlap_list[i] == change_point[chgidx]->pentry)
401 					overlap_list[i] = overlap_list[overlap_entries-1];
402 			}
403 			overlap_entries--;
404 		}
405 		/* if there are overlapping entries, decide which "type" to use */
406 		/* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
407 		current_type = 0;
408 		for (i = 0; i < overlap_entries; i++)
409 			if (overlap_list[i]->type > current_type)
410 				current_type = overlap_list[i]->type;
411 		/* continue building up new memmap based on this information */
412 		if (current_type != last_type) {
413 			if (last_type != 0) {
414 				new_map[new_entry].size =
415 					change_point[chgidx]->addr - last_addr;
416 				/* move forward only if the new size was non-zero */
417 				if (new_map[new_entry].size != 0)
418 					if (++new_entry >= BFIN_MEMMAP_MAX)
419 						break;	/* no more space left for new entries */
420 			}
421 			if (current_type != 0) {
422 				new_map[new_entry].addr = change_point[chgidx]->addr;
423 				new_map[new_entry].type = current_type;
424 				last_addr = change_point[chgidx]->addr;
425 			}
426 			last_type = current_type;
427 		}
428 	}
429 	new_nr = new_entry;	/* retain count for new entries */
430 
431 	/* copy new mapping into original location */
432 	memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
433 	*pnr_map = new_nr;
434 
435 	return 0;
436 }
437 
print_memory_map(char * who)438 static void __init print_memory_map(char *who)
439 {
440 	int i;
441 
442 	for (i = 0; i < bfin_memmap.nr_map; i++) {
443 		printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
444 			bfin_memmap.map[i].addr,
445 			bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
446 		switch (bfin_memmap.map[i].type) {
447 		case BFIN_MEMMAP_RAM:
448 			printk(KERN_CONT "(usable)\n");
449 			break;
450 		case BFIN_MEMMAP_RESERVED:
451 			printk(KERN_CONT "(reserved)\n");
452 			break;
453 		default:
454 			printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
455 			break;
456 		}
457 	}
458 }
459 
parse_memmap(char * arg)460 static __init int parse_memmap(char *arg)
461 {
462 	unsigned long long start_at, mem_size;
463 
464 	if (!arg)
465 		return -EINVAL;
466 
467 	mem_size = memparse(arg, &arg);
468 	if (*arg == '@') {
469 		start_at = memparse(arg+1, &arg);
470 		add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
471 	} else if (*arg == '$') {
472 		start_at = memparse(arg+1, &arg);
473 		add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
474 	}
475 
476 	return 0;
477 }
478 
479 /*
480  * Initial parsing of the command line.  Currently, we support:
481  *  - Controlling the linux memory size: mem=xxx[KMG]
482  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
483  *       $ -> reserved memory is dcacheable
484  *       # -> reserved memory is icacheable
485  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
486  *       @ from <start> to <start>+<mem>, type RAM
487  *       $ from <start> to <start>+<mem>, type RESERVED
488  */
parse_cmdline_early(char * cmdline_p)489 static __init void parse_cmdline_early(char *cmdline_p)
490 {
491 	char c = ' ', *to = cmdline_p;
492 	unsigned int memsize;
493 	for (;;) {
494 		if (c == ' ') {
495 			if (!memcmp(to, "mem=", 4)) {
496 				to += 4;
497 				memsize = memparse(to, &to);
498 				if (memsize)
499 					_ramend = memsize;
500 
501 			} else if (!memcmp(to, "max_mem=", 8)) {
502 				to += 8;
503 				memsize = memparse(to, &to);
504 				if (memsize) {
505 					physical_mem_end = memsize;
506 					if (*to != ' ') {
507 						if (*to == '$'
508 						    || *(to + 1) == '$')
509 							reserved_mem_dcache_on = 1;
510 						if (*to == '#'
511 						    || *(to + 1) == '#')
512 							reserved_mem_icache_on = 1;
513 					}
514 				}
515 			} else if (!memcmp(to, "clkin_hz=", 9)) {
516 				to += 9;
517 				early_init_clkin_hz(to);
518 #ifdef CONFIG_EARLY_PRINTK
519 			} else if (!memcmp(to, "earlyprintk=", 12)) {
520 				to += 12;
521 				setup_early_printk(to);
522 #endif
523 			} else if (!memcmp(to, "memmap=", 7)) {
524 				to += 7;
525 				parse_memmap(to);
526 			}
527 		}
528 		c = *(to++);
529 		if (!c)
530 			break;
531 	}
532 }
533 
534 /*
535  * Setup memory defaults from user config.
536  * The physical memory layout looks like:
537  *
538  *  [_rambase, _ramstart]:		kernel image
539  *  [memory_start, memory_end]:		dynamic memory managed by kernel
540  *  [memory_end, _ramend]:		reserved memory
541  *  	[memory_mtd_start(memory_end),
542  *  		memory_mtd_start + mtd_size]:	rootfs (if any)
543  *	[_ramend - DMA_UNCACHED_REGION,
544  *		_ramend]:			uncached DMA region
545  *  [_ramend, physical_mem_end]:	memory not managed by kernel
546  */
memory_setup(void)547 static __init void memory_setup(void)
548 {
549 #ifdef CONFIG_MTD_UCLINUX
550 	unsigned long mtd_phys = 0;
551 #endif
552 	unsigned long max_mem;
553 
554 	_rambase = CONFIG_BOOT_LOAD;
555 	_ramstart = (unsigned long)_end;
556 
557 	if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
558 		console_init();
559 		panic("DMA region exceeds memory limit: %lu.",
560 			_ramend - _ramstart);
561 	}
562 	max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
563 
564 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
565 	/* Due to a Hardware Anomaly we need to limit the size of usable
566 	 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
567 	 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
568 	 */
569 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
570 	if (max_mem >= 56 * 1024 * 1024)
571 		max_mem = 56 * 1024 * 1024;
572 # else
573 	if (max_mem >= 60 * 1024 * 1024)
574 		max_mem = 60 * 1024 * 1024;
575 # endif				/* CONFIG_DEBUG_HUNT_FOR_ZERO */
576 #endif				/* ANOMALY_05000263 */
577 
578 
579 #ifdef CONFIG_MPU
580 	/* Round up to multiple of 4MB */
581 	memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
582 #else
583 	memory_start = PAGE_ALIGN(_ramstart);
584 #endif
585 
586 #if defined(CONFIG_MTD_UCLINUX)
587 	/* generic memory mapped MTD driver */
588 	memory_mtd_end = memory_end;
589 
590 	mtd_phys = _ramstart;
591 	mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
592 
593 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
594 	if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
595 		mtd_size =
596 		    PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
597 # endif
598 
599 # if defined(CONFIG_CRAMFS)
600 	if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
601 		mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
602 # endif
603 
604 # if defined(CONFIG_ROMFS_FS)
605 	if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
606 	    && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
607 		mtd_size =
608 		    PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
609 
610 		/* ROM_FS is XIP, so if we found it, we need to limit memory */
611 		if (memory_end > max_mem) {
612 			pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
613 			memory_end = max_mem;
614 		}
615 	}
616 # endif				/* CONFIG_ROMFS_FS */
617 
618 	/* Since the default MTD_UCLINUX has no magic number, we just blindly
619 	 * read 8 past the end of the kernel's image, and look at it.
620 	 * When no image is attached, mtd_size is set to a random number
621 	 * Do some basic sanity checks before operating on things
622 	 */
623 	if (mtd_size == 0 || memory_end <= mtd_size) {
624 		pr_emerg("Could not find valid ram mtd attached.\n");
625 	} else {
626 		memory_end -= mtd_size;
627 
628 		/* Relocate MTD image to the top of memory after the uncached memory area */
629 		uclinux_ram_map.phys = memory_mtd_start = memory_end;
630 		uclinux_ram_map.size = mtd_size;
631 		pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
632 			_end, mtd_size, (void *)memory_mtd_start);
633 		dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
634 	}
635 #endif				/* CONFIG_MTD_UCLINUX */
636 
637 	/* We need lo limit memory, since everything could have a text section
638 	 * of userspace in it, and expose anomaly 05000263. If the anomaly
639 	 * doesn't exist, or we don't need to - then dont.
640 	 */
641 	if (memory_end > max_mem) {
642 		pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
643 		memory_end = max_mem;
644 	}
645 
646 #ifdef CONFIG_MPU
647 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
648 	page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
649 					ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
650 #else
651 	page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
652 #endif
653 	page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
654 #endif
655 
656 	init_mm.start_code = (unsigned long)_stext;
657 	init_mm.end_code = (unsigned long)_etext;
658 	init_mm.end_data = (unsigned long)_edata;
659 	init_mm.brk = (unsigned long)0;
660 
661 	printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
662 	printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
663 
664 	printk(KERN_INFO "Memory map:\n"
665 	       "  fixedcode = 0x%p-0x%p\n"
666 	       "  text      = 0x%p-0x%p\n"
667 	       "  rodata    = 0x%p-0x%p\n"
668 	       "  bss       = 0x%p-0x%p\n"
669 	       "  data      = 0x%p-0x%p\n"
670 	       "    stack   = 0x%p-0x%p\n"
671 	       "  init      = 0x%p-0x%p\n"
672 	       "  available = 0x%p-0x%p\n"
673 #ifdef CONFIG_MTD_UCLINUX
674 	       "  rootfs    = 0x%p-0x%p\n"
675 #endif
676 #if DMA_UNCACHED_REGION > 0
677 	       "  DMA Zone  = 0x%p-0x%p\n"
678 #endif
679 		, (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
680 		_stext, _etext,
681 		__start_rodata, __end_rodata,
682 		__bss_start, __bss_stop,
683 		_sdata, _edata,
684 		(void *)&init_thread_union,
685 		(void *)((int)(&init_thread_union) + THREAD_SIZE),
686 		__init_begin, __init_end,
687 		(void *)_ramstart, (void *)memory_end
688 #ifdef CONFIG_MTD_UCLINUX
689 		, (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
690 #endif
691 #if DMA_UNCACHED_REGION > 0
692 		, (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
693 #endif
694 		);
695 }
696 
697 /*
698  * Find the lowest, highest page frame number we have available
699  */
find_min_max_pfn(void)700 void __init find_min_max_pfn(void)
701 {
702 	int i;
703 
704 	max_pfn = 0;
705 	min_low_pfn = memory_end;
706 
707 	for (i = 0; i < bfin_memmap.nr_map; i++) {
708 		unsigned long start, end;
709 		/* RAM? */
710 		if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
711 			continue;
712 		start = PFN_UP(bfin_memmap.map[i].addr);
713 		end = PFN_DOWN(bfin_memmap.map[i].addr +
714 				bfin_memmap.map[i].size);
715 		if (start >= end)
716 			continue;
717 		if (end > max_pfn)
718 			max_pfn = end;
719 		if (start < min_low_pfn)
720 			min_low_pfn = start;
721 	}
722 }
723 
setup_bootmem_allocator(void)724 static __init void setup_bootmem_allocator(void)
725 {
726 	int bootmap_size;
727 	int i;
728 	unsigned long start_pfn, end_pfn;
729 	unsigned long curr_pfn, last_pfn, size;
730 
731 	/* mark memory between memory_start and memory_end usable */
732 	add_memory_region(memory_start,
733 		memory_end - memory_start, BFIN_MEMMAP_RAM);
734 	/* sanity check for overlap */
735 	sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
736 	print_memory_map("boot memmap");
737 
738 	/* initialize globals in linux/bootmem.h */
739 	find_min_max_pfn();
740 	/* pfn of the last usable page frame */
741 	if (max_pfn > memory_end >> PAGE_SHIFT)
742 		max_pfn = memory_end >> PAGE_SHIFT;
743 	/* pfn of last page frame directly mapped by kernel */
744 	max_low_pfn = max_pfn;
745 	/* pfn of the first usable page frame after kernel image*/
746 	if (min_low_pfn < memory_start >> PAGE_SHIFT)
747 		min_low_pfn = memory_start >> PAGE_SHIFT;
748 
749 	start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
750 	end_pfn = memory_end >> PAGE_SHIFT;
751 
752 	/*
753 	 * give all the memory to the bootmap allocator, tell it to put the
754 	 * boot mem_map at the start of memory.
755 	 */
756 	bootmap_size = init_bootmem_node(NODE_DATA(0),
757 			memory_start >> PAGE_SHIFT,	/* map goes here */
758 			start_pfn, end_pfn);
759 
760 	/* register the memmap regions with the bootmem allocator */
761 	for (i = 0; i < bfin_memmap.nr_map; i++) {
762 		/*
763 		 * Reserve usable memory
764 		 */
765 		if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
766 			continue;
767 		/*
768 		 * We are rounding up the start address of usable memory:
769 		 */
770 		curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
771 		if (curr_pfn >= end_pfn)
772 			continue;
773 		/*
774 		 * ... and at the end of the usable range downwards:
775 		 */
776 		last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
777 					 bfin_memmap.map[i].size);
778 
779 		if (last_pfn > end_pfn)
780 			last_pfn = end_pfn;
781 
782 		/*
783 		 * .. finally, did all the rounding and playing
784 		 * around just make the area go away?
785 		 */
786 		if (last_pfn <= curr_pfn)
787 			continue;
788 
789 		size = last_pfn - curr_pfn;
790 		free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
791 	}
792 
793 	/* reserve memory before memory_start, including bootmap */
794 	reserve_bootmem(PAGE_OFFSET,
795 		memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
796 		BOOTMEM_DEFAULT);
797 }
798 
799 #define EBSZ_TO_MEG(ebsz) \
800 ({ \
801 	int meg = 0; \
802 	switch (ebsz & 0xf) { \
803 		case 0x1: meg =  16; break; \
804 		case 0x3: meg =  32; break; \
805 		case 0x5: meg =  64; break; \
806 		case 0x7: meg = 128; break; \
807 		case 0x9: meg = 256; break; \
808 		case 0xb: meg = 512; break; \
809 	} \
810 	meg; \
811 })
get_mem_size(void)812 static inline int __init get_mem_size(void)
813 {
814 #if defined(EBIU_SDBCTL)
815 # if defined(BF561_FAMILY)
816 	int ret = 0;
817 	u32 sdbctl = bfin_read_EBIU_SDBCTL();
818 	ret += EBSZ_TO_MEG(sdbctl >>  0);
819 	ret += EBSZ_TO_MEG(sdbctl >>  8);
820 	ret += EBSZ_TO_MEG(sdbctl >> 16);
821 	ret += EBSZ_TO_MEG(sdbctl >> 24);
822 	return ret;
823 # else
824 	return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
825 # endif
826 #elif defined(EBIU_DDRCTL1)
827 	u32 ddrctl = bfin_read_EBIU_DDRCTL1();
828 	int ret = 0;
829 	switch (ddrctl & 0xc0000) {
830 		case DEVSZ_64:  ret = 64 / 8;
831 		case DEVSZ_128: ret = 128 / 8;
832 		case DEVSZ_256: ret = 256 / 8;
833 		case DEVSZ_512: ret = 512 / 8;
834 	}
835 	switch (ddrctl & 0x30000) {
836 		case DEVWD_4:  ret *= 2;
837 		case DEVWD_8:  ret *= 2;
838 		case DEVWD_16: break;
839 	}
840 	if ((ddrctl & 0xc000) == 0x4000)
841 		ret *= 2;
842 	return ret;
843 #endif
844 	BUG();
845 }
846 
847 __attribute__((weak))
native_machine_early_platform_add_devices(void)848 void __init native_machine_early_platform_add_devices(void)
849 {
850 }
851 
setup_arch(char ** cmdline_p)852 void __init setup_arch(char **cmdline_p)
853 {
854 	unsigned long sclk, cclk;
855 
856 	native_machine_early_platform_add_devices();
857 
858 	enable_shadow_console();
859 
860 	/* Check to make sure we are running on the right processor */
861 	if (unlikely(CPUID != bfin_cpuid()))
862 		printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
863 			CPU, bfin_cpuid(), bfin_revid());
864 
865 #ifdef CONFIG_DUMMY_CONSOLE
866 	conswitchp = &dummy_con;
867 #endif
868 
869 #if defined(CONFIG_CMDLINE_BOOL)
870 	strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
871 	command_line[sizeof(command_line) - 1] = 0;
872 #endif
873 
874 	/* Keep a copy of command line */
875 	*cmdline_p = &command_line[0];
876 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
877 	boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
878 
879 	memset(&bfin_memmap, 0, sizeof(bfin_memmap));
880 
881 	/* If the user does not specify things on the command line, use
882 	 * what the bootloader set things up as
883 	 */
884 	physical_mem_end = 0;
885 	parse_cmdline_early(&command_line[0]);
886 
887 	if (_ramend == 0)
888 		_ramend = get_mem_size() * 1024 * 1024;
889 
890 	if (physical_mem_end == 0)
891 		physical_mem_end = _ramend;
892 
893 	memory_setup();
894 
895 	/* Initialize Async memory banks */
896 	bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
897 	bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
898 	bfin_write_EBIU_AMGCTL(AMGCTLVAL);
899 #ifdef CONFIG_EBIU_MBSCTLVAL
900 	bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
901 	bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
902 	bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
903 #endif
904 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
905 	bfin_write_PORTF_HYSTERISIS(HYST_PORTF_0_15);
906 	bfin_write_PORTG_HYSTERISIS(HYST_PORTG_0_15);
907 	bfin_write_PORTH_HYSTERISIS(HYST_PORTH_0_15);
908 	bfin_write_MISCPORT_HYSTERISIS((bfin_read_MISCPORT_HYSTERISIS() &
909 					~HYST_NONEGPIO_MASK) | HYST_NONEGPIO);
910 #endif
911 
912 	cclk = get_cclk();
913 	sclk = get_sclk();
914 
915 	if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
916 		panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
917 
918 #ifdef BF561_FAMILY
919 	if (ANOMALY_05000266) {
920 		bfin_read_IMDMA_D0_IRQ_STATUS();
921 		bfin_read_IMDMA_D1_IRQ_STATUS();
922 	}
923 #endif
924 	printk(KERN_INFO "Hardware Trace ");
925 	if (bfin_read_TBUFCTL() & 0x1)
926 		printk(KERN_CONT "Active ");
927 	else
928 		printk(KERN_CONT "Off ");
929 	if (bfin_read_TBUFCTL() & 0x2)
930 		printk(KERN_CONT "and Enabled\n");
931 	else
932 		printk(KERN_CONT "and Disabled\n");
933 
934 	printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
935 
936 	/* Newer parts mirror SWRST bits in SYSCR */
937 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
938     defined(CONFIG_BF538) || defined(CONFIG_BF539)
939 	_bfin_swrst = bfin_read_SWRST();
940 #else
941 	/* Clear boot mode field */
942 	_bfin_swrst = bfin_read_SYSCR() & ~0xf;
943 #endif
944 
945 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
946 	bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
947 #endif
948 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
949 	bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
950 #endif
951 
952 #ifdef CONFIG_SMP
953 	if (_bfin_swrst & SWRST_DBL_FAULT_A) {
954 #else
955 	if (_bfin_swrst & RESET_DOUBLE) {
956 #endif
957 		printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
958 #ifdef CONFIG_DEBUG_DOUBLEFAULT
959 		/* We assume the crashing kernel, and the current symbol table match */
960 		printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
961 			(int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
962 		printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
963 		printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
964 #endif
965 		printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
966 			init_retx);
967 	} else if (_bfin_swrst & RESET_WDOG)
968 		printk(KERN_INFO "Recovering from Watchdog event\n");
969 	else if (_bfin_swrst & RESET_SOFTWARE)
970 		printk(KERN_NOTICE "Reset caused by Software reset\n");
971 
972 	printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
973 	if (bfin_compiled_revid() == 0xffff)
974 		printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
975 	else if (bfin_compiled_revid() == -1)
976 		printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
977 	else
978 		printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
979 
980 	if (likely(CPUID == bfin_cpuid())) {
981 		if (bfin_revid() != bfin_compiled_revid()) {
982 			if (bfin_compiled_revid() == -1)
983 				printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
984 				       bfin_revid());
985 			else if (bfin_compiled_revid() != 0xffff) {
986 				printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
987 				       bfin_compiled_revid(), bfin_revid());
988 				if (bfin_compiled_revid() > bfin_revid())
989 					panic("Error: you are missing anomaly workarounds for this rev");
990 			}
991 		}
992 		if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
993 			printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
994 			       CPU, bfin_revid());
995 	}
996 
997 	printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
998 
999 	printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1000 	       cclk / 1000000, sclk / 1000000);
1001 
1002 	setup_bootmem_allocator();
1003 
1004 	paging_init();
1005 
1006 	/* Copy atomic sequences to their fixed location, and sanity check that
1007 	   these locations are the ones that we advertise to userspace.  */
1008 	memcpy((void *)FIXED_CODE_START, &fixed_code_start,
1009 	       FIXED_CODE_END - FIXED_CODE_START);
1010 	BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
1011 	       != SIGRETURN_STUB - FIXED_CODE_START);
1012 	BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
1013 	       != ATOMIC_XCHG32 - FIXED_CODE_START);
1014 	BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
1015 	       != ATOMIC_CAS32 - FIXED_CODE_START);
1016 	BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
1017 	       != ATOMIC_ADD32 - FIXED_CODE_START);
1018 	BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
1019 	       != ATOMIC_SUB32 - FIXED_CODE_START);
1020 	BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
1021 	       != ATOMIC_IOR32 - FIXED_CODE_START);
1022 	BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
1023 	       != ATOMIC_AND32 - FIXED_CODE_START);
1024 	BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
1025 	       != ATOMIC_XOR32 - FIXED_CODE_START);
1026 	BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
1027 		!= SAFE_USER_INSTRUCTION - FIXED_CODE_START);
1028 
1029 #ifdef CONFIG_SMP
1030 	platform_init_cpus();
1031 #endif
1032 	init_exception_vectors();
1033 	bfin_cache_init();	/* Initialize caches for the boot CPU */
1034 }
1035 
1036 static int __init topology_init(void)
1037 {
1038 	unsigned int cpu;
1039 	/* Record CPU-private information for the boot processor. */
1040 	bfin_setup_cpudata(0);
1041 
1042 	for_each_possible_cpu(cpu) {
1043 		register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 subsys_initcall(topology_init);
1050 
1051 /* Get the input clock frequency */
1052 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1053 static u_long get_clkin_hz(void)
1054 {
1055 	return cached_clkin_hz;
1056 }
1057 static int __init early_init_clkin_hz(char *buf)
1058 {
1059 	cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1060 #ifdef BFIN_KERNEL_CLOCK
1061 	if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1062 		panic("cannot change clkin_hz when reprogramming clocks");
1063 #endif
1064 	return 1;
1065 }
1066 early_param("clkin_hz=", early_init_clkin_hz);
1067 
1068 /* Get the voltage input multiplier */
1069 static u_long get_vco(void)
1070 {
1071 	static u_long cached_vco;
1072 	u_long msel, pll_ctl;
1073 
1074 	/* The assumption here is that VCO never changes at runtime.
1075 	 * If, someday, we support that, then we'll have to change this.
1076 	 */
1077 	if (cached_vco)
1078 		return cached_vco;
1079 
1080 	pll_ctl = bfin_read_PLL_CTL();
1081 	msel = (pll_ctl >> 9) & 0x3F;
1082 	if (0 == msel)
1083 		msel = 64;
1084 
1085 	cached_vco = get_clkin_hz();
1086 	cached_vco >>= (1 & pll_ctl);	/* DF bit */
1087 	cached_vco *= msel;
1088 	return cached_vco;
1089 }
1090 
1091 /* Get the Core clock */
1092 u_long get_cclk(void)
1093 {
1094 	static u_long cached_cclk_pll_div, cached_cclk;
1095 	u_long csel, ssel;
1096 
1097 	if (bfin_read_PLL_STAT() & 0x1)
1098 		return get_clkin_hz();
1099 
1100 	ssel = bfin_read_PLL_DIV();
1101 	if (ssel == cached_cclk_pll_div)
1102 		return cached_cclk;
1103 	else
1104 		cached_cclk_pll_div = ssel;
1105 
1106 	csel = ((ssel >> 4) & 0x03);
1107 	ssel &= 0xf;
1108 	if (ssel && ssel < (1 << csel))	/* SCLK > CCLK */
1109 		cached_cclk = get_vco() / ssel;
1110 	else
1111 		cached_cclk = get_vco() >> csel;
1112 	return cached_cclk;
1113 }
1114 EXPORT_SYMBOL(get_cclk);
1115 
1116 /* Get the System clock */
1117 u_long get_sclk(void)
1118 {
1119 	static u_long cached_sclk;
1120 	u_long ssel;
1121 
1122 	/* The assumption here is that SCLK never changes at runtime.
1123 	 * If, someday, we support that, then we'll have to change this.
1124 	 */
1125 	if (cached_sclk)
1126 		return cached_sclk;
1127 
1128 	if (bfin_read_PLL_STAT() & 0x1)
1129 		return get_clkin_hz();
1130 
1131 	ssel = bfin_read_PLL_DIV() & 0xf;
1132 	if (0 == ssel) {
1133 		printk(KERN_WARNING "Invalid System Clock\n");
1134 		ssel = 1;
1135 	}
1136 
1137 	cached_sclk = get_vco() / ssel;
1138 	return cached_sclk;
1139 }
1140 EXPORT_SYMBOL(get_sclk);
1141 
1142 unsigned long sclk_to_usecs(unsigned long sclk)
1143 {
1144 	u64 tmp = USEC_PER_SEC * (u64)sclk;
1145 	do_div(tmp, get_sclk());
1146 	return tmp;
1147 }
1148 EXPORT_SYMBOL(sclk_to_usecs);
1149 
1150 unsigned long usecs_to_sclk(unsigned long usecs)
1151 {
1152 	u64 tmp = get_sclk() * (u64)usecs;
1153 	do_div(tmp, USEC_PER_SEC);
1154 	return tmp;
1155 }
1156 EXPORT_SYMBOL(usecs_to_sclk);
1157 
1158 /*
1159  *	Get CPU information for use by the procfs.
1160  */
1161 static int show_cpuinfo(struct seq_file *m, void *v)
1162 {
1163 	char *cpu, *mmu, *fpu, *vendor, *cache;
1164 	uint32_t revid;
1165 	int cpu_num = *(unsigned int *)v;
1166 	u_long sclk, cclk;
1167 	u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1168 	struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1169 
1170 	cpu = CPU;
1171 	mmu = "none";
1172 	fpu = "none";
1173 	revid = bfin_revid();
1174 
1175 	sclk = get_sclk();
1176 	cclk = get_cclk();
1177 
1178 	switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1179 	case 0xca:
1180 		vendor = "Analog Devices";
1181 		break;
1182 	default:
1183 		vendor = "unknown";
1184 		break;
1185 	}
1186 
1187 	seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1188 
1189 	if (CPUID == bfin_cpuid())
1190 		seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1191 	else
1192 		seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1193 			CPUID, bfin_cpuid());
1194 
1195 	seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1196 		"stepping\t: %d ",
1197 		cpu, cclk/1000000, sclk/1000000,
1198 #ifdef CONFIG_MPU
1199 		"mpu on",
1200 #else
1201 		"mpu off",
1202 #endif
1203 		revid);
1204 
1205 	if (bfin_revid() != bfin_compiled_revid()) {
1206 		if (bfin_compiled_revid() == -1)
1207 			seq_printf(m, "(Compiled for Rev none)");
1208 		else if (bfin_compiled_revid() == 0xffff)
1209 			seq_printf(m, "(Compiled for Rev any)");
1210 		else
1211 			seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1212 	}
1213 
1214 	seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1215 		cclk/1000000, cclk%1000000,
1216 		sclk/1000000, sclk%1000000);
1217 	seq_printf(m, "bogomips\t: %lu.%02lu\n"
1218 		"Calibration\t: %lu loops\n",
1219 		(loops_per_jiffy * HZ) / 500000,
1220 		((loops_per_jiffy * HZ) / 5000) % 100,
1221 		(loops_per_jiffy * HZ));
1222 
1223 	/* Check Cache configutation */
1224 	switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1225 	case ACACHE_BSRAM:
1226 		cache = "dbank-A/B\t: cache/sram";
1227 		dcache_size = 16;
1228 		dsup_banks = 1;
1229 		break;
1230 	case ACACHE_BCACHE:
1231 		cache = "dbank-A/B\t: cache/cache";
1232 		dcache_size = 32;
1233 		dsup_banks = 2;
1234 		break;
1235 	case ASRAM_BSRAM:
1236 		cache = "dbank-A/B\t: sram/sram";
1237 		dcache_size = 0;
1238 		dsup_banks = 0;
1239 		break;
1240 	default:
1241 		cache = "unknown";
1242 		dcache_size = 0;
1243 		dsup_banks = 0;
1244 		break;
1245 	}
1246 
1247 	/* Is it turned on? */
1248 	if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1249 		dcache_size = 0;
1250 
1251 	if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1252 		icache_size = 0;
1253 
1254 	seq_printf(m, "cache size\t: %d KB(L1 icache) "
1255 		"%d KB(L1 dcache) %d KB(L2 cache)\n",
1256 		icache_size, dcache_size, 0);
1257 	seq_printf(m, "%s\n", cache);
1258 	seq_printf(m, "external memory\t: "
1259 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1260 		   "cacheable"
1261 #else
1262 		   "uncacheable"
1263 #endif
1264 		   " in instruction cache\n");
1265 	seq_printf(m, "external memory\t: "
1266 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1267 		      "cacheable (write-back)"
1268 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1269 		      "cacheable (write-through)"
1270 #else
1271 		      "uncacheable"
1272 #endif
1273 		      " in data cache\n");
1274 
1275 	if (icache_size)
1276 		seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1277 			   BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1278 	else
1279 		seq_printf(m, "icache setup\t: off\n");
1280 
1281 	seq_printf(m,
1282 		   "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1283 		   dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1284 		   BFIN_DLINES);
1285 #ifdef __ARCH_SYNC_CORE_DCACHE
1286 	seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", dcache_invld_count[cpu_num]);
1287 #endif
1288 #ifdef __ARCH_SYNC_CORE_ICACHE
1289 	seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", icache_invld_count[cpu_num]);
1290 #endif
1291 
1292 	if (cpu_num != num_possible_cpus() - 1)
1293 		return 0;
1294 
1295 	if (L2_LENGTH) {
1296 		seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1297 		seq_printf(m, "L2 SRAM\t\t: "
1298 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1299 			      "cacheable"
1300 #else
1301 			      "uncacheable"
1302 #endif
1303 			      " in instruction cache\n");
1304 		seq_printf(m, "L2 SRAM\t\t: "
1305 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1306 			      "cacheable (write-back)"
1307 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1308 			      "cacheable (write-through)"
1309 #else
1310 			      "uncacheable"
1311 #endif
1312 			      " in data cache\n");
1313 	}
1314 	seq_printf(m, "board name\t: %s\n", bfin_board_name);
1315 	seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1316 		 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1317 	seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1318 		((int)memory_end - (int)_rambase) >> 10,
1319 		(void *)_rambase,
1320 		(void *)memory_end);
1321 	seq_printf(m, "\n");
1322 
1323 	return 0;
1324 }
1325 
1326 static void *c_start(struct seq_file *m, loff_t *pos)
1327 {
1328 	if (*pos == 0)
1329 		*pos = first_cpu(cpu_online_map);
1330 	if (*pos >= num_online_cpus())
1331 		return NULL;
1332 
1333 	return pos;
1334 }
1335 
1336 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1337 {
1338 	*pos = next_cpu(*pos, cpu_online_map);
1339 
1340 	return c_start(m, pos);
1341 }
1342 
1343 static void c_stop(struct seq_file *m, void *v)
1344 {
1345 }
1346 
1347 const struct seq_operations cpuinfo_op = {
1348 	.start = c_start,
1349 	.next = c_next,
1350 	.stop = c_stop,
1351 	.show = show_cpuinfo,
1352 };
1353 
1354 void __init cmdline_init(const char *r0)
1355 {
1356 	early_shadow_stamp();
1357 	if (r0)
1358 		strncpy(command_line, r0, COMMAND_LINE_SIZE);
1359 }
1360