1 /*
2 * Copyright 2004-2010 Analog Devices Inc.
3 *
4 * Licensed under the GPL-2 or later.
5 */
6
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
16
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
23
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
32
33 u16 _bfin_swrst;
34 EXPORT_SYMBOL(_bfin_swrst);
35
36 unsigned long memory_start, memory_end, physical_mem_end;
37 unsigned long _rambase, _ramstart, _ramend;
38 unsigned long reserved_mem_dcache_on;
39 unsigned long reserved_mem_icache_on;
40 EXPORT_SYMBOL(memory_start);
41 EXPORT_SYMBOL(memory_end);
42 EXPORT_SYMBOL(physical_mem_end);
43 EXPORT_SYMBOL(_ramend);
44 EXPORT_SYMBOL(reserved_mem_dcache_on);
45
46 #ifdef CONFIG_MTD_UCLINUX
47 extern struct map_info uclinux_ram_map;
48 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49 unsigned long _ebss;
50 EXPORT_SYMBOL(memory_mtd_end);
51 EXPORT_SYMBOL(memory_mtd_start);
52 EXPORT_SYMBOL(mtd_size);
53 #endif
54
55 char __initdata command_line[COMMAND_LINE_SIZE];
56 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57 *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
58
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM 1
62 #define BFIN_MEMMAP_RESERVED 2
63 static struct bfin_memmap {
64 int nr_map;
65 struct bfin_memmap_entry {
66 unsigned long long addr; /* start of memory segment */
67 unsigned long long size;
68 unsigned long type;
69 } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
71
72 /* for memmap sanitization */
73 struct change_member {
74 struct bfin_memmap_entry *pentry; /* pointer to original entry */
75 unsigned long long addr; /* address for this change point */
76 };
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
81
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
83
84 static int early_init_clkin_hz(char *buf);
85
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
generate_cplb_tables(void)87 void __init generate_cplb_tables(void)
88 {
89 unsigned int cpu;
90
91 generate_cplb_tables_all();
92 /* Generate per-CPU I&D CPLB tables */
93 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94 generate_cplb_tables_cpu(cpu);
95 }
96 #endif
97
bfin_setup_caches(unsigned int cpu)98 void __cpuinit bfin_setup_caches(unsigned int cpu)
99 {
100 #ifdef CONFIG_BFIN_ICACHE
101 bfin_icache_init(icplb_tbl[cpu]);
102 #endif
103
104 #ifdef CONFIG_BFIN_DCACHE
105 bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
107
108 /*
109 * In cache coherence emulation mode, we need to have the
110 * D-cache enabled before running any atomic operation which
111 * might involve cache invalidation (i.e. spinlock, rwlock).
112 * So printk's are deferred until then.
113 */
114 #ifdef CONFIG_BFIN_ICACHE
115 printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
116 printk(KERN_INFO " External memory:"
117 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
118 " cacheable"
119 # else
120 " uncacheable"
121 # endif
122 " in instruction cache\n");
123 if (L2_LENGTH)
124 printk(KERN_INFO " L2 SRAM :"
125 # ifdef CONFIG_BFIN_L2_ICACHEABLE
126 " cacheable"
127 # else
128 " uncacheable"
129 # endif
130 " in instruction cache\n");
131
132 #else
133 printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
134 #endif
135
136 #ifdef CONFIG_BFIN_DCACHE
137 printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
138 printk(KERN_INFO " External memory:"
139 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
140 " cacheable (write-back)"
141 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
142 " cacheable (write-through)"
143 # else
144 " uncacheable"
145 # endif
146 " in data cache\n");
147 if (L2_LENGTH)
148 printk(KERN_INFO " L2 SRAM :"
149 # if defined CONFIG_BFIN_L2_WRITEBACK
150 " cacheable (write-back)"
151 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
152 " cacheable (write-through)"
153 # else
154 " uncacheable"
155 # endif
156 " in data cache\n");
157 #else
158 printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
159 #endif
160 }
161
bfin_setup_cpudata(unsigned int cpu)162 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
163 {
164 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
165
166 cpudata->idle = current;
167 cpudata->imemctl = bfin_read_IMEM_CONTROL();
168 cpudata->dmemctl = bfin_read_DMEM_CONTROL();
169 }
170
bfin_cache_init(void)171 void __init bfin_cache_init(void)
172 {
173 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
174 generate_cplb_tables();
175 #endif
176 bfin_setup_caches(0);
177 }
178
bfin_relocate_l1_mem(void)179 void __init bfin_relocate_l1_mem(void)
180 {
181 unsigned long text_l1_len = (unsigned long)_text_l1_len;
182 unsigned long data_l1_len = (unsigned long)_data_l1_len;
183 unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
184 unsigned long l2_len = (unsigned long)_l2_len;
185
186 early_shadow_stamp();
187
188 /*
189 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
190 * we know that everything about l1 text/data is nice and aligned,
191 * so copy by 4 byte chunks, and don't worry about overlapping
192 * src/dest.
193 *
194 * We can't use the dma_memcpy functions, since they can call
195 * scheduler functions which might be in L1 :( and core writes
196 * into L1 instruction cause bad access errors, so we are stuck,
197 * we are required to use DMA, but can't use the common dma
198 * functions. We can't use memcpy either - since that might be
199 * going to be in the relocated L1
200 */
201
202 blackfin_dma_early_init();
203
204 /* if necessary, copy L1 text to L1 instruction SRAM */
205 if (L1_CODE_LENGTH && text_l1_len)
206 early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
207
208 /* if necessary, copy L1 data to L1 data bank A SRAM */
209 if (L1_DATA_A_LENGTH && data_l1_len)
210 early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
211
212 /* if necessary, copy L1 data B to L1 data bank B SRAM */
213 if (L1_DATA_B_LENGTH && data_b_l1_len)
214 early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
215
216 early_dma_memcpy_done();
217
218 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
219 blackfin_iflush_l1_entry[0] = (unsigned long)blackfin_icache_flush_range_l1;
220 #endif
221
222 /* if necessary, copy L2 text/data to L2 SRAM */
223 if (L2_LENGTH && l2_len)
224 memcpy(_stext_l2, _l2_lma, l2_len);
225 }
226
227 #ifdef CONFIG_SMP
bfin_relocate_coreb_l1_mem(void)228 void __init bfin_relocate_coreb_l1_mem(void)
229 {
230 unsigned long text_l1_len = (unsigned long)_text_l1_len;
231 unsigned long data_l1_len = (unsigned long)_data_l1_len;
232 unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
233
234 blackfin_dma_early_init();
235
236 /* if necessary, copy L1 text to L1 instruction SRAM */
237 if (L1_CODE_LENGTH && text_l1_len)
238 early_dma_memcpy((void *)COREB_L1_CODE_START, _text_l1_lma,
239 text_l1_len);
240
241 /* if necessary, copy L1 data to L1 data bank A SRAM */
242 if (L1_DATA_A_LENGTH && data_l1_len)
243 early_dma_memcpy((void *)COREB_L1_DATA_A_START, _data_l1_lma,
244 data_l1_len);
245
246 /* if necessary, copy L1 data B to L1 data bank B SRAM */
247 if (L1_DATA_B_LENGTH && data_b_l1_len)
248 early_dma_memcpy((void *)COREB_L1_DATA_B_START, _data_b_l1_lma,
249 data_b_l1_len);
250
251 early_dma_memcpy_done();
252
253 #ifdef CONFIG_ICACHE_FLUSH_L1
254 blackfin_iflush_l1_entry[1] = (unsigned long)blackfin_icache_flush_range_l1 -
255 (unsigned long)_stext_l1 + COREB_L1_CODE_START;
256 #endif
257 }
258 #endif
259
260 #ifdef CONFIG_ROMKERNEL
bfin_relocate_xip_data(void)261 void __init bfin_relocate_xip_data(void)
262 {
263 early_shadow_stamp();
264
265 memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
266 memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
267 }
268 #endif
269
270 /* add_memory_region to memmap */
add_memory_region(unsigned long long start,unsigned long long size,int type)271 static void __init add_memory_region(unsigned long long start,
272 unsigned long long size, int type)
273 {
274 int i;
275
276 i = bfin_memmap.nr_map;
277
278 if (i == BFIN_MEMMAP_MAX) {
279 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
280 return;
281 }
282
283 bfin_memmap.map[i].addr = start;
284 bfin_memmap.map[i].size = size;
285 bfin_memmap.map[i].type = type;
286 bfin_memmap.nr_map++;
287 }
288
289 /*
290 * Sanitize the boot memmap, removing overlaps.
291 */
sanitize_memmap(struct bfin_memmap_entry * map,int * pnr_map)292 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
293 {
294 struct change_member *change_tmp;
295 unsigned long current_type, last_type;
296 unsigned long long last_addr;
297 int chgidx, still_changing;
298 int overlap_entries;
299 int new_entry;
300 int old_nr, new_nr, chg_nr;
301 int i;
302
303 /*
304 Visually we're performing the following (1,2,3,4 = memory types)
305
306 Sample memory map (w/overlaps):
307 ____22__________________
308 ______________________4_
309 ____1111________________
310 _44_____________________
311 11111111________________
312 ____________________33__
313 ___________44___________
314 __________33333_________
315 ______________22________
316 ___________________2222_
317 _________111111111______
318 _____________________11_
319 _________________4______
320
321 Sanitized equivalent (no overlap):
322 1_______________________
323 _44_____________________
324 ___1____________________
325 ____22__________________
326 ______11________________
327 _________1______________
328 __________3_____________
329 ___________44___________
330 _____________33_________
331 _______________2________
332 ________________1_______
333 _________________4______
334 ___________________2____
335 ____________________33__
336 ______________________4_
337 */
338 /* if there's only one memory region, don't bother */
339 if (*pnr_map < 2)
340 return -1;
341
342 old_nr = *pnr_map;
343
344 /* bail out if we find any unreasonable addresses in memmap */
345 for (i = 0; i < old_nr; i++)
346 if (map[i].addr + map[i].size < map[i].addr)
347 return -1;
348
349 /* create pointers for initial change-point information (for sorting) */
350 for (i = 0; i < 2*old_nr; i++)
351 change_point[i] = &change_point_list[i];
352
353 /* record all known change-points (starting and ending addresses),
354 omitting those that are for empty memory regions */
355 chgidx = 0;
356 for (i = 0; i < old_nr; i++) {
357 if (map[i].size != 0) {
358 change_point[chgidx]->addr = map[i].addr;
359 change_point[chgidx++]->pentry = &map[i];
360 change_point[chgidx]->addr = map[i].addr + map[i].size;
361 change_point[chgidx++]->pentry = &map[i];
362 }
363 }
364 chg_nr = chgidx; /* true number of change-points */
365
366 /* sort change-point list by memory addresses (low -> high) */
367 still_changing = 1;
368 while (still_changing) {
369 still_changing = 0;
370 for (i = 1; i < chg_nr; i++) {
371 /* if <current_addr> > <last_addr>, swap */
372 /* or, if current=<start_addr> & last=<end_addr>, swap */
373 if ((change_point[i]->addr < change_point[i-1]->addr) ||
374 ((change_point[i]->addr == change_point[i-1]->addr) &&
375 (change_point[i]->addr == change_point[i]->pentry->addr) &&
376 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
377 ) {
378 change_tmp = change_point[i];
379 change_point[i] = change_point[i-1];
380 change_point[i-1] = change_tmp;
381 still_changing = 1;
382 }
383 }
384 }
385
386 /* create a new memmap, removing overlaps */
387 overlap_entries = 0; /* number of entries in the overlap table */
388 new_entry = 0; /* index for creating new memmap entries */
389 last_type = 0; /* start with undefined memory type */
390 last_addr = 0; /* start with 0 as last starting address */
391 /* loop through change-points, determining affect on the new memmap */
392 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
393 /* keep track of all overlapping memmap entries */
394 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
395 /* add map entry to overlap list (> 1 entry implies an overlap) */
396 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
397 } else {
398 /* remove entry from list (order independent, so swap with last) */
399 for (i = 0; i < overlap_entries; i++) {
400 if (overlap_list[i] == change_point[chgidx]->pentry)
401 overlap_list[i] = overlap_list[overlap_entries-1];
402 }
403 overlap_entries--;
404 }
405 /* if there are overlapping entries, decide which "type" to use */
406 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
407 current_type = 0;
408 for (i = 0; i < overlap_entries; i++)
409 if (overlap_list[i]->type > current_type)
410 current_type = overlap_list[i]->type;
411 /* continue building up new memmap based on this information */
412 if (current_type != last_type) {
413 if (last_type != 0) {
414 new_map[new_entry].size =
415 change_point[chgidx]->addr - last_addr;
416 /* move forward only if the new size was non-zero */
417 if (new_map[new_entry].size != 0)
418 if (++new_entry >= BFIN_MEMMAP_MAX)
419 break; /* no more space left for new entries */
420 }
421 if (current_type != 0) {
422 new_map[new_entry].addr = change_point[chgidx]->addr;
423 new_map[new_entry].type = current_type;
424 last_addr = change_point[chgidx]->addr;
425 }
426 last_type = current_type;
427 }
428 }
429 new_nr = new_entry; /* retain count for new entries */
430
431 /* copy new mapping into original location */
432 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
433 *pnr_map = new_nr;
434
435 return 0;
436 }
437
print_memory_map(char * who)438 static void __init print_memory_map(char *who)
439 {
440 int i;
441
442 for (i = 0; i < bfin_memmap.nr_map; i++) {
443 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
444 bfin_memmap.map[i].addr,
445 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
446 switch (bfin_memmap.map[i].type) {
447 case BFIN_MEMMAP_RAM:
448 printk(KERN_CONT "(usable)\n");
449 break;
450 case BFIN_MEMMAP_RESERVED:
451 printk(KERN_CONT "(reserved)\n");
452 break;
453 default:
454 printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
455 break;
456 }
457 }
458 }
459
parse_memmap(char * arg)460 static __init int parse_memmap(char *arg)
461 {
462 unsigned long long start_at, mem_size;
463
464 if (!arg)
465 return -EINVAL;
466
467 mem_size = memparse(arg, &arg);
468 if (*arg == '@') {
469 start_at = memparse(arg+1, &arg);
470 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
471 } else if (*arg == '$') {
472 start_at = memparse(arg+1, &arg);
473 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
474 }
475
476 return 0;
477 }
478
479 /*
480 * Initial parsing of the command line. Currently, we support:
481 * - Controlling the linux memory size: mem=xxx[KMG]
482 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
483 * $ -> reserved memory is dcacheable
484 * # -> reserved memory is icacheable
485 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
486 * @ from <start> to <start>+<mem>, type RAM
487 * $ from <start> to <start>+<mem>, type RESERVED
488 */
parse_cmdline_early(char * cmdline_p)489 static __init void parse_cmdline_early(char *cmdline_p)
490 {
491 char c = ' ', *to = cmdline_p;
492 unsigned int memsize;
493 for (;;) {
494 if (c == ' ') {
495 if (!memcmp(to, "mem=", 4)) {
496 to += 4;
497 memsize = memparse(to, &to);
498 if (memsize)
499 _ramend = memsize;
500
501 } else if (!memcmp(to, "max_mem=", 8)) {
502 to += 8;
503 memsize = memparse(to, &to);
504 if (memsize) {
505 physical_mem_end = memsize;
506 if (*to != ' ') {
507 if (*to == '$'
508 || *(to + 1) == '$')
509 reserved_mem_dcache_on = 1;
510 if (*to == '#'
511 || *(to + 1) == '#')
512 reserved_mem_icache_on = 1;
513 }
514 }
515 } else if (!memcmp(to, "clkin_hz=", 9)) {
516 to += 9;
517 early_init_clkin_hz(to);
518 #ifdef CONFIG_EARLY_PRINTK
519 } else if (!memcmp(to, "earlyprintk=", 12)) {
520 to += 12;
521 setup_early_printk(to);
522 #endif
523 } else if (!memcmp(to, "memmap=", 7)) {
524 to += 7;
525 parse_memmap(to);
526 }
527 }
528 c = *(to++);
529 if (!c)
530 break;
531 }
532 }
533
534 /*
535 * Setup memory defaults from user config.
536 * The physical memory layout looks like:
537 *
538 * [_rambase, _ramstart]: kernel image
539 * [memory_start, memory_end]: dynamic memory managed by kernel
540 * [memory_end, _ramend]: reserved memory
541 * [memory_mtd_start(memory_end),
542 * memory_mtd_start + mtd_size]: rootfs (if any)
543 * [_ramend - DMA_UNCACHED_REGION,
544 * _ramend]: uncached DMA region
545 * [_ramend, physical_mem_end]: memory not managed by kernel
546 */
memory_setup(void)547 static __init void memory_setup(void)
548 {
549 #ifdef CONFIG_MTD_UCLINUX
550 unsigned long mtd_phys = 0;
551 #endif
552 unsigned long max_mem;
553
554 _rambase = CONFIG_BOOT_LOAD;
555 _ramstart = (unsigned long)_end;
556
557 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
558 console_init();
559 panic("DMA region exceeds memory limit: %lu.",
560 _ramend - _ramstart);
561 }
562 max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
563
564 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
565 /* Due to a Hardware Anomaly we need to limit the size of usable
566 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
567 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
568 */
569 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
570 if (max_mem >= 56 * 1024 * 1024)
571 max_mem = 56 * 1024 * 1024;
572 # else
573 if (max_mem >= 60 * 1024 * 1024)
574 max_mem = 60 * 1024 * 1024;
575 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
576 #endif /* ANOMALY_05000263 */
577
578
579 #ifdef CONFIG_MPU
580 /* Round up to multiple of 4MB */
581 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
582 #else
583 memory_start = PAGE_ALIGN(_ramstart);
584 #endif
585
586 #if defined(CONFIG_MTD_UCLINUX)
587 /* generic memory mapped MTD driver */
588 memory_mtd_end = memory_end;
589
590 mtd_phys = _ramstart;
591 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
592
593 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
594 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
595 mtd_size =
596 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
597 # endif
598
599 # if defined(CONFIG_CRAMFS)
600 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
601 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
602 # endif
603
604 # if defined(CONFIG_ROMFS_FS)
605 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
606 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
607 mtd_size =
608 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
609
610 /* ROM_FS is XIP, so if we found it, we need to limit memory */
611 if (memory_end > max_mem) {
612 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
613 memory_end = max_mem;
614 }
615 }
616 # endif /* CONFIG_ROMFS_FS */
617
618 /* Since the default MTD_UCLINUX has no magic number, we just blindly
619 * read 8 past the end of the kernel's image, and look at it.
620 * When no image is attached, mtd_size is set to a random number
621 * Do some basic sanity checks before operating on things
622 */
623 if (mtd_size == 0 || memory_end <= mtd_size) {
624 pr_emerg("Could not find valid ram mtd attached.\n");
625 } else {
626 memory_end -= mtd_size;
627
628 /* Relocate MTD image to the top of memory after the uncached memory area */
629 uclinux_ram_map.phys = memory_mtd_start = memory_end;
630 uclinux_ram_map.size = mtd_size;
631 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
632 _end, mtd_size, (void *)memory_mtd_start);
633 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
634 }
635 #endif /* CONFIG_MTD_UCLINUX */
636
637 /* We need lo limit memory, since everything could have a text section
638 * of userspace in it, and expose anomaly 05000263. If the anomaly
639 * doesn't exist, or we don't need to - then dont.
640 */
641 if (memory_end > max_mem) {
642 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
643 memory_end = max_mem;
644 }
645
646 #ifdef CONFIG_MPU
647 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
648 page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
649 ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
650 #else
651 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
652 #endif
653 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
654 #endif
655
656 init_mm.start_code = (unsigned long)_stext;
657 init_mm.end_code = (unsigned long)_etext;
658 init_mm.end_data = (unsigned long)_edata;
659 init_mm.brk = (unsigned long)0;
660
661 printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
662 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
663
664 printk(KERN_INFO "Memory map:\n"
665 " fixedcode = 0x%p-0x%p\n"
666 " text = 0x%p-0x%p\n"
667 " rodata = 0x%p-0x%p\n"
668 " bss = 0x%p-0x%p\n"
669 " data = 0x%p-0x%p\n"
670 " stack = 0x%p-0x%p\n"
671 " init = 0x%p-0x%p\n"
672 " available = 0x%p-0x%p\n"
673 #ifdef CONFIG_MTD_UCLINUX
674 " rootfs = 0x%p-0x%p\n"
675 #endif
676 #if DMA_UNCACHED_REGION > 0
677 " DMA Zone = 0x%p-0x%p\n"
678 #endif
679 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
680 _stext, _etext,
681 __start_rodata, __end_rodata,
682 __bss_start, __bss_stop,
683 _sdata, _edata,
684 (void *)&init_thread_union,
685 (void *)((int)(&init_thread_union) + THREAD_SIZE),
686 __init_begin, __init_end,
687 (void *)_ramstart, (void *)memory_end
688 #ifdef CONFIG_MTD_UCLINUX
689 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
690 #endif
691 #if DMA_UNCACHED_REGION > 0
692 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
693 #endif
694 );
695 }
696
697 /*
698 * Find the lowest, highest page frame number we have available
699 */
find_min_max_pfn(void)700 void __init find_min_max_pfn(void)
701 {
702 int i;
703
704 max_pfn = 0;
705 min_low_pfn = memory_end;
706
707 for (i = 0; i < bfin_memmap.nr_map; i++) {
708 unsigned long start, end;
709 /* RAM? */
710 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
711 continue;
712 start = PFN_UP(bfin_memmap.map[i].addr);
713 end = PFN_DOWN(bfin_memmap.map[i].addr +
714 bfin_memmap.map[i].size);
715 if (start >= end)
716 continue;
717 if (end > max_pfn)
718 max_pfn = end;
719 if (start < min_low_pfn)
720 min_low_pfn = start;
721 }
722 }
723
setup_bootmem_allocator(void)724 static __init void setup_bootmem_allocator(void)
725 {
726 int bootmap_size;
727 int i;
728 unsigned long start_pfn, end_pfn;
729 unsigned long curr_pfn, last_pfn, size;
730
731 /* mark memory between memory_start and memory_end usable */
732 add_memory_region(memory_start,
733 memory_end - memory_start, BFIN_MEMMAP_RAM);
734 /* sanity check for overlap */
735 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
736 print_memory_map("boot memmap");
737
738 /* initialize globals in linux/bootmem.h */
739 find_min_max_pfn();
740 /* pfn of the last usable page frame */
741 if (max_pfn > memory_end >> PAGE_SHIFT)
742 max_pfn = memory_end >> PAGE_SHIFT;
743 /* pfn of last page frame directly mapped by kernel */
744 max_low_pfn = max_pfn;
745 /* pfn of the first usable page frame after kernel image*/
746 if (min_low_pfn < memory_start >> PAGE_SHIFT)
747 min_low_pfn = memory_start >> PAGE_SHIFT;
748
749 start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
750 end_pfn = memory_end >> PAGE_SHIFT;
751
752 /*
753 * give all the memory to the bootmap allocator, tell it to put the
754 * boot mem_map at the start of memory.
755 */
756 bootmap_size = init_bootmem_node(NODE_DATA(0),
757 memory_start >> PAGE_SHIFT, /* map goes here */
758 start_pfn, end_pfn);
759
760 /* register the memmap regions with the bootmem allocator */
761 for (i = 0; i < bfin_memmap.nr_map; i++) {
762 /*
763 * Reserve usable memory
764 */
765 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
766 continue;
767 /*
768 * We are rounding up the start address of usable memory:
769 */
770 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
771 if (curr_pfn >= end_pfn)
772 continue;
773 /*
774 * ... and at the end of the usable range downwards:
775 */
776 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
777 bfin_memmap.map[i].size);
778
779 if (last_pfn > end_pfn)
780 last_pfn = end_pfn;
781
782 /*
783 * .. finally, did all the rounding and playing
784 * around just make the area go away?
785 */
786 if (last_pfn <= curr_pfn)
787 continue;
788
789 size = last_pfn - curr_pfn;
790 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
791 }
792
793 /* reserve memory before memory_start, including bootmap */
794 reserve_bootmem(PAGE_OFFSET,
795 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
796 BOOTMEM_DEFAULT);
797 }
798
799 #define EBSZ_TO_MEG(ebsz) \
800 ({ \
801 int meg = 0; \
802 switch (ebsz & 0xf) { \
803 case 0x1: meg = 16; break; \
804 case 0x3: meg = 32; break; \
805 case 0x5: meg = 64; break; \
806 case 0x7: meg = 128; break; \
807 case 0x9: meg = 256; break; \
808 case 0xb: meg = 512; break; \
809 } \
810 meg; \
811 })
get_mem_size(void)812 static inline int __init get_mem_size(void)
813 {
814 #if defined(EBIU_SDBCTL)
815 # if defined(BF561_FAMILY)
816 int ret = 0;
817 u32 sdbctl = bfin_read_EBIU_SDBCTL();
818 ret += EBSZ_TO_MEG(sdbctl >> 0);
819 ret += EBSZ_TO_MEG(sdbctl >> 8);
820 ret += EBSZ_TO_MEG(sdbctl >> 16);
821 ret += EBSZ_TO_MEG(sdbctl >> 24);
822 return ret;
823 # else
824 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
825 # endif
826 #elif defined(EBIU_DDRCTL1)
827 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
828 int ret = 0;
829 switch (ddrctl & 0xc0000) {
830 case DEVSZ_64: ret = 64 / 8;
831 case DEVSZ_128: ret = 128 / 8;
832 case DEVSZ_256: ret = 256 / 8;
833 case DEVSZ_512: ret = 512 / 8;
834 }
835 switch (ddrctl & 0x30000) {
836 case DEVWD_4: ret *= 2;
837 case DEVWD_8: ret *= 2;
838 case DEVWD_16: break;
839 }
840 if ((ddrctl & 0xc000) == 0x4000)
841 ret *= 2;
842 return ret;
843 #endif
844 BUG();
845 }
846
847 __attribute__((weak))
native_machine_early_platform_add_devices(void)848 void __init native_machine_early_platform_add_devices(void)
849 {
850 }
851
setup_arch(char ** cmdline_p)852 void __init setup_arch(char **cmdline_p)
853 {
854 unsigned long sclk, cclk;
855
856 native_machine_early_platform_add_devices();
857
858 enable_shadow_console();
859
860 /* Check to make sure we are running on the right processor */
861 if (unlikely(CPUID != bfin_cpuid()))
862 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
863 CPU, bfin_cpuid(), bfin_revid());
864
865 #ifdef CONFIG_DUMMY_CONSOLE
866 conswitchp = &dummy_con;
867 #endif
868
869 #if defined(CONFIG_CMDLINE_BOOL)
870 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
871 command_line[sizeof(command_line) - 1] = 0;
872 #endif
873
874 /* Keep a copy of command line */
875 *cmdline_p = &command_line[0];
876 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
877 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
878
879 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
880
881 /* If the user does not specify things on the command line, use
882 * what the bootloader set things up as
883 */
884 physical_mem_end = 0;
885 parse_cmdline_early(&command_line[0]);
886
887 if (_ramend == 0)
888 _ramend = get_mem_size() * 1024 * 1024;
889
890 if (physical_mem_end == 0)
891 physical_mem_end = _ramend;
892
893 memory_setup();
894
895 /* Initialize Async memory banks */
896 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
897 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
898 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
899 #ifdef CONFIG_EBIU_MBSCTLVAL
900 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
901 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
902 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
903 #endif
904 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
905 bfin_write_PORTF_HYSTERISIS(HYST_PORTF_0_15);
906 bfin_write_PORTG_HYSTERISIS(HYST_PORTG_0_15);
907 bfin_write_PORTH_HYSTERISIS(HYST_PORTH_0_15);
908 bfin_write_MISCPORT_HYSTERISIS((bfin_read_MISCPORT_HYSTERISIS() &
909 ~HYST_NONEGPIO_MASK) | HYST_NONEGPIO);
910 #endif
911
912 cclk = get_cclk();
913 sclk = get_sclk();
914
915 if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
916 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
917
918 #ifdef BF561_FAMILY
919 if (ANOMALY_05000266) {
920 bfin_read_IMDMA_D0_IRQ_STATUS();
921 bfin_read_IMDMA_D1_IRQ_STATUS();
922 }
923 #endif
924 printk(KERN_INFO "Hardware Trace ");
925 if (bfin_read_TBUFCTL() & 0x1)
926 printk(KERN_CONT "Active ");
927 else
928 printk(KERN_CONT "Off ");
929 if (bfin_read_TBUFCTL() & 0x2)
930 printk(KERN_CONT "and Enabled\n");
931 else
932 printk(KERN_CONT "and Disabled\n");
933
934 printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
935
936 /* Newer parts mirror SWRST bits in SYSCR */
937 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
938 defined(CONFIG_BF538) || defined(CONFIG_BF539)
939 _bfin_swrst = bfin_read_SWRST();
940 #else
941 /* Clear boot mode field */
942 _bfin_swrst = bfin_read_SYSCR() & ~0xf;
943 #endif
944
945 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
946 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
947 #endif
948 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
949 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
950 #endif
951
952 #ifdef CONFIG_SMP
953 if (_bfin_swrst & SWRST_DBL_FAULT_A) {
954 #else
955 if (_bfin_swrst & RESET_DOUBLE) {
956 #endif
957 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
958 #ifdef CONFIG_DEBUG_DOUBLEFAULT
959 /* We assume the crashing kernel, and the current symbol table match */
960 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
961 (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
962 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
963 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
964 #endif
965 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
966 init_retx);
967 } else if (_bfin_swrst & RESET_WDOG)
968 printk(KERN_INFO "Recovering from Watchdog event\n");
969 else if (_bfin_swrst & RESET_SOFTWARE)
970 printk(KERN_NOTICE "Reset caused by Software reset\n");
971
972 printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
973 if (bfin_compiled_revid() == 0xffff)
974 printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
975 else if (bfin_compiled_revid() == -1)
976 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
977 else
978 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
979
980 if (likely(CPUID == bfin_cpuid())) {
981 if (bfin_revid() != bfin_compiled_revid()) {
982 if (bfin_compiled_revid() == -1)
983 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
984 bfin_revid());
985 else if (bfin_compiled_revid() != 0xffff) {
986 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
987 bfin_compiled_revid(), bfin_revid());
988 if (bfin_compiled_revid() > bfin_revid())
989 panic("Error: you are missing anomaly workarounds for this rev");
990 }
991 }
992 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
993 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
994 CPU, bfin_revid());
995 }
996
997 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
998
999 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1000 cclk / 1000000, sclk / 1000000);
1001
1002 setup_bootmem_allocator();
1003
1004 paging_init();
1005
1006 /* Copy atomic sequences to their fixed location, and sanity check that
1007 these locations are the ones that we advertise to userspace. */
1008 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
1009 FIXED_CODE_END - FIXED_CODE_START);
1010 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
1011 != SIGRETURN_STUB - FIXED_CODE_START);
1012 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
1013 != ATOMIC_XCHG32 - FIXED_CODE_START);
1014 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
1015 != ATOMIC_CAS32 - FIXED_CODE_START);
1016 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
1017 != ATOMIC_ADD32 - FIXED_CODE_START);
1018 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
1019 != ATOMIC_SUB32 - FIXED_CODE_START);
1020 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
1021 != ATOMIC_IOR32 - FIXED_CODE_START);
1022 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
1023 != ATOMIC_AND32 - FIXED_CODE_START);
1024 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
1025 != ATOMIC_XOR32 - FIXED_CODE_START);
1026 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
1027 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
1028
1029 #ifdef CONFIG_SMP
1030 platform_init_cpus();
1031 #endif
1032 init_exception_vectors();
1033 bfin_cache_init(); /* Initialize caches for the boot CPU */
1034 }
1035
1036 static int __init topology_init(void)
1037 {
1038 unsigned int cpu;
1039 /* Record CPU-private information for the boot processor. */
1040 bfin_setup_cpudata(0);
1041
1042 for_each_possible_cpu(cpu) {
1043 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
1044 }
1045
1046 return 0;
1047 }
1048
1049 subsys_initcall(topology_init);
1050
1051 /* Get the input clock frequency */
1052 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1053 static u_long get_clkin_hz(void)
1054 {
1055 return cached_clkin_hz;
1056 }
1057 static int __init early_init_clkin_hz(char *buf)
1058 {
1059 cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1060 #ifdef BFIN_KERNEL_CLOCK
1061 if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1062 panic("cannot change clkin_hz when reprogramming clocks");
1063 #endif
1064 return 1;
1065 }
1066 early_param("clkin_hz=", early_init_clkin_hz);
1067
1068 /* Get the voltage input multiplier */
1069 static u_long get_vco(void)
1070 {
1071 static u_long cached_vco;
1072 u_long msel, pll_ctl;
1073
1074 /* The assumption here is that VCO never changes at runtime.
1075 * If, someday, we support that, then we'll have to change this.
1076 */
1077 if (cached_vco)
1078 return cached_vco;
1079
1080 pll_ctl = bfin_read_PLL_CTL();
1081 msel = (pll_ctl >> 9) & 0x3F;
1082 if (0 == msel)
1083 msel = 64;
1084
1085 cached_vco = get_clkin_hz();
1086 cached_vco >>= (1 & pll_ctl); /* DF bit */
1087 cached_vco *= msel;
1088 return cached_vco;
1089 }
1090
1091 /* Get the Core clock */
1092 u_long get_cclk(void)
1093 {
1094 static u_long cached_cclk_pll_div, cached_cclk;
1095 u_long csel, ssel;
1096
1097 if (bfin_read_PLL_STAT() & 0x1)
1098 return get_clkin_hz();
1099
1100 ssel = bfin_read_PLL_DIV();
1101 if (ssel == cached_cclk_pll_div)
1102 return cached_cclk;
1103 else
1104 cached_cclk_pll_div = ssel;
1105
1106 csel = ((ssel >> 4) & 0x03);
1107 ssel &= 0xf;
1108 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1109 cached_cclk = get_vco() / ssel;
1110 else
1111 cached_cclk = get_vco() >> csel;
1112 return cached_cclk;
1113 }
1114 EXPORT_SYMBOL(get_cclk);
1115
1116 /* Get the System clock */
1117 u_long get_sclk(void)
1118 {
1119 static u_long cached_sclk;
1120 u_long ssel;
1121
1122 /* The assumption here is that SCLK never changes at runtime.
1123 * If, someday, we support that, then we'll have to change this.
1124 */
1125 if (cached_sclk)
1126 return cached_sclk;
1127
1128 if (bfin_read_PLL_STAT() & 0x1)
1129 return get_clkin_hz();
1130
1131 ssel = bfin_read_PLL_DIV() & 0xf;
1132 if (0 == ssel) {
1133 printk(KERN_WARNING "Invalid System Clock\n");
1134 ssel = 1;
1135 }
1136
1137 cached_sclk = get_vco() / ssel;
1138 return cached_sclk;
1139 }
1140 EXPORT_SYMBOL(get_sclk);
1141
1142 unsigned long sclk_to_usecs(unsigned long sclk)
1143 {
1144 u64 tmp = USEC_PER_SEC * (u64)sclk;
1145 do_div(tmp, get_sclk());
1146 return tmp;
1147 }
1148 EXPORT_SYMBOL(sclk_to_usecs);
1149
1150 unsigned long usecs_to_sclk(unsigned long usecs)
1151 {
1152 u64 tmp = get_sclk() * (u64)usecs;
1153 do_div(tmp, USEC_PER_SEC);
1154 return tmp;
1155 }
1156 EXPORT_SYMBOL(usecs_to_sclk);
1157
1158 /*
1159 * Get CPU information for use by the procfs.
1160 */
1161 static int show_cpuinfo(struct seq_file *m, void *v)
1162 {
1163 char *cpu, *mmu, *fpu, *vendor, *cache;
1164 uint32_t revid;
1165 int cpu_num = *(unsigned int *)v;
1166 u_long sclk, cclk;
1167 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1168 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1169
1170 cpu = CPU;
1171 mmu = "none";
1172 fpu = "none";
1173 revid = bfin_revid();
1174
1175 sclk = get_sclk();
1176 cclk = get_cclk();
1177
1178 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1179 case 0xca:
1180 vendor = "Analog Devices";
1181 break;
1182 default:
1183 vendor = "unknown";
1184 break;
1185 }
1186
1187 seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1188
1189 if (CPUID == bfin_cpuid())
1190 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1191 else
1192 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1193 CPUID, bfin_cpuid());
1194
1195 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1196 "stepping\t: %d ",
1197 cpu, cclk/1000000, sclk/1000000,
1198 #ifdef CONFIG_MPU
1199 "mpu on",
1200 #else
1201 "mpu off",
1202 #endif
1203 revid);
1204
1205 if (bfin_revid() != bfin_compiled_revid()) {
1206 if (bfin_compiled_revid() == -1)
1207 seq_printf(m, "(Compiled for Rev none)");
1208 else if (bfin_compiled_revid() == 0xffff)
1209 seq_printf(m, "(Compiled for Rev any)");
1210 else
1211 seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1212 }
1213
1214 seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1215 cclk/1000000, cclk%1000000,
1216 sclk/1000000, sclk%1000000);
1217 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1218 "Calibration\t: %lu loops\n",
1219 (loops_per_jiffy * HZ) / 500000,
1220 ((loops_per_jiffy * HZ) / 5000) % 100,
1221 (loops_per_jiffy * HZ));
1222
1223 /* Check Cache configutation */
1224 switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1225 case ACACHE_BSRAM:
1226 cache = "dbank-A/B\t: cache/sram";
1227 dcache_size = 16;
1228 dsup_banks = 1;
1229 break;
1230 case ACACHE_BCACHE:
1231 cache = "dbank-A/B\t: cache/cache";
1232 dcache_size = 32;
1233 dsup_banks = 2;
1234 break;
1235 case ASRAM_BSRAM:
1236 cache = "dbank-A/B\t: sram/sram";
1237 dcache_size = 0;
1238 dsup_banks = 0;
1239 break;
1240 default:
1241 cache = "unknown";
1242 dcache_size = 0;
1243 dsup_banks = 0;
1244 break;
1245 }
1246
1247 /* Is it turned on? */
1248 if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1249 dcache_size = 0;
1250
1251 if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1252 icache_size = 0;
1253
1254 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1255 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1256 icache_size, dcache_size, 0);
1257 seq_printf(m, "%s\n", cache);
1258 seq_printf(m, "external memory\t: "
1259 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1260 "cacheable"
1261 #else
1262 "uncacheable"
1263 #endif
1264 " in instruction cache\n");
1265 seq_printf(m, "external memory\t: "
1266 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1267 "cacheable (write-back)"
1268 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1269 "cacheable (write-through)"
1270 #else
1271 "uncacheable"
1272 #endif
1273 " in data cache\n");
1274
1275 if (icache_size)
1276 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1277 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1278 else
1279 seq_printf(m, "icache setup\t: off\n");
1280
1281 seq_printf(m,
1282 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1283 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1284 BFIN_DLINES);
1285 #ifdef __ARCH_SYNC_CORE_DCACHE
1286 seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", dcache_invld_count[cpu_num]);
1287 #endif
1288 #ifdef __ARCH_SYNC_CORE_ICACHE
1289 seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", icache_invld_count[cpu_num]);
1290 #endif
1291
1292 if (cpu_num != num_possible_cpus() - 1)
1293 return 0;
1294
1295 if (L2_LENGTH) {
1296 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1297 seq_printf(m, "L2 SRAM\t\t: "
1298 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1299 "cacheable"
1300 #else
1301 "uncacheable"
1302 #endif
1303 " in instruction cache\n");
1304 seq_printf(m, "L2 SRAM\t\t: "
1305 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1306 "cacheable (write-back)"
1307 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1308 "cacheable (write-through)"
1309 #else
1310 "uncacheable"
1311 #endif
1312 " in data cache\n");
1313 }
1314 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1315 seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1316 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1317 seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1318 ((int)memory_end - (int)_rambase) >> 10,
1319 (void *)_rambase,
1320 (void *)memory_end);
1321 seq_printf(m, "\n");
1322
1323 return 0;
1324 }
1325
1326 static void *c_start(struct seq_file *m, loff_t *pos)
1327 {
1328 if (*pos == 0)
1329 *pos = first_cpu(cpu_online_map);
1330 if (*pos >= num_online_cpus())
1331 return NULL;
1332
1333 return pos;
1334 }
1335
1336 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1337 {
1338 *pos = next_cpu(*pos, cpu_online_map);
1339
1340 return c_start(m, pos);
1341 }
1342
1343 static void c_stop(struct seq_file *m, void *v)
1344 {
1345 }
1346
1347 const struct seq_operations cpuinfo_op = {
1348 .start = c_start,
1349 .next = c_next,
1350 .stop = c_stop,
1351 .show = show_cpuinfo,
1352 };
1353
1354 void __init cmdline_init(const char *r0)
1355 {
1356 early_shadow_stamp();
1357 if (r0)
1358 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1359 }
1360